
Received 3 November 2022, accepted 9 December 2022, date of publication 16 December 2022, date of current version 27 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3230287

The AbU Language: IoT Distributed
Programming Made Easy
MICHELE PASQUA 1, MASSIMO COMUZZO2, AND MARINO MICULAN 2
1Department of Computer Science, University of Verona, 37134 Verona, Italy
2Department of Mathematics, Computer Science and Physics, University of Udine, 33100 Udine, Italy

Corresponding author: Michele Pasqua (michele.pasqua@univr.it)

This work was supported by the Italian MIUR Project PRIN 2017FTXR7S IT MATTERS (Methods and Tools for
Trustworthy Smart Systems).

ABSTRACT Event-driven programming based on Event-Condition-Action (ECA) rules allows users to
define complex automation routines in a simple, declarative way; for this reason, in recent years ECA
rules have been adopted by the majority of companies in the Internet of Things (IoT) industry as a
promising paradigm for implementing ubiquitous and pervasive systems. Unfortunately, programming
simplicity comes to a price: most implementations of ECA rules are bound to a strongly centralized
communication infrastructure, that poses serious limitations on the application scenarios for the IoT, due to
scalability, security and availability issues. To mitigate these issues, recent works introduced abstractions for
communication and coordination of ensembles of IoT devices in a decentralized setting, effectively moving
the computation towards the edge of the network without sacrificing the programming simplicity prerogative
of ECA rules. In particular, Attribute-based memory Updates is a communication model transparently
enhancing ECA rules-based systems with an interaction mechanism where communication is similar to
broadcast but actual receivers are selected on the spot, by means of predicates (i.e., properties) over devices
attributes. In this paper, we introduce AbU-dsl, a Domain Specific Language for the IoT that compiles on
top of an implementation of Attribute-based memory Updates. In this way, AbU-dsl provides a practical
development interface, based on ECA rules, to effectively program IoT devices in a fully decentralized
setting, by exploiting a full-fledged attribute-based interaction model. Thus, programmers can specify
interactions between devices in a declarative way, abstracting from details such as devices identity, number,
or even their existence, without the need for a central controlling service.

INDEX TERMS IoT programming, ECA rules, attribute-based memory updates, distributed systems, edge
computing, domain specific language.

I. INTRODUCTION
The Internet of Things (IoT) is nowadays an integral part
of our daily life, and it is composed by many computa-
tional objects communicating with each other. These objects,
usually called smart devices, can interact with the physical
environment (by means of sensors and actuators), with users
and with other computational systems. Indeed, the peculiarity
of smart devices is their computational power : they are not
just data collectors, but they can elaborate the collected data
and send it to external entities.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jad Nasreddine .

Event-driven programming has emerged as the prominent
paradigm for the development of IoT smart devices [1], [2];
indeed, this paradigm can be found in various commercial IoT
frameworks like IFTTT, Samsung SmartThings, Microsoft
Power Automate, Zapier, Google Home, etc. In this approach,
the behavior of a smart device is defined by some rules
(called also ‘‘applets’’, ‘‘zaps’’, ‘‘routines’’, ‘‘flows’’, and so
on) adopting theEvent Condition Action (ECA) programming
style:

on Event if Condition do Action

This rule pattern basically means: when Event occurs, ifCon-
dition is verified, then execute Action. Thus, an ECA rules-
based smart device can react to an event (e.g., a variable

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 132763

https://orcid.org/0000-0002-9475-4836
https://orcid.org/0000-0003-0755-3444
https://orcid.org/0000-0002-1711-3007

M. Pasqua et al.: AbU Language: IoT Distributed Programming Made Easy

change or a signal from a sensor) by executing one or more
actions, that can update the internal state of the device or
act on the environment via an actuator. Of course, the effect
caused by the rule action can trigger other rules, and so on.

However, in most current models and implementations of
this paradigm, the ECA rules are stored on, and executed by,
a central computing entity, possibly hosted on some server
on the cloud (as in IFTTT, Samsung SmartThings, Microsoft
Power Automate, Zapier and Google Home) and accessible
via the Internet. Thus, the components of the IoT system can-
not directly communicate: the coordination between devices
is demanded to the central node/service.

Although simple, such a centralized architecture inherently
affects crucial aspects like scalability, availability, privacy
and security. Indeed, the increase of IoT smart devices (think
of smart cities, smart farming, etc..) is going to produce a
massive amount of data [3], and transferring, storing and
processing this data in the cloud will overload servers and
network channels. As a consequence, cloud servers will not
be able to guarantee acceptable transfer rates and response
times; moreover, sending all this data back and forth on the
network is a big waste of energy. The dependence on Internet
connections and on a central node/service hinders availability,
which is also a critical requirement for many IoT and other
pervasive and autonomic applications; e.g., a smart door lock
may be stuck because the server is not reachable. Smart
devices often deal with sensible and personal data (like health
sensors, surveillance cameras, etc.) that the user would prefer
to do not share with some untrusted server on the cloud;
in fact, the need for a service in the cloud raises concerns
about data sovereignty. Finally, the dependence on external
services increases the attack surface of an IoT system; e.g.,
an attacker can open a house front door, taking advantage
of some vulnerability on the server communicating with the
door, and unknown to the user.

In this context, a natural evolution of the IoT would bring
the underlying infrastructure closer to the so-called edge com-
puting paradigm [3], [4], which aims tomove the computation
away from cloud data centers towards the ‘‘edge’’ of the
network, i.e., the smart devices which are the sources of data.
This approach allows to mitigate the previously mentioned
issues, as it reduces data transfers between the edge and
the center of the network —in fact, there can be no center
at all.

At the same time, placing the application logic on many
devices in a truly distributed and decentralized setting intro-
duces new issues and challenges. In particular, it requires
suitable mechanisms and abstractions for communication
and coordination of (possibly large) ensembles of distributed
components. In this respect,Attribute-basedmemoryUpdates
(AbU) [5] is a time-coupled, space-uncoupled interaction
model recently introduced for coordinating large numbers
of components which are not supposed to have a global
knowledge of the system, in the spirit of Attribute-based
Communication (AbC) [6], [7]. The latter is a loosely coupled
message-oriented interaction model specifically designed for

coordinating large numbers of components. The key aspect of
Attribute-based Communication is that the actual receivers
are selected ‘‘on the spot’’ by means of predicates over
node attributes; dually, a node can ‘‘filter’’ incoming mes-
sages by means of predicates. For instance, in AbC we have
primitives to express ‘‘send (the value of) expression e to
all nodes satisfying predicate 5’’ and, dually, ‘‘receive the
message x when it satisfies the predicate 5’’. Many inter-
action models, such as channels, agents, pub/sub, broadcast
andmulticast, can be readily implemented by usingAttribute-
based Communication [7], [8].

In [5], the authors introduced the AbU calculus, a for-
mal model aiming to integrate ECA programming with
Attribute-basedCommunication. In this calculus, interactions
are reduced to events of the same kind ECA programs already
deal with, i.e., memory updates. More precisely, an AbU
system is composed by a set of agents, called nodes, each
endowed with a local memory (representing the local vari-
ables, sensors and actuators) and a set of ECA rules. When a
rule of the form x1, . . . , xn m5 : act is triggered on a given
node due to a change in some local variable xi, the action
act can update the memory of that node (like in normal ECA
programming), but it can also update the memory of other
nodes, selected upon their memories by the predicate 5. For
instance, an AbU rule like the following:

accessTimem (@ role =logger) : log= log :: accessTime

means ‘‘when (my local) variable accessTime changes,
append its value to the variable log of all nodeswhose variable
role has value logger’’. Clearly, the update of log may
trigger other rules on these (remote) nodes, and so on.

In this paper, we introduce AbU-dsl, a Domain Specific
Language (DSL) based on the AbU calculus of [5]. This
results in a new programming language merging the simplic-
ity of ECA rules with distributed (decentralized) coordination
and communication mechanisms, in the spirit of Attribute-
based Communication. Hence, AbU-dsl can serve as a refer-
ence language for programming IoT smart devices, in an easy
yet powerful way.

For instance, the AbU rule introduced above can be
encoded in AbU-dsl as follows:

rule LogAccess
on accessTime
for all (ext.role == "logger")

do ext.log = ext.log :: this.accessTime

that is very concise and easy to understand.
Paper Structure: In Section II we introduce AbU-dsl, a new

ECA-inspired DSL extended with Attribute-based memory
Updates. Its syntax and operational semantics are presented
in Subsections II-A and II-B, respectively. In Section III we
use AbU-dsl in some practical IoT scenarios. In Section IV
we discuss how the DSL is compiled to a target language
and deployed on a target architecture. Finally, in Section V
we draw some conclusions, discuss related work and outline
some future directions.

132764 VOLUME 10, 2022

M. Pasqua et al.: AbU Language: IoT Distributed Programming Made Easy

II. THE AbU LANGUAGE
AbU-dsl is a Domain Specific Language for the Internet of
Things, particularly suitable for autonomic systems. It fol-
lows the Event ConditionAction programming paradigm and,
at the same time, it can be deployed in a truly distributed and
decentralized network. Devices interaction is implemented by
means of Attribute-based memory Updates [5], which is the
memory-based counterpart of Attribute-based Communica-
tion [6]. In particular, AbU-dsl builds upon the AbU calcu-
lus [5], the archetypal calculus with Attribute-based memory
Updates.

In the rest of the section, in order to present more con-
cisely the DSL syntax and semantics, we adopt the following
notation. The expression (x)∗ means zero or more repetitions
of x, while (x)+ means one or more repetitions of x. The
expression [x] represents an optional occurrence of x, while
x | y stands for either x or y. The symbol , stands for ‘‘is
defined as’’.

A. SYNTAX
An AbU-dsl program consists in a non-empty list of IoT
devices, preceded by a (possibly empty) list of type decla-
rations and followed by a (possibly empty) list of ECA rules.
The syntax of AbU-dsl programs is given in Figure 1. We sup-
pose to have a denumerable set Identifiers of identifiers (i.e.,
alphanumeric non-quoted strings), ranged over by Id, DevId
and RuleId.
Each device Dev is equipped with some ECA rules that

act on the device. These ECA rules are specified by means
of rule references Refs (i.e., a non-empty list (RuleId)+ of
rule identifiers) written after the optional keyword has. The
latter is optional since a node may have no specific rule acting
on it (e.g., an actuator that can only be changed by exter-
nal devices). Furthermore, a device has a unique identifier
DevId, a description Descr (i.e., a quoted string describing
the device functionalities), a resources declaration ResDecl
(i.e., a non-empty list (PhysRes |LogRes |CompRes)+ of
internal resources) and an invariant Bexp (that is, a boolean
expression), written after the optional keyword where, that
resources have to fulfill (if present).

As an example, the following AbU-dsl code:

watering : "A simple device managing a water pump" {
Resources declaration.
physical input decimal moisture
...
where
Device invariant.
moistMinLevel <= moistMaxLevel

} has openValve closeValve

defines a device called watering that manages awater valve,
in order to maintain the soil moisture level within an given
interval (moistMinLevel and moistMaxLevel). The latter
can be modified at run-time by the user, so the invariant
moistMinLevel <= moistMaxLevel assures that only
valid intervals can be specified. Furthermore, the device is
equipped with two ECA rules openValve and closeValve,
that open and close the water valve, respectively.

A resource can be physical, logical or compound. A phys-
ical resource PhysRes can be used either as input (input),
modeling a sensor; or as output (output), modeling an actu-
ator. An input resource is supposed to be read-only, an output
resource is supposed to be write-only and a logical resource
LogRes has no constraints. Logical resources can be used as
local variables. Logical and physical output resources have
to be declared with an initialization value Val, while physical
input resources do not. All physical and logical resources
have a name Id and a primitive type PType, that can be
either: boolean, for a boolean resource, e.g., true or false;
integer, for an integer resource, e.g., 42 or -42; decimal,
for a decimal resource, e.g., 3.14 or -3.14; or string, for
a string resource, e.g., "sTr1nG". Elements Val ∈ Values
belong to primitive types.

A compound resource CompRes is a structured object,
whose schema (i.e., the description of the object fields) is
defined in a type declaration. A type declaration TypeDecl
reserves an identifier CType, written after the keyword
define, to the new compound type, and its schema is
enclosed between curly brackets, after the keyword as.
In particular, a schema FieldDecl is a non-empty list of
field declarations, that can be: physical input PType,
for physical input fields; physical output PType, for
physical output fields; and logical PType, for logical
fields.1 When compound resources are declared (in a device),
their fields that require initialization must be provided
with a value (at declaration time). In particular, compound
resources are initialized by a constructor Const, that is a
list of comma-separated field initializations, of the form
Id= Val(, Id= Val)∗. A constructor may be empty, when no
field requires initialization (i.e., physical input fields).
Compound resource fields are accessed à la Python, namely
by using square brackets.

As an example, the following AbU-dsl code:

define PresenceSensor {
mode : physical output string
movement : physical input boolean

}

defines a compound resource having two fields, mode and
movement. The first requires an initialization value, while
the second does not, hence a resource prSen of type
PresenceSensor can be initialized with the constructor
PresenceSensor prSens = (mode = "idle"), inside
a node resource declaration. The field movement can be
accessed by writing prSens[movement].

Each ECA rule Rule has a unique identifier RuleId, that
can be referred by multiple devices. Rules are guarded by an
event Evt, which is a non-empty list of simple resources or
compound resource fields. Note that, Evt represents a list of
resources/fields that the rule continuously check for changes.
When one of the resources/fields is updated with a new value,
then one (or more) task, among those in the tasks list specified

1From these declarations, we cannot have nested compound resources.

VOLUME 10, 2022 132765

M. Pasqua et al.: AbU Language: IoT Distributed Programming Made Easy

FIGURE 1. Syntax for single devices and ensembles of devices.

after the rule event, may be executed, depending on a given
condition contained in the task.

As an example, the following AbU-dsl code:
rule nightAlarm
on light prSens[movement]

defines a rule named nightAlarm that is activated when
either the resource light or the field movement of the
(compound) resource prSens is modified.

In a task Task, an action is performed when the condition
Cnd is true. The optional modifier all means that the task
may act on remote (external) devices. In this case, the con-
dition and the action in the task may reference resources on
external devices, by prefixing them with the ext. keyword.
When the modifier all is omitted, the condition and the
action are considered on the local (current) device only. With
task conditions, the all modifier and local/remote resource
access we can express Attribute-based memory Updates [5].

An action Act is a non-empty comma-separated list of
assignments on different resources/fields. An assignment
Assign can be on the local device this.Id = Exp or
on a remote device ext.Id = Exp (this applies also for
compound resources, with local this.Id[Id] = Exp and
remote ext.Id[Id] = Exp field assignments). Notice that,
on each node the assignments of an action are executed
simultaneously as a single step, not sequentially.

As an example, the following AbU-dsl code:
rule nightAlarm
on light prSens[movement]
for all (ext.node == "alarmRing")

do ext.ring = true, this.status = "alarm"

defines the behavior of the rule nightAlarm previously
introduced. In particular, all devices tagged alarmRing

are forced to ring the alarm (via a remote update
ext.ring = true), while the current device changes status
(via the local update this.status = "alarm").

Expressions Exp can be numeric expressions Nexp,
boolean expressions Bexp or string expressions Sexp. They
comprises logical connectives (and, or, not), arithmetic
operators (+, -, *, /), strings concatenation (::), and compar-
ison operators (==, !=, <, <=, >, >=). We also have built-in
modulo (%) and absolute value (absint, for integers, and
absdec, for decimals) operators. The standard operators/
connectives composition priority can be overridden by using
round brackets.

An access to the resource Id on the local device can be
made by writing this.Id (or just Id). Similarly, an access on
the field of a local compound resource can bemade bywriting
this.Id[Id] (or just Id[Id]). Conditions Cnd are boolean
expressions that can access a resource Id on remote devices,
by writing ext.Id, or by writing ext.Id[Id] in the case of
compound resource fields access.

AbU-dsl is provided with foreign functions, allowing code
written in the compilation target language (see Section IV for
details) to be used inside AbU-dsl expressions. The syntax
for foreign functions is foreign(FuncName,ParamLst),
where FuncName is a quoted string containing the name
of the function to call and ParamLst is a, possibly empty,
comma-separated list of AbU-dsl identifiers or values. Note
that, foreign functions are assumed to be pure w.r.t. AbU-dsl,
so that they cannot introduce side-effects in the caller
AbU-dsl program. The return value of foreign functions
should be compatible with an AbU-dsl primitive type.
As an example, the following AbU-dsl code:

rule computeVolume
on radius, height
for (true)

do volume = foreign("math.Pow", radius, 2) *
height * foreign("math.Pi")

defines a rule that computes the volume of a cylinder when
either its radius or its height change. The codemake use of the

132766 VOLUME 10, 2022

M. Pasqua et al.: AbU Language: IoT Distributed Programming Made Easy

Golang math library to retrieve the value of π and to compute
exponentiation. Note that, we could had called a user-defined
Golang function that directly computes the volume of the
cylinder, using a single foreign instance.
Finally, comments can be inserted inline, after the key-

word #, while multi-line comments are enclosed within the
delimiters \@ ... @\.

Detailed examples of AbU-dsl programs will be provided in
Section III, while a complete presentation of the syntax can
be found on the DSL GitHub repository.2

1) SYNTACTIC SUGAR
To ease code writing, we can define the following macros on
top of the previously defined syntactic constructs. With:

rule RuleId on Evt default Act (Task)∗

we denote a rule that has default code Act to execute when
the event happens, independently from tasks condition. This
is a shorthand for:

rule RuleId on Evt for true do Act (Task)∗

Similarly, classic if-then-else conditional statements can be
encoded with ECA rules that have the following form:

rule RuleId on Evt
for Cnd do Act1 for notCnd do Act2

rule RuleId on Evt
for all Cnd do Act1 for all notCnd do Act2

In this case, we can write the latter in a simpler way:

rule RuleId on Evt for Cnd do Act1 owise Act2
rule RuleId on Evt for all Cnd do Act1 owise Act2

Finally, we can easily introduce a let construct to simplify
rules coding. Indeed, a rule like the following:

rule RuleId on Evt
let Id1 := Exp1; . . . ;Idn := Expn in (Task)+

where Id1, . . . Idn are fresh resource identifiers, can be
pre-processed substituting for each i ∈ [1..n] the occurrences
of Idi in (Task)+ with the corresponding expression Expi.
Then, let Id1 := Exp1; . . . ;Idn := Expn in is dropped.
Note that, the pre-processing does not perform any evaluation
of the expressions, it is just a mere syntactic substitution.

B. SEMANTICS
In order to present the semantics of AbU-dsl, we need some
auxiliary functions and definitions. The set of semantic values
comprises integers (Z), decimals (Q), booleans (tt, ff), char-
acter strings (S) and an undefined value (⊥), namely the value
domain is V , Z∪Q∪ S∪

{
tt, ff

}
∪ {⊥}. A generic value is

denoted by v.
In the following, we denote by ruleOf(RuleId) the ECA

rule (code) that has RuleId as rule name in an intended

2Available at https://github.com/abu-lang/abudsl.

AbU-dsl program. Given a device Dev, we denote with
inv(Dev) its invariant, if present. Similarly, given an ECA
rule Rule, we denote with task(Rule) the set of its tasks,
and with event(Rule) the set of resources in its event.

1) OPERATIONAL (SMALL STEP) SEMANTICS
Following [5], the semantics of AbU-dsl builds upon execu-
tion states and pools. A device state σ ∈ Identifiers −→ V,
is a map from resource (names) to values, while a device pool
θ ⊆

⋃
n∈NUn is a set of updates. An update upd is a finite

list of pairs (Id, v) ∈ U, meaning that the resource Id will take
the value v after the commitment of the update.
Let Act = [this.]Id1 = Exp1, . . . ,[this.]Idn = Expn

be a (local) task action, its evaluation JActK in the device state
σ returns an update. Formally, JActKσ ,

(Id1, JExp1Kσ) . . . (Idn, JExpnKσ)

The evaluation semantics for value expressions Exp is stan-
dard. As we will see in a moment, the semantic function J·K is
applied only to local task actions, that do not contain instances
of external resources ext.Id.

Given a list Refs = RuleId1 . . .RuleIdk of ECA rules
(names) and a set X of resources that have been modified,
we define the set of active rules as Active(Refs,X) ,{

Rule
∣∣∣∣ Rule = ruleOf(RuleIdi) ∧ i ∈ [1..k]
∧event(Rule) ∩ X 6= ∅

}
namely the rules in Refs that listen on resources in X and,
hence, that may be fired.

The local updates are the updates originated from the tasks
of the active rules in Refs that act only locally (i.e., the
modifier all is not present in the tasks condition) and that
satisfy the task condition, namely, LocUpds(Refs,X , σ) ,{
JActKσ

∣∣∣∣ Rule ∈ Active(Refs,X) ∧ Task ∈ task(Rule)
∧Task = for Bexp do Act ∧ σ |H Bexp

}
The satisfiability relation is defined as usual: σ |H Bexp ,
JBexpKσ = tt (the evaluation semantics for boolean expres-
sions Bexp is standard as well). Note that, the default
updates, namely the updates originated by actions under the
scope of default are local updates, by definition.
Whenwe have a task containing themodifier all, a remote

device is needed to evaluate the task condition. In the AbU-dsl
semantics, when a device needs to evaluate a task involving
remote devices, it partially evaluates the task (with its own
state) and then it sends the partially evaluated task to all other
devices. The latter, receive the task and complete the evalua-
tion, potentially adding updates to their pool. In particular, the
partial evaluation of tasksworks as follows.With {|Task|}σ we
denote the task obtained from Task with each occurrence of
resources [this.]Id in the task condition and the right-hand
side of the assignments in the task action replaced with the
value σ (Id). After that, each instance of ext.Id in the task
condition and action is replaced with this.Id. Finally, the

VOLUME 10, 2022 132767

M. Pasqua et al.: AbU Language: IoT Distributed Programming Made Easy

FIGURE 2. Operational semantics for single devices and ensembles of devices (actual ECA rules code is omitted to simplify the presentation).

modifier all is dropped. For instance, consider the task
Task ,

for all(this.x < ext.x) do ext.y = x + ext.y

Then, considering a device state σ , [x 7→ 1 y 7→ 0],
assigning 1 to x and 0 to y, we have that {|Task|}σ is:

for (1 < this.x) do this.y = 1 + this.y

Note that, once the task is partially evaluated and sent to other
devices, it becomes ‘‘syntactically local’’ for the receiving
devices and, hence, its action can be evaluated with the
semantic function J·K.
Finally, the remote tasks are the pre-evaluated tasks of

active rules in Refs whose condition contains all (i.e.,
tasks that require a remote device to be evaluated), namely,
RemTasks(Refs,X , σ) ,{
{|Task|}σ

∣∣∣∣Rule ∈ Active(Refs,X) ∧ Task ∈ task(Rule)
∧Task = for all Cnd do Act

}
Let Prg be a program with devices Dev1 [has Refs1] . . .

Devn [hasRefsn] and ECA rulesRule1 . . .Rulek .We define
the execution state 6 of Prg as a list of device states, one for
each device defined in the program. Formally,6 = σ1 . . . σn,
where for each i ∈ [1..n] we have that σi is a device state
for Devi. Similarly, the execution pool 2 of Prg is a list of
device pools, one for each device defined in the program, i.e.,
2 = θ1 . . . θn, where for each i ∈ [1..n] we have that θi is a
device pool for Devi.
The small-step operational semantics of a program Prg is

modeled as a Labeled Transition System (LTS). In particular,

Prg ` 〈σ, θ〉 α−→ 〈σ ′, θ ′〉means that the programPrg evolves,
producing the label α. Here, labels are given by:

α ::= T | upd B T | upd I T

where T is a finite (possibly empty) list of tasks and upd
an update. The semantics is distributed, in the sense that
each device does not have a global knowledge about the
system. The semantics is depicted in Figure 2, where rules
(Exec), (Exec-Fail), (Input) and (Propagate) model the evolution
of single devices, while the rule (Comm)models the evolution
of an ensemble of devices (i.e., of a program). To simplify the
presentation of the transition rules, in Figure 2 we omit the list
of ECA rules (code) that devices refer to.

The rule (Exec) executes an update picked from the pool;
while a rule (Input) models an external modification of some
resources. The execution of an update, or the modification
of resources in general, may trigger some other ECA rules.
Hence, after updating its state, a device launches a discovery
phase, to find new updates to add to the local pool (or some
pools of remote devices), given by the activation of some
ECA rules. The discovery phase is composed by two parts, the
local and the remote one. A device performs a local discovery
by means of the function LocUpds, that adds to the local
pool all updates originated by the activation of some local
rules. Then, by means of the function RemTasks, the device
computes a list of tasks that may update remote devices and
sends it to all devices of the program. This is modeled with
the labels updBT , produced by the rule (Exec), and updIT ,
produced by the rule (Input). On the other side, when a device
receives a list of tasks, executing the rule (Propagate) with a
label T , it evaluates them and adds to its pool the actions

132768 VOLUME 10, 2022

M. Pasqua et al.: AbU Language: IoT Distributed Programming Made Easy

generated by the tasks whose condition is satisfied. Note that,
not necessarily all devices have to modify their pool (indeed,
a task condition may not hold in a remote device). The rule
(Comm) synchronizes the whole discovery phase, originated
by a change in the state of a device of the program. When a
device executes an action originating only local updates, the
rule (Comm) is applied with 2′ = 2, producing the label
updB ε or the label updI ε (i.e., with an empty tasks list ε).
The latter, is matched by a label T = ε, that all devices can
generate by applying the rule (Propagate). Attentive readers
may notice that in the rule (Exec)we start the discovery on the
resources that have been modified only (the set X performs
such check), while in the rule (Input)we start the discovery on
all resources (no checks on X). This is due to the assumption
that inputs from the environment reflect an actual change in
some external components.3

Finally, the semantics also checks the fulfillment of invari-
ants, at run-time. Indeed, when an update would break an
invariant, the rule (Exec) is not applicable; instead, the rule
(Exec-Fail) is performed, that ignores the update (i.e., it is
removed from the pool without commitment). This fact is
observable with labels of the form upd B ε.

2) WAVE SEMANTICS
On top of the operational semantics described above, we can
define a big-step semantics, dubbed wave semantics, that
hides internal computation steps. This semantics represents
only state modifications resulting from inputs from the sur-
rounding environment. An AbU-dsl configuration 〈6,2〉 is a
pair consisting of an execution state 6 and an execution pool
2, for a given AbU-dsl program. A configuration is said stable
when no more execution steps can be performed, namely
when all device pools in 2 are empty. The wave seman-
tics transforms stable configurations in stable configurations.
Let −→∗ be the transitive closure of −→, without occurrences
of labels of the form updIT , namely −→∗ denotes a finite
sequence of internal execution steps (with the corresponding
discovery phases), without interleaving input steps. The wave
semantics for a program Prg is:

(Wave)
Prg ` 〈6,∅〉

upd
−−→ 〈6′′,2〉 Prg ` 〈6′′,2〉 −→∗ 〈6′,∅〉

Prg ` 6
upd
 6′

The idea is that a stable system, in the state 6, reacts to
an external stimulus upd by executing a series of tasks that
propagate across the devices like a ‘‘wave’’, until it becomes
stable again, in the state 6′, waiting for the next stimulus.
Note that, in the wave semantics inputs do not interleave
with internal steps: the system needs to reach stability before
processing the next input. If we allow arbitrary input steps
during the computation, a system may never reach stabil-
ity since the execution pools could be never emptied. This
assumption has a practical explanation: in the IoT context,

3In the implementation of the DSL we will describe in Section IV we
enforce this assumption by avoiding to start the discovery on idempotent
inputs, if any.

usually, external changes (in sensors) take much more time
than internal computation steps [9].

C. OPTIMIZATION
The semantics described so far follows precisely the seman-
tics of the AbU calculus [5], but it could be optimized for
a more efficient implementation. Indeed, when a device of
a program performs a local update (either an execution or
an input), i.e., when the committed update does not trigger
ECA rules on remote devices, the semantics in Figure 2 forces
all devices to synchronize, by means of an empty discovery.
In other words, when a device performs an update upd that
does not trigger ECA rules on remote devices, i.e., when it
emits a label updB ε (or updI ε), then all other devices
must perform a (Propagate) step matching ε. To improve the
performance of AbU-dsl, we can slightly modify the language
semantics, allowing devices to asynchronously execute local
updates. This translates in applying the transition rule (Comm)
only when T 6= ε, and to apply the following transition rule
otherwise, i.e., when α ∈ {upd B ε,upd I ε}:

(Local)

i ∈ [1..n] Devi has Refsi ` 〈σi, θi〉
α
−_ 〈σ, θ〉

6 = σ1 . . . σn 6′ = 6[σ/σi]
2 = θ1 . . . θn 2′ = 2[θ/θi]

Dev1 has Refs1 . . .Devn has Refsn ` 〈6,2〉
α
−→ 〈6′,2′〉

Note that, the added rule does not change the semantics of
AbU-dsl in Figure 2, but it improves performance since less
device communications are performed.

III. IoT PROGRAMMING EXAMPLES
In this section, we provide some IoT application scenarios for
AbU-dsl. In particular, we model in AbU-dsl IoT devices that
need to autonomously interact with each other, without the
need of a central controlling node.

A. SWARM OF ROBOTS
Consider a scenario where a swarm of robot drones is in
charge of taking specific measurements, randomly picked
in a large uninhabited area. Each drone is equipped with a
battery that periodically needs to be recharged by returning
to a docking station. It may happen that a drone runs out
of energy before returning to the charging spot. In this case,
the low-battery drone asks for help from its neighbors. If a
drone has some energy to share and it is close enough to
the requester, it will enter the ‘‘rescue’’ mode. A drone in
‘‘rescue’’ mode will reach the drone in distress, sharing with
it some energy (this phase is not modeled in the example
for space reasons). We can model this scenario (supposing
to have four drones) in AbU-dsl as follows.
The position of drones is given by a user-defined type

Coords, that has two fields latitude and longitude.
For each drone we have an AbU-dsl device with a resource
battery, indicating the battery level of the drone; a (com-
pound) resource pos, indicating where is located the drone;
a resource mode, indicating in which operative state is the
drone; a resource help, indicating the position of a drone

VOLUME 10, 2022 132769

M. Pasqua et al.: AbU Language: IoT Distributed Programming Made Easy

LISTING 1. A program modeling a swarm of robots.

that needs help; and a resource threshold, indicating when
another drone is considered close to the current. Formally,
the AbU-dsl program modeling the drone-swarm scenario is
depicted in Listing 1. Now suppose that the battery levels
of the drones are the following: battery = 4 for droneA;
battery = 81 for droneB; battery = 97 for droneC;
and battery = 65 for droneD. We assume that drones have
an embedded battery sensor that updates the drone resource
battery.

The ECA rule batteryCheck says that when the cur-
rent drone battery level is low (i.e., when battery < 5),
then the current drone has to send to all neighbors

(using all) that have some energy to share (i.e., that
have ext.battery > 80) its position, performing a remote
update (composed by the action at lines 53 – 54).

In the example, droneA can fire the rule, since its bat-
tery level is low. Then, it pre-evaluates the task condi-
tion, yielding 4 < 5~and battery > 80, which is sent
to the other drones, together with the pre-evaluation
of the task action, namely help[latitude] = 2 and
help[longitude] = 2. Among all possible receivers,
only droneB and droneC are interested in the communi-
cation, since they are the only drones with battery level
greater than 80. So, they both add to their pool the update
(help[latitude], 2)(help[longitude], 2). This ends
the discovery phase originated by droneA.
The rule setRescue, instead, is fired when a drone

receives a help request (i.e., when its resource help changes)
and basically checks if the current drone position is close
to the requester drone position (by checking that the dif-
ference between latitude and longitude values is less than
threshold). If it is the case, the current drone enters the res-
cue mode performing the local update mode = "rescue".
In the example, when droneB and droneC execute the

update (help[latitude], 2)(help[longitude], 2) the
task of the rule setRescue may be executed. For droneB
this does not happen, since absint (12 - 2) < 6 at
line 60 is not satisfied (the drone is too far from
droneA). Instead, the conditions absint (5 - 2) < 7

and absint (2 - 2) < 7 at lines 60 – 61 are both satisfied
for droneC, hence the latter can execute the rule task, adding
to its pool the update (mode, "rescue").

B. SMART HVAC SYSTEM
We provide an AbU-dsl implementation of aHeating, Ventila-
tion and Air Conditioning (HVAC) system. In this scenario we
have three devices connected through a network: the HVAC
control system, a temperature sensor, and a humidity sensor.
To distinguish the devices, a logical resource node is used.
In particular, node takes the values "system", "tempSens"
and "humSens" on the HVAC control system, the tempera-
ture sensor and the humidity sensor, respectively.

The AbU-dsl code modeling the scenario is depicted in
Listing 2. The rule notifyTemp on the temperature sen-
sor device is simply responsible of signaling changes to
the resource temperature to the HVAC control system,
by selecting all devices that have node equals to "system".
The rule notifyHum do the same for the resource humidity
on the humidity sensor device.

All other rules in Listing 2 are related to the HVAC
control system. The latter activates heating and air condi-
tioning according to the values of temperature and humidity,
received by the sensors. In particular, when the tempera-
ture is lower than 18◦C (this.temperature < 18) the
rule cool activates the heating (this.heating = true).
Instead, when the temperature is greater than 27◦C
(this.temperature > 27), then the rule warm deac-
tivates the heating (this.heating = false). The air

132770 VOLUME 10, 2022

M. Pasqua et al.: AbU Language: IoT Distributed Programming Made Easy

LISTING 2. A program modeling an HVAC system.

conditioning is turned on (this.conditioning = true),
by means of the ECA rule dry, when the humidity exceeds
the upper bound of the Givoni’s comfort zone [10], i.e., when
the condition at lines 28 – 29 is satisfied.
The HVAC control system is also bestowed with a

physical button for manually stopping the air condition-
ing. Indeed, the rule stopAir stops the air condition-
ing (this.conditioning = false) when the button is
pressed (this.airButton is true). Finally, by means
of the invariant not (conditioning and heating) we
specify that no update can result in the activation of both
heating and air conditioning simultaneously.

Note that, the same problem can be modeled by means of
a single device, embedding the two sensors and the control
system. We can model this scenario in AbU-dsl with a single
device comprising all resources introduced in Listing 2 and
transforming remote rules into local ones. This highlights the
flexibility of AbU-dsl, that is able to model both distributed
and centralized ensembles of devices.

C. PROGRAMMING A RASPBERRY Pi
In this last example, we show how AbU-dsl allows to easily
program a Raspberry Pi equipped with physical sensors and
actuators. We actually tested the example on real devices,

compiling the AbU-dsl program of Listing 3 with the AbU
compiler, that we will present in Section IV. In particular,
the code has been deployed on two Raspberry Pi 3b, one
equipped with a brushed DC motor with L293 driver; and the
other equipped with two LEDs and two GPIO buttons.

The wheel device (i.e., one of the twoRaspberry Pi), that is
equipped with the brushed DC motor, contains a (compound)
resource motor initialized with the actual physical PIN num-
bers connected to the Raspberry (fields forwardPin and
backwardPin) and the initial electric tension (expressed by
an integer between 0 and 255) applied to the PINs (fields
forwardPace and backwardPace). These tensions are used
to set the rotation speed of the motor, as described in the L293
motor datasheet.

When motor[forwardPace] is greater than 0 then the
motor spins clockwise, with the given pace, while when
motor[backwardPace] is greater than 0 then the motor
spins counterclockwise, with the given pace. The specifica-
tion of the L293 driver does not describe what happens when
both PINs are simultaneously powered, so, to prevent motor
damages, we enforce at programming level (i.e., by means
of AbU-dsl code) that only one PIN at a time can be powered,
by using the invariant at lines 20 – 21. The device is controlled
by two ECA rules drive and brake: the first continuously
increases the speed of themotor on a given spinning direction;
while the second stops themotor rotation, when themaximum
speed is reached.

To change the motor rotation direction we need to press
a combination of buttons on the device controls (i.e., the
other Raspberry Pi), that is equipped with two GPIO buttons
and two one-color LEDs. Similarly to the previous case,
we have to initialize buttons and LEDs resources with the
physical PIN numbers connected to the Raspberry (setting
the pin field of the LED and GPIOButton resources). Then,
the boolean field status of LED resources can be set to true
and false indicating that the LED is on and off, respec-
tively. Similarly, the boolean field status of GPIOButton
resources can be set to true and false indicating that the
button is pressed and released, respectively.

Buttons are used to control the rotation direction of the
motor and to turn on and off the LEDs. In particular, the
ECA rule changeDir sets the motor spin counterclockwise,
by performing the actions ext.motor[forwardPace] = 0

and ext.motor[backwardPace] = 1, when the first
button is pressed and the second one is not pressed;
while the rule sets the motor spin clockwise, by per-
forming the actions ext.motor[forwardPace] = 1 and
ext.motor[backwardPace] = 0, when the second but-
ton is pressed and the first one is not pressed. Note
that, the rule potentially affects all devices in the net-
work that have a brushed DC motor, by selecting the
devices such that ext.node == "DCmotor". Finally, the
ECA rule toggleLed toggles the status of the two LEDs
(lines 46 – 47), when both buttons are pressed together
(buttonA[status] and buttonB[status]).

VOLUME 10, 2022 132771

M. Pasqua et al.: AbU Language: IoT Distributed Programming Made Easy

LISTING 3. An program modeling two devices (Raspberry Pi) equipped
with a DC motor, two LEDs and two GPIO buttons.

IV. A DISTRIBUTED IMPLEMENTATION
AbU-dsl is a (decentralized) distributed language, hence any
implementation has to deal with the intrinsic issues of dis-
tributed systems. In particular, by the CAP theorem [11] we
cannot have, at the same time, consistency, availability and
partition-tolerance. Hence, some compromises have to be
taken, depending on the application context. For instance, in a
scenario with low network traffic we can aim for correctness,
implementing a robust, but slow, communication protocol.
Vice versa, when devices exchange data at a high rate (or
when the network is not stable), communication should take
very short time, hence we may prefer to renounce to consis-
tency in favor of eventual consistency.

FIGURE 3. High-level view of an AbU-dsl device architecture.

For these reasons, a flexible and modular implementation
is mandatory, where modules can be implemented in dif-
ferent ways, depending on the application context. Hence,
we designed a modular architecture suitable to implement
AbU-dsl devices, as depicted in Figure 3. An AbU-dsl device
consists in a device state (mapping resources to values),
a device pool (a set of updates to execute) and a list of
ECA rules (modeling the device behavior). An ECA Rules
Engine module is in charge of executing the updates in
the pool and to discover new rules to trigger, potentially
on remote devices (distributed discovery). This module also
implements Attribute-based memory Updates and deals with
IoT inputs (from sensors) and outputs (to actuators), which
are accessed bymeans of a dedicated interface. A separate IoT
Driversmodule translates low-level IoT devices primitives to
high-level signals for the rule engine and vice versa. TheDis-
tribution module is in charge of joining a cluster of AbU-dsl
devices and exchanging messages with them. It embodies all
distributed infrastructure-related aspects, that can be tuned
to meet the desired context-related requirements. Moreover,
it provides the communicationAPIs needed by the rule engine
to implement the (distributed) discovery phase (and, in turn,
Attributed-based memory Updates). For instance, the labels
updIT and updBT of the AbU-dsl semantics may generate
a broadcast communication.

We opted for an exogenous language design, meaning
that the DSL provides an abstraction layer for an existing
full-fledged general-purpose programming language. In this
way, we can reuse existing code (or fast-developing new
code), demanding to AbU-dsl only distributed communication
and coordination aspects. Local computations on devices are
implemented using the underlying general-purpose language.

As a first prototype, we have developed GoAbU, an imple-
mentation of AbU-dsl in Golang, together with several
open-source support tools for AbU-dsl: abuc, an AbU-dsl
compiler; and abusim, a simulator for AbU-dsl devices. The
extension of AbU-dsl source code files is .abu. The code of
GoAbU and these tools is publicly accessible on GitHub.4

A. GOLANG-BASED PROTOTYPE
GoAbU5 implements the architecture described in Figure 3.
In particular, the ECA Rules Engine module is built on

4Available at https://github.com/abu-lang.
5Available at https://github.com/abu-lang/goabu.

132772 VOLUME 10, 2022

M. Pasqua et al.: AbU Language: IoT Distributed Programming Made Easy

top of the Hyperjump’s Grule [12] library, a stable ECA
rules engine providing an incremental evaluation strategy.
Incremental evaluation enhances efficiency in rule evaluation
by avoiding the repetition of previous computations and by
exploiting the structural similarity between rules.

The IoT Drivers module is built on top of GOBOT [13],
a Go library for the IoT ecosystem, with a great availability
of device drivers. The library provides data abstractions for
programming IoT devices in a simple way. Devices behavior
is specified by implementing callback functions, that can be
compiled to all supported platforms (e.g., arm64).

Finally, the Distribution module is based on HashiCorp’s
Memberlist [14], a popular Go library for cluster member-
ship and failures detection that uses a SWIM-like gossip
protocol [15]. In such protocol, to achieve a lightweight
and scalable cluster membership solution, every membership
update message (carrying information about joins, leaves or
failures) is distributed by piggybacking the update on the
messages used to implement the failure detection protocol.
This allows for solutions relying on cluster membership, with
eventual consistency, that are able to scale on larger systems.

GoAbU provides a correct implementation of the seman-
tics depicted in Figure 2, where the whole discovery phase
is executed in a single atomic step. This implies that the
partially evaluated tasks must be delivered to other devices
by means of an atomic (‘‘all or none’’) operation, as when
reliable broadcast is performed. In the GoAbU implemen-
tation, we achieve reliable broadcast by using a customized
transactional two-phase commit protocol [16].

B. COMPILATION AND DEPLOYMENT
In this section, we describe the compilation and deployment
pipeline for AbU-dsl programs. A graphical representation of
the whole compilation process is reported in Figure 4.

Before compilation, we need a little pre-processing. First,
we have a de-sugaring phase, that removes the syntac-
tic constructs added to simplify coding, as explained in
Subsection II-A. Then, we have a splitting phase, that
separates the devices of the program, together with the
corresponding rules code. In particular, a program consisting
in n devices will result in n ‘‘partial’’ AbU-dsl programs
consisting in one device only. Finally, the code of the rules
referenced by a device is copied in the corresponding single-
device program.

The resulting ‘‘partial’’ AbU-dsl programs are compiled to
the target language. The compiler abuc6 supports different
targets, that may yield standalone or intermediate compila-
tions. In the first case, the AbU-dsl program is translated to the
target machine code and the IoT run-time is added, obtaining
a standalone executable. In the second case, the AbU-dsl
program is translated to the target programming language
code, so that it can be extended or linked into other projects.

At the time of writing, abuc supports the following targets:
go, namely the output of the compilation is a ready-to-use

6Available at https://github.com/abu-lang/abuc.

FIGURE 4. High-level view of AbU-dsl programs compilation.

GoAbU code, that can be imported to other Golang project
and manually customized; amd64, namely the output of the
compilation is an amd64 executable; and arm64, namely the
output of the compilation is an arm64 executable.

As a matter of example, by using the following command
on the AbU-dsl program in Listing 2:

$ abuc -o hvacGo -t go hvac.abu

we obtain three Golang source files hvacGo-system.go,
hvacGo-tempSens.go and hvacGo-humSens.go. The
first contains (the GoAbU code of) the system device and
the rules cool, warm, dry and stopAir; the second contains
the tempsSens device and the rule notifyTemp; while the
third contains the humSens device and the rule notifyHum.
The compiler accepts also an optional parameter -c

(or -config), that is used to specify a configuration files for
linking IoT libraries, as explained next.

1) LINKING IoT LIBRARIES
In order to map (low-level) IoT resources with (high-level)
AbU-dsl resources, we have to link devices driver libraries.
In particular, for each custom type defined in AbU-dsl (e.g.,
the DCMotor type in Listing 3) we have to link a correspond-
ing driver written in the target language. This information is
provided to the compiler by using a .json configuration file.
In Listing 4 we show an example of such configuration file,
for the AbU-dsl program in Listing 3. The first line of the file
specifies the necessary libraries (in the example, the GOBOT
driver for the Raspberry Pi), while the second line imports the
target language file containing the interfaces towhich AbU-dsl
types should be mapped to (in the example, we have a Golang
implementation of the GOBOT-based drivers). The third line

VOLUME 10, 2022 132773

M. Pasqua et al.: AbU Language: IoT Distributed Programming Made Easy

LISTING 4. An configuration file example for the AbU-dsl compiler.

is an initialization string that is required by the specific target
GoAbU. The rest of the file comprises the mappings. For each
custom AbU-dsl type we specify the corresponding target lan-
guage interface (in the example, for instance, we associate the
AbU-dsl type DCMotor with the Golang struct L293Motor)
and the mappings for the AbU-dsl type fields (in the exam-
ple, for instance, we associate the field forwardPin with
the Golang resource fPin of L293Motor). Finally, Args
specifies the order of the parameters required by the target
language type constructor.

As a matter of example, by using the following command
on the AbU-dsl program in Listing 3:

$ abuc -t arm64 -c config.json rasp-pi.abu

where config.json is the configuration file in Listing 4,
we obtain two arm64 executables7 wheel and controls.
The first can be deployed on the Raspberry Pi 3b equipped
with the brushed DCmotor, while the second can be deployed
the other Raspberry Pi equipped with the two LEDs and the
two GPIO buttons.

C. SIMULATION ENVIRONMENT
In order to test AbU-dsl implementations, we have developed
abusim,8 a simulator that automatically deploys and exe-
cutes AbU-dsl devices. The simulator is configured by means
of a dedicated .yaml file, and can be used with different

7File names are taken from the devices in the source code if the option -o
is not present.

8Available at https://github.com/abu-lang/abusim.

implementations of AbU-dsl. Indeed, it is sufficient to provide
the simulator withDocker images containing the devices code
(e.g., GoAbU compiled code).

V. CONCLUSION
In this paper we have introduced AbU-dsl, a new Domain
Specific Language for the IoT merging the simplicity of ECA
programming with Attribute-based memory Updates [5]. The
latter is a new time-coupled, space-uncoupled interaction
mechanism where nodes communication is performed with-
out a global knowledge of network participants, and it fits
neatly within the ECA programming paradigm. We have
shown how practical IoT systems of smart devices can be
easily programmed in AbU-dsl, even in the case of com-
plex scenarios. Then, we have described the compilation
and deployment process of an AbU-dsl program, consid-
ering a particular target (implementation) language, i.e.,
Golang. A prototype implementation of AbU-dsl in Golang
(i.e., GoAbU), together with a compiler and a simulation
environment, is publicly available in the language GitHub
repository:

https://github.com/abu-lang

A. RELATED WORK
To the best of our knowledge, the only work aiming at merg-
ing the ECA programming paradigm with attribute-based
interaction is [5], which is indeed the theoretical model at
the basis of the DSL presented in this paper. In turn, the
model of [5] has its root in the AbC calculus, introduced and
studied in [6], [7], and [8] as a core calculus for SCEL [17].
Various extensions of AbC has been proposed [18],
[19], as well as correct implementations in Erlang and
Golang [20], [21], [22].

Concerning ECA programming for IoT systems, a notably
example is IRON [23], whose formal semantics is defined
in [9] and [24]. Most works dealing with ECA rules try to
assess properties such as termination, confluence, absence
of redundant or contradicting rules. To this aim, [23],
[25], and [26] implement verification mechanisms to check
these properties on IRON programs. Other works propose
approaches to verify systems based on ECA rules by using
Petri Nets [27] and Binary Decision Diagrams [28]. In [1]
and [29], the authors present a tool-supported method for ver-
ifying and controlling the correct interactions of ECA rules.
A formalization of an ECA rule-based system is provided
in order to transform the translation into a Heptagon/BZR
program.

Finally, recent work [30], [31] on the Reactive Data
model adopts a declarative attribute-based interaction sim-
ilar to AbU-dsl’s. In this model, ECA rules are given
by declarative Response Relations, while attribute-based
interaction is obtained by using dynamic end-points of
the relations, defined by graph query languages. However,
these approaches are not intended to be used for distributed
programming.

132774 VOLUME 10, 2022

M. Pasqua et al.: AbU Language: IoT Distributed Programming Made Easy

B. FUTURE WORK
First, we plan to develop a type system for AbU-dsl, with the
aim of performing devices and ECA rules well-formedness
checks, together with expressions type checks. Furthermore,
we plan to extend the AbU-dsl compiler, targeting more lan-
guages and architectures. Note that, AbU-dsl can be consid-
ered as a target language for the implementation of other
distributed languages, e.g., agent based, hence we may
think of developing compilers for other known DSL, e.g.,
JADEL [32], to AbU-dsl.

In order to guarantee termination of AbU-dsl programs,
we plan to implement a static verification mechanism to
ensure stabilization, as defined in [5] for the AbU calculus.
Similarly, we may implement for AbU-dsl verification mech-
anisms for safety and security IoT requirements, defined, for
instance, in terms of behavioral equivalences (e.g., bisimula-
tions) between AbU-dsl devices, as done in [33]. Along this
line, in IoT systems it is often important to guarantee that
inputs are processed within precise time bounds; to this end,
following [34], we can think of adding quantitative aspects to
the semantics of AbU-dsl, in order to provide precise estima-
tions of stabilization times.

The smooth integration of an attribute-based interac-
tion mechanism within the ECA paradigm should simplify
the porting to the distributed setting of many known
results and techniques from the ECA literature. In partic-
ular, we are interested in porting to AbU-dsl the verifi-
cation techniques developed for ECA languages, such as
IRON [25], [26], [27].

Another interesting issue is distributed runtime verifica-
tion, in order to detect violations at runtime of given cor-
rectness properties, e.g., expressed in temporal logics like
CTL or the µ-calculus [35]. Finally, a new generalization of
Attribute-based Communication has been presented in [36];
it could be interesting to investigate how to apply that inter-
action model to the ECA programming.

REFERENCES
[1] J. Cano, E. Rutten, G. Delaval, Y. Benazzouz, and L. Gurgen, ‘‘ECA

rules for IoT environment: A case study in safe design,’’ in Proc. IEEE
8th Int. Conf. Self-Adapt. Self-Organizing Syst. Workshops, Sep. 2014,
pp. 116–121.

[2] M. Balliu, M. Merro, M. Pasqua, and M. Shcherbakov, ‘‘Friendly fire:
Cross-app interactions in IoT platforms,’’ ACM Trans. Privacy Secur.,
vol. 24, no. 3, pp. 1–40, Aug. 2021.

[3] D. R. John and G. J. Rydning. (2018). Data Age 2025 IDC’s Whitepaper,
Sponsored by Seagate Technology LLC. [Online]. Available: https://www.
networkworld.com/article/3325397/idc-expect-175-zettabytes-of-data-
worldwide-by-2025.html

[4] B. Gill and D. Smith. (2018). The Edge Completes the Cloud: A Gartner
Trend Insight Report. Gartner. [Online]. Available: https://emtemp.gcom.
cloud/ngw/globalassets/en/doc/documents/3889058-the-edge-completes-
the-cloud-a-gartner-trend-insight-report.pdf

[5] M. Miculan and M. Pasqua, ‘‘A calculus for attribute-based memory
updates,’’ in Theoretical Aspects of Computing—ICTAC (Lecture Notes
in Computer Science), A. Cerone and P. Ölveczky, Eds. Nur-Sultan,
Kazakhstan: Springer, 2021.

[6] Y. A. Alrahman, R. De Nicola, M. Loreti, F. Tiezzi, and R. Vigo,
‘‘A calculus for attribute-based communication,’’ in Proc. 30th
Annu. ACM Symp. Appl. Comput., Apr. 2015, pp. 1840–1845, doi:
10.1145/2695664.2695668.

[7] Y. A. Alrahman, R. De Nicola, and M. Loreti, ‘‘On the power of
attribute-based communication,’’ in Formal Techniques for Distributed
Objects, Components, and Systems, E. Albert and I. Lanese, Eds. Cham,
Switzerland: Springer, 2016, pp. 1–18.

[8] Y. A. Alrahman, R. De Nicola, and M. Loreti, ‘‘Programming interactions
in collective adaptive systems by relying on attribute-based communica-
tion,’’ Sci. Comput. Program., vol. 192, Jun. 2020, Art. no. 102428.

[9] D. R. Cacciagrano and R. Culmone, ‘‘IRON: Reliable domain specific lan-
guage for programming IoT devices,’’ Internet Things, vol. 9, Mar. 2020,
Art. no. 100020, doi: 10.1016/j.iot.2018.09.006.

[10] B. Givoni, ‘‘Comfort, climate analysis and building design guidelines,’’
Energy Buildings, vol. 18, no. 1, pp. 11–23, Jan. 1992.

[11] S. Gilbert and N. Lynch, ‘‘Brewer’s conjecture and the feasibility of con-
sistent, available, partition-tolerant web services,’’ SIGACT News, vol. 33,
no. 2, pp. 51–59, Jun. 2002, doi: 10.1145/564585.564601.

[12] Hyperjump.tech. Grule. Accessed: Oct. 21, 2022. [Online]. Available:
https://github.com/hyperjumptech/grule-rule-engine/

[13] gobot.io. GOBOT. Accessed: Oct. 21, 2022. [Online]. Available:
https://gobot.io/

[14] hashicorp.com.Memberlist. Accessed: Oct. 21, 2022. [Online]. Available:
https://github.com/hashicorp/memberlist/

[15] A. Das, I. Gupta, and A. Motivala, ‘‘SWIM: Scalable weakly-consistent
infection-style process group membership protocol,’’ in Proc. Int. Conf.
Dependable Syst. Netw., 2002, pp. 303–312.

[16] J. N. Gray, Notes on Data Base Operating Systems. Berlin, Germany:
Springer, 1978, pp. 393–481.

[17] R. De Nicola, D. Latella, A. L. Lafuente, M. Loreti, A. Margheri,
M. Massink, A. Morichetta, R. Pugliese, F. Tiezzi, and A. Vandin,
‘‘The SCEL language: Design, implementation, verification,’’ in Software
Engineering for Collective Autonomic Systems (LectureNotes in Computer
Science), vol. 8998, M. Wirsing, M. Holzl, N. Koch, and P. Mayer, Eds.
Cham, Switzerland: Springer, 2015, pp. 3–71.

[18] Y. A. Alrahman, R. De Nicola, and M. Loreti, ‘‘A calculus for collective-
adaptive systems and its behavioural theory,’’ Inf. Comput., vol. 268,
Oct. 2019, Art. no. 104457.

[19] Y. A. Alrahman and G. Garbi, ‘‘A distributed API for coordinating AbC
programs,’’ Int. J. Softw. Tools Technol. Transf., vol. 22, no. 4, pp. 477–496,
Feb. 2020.

[20] R. De Nicola, T. Duong, and M. Loreti, ‘‘Provably correct implementation
of the AbC calculus,’’ Sci. Comput. Program., vol. 202, Feb. 2021,
Art. no. 102567. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0167642320301751

[21] Y. Abd Alrahman, R. De Nicola, and G. Garbi, ‘‘GoAt: Attribute-based
interaction in Google go,’’ in Leveraging Applications of Formal Meth-
ods, Verification and Validation, Distributed Systems (Lecture Notes in
Computer Science), vol. 11246, T. Margaria and B. Steffen, Eds. Cham,
Switzerland: Springer, 2018, pp. 288–303.

[22] giulio-garbi.github.io.GoAt. Accessed: Oct. 21, 2022. [Online]. Available:
https://giulio-garbi.github.io/goat/

[23] F. Corradini, R. Culmone, L. Mostarda, L. Tesei, and F. Raimondi,
‘‘A constrained ECA language supporting formal verification of WSNs,’’
in Proc. IEEE 29th Int. Conf. Adv. Inf. Netw. Appl. Workshops, Mar. 2015,
pp. 187–192.

[24] D. R. Cacciagrano and R. Culmone, ‘‘Formal semantics of an IoT-specific
language,’’ in Proc. 32nd Int. Conf. Adv. Inf. Netw. Appl. Workshops
(WAINA), May 2018, pp. 579–584.

[25] C. Vannucchi, M. Diamanti, G. Mazzante, D. R. Cacciagrano, F. Corradini,
R. Culmone, N. Gorogiannis, L. Mostarda, and F. Raimondi, ‘‘VIRONy:
A tool for analysis and verification of ECA rules in intelligent environ-
ments,’’ in Proc. Int. Conf. Intell. Environ. (IE), Aug. 2017, pp. 92–99, doi:
10.1109/IE.2017.32.

[26] C. Vannucchi, M. Diamanti, G. Mazzante, D. Cacciagrano, R. Culmone,
N. Gorogiannis, L. Mostarda, and F. Raimondi, ‘‘Symbolic verification
of event–condition–action rules in intelligent environments,’’ J. Reli-
able Intell. Environ., vol. 3, no. 2, pp. 117–130, Aug. 2017, doi:
10.1007/s40860-017-0036-z.

[27] X. Jin, Y. Lembachar, and G. Ciardo, ‘‘Symbolic verification of ECA
rules,’’ inProc. Int. Workshop Petri Nets Softw. Eng. (PNSE), Int. Workshop
Model. Bus. Environ. (ModBE), vol. 989, D.Moldt, Ed.Milano, Italy, 2013,
pp. 41–59. [Online]. Available: http://ceur-ws.org/Vol-989/paper17.pdf

[28] D. Beyer and A. Stahlbauer, ‘‘BDD-based software verification,’’ Int. J.
Softw. Tools Technol. Transf., vol. 16, no. 5, pp. 507–518, Oct. 2014, doi:
10.1007/s10009-014-0334-1.

VOLUME 10, 2022 132775

http://dx.doi.org/10.1145/2695664.2695668
http://dx.doi.org/10.1016/j.iot.2018.09.006
http://dx.doi.org/10.1145/564585.564601
http://dx.doi.org/10.1109/IE.2017.32
http://dx.doi.org/10.1007/s40860-017-0036-z
http://dx.doi.org/10.1007/s10009-014-0334-1

M. Pasqua et al.: AbU Language: IoT Distributed Programming Made Easy

[29] J. Cano, G. Delaval, and E. Rutten, ‘‘Coordination of ECA rules by
verification and control,’’ inCoordinationModels and Languages, E. Kuhn
and R. Pugliese, Eds. Berlin, Germany: Springer, 2014, pp. 33–48.

[30] J. C. Seco, S. Debois, T. Hildebrandt, and T. Slaats, ‘‘RESEDA: Declar-
ing live event-driven computations as reactive semi-structured data,’’ in
Proc. IEEE 22nd Int. Enterprise Distrib. Object Comput. Conf. (EDOC),
Oct. 2018, pp. 75–84.

[31] L. Galrinho, J. C. Seco, S. Debois, T. Hildebrandt, H. Norman, and
T. Slaats, ‘‘ReGraDa: Reactive graph data,’’ in Coordination Models and
Languages, F. Damiani and O. Dardha, Eds. Cham, Switzerland: Springer,
2021, pp. 188–205.

[32] F. Bergenti, E. Iotti, S. Monica, and A. Poggi, ‘‘Agent-oriented model-
driven development for JADE with the JADEL programming language,’’
Comput. Lang., Syst. Struct., vol. 50, pp. 142–158, Dec. 2017.

[33] M. Pasqua and M. Miculan, ‘‘On the security and safety of AbU systems,’’
in Software Engineering and Formal Methods (Lecture Notes in Computer
Science), vol. 13085, R. Calinescu and C. S. Pasareanu, Eds. Cham,
Switzerland: Springer, 2021, pp. 178–198.

[34] M. Miculan and M. Peressotti, ‘‘Structural operational semantics for non-
deterministic processes with quantitative aspects,’’ Theor. Comput. Sci.,
vol. 655, pp. 135–154, Dec. 2016.

[35] M. Miculan, ‘‘On the formalization of the modalµ-calculus in the calculus
of inductive constructions,’’ Inf. Comput., vol. 164, no. 1, pp. 199–231,
Jan. 2001, doi: 10.1006/inco.2000.2902.

[36] M. Miculan and M. Paier, ‘‘A calculus of subjective communication,’’ in
Proc. 23rd Italian Conf. Theor. Comput. Sci. (ICTCS), U. D. Lago and
D. Gorla, Eds. 2022, pp. 1–13.

MICHELE PASQUA received the B.Sc. and M.Sc.
degrees in computer science and engineering and
the Ph.D. degree in computer science from the
University of Verona, Italy, in 2013, 2015, and
2019, respectively.

From 2019 to 2020, he was a Postdoc-
toral Researcher at the University of Verona,
working on security aspects of IoT systems.
From 2020 to 2021, he was a Postdoctoral
Researcher at the University of Udine, Italy, work-

ing on new decentralized programming paradigms for the IoT. He is currently
an Assistant Professor at the Department of Computer Science, University
of Verona. His research interests include security of computational systems,
program verification (based on abstract interpretation), mathematical foun-
dations of computer science, programming languages design, cybersecurity,
and software testing.

MASSIMO COMUZZO received the B.Sc. and
M.Sc. degrees in computer science from the
University of Udine, Italy, in 2018 and 2022,
respectively. His M.Sc. thesis is focused on
the implementation of a new language for dis-
tributed programming based on ECA-rules and
Attribute-based memory Updates.

His research interests include learning and
working in the fields of distributed systems and
the IoT.

MARINO MICULAN received the Ph.D. degree
in computer science from the University of Pisa,
Italy, in 1997.

He is currently an Associate Professor at the
University of Udine, where he directs the Labo-
ratory of Models and Application of Distributed
System and the local group of the National Cyber-
security Laboratory. He is the author or coauthor
of about 80 publications in international scientific
journals and conference proceedings with peer

review. His research interests include semantic models, formal methods
and programming languages for concurrent, distributed, and autonomous
systems, especially for the analysis and verification of security aspects.
He serves regularly in the program committees of international workshops
and conferences.

Open Access funding provided by ‘Università degli Studi di Verona’ within the CRUI CARE Agreement

132776 VOLUME 10, 2022

http://dx.doi.org/10.1006/inco.2000.2902

