
ABSTRACT

Title of dissertation: Defining and Evaluating Test Suite Consolidation
for Event Sequence-based Test Cases

Penelope Brooks, Doctor of Philosophy, 2009

Dissertation directed by: Professor Atif M. Memon
Department of Computer Science

This research presents a new test suite consolidation technique, called

CONTEST, for automated GUI testing. A new probabilistic model of the GUI

is developed to allow direct application of CONTEST. Multiple existing test suites

are used to populate the model and compute probabilities based on the observed

event sequences. These probabilities are used to generate a new test suite that

consolidates the original ones.

A new test suite similarity metric, called CONTeSSi(n), is introduced

which compares multiple event sequence-based test suites using relative event posi-

tions. Results of empirical studies showed that CONTEST yields a test suite that

achieves better fault detection and code coverage than the original suites, and that

the CONTeSSi(n) metric is a better indicator of the similarity between sequence-

based test suites than existing metrics.
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Chapter 1

Introduction

Since the invention of the Graphical User Interface (GUI) [45], it has become

the most widely used means of accessing the functionality of a software application.

Often, the GUI provides the only method for the user to access the application’s

functionality. Therefore, it is important to test the application through the GUI,

e.g., for system and integration testing, and test the GUI itself for functional cor-

rectness. Previous studies have shown that code to implement the GUI can make

up as much as 60% of the overall application code [40]. It is important, therefore, to

include focused GUI testing as part of the software development cycle. Recognizing

this fact, many academic researchers and industry practicioners alike have developed

techniques for GUI testing [39, 66, 50, 13, 5].

GUIs are in a class of software called event-driven software (EDS) that take

user events1 as input. GUI-driven applications are typically state-based, meaning

that certain events may cause a state change, sometimes enabling or disabling other

events. GUI applications are difficult to test due to the large number of events that

are legal input to the system, and the enormous number of combinations of events

that can be executed as sequences.

1An event is a user action that can be performed on a GUI widget, such as clicking on a button
or a menu item, or typing in a text field. In the remainder of this document, wherever possible,
events will be denoted by their corresponding widget; for example, click on Cancel button will be
called Cancel and click on menu item Save will be called Save.
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GUI applications also have constraints regarding the order of events; for exam-

ple, some events are not allowed in the initial state of the system but are only allowed

after a certain sequence of events has been performed. Despite these constraints,

the number of test cases that may be executed on the GUI grows exponentially in

the length of the test case. Consequently, GUI testing techniques typically sample

from the space of all possible sequences of events allowed by the application under

test (AUT).

Previous work in GUI testing has involved manually intensive methods of test-

ing. Unit testing tools are the most common manual method used [19]. Unit testing

tools require the tester to programatically specify a sequence of program statements

that will be executed on the GUI [22]. While this technique has been valuable in

detecting faults, due to its labor intensive nature, more automated techniques are

desired.

More recent work in GUI testing has focused on automating testing [32, 33, 13].

Two promising techniques are:

1. Parameterized test case generation: A fully automatic technique that

generates test cases based on the structural model of the GUI, parameterized

by the functional units in the application under test (AUT) [66], e.g., Print

function and Clipboard function. The main strength of this technique is that

it aids a tester in developing test cases that cover select parts of the GUI. A

fundamental limitation of this technique is that it yields short test cases – only

length 2 for non-trivial GUIs; obtaining length 3 and above is computationally

2



intensive. Moreover, it yields a very large number of length 2 test cases – tens

of thousands for most applications. Earlier research has shown that these

short test cases are effective [39]; however, longer sequences are able to detect

new faults missed by short test cases [66].

2. Usage profiles: A technique that collects sequences of events from end-users

during actual usage of the application using a capture tool. These sequences

are then automatically replayed on a new version of the application during

regression testing using a replay tool [14, 36, 37, 51]. The main strength of

this technique is that it is driven by actual usage of the application, and hence,

is able to yield long test cases. However, it requires a fielded system and a

user population which agrees to allow monitoring of their application usage.

Further, it does not yield test cases containing events and event sequences that

users don’t execute, which may cause the test cases to miss faults.

w1 -
w2

�	

w3 -
w4@I

w5 -

w6 - w7�

w8�

Figure 1.1: A Simple GUI

Consider Figure 1.1, the Radio Button Demo GUI, used to teach program-

ming students how to develop a GUI containing radio buttons. The widgets labeled

w1 through w7 are those through which users can access the corresponding events

3



(e1 through e7). The start state has Circle and None selected; the text-box cor-

responding to w5 is empty; and the Rendered Shape area (widget w8) is empty.

Event e6 creates a shape in the Rendered Shape area according to current settings

of w1 . . . w5; event e7 resets the entire software to its start state. The other events

behave as follows. Event e1 sets the shape to a circle; if there is already a square

in the Rendered Shape area, then it is immediately changed to a circle. Event e2

is similar to e1, except that it changes the shape to a square. Event e3 enables the

text-box w5, allowing the user to enter a custom fill color, which is immediately

reflected in the shape being displayed (if there is a shape there). Event e4 reverts

back to the default color.

The aforementioned techniques (parameterized test case generation and usage

profiles) may be used to test the Radio Button Demo GUI. A test designer using

parameterized test case generation may divide (with overlaps) the GUI’s events into

the Circle, Square, and Reset functions; these are used as parameters for the

test case generator to yield function-specific test cases. One test case generated

by the technique for the Square function may be the event sequence < e2, e6 >,

which may be executed in the initial state of the AUT – hence it tests event e6 after

the event e2 has executed and modified the AUT’s state, thereby testing e6 in the

context of e2’s execution. A test case for the Circle function may be < e1, e6 >,

which tests event e6 in the context of e1’s execution. Additionally, the usage profiles

technique may yield the test case < e3, e5, e4, e3, e6 >, which tests e6 in the context

of < e3, e5, e4, e3 >. Each of these test cases may reveal faults that require the

execution of event e6 in the specific context established by its preceeding events in

4



the test case. Hence, all of these techniques are valuable in that they test events

and event sequences in specific contexts to detect faults. Additional examples of

the test suites generated by these techniques are shown in Figure 1.2. Note that

the parameterized technique outputs some length 3 test cases because of the small

size of the GUI; usage profiles, on the other hand, yield length 4 and 5 tests. These

test suites and the models produced from them will be used as a running example

to motivate and explain this research.

Circle Square Reset

e1, e6 e2, e6 e7, e1

e1, e4 e2, e3, e5 e7, e1, e6

e7, e2, e6

e7, e2, e3

Usage Profiles

e1, e3, e5, e6

e2, e3, e5, e6

e2, e4, e7, e2, e6

e3, e5, e4, e3, e6

e7, e2, e3, e5, e6

(a) Parameterized Technique (b) Usage Profiles

Figure 1.2: Example test cases.

There are several other semi-automatic techniques to generate GUI test cases

based on a model of the AUT; the model is typically created by hand – a resource

intensive activity. Examples include techniques based on exploring the state of the

AUT [39, 66], AI planning [38], genetic algorithms [25], and finite-state machines

[54] and their extensions [50] to generate test cases. The state-based approach yields

sequences that explore new, untested states, thereby revealing faults in these new

states [66, 39, 6]. AI planning yields test cases that cover specific use cases [38].

Genetic algorithms yield test cases to mimic specific user populations [25]. Because

of the resource intensive nature of these techniques, they yield a small number of

long tests.

In practice, a GUI test designer may use a mix of the above techniques to

5



obtain several test suites. The test designer is faced with two significant challenges:

• Overlaps in test suites: As one can imagine, many of these techniques often

overlap in what they test. A test designer who uses two or more GUI testing

techniques may waste valuable resources testing and retesting the same parts

of the AUT. Ideally, the test designer would like to consolidate all the test

suites and obtain one suite that minimizes overlaps.

An existing solution is to merge all the test suites produced by the individual

techniques into one suite and use test suite reduction [16] (or test suite min-

imization [48, 59]) to yield a single, reduced test suite. In these techniques,

test cases are selected based on measurable criteria inherent in running the

test suites, such as statement [65], MC/DC code [21], and call-stack coverage

[34].

This is not a viable solution for GUI testing because of several reasons, all

rooted in the event driven nature of GUIs. The most important reason is that

events need to be executed in various contexts because fault detection is often

context dependent [62, 34]. All of the GUI test case generation techniques

summarized earlier force certain events and event sequences to be executed

in specific contexts. Test reduction that ignores context-specific issues will

compromise fault detection.

Next, some of these issues are informally explored via a running example. All

of the original suites, given in Figure 1.2, were merged to obtain a single suite

shown in Column 1 of Table 1.1. Next, the popular HGS algorithm [17] was

6



used to reduce this merged suite.2 One requirement for reducing the suite was

event-pair coverage, which retains test cases that cover unique pairs of events.

The suite was also reduced using several code-based criteria for the reduction.

Columns 2-5 of Table 1.1 show the reduced suites. Event-pair coverage is the

only criterion that considers context, albeit of a single event, during reduction.

However, each of these reduced suites eliminate tests that may potentially

detect faults. More importantly, recall that each test case generation technique

individually advocates the execution of certain sequences of events in specific

contexts. For example, the subsequence < e7, e2 > appears four times in the

original suites; < e2, e3 > appears four times; < e1, e6 > appears twice; they

all appear in multiple contexts. Reduction does not consider preserving the

importance of these frequencies and/or contexts. This is precisely the reason

that reducing a GUI test suite based on code coverage has been shown to

reduce the effectiveness of the suite [34]. Several researchers have reported that

test suite reduction methods have decreased fault detection while maintaining

the same level of code coverage [21, 48, 18, 65].

• Large number of short tests and few long tests: The sheer size of the individual

suites presents practical problems for test execution. Because each test case

requires significant overhead in terms of setup and teardown, having a large

number of short tests is inefficient. Ideally, the test designer would like to ob-

tain longer sequences that combine the strengths of individual short-sequence

2The HGS algorithm is a greedy test suite reduction algorithm that iteratively examines test
cases and saves those which satisfy the most as-yet-unsatisfied requirements. A requirement is
removed from the list when one test cases satisfies it. Full details of this algorithm can be found
in [17].
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Original Event Pair Line Method Branch
Merged Tests Coverage Coverage Coverage Coverage

e1, e6 e1, e4 e7, e1, e6 e1, e3, e5, e6 e1, e4

e2, e6 e1, e3, e5, e6 e7, e2, e6 e7, e2, e3 e7, e1, e6

e7, e1 e2, e4 e2, e3, e5, e6 e7, e2, e6

e1, e4 e3, e5, e4, e3, e6 e3, e5, e4, e3, e6 e2, e3, e5, e6

e2, e3, e5 e7, e2, e3 e7, e2, e3, e5, e6

e7, e1, e6 e2, e3, e5

e7, e2, e6 e2, e6

e2, e4 e7, e2, e6 e7, e1, e6

e7, e2, e3

e1, e3, e5, e6

e2, e3, e5, e6

e3, e5, e4, e3, e6

e7, e2, e3, e5, e6

Table 1.1: Example test cases yielded from several reduction techniques

suites.

One solution is to concatenate multiple event sequences together. For example,

< e7, e1 > from the Reset suite may be joined with < e3, e6 > from the Circle

suite to obtain a single test case < e7, e1, e3, e6 >; the original tests may be

eliminated. Although this join operation reduces the number of test cases, it

has several problems. First, certain event sequences may be disallowed by the

GUI – simply joining two sequences might yield an unexecutable sequence.

Second, the elimination of the original tests may cause the new suite to miss

faults that might have been detected had < e3, e6 > been executed in the

GUI’s initial state. Third, the joined sequence tests new interactions, e.g.,

< e7, e1, e3 >, < e1, e3, e6 > that were not advocated by any of the original

suites. Although this may be desirable in certain situations, it would lead

to a large number of resulting test cases. Resources may be better spent on

obtaining long sequences composed of short sequences that are advocated by

8



the original suites. For example, the subsequence < e7, e2 > appears thrice

in the original suites; < e2, e3 > appears five times; < e3, e6 > appears twice.

A long sequence e.g., < e7, e2, e3, e6 > composed of these subsequences would

at least ensure that these individual sequences are covered. Other sequences

would also be needed to ensure that all the sequences frequently advocated by

the original suites are covered.

This research focuses on addressing the challenges and goals given above, and

proving the following thesis statement: A method of combining and consoli-

dating sequence-based test suites preserves the context observed in the

existing test suites and maintains their fault detection effectiveness.

More specifically, the thesis statement is proved by developing a new method

of consolidating existing test suites, based on the characteristics of the existing suites

and the structural relationships between events. From the original suites, the proba-

bilistic relationships between individual events, i.e., the conditional probability that

one event is executed after another event, are computed. Further, the probabilistic

relationships between sequences of events, i.e., the conditional probability that one

event is executed after a sequence of events, is also computed. These relationships

are captured in a new model of the GUI, which is then used to generate test cases.

A new algorithm called CONsolidate TEST suites (CONTEST) is developed

which takes existing test suites as input and generates a single consolidated test

suite based on the computed conditional probabilities. CONTEST is evaluated by

conducting an empirical study on four open source GUI applications. For each ap-
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plication, two types of test suites are used. First, a number of suites are generated

using the parameterized test-case generator; the number varies by application, rang-

ing from 8 to 18 suites. Second, one test suite per application is developed from

usage profiles.

Beyond measuring the benefits of CONTEST via traditional metrics based on

fault detection and size, it is important to further evaluate the CONTEST algorithm

by performing a suite-to-suite comparison of the suites consolidated by CONTEST

to the existing event-based suites on the basis of the events that are executed in

each suite. To perform this comparison, a new metric was developed as part of

this research which considers the characteristics of event-driven systems, including

the context and state-based execution of the running application. This metric is

based on a popular Information Retrieval (IR) measure, cosine similarity. This

metric, called CONTeSSi(n) (CONtext Test Suite Similarity), explicitly considers

the context of n preceding events to measure the similarity between suites.

As a precursor to the development of CONTEST and CONTeSSi, the effec-

tiveness of crash testing for GUI systems was researched to improve understanding

of how to test them. The term crash testing refers to testing which uses a crash in

the running application as the test oracle (a mechanism that determines whether a

test case passed or failed). For the purposes of this research, a crash is defined as an

uncaught exception thrown during test case execution. Test and field defects dis-

covered on industrial systems were examined to ascertain the effectiveness of crash

testing for GUIs.
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1.1 Summary of Studies

In total, three separate empirical studies were performed to prove the thesis

statement. The summary of these studies is outlined here.

1.1.1 Crash Testing Effectiveness

First, a study was designed and conducted to learn more about the effectiveness

of using crash testing to test GUIs since the other two studies were designed to use

crash testing. In particular, this study was conducted to characterize GUI systems

based on artifacts from testing and development, including source code measures,

change metrics, and test suite characterization. A thorough analysis of the defects

discovered in three fielded, industrial applications, was performed by focusing on

defects detected in or through the GUI front-end. A modified version of Beizer’s

taxonomy [3, 9], discussed in Section 3.1.1, was used to classify the defects. This

study showed that crash testing is an effective way to find defects in the GUI itself

as well as defects in the underlying application. It also laid the foundation for the

second and third studies.

1.1.2 Consolidating Test Suites

Next, a study was designed to investigate the main thrust of the thesis state-

ment: test suite consolidation. This study examined the effectiveness of the CON-

TEST algorithm. The CONTEST algorithm was implemented and used to generate

test suites for four subject applications. The existing test suites were then compared
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to those generated by CONTEST on the dimensions of size, fault detection and code

coverage. The study also investigated tuning the model creation and test case gen-

eration of CONTEST. As a parameter to the model, the event context upon which

conditional probabilities were based (history) was varied from 1 event to 5 events.

This study showed that the probabilistic model-based approach used in CONTEST

to consolidate test suites is effective at preserving the context of the existing suites

and at least maintaining their fault detection effectiveness.

1.1.3 Measuring Test Suite Similarity

Finally, a study was designed to compare the consolidated suites to existing

suites. This study extended the second study, by utilizing the same test suites,

to evaluate CONTeSSi(n). The CONTeSSi(n) metric allows a test designer to

evaluate the similarity between test suites by measuring the number of differences

between the suites in terms of relative event positions. In this study, the value given

by the metric was compared to existing measures of similarity such as code cover-

age. The results of this study demonstrated that a context-based metric provides a

valuable method to compare sequence-based test suites.

1.2 Contributions

The work presented in this document makes the following primary research

contributions:

1. introduction of the concept “consolidation of test suites” for event sequence-
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based test cases,

2. a new probabilistic representation of a GUI application that combines its static

window/widget structure with legal event sequences,

3. a method to populate the model with event sequences from multiple sources,

4. an algorithm to generate test cases based on the model,

5. a metric which allows the comparison of sequence-based test suites using ex-

plicit context,

6. an empirical study of three large, deployed, industrial applications comparing

1,215 defects in these applications, classified using a modification of Beizer’s

defect taxonomy and yielding a characterization of GUI systems,

7. an empirical study comparing the cost, fault detection ability, and code cov-

erage of a test suite generated by the CONTEST technique to test suites

generated by other methods on four open source applications,

8. an empirical study in tuning model creation by varying the number of events

upon which probabilities are conditioned, and

9. an empirical study demonstrating the effectiveness of the first context-based

similarity metric for sequence-based test cases.

13



1.3 Intellectual Merit and Broad Impacts

The insights into using crash testing on GUI software can be used by software

practitioners and testers to better plan for testing their applications. While some

researchers have questioned the effectiveness of crash testing in the past, this work

provides evidence using industrial systems that crash testing is effective for GUI

testing, thereby paving the way for other software researchers to use this technique.

This is the first time the idea of test suite consolidation has been introduced.

The model and algorithm that make up CONTEST are the first of their kind and

can be extended to domains other than GUI testing. Researchers may apply the

CONTEST approach to test suites for conventional software, web applications, and

embedded applications.

Likewise, this is the first time a metric has been developed to compare whole

sequence-based test suites. With very few modifications, researchers may also extend

the metric presented here to a weighted metric where certain criteria are more heavily

counted in the comparison.

Although this research focuses on testing EDS systems and specifically GUIs,

this work has a broader impact, as event driven software is used by many devices,

from cell phones to cars to home appliances. Software testers are always looking for

better ways to verify and validate their software and this work provides them with

a new approach to testing EDS.
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1.4 Published Works

Each of the concepts presented in this document has been published. The idea

of characterizing GUIs and determining the effectiveness of crash testing for GUIs

was published at the IEEE International Conference on Software Testing, Verifica-

tion and Validation in 2009 [5]. The first version of the CONTEST algorithm was

published in 2007 at the IEEE/ACM International Conference on Automated Soft-

ware Engineering [6]. The CONTeSSi(n) metric has been accepted for publication

at the IEEE International Conference on Software Maintenance [7].

1.5 Structure of this Document

Next, Chapter 2 provides background on GUI testing and fundamentals, fol-

lowed by related works in areas pertinent to this research. Chapter 3 presents a

study on the effectiveness of GUI crash testing. Chapter 4 presents the concept of

test suite consolidation and an empirical study showing its effectiveness. Following

that, Chapter 5 introduces a metric allowing the comparison of test suites and an

empirical study showing the effectiveness of the metric. Finally, Chapter 6 describes

the conclusions and future research directions of this work.
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Chapter 2

Background and Related Work

This chapter presents relevant background regarding GUI fundamentals and

related work in the areas of software testing, defect classification, and similarity

metrics.

2.1 Background

GUI fundamentals are best explained with a visual example. Figure 2.1 shows

the Radio Button Demo GUI, first presented in Chapter 1 and shown here for ease

of the reader.

w1 -
w2

�	

w3 -
w4@I

w5 -

w6 - w7�

w8�

Figure 2.1: A Simple GUI

A GUI is modeled as a set of widgets W = {w1, w2, ..., wl} (e.g., buttons,

panels, text fields) that constitute the GUI, a set of properties P = {p1, p2..., pm}

(e.g., background color and shape) for each of these widgets, and a set of values

V = {v1, v2..., vn} (e.g., red and square) associated with the properties. Each GUI
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will contain certain types of widgets with associated properties. As described in

Chapter 1, the GUI in Figure 2.1 has 7 widgets with associated events. The state

of a GUI can be specified at any time during its execution as a set S of triples

(wi, pj, vk), where wi ∈ W , pj ∈ P , and vk ∈ V . A description of the complete

state of the GUI contains information about the types of all the widgets currently

in effect in the GUI, as well as all of the properties and their values for each of those

widgets.

Each particular GUI has a distinguished set of states called the valid initial

state set, SI ; the GUI may be in any state Si ∈ SI when it is first invoked. Some

GUI events are not available until another event or event sequence is executed. In

the GUI shown in Figure 2.1, the text box (w5) under the radio button Color (w3) is

not active until after the radio button is selected. Therefore, users may not execute

event e5 in the initial state of the GUI.

The state of a GUI is not static; events performed on the GUI change its

state. These states are called the reachable states of the GUI. The events E =

{e1, e2, . . . , en} associated with a GUI are functions from one state to another state

of the GUI. These events may be strung together into sequences, as permitted by

the GUI structure, called legal event sequences. A legal event sequence of a GUI is

ei; ei+1; ei+2; . . . ; ei+n where ei+1 can be performed immediately after ei.

Finally, a GUI test case can be defined in terms of the preceding constructs: a

GUI test case T is a pair < S0, eL >, consisting of a state S0 ∈ SI , called the initial

state for T , and a legal event sequence eL.

Figure 2.2 shows an initial state of the GUI (S0) in the upper left corner. If
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Figure 2.2: Execution of Events e2 and e6

event e2 (click on Square radio button) is executed on this GUI, the state of the GUI

changes to that seen in the upper right corner of Figure 2.2. In this state, Square

is set and Circle is reset. If event e6 (click on Create Shape button) is executed

from S0, the GUI changes to the state shown in the lower left corner of Figure 2.2,

and a circle appears in the Rendered Shape section of the GUI. Furthermore, if the

aforementioned events e2 and e6 are executed in the sequence < e2; e6 >, the state

of the GUI changes to that seen in the bottom right corner of Figure 2.2; a square is

rendered. This small example supports the intuition that certain events affect the

state of the GUI differently in sequence than alone.

2.1.1 Modeling the GUI

It is desirable to develop a single multi-purpose model that can be used to

represent all possible GUIs. Due to the variety of applications with a GUI front-end,

however, it is challenging to come up with such a model. Therefore, one sub-class

of GUIs is modeled in this research: those which take input from a single user, have
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a fixed number of events, and are deterministic, i.e., the outcome of each event is

completely predictable. This class of GUIs can be represented by an Event-Flow

Graph (EFG) and standard graph walking techniques can be used to reason about

the model and generate test cases [39].

An EFG is a specific model of the GUI for a particular application, representing

all possible sequences of events that a user can execute on that GUI. Nodes in

the EFG represent events, and directed edges represent the event-flow relationship

between two events. That is, an edge in the graph from event e1 to e2 indicates that

event e2 may be invoked immediately after event e1. The predicate follows(e2, e1)

represents this relationship and denotes that e2 follows e1. EFGs are potentially

cyclic, since events can typically be executed more than once during a session with

an application. For instance, revisiting the example from Chapter 1, the simple

GUI in Figure 2.1 can be represented as the EFG in Figure 2.3(a), which shows the

follows relationship of the events in the GUI. Because the GUI is quite flexible, the

user can perform almost all events immediately after almost all other events, which

accounts for the large number of edges in the EFG. Note that the graph is not fully

connected; e5 cannot be executed after e4, nor can it be executed after e7.

For the purpose of the work presented in this document, an EFG can be

tailored to represent only a few sequences of events, thereby creating a sub-graph of

the EFG. For example, one sequence of events may select the shape of square, select

a fill color, type a fill color in the text box, and create the shape. Corresponding to

the widgets in the GUI, this sequence of events is < e1, e3, e5, e6 >. A tailored EFG

model (shown in Figure 2.3(b)) of this GUI would represent each of these events as
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(a) EFG for the Radio Button GUI (b) Tailored EFG based on example event sequence

Figure 2.3: Radio Button GUI used to demonstrate the static GUI model

nodes while capturing the flow of events between the nodes.

The concepts presented in this section will be used in the rest of this document.

2.2 Related Work in Software Testing

The research presented in this document falls under the broad umbrella of

software testing. Based on a search of the literature in this area, the concepts of

test suite consolidation and test suite similarity metrics are new – no one else has

attempted these before. Therefore, in this section, the broadly related areas of GUI

testing, probabilistic testing, state machine model testing, and test suite reduction

will be discussed due to the following reasons. First, this research focuses on testing

EDS systems, primarily those with a GUI front-end; preceding techniques used to

test GUIs are discussed (Section 2.2.1). A key component of this research is the

state-based probabilistic Markov model that is created and used to consolidate test

suites; therefore, previous research in probabilistic testing and state machine model

testing are discussed next (Section 2.2.2). Finally, test suite reduction is broadly

related to this research due to its goal of shrinking a suite based on a set of criteria,
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and is discussed (Section 2.2.3).

2.2.1 GUI Testing

There are a variety of popular techniques used for testing GUIs, including

test harnesses, capture/replay tools, and model-based methods. The first approach

involves using test harnesses to test the application. Test harnesses invoke methods

in the underlying business logic of a application, as if executed by the GUI, without

actually using the GUI [33]. While test harnesses effectively isolate the behavior of

the GUI, they do not test the interface code itself and, therefore, are not relevant

to this research.

The second approach employs manual tools to execute events directly on the

GUI. Popular examples include GUI extensions of unit testing tools and capture/re-

play tools. JUnit, an open-source, unit testing framework used to test Java code, has

been extended into JFCUnit and Jemmy Module for use in GUI testing [22]. Sev-

eral capture/replay tools have also been developed including Winrunner1, Abbot2,

and Rational Robot3 [22]. These tools mimic actual usage of a GUI by recording

interactions with the GUI in capture mode and replaying the interactions in replay

mode. A common approach of capture/replay tools is to store mouse coordinates,

causing test cases to be fragile and dependent on the GUI layout, and rendering

many test cases ineffective for regression testing since the GUI layout may change

between versions. Some tools avoid this problem by capturing GUI widgets rather

1Mercury Winrunner, http://www.mercuryinteractive.com/products/winrunner
2Abbot JavaGUITest Framework, http://abbot.sourceforge.net
3Rational Robot, http://www.rational.com.ar/tools/robot.html
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than mouse coordinates. The trade-off to this approach, however, is that a signifi-

cant amount of manual effort is required for the test cases to be effective, including

developing test scripts and manually detecting failures. Tools that use scripts also

suffer from the problem that any modifications to the GUI require changes to the

scripts as well [13, 54]. Testers who employ these tools typically come up with a

small number of tests to utilize [35].

The third approach uses a graph model of the GUI to generate test cases.

Previous research has shown the usefulness of graph models to represent the GUI,

and test cases were developed by exploring paths through the model [12, 42, 39, 66].

Both Xie et al., and Yuan et al., have researched methods to shrink the state space of

the GUI and generate test cases based on a model of the GUI. Xie et al., developed

a graph model of a GUI and used it to generate test cases [39]. Graph models can be

walked, either randomly or deterministically, but cannot be traversed exhaustively

because of the large number of possible traversals. Therefore, Xie et al., traversed

all paths of the graph up to a specified length, generating test cases that covered

the whole application.

Yuan et al., developed a model-based testing approach to automatically gen-

erate test cases from a subset of the events in the GUI [66]. Edges in the graph

model are annotated based on GUI event interactions learned from a seed suite of

test cases, effectively partitioning the graph of the GUI. Run-time feedback provides

input to the test case generation procedure based on the annotated graph. The re-

sulting test cases, longer than those generated previously, are generated exhaustively

for each partition, allowing the new test cases to model complex GUI behaviors.
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Several researchers developed tools that the tester must interact with to gen-

erate a graph model of the GUI. Dalal et al., created a tool to capture the functional

model of the data, guided by the structure of the GUI [12]. The tool represents the

functional model as a graph and generates test cases based on valid inputs to the

model. Ostrand et al., have developed a test development environment (TDE) for

GUI-based applications [42]. The output of the TDE is a top-level graph model of

the GUI, in which each node represents a window and each edge represents a user

action. A user may drill-down into the component representation of the GUI, which

models each window in more detail. To generate test cases, a tester can interact

with the GUI model, or the TDE can capture users’ interactions with the GUI and

replay them. Both of these methods of generating test cases from the graph model

are manually intensive efforts for the tester.

2.2.2 Testing using Probabilistic Models

State machines, and their extensions to encode behavioral models, usage mod-

els, and operational models, are well-known ways to represent complex software.

State machine models, in which nodes represent program states (or sets of related

states) and edges represent transitions between states, are the most common type

of models which encode the behavior of a program. Each test case is generated

by traversing the model, representing the path traversed [10]. Walton et al., de-

scribed an eight-step methodology for creating a usage model. In developing the

usage model, the software specification is used to identify and model expected usage,
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classes of users, and environment parameters [53].

Markov chain models allow the model to be reasoned about using the general

Markov property, i.e., the next state is independent of all past states given the

present state. This property helps to control the state explosion problem. Markov

chains can be implemented and manipulated as a table, which makes implementation

easier, where each row and column represents states; transition probabilities are

filled in the table cells for valid transitions between states. Transition probabilities

may be assigned in three ways: uninformed, informed, and intended [55]. The

uninformed approach uses a uniform distribution across possible transitions from

any given state, while the informed approach assigns probabilities based on observed

user data. Probabilities assigned using the intended approach compute probabilities

based on an average user in the field. For any given application, several models can

be developed to represent different classes of users, and probabilities are assigned

accordingly.

Whittaker and Thomason developed a Markov model version of the operational

model, in which the probability of visiting a node depends only on the previously

visited node, and generated test cases stochastically [56]. Özekici and Soyer ex-

tended this idea further using a Bayesian framework, in which model parameters

can be learned and updated during testing [44]. Woit extended the Markov model

to better handle conditional probabilities [58, 57]. Woit’s approach more accurately

models software for which event probabilities depend on a longer history of events.

To define model parameters, Woit’s method requires the space of events to be man-

ually partitioned into a manageable number of subsets. Probabilities for each subset
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are computed by observing users in a testing environment or by estimating based

on discussions with users. The probabilities are manually entered into the model.

Test cases are generated by choosing a path through the model stochastically using

the probability distribution observed or estimated for actual usage.

2.2.3 Test Suite Reduction

Although the research presented in this document is not focused on test suite

reduction, there is a relationship between this research and test suite reduction. The

primary similarity is that both test suite consolidation and test suite reduction have

the goal of changing a test suite (or multiple suites) while still maintaining some

characteristics of that suite, usually fault detection effectiveness and code coverage.

In the literature, there is only one paper that presented test suite reduction in

GUIs [34].

Most of the test suite reduction efforts are focused on non-GUI software. Re-

search in test suite reduction has focused on determining the criteria upon which test

cases will be saved or discarded. Heimdahl and George [18] focused their research on

test case generation and testing formal specifications. They could drastically reduce

test suites while maintaining code coverage; however, fault detection was adversely

affected. Other researchers had a similar experience. Two separate efforts, reported

by Rothermel et al., and Jones and Harrold, found that while maintaining code cov-

erage in reducing the test suites, fault detection was sacrificed [21, 48]. Conversely,

Wong et al., succeeded in minimizing the test suites without a reduction in fault
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detection effectiveness by using coverage as the reduction criteria which must be

upheld [59].

Another body of research compared several techniques of test suite reduction

in an attempt to find a balance between test suite reduction and fault detection

effectiveness [65]. Several common methods of test suite reduction were studied,

including retaining test cases that exercise more dynamic basic blocks, test cases

that execute the most statements or blocks of code, test cases that provide the best

MC/DC coverage, and random selection of passing and failing test cases. Hao et al.,

found the similarity of test cases in a suite also impacts fault detection effectiveness;

test case redundancy results in a loss of fault detection effectiveness [15].

Finally, McMaster et al., researched test suite reduction specifically for GUI

applications through the use of the call stack [34]. Traditional methods for test suite

reduction have not been effective, primarily due to multilanguage implementations

of GUIs, the nature of event handlers, reflection, and multithreading. By using the

call stack as a coverage criterion, McMaster et al., found a measurable reduction in

the size of the suites and a very small difference in fault detection.

2.3 Related Work in Defect Classification

Chapter 3 presents research on the effectiveness of crash testing for GUIs, and

relies heavily on a tester’s ability to classify defects. A literature search in this area

did not produce any research papers specifically characterizing GUI applications,

industrial or open source, through studying their defect profiles and source code
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characteristics. There are, however, several other areas of research related to the

classification of GUI defects, including research on defect classification schemes (Sec-

tion 2.3.1) and case studies of defect classification (Section 2.3.2). Previous work in

these areas helped shape the study executed as part of this research.

2.3.1 Defect Classification Schemes

Many taxonomies exist for classifying software defects, including those de-

scribed in [3], [20],and [43]. One of the best known taxonomies was developed

by Boris Beizer [3] and has eight categories of defects: requirements, implemented

functionality, structural, data, implementation, integration, system and software ar-

chitecture, and setup and test. Each defect category is further refined into three

levels of subcategories, allowing defect classification to be very precise.

While these taxonomies are designed to be generally applicable, other tax-

onomies are more specialized. Binder [4] describes one that has been specifically

tailored for object-oriented programs, whereas Vijayaraghavan and Kaner [52] focus

on eCommerce applications. Knuth describes a more course-grained schema based

on the errors found in the TEX typesetting system [28]. Another taxonomy was

developed for faults in user requirements documents [49], and still others discuss

hierarchies of faults present in Boolean specifications [23, 29].

The IEEE Standard Classification for Software Anomalies [20] presents a pro-

cess for handling and resolving software defects as well as a taxonomy for classifying

them. This classifies both the source of the defect (i.e., Specifications, Code, etc.)
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and the type of defect (e.g., Logic Problem). However, it is not as detailed as the

other taxonomies mentioned above.

In contrast to the taxonomies described above, Orthogonal Defect Classifica-

tion (ODC) [9] allows practitioners to categorize defects according to their type and

tie each one to a phase in the software development cycle where the defect could

have been caught, generally with less impact on the software product. ODC has

eight defect types: function, interface, checking, assignment, timing/serialization,

build/package/merge, documentation and algorithm. These are associated with nine

stages of software development: design, low-level design, code, high-level design in-

spection, low-level design inspection, code inspection, unit test, functional test, and

system test. ODC uses fewer, more general defect categories than other schemes and

is primarily focused on process improvement, rather than statistical defect modeling.

2.3.2 Defect Classification Studies

Several researchers have conducted defect classification studies [8, 40]. Three

case studies were presented by IBM in 2002, which illustrated the success of charac-

terizing defects in improving software testing strategies for large, deployed projects [8].

As part of the case studies, periodic assessments became part of the software process,

which allowed the organizations to better see the cause of defects, thereby allowing

them to change their processes early and prevent late-phase defects.

Other research has involved manual examination of code post-development.

Using code inspections and the associated change history on software developed

28



for an undergraduate course in high performance computing, another study relied

on manual efforts to document defects, classify the defects based on a six-category

classification scheme, and then develop hypotheses on how each defect type could

be avoided [40].

2.4 Related Work in Similarity Metrics

A search of the literature reveals that no test suite comparison metric has been

developed for event-based test suites. Research in the information retrieval (IR) and

natural language processing (NLP) communities, however, is closely related to the

concept of comparing test suites. Research in IR and NLP focuses on large bodies

of text, which can be likened to test suites. Several researchers have developed

similarity metrics to compare ranked lists that are output from an IR query, compare

documents, and compare a query to a document. This research in these areas

is discussed in Section 2.4.1. Further, research on similarity between objects has

been accomplished in software security to detect viruses and in neurocomputing to

determine where to place an object in a fuzzy lattice. Being the only other software

research on similarity found in the literature, this is discussed as relevant work in

Section 2.4.2.

2.4.1 Similarity Metrics in IR and NLP

Previous work in similarity, specifically the work by Aslam and Frost, can

be likened to determining how similar test cases may be based on the events they
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contain, where features in IR map to events in software testing. Kilgarriff’s work in

comparing document collections, while different from test suite comparison, is very

applicable to the research presented here. Just as is true for events in EDS test

cases, Kilgarriff found that words in a corpus do not appear in a random order and

techniques to compare them must take context into account.

A common problem in IR is correlating two ranked lists, often the output

of an information retrieval query. According to Yilmaz et al.it is important to

be able to weight a list, and usually more important to determine the difference

between the high-ranking items in the list than to determine the difference in the

low-ranking items [64]. A common solution is to use Kendall’s τ statistic; however,

Kendall’s τ does not distinguish between the high-ranking and low-ranking items in

the list. Another common approach is to use Spearman’s correlation coefficient; this

also has drawbacks in comparison. Yilmaz et al., have proposed a statistic which

extends Kendall’s τ and gives more weight to the high-ranking items in the list.

Other approaches to comparing two ranked lists can be found in work by Shieh,

Haveliwala et al., (the Kruskal-Goodman τ statistic), and Fagin et al., (specifying

the top-k of a list which should be treated differently) [27].

Aslam and Frost developed a similarity metric for documents, as an extension

of work by Dekang Lin in object similarity [1]. Lin et al.’s metric is designed to

compare documents based on the features contained in that document, from some

possible feature set which is contained in the set of documents. Aslam and Frost

extend the metric to compare normalized documents, thereby accounting for frac-

tional features that would otherwise be lost during normalization. They found their
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metric outperformed other standard metrics when run on a standard query retrieval

data set.

In his introduction to the special issue of the Journal of Computational Lin-

guistics: “The Web as a Corpus,” Kilgarriff notes the problem of being able to come

to a stable conclusion about a single word, and that it is often not possible to draw

a conclusion about a combination of words or a rare word from a corpus [27]. In

his work, Kilgarriff found that a method of comparison based on the χ2 test is the

most effective, followed closely by the Mann-Whitney ranks test [26]. He focused on

determining both how similar two corpora are and in what ways two corpora differ,

by determining which words are the most distinctive. Kilgarriff considered Pois-

son mixtures, Katz’s model for word distributions, and adjusted frequencies used

in research by Francis and Kuc̆era. Finally, he tried various methods of comparing

two corpora and determined several things: the distribution of word frequency is

of little help; Spearman’s rank correlation is too affected by the frequency of words

that may not be important (such as the); and using a χ2 test while ignoring the null

hypothesis is a reasonable method of comparing corpora.

2.4.2 Similarity in Software

Previous research in similarity in the software engineering field is presented

here. Karnik et al.’s work in virus detection, comparing source files as sequences

of machine instructions, uses a very similar approach to that presented in this re-

search [24]. However, while Karnik et al., treat machine instructions in a different
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sequence as functionally the same, this is not the case in EDS testing where event

order is specific.

Research in virus detection has focused on examining method signatures for

changes. Virus writers are aware of this, however, and have found ways to evade this

check [24]. Using the knowledge that malicious software shares significant amounts

of code, Karnik et al., used the statistical properties of the morphed viruses to

detect variants. Although virus variants may differ in the sequence of instructions

they contain, they are functionally the same. To determine the similarity between

functions, Karnik et al.’s method flagged any functions which are similar using a

threshold value of 0.97, and then took the average of the similarities to evaluate

overall program similarity. Karnik et al., compared each function in A to each

function in B and maintained an array with the cosine similarity measure for each

comparison. By computing the cosine similarity between two versions, they were

able to identify files with viruses [24].

Cripps and Nguyen proposed using cosine similarity measures as the inclusion

measure used by fuzzy lattice neurocomputing (FLN) [11]. In this domain, data

items of different types may be stored in the same lattice. Their work used the

attributes of each data item to generate a vector which represents that item. These

vectors can then be compared using the cosine similarity measure by computing the

cosine of the angle between the two vectors. Extending this measure to a weighted

attributed cosine similarity measure is done by introducing a constant into the

computation, which provides a count, or weight, of that attribute for that data

item.
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Only one previous work in software testing has compared test cases within a

suite to determine redundancy inside the suite [31]; a suite-to-suite comparison has

not been performed. Traditional approaches for test suite minimization usually rely

on coverage information collected during dynamic execution. Li et al., applied a

static analysis technique to detect redundant test cases based on their instruction

sequences and counts.

2.5 Summary

The works presented in this chapter covered topics broadly related to this

research: software testing, defect classification and similarity metrics. Previous

research in GUI testing used a graph model to model the GUI and generate test

cases. The research described in this document also uses a graph model, although

the model is annotated in a completely new way, with conditional probabilities

computed based on event sequences of length-n in existing test suites. The concepts

of test suite reduction are broadly related to the concept of consolidation developed

as part of this research; however, the goal of test suite reduction is different from

that of consolidation.

Although many defect classification studies have been developed, none have

focused on GUI defects and the differences between the GUI code and non-GUI code

in an application. This research used a modified version of Beizer’s defect taxonomy

which includes a category for GUI defects.

Due to the need to determine how similar a result string is to a query string in
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IR, and thereby improving a search engine’s results, research in similarity metrics is

very common in that field. NLP researchers also have strong motivation to improve

their results in language translation, and use similarity metrics to determine how

close their translation is the correct translation. However, in software engineering

in general, and software testing specifically, similarity metrics are not often used.

The ideas that have been successful in other research communities were used in this

research to develop a test suite similarity metric.
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Chapter 3

Studying the Effectiveness of Crash Testing for GUIs

In Chapter 1, several types of GUI testing were described, to include crash

testing. The results on open source applications have been promising, showing

crash testing to be useful. However, past researchers have not studied the efficacy

of crash testing on industrial applications, and have often noted this limitation as a

threat to validity.

As part of determining the effectiveness of crash testing, it is necessary to learn

more about the characteristics of GUIs, such as the percentage of the system which

is GUI code, the types of tests that are run to test through the GUI compared to

the tests run to test the functionality of the GUI, and the types of defects found

through crash testing. Therefore, this chapter will use industrial applications to

further the knowledge of these aspects of GUIs.

More specifically, fielded, industrial applications produced and sold by ABB

Group1 were examined. Previous defect studies conducted at ABB [47] have had

practical implications – they have been beneficial to developers, testers and man-

agers by associating defects with particular phases in the software development

process. Test teams have seen dramatic increases in the number of defects they are

now able to detect in early phases of testing, resulting in significant decreases in

low-level bug fixes, which were previously common in late-phase test.

1http://www.abb.com/
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3.1 Empirical Study

The goal of this study is to improve the overall quality of GUI testing by

characterizing GUI systems using data collected from defects, test cases and source

code to assist testers and researchers in developing more effective test strategies.

Using the Goal Question Metric (GQM) Paradigm [2], the goal is restated as follows:

Analyze the defects, test cases, and source metrics
for the purpose of understanding
with respect to GUI systems
from the point of view of the tester/researcher
in the context of industry-developed GUI software.

This research goal is broken into four research questions to be answered by

the study:

RQ3.1 How many defects in GUI applications are detected through crashes, as

compared to observed program deviations?

RQ3.2 How do defects in the GUI differ as compared to overall defects in the AUT?

What kinds of defects are commonly found through the GUI?

RQ3.3 How do GUI components compare to non-GUI components with respect

to source metrics? How do source changes in GUI components compare to

changes in non-GUI components?

RQ3.4 What are the characteristics of the test suites? How many of the tests are

testing the GUI compared to testing the application through the GUI?

In determining the study setting, several key factors were decided, such as

the defect taxonomy that would be used, how construction metrics could be used
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to characterize GUI systems, and how test results could be leveraged for the GUI

characterization. Each of these factors is described in the following sections.

3.1.1 Choosing and Tailoring a Taxonomy

Beizer’s taxonomy [3] divides defects into eight main categories, each describ-

ing a specific set of defects. These are shown in Table 3.1. Each main category is

further refined into three levels of subcategories. A defect is then assigned a four

digit number with each digit representing the selected category or subcategory. For

example, Processing Bugs would be 32xx, where the 3 designates a structural defect

and the 2 places this defect into the processing subcategory. The last two num-

bers, shown as x here, refine the defect to more levels of detail. Beizer’s taxonomy

includes four levels of categories for each defect.

The first main category of the taxonomy is for Functional defects, i.e., errors

in the requirements, including defects caused by incomplete, illogical, unverifiable,

or incorrect requirements. The second main category, Functionality as Imple-

mented, deals with defects where the requirements are known to be correct but

the implementation of these requirements was incorrect, incomplete, or otherwise

wrong. The next two main categories, Structural Defects and Data Defects,

are used for low-level developer defects in the code, such as problems with control

flow predicates, loop iteration and termination, initialization of variables, incorrect

types, and incorrect manipulation of data structures. Another main category of

defects classifies Implementation errors. These are errors dealing with simple ty-
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1xxx Functional Bugs: Requirements and Features
11xx Requirements Incorrect
12xx Logic
13xx Completeness
14xx Verifiability
15xx Presentation
16xx Requirements Changes

2xxx Functionality As Implemented
21xx Correctness
22xx Completeness Features
23xx Completeness Cases
24xx Domains
25xx User Messages and Diagnostics
26xx Exception Conditions Mishandled

3xxx Structural Defect
31xx Control Flow and Sequencing
32xx Processing

4xxx Data Defect
41xx Data Definition, Structure, Declaration
42xx Data Access and Handling

5xxx Implementation Defect
51xx Coding and Typrgraphical
52xx Standards Violations
53xx GUI Defects
54xx Software Documentation
55xx User Documentation

6xxx Integration Defect
61xx Internal Interfaces
62xx External Interfaces
63xx Configuration Interfaces

7xxx System and Software Architecture Defect
71xx OS
72xx Software Architecture
73xx Recovery and Accountability
74xx Performance
75xx Incorrect diagnostic
76xx Partitions and overlays
77xx Environment
78xx 3rd Party Software

8xxx Test Definition or Execution Bugs
81xx System Setup
82xx Test Design
83xx Test Execution
84xx Test Documentation
85xx Test Case Completeness

Table 3.1: Beizer’s Taxonomy (Modified)

pographical errors, standards, or documentation. The next main category is for

Integration defects, representing errors in the internal and external interfaces in

the software. Finally, the last two main categories of defects deal with System and

Test defects. System defects comprise errors in the architecture, OS, compiler,

and failure recovery of the AUT. Test defects represent errors found in the test

descriptions, configurations, and test programs used to validate the system.
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Beizer’s taxonomy was chosen for this study, based primarily on the categories

themselves and the fit within the ABB environment. Currently, testing at ABB is

not based on a test strategy, and therefore ODC was not chosen since it relies on a

test strategy and process being in place. Other object oriented taxonomies were not

chosen since the development of these applications is not strictly object oriented,

although the language has the capability.

After selecting Beizer’s taxonomy, all of the categories and subcategories were

analyzed. A two level approach was selected, with only the main category and

one subcategory used, due to the needs of ABB. Researchers at ABB tailored the

taxonomy for initial work with developers and testers within ABB [47]. The main

categories were kept; a few subcategories were renamed, giving them names more

similar to those used inside ABB, and other subcategories were added for specific

defect types due to their importance to ABB.

The first additional subcategory was named GUI defects, and assigned to the

Implementation main category as 53, to categorize defects that exist either in the

graphical elements of the GUI or in the interaction between the GUI and the un-

derlying application API. These defects were given their own defect type since code

involved in the GUI was treated differently than the underlying application code in

many companies, and require different testing steps to validate.

The next change to the taxonomy involved dividing the documentation sub-

category into two categories, one for classifying in-software documentation errors

and one for user documentation errors. These were labeled 54 and 55, respectively.

In-software documentation defects cover missing or incorrect developer documents,
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such as design documents, or internal code documentation, i.e., comments in the

code. User documentation refers to defects that exist in documents that are released

to the customer with the software, such as product installation and user manuals.

The taxonomy was further modified to include a subcategory to classify defects

in system setup. This category allows classification of defects dealing with configur-

ing the system correctly for its intended use. Since all of ABB’s systems are highly

configurable, these defects are important enough to track separately. This subcate-

gory was added to the Test Definition or Execution Bugs category, and labeled as

81.

Finally, a subcategory was added to categorize defects in the configuration

interfaces that are available in the system. Since these systems have so many possible

executable configurations, each of which highly impact how the system executes, the

interfaces which allow this configuration to occur require their own classification.

This new defect type was added to the taxonomy as 63. The modified version of

Beizer’s taxonomy is shown in Table 3.1

3.1.2 Gathering Construction Metrics

In order to compare the construction of GUI and non-GUI components of the

system, the source code files for one system were split into two groups: files imple-

menting the interface of the system and files implementing the remaining function-

ality of the system. To aid in characterizing the systems, each of these groups was

analyzed separately. Files were determined to be part of the GUI if they contained
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code that implemented a GUI action, i.e., a button click, menu click, window open

or window hide event.

Source code metrics were collected using Source Monitor2 for one AUT, and

the results were divided into the GUI and non-GUI groups, based on the label of the

corresponding file or class. Five source metrics were selected to represent measures

of size, complexity, coupling, and developer documentation. These include lines

of code (LOC), LOC per method, percentage of lines with comments, cyclomatic

complexity (CC), and call depth. In addition to source code metrics, source code

changes were derived by computing the difference for each metric between versions

of the system. Although source code was only available for one AUT, it is the largest

in the study, containing over 1.6 million lines of code.

3.1.3 Collecting Test Suite Data

The ABB product group defect repositories that were mined for this study do

not uniformly contain information on whether or not the defect was detected through

a crash. Therefore, to gather information on whether the system crashed to expose

each defect, natural language queries were run on the text fields of the repositories,

such as Title, Description, Evaluation, and Implementation Notes. Words used in

the query include “access violation,” “ACCESS VIOLATION,” “crash,” “hang,”

“freeze,” and “froze.” This natural language query was reinforced by human data

checking of the defect reports. Determining how many of the reported defects were

detected through crashes provides evidence on the effectiveness of crash testing for

2http://www.campwoodsw.com/sourcemonitor.html
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GUIs. It also assists in characterizing GUI systems.

Metrics pertaining to the test suites were also collected to determine charac-

teristics of industrial test suites used for GUI systems. All three systems studied

use manually executed tests, and one product augments this manual testing with

a large suite of automated GUI tests. The manual test suite was only available

for one of the AUTs and the automated tests were not available to include in this

study. From the manual test suite and its results, metrics were gathered for the size

of the test suite, the number of test cases used for crash testing, the method used

to generate test suite (functional, logical, or state), and the number of tests with

validation points. Validation points, points between test steps where the state of

the application is checked, are often implied in manual testing, as the human tester

can visually check the state of the system. For this study, validation points were

determined from the test case and the results of the test case execution.

3.1.4 Subject Applications

The three applications chosen for this study were developed by ABB and are all

Human Machine Interfaces (HMI) for large industrial control systems. They allow

the user to monitor, configure, and control various aspects of the running system.

These systems are developed in C++ and run on the Windows operating system.

They were selected for this study because they are large, deployed applications that

have been running in the field for over 10 years by hundreds of customers around

the world. To protect company privacy, the systems will be referred to as AUT1,
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AUT2, and AUT3 in this study.

3.1.5 Collecting GUI System Data

Defect data was manually mined from several repositories at ABB holding

Software Problem Reports (SPRs). Specifically, the defects of interest are those

found in late-phase testing and by customers after release. Each AUT had a separate

repository. Two of the AUTs used the same repository while the third AUT used a

different repository. However, all three repositories contain roughly the same data,

and all of the data needed for this study was available for all of the systems.

Each SPR indicates when the defect was found, what version of the software

was running, and the severity of the defect. Defect severity is assigned on a 5-point

orthogonal scale ranging from Low to Project Stopper. For this study, 1,200 defects

in the top three points of the severity scale were classified, since the management

team has determined that the cost of discovering lower severity defects in the field

can be tolerated.

Due to limited data query support in these repositories, the SPRs were saved

in text files and parsed using a combination of manual effort (i.e., members of the

research team read the documents) and Perl scripts. After gathering the data into

a central location and formatting the data consistently across the three AUTs, the

analysis was conducted. The SPR data used for this study represents three years of

development and two major versions of the products.
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3.1.6 Threats to Validity

The results of this study should be considered with several possible threats

to validity. First, the defect classification was performed by several people over the

course of one year. Due to this method of classification, it is possible that the same

type of defect was categorized differently by different people. However, to mitigate

this risk, the team classifying the defects met each week and selected random groups

to reclassify together. If issues were found, others with similar classifications were

also discussed.

Second, crash data was mined from the defect repositories using natural lan-

guage queries. These queries pose a risk of missing data due to the imprecise nature

of language. To decrease the number of missed crashes, the queries included the

synonyms and several misspellings of each search term. In addition, a set of random

groups of defects were selected and one of the authors manually determined if the

defect was a crash or not. If an uncaught crash was detected, additional keywords

were added to the query and it was rerun. The crash results were also checked for

false positives, but none were found.

Third, the defects analyzed for this study are from large, currently deployed

production systems. While they are applicable to a variety of domains, they are

primarily control and monitoring systems and therefore the results may not be

directly transferrable to systems in other domains, such as desktop or productivity

applications.
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3.2 Results

From the original goal presented in Section 3.1, a set of research questions was

developed for this study. Each research question has an associated set of metrics

that were collected to provide insight into the problem. These metrics, and their

values, are presented here, along with the research question to which they apply.

3.2.1 Overall Defects

RQ3.1: How many defects in the GUI applications were detected through crashes,

as compared to observed program deviations?

Metrics: Number of defects detected by software crash, number of defects detected

by observed program deviations

Since it was possible to use a primarily automated method for determining

crashes, a total of 3,869 defects were analyzed, encompassing all five severity types

and all three AUTs. Processing the natural language query described in Section 3.1.3

produced the following crash results: AUT1 had 248 crashes out of 1,661 defect

reports; AUT2 had 372 crashes out of 1,892 defect reports; and AUT3 had 37

crashes out of 316 defect reports. Therefore, crashes accounted for 15%, 19% and

12%, respectively, of the defects detected.

RQ3.2: How do defects in the GUI differ as compared to overall defects in the

AUT? What kinds of defects are commonly found through the GUI?

Metrics: Defect classification by type, software lifecycle phase of defect detection

For this research question, GUI defects were processed manually. 1,215 defects
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Number of Defects Found
Application GUI Non-GUI

AUT1 7 154
AUT2 11 727
AUT3 90 226

Table 3.2: GUI and Non-GUI Defects per AUT

from three different GUI systems were studied and classified into the taxonomy. This

list only includes defects with a severity of High, Critical, and Project Stopper (the

top three categories on a 5-point scale) that were found in late testing phases or by

customers in the field. Since these defects are the highest priority for ABB managers,

these represent the defects that are most often fixed and included in later releases.

Table 3.2 shows the number of the GUI and non-GUI defects found in the systems.

The combined classification data for these defects is shown in Table 3.3, ordered by

defect rank. The most common defects were in data access and handling (15.47%)

and control flow and sequencing (12.67%). Out of the 27 defect classes, the top 4

classes accounted for approximately 50% of the defects. GUI defects ranked fifth

overall.

3.2.2 Construction

RQ3.3: How do GUI components compare to non-GUI components with respect

to source metrics? How do source changes in GUI components compare to changes

in non-GUI components?

Metrics: File changes, average statements per method, number of statements changed,

number of lines changed, percentage of commented lines, average complexity, average

block depth

46



Defect Class Fault Type % Defects
42 Data Access, Handling 15.47%
31 Control Flow, Sequencing 12.67%
21 Correctness 11.69%
32 Processing 10.37%
53 GUI 8.89%
81 System Setup 5.76%
23 Part. Implemented Features 4.77%
41 Data Def., Struc, Decl. 4.53%
72 Software Architecture 3.95%
22 Unimplemented Features 3.62%
26 Error Handling, Missing, Incorrect 3.37%
25 User Messages and Errors 2.63%
61 Internal Interfaces 2.63%
55 User Documentation 1.98%
75 Third Party Software 1.48%
71 OS and Compiler 1.23%
54 In-Software Documentation 0.82%
74 Performance 0.82%
62 External Interfaces 0.74%
24 Domains 0.66%
51 Coding and Typological 0.58%
83 Test Execution 0.33%
63 Configuration Interfaces 0.25%
73 Recovery 0.25%
82 Test Design 0.25%
16 Requirements Changes 0.16%
52 Standards Violation 0.08%

Table 3.3: Defect type across all systems

Construction was investigated for one of the AUTs, due to the availability of its

code. After dividing the source code into two groups, the GUI and non-GUI portions

of the system (Section 3.1.2), their source metrics were calculated. The two groups

of measures were compared using a two sample student t-test assuming unequal

variances to compare the means of the two groups. The hypothesized difference in

means was zero. This test was selected since the number of observations to compare

was approximately 15,000. The results of the source metrics analysis shows that
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there are statistically significant differences (at α = 0.05) between the GUI and

non-GUI components for all five of the metrics selected (p < 0.05). Table 3.4

contains the computed metrics for the system used in this part of the study.

Mean StdDev
LOC GUI 388.27 516.49

Non-GUI 248.33 14542.59
LOC / Method GUI 13.10 6.77

Non-GUI 3.57 8.93
% Comments GUI 11.54 11.92

Non-GUI 20.40 17.09
Complexity GUI 3.58 1.63

Non-GUI 2.05 5.01
Depth of Call Tree GUI 1.47 0.45

Non-GUI 0.82 0.72

Table 3.4: Source code metrics

Table 3.5 shows the code changes in the GUI and non-GUI parts of the system

for five versions of the AUT. The table shows that the mean of the number of state-

ment changes between versions for GUI and non-GUI are similar, but the standard

deviation is significantly larger for the non-GUI parts of the system.

GUI Non-GUI
Version Mean StdDev Mean StdDev
V1 - V2 77.17 119.27 67.32 1016.74
V2 - V3 77.92 150.01 94.70 2251.50
V3 - V4 38.88 76.54 61.57 948.73
V4 - V5 15.36 73.33 16.28 170.40

Table 3.5: Statement changes

Figure 3.1 shows the percentage of change to the GUI and non-GUI portions

of the system for the five versions studied. On average, 8% of the changes were

to GUI portions and 92% were to non-GUI portions of the system. The overall

size of the system is approximately 1.6 MLOC, of which the GUI portion of the
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Figure 3.1: Changes to GUI and non-GUI portions

system contains approximately 200 KLOC (14%) and the non-GUI portion contains

approximately 1.4 MLOC (86%).

3.2.3 Test Suites

RQ3.4: What are the characteristics of the test suites? How many of the tests are

testing the GUI compared to testing the application through the GUI?

Metrics: Number of test cases with validation points, number of test cases used

for crash testing, size of test suite, method used to generate test suite (functional,

logical, state)

For this study, the current product testing suite for one of the AUTs was

analyzed. This suite is executed manually and takes approximately three man-

weeks to complete. It contains 800 test cases in total. Of these, 42% contain
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specific verification points, 50% are only looking for crashes, and the remaining 8%

contain general statements of what the correct behavior should be. 20% of the tests

were designed to test the GUI itself and the remaining 80% were designed to test the

application through the GUI. The main testing methods used in the suite include

creating tests for the general cases (80%), error cases (8%), boundary values (10%),

and state or combinatorial testing (2%).

3.3 Discussion

This section presents the analysis of the metrics data shown in the previous

section and provides insight into the data gathered for the research questions posed

for this study.

3.3.1 Overall Defects

The defect data presented in Section 3.2.1 provides an industry defect pro-

file of three large deployed GUI applications. Table 3.3 provides a distribution of

defect types that were found through the GUI during late phase testing and after

deployment. A large portion of the defects found were categorized as 42: data access

and handling, 31: control flow and sequencing, 21: correctness, and 32: processing,

representing 50% of the total defects.

Defects in the GUI itself represented only 6% of the total defects found across

the three systems. Looking at the individual systems, Table 3.2 shows that less

than 5% of the defects for two systems were GUI defects, while the third system
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had almost 30%. Due to the fact that all of these defects were detected through the

GUI, it is surprising that more of the defects are not related to the GUI. Many of the

problem reports studied during data collection described incorrect system behavior

that was observed through the GUI. However, the actual defect often resided in the

underlying system components rather than the GUI itself. The assumption that the

problem would be rooted in the GUI was primarily due to the limited observability

into the system that the GUI provides.

Upon examination of the defects detected in the systems, most required ob-

servability of program deviations and a knowledge of the expected behavior of the

systems. Conversely, few defects resulted in a crash of the running systems. This

also highlights the need for good observability into the system when it is tested

through its GUI.

3.3.2 Construction

The results shown in Section 3.2.2 indicate that there is a significant difference

in the source code metrics when the GUI and non-GUI components of the system

are compared. On average, GUI components are larger than their non-GUI coun-

terparts. The percentage of the code that is commented in the GUI components of

the system is much lower than that of the non-GUI components. The GUI code is

nearly two times more complex than the non-GUI code. Finally, the depth of the

call tree is much larger in the GUI portions of the code.

These four measures, taken together, may indicate that developers do not

51



create GUI components with the same discipline that they use when creating the

rest of the system. GUI components also contain glue code which links the GUI

events to their respective API calls in the underlying system. This extra step may

cause some of the extra size, complexity, and call depth.

Section 3.2.2 also investigates the difference in source code changes between

the GUI and non-GUI portions of the system. The results show that the average

number of changes is similar between GUI and non-GUI components. However,

there are significantly more non-GUI components, leading to a much larger overall

number of changes to the non-GUI portion of the system, shown in Figure 3.1.

3.3.3 Test Suites

The data presented in Section 3.2.3 shows that the majority of the test cases

(80%) are intended to test the application through the GUI, while the remaining test

cases (20%) are intended to test the GUI itself. Test suites were also characterized on

the absence or presence of verification points in the test cases. In the suites studied,

50% of the written tests are verified solely on whether or not the system crashed

when the test case was executed. 42% of the tests contained specific criteria for the

tester to verify through the GUI that the system performed as expected. Finally,

upon examining characteristics of the test suite, it was determined that most of the

test suite was executing test cases solely based on the general case of the system

(80%), seldom applying additional test methodologies such as boundary checking

(10%), state-based testing (2%) and checking error conditions (8%), methods seen
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as good testing practices.

3.4 Conclusions

This chapter presented the results of a study characterizing GUI systems and

their test suites to add to the knowledge base for testers and researchers alike as they

determine the efficacy of crash testing for GUI systems. Traditionally, GUI testing

has relied on crash testing, due to several factors, including difficulty in developing

test suites that adequately cover the breadth and depth of the system as well as the

need to observe the underlying system’s behavior [61].

The findings on the test suites could be due to employing the strategy of

testing the application through the GUI rather than testing the business logic of the

application separately from the GUI. As testers are focused on the GUI, and the

observability into the system that it provides, the ability to understand and verify

the behavior of the underlying system is compromised. This lack of observability into

the system often inhibits the testers from using additional test design methodologies,

such as testing boundary conditions and checking error conditions, since that level

of observability is not available.

Next, Chapter 4 will describe the CONTEST algorithm and model. CON-

TEST uses a new probabilistic GUI model that can be generated based on infor-

mation gleaned from existing test suites. This model conserves the context of the

existing event sequences and is used to consolidate the original test suites, while

conserving the fault detection effectiveness and code coverage of the original suites.
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Chapter 4

CONTEST: An N-Gram Model for Consolidation of Sequence-based

GUI Test Cases

This chapter describes CONTEST, a method of modeling a GUI based on the

n-gram model often used in NLP, that can be encoded with existing test suites,

and further used to generate a new, consolidated test suite. The model maintains

the context of each event executed in the test suite, for each length-n subsequence.

Probabilities based on the likelihood of each event sequence guide the test suite

consolidation. An empirical study using crash testing was conducted to show the

effectiveness of CONTEST. Recall that Chapter 3 showed that crash testing is a

useful and valid technique for finding defects in GUI applications.

This chapter provides concrete examples of (a) why CONTEST was able to

generate new sequences that detected new faults, (b) why CONTEST eliminated

some sequences that had previously detected faults, causing the new consolidated

suite to miss some of the faults, (c) why CONTEST covered new code, and (d) why

CONTEST missed some code previously covered by the original suites are given. For

each of these cases, the relevant parts of the n-gram model, the probabilities along

its nodes/edges, and how they were handled by CONTEST’s test case generator are

shown.
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4.1 Modeling the GUI for CONTEST

The core enabler of CONTEST is a probabilistic model of the GUI. Building

upon the concepts summarized in Section 2.1.1, this section describes the probabilis-

tic GUI model used by CONTEST. Extending the notion of a tailored EFG, multiple

event sequences may be represented in a single tailored EFG. For example, the 13

event sequences shown in Figure 1.2 that were used in the example in Chapter 1,

< e1, e4 >, < e1, e6 >, < e1, e3, e5, e6 >, < e2, e6 >, < e2, e3, e5 >, < e2, e3, e5, e6 >,

< e2, e4, e7, e2, e6 >, < e3, e5, e4, e3, e6 >, < e7, e1 >, < e7, e1, e6 >, < e7, e2, e6 >,

< e7, e2, e3 >, and < e7, e2, e3, e5, e6 >, may be used to create the tailored1 EFG

shown in Figure 4.1.

INIT

e1

e2

e3

e7

e4

e6

FINAL

e5

Figure 4.1: EFG for the Running Example

Without loss of generality, the EFG is augmented with two special nodes,

INIT and FINAL. The event INIT has an edge to the first event of each event

1The term “tailored” is dropped for the remainder of this document.
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sequence; the event FINAL has an edge from the last event in each event sequence.

This type of EFG is the basis for test-case generation in CONTEST.

To use the EFG to consolidate the original sequences, it can be annotated

with probabilistic relationships between events. Consider the EFG of Figure 4.1

and the 13 input sequences. From the EFG, it can be seen that only e1, e2, e3, and

e7 may be the first event in a test case (because there is an edge from INIT to

each of these events). Upon examination of the 13 sequences, it can be seen that

e1 starts 3 sequences, e2 starts 4 sequences, e3 starts 1 sequence, and e7 starts 5

sequences. When generating consolidated test suites from this EFG, ideally, the

algorithm should ensure that the percentage of test cases in the consolidated suite

reflects the distribution in the original suites. Therefore, most of the test cases

(perhaps 5
13

× 100) start with e7,
3
13

× 100 start with e1,
4
13

× 100 start with e2, few

or 1
13

× 100 start with e3, and very few or none with e4, e5, or e6.

Moreover, from the EFG, it can be seen that e1 and e2 can follow e7. The

subsequence < e7, e2 > appears 4 times in the input sequences while < e7, e1 >

appears only twice. With the goal of consolidating test suites in mind, test case

generation must ensure that < e7, e2 > appears more often, at least twice as often,

as a subsequence than < e7, e1 >.

Another interesting point to note from the original event sequences is that

of the four times e2 follows e7, it does so thrice in the context of e7 being the first

event; only once does it do so when e7 follows e4. This seems to suggest that in order

to obtain a resulting test suite that is “similar” to the original suite, it would be

desirable to consider a history of several previous events. Therefore, the algorithm
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will compute the probability of e2 following e7 given that e7 has followed e4.

Consider the annotated EFG shown in Figure 4.2. Each node (corresponding

to an event ex) in the original EFG is associated with a conditional probability

table. The table has two columns; the first column is a subsequence < ea, eb > of

length 2; the second column is the probability that ex follows < ea, eb > in the input

event sequences. For example, consider the table for e2. Because only e2 follows the

subsequence < e4, e7 >, the probability entry is 1.0. On the other hand, e2 follows

< INIT, e7 > 3 times in the original sequences while e1 follows < INIT, e7 > 2

times. Therefore, the probability entry of e2 in the context of < INIT, e7 > is 0.6;

e1 in the context of < INIT, e7 > is 0.4.

Intuitively, the annotated EFG can be used for test case generation by start-

ing with the INIT event and traversing high-probability paths until the FINAL

event is reached. Next, an explanation of how the conditional probability tables

are computed and a formal description of the test case generation algorithm are

provided.

Developing the probabilistic EFG for the CONTEST algorithm starts by con-

sidering the input sequences as paths in the annotated EFG. In the running example,

the paths are as follows:

r1 = INIT, e1, e4, F INAL

r2 = INIT, e1, e6, F INAL
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Figure 4.2: Annotated EFG for H = 2

r3 = INIT, e1, e3, e5, e6, F INAL

r4 = INIT, e2, e6, F INAL

r5 = INIT, e2, e3, e5, F INAL

r6 = INIT, e2, e3, e5, e6, F INAL

r7 = INIT, e2, e4, e7, e2, e6, F INAL

r8 = INIT, e3, e5, e4, e3, e6, F INAL

r9 = INIT, e7, e1, F INAL
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r10 = INIT, e7, e1, e6, F INAL

r11 = INIT, e7, e2, e6, F INAL

r12 = INIT, e7, e2, e3, F INAL

r13 = INIT, e7, e2, e3, e5, e6, F INAL

Definition: The prior probability that a randomly selected event from any of

r1, r2, . . . , rR is ei is:

P (ei) =
count(ei)

ΣE
j=1count(ej)

,

where count(ei) returns the number of times event ei occurs in all paths r1, r2, . . . , rR

and E is the set of all events, including INIT and FINAL.

Continuing with the running example, the counts and probabilities for each

event are:

count(e1) = 5 P (e1) = 0.08

count(e2) = 7 P (e2) = 0.10

count(e3) = 7 P (e3) = 0.10

count(e4) = 3 P (e4) = 0.05

count(e5) = 5 P (e5) = 0.08

count(e6) = 8 P (e6) = 0.12

count(e7) = 5 P (e7) = 0.08

count(INIT ) = 13 P (INIT ) = 0.20

count(FINAL) = 13 P (FINAL) = 0.20
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Now, count(ei) and the prior probability calculation are extended from single

events to sequences of events. Let s be a length-S subsequence of events in the

input event sequences. For a subsequence length of 2 (i.e., S = 2), the valid subse-

quences for this example are: s1 =< e1, e3 >, s2 =< e1, e4 >, s3 =< e1, e6 >, s4 =<

e2, e3 >, s5 =< e2, e4 >, s6 =< e2, e6 >, s7 =< e3, e5 >, s8 =< e3, e6 >, s9 =<

e4, e3 >, s10 =< e4, e7 >, s11 =< e5, e4 >, s12 =< e5, e6 >, s13 =< e7, e1 >, s14 =<

e7, e2 >, s15 =< INIT, e7 >, s16 =< INIT, e3 >, s17 =< INIT, e1 >, s18 =<

INIT, e2 >, s19 =< e1, F INAL >, s20 =< e3, F INAL >, s21 =< e4, F INAL >

, s22 =< e5, F INAL >, s23 =< e6, F INAL >.

The next step in generating the probabilistic EFG is to compute the prior

probability for each of these subsequences.

Definition: The prior probability that a randomly selected, length-S subsequence

from any of r1, r2, . . . , rR turns out to be s is

P (s) =
count(s)

Σsi∈subs(S)count(si)
,

where count(s) returns the number of times s occurs as a subsequence of r1, r2, . . . , rR

and subs(S) is the set of all length-S subsequences in r1, r2, . . . , rR.

For each subsequence of length 2 given above, the count and probability are:

count(s1) = 1 P (s1) = 0.2

count(s2) = 1 P (s2) = 0.2

count(s3) = 2 P (s3) = 0.4

count(s4) = 4 P (s4) = 0.5
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count(s5) = 1 P (s5) = 0.125

count(s6) = 3 P (s6) = 0.375

count(s7) = 5 P (s7) = 0.71

count(s8) = 1 P (s8) = 0.14

count(s9) = 1 P (s9) = 0.33

count(s10) = 1 P (s10) = 0.33

count(s11) = 1 P (s11) = 0.2

count(s12) = 3 P (s12) = 0.6

count(s13) = 2 P (s13) = 033.

count(s14) = 4 P (s14) = 0.67

count(s15) = 5 P (s15) = 0.39

count(s16) = 1 P (s16) = 0.08

count(s17) = 3 P (s17) = 0.23

count(s18) = 4 P (s18) = 0.31

count(s19) = 4 P (s19) = 0.2

count(s20) = 4 P (s20) = 0.14

count(s21) = 4 P (s21) = 0.33

count(s22) = 4 P (s22) = 0.2

count(s23) = 4 P (s23) = 1.0

Next, it is necessary to compute the conditional probability of each subse-

quence followed by any event that follows it.

Definition: The conditional probability of each subsequence s ∈ subs(S) that
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immediately precedes ei is computed as follows:

∀s ∈ subs(S), ∀ei ∈ E : P (ei|s) =
count(< s, ei >)

count(< s, ex >)
,

where < s, ei > denotes that ei immediately follows s and subs(S) is the set of all

length-S subsequences in r1, r2, . . . , rR. Event ex is a placeholder that can instantiate

with any event that follows s.

These conditional probabilities are used to annotate the EFG. To illustrate how

the probabilities shown in Figure 4.2 were computed, a step-by-step demonstration of

some of the computations is given. First, to determine the probability of e4 occurring

after a sequence of 2 events, the set of events given as input will be examined for

e4 occurring after 2 events. This examination yields three possibilities: e4 follows

< INIT, e1 >, < INIT, e2 >, and < e3, e5 >. Therefore, three probabilities will

be computed: P (e4| < INIT, e1 >), P (e4| < INIT, e2 >), and P (e4| < e3, e5 >).

Before these can be computed, it must be determined which events other than e4

follow the subsequences of interest, and the number of times that occurs must be

counted. The sequence < INIT, e1 > is followed by e3, e4 and e6, once in each case.

The relevant computations follow:

P (e3| < INIT, e1 >) =
count(< INIT, e1, e3 >)

count(< INIT, e1, ex >)
=

1

3
= 0.33,
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where ex represents any event that follows < INIT, e1 >. Likewise,

P (e4| < INIT, e1 >) =
count(< INIT, e1, e4 >)

count(< INIT, e1, ex >)
=

1

3
= 0.33

and

P (e6| < INIT, e1 >) =
count(< INIT, e1, e6 >)

count(< INIT, e1, ex >)
=

1

3
= 0.33

are computed.

The same process is used to compute P (e4| < INIT, e2 >), and P (e4| <

e3, e5 >). Subsequence < INIT, e2 > is followed by e3 (twice), e6, and e4, therefore:

P (e4| < INIT, e2 >) =
count(< INIT, e2, e4 >)

count(< INIT, e2, ex >)
=

1

4
= 0.25

The subsequence < e3, e5 > is followed by e4, e6 (thrice), and FINAL, there-

fore:

P (e4| < e3, e5 >) =
count(< e3, e5, e4 >)

count(< e3, e5, ex >)
=

1

5
= 0.2

In all calculations of P (ei|s), the length of s is 2. The same formulae hold for

other lengths of s. Consider length 3 sequences, (i.e., S = 3); the valid subsequences

and the follows relationship for each subsequence are:

s24 =< e1, e3, e5 >, s25 =< e2, e3, e5 >, s26 =< e2, e4, e7 >, s27 =< e3, e5, e6 >,
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s28 =< e3, e5, e4 >, s29 =< e4, e3, e6 >, s30 =< e4, e7, e2 >, s31 =< e5, e4, e3 >,

s32 =< e7, e1, e6 >, s33 =< e7, e2, e3 >, s34 =< e7, e2, e6 >, s35 =< INIT, e1, e3 >,

s36 =< INIT, e1, e4 >, s37 =< INIT, e1, e6 >, s38 =< INIT, e2, e3 >, s39 =<

INIT, e2, e4 >, s40 =< INIT, e2, e6 >, s41 =< INIT, e3, e5 >, s42 =< INIT, e7, e1 >,

s43 =< INIT, e7, e2 >, s44 =< e1, e4, F INAL >, s45 =< e1, e6, F INAL >,s46 =<

e2, e3, F INAL >, s47 =< e2, e6, F INAL >, s48 =< e3, e5, F INAL >, s49 =<

e3, e6, F INAL >, s50 =< e5, e6, F INAL >, s51 =< e7, e1, F INAL >

Computing the prior probability for subsequences of length 3 yields the fol-

lowing:

count(s24) = 1 P (s24) = 0.06

count(s25) = 3 P (s25) = 0.18

count(s26) = 1 P (s26) = 0.06

count(s27) = 3 P (s27) = 0.18

count(s28) = 1 P (s28) = 0.06

count(s29) = 1 P (s29) = 0.06

count(s30) = 1 P (s30) = 0.06

count(s31) = 1 P (s31) = 0.06

count(s32) = 1 P (s32) = 0.06

count(s33) = 2 P (s33) = 0.12

count(s34) = 2 P (s34) = 0.12

count(s35) = 1 P (s35) = 0.33

count(s36) = 1 P (s36) = 0.33
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count(s37) = 1 P (s37) = 0.33

count(s38) = 2 P (s38) = 0.5

count(s39) = 1 P (s39) = 0.25

count(s40) = 1 P (s40) = 0.25

count(s41) = 1 P (s41) = 1

count(s42) = 2 P (s42) = 0.4

count(s43) = 3 P (s43) = 0.6

count(s44) = 1 P (s44) = 1

count(s45) = 2 P (s45) = 1

count(s46) = 1 P (s46) = 0.25

count(s47) = 3 P (s47) = 1

count(s48) = 1 P (s48) = 0.25

count(s49) = 1 P (s49) = 1

count(s50) = 3 P (s50) = 1

count(s51) = 1 P (s51) = 0.5

Figure 4.3 shows the annotated EFG resulting from setting H to 3. To illus-

trate how the probabilities shown in Figure 4.3 were computed, a similar process

to that given previously for Figure 4.2 is shown. To determine the probability of

e5 occurring after a sequence of 3 events, three probabilities will be computed:

P (e5| < e7, e2, e3 >), P (e5| < INIT, e1, e3 >), and P (e5| < INIT, e2, e3 >).

Again, it is necessary to determine and count the events that follow the sequence

< e7, e2, e3 >; in this case, e5 and FINAL, one time in each case. Therefore,
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INIT

e7 e1

e2

e3

FINAL

e4

e6

e5

e2,e4,e7 1.0

INIT,e7,e2 0.67

e3,e5,e4 1.0

INIT,e3,e5 1.0

e7,e2,e3 0.5

INIT,e1,e3 1.0

INIT,e2,e3 1.0

e1,e3,e5 1.0

e2,e3,e5 0.67

e4,e7,e2 1.0

e5,e4,e3 1.0

INIT,e7,e1 0.5

INIT,e7,e2 0.33

INIT,e2,e4 1.0

e2,e3,e5 0.33

e3,e5,e6 1.0

e4,e3,e6 1.0

e7,e1,e6 1.0

e7,e2,e3 0.5

e7,e2,e6 1.0

INIT,e1,e4 1.0

INIT,e1,e6 1.0

INIT,e2,e6 1.0

INIT,e7,e1 1.0

Figure 4.3: Annotated EFG for H = 3

compute

P (e5| < e7, e2, e3 >) =
count(< e7, e2, e3, e5 >)

count(< e7, e2, e3, ex >)
=

1

2
= 0.5.

Likewise,

P (FINAL| < e7, e2, e3 >) =
count(< e7, e2, e3, F INAL >)

count(< e7, e2, e3, ex >)
=

1

2
= 0.5

is computed. The same process is followed to compute P (e5| < INIT, e1, e3 >), and
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P (e5| < INIT, e2, e3 >):

P (e5| < INIT, e1, e3 >) =
count(< INIT, e1, e3, e5 >)

count(< INIT, e1, e3, ex >)
=

1

1
= 1.0

since < INIT, e1, e3 > is only followed by e5.

P (e5| < INIT, e2, e3 >) =
count(< INIT, e2, e3, e5 >)

count(< INIT, e2, e3, ex >)
=

2

2
= 1.0,

also, since < INIT, e2, e3 > is only followed by e5.

The preceding example was provided to illustrate the effect of varying the

length of s when computing the probabilities for the annotated EFG. In practice,

testers will have to find a value of s that produces a consolidated test suite that

meets their goals. Varying the length of s in this way creates two special cases.

First, P (ei) can be thought of as P (ei|s) when s has length 0. This is not the

same as P (ei|INIT ), which is the probability that event ei is the first event in the

sequence, occurring immediately after INIT . Rather, P (ei|s) is the probability of

ei given no information about the events that precede it. Second, if S is equal to

the length of the input sequences, the sequences output by the model will match

the input and have a probability of 1.0.

The length of the subsequence s is called the history used by the n-gram model,

denoted by H , and is given as a parameter to the model. Each set of entries for

all length-h subsequences, 0 ≤ h ≤ H , succinctly encodes a probabilistic Markov

67



model whose O(Eh) nodes correspond to length-h subsequences and whose nodes

are labeled with conditional probabilities.

4.2 Generating test cases

After the probabilistic model is generated, test cases will be generated that

exercise the most probable sequence of events, given a range of starting points and

test case lengths. All possible test cases are generated, based on the events included

in the input set of event sequences, up to a specified history provided by the tester.

Before elucidating the details of the algorithm, the example sequences given in

the previous section are used to illustrate an intuitive explanation of how test cases

are generated. In the case of H = 3, it is necessary to determine the probability

that event ei follows the sequence of events ei−3...ei−1. As shown in Figure 4.3, the

probability of executing e6 in the context of 3 previous events is 1.0 if it follows

one of three sequences of events: < e1, e3, e5 >, < e4, e7, e2 >, or < e5, e4, e3 >. In

examining the group of sequences given as input to the model, it can be seen that

the only event which follows the three sequences given here is e6; therefore, if one of

these sequences is seen, the next event must be e6. Generating test cases from this

model uses the highest probabilities given at each node and generates a test case.

Therefore, one would expect to see a test case containing each of the sequences given

above, followed by e6, i.e., < e1, e3, e5, e6 >, < e4, e7, e2, e6 >, and < e5, e4, e3, e6 >.

The algorithm shown in Listings 4.1-4.4 generates test cases by constructing

and traversing a probabilistic EFG using the method outlined in the previous section.
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In the pseudocode shown, the input set of event sequences and the output set of

test cases are stored as matrices in which each ith row holds an event sequence and

the jth column of a row holds the jth event in the sequence. The algorithm takes

two parameters: EventSeq, the set of existing test cases and usage profiles, and

history, the number of previous events on which the probability calculations are

to be conditioned. The history parameter determines the maximum subsequence

length to be used as the conditional probabilities are computed. The final output is

TestSuite, a set of test cases.

In Step 1, shown in Listing 4.1, each input event sequence is parsed, and

subsequences of length history are saved. If the value chosen for history is larger

than the length of the longest input sequence, the subsequences will include the

whole input event sequence. As each subsequence is saved, the event following the

subsequences is stored and a counter representing follows(event, subsequence) is

incremented.

In Step 2, shown in Listing 4.2, the probability of each observed follows rela-

tionship is computed, and stored in a distributions table. For each (subsequence,

event) pair, the number of times that subsequence is followed by that event is divided

by the number of unique events that follow the subsequence.

In Step 3, shown in Listing 4.3, a sequence of events from the initial event

in the application (INIT ) to each event that appears first in each subsequence is

stored. These sequences are used during test case generation to ensure that each

test case is a legal sequence of events.

Finally, in Step 4, TestSuite is constructed by adding a legal test case (i.e.,
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Listing 4.1: Store event subsequences from event sequences

Input : Event Sequences , h i s t o r y

Step 1 : Get a l l event subsequences o f length h i s t o r y
# i n i t i a l i z e a s e t o f counters to keep t rack o f occurrences o f even t s

for each event in ( i n p u t f i l e ) {
counter [ event ] = 0 ;

}

for each event sequence in ( i n p u t f i l e ) {
for each event in ( event sequence ) {

increment counter [ event ] ;
}
subs eq l eng th = h i s t o r y
for f i r s t e v e n t ( 0 . . length ( event sequence )− subs eq l eng th ) {

l a s t e v e n t = f i r s t e v e n t + subseq l eng th ;
# get subsequence o f even t s and s t o r e in p r e f i x e s

subsequence = event sequence [ f i r s t e v e n t . . l a s t e v e n t ] ;
add subsequence to p r e f i x e s ;
# get the event f o l l ow i n g t h i s subsequence

f o l l ow e r s { subsequence} = event sequence [ l a s t e v e n t + 1 ] ;
increment f o l l ow coun t { subsequence}{ event } ;

}
}

Listing 4.2: Compute conditional probabilities

Step 2 : Get d i s t r i b u t i o n s
# I n i t i a l i z e d i s t r i b u t i o n s char t f o r subsequences and even t s

for each subsequence in ( @pre f i x e s ) {
for each event in ( @counter ) {

d i s t r i b u t i o n s{ event }{ subsequence} = 0 ;
}

}

# s t o r e p r o b a b i l i t y o f every subsequence f o l l owed by every

# event in d i s t r i b u t i o n s

for each event in ( @counter ) {
for each subsequence in ( @pre f i x e s ) {

d i s t r i b u t i o n s{ subsequence}{ event} =
fo l l ow coun t { subsequence}{ event } / num f o l l ow e r s { subsequence } ;

}
}

Listing 4.3: Get path from INIT to first event

Step 3 : Bui ld sequence o f events from INIT . . f i r s t event in each subsequence

for each event sequence in ( subsequence ) {
for each event in ( subsequence ) {

i n i tP r e { event} = subsequence [ 0 . . event−1 ] ;
}

}
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Listing 4.4: Generate Test Cases

Step 4 : Generate Test Cases

# save h i g h e s t p r o b a b i l i t y { event , subsequence} combinat ion

# fo r each subsequence

# i f t here ’ s a t i e , save a l l

for each subsequence in ( a l l subsequences ) {
for each event in ( a l l events ) {

max prob = 0 ;
i f ( d i s t r i b u t i o n s{ subsequence}{ event } >= max prob ) {

add d i s t r i b u t i o n s{ subsequence }{ event} to maxVals{ subsequence } ;
}

}
}

# maxVals : p r o b a b i l i t y f o r each subsequence ; use in t e s t case crea t ion

# match with DISTRIBS to ge t the f o l l ow i n g event and b u i l d t e s t cases

for each subsequence in ( d i s t r i b u t i o n s ) {
for each p r obab i l i t y in ( maxVals{ subsequence} ) {

t e s t = subsequence . ’ ’ . event ;
i n i t t e s t = in i tP r e { subsequence} . ’ ’ . t e s t ;

}
}

OUTPUT: Set o f unique t e s t ca s e s

one that begins with INIT) for each column maximum in Distributions. First,

each subsequence is matched with the event that has the greatest probability of

following that subsequence, based on the probabilities calculated in Step 2. These

combinations of (subsequence, event) are stored in maxVals, along with their proba-

bility. Test cases are then generated by looping through the maxVals data structure

and printing test cases composed of the (subsequence, event) sequence of events

related to the probability stored in maxVals. Before adding the new test case to

the output set, a redundancy check is performed against test cases already in the

output set, and redundant test cases are not added. Applying the four steps to the

13 example sequences using H = 1, 2, 3 yielded the test suites shown in Table 4.1.

Next, these consolidated suites and the reduced suites that were presented in
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INIT, e1, e4, e3, F INAL INIT, e1, e3, e5FINAL INIT, e1, e3, e5, e6, F INAL

INIT, e1, e6, F INAL INIT, e1, e4, e3, e6, F INAL INIT, e1, e4, e3, e6, F INAL

INIT, e2, e3, F INAL INIT, e1, e4, e7, e2, F INAL INIT, e1, e4, e7, e2, e6, F INAL

INIT, e3, e5, e6, F INAL INIT, e1, e6, F INAL INIT, e1, e6, F INAL

INIT, e7, e2, F INAL INIT, e2, e3, e5, F INAL INIT, e2, e3, e5, e6, F INAL

INIT, e1, e4, e7, F INAL INIT, e2, e4, e7, F INAL INIT, e2, e4, e7, e2, F INAL

INIT, e2, e6, F INAL INIT, e2, e6, F INAL

INIT, e3, e5, e4, e3, F INAL INIT, e3, e5, e4, e3, e6, F INAL

INIT, e3, e5, e6, F INAL INIT, e3, e5, e6, F INAL

INIT, e3, e6, F INAL INIT, e7, e1, e6, F INAL

INIT, e7, e1, e6, F INAL INIT, e7, e2, e3, e5, F INAL

INIT, e7, e2, e3, F INAL INIT, e7, e2, e6, F INAL

INIT, e7, e2, e6, F INAL

(a) H=1 (b) H=2 (c) H=3

Table 4.1: Example test cases produced from model

Chapter 1 are informally studied. First, the code coverage of these suites is exam-

ined. Figure 4.4 illustrates the event handler code used in the Radio Button Demo

application. The checkboxes shown in Figure 4.4 indicate which test suite executes

each line of code. From left to right, the first box represents the original suite,

the second box represents the line coverage reduced suite, the third box represents

the branch coverage reduced suite, the fourth box represents the method coverage

reduced suite, the fifth represents event pair reduced suite and the sixth box repre-

sents the suite generated by this model from setting history to 1, 2, and 3. From

these checkboxes, it can be seen that the test suites all have more or less the same

line coverage.
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1 RBExample : : C i r c l eAct i on ( ActionEvent evt ){
2 2�2�2�2�2�2�currentShape = SHAPE CIRCLE;
3 2�2�2�2�2�2� i f ( c r eat ed ) {
4 222222 imagePanel . setShape ( currentShape ) ;
5 222222 imagePanel . r epa in t ()}}

e1’s Event Handler
1 RBExample : : SquareAction ( ActionEvent evt ){
2 2�2�2�2�2�2�currentShape = SHAPE SQUARE;
3 2�2�2�2�2�2� i f ( c r eat ed ) {
4 222222 imagePanel . setShape ( currentShape ) ;
5 222222 imagePanel . r epa in t ( ) ; }}

e2’s Event Handler
1 RBExample : : ColorAct ion ( ActionEvent evt ){
2 2�2�2�2�2�2�colorText . s e tEd i tab l e ( true ) ;
3 2�2�2�2�2�2�c o l o r . s e t Se l e c t ed ( true ) ;
4 2�2�2�2�2�2� i f ( c r eat ed ) {
5 222222 cu r r en tCo l or = getColor ( ) ;
6 222222 imagePanel . s e t F i l l C o l o r ( cu r r en tCo l or ) ;
7 222222 imagePanel . r epa in t ( ) ; }}

e3’s Event Handler

1 RBExample : : NoneAction ( ActionEvent evt ){
2 2�2�2�2�2�2�colorText . s e tEd i tab l e ( fa l se ) ;
3 2�2�2�2�2�2�cu r r en tCo l or = COLOR NONE;
4 2�2�2�2�2�2� i f ( c r eat ed ) {
5 222222 imagePanel . s e tF i l l C o l o r ( cu r r en tCo l or ) ;
6 222222 imagePanel . r epa in t ( ) ;}}

e4’s Event Handler
1 RBExample : : CreateAct ion ( ActionEvent evt ) {
2 2�2�2�2�2�2�cu r r en tCo l or = getColor ( ) ;
3 2�2�2�2�2�2�imagePanel . s e t F i l l C o l o r ( cu r r en tCo l or ) ;
4 2�2�2�2�2�2�imagePanel . setShape ( currentShape ) ;
5 2�2�2�2�2�2�imagePanel . r epa in t ( ) ;
6 2�2�2�2�2�2�c r eat ed = true ;}

e6’s Event Handler
1 RBExample : : ResetAction ( ActionEvent evt ){
2 2�2�2�2�2�2�square . s e t S e l e c t e d ( true ) ;
3 2�2�2�2�2�2�none . s e t S e l e c t e d ( true ) ;
4 2�2�2�2�2�2�colorText . setText ( ” b lack ” ) ;
5 2�2�2�2�2�2�colorText . s e tEd i tab l e ( fa l se ) ;
6 2�2�2�2�2�2�currentShape = SHAPE NONE;
7 2�2�2�2�2�2�imagePanel . setShape ( currentShape ) ;
8 2�2�2�2�2�2�cu r r en tCo l or = COLOR NONE;
9 2�2�2�2�2�2�imagePanel . s e t F i l l C o l o r ( cu r r en tCo l or ) ;

10 2�2�2�2�2�2�imagePanel . r epa in t ( ) ; }

e7’s Event Handler

1 ImagePanel : : paintComponent ( Graphics g ) {
2 2�2�2�2�2�2� c l e a r ( g ) ;
3 2�2�2�2�2�2�Graphics2D g2d = ( Graphics2D) g ;
4 2�2�2�2�2�2� i f ( currentShape == SHAPE CIRCLE) {
5 2�2�2�2�2�2� i f ( cu r r en tCo l or == COLOR NONE) {
6 2�2�2�22�2� g2d . se tPa in t ( Color . b lack ) ;
7 2�2�2�22�2� g2d . draw ( c i r c l e ) ; }
8 2�2�2�2�2�2� else {
9 2�2�22�2�2� g2d . se tPa in t ( cu r r en tCo l or ) ;

10 2�2�22�2�2� g2d . f i l l ( c i r c l e ) ;}}
11 2�2�2�2�2�2�else i f ( currentShape == SHAPE SQUARE) {
12 2�2�2�2�2�2� i f ( cu r r en tCo l or == COLOR NONE) {
13 2�2�2�22�2� g2d . se tPa in t ( Color . b lack ) ;
14 2�2�2�22�2� g2d . draw ( square ) ; }
15 2�2�2�2�22� else {
16 2�2�2�2�22� g2d . se tPa in t ( cu r r en tCo l or ) ;
17 2�2�2�2�22� g2d . f i l l ( square ) ;}}}
18 ImagePanel : s e tF i l l C o l o r ( int inputColor ) {
19 2�2�2�2�2�2�switch ( inputColor ) {
20 2�2�2�2�2�2� case COLOR BLACK:
21 2�2�222�2� cu r r en tCo l or=Color . b lack ;
22 2�2�222�2� break ;
23 2�2�2�2�2�2� case COLOR RED:
24 2�2�22�2�2� cu r r en tCo l or=Color . red ;
25 2�2�22�2�2� break ;
26 2�2�2�2�2�2� case COLOR GREEN:
27 2�2�2�22�2� cu r r en tCo l or=Color . green ;
28 2�2�2�22�2� break ;
29 2�2�2�2�2�2� default :
30 2�2�2�2�2�2� cu r r en tCo l or=Color . gray ;}}
31 St r i ng ImagePanel : : getColor ( ) {
32 2�2�2�2�2�2� i f ( c o l o r . i s S e l e c t ed ( ) ){
33 2�2�2�2�2�2� return colorText . getText ( ) ; }
34 2�2�2�2�22�else {
35 2�2�2�222� return colorText . setText ( ”gray ” ) ; }

The ImagePanel Class

Figure 4.4: Some Source Code for the Radio Button GUI Example.
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Upon close inspection, it can be seen there is a fault in this code. When line

33 of the ImagePanel::getColor() method is executed, it causes the ImagePanel

to crash. This is because getText() expects to find a value in the text box (widget

w5). If there is no value, getText() will return NULL, which is not properly handled

in this code, causing an uncaught exception to be thrown.

This fault is not detected by the original suites or the reduced suites; it is only

detected by the test case < e1, e4, e3, e6 > generated by the CONTEST model for

both H = 2 and H = 3. Referring back to Figure 4.2, the table related to node e6

shows the probability of the sequence < e4, e3, e6 > is 1.0. Likewise, Figure 4.3 shows

that the probability of the sequence < e4, e3, e6, F INAL > is 1.0. The algorithm

will choose these sequences to create test cases, and prepend events to reach the

first event in the sequence, in this case, e4. The value of test suite consolidation is

seen even in this small example.

4.3 Empirical Study

To evaluate the CONTEST algorithm, an empirical study comparing test

suites generated by the CONTEST algorithm to existing test suites on the basis

of three dimensions: fault detection, cost of testing, and code coverage was con-

ducted. Using the CONTEST algorithm, five test suites were generated for the

study by varying the history parameter from one to five (TH1, TH2, ..TH5). Three

reduced suites, reduced by line coverage (Tline), method coverage (Tmethod) and event

pair coverage (Tpair), were used as controls in the study. This gives a total of nine
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suites, including the original suite (Torig), to be considered. There is no interaction

between the test cases, therefore the results of one does not influence the results of

another.

The goal of this study is to compare the effectiveness of a test suite composed

of existing test cases and usage profiles treated as test cases (Torig) to a suite of test

cases generated by the CONTEST algorithm. Restating this goal using the Goal

Question Metric (GQM) Paradigm [2], the goal for this research is as follows:

Analyze the consolidated test suites
for the purpose of determining effectiveness
with respect to existing test suites
from the point of view of the tester/researcher
in the context of event driven systems.

More specifically, this study enabled analysis of the CONTEST technique by an-

swering the following questions:

RQ4.1 Which suite is the most effective at fault detection?

RQ4.2 Which suite has the lowest cost of testing?

RQ4.3 Which suite has the best code coverage?

Using Torig to populate the probabilistic model, the first question is ask-

ing which test suite is the more effective at finding faults. Fault detection was

computed by running each test case on each subject application and recording

whether or not the application crashed, or failed, during test case execution. After

collecting the set of failures, each was manually linked to the fault that caused
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it. For each suite, the number of defects detected was compared by comput-

ing the total number of faults detected by each suite or F (suite), where suite

∈ {Torig, TH1, TH2...TH5, Tline, Tmethod, Tpair}.

The second question relates to the cost of generating and executing test cases,

and is aimed at determining which suite will be cheaper to execute. In this study,

cost, or c(suite) is measured in the number of test cases, for suite ∈ {Torig, TH1,

TH2...TH5, Tline, Tmethod, Tpair}. In the context of this study, calculating cost as the

number of test cases in the suite is reasonable since the overhead required to run

each test case, including starting the test case execution framework, starting the ap-

plication, and ending the application and framework, consumed more computation

time than any other activity. The difficulty in choosing a consistent cost measure is

acknowledged as a threat to validity, as noted in Section 4.3.5.

The third question addresses the difference in code coverage of the original

test suite (Torig) as compared to the code coverage of the other generated test suites.

Code coverage, coverage(suite) for suite ∈ {Torig, TH1, TH2...TH5, Tline, Tmethod, Tpair}

is computed in terms of line, method, and block.

By answering the questions posed in this study, the most effective value of

history for each application will also be revealed. The intuition behind choosing

the value for the history parameter is that there is a point where the additional com-

putation required by choosing a larger value for the history parameter is balanced

by an increase in the fault detection of the suite.
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4.3.1 Subject Applications

Four popular, open source Java applications were chosen and downloaded from

SourceForge for this study:

1. CrosswordSage 0.3.52, a popular tool for creating and solving professional-

looking crossword puzzles with built-in word suggestion capabilities, with an

all-time activity rate of 78.28%.

2. FreeMind 0.8.03, a very popular mind-mapping application, with an all-time

activity rate of 100%.

3. GanttProject 2.0.14, a project scheduling application featuring Gantt chart,

resource management, calendars, and the option to import/export MS Project,

HTML, PDF, and spreadsheets, with an all-time activity rate of 99.98%.

4. jMSN 0.9.9b25, a clone of MSN Messenger, including instant messaging, file

sharing, and additional chat features standard in MSN Messenger, with an

all-time activity rate of 98.62%.

These applications were chosen for several reasons. All of the applications have

an active developer community and high all-time-activity scores on SourceForge,

with three of the applications above 90%. CrosswordSage was chosen partially

because it is fairly new (first released in 2005) and yet has an activity score of

2http://sourceforge.net/projects/crosswordsage
3http://sourceforge.net/projects/freemind
4http://sourceforge.net/projects/ganttproject
5http://sourceforge.net/projects/jmsn
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almost 80%. Finally, these applications have been released in several versions and

have undergone quality assurance prior to each release.

4.3.2 Tools

This study was supported by several pre-existing tools and a new test case

generation tool (can be downloaded at http://guitar.sourceforge.net) created from

the algorithm described in Section 4.2.

The GUI Testing FrAmewoRk (GUITAR) was used to perform this study

[39]. The JavaGUIRipper, one of the tools in the GUITAR suite, was used to

glean the structure of the subject applications. By using Java Reflection, the Jav-

aGUIRipper creates an XML file that represents the windows, menu items, and

buttons present in the GUI, including the actions that are executed when those

items are selected.

Usage profiles can be captured by a tool in GUITAR’s family of applica-

tions called the Profiler [41]. (The Profiler does not currently belong to GUI-

TAR’s canonical, publicly available set of tools.) Running the subject application

through Java Reflection, the Profiler attaches its own event handlers to each JBut-

ton, JTextArea, and JMenuItem that becomes visible. When one of the Profiler’s

event handlers is triggered, the Profiler records an identifier for the widget and the

type of event.

Test cases can be created using a parameterized test case generator,

developed in previous work [66]. Test cases are generated to exhaustively cover
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events up to n in the EFG, where n is given as a parameter to the generator.

The N-Gram model test case generator, based on the model presented

in Section 4.1 and the CONTEST algorithm described in Section 4.2, takes event

sequence-based test cases, such as those from the Profiler and the parameterized test

case generator, as input to build consolidated test suites. The model is generated

from the input sequences and probabilities are assigned based on sequences of events

observed in the input suites. A new test suite is output from this model, representing

a consolidation of the input suites.

Another tool in the GUITAR tool suite, the JavaGUIReplayer, was used

for test case execution. The JavaGUIReplayer is a framework that opens the appli-

cation under test and replays XML test cases containing details on the steps to be

performed. Each event is executed on the GUI, and the state of the GUI is recorded

after each step. The state is saved in XML files that can be examined to determine

which test cases failed and why. The JavaGUIReplayer also prepends events to the

front of the test case, as necessary, to ensure that the first event in the test case is

available from the start state of the application.

In preparation for this study, a database for text-field values was created.

To automate test case replaying, a database that contains one instance for each

of the text types in the set {negative number, real number, long file name, empty

string, special characters, zero, existing file name, non-existent file name} was used.

Note that if a text field is encountered in the GUI (represented as an event called

type-in-text), one instance for each text type is tried in succession. The test

oracle used for this study was developed to detect crashes for these applications.This
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approach has been used before and has been found to be useful [61, 66, 5].

4.3.3 Implementation

The study presented in this chapter relied upon particular representations in

order to tie the process together.

4.3.3.1 Representations, Notations, and Examples

Usage profiles and test cases are both stored in an XML format understood

by the JavaGUIReplayer. Examples of the files relevant to this process, to include a

usage profile, a mapping file, the original suites coded file, and a resulting test case,

are shown in Figures 4.5 and 4.8. For the sake of space, only a few attributes of

each GUI widget are shown, and only for the first step. In a full profile or test case,

there are 16 attributes for each step.

Figure 4.5 shows a partial usage profile for GanttProject. This profile is com-

posed of six steps (each step is surrounded by <Step> and </Step> tags), which

together create a new project in GanttProject, and set some of the project specifics

in the “Create new project” window. Finally, Cancel is selected, which will cancel

all of the user actions for creating the new project. The test cases generated using

the parameterized test case generator will also follow this format.

Figure 4.6 is an example of the file used by the test case generation algo-

rithm. Each line in this file represents a usage profile or an existing test case in an

abbreviated format; each number represents one event in the profile or test case.
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<Profile>

<Step>

<Window>GanttProject_1</Window>

<Component>New..._R_33</Component>

<Action>doClick</Action>

<WindowFlag>FALSE</WindowFlag>

<Attributes>

<Property>

<Name>IconImage</Name>

<Value>IconImage_24</Value>

</Property>

<Property>

<Name>Type</Name>

<Value>RESTRICTED</Value>

</Property>

<Property>

<Name>ReplayableAction</Name>

<Value>doClick</Value>

</Property>

<Property>

<Name>Visible</Name>

<Value>TRUE</Value>

</Property>

<Property>

<Name>Enabled</Name>

<Value>TRUE</Value>

</Property>

</Attributes>

</Step>

<Step>

<Window>Create new project_2</Window>

<Component>AutoText_R_0</Component>

<Action>setText_String_5</Action>

<WindowFlag>FALSE</WindowFlag>

</Step>

<Step>

<Window>Create new project_2</Window>

<Component>AutoText_R_2</Component>

<Action>setText_String_5</Action>

<WindowFlag>FALSE</WindowFlag>

</Step>

<Step>

<Window>Create new project_2</Window>

<Component>AutoText_R_1</Component>

<Action>setText_String_5</Action>

<WindowFlag>FALSE</WindowFlag>

</Step>

<Step>

<Window>Create new project_2</Window>

<Component>AutoText_R_9</Component>

<Action>setText_String_5</Action>

<WindowFlag>FALSE</WindowFlag>

</Step>

<Step>

<Window>Create new project_2</Window>

<Component>Cancel_R_23</Component>

<Action>doClick</Action>

<WindowFlag>FALSE</WindowFlag>

</Step>

</Profile>

Figure 4.5: Partial usage profile for GanttProject

1 2 3 4 7 9

1 2 10 3 12 7

1 2 3 12 5 7

Figure 4.6: An example coded file used to represent event sequences

The mapping file, shown in Figure 4.7, is the translator between the input

event sequences, i.e., usage profile or test case, and the test case generation input

file. The portion of the map file shown in Figure 4.7 describes the events in the

sample file and ties to the first line of the input file.

1 <Window>GanttProject_1</Window><Component>New..._R_33</Component>

2 <Window>Create new project_2</Window><Component>AutoText_R_0</Component>

3 <Window>Create new project_2</Window><Component>AutoText_R_1</Component>

4 <Window>Create new project_2</Window><Component>AutoText_R_9</Component>

7 <Window>Create new project_2</Window><Component>Cancel_R_23</Component>

9 <Window>Create new project_2</Window><Component>AutoText_R_2</Component>

Figure 4.7: An example map file used to link the coded file to executable events
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The output of the N-Gram model test case generator is a multi-line file

of integer sequences representing the generated test suite. The resulting file was

expanded into test case events, based on the numbers assigned in the mapping, and

test cases were generated. An example of a test case generated by the N-Gram model

test case generator, in the integer sequence format, is: 1 2 9 4 12 3 1. This exact

sequence of events did not occur in the input set of event sequences. Figure 4.8

shows this generated test case in executable form, after the integers are mapped

back to the events they represent.

<Testcase>

<Step>

<Action>doClick</Action>

<WindowFlag>FALSE</WindowFlag>

<Window>GanttProject_1</Window>

<Component>New..._R_33</Component>

</Step>

<Step>

<Action>setText_String_5</Action>

<WindowFlag>FALSE</WindowFlag>

<Window>Create new project_2</Window>

<Component>AutoText_R_0</Component>

</Step>

<Step>

<Action>setText_String_5</Action>

<WindowFlag>FALSE</WindowFlag>

<Window>Create new project_2</Window>

<Component>AutoText_R_2</Component>

</Step>

<Step>

<Action>setText_String_5</Action>

<WindowFlag>FALSE</WindowFlag>

<Window>Create new project_2</Window>

<Component>AutoText_R_9</Component>

</Step>

<Step>

<Action>setText_String_5</Action>

<WindowFlag>FALSE</WindowFlag>

<Window>Create new project_2</Window>

<Component>AutoText_R_4</Component>

</Step>

<Step>

<Action>setText_String_5</Action>

<WindowFlag>FALSE</WindowFlag>

<Window>Create new project_2</Window>

<Component>AutoText_R_1</Component>

</Step>

<Step>

<Action>doClick</Action>

<WindowFlag>FALSE</WindowFlag>

<Window>GanttProject_1</Window>

<Component>New..._R_33</Component>

</Step>

</Testcase>

Figure 4.8: Portion of an automatically generated test case

4.3.4 Procedure

To answer the questions posed in this study, several steps were executed. Fig-

ure 4.9 gives a graphical representation of the steps described here. First, user pro-
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Figure 4.9: Empirical Study Procedure

files were collected from 15 students who participated in a monitored, task-based

exercise using the User Profiler tool that is part of the GUITAR suite, and described

in Section 4.3.3. The students were given a list of tasks to complete on each appli-

cation, but were not told which steps to use to create the final product. Because

there are many choices to reach the same end result, this method provided different

usage profiles for each person, while still ensuring there would be some similarity in

the parts of the application exercised.

These profiles, stored as sequences of events in XML formatted files, were then

converted to the proper format to be treated as test cases by the JavaGUIReplayer,

also described in Section 4.3.3. This process took approximately 30 minutes to

1 hour for each set of profiles. Executing the user profile-based test cases took

approximately 10 to 12 hours for each suite. Table 4.2 shows the number of profiles
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collected for each application. CrosswordSage and jMSN had under 500, while

GanttProject had nearly 1,300 and FreeMind had approximately 6,500.

Next, test suites were created using the parameterized test case generator de-

scribed in Section 4.3.3. Several suites were generated for each subject application;

each suite focused on one functional area, e.g., separate test suites were created

to test opening a file, editing a file and formatting a file. The number of func-

tional areas varied for each application, ranging from 8 in CrosswordSage to 18 in

GanttProject. In some cases, the functionality is associated with the GUI itself,

such as autocombo, autogen or autotext, indicating the type of GUI functionality

in that portion of the application. For example, autocombo represents a combo box,

autogen usually represents clickable buttons in the GUI, and autotext represents

a text field that the user will fill in. The rest of the suites in the parameterized test

cases represent functionality from a user standpoint, such as new, creating a new

project in GanttProject, and logonoff, logging in or out on jMSN. A total of 1,426

test cases were generated for CrosswordSage, 44,856 test cases for FreeMind, 27,835

test cases for GanttProject, and 4,242 test cases for jMSN. Together, the profiles

and parameterized test case suites are called Torig. The names and sizes of all of the

original suites are shown in Table 4.2.

Next, each test case in Torig was run using a test case executor, in this case the

JavaGUIReplayer, spread across a cluster of PCs running Linux, using from 4-10

machines at a time, as they were available. The execution of the test suites generated

logs that provide fault and coverage information collected during execution. From

these logs, fault and coverage matrices were created for each suite, detailing fault
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Suite CrosswordSage FreeMind GanttProject jMSN

Profiles 427 6460 1296 392
action 24 autocombo 678 autogen 2937 autogen 69
autogen 248 autogen 14238 edit 690 file 138
autotext 124 autotext 226 export 1260 help 991
edit 27 browse 226 help 356 langloc 111
file 793 edit 3390 humanprop 89 logonoff 125

Parameterized find 62 file 4722 import 1406 options 600
Test help 24 format 7850 new 2862 status 621
Cases tools 124 help 454 newresource 89 tools 69

insert 7742 newtask 89 userlist 690
maps 452 open 6 view 828
mindmap 226 pert 89
navigate 2260 print 89
tools 1262 project 1908
view 1130 resources 178

save 1893
task 3
taskprop 13339
view 552

Table 4.2: Size of original test suites (Torig) for each application

detection and coverage per test case.

The generated test cases were also used as input to CONTEST. First, each

test case was distilled into a sequence of integers (referred to as Event Sequences

in Section 4.2) and a mapping from each integer to the textual event identifier

it represents was created. A test suite was represented in one file, with one line

representing each test case. For instance, one file encoded all of Torig. This pre-

processing of Torig took approximately 5 minutes.

Next, the Perl implementation of CONTEST was executed using values of 1

through 5 for history, which took under 4 minutes per suite. Each of these values

produced a new consolidated test suite, indicated in Figure 4.9 as T Hn where n is

the value of history used in that run. Using the mapping from integers to event

identifiers, the CONTEST file was expanded into XML test cases in the format
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expected by the test case executor. This post-processing to generate test cases took

from 3 to 45 minutes, depending on the application. Lastly, the CONTEST suites

were executed on the JavaGUIReplayer, producing fault and coverage matrices. Test

case execution for the CONTEST suites took 6 to 10 hours.

Finally, as controls to this study, Torig was reduced based on line, method and

event pair coverage, using the HGS algorithm discussed in Chapter 1 [17].

4.3.5 Threats to Validity

The results of this study should be interpreted with some deference to threats

to validity. First, due to the desire to use the existing GUITAR infrastructure, and

to compare these results to those posted by previous graduate student researchers,

subject applications developed in Java were used. Therefore, the study gives no

information on how the results would translate to other development languages.

Second, although the GUI for each application is different, these subject ap-

plications do not reflect all possible classes of GUIs. Third, the majority of the

application code is written for the GUI, meaning the results may not be consistent

for applications with a simple GUI and complex underlying business logic.

Fourth, although the applications chosen for this study have undergone quality

assurance, they are open-source and developed by a team of volunteer developers,

leading to the possibility that they are more prone to bugs than professionally-

developed software. Fifth, measuring cost by the number of test cases is valid using

this infrastructure, however, this measure may not translate in another infrastruc-
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ture if the time to execute each test step outweighs the setup and tear-down time.

4.4 Results

This section provides the results of each research question posed in the study

as well as the metric(s) used to determine the results.

4.4.1 Fault Detection

RQ4.1: Which suite is the most effective at fault detection?

Metrics: Number of faults detected

Figure 4.10 shows the fault detection of each application. The method-reduced

suites, Tmeth for each application performed the worst, detecting 0 or 1 fault in each.

Tline does not do much better, performing the next worse, and tied with TH1 in many

cases. jMSN’s TH5 is an outlier in these results and will be further discussed later.

The best fault detection results are garnered by the CONTEST suites, with Tpair

doing well in some cases. The fault detection of CrosswordSage’s Torig suite is one

more than the CONTEST suites. FreeMind’s Torig detected 5 more faults than the

best CONTEST suite, TH5. Tpair consistently outperformed the other reduction

methods, Tline and Tmeth.

Some of these results can be explained by looking at the length of the test

cases in Torig. Figure 4.11 shows the number of test cases of each length (generally

length 2 through 5) for each application. Combining this information with fault

detection helps to explain the F () values. In CrosswordSage, the Torig test suite is
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dominated by test cases of length 4. The CONTEST test suites have fewer length 4

test cases than Torig and they also detect less faults. FreeMind’s CONTEST suites

show a decrease in fault detection between TH3 and TH4 and an increase from TH4 to

TH5, which correspond to the decrease in test cases of length 4 and 5, from TH3 and

TH4. CONTEST suites TH3 and TH5 have the same number of test cases in length

4 and 5. GanttProject’s Torig is dominated by length 3 test cases, as are TH2, TH3,

and TH4. TH5 doesn’t have any length 3 test cases, and there is a significant drop

in fault detection as compared to TH4. jMSN’s Torig is dominated by length 2 and

3 test cases, as are TH2 and TH3. Further, the fault detection for the CONTEST

suites increases when length 3 test cases are introduced (in TH2) and decreases when

length 2 test cases are lost (in TH4) and again when length 3 test cases are lost (in

TH5).
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(a) CrosswordSage (b) FreeMind

(c) GanttProject (d) jMSN

Figure 4.10: Faults detected
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(a) CrosswordSage (b) FreeMind

(c) GanttProject (d) jMSN

Figure 4.11: Histograms showing test case length
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Figure 4.12: Faults detected in all four subject applications

91



Figure 4.12 shows the individual faults detected by each suite, for each subject

application. It can be seen from this table that as the history value is increased,

different faults are found. For example, CrosswordSage’s TH2 found Fault #6, which

was not detected by any of the other CONTEST suites, while three of the suites,

TH3, TH4, and TH5 found Fault #1. FreeMind’s CONTEST suites detected two

faults, Fault #1 and Fault #16, that were not detected by any of the other suites.

In this case, TH2 and TH4 had similar results, as did TH3 and TH5. TH5 detected

a new fault, not detected by any of the other suites. GanttProject’s CONTEST

suites were most effective for history values of 2, 3 and 4. TH2 found two faults

not detected by the other suites, while TH3 found one and TH4 found four. jMSN’s

TH2 found one fault that was not found by the other suites.

There are also cases where increasing history decreases fault detection, such

as jMSN’s TH5 suite. As discussed above, this is related to the length of the test

cases, and more specifically the length of the input suite, Torig.

4.4.2 Cost

RQ4.2: Which suite has the lowest cost of testing?

Metrics: Number of test cases in suite

Cost was computed and compared for each test suite, generated with varying

levels of history from 1 through 5. Figure 4.13 shows the difference in the cost

of each suite. For CrosswordSage, the CONTEST suites are linearly increasing as

history is increased, for history 1 - 4; TH5 is slightly smaller than TH4. All of the
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generated suites are smaller than Torig. FreeMind’s suites do not follow the same

pattern; TH3 and TH5 are very similar in size to Torig while the others are small.

GanttProject has a very small TH1 and TH5, while the TH2, TH3, and TH4 are closer

in size to Torig. jMSN’s generated suites decrease in size for histories 2-5; an opposite

trend from that witnessed in CrosswordSage. Referring back to Figure 4.11, these

suite size trends are related to the length of the input sequences, Torig.

4.4.3 Code Coverage

RQ4.3: Which suite has the best code coverage?

Metrics: Line coverage, Method Coverage

Code coverage was computed and compared across test suites for each applica-

tion. Figure 4.15 shows the difference between the coverage in the original, reduced

and all five CONTEST-generated test suites. For each application, coverage was

similar across the test suites, however the CONTEST suites were slightly better in

each case.
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(a) CrosswordSage (b) FreeMind

(c) GanttProject (d) jMSN

Figure 4.13: Cost for each subject application’s test suites
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(a) CrosswordSage (b) FreeMind

(c) GanttProject (d) jMSN

Figure 4.14: Cost and fault detection for each subject application’s test suites
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(a) CrosswordSage (b) FreeMind

(c) jMSN (d) GanttProject

Figure 4.15: Code coverage for all test suites
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4.5 Discussion

This section presents further discussion on the results shown in the previous

section.

4.5.1 Fault Detection

The fault detection effectiveness of CONTEST-generated test suites shows the

validity of the model-based test case generation technique presented here. In fact,

the number of faults detected by the generated test cases is 2.25 to 9.7 times the

number of faults detected by the original suites. Combined with the cost savings of

running and generating fewer test cases, the method presented here shows promise.

Additionally, for every application in this study, the CONTEST-generated

test suites found faults that were not detected by the existing Torig test suites. In

CrosswordSage, TH3 found 4 faults that were not found by Torig. In FreeMind, TH5

found 4 faults that Torig did not find. In GanttProject, the TH5 test suite found 13

faults not discovered by Torig. In jMSN, the TH2 test suite found 11 faults not found

in the Torig test suite. Conversely, FreeMind’s Torig suite found 5 faults missed by

the consolidated suites (THn) and jMSN’s Torig suite found 3 faults missed by the

consolidated suites.

One of the generated test cases (< e26, e54, e75, e26, e54 >) detected Fault #6 in

GanttProject. Figure 4.16 shows the relevant nodes in the graph and their condi-

tional probabilities. This test case was generated using a history of 2. Specifically,

the algorithm uses several highly likely pairs of events to generate the test case.
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Interestingly enough, this sequence of events exists in Torig, always followed by one

more event, but did not detect Fault #6. It seems this is due to the GUI being

placed in an unstable state by executing these five events without a sixth.

Figure 4.16: Tailored EFG Showing Generation of New Fault-Detecting Testcase

Comparatively, faults were missed by the generated test cases. An example

of one is Fault #15 in jMSN, detected by a very short test case. The EFG for this

test case is shown in Figure 4.17. The sequence of events < e5, e6 > is less likely

to occur in the input set of testcases (P (e6|e5) = 0.008), leading the algorithm to

choose higher probability transitions when generating test cases.

4.5.2 Cost

Figure 4.14 shows a surprising result in relating cost of the test suite to fault

detection. CrosswordSage’s generated suites have similar fault detection regardless

of suite size. In FreeMind, the smaller suites (TH2 and TH4) detect the same number

of faults and the larger suites (TH3 and TH5) detect approximately the same number

of faults. GanttProject’s fault detection increases (and decreases) with suite size.

jMSN’s fault detection also correlates to the size of the test suite. These results
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Figure 4.17: Tailored EFG Showing Existing Fault-Detecting Testcase

indicate that the size of the test suite does have an impact on fault detection.

4.5.3 Code Coverage

Differences in line coverage were also observed between the original suite and

the generated suites. Specifically looking at the FreeMind application, Torig covered

lines not covered by TH2 and vice versa. Figures 4.18 and 4.19 show the tailored

EFGs for both suites. Figure 4.18 shows one test case in Torig, and Figure 4.19

shows a generated test case in TH2. While the suites detected many of the same

faults and had very similar line coverage, this shows an example of a generated test

case covering different lines than the original.
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Figure 4.18: Tailored EFG for FreeMind test case in Torig

4.6 Conclusions

This chapter introduced a probabilistic model and test case generation algo-

rithm, CONTEST, based on the n-gram model. Using existing suites for four subject

applications, generated suites (TH1, TH2, . . . TH5) were generally smaller, had better

code coverage, and better fault detection than the original suite Torig. The history

parameter, used by the model to calculate probabilities of sequences of events, was

tuned for each of the four subject applications used in the studies. In comparison

to test suites reduced by method, line, and event pair coverage, the generated suites

also performed better in terms of fault detection effectiveness and cost.

Comparing any one generated test suite to the input test suites, or defining a

similarity metric for the event sequences, will provide further insight into why the

generated test suites produce better results. Examining event coverage, whether all

events in the input are exercised in the output, as well as examining event sequence

coverage of event sequences of length history, are both of interest. Chapter 5 will
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Figure 4.19: Tailored EFG for FreeMind test case in TH2

further discuss these concepts.
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Chapter 5

Introducing a Test Suite Similarity Metric

The previous chapter presented the results of a study which consolidated sev-

eral test suites into one, based on a probabilistic model of the GUI and existing

test suites. Previous research in software testing has yielded a large number of au-

tomated model-based test case generation techniques [6, 60, 39, 66, 25]. Each of

these techniques has the ability to generate test suites containing hundreds of thou-

sands of test cases, which require significant resources to run, and for regression

testing, rerun [34]. For this reason, research in test case selection and reduction has

been growing in an attempt to shrink these test suites to a manageable size, while

maintaining the “goodness” of the original suite.

Reduction techniques attempt to yield a test suite that is “similar” to the

original suite in some ways, where similarity is usually determined by using met-

rics based on code (e.g., obtained from branch, line, and method coverage reports)

executed by the original suite [46, 16, 30, 21, 48] or the set of faults detected. How-

ever, due to the nature of EDS systems and the influence of executing events in the

context of previous events, another method of determining similarity is needed.

In this chapter, a new parameterized similarity metric, CONTeSSi(n) (CONtext

Test Suite Similarity) is defined. This metric explicitly considers the context of n

preceding events in test cases to develop a new “context-aware” notion of test suite
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similarity. This metric is an extension of the cosine similarity metric used in Natural

Language Processing and Information Retrieval for comparing an item to a body of

knowledge, e.g., finding a query string in a collection of web pages or determining the

likelihood of finding a sentence in a text corpus (collection of documents) [63, 1, 64].

CONTeSSi(n) is evaluated by comparing the test suites used in Chapter 4. The

results show that CONTeSSi(n) is a better indicator of the similarity of test suites

than existing metrics.

5.1 Computing Test Suite Similarity

The CONTeSSi metric allows a tester to compare test suites while considering

the context in which events are executed. This section presents the CONTeSSi

metric, describes the computation of the metric and provides an example of the

application of the metric. The test suites used to test the Radio Button Demo GUI,

shown in Figure 2.3 will be used again as a running example. Table 5.1, shown first

in Table 1.1, is shown again here with an additional suite in the final column.
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Original Event Pair Event Line Method Branch Illustrative
Tests Coverage Coverage Coverage Coverage Coverage Tests
e1, e6 e1, e4 e1, e4 e7, e1, e6 e1, e3, e5, e6 e1, e4 e1

e2, e6 e1, e3, e5, e6 e7, e2, e3, e5, e6 e7, e2, e6 e7, e2, e3 e7, e1, e6 e2

e7, e1 e7, e2, e3, e5, e6 e2, e3, e5, e6 e7, e2, e6 e3

e1, e4 e3, e5, e4, e3, e6 e3, e5, e4, e3, e6 e2, e3, e5, e6 e4

e2, e3, e5 e2, e4, e7, e2, e6 e7, e2, e3, e5, e6 e5

e7, e1, e6 e7, e1, e6 e6

e7, e2, e6 e7

e2, e4 e7, e2, e6

e7, e2, e3

e1, e3, e5, e6

e2, e3, e5, e6

e3, e5, e4, e3, e6

e7, e2, e3, e5, e6

Table 5.1: Example test suites yielded from several reduction techniques
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Suite e1 e2 e3 e4 e5 e6 e7

Original 5 8 7 3 5 9 6
Evnt Pair 3 3 4 3 3 5 3
Evnt Cov 1 1 1 1 1 1 1
Line Cov 1 3 4 1 3 5 3
Meth Cov 1 1 2 0 1 1 1
Brnch Cov 2 2 1 1 1 3 2
Illus. Suite 1 1 1 1 1 1 1

(a) Frequency of individual events

Suite e1, e3 e1, e4 e1, e6 e2, e3 e2, e4 e2, e6 e3, e5 e3, e6 e4, e3 e4, e7 e5, e4 e5, e6 e7, e1 e7, e2

Original 1 1 2 4 1 3 5 1 1 1 1 3 2 4
Evnt Pair 1 1 1 1 1 1 3 1 1 1 1 2 1 2
Evnt Cov 0 1 0 1 0 0 1 0 0 0 0 1 0 1
Line Cov 0 0 1 2 0 1 3 1 1 0 1 2 1 2
Meth Cov 1 0 0 1 0 0 1 0 0 0 0 1 0 1
Brnch Cov 0 1 1 1 0 1 1 0 0 0 0 1 1 1
Illus. Suite 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(b) Frequency of all event pairs

Suite e1, e3, e5 e2, e3, e5 e2, e4, e7 e3, e5, e6 e3, e5, e4 e4, e3, e6 e4, e7, e2 e5, e4, e3 e7, e1, e6 e7, e2, e3 e7, e2, e6

Original 1 3 1 3 1 1 1 1 1 2 2
Evnt Pair 1 1 1 2 1 1 1 1 1 1 1
Evnt Cov 0 1 0 1 0 0 0 0 0 1 0
Line Cov 0 2 0 2 1 1 0 1 1 1 1
Meth Cov 1 0 0 1 0 0 0 0 0 1 0
Brnch Cov 0 1 0 1 0 0 0 0 1 0 1
Illus. Suite 0 0 0 0 0 0 0 0 0 0 0

(c) Frequency of all event triples

Table 5.2: Frequency of n events in original and reduced test suites for Radio Button GUI example
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By way of reminder, the suites in Table 5.1 are explained. Column 1 of Ta-

ble 5.1 shows a test suite generated from the EFG model of the GUI. The test suites

in the remaining columns were obtained using reduction techniques, and hence, are

“similar” to the original suite. The popular HGS algorithm [16] was used to reduce

the suite. Column 2 shows a suite reduced based on event pair coverage, which

retains test cases that cover all unique pairs of events. The suite in Column 3

is reduced based on event coverage, which retains test cases that cover all unique

events. The suites in columns 4-6 were reduced based on line, method, and branch

coverage, respectively. Note that event-pair coverage is the only reduction method

that considers the context of a preceding event; however, it considers only a single

contextual event. Column 7 shows a suite consisting of test cases in which each test

case executes one unique event. This suite will be used to illustrate the metric.

Although these suites are similar to the original suite in terms of their respec-

tive reduction/similarity criteria, they are quite different when considering context.

For example, the subsequence < e7, e2 > appears four times in the original suite;

< e2, e3 > appears four times; < e1, e6 > appears twice; each of these event sub-

sequences appear in multiple contexts. Reduction does not consider preserving the

importance of these frequencies and/or contexts.

Next, consider some notions of the similarity of two given suites. Similarity can

be measured based on the occurrence of events in both suites. If both suites contain

exactly the same events, they could be considered to be very similar. However, that

would also imply that a suite with 10 test cases of 5 events each, for a total of 50

distinct events, would be the same as a test suite with 1 test case with 50 of the same
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events. A better method of measuring similarity, however, would be to consider the

frequency of events in the test suite. For example, counting the occurrence of e3 in

each test suite and using this count to compare the suites will apply a weight to the

event and provides more information on the suite. A vector is used to represent the

count of each event in the suite, with each position in the vector representing the

count of a single event. For the seven events e1 to e7 in the running example, this

vector is produced: < 5, 8, 7, 3, 5, 9, 6 >, also shown in tabular form for all suites in

Table 5.2(a). This is the basis of CONTeSSi.

Because EDS systems are highly reliant on the context in which events are

executed, CONTeSSi should return a value representing higher similarity when

the same events occur in the same frequency and the same context between two

test suites. As a starting point, consider the context for a single preceding event; a

vector can be created based on the frequencies of event pairs observed in the test

suite, rather than on a single event. In considering this context, the event pair

coverage suite in Table 5.1 is expected to be more similar to the original suite than

the event coverage suite, since the event pair coverage suite is created based on the

existence of event pairs. Table 5.2(b) shows the count of each event pair for each

suite. This is the basis of CONTeSSi(n), for n = 1, since we are looking at events

in the context of one other (previous) event.

Now, extending this example to compute CONTeSSi(2), the frequencies

shown in Table 5.2(c) are obtained. In general, as n increases, the frequencies

for the event sequences decrease, as they appear less frequently in the test suites.

Intuitively, comparing test suites on longer sequences will make it harder for the
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test suites to be similar. Therefore, if two test suites have a high similarity score

with a larger n, they are even more similar than two suites being compared with a

small n. By treating each row in Table 5.2(a), (b), or (c) as a vector, CONTeSSi

is computed as follows:

CONTeSSi(A, B) =
(A · B)

(|A| × |B|)
(5.1)

where A and B are the vectors corresponding to the two test suites, A ·B is the dot

product of the two vectors, i.e.,
∑j

i=1(Ai×Bi) where j is the number of terms in the

vector; and |A| =
√

∑j
i=1(Ai)2. The value of CONTeSSi lies between 0 and 1, where

a value closer to 1 indicates more similarity. Hence, CONTeSSi(n) is computed as

shown in Equation 5.1, creating a vector for each suite, representing the frequencies

of all possible groups of n+1 events. The inclusion of n previous events will increase

the number of terms in the vector, thereby increasing j. The values in Table 5.3

show the values of CONTeSSi(n) for all the test suites, for n = 0, 1, 2, 3. From

these values, observe that if context is ignored, i.e., use n = 0, most of the reduced

suites are quite similar to the original, as indicated by the high (> 0.9) value of

CONTeSSi(0). However, the similarity between the test suites decreases as more

context (larger values of n) is considered for the events. The event- and method-

coverage suites show relatively lower values of CONTeSSi(3) because they retain

very little context with only two test cases. The event-pair reduced suites have

the highest value of CONTeSSi(3), followed by line and branch coverage reduced

suites. Finally, the illustrative suite is very similar to the original when context is
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not considered (CONTeSSi(0) = 0.956). With the addition of context, however,

the CONTeSSi value is 0 due to the single event test cases. Even in this simple

example, the value of the similarity metric can be seen.

Suite

Evnt Evnt Line Meth Brnch Illus.
n Pair Cov Cov Cov Cov Suite
0 0.977 0.956 0.970 0.921 0.960 0.956
1 0.969 0.869 0.967 0.859 0.946 0
2 0.963 0.813 0.960 0.794 0.931 0
3 0.959 0.774 0.952 0.754 0.923 0

Table 5.3: CONTeSSi(n) value for Suite compared to Original for all Radio Button
GUI example suites

In order to improve the context information of events that appear at the

beginning and end of test cases, two special sets of “events” called INITn and

FINALn are included. Without loss of generality, these events are added to all

test cases. When computing CONTeSSi(n), n INIT events are prepended and n

FINAL events are appended to each test case1. For example, in looking at event

triples (n = 2), two INIT and two FINAL events are added to the sequences. In

computing CONTeSSi(2), a vector of the following format is used:

< INIT0, INIT1, e2, e3, e5, F INAL0, F INAL1 >

to glean that e2 is at the start of < e2, e3, e5 >, by obtaining the triple < INIT0, INIT1, e2 >

and that e5 is at the end of the sequence by obtaining < e5, F INAL0, F INAL1 >.

These events are not shown in Table 5.2.

1Notice the sets of INIT and FINAL events are added to ensure CONTeSSi can look back n

events. The INIT and FINAL nodes added to the EFG, as described in Section 4.1, are necessary
to allow Markov reasoning on the EFG.
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5.2 Empirical Study

To evaluate the quality of CONTeSSi(n), an empirical study was conducted

comparing nine test suites on the basis of exisiting similarity metrics, such as line

coverage, method coverage, and event pair coverage. CONTeSSi(n) was also used

to compare the same suites.

The goal of this study is to evaluate a metric that measures the similarity

of two test suites and to determine the quality of this metric. Restating this goal

using the Goal Question Metric (GQM) Paradigm [2], the goal for this research is

as follows:

Analyze the test suites
for the purpose of comparison
with respect to other test suites
from the point of view of the tester/researcher
in the context of event driven systems.

From this goal, the following research questions are addressed:

RQ5.1 Is CONTeSSi(n) a better indicator of similarity for larger values of n?

RQ5.2 Does CONTeSSi(n) agree with existing metrics in determining the simi-

larity between suites, specifically relating to fault detection effectiveness?

Each of these research questions will evaluate the similarity metric by com-

paring existing test suites on coverage criteria and the CONTeSSi(n) metric. In

most research and in practice, test suites are evaluated based on code coverage,

fault detection, or both; the results of this study provide an objective method of

comparing test suites without the need to run them.

110



The first question is focused on comparing the results of CONTeSSi(n) to

the coverage of the suite, and further examining the relationship between the metric

and fault detection. The second question recognizes the importance of event context

in EDS test cases. By varying the amount of event context used in computing the

metric, a finer grained measure of the similarity between test suites is garnered.

In setting up this study, several subject applications were chosen, test suites

were developed and run, and the suites were compared based on several metrics.

Each of these actions are described in the following sections.

5.2.1 Subject Applications, Tools, and Test Suites

The subject applications and tools for this study are the same as those de-

scribed in the previous chapter (Sections 4.3.1 and 4.3.2). This empirical study

used the same test suites as the CONTEST study (Section 4.3) as a basis for deter-

mining the usefulness of the test suite similarity metric. As a reminder, the suites

consisted of: one model-generated suite (Torig), five CONTEST-generated suites

(TH1, TH2, ..TH5), and three reduced suites (Tline, Tmethod, Tpair).

5.2.2 Procedure

Figure 5.1 gives a graphical representation of the steps described here. First,

test suites based on the EFG were created using the parameterized test case gener-

ator. Next, the test suites were executed using GUITAR’s JavaGUIReplayer. After

running the test suites, fault detection and code coverage was collected for each test
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Figure 5.1: Comparing test suites using the CONTeSSi metric

case, matrices were built, and this information was used to compare the suites. The

test oracle used for this work detects crashes in these applications, where a crash is

defined as an uncaught exception thrown during test case execution.

The generated test cases were also used as input to CONTEST, as in Chap-

ter 4. Five test suites were obtained for each application, with history values of 1

through 5. These suites are shown in Figure 5.1 as T Hn where n is the value of

history used.

From the coverage matrices, reduced suites were obtained based on event pair,

method and line coverage. The code coverage and fault detection of these reduced

suites was computed from the per-test-case coverage files generated during the exe-

cution of the original suite.

Finally, a file was created for each test suite where each line of the file rep-
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resented one test case and contained the sequence of events in a test case. Using

these files as input, CONTeSSi(n) was computed, using values for n from 0 to 5,

to compare the original suite to each reduced suite.

5.2.3 Comparing Test Suites

Using Equation 5.1, the CONTeSSi metric is computed. To use this met-

ric, it is also necessary to have a method of comparing suites with other metrics.

The following function can be used to compare two suites given any of the metrics

discussed here.

f(Torig, T, m) =
N(em(Torig)

⋂

em(T ))

N(em(Torig))
(5.2)

where T is the suite being compared to the original suite, m is one of the metrics

on which suites are compared, such as line coverage, branch coverage or event pair

coverage, em(suite) is a function returning the set of elements for metric m covered

by suite, and N is a function returning the number in the set given. The result of

this function is a number between 0 and 1 which represents the ratio of the number of

metric elements covered by both T and Torig to the total number of metric elements

covered by Torig. Coverage and fault detection numbers are shown for each suite;

the suites are then compared based on these metrics.
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5.2.4 Threats to Validity

There are a few threats to validity which should be considered when inter-

preting the results of this study. First, due to a desire to use the existing GUITAR

infrastructure, and to compare the results to those posted by previous graduate

student researchers, subject applications developed in Java were used. Therefore,

this study presents no information on how the results would translate to other de-

velopment languages. Second, this research is concerned only with EDS systems;

this method may not be appropriate for test suites in other domains.

Third, although each application is different, they do not reflect all possible

classes of EDS. Fourth, the majority of the application code is written for the GUI,

meaning the results may not be consistent for applications with a simple GUI and

complex underlying business logic.

Fifth, a potential problem for this study is that it may not produce conclusive

results on which value of n used for the context of CONTeSSi(n) is most effective;

however, it does give an indication of the impact of context and a trend of the results

as the value of n is varied.

5.3 Results

This section presents the value returned by CONTeSSi(n) for the test suites

used in this study. The traditional metrics are shown for each suite as a bench-

mark for comparison. Ultimately, the value of CONTeSSi(n) is compared to the

traditional metrics using the function described in Section 5.2.3.
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5.3.1 CONTeSSi with Increasing Values of n

RQ5.1: Is CONTeSSi(n) a better indicator of similarity for larger values of n?

Metrics: CONTeSSi(n) value for n = 0..5

Computing CONTeSSi(n) without context (for n = 0), the data in Table 5.4

shows that at least one of the CONTEST suites is the most similar to the original

suite, Torig. For CrosswordSage, CONTEST’s TH3, TH4 and TH5 are almost identical

to each other and the most similar to Torig; TH1 and TH2 are less similar to Torig.

For FreeMind, TH3 and TH4 are the most similar to Torig, closely followed by TH5.

For GanttProject, TH3 and TH4 are the most similar to Torig, followed by TH2. TH1

is less similar and TH5 is very dissimilar. For jMSN, TH2 and TH3 are the same and

very similar to Torig, closely followed by TH4. TH5 is less similar and TH1 is the most

dissimilar.

The reduced suites also have interesting results. In three of the four applica-

tions, the Tpair suites are more similar than the other reduced suites. For the fourth

application, FreeMind, the Tmethod suite is the most similar reduced suite, followed

by Tpair and Tline.

As the value of n increases, CONTeSSi(n) decreases in most cases, indicating

a decrease in the similarity between the two suites as more context is considered,

as expected from the example in Table 5.3. While there are some values of n,

that cause the CONTeSSi(n) value to increase, the difference is so slight that it is

unclear whether or not this result is significant.
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Suite

Application n TH1 TH2 TH3 TH4 TH5 Tmethod Tpair Tline

CrosswordSage

0 0.979 0.976 1.000 1.000 0.999 0.788 0.974 0.760
1 0.965 0.960 0.996 0.996 0.996 0.682 0.958 0.676
2 0.958 0.951 0.991 0.990 0.990 0.597 0.952 0.614
3 0.951 0.944 0.984 0.984 0.983 0.539 0.946 0.579
4 0.944 0.937 0.977 0.977 0.977 0.496 0.942 0.552
5 0.937 0.931 0.970 0.970 0.970 0.464 0.938 0.528

FreeMind

0 0.991 0.904 1.000 0.999 0.996 0.105 0.087 0.064
1 0.986 0.911 0.997 0.997 0.994 0.088 0.079 0.051
2 0.981 0.906 0.992 0.992 0.989 0.089 0.084 0.051
3 0.975 0.901 0.986 0.986 0.983 0.091 0.089 0.162
4 0.969 0.895 0.980 0.980 0.977 0.093 0.093 0.055
5 0.963 0.890 0.975 0.974 0.971 0.095 0.098 0.057

GanttProject

0 0.888 0.923 1.000 0.999 0.539 0.200 0.947 0.358
1 0.875 0.897 0.996 0.995 0.611 0.237 0.934 0.423
2 0.871 0.892 0.991 0.991 0.610 0.229 0.933 0.414
3 0.866 0.888 0.987 0.986 0.607 0.224 0.931 0.410
4 0.862 0.884 0.982 0.981 0.604 0.220 0.930 0.408
5 0.858 0.879 0.977 0.977 0.601 0.216 0.929 0.406

jMSN

0 0.753 0.997 0.997 0.956 0.888 0.233 0.612 0.491
1 0.730 0.968 0.968 0.931 0.864 0.172 0.603 0.389
2 0.704 0.935 0.935 0.899 0.830 0.146 0.615 0.355
3 0.681 0.904 0.904 0.870 0.803 0.131 0.626 0.331
4 0.661 0.877 0.877 0.843 0.778 0.121 0.635 0.312
5 0.642 0.852 0.852 0.819 0.756 0.114 0.643 0.298

Table 5.4: CONTeSSi(n) for Torig, Suite

5.3.2 CONTeSSi vs. Traditional Metrics

RQ5.2: Does CONTeSSi(n) agree with existing metrics in determining the simi-

larity between suites, specifically relating to fault detection effectiveness?

Metrics: Line coverage, Method coverage, Pair coverage

To determine if the CONTeSSi metric returns a value consistent with the

“goodness” of a suite, the computation of CONTeSSi(n) shown in Table 5.4 and the

traditional metrics shown in Table 5.5, combined with the fault detection reported

in Figure 4.12 are used to determine the most effective method of detecting test
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suite similarity.

Coverage Value
Application Suite Class Method Block

CrosswordSage

Torig 41 20 25
TH1 47 20 20
TH2 41 20 20
TH3 41 20 20
TH4 41 20 20
TH5 82 47 55
Tmethod 35 15 23
Tpair 41 20 25
Tline 35 20 25

FreeMind

Torig 55 32 26
TH1 49 26 21
TH2 51 28 23
TH3 55 33 26
TH4 53 30 24
TH5 55 32 26
Tmethod 51 29 24
Tpair 55 32 26
Tline 49 26 23

GanttProject

Torig 66 51 46
TH1 58 44 46
TH2 58 43 45
TH3 58 44 46
TH4 58 44 46
TH5 58 43 45
Tmethod 58 44 45
Tpair 58 44 46
Tline 66 50 45

jMSN

Torig 35 24 27
TH1 35 23 27
TH2 35 24 27
TH3 35 24 27
TH4 35 24 27
TH5 34 21 26
Tmethod 28 16 20
Tpair 35 24 27
Tline 35 24 27

Table 5.5: Code Coverage Information

Extending the trends and relationships of Table 5.4 to the faults detected in

each suite (Figure 4.12), it can be seen that the values returned by CONTeSSi(n)

are consistent with the faults detected by the suites. That is, for every application,

the CONTEST suites which returned faults most similar to the original suite also

received the highest CONTeSSi scores. A similar result was found for the reduced

suites. That is, for every application, Tpair detected almost the same faults as the

original suite, while Tmethod and Tline detected fewer.

Traditional code coverage metrics are shown in Table 5.5. For all four appli-
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cations, the class, method, and block coverage of the reduced suites are very similar

to the original suite. Using this metric as a gauge for test suite similarity would

lead a tester to believe the suites are very similar; however, the fault detection of

each suite indicates otherwise. This finding supports the intuition described earlier

that traditional metrics are not a good measure of similarity between test suites.

Suite
Application Metric TH1 TH2 TH3 TH4 TH5 Tmethod Tpair Tline

CrosswordSage
method 1 1 1 1 1 1 1 1
pair 0.088 0.967 0.967 0.921 0.921 0.016 1 0.022
line 0.969 1 1 0.992 0.992 0.477 0.496 1

FreeMind
method 0.169 0.714 0.810 0.762 0.857 1 0.749 0.479
pair 0.010 0.784 0.784 0.582 0.357 0.006 1 0.006
line 0.494 0.850 0.939 0.890 1 0.974 0.759 1

GanttProject
method 0.861 0.997 0.997 0.884 0.821 1 0.999 0.968
pair 0.022 1 1 1 0.110 0.003 1 0.003
line 0.836 0.980 0.980 0.902 0.809 0.970 0.978 1

jMSN
method 0.971 0.993 0.993 0.993 0.893 1 1 0.200
pair 0.011 0.803 0.711 0.711 0.016 0.347 1 0.008
line 0.977 0.999 0.998 0.998 0.969 0.989 1 1

Table 5.6: Computing f(Torig, T, metric)

Table 5.6 shows the computation of Equation 5.2 for each metric, for each ap-

plication. Each combination of metric and test suite are considered i.e., the number

of methods covered by each of the test suites are counted for each application. For

almost every metric, the CONTEST suite covers the most elements of the metric.

The best CONTEST suite differs with each application; the results are consistent

with the suite with the best fault detection effectiveness. For CrosswordSage, all of

the suites yield a value of 1 for method coverage. TH2 and TH3 have the best pair

and line coverage. For FreeMind, TH5 yields the best method coverage. TH2 and

TH3 have the best pair coverage. TH5 yields a value of 1 for line coverage, followed

by TH3. For GanttProject, TH2 and TH3 are tied for the best method coverage;
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closely behind Tpair. TH2, TH3, and TH4 are tied for the best pair coverage. TH2

and TH3 also have the best values for line coverage. For jMSN, TH2, TH3, and TH4

show the best method coverage, slightly behind Tpair. TH2 has the best values for

pair and line coverage. Fault detection effectiveness of each suite further confirms

this ranking of the suites.

5.4 Discussion

The similarity (or rather dissimilarity) between FreeMind’s original suite and

reduced suites does not follow the pattern of the other applications. This can be

partially explained by the redundancy within test cases in the original suite, com-

bined with the fact that the computation of CONTeSSi(n) counts events (or event

sequences). Because much of the redundancy is removed when the suites are re-

duced, the number of test cases as well as the counts of events (or event sequences)

used in computing CONTeSSi are much smaller. Additionally, these reduced suites

did not find many faults; Tpair, however, had better fault detection than the others.

By comparing the test suites on existing metrics, which were also used to create

the suites (Table 5.6), some insight into the value of these reduction techniques is

gained. For all four applications, the similarity of the CONTEST suites to Torig,

measured in the ratio of elements covered, code coverage, and fault detection, also

strengthens the claim that context is valuable in EDS test cases. This comparison

also serves to reinforce the results provided by CONTeSSi on the similarity and

“goodness” of each suite.
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CONTeSSi(n) was designed with context in mind due to the importance of

context in test cases for EDS. It is interesting to note the trend of the CONTeSSi(n)

value. In some suites for some of the applications, the value of CONTeSSi(n + 1)

increases over CONTeSSi(n) rather than decreasing as is the general overall trend.

For example, the CONTeSSi(1) value for GanttProject’s Tline suite is larger than

that of CONTeSSi(0). The remaining CONTeSSi values decrease, however, as n

increases. Conversely, FreeMind and jMSN’s Tpair values of CONTeSSi for n > 1

increase as context is increased. It is possible this is due to the length of the test

cases; as n gets closer to the length of the test case, the similarity between the suites

increases.

5.5 Conclusions

Although there are several existing techniques (e.g., reduction and minimiza-

tion) used to obtain test suites that are “similar” to an original suite, existing

techniques are not well suited to EDS. This chapter presented a new parameterized

metric called CONTeSSi(n), which uses the context of n preceding events in test

cases to quantify test suite similarity for EDS. CONTeSSi(n) is appropriate for

EDS because it considers the contextual relationships between events, proven to be

important in testing EDS. This metric was defined for and evaluated on eight test

suites for four open source applications. These results showed that CONTeSSi(n)

is a better indicator of the similarity of EDS test suites than existing metrics.
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Chapter 6

Conclusions and Future Research Directions

This chapter will describe conclusions of the studies performed as part of this

research, followed by some possible future research directions opened up by this

work.

6.1 Conclusions

The research presented in this document focused on proving the following

thesis statement: A method of combining and consolidating sequence-based

test suites preserves the context observed in the existing test suites and

maintains their fault detection effectiveness.

Chapter 3 presented a study of the effectiveness of crash testing for industrial

systems with a GUI front-end. One of the most interesting findings in this study

is the high percentage of defects found through the GUI that are actually defects

in the underlying business logic of the system. While this has been shown in open

source systems in past research [6, 39, 61, 66], it is interesting that this finding holds

in testing industry systems as well. It is another indication that it is important to

perform GUI testing, both to test the system through the GUI and to test the GUI

itself.

The results of this study further show the correlation between the test suite
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design and the defects detected by crashes. The study also reinforced the idea

that the underlying code is often tested through the GUI due to the window it

provides into the system behavior. However, the results of this study also show that

more visibility is needed so that more of the defects currently detected only by user

observation can be detected before the system is released to the field.

The CONTEST algorithm presented in Chapter 4, based on a probabilistic

model representation of the GUI used to generate test cases, provides a method

of consolidating existing test suites. Populating the model with existing sets of

sequences, in the form of usage profiles and test cases generated with the param-

eterized test case generation algorithm allowed the demonstration of the model’s

usefulness in generating new test cases based on the probability of event sequences

gleaned from the input set of event sequences.

The CONTEST study relied on crashes to find defects in the applications,

encouraged by the results given in Chapter 3. Again, the results of the study show

crash testing is useful in finding defects. Specifically, crashes for this study are in

the form of uncaught exceptions. There are other kinds of crashes that can occur in

a running application, and further study may be warranted.

CONTeSSi(n), the test suite similarity metric presented in Chapter 5, pro-

vides a method of comparing existing test suites for EDS. This is the first metric

which considers the context of event execution as part of its computation. Borrowing

the cosine similarity metric from the IR and NLP fields, it was tailored to be ap-

propriate for EDS test suites. This metric provides a better indication of similarity

of these suites than existing, usually code-based, metrics.
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Each of the studies presented in Chapters 4 and 5 can benefit from expanding

to more subject applications, and specifically, to industrial subject applications.

Further, expanding to other types of EDS systems, such as web applications, will also

increase the confidence in the results presented here. Combining the model-based

test case consolidation presented in Chapter 4 with the CONTeSSi(n) metric, the

CONTEST test case generation algorithm can be reworked to consider the output

of CONTeSSi as input to the stopping criteria.

6.2 Future Research

The study presented in Chapter 3 is an initial characterization of GUI systems,

and several steps succeed it. This first study looked at three systems driven by sys-

tem events. In future work, another class of systems could be studied, such as those

driven by user interactions. After further characterizing GUI systems based on the

same criteria presented here, it may then be possible to develop a methodology for

generating test strategies based on the characterization. Additionally, the findings

presented here can be applied to the software development process for other software

development groups to determine the impact of GUI system characterization on the

effectiveness of testing for future releases.

The CONTEST study presented in Chapter 4 also offers opportunities for

future work. The model-based approach can be extended to perform simulated

regression testing, using two or more fielded versions of an open source application.

Using existing event sequences from one version and using them to populate a model
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of a subsequent version will require some extensions to the model in order to map

from one EFG to the other, and is a planned extension of this research. By using

applications which are already fielded, it is possible to get immediate feedback,

without waiting for an application to be developed.

Additionally, there are several possible modifications to the test case genera-

tion algorithm that will be explored. Currently, the algorithm generates test cases

based on event sequences that contain at least one highly probable n-tuple of events,

but the probability of the whole event sequence, and therefore the test case, may be

very low. For example, if P (e2|e1) = 0.999, the algorithm will construct a test case

that contains the sequence < e1, e2 >, even if e1 is only exercised in 0.001% of the

input sequences. In the future, techniques which consider the probability of a whole

sequence of events, rather than just the n-gram, will be used in generating a test

case. By allowing the user to specify a threshold probability, the case of sequences

with a very low probability being chosen for test case generation will be avoided.

Another variation of the algorithm is to traverse the least likely paths in the model

to reveal rarely-encountered faults that may otherwise be difficult to detect. Adding

the ability to provide constraints such as “Execute an Open or New before a Save”

as input to the model will also be examined in future versions of the algorithm.

The results shown in Chapter 5 have also created several opportunities for

future work. In the short term, the study can be extended to include additional

subjects to reduce threats to external validity. In the medium term, CONTeSSi(n)

can be used to develop a new reduction technique for GUI test suites. The ex-

pectation is that the reduced suite will be better at retaining the fault detection
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effectiveness of the original suite. The relationship between the test case length and

the value of n used in CONTeSSi(n) can be further investigated to draw conclusions

regarding the behavior witnessed in two of the subject applications.
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