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The ubiquitous presence of cameras and camera networks needs the develop-

ment of robust visual analytics algorithms. As the building block of many video

surveillance tasks, a robust visual tracking algorithm plays an important role in

achieving the goal of automatic and robust surveillance. In order to maintain a

persistent tracking of objects, it is critical to know when and where the track-

ing algorithm fails so that remedial measures can be taken to resume tracking.

However, most present evaluation methods are ogg-line and based on manually

labeled ground truth data. Online evaluation methods in the absence of ground

truth are of urgent need. We propose a novel performance evaluation strategy for

tracking systems based on particle filter using a time-reversed Markov chain. The

posterior density of the time-reversed chain is computed and the distance between

the prior density used to initialize the tracking algorithm and the time-reversed

posterior density function forms the decision statistic for evaluation. This back-

ward tracking-based performance evaluation strategy is also general enough to be

applied to many other tracking algorithms.

In this dissertation, we also present a new bidirectional tracking strategy to



achieve better performance. Instead of looking only forward in the time domain,

we incorporate both forward and backward processing of video frames using a

time-reversibility constraint. This leads to a new minimization criterion that

combines the forward and backward similarity functions and the distances of the

state vectors between the forward and backward states of the tracker. The bidi-

rectional track strategy significantly improves tracking robustness and accuracy.

We illustrate the improvements due to the proposed approach for the popular

KLT tracker and a search-based tracker.

Some objects of interest in surveillance applications like faces have relatively

stable structures, which allows us to build parameterized shape models to local-

ize the objects more precisely. There are some widely used algorithms for model

alignment; however, most of them suffer from the problem of converging to lo-

cal extrema when used in practice. In this dissertation, we present a machine

learning method to learn a scoring function without local extrema to guide the

gradient descent/accent algorithm and find the optimal parameters of the shape

model. The method is called Boosted Ranking Model (BRM). By arranging the

training samples in some special structure, we feed them pairwise into the rank

training algorithm and learn a strong ranking function from a pool of weak fea-

tures. Theoretically, this method can learn a function with arbitrarily few local

extrema as long as the training samples are dense and the representation ability

of the features are good enough. The extensive experimental results show that

our proposed algorithm, BRM, outperforms existing algorithms.
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Chapter 1

Introduction

Computer vision, as a scientific discipline, has been actively studied since the

late 1970s when computers could process large amount of data, such as images or

videos. In general, the ultimate goal of computer vision is to design and imple-

ment artificial vision system that can process images like human visual systems.

At its current stage, computer vision still remains as a collection of diverse studies

motivated by various applications. In this sense, it lacks a universal formulation

and existing methods are often very task specific and seldom can be generalized

to a wide range of applications. Although humans can perceive the information

contained in the 3D world and 2D images without much effort, it is nontrivial for

computers to achieve the same level of performance. Researchers have already

presented many intelligent algorithms to solve a diverse set of problems in com-

puter vision, however, most of them experience difficulties when used in the real

world, limiting their usefulness. Therefore, it is critical to make computer vision

algorithms perform robustly in real environments.

In this dissertation, we investigated three vision tasks: visual tracking, perfor-

mance evaluation for visual tracking algorithms and the model alignment problem,

especially for face alignment. In the following, we provide a brief summary of these

1



Chapter 1. Introduction

problems and present motivations for the work reported in this dissertation.

1.1 Visual Tracking

In recent times, the need for visual surveillance and automated processing of

surveillance information has become important. Further, systems employing a

large number of cameras are becoming increasingly common; for example, an

average casino has between 2000 and 3000 surveillance cameras capturing data

all the time; in Britain, there are about 4.2 million CCTV cameras. Usually only

a small team of security personnel are available to monitor the cameras in video

surveillance systems. This poses immense challenges to the personnel in paying

attention to every camera and react quickly to all the emergencies. To overcome

the disadvantages of human-monitored surveillance, computer vision technologies

have been applied to enable computers to process data and initiate appropriate

actions.

The main purpose of visual tracking is to consistently and automatically locate

objects or other features of interest in video or image sequences. Visual tracking

is one of the core technologies used in automatic video surveillance. It estimates

the motion of objects for further analysis, such as camera positioning control, ac-

tivity analysis, abnormality detection, object identification and recognition. The

importance of robust and accurate tracking can not be overstated in surveillance

applications.
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1.1.1 Challenges

Currently there are lots of tracking algorithms and systems developed by re-

searchers; however, in translating the laboratory solutions into commercial sys-

tems, most of the algorithms encounter unexpected failure modes in practice and

performance is far below the expectation. There are many factors that could make

tracking algorithms fail in practice. While it is difficult to list all of these factors,

we present some of the most common challenges one faces while designing robust

trackers:

• Ambiguous Appearance information. Because the image formation is a map-

ping from 3D to 2D, we can only see the projection of part of the object at a

given time. Therefore, for a moving 3D object, its appearance in image depends

on its pose and position with respect to the camera. Variations in appearance as

the object moves contributes to track failures. Mostly, all the available informa-

tion about appearance comes from the initialization step of the system, either

manually extracted or from some detection algorithms. This initialization con-

tains the appearance information only about part of the object. Other factors

causing appearance variation include shadows, lighting variations, clothing, etc.

These degradations are usually unexpected and hard to be incorporated into

the object models in the system.

• The object dynamics is nonlinear and complex in practical systems. As it is

hard to specify an accurate model for general object motion, approximations

in the specification of model could introduce unwanted uncertainties in the
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system. The accumulated uncertainties could eventually make the tracker drift

away. Therefore, the visual tracking problem can be viewed as an ill-posed

inverse perception problem.

• Occlusions may happen often in the visual system, where the distant surfaces

are obscured by closer ones. This is a common challenge for a tracking system

and also a major reason that causes the loss of track.

• Due to the projection from 3D world to 2D image plane, the depth information

of the objects and the background has been lost during the imaging process.

Hence, the background objects and clutter are very “close” to the objects of

interest on image plane, which can easily cause distractions to the trackers.

• Image measurements are corrupted by noise and blur. In a static optical visual

system with high quality cameras, this problem may not be a big issue, but in

other applications involving infrared cameras or airborne cameras, this would

be a very important problem. To increase the noise variance in the model could

make the tracking algorithm easily diverge.

1.1.2 Online Performance Evaluation for Visual Tracking Algorithms

Although many sophisticated algorithms exist for tracking, each of them has fail-

ure modes or scenarios when the performance will be poor. Typically, this will

happen when the data (the frames of the video) does not obey the modeling as-

sumptions. Most algorithms fail to track a target (or targets) through crowded

environments, in urban clutter or when changes in illumination and self-occlusion

4



1.1 Visual Tracking

are present. This often leads to a loss of track and affects the performance of sub-

sequent stages of processing. Instead of designing advanced algorithms to avoid

all possible failure modes, which is almost impossible in practice, we handle this

problem by detecting the tracking failures first and then re-initializing the system

to continue the tracking. In this context, performance evaluation plays an im-

portant role in practical visual tracking systems. However, existing performance

evaluation algorithms concentrate on off-line statistical comparisons with manu-

ally created ground truth data. While comparison with ground truth can inform

which tracking algorithm has better overall performance on a specific sequence, it

does not extend gracefully for testing on new sequences without additional ground

truth. In the absence of ground truth, off-line performance evaluation can not help

to detect the loss of track and/or improve the robustness of tracking systems.

To monitor how well a tracker is working, online evaluation of performance is

desired. Here, online means that the evaluation is automatic, without use of any

ground truth, and that it is also an online and causal evaluation method. Hence,

we can re-initialize the tracker procedure right after the failure is detected. In

this way, even a poorly designed tracking algorithm can handle complex scenarios

and achieve reasonably good overall tracking performance. However, this is a very

challenging task and has received limited attention.

We propose an online performance evaluation method by constructing a time-

reversed Markov chain and continue the reverse tracking to the starting point

where the tracker was initialized [99]. Estimates obtained after reversed tracking
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are then compared to the initial and forward tracking estimates to infer the track-

ing performance at the current time. The proposed evaluation algorithm is more

flexible and can be applied to almost all existing tracking algorithms. By inte-

grating this online performance evaluation strategy with the tracking algorithms,

we can maintain a persistent tracking of objects over a long time period.

1.1.3 Tracking Algorithms using the Time-Reversibility Constraint

The robustness and accuracy of tracking algorithms are very important. In some

applications, even small error in tracking can lead to bad results. For example, in

structure from motion algorithms, the performance of the structure reconstruction

is directly dependent on the accuracy of feature points detected by some feature

tracking algorithms, since the reconstruction is an ill-posed problem and very

sensitive to errors in establishing the point correspondences.

Since all the targets/feature points to be tracked are macroscopic solid ob-

jects in the physical world and the physical laws of classical mechanics are time-

symmetric, the motion of the objects should be time-reversible, which means that

the time-reversed process satisfies the same dynamical equations as well as the

original process. From the information perspective, if the tracker can not go

back to the previous state, it often implies there is information leak during the

tracking procedure; on the contrary, a perfect tracker like human eyes can always

be expected to give the correct status of objects no matter if it uses forward or

backward tracking.

However, most of the existing tracking algorithms only look forward in the
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time domain instead of looking bidirectionally during tracking. Instead of just

looking forward in the time domain, we simultaneously perform both forward

and backward tracking using the time-reversibility constraint. The bidirectional

tracker reduces the possibility of the tracker getting stuck in local minima and

significantly improves the tracking robustness and accuracy.

1.2 Model Alignment

In some situations, people are more interested in detailed component positions

of the object in the image other than an overall rough location. This detailed

information about the object makes it easier for many high-level analysis tasks,

like face recognition, expression recognition, activity recognition, etc. To localize

the detailed component of a general object is very hard, but if the interested

object has a relatively stable shape, we can learn a parameterized shape model to

represent various shapes belonging to the same category. Model alignment is to

deform this parametrized shape model to best fit the image instance.

Face alignment/fitting is one of the most studied model alignment problems

in computer vision, where a face model needs to be deformed to match the image

of a face, so that the natural facial features are aligned with the model. The

dramatic variations of facial appearance due to shape, pose, illumination, expres-

sion, occlusions, and image resolution make this a challenging problem. Due to

its importance in a wide range of applications, there is a sizable literature on face

alignment. The Active Shape Model (ASM) [19] is one of the early approaches
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that attempts to fit the data with a model that can deform in ways consistent

with a training set. The Active Appearance Model (AAM) [5] [18] is a popu-

lar extension of the ASM. Boosted Appearance Model (BAM) [62] is a recently

proposed method to handle face alignment problem in a different framework.

In general, since model alignment algorithms need to find the best solutions

in usually very high-dimensional spaces, they often experience the local extrema

problem in practice. There are many sophisticated techniques proposed to handle

the local extrema problem for a given objective function, but these algorithms

are mostly focused on how to avoid getting stuck in local extrema. These kind

of strategies make the search procedure for the global extrema more and more

complicated. In this dissertation, we propose a novel approach to handle the local

extrema problem, by learning a local-extrema-free objective function whose global

extrema can be easily found by the basic gradient accent/descent algorithm. This

is achieved by carefully arranging the training samples before feeding them into

the modified classifiers.

1.3 Key Contributions

Computer vision research is a highly cross-disciplinary field, intersecting with

many other related fields, like machine learning, signal processing, mathematics,

control, physics, neurobiology, etc. In this dissertation, we develop robust visual

tracking algorithm and an online performance evaluation method by using the

notion of time-reversibility. We also developed a novel training method to learn
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a local-extrema-free score function for model alignment problems. The details of

the key contributions are as follows:

• We investigate the seldom used property of object motion - time reversibility -

in visual tracking systems. Like another widely used regularization term called

smoothness constraint in computer vision problems, using the time-reversibility

constraint could help vision algorithms to be more robust in practice.

• Specifically, we provide an online performance evaluation algorithm for visual

tracking systems in the absence of ground truth data. This strategy is based on

the idea of time-reversal and can automatically detect tracking failures. Online

performance evaluation makes it possible for tracking algorithms to detect fail-

ures soon after they occur and take actions to recover from those failures. In

this way, the algorithms are able to maintain a consistent tracking performance

over a long period. This idea works with most tracking algorithms.

• To further improve the robustness and accuracy of tracking algorithms, a new

bi-directional Kanade-Lucas-Tomasi (KLT) for tracking algorithms using the

time-reversibility constraint is proposed. We show significant improvements

over the original KLT tracker in the experiments. This bidirectional tracking

strategy is promissing enough to be generalized to other tracking algorithms.

• A training method based on rank learning is proposed to learn a local-extrema-

free score function. Many computer vision problems boil down to optimization

problems. Gradient descent/accent algorithms are widely used for such prob-

9



Chapter 1. Introduction

lems, but they easily get stuck in the local extrema. With the proposed strategy,

we can dramatically reduce the local extrema of the object function. We illus-

trate the success of the proposed algorithm on model alignment problems in this

dissertation. It is promising to use this idea to handle other vision problems

that need to deal with the problem of local extrema.

1.4 Dissertation Outline

The rest of this dissertation is organized as below:

In Chapter 2, we briefly review various visual tracking algorithms and describe

three representative algorithms used in our experiments, namely, stochastic visual

tracking based on particle filters [44] [110], Kanade-Lucas-Tomasi (KLT) feature

tracker [64] [89] and the mean-shift tracker [16] [17].

Chapter 3 presents the work on online performance evaluation for visual track-

ing algorithms. We review prior work on performance evaluation in related do-

mains and propose our strategy for this problem in detail. Extensive experiments

are performed to show the effectiveness of the proposed algorithm. Other helpful

discussions on various issues and extensions to different tracking algorithms can

also be found in this chapter.

Chapter 4 addresses the idea on bi-directional tracking using the time-reversibility

constraint. The main experiments are done using the KLT feature tracking algo-

rithm. We compare the bidirectional KLT tracker developed under the proposed

framework and the original KLT tracker in different situations. Preliminary ex-
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tension of this idea to large object tracking is also discussed.

In Chapter 5, we review some widely used model alignment algorithms in-

cluding ASM, AAM and BAM algorithms. These algorithms provide the basis

for many model alignment algorithms. We describe these algorithms in detail

and analyze the advantages and deficiencies of these algorithms and then propose

a novel training strategy to learn a local-extrema-free score function for model

alignment. We use face alignment to illustrate the effectiveness of this training

idea. Comprehensive comparisons to the state-of-art algorithm are conducted and

the results show the superiority of the proposed strategy.

Finally, some conclusions and suggestions for future research directions are

summarized in Chapter 6.
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Chapter 2

Background on Visual Tracking and Time

Reversibility

Over the last two decades, researchers have developed various algorithms for ob-

ject tracking in video data [106] [11]. However, time-reversibility, as an intrinsic

property of moving objects, has not received adequate attentions in the past

when designing visual tracking algorithms. In Chapter 3 and 4, we will explore

the applications of the time-reversibility constraint for developing visual track-

ing algorithms and online performance evaluation algorithms. In this chaper, we

will first summarize three representative methods widely used in visual tracking

applications. These algorithms are also adopted in our experiments presented in

Chapter 3 and 4. Subsequently, we will discuss the concept of time-reversibility

in some related areas: Markov chains, Brownian motion and optimal filtering.

2.1 Visual Tracking

We introduce three representative algorithms for tracking in this section. These

algorithms are used as the building blocks for a host of other algorithms, and

hence warrant special attention.
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2.1 Visual Tracking

• Bayesian filtering methods [25] [6] [49]: This category includes both

Kalman and particle filters, which have broad applications in many areas. When

used in visual tracking, these methods still view the visual tracking problem as

a classic stochastic filtering problem. With explicit state transition and obser-

vation models, the position of the targets can be sequentially estimated frame

by frame.

• Kanade-Lucas-Tomasi (KLT)tracker [64] [89] [85]: This optical flow like

algorithm is mainly designed for feature tracking scenarios. Good features are

first located by examining the minimum eigenvalue of the gradient matrix of

each image patch, and then tracked using a Newton-Raphson method based on

the assumption of constant intensity. The KLT tracker is similar to optical flow

algorithms in spirit.

• Mean-Shift Tracker [16] [17]: This method is also called kernel-based object

tracking. The feature histogram-based target representations are regularized

by spatial masking using an isotropic kernel, which enables locating the target

through a mean shift optimization process.

In the following, we provide a detailed summary of these three methods in

order to make this document self-contained.
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2.1.1 Bayesian Filtering / Tracking

The generic discrete-time stochastic filtering problem can be expressed using a

dynamic state-space form:

xn+1 = f(xn, dn)

yn = g(xn, vn) (2.1)

where yn is the measurement vector, xn represents the state vector. dn and vn are

random noise sequences. The stochastic filtering problem can be defined as: given

initial density p(x0), transition density p(xn|xn−1) which is characterized by the

state equation, and the likelihood p(yn|xn) which is described by the measurement

or observation equation, how to estimate the optimal current state at time n based

on the measurements or observations up to time n.

In this section, we address the problem of Bayesian inference for generic nonlin-

ear dynamical systems. Of the number of methods available for nonlinear filtering

problems, we focus on the sequential Monte Carlo approach for sequential state

estimation, which is also know as particle filtering.

In particle filtering [25], Let X ⊆ R
d and Y ⊆ R

p denote the state space

and the observation space of the system respectively. Let xt ∈ R
d denote the

state at time t, and yt ∈ R
p the noisy observation at time t. We model the

state sequence {xt} as a Markovian random process. Further we assume that

the observations {yt} to be conditionally independent given the state sequence.

Under these assumptions, the models defining the system are given as follows:

1) p(xt|xt−1): The state transition probability density function, describing the
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evolution of the system from time t − 1 to t. Alternatively, the same could be

described with a state transition model of the form xt = h(xt−1, nt), where nt is

a noise process. 2) p(yt|xt): the observation likelihood function, describing the

conditional likelihood of observation given state. As before, this relationship could

be in the form of an observation model yt = f(xt, ωt) where ωt is a noise process

independent of nt. and 3) p(x0): The prior state probability at t = 0.

Given the statistical descriptions of the models and noisy observations till time

t, we are interested in making inferences about the state of the system at current

time. Specifically, given the observations till time t,Yt = {y1, . . . , yt}, we would

like to estimate the posterior density function πt = p(xt|Yt). Using the posterior

density function, we aim to make inferences I(ft) of the form,

I(ft) = Eπt
[ft(xt)] =

∫

ft(xt)p(xt|y1:t)dxt (2.2)

where ft is some function of interest. An example of such an inference could be

the conditional mean, where ft(xt) = xt. Under Markovian assumption on the

state space dynamics and conditional independence assumption on the observation

model, the posterior probability is estimated recursively using the Bayes Theorem

as:

πt(xt) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
=

p(yt|xt)p(xt|y1:t−1)
∫

p(yt|xt)p(xt|y1:t−1)dxt−1

(2.3)

Computation of p(xt|y1:t−1) is accomplished using the prediction step,

p(xt|y1:t−1) =

∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (2.4)

Equation (2.4) sets up the recursive step for estimation of the posterior at time
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t, πt(xt) from that at time t− 1, πt−1(xt−1).

p(xt|y1:t) =
p(yt|xt)

∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

p(yt|y1:t−1)
(2.5)

Note that, there are no unknowns in (2.5) since all terms are either specified or

computable from the posterior at the previous time step. The problem is that this

computation need not have an analytical representation. However, foregoing the

requirement for an analytic solution, the particle filter approximates the posterior

πt with a discrete set of particles or samples {x
(i)
t }

N
i=1 with associated weights

{w
(i)
t }

N
i=1 suitably normalized. The approximation for the posterior density is

given by

π̂t(xt) =
N

∑

i=1

w
(i)
t δxt

(

x
(i)
t

)

(2.6)

where δxt
(·) is the Dirac Delta function centered at xt. The set St = {x

(i)
t , w

(i)
t }

N
i=1

is the weighted particle set that represents the posterior density at time t, and

is estimated recursively from St−1. The initial particle set S0 is obtained from

sampling the prior density π0 = p(x0).

2.1.2 Kanade-Lucas-Tomasi Tracker

The basic idea of KLT feature tracker first appeared in Lucas and Kanade’s paper

[64] in 1981; it was fully developed by Tomasi and Kanade [89] in 1991. In 1994, Shi

and Tomasi [85] presented a KLT-based method to select good features to track.

In the past decade, KLT has emerged as the most widely used feature tracker in

many applications, such as structure from motion, computation of optical flow,

etc.
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The original KLT algorithm assumes that the intensity of the features remains

constant when a camera moves, that is, I(x, y) = J(x + ξ, y + η) assuming that

the motion between two consecutive frames can be described as pure translation.

This leads to the following objective function:

(ξ̂, η̂) = arg min
ξ,η

∫ ∫

W

[J(x + ξ, y + η)− I(x, y)]2

∗w(x, y)dxdy (2.7)

Later, a symmetric expression is used to derive the solution [7]:

(ξ̂, η̂) = arg min
ξ,η

∫ ∫

W

[J(p +
d

2
)− I(p−

d

2
)]2 ∗ w(p)dp (2.8)

where p = (x, y)T and d = (ξ, η)T and the weighting function w(p) is usually

set to 1. For simplicity we will omit all the function variables and w(p) in the

following. Also we will use the discrete form for the integrals involved in the

derivations. Using a first order Taylor expansion to linearize the above nonlinear

objective function and setting the derivative with respect to d to zero, we have:

∑ ∑

W

(J − I + gTd)g = 0 (2.9)

g = (∇
I + J

2
)T (2.10)

This can be rearranged as:

Zd = e (2.11)

17



Chapter 2. Background on Visual Tracking and Time Reversibility

where

Z =
∑ ∑

W

ggT

e =
∑ ∑

W

(I − J)g (2.12)

2.1.3 Mean-Shift Tracker

The mean-shift tracker or the kernel-based tracker was presented by Comaniciu et

al [16] [17]. It is a bottom-up process and contains two major components: target

representation and localization.

• Target Model

The target model can be considered as centered at the spatial location 0 and

represented by its pdf q, which can be approximated by its m-bin histograms

as below:

target model: q̂ = q̂uu=1...m

m
∑

u=1

q̂u = 1 (2.13)

In practice, a target is represented by an ellipsoidal region in the image and

all targets are normalized to a unit circle to eliminate the influence of different

dimensions. After normalization, the pixel locations of the target region can

be denoted by x⋆
i {i=1...n}. Weights to different pixels can be evaluated by an

isotropic kernel k(x) to increase the robustness of the density estimation. Then

the probability of the feature u = 1...m in the target model can be computed

as:

q̂u = C
n

∑

i=1

k(‖ x⋆
i ‖

2)δ[b(x⋆
i )− u] (2.14)
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where

b : R2 → 1...m

C =
1

∑n

i=1 k(‖ x⋆
i ) ‖

2)
(2.15)

The function b maps the pixel at location x⋆
i to the index b(x⋆

i ) of its bin in the

quantized feature space.

• Target Candidate

In the subsequent frame a target candidate defined at location y is characterized

by the pdf p(y):

target candidate: p̂(y) = p̂u(y)u=1...m

m
∑

u=1

p̂u = 1 (2.16)

Denote the normalized pixel locations of the target candidate as x⋆
i {i=1...nh}

,

which is centered at y in the current frame. Similarly, we can compute the

probability of the feature u = 1...m in the target candidate as follows:

p̂u(y) = Ch

nh
∑

i=1

k(‖
y − xi

h
‖2)δ[b(xi)− u] (2.17)

where

Ch =
1

∑nh

i=1 k(‖ y−xi

h
‖2)

(2.18)

The bandwidth h defines the scale of the target candidates to handle the scale

change in the process.
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• Similarity Function The similarity function between p̂ and q̂ is denoted by:

ρ̂(y) ≡ ρ[p̂(y), q̂] (2.19)

The adopted target representation does not restrict the way similarity should

be measured and various functions can be used for ρ. The Bhattacharyya

coefficient is adopted here:

ρ̂(y) ≡ ρ[p̂(y), q̂] =
m

∑

u=1

√

p̂u(y)q̂u (2.20)

And we can define the distance between the target model and the candidates

as:

d(y) =
√

1− ρ[p̂(y), q̂] (2.21)

• Distance Minimization

To find the location of the target in the current frame, one minimizes the

distance measure with respect to y. To solve this minimization problem, we

first linearize the Bhattacharyya coefficient using the Taylor expansion around

the location ŷ0 of the target in the previous frame:

ρ[p̂(y), q̂] ≈
1

2

m
∑

u=1

√

p̂u(ŷ0)q̂u +
1

2

m
∑

u=1

p̂u(y)

√

q̂u

p̂u(ŷ0)

≈
1

2

m
∑

u=1

√

p̂u(ŷ0)q̂u +
Ch

2

nh
∑

i=1

wik(‖
y − xi

h
‖2)

where wi =
m

∑

u=1

√

q̂u

p̂u(ŷ0)
δ[b(xi)− u] (2.22)

The above approximation holds when the target candidate p̂u(y)u=1...m does not

change drastically from the initial p̂u(ŷ0)u=1...m, which is often valid between

consecutive frames.
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The maximum in the local neighborhood can be solved by the mean shift pro-

cedure. The algorithm is summarized as below:

1. Initialize the location of the target with ŷ0 and compute {p̂u(ŷ0)}u=1...m,

ρ[p̂(y0), q̂] =
∑m

u=1

√

p̂u(ŷ0)q̂u and {wi}i=1...nh
.

2. Find the next location of the target candidate by:

ŷ1 =

∑nh

i=1 xiwig(‖ ŷ0−xi

h
‖2)

∑nh

i=1 wig(‖ ŷ0−xi

h
‖2)

(2.23)

where g(x) = −k′(x).

3. While ρ[p̂(y1), q̂] < ρ[p̂(y0), q̂], do ŷ1 ←
1
2
(ŷ0 + ŷ1).

4. If ‖ ŷ1 − ŷ0 ‖< ǫ Stop; otherwise, set ŷ0 ← ŷ1 and go to Step 1.

2.1.4 Summary

In general, visual tracking algorithms can be grouped into two categories: de-

terministic tracking and stochastic tracking [110]. Deterministic motion tracking

algorithms like optical flow or KLT trackers usually implicitly assume the object

appearance is corrupted by the Gaussian noise. However, the Gaussian noise

model is often invalid in practice which may lead to a local optimal solution. De-

terministic methods usually only keep the estimated location information about

the object (center coordinates or bounding box) during tracking, which causes

the tracker to drift away easily when it is in local extrema. Stochastic tracking

frameworks, such as extended Kalman filtering, the CONDENSATION algorithm,

particle filter algorithms, etc., often maintain a probability distribution of the ob-
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ject location, hence are more robust than the deterministic algorithms due to their

capability to escape local extrema.

2.2 Time Reversibility

Time-reversibility, also called as time-reversal symmetry or T-symmetry [42], is

an important concept in many disciplines. As an important concept used in this

dissertation, it has not been defined clearly in the field of visual tracking before.

Therefore, it is important to give a clear description of this concept before we

propose our tracking and performance evaluation algorithms that use the time

reversibility constraint. In this section, we will review the definitions of time-

reversibility in some fields closely related to visual tracking and briefly discuss it

as it applies to visual tracking.

2.2.1 Time Reversible Markov Chains

Time-reversibility is an interesting topic in stochastic process. Here we will review

the definition of time reversibility in one of the most important classes of stochastic

processes - discrete time Markov chain [78].

Suppose at time n, an ergodic Markov chain has already reached its stationary

status for a long time with transition probabilities Pij and stationary probabili-

ties πi, if we reverse the sequence of states to Xn, Xn−1, Xn−2, · · · , we can easily

verify that this reversed sequence is also a Markov chain. Since independence

is a symmetric relationship and the conditional distribution of the future states
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Xm+2, Xm+3, · · · given the present state Xm+1 is independent of the past state

Xm, Xm−1, the conditional distribution of Xm, Xm−1, · · · given Xm+1 is also inde-

pendent of Xm+2, Xm+3, · · · . Its transition probabilities, denoted by Qij, can be

computed as:

Qij = P{Xm = j|Xm+1 = i}

=
πjPij

πi

(2.24)

If Qij = Pij for all i, j, that is, the reversed Markov chain has the same

transition probability matrix as the original Markov chain, then the Markov chain

is called time reversible. The time-reversibility condition can also be expressed

as:

πiPij = πjPji∀ij (2.25)

This condition is also known as the detailed balance condition. It means the

probability of seeing a transition from j to i is the same as seeing a transition from

i to j. Note that the detailed balance condition is stronger than that required

merely for a stationary distribution. Detailed balance also implies that around

any closed cycle of states, there is no net flow of probability.

PikPkjPji = PijPjkPki∀i, j, k (2.26)

Detailed balance is a weaker condition than requiring the transition matrix to

be symmetric, Pij = Pji. That would imply that the uniform distribution over

the states would automatically be stationary distribution [9].
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2.2.2 Brownian Motion

Since many stochastic visual tracking algorithms adopt Brownian motion models

for the object, here we discuss its time-reversibility separately. Brownian motion

is a special stochastic process. It lies in the intersection of several important

classes of processes. It is a Gaussian Markov process, has continuous paths, a

process with stationary independent increments (a Levy process), and is also a

martingale [15] [78].

It was widely believed that it was the Scottish botanist Robert Brown who

first discovered this kind of motion in 1827 when he was studying pollen particles

floating in water under the microscope. He observed the pollen grains or particles

of dust exhibiting a jittery motion in the water, but he could not explain the origin

of the motion. Many scientists tried to provide explanations for Brownian motion

after its discovery. The mathematics behind Brownian motion was first described

by Thorvald N. Thiele in 1880 [58]. By studying the stock and option markets

using stochastic analysis, Louis Bachelier presented the first theory of Brownian

motion in 1900 in his PhD dissertation “The theory of speculation” [68].

The first concise definition of the Brownian motion process was given by

Wiener in 1918, therefore, it is sometimes called the Wiener process. A continuous-

time stochastic process B(t), t ≥ 0 is said to be a Brownian motion process if

[78]:

• B(0) = 0;

• B(t), t ≥ 0 has stationary and independent increments;
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2.2 Time Reversibility

• For every t > 0, B(t) is normally distributed with mean 0 and variance σ2t.

Consider(Bt, 0 ≤ t ≤ 1), under the time reversal transformation, define (Xt, 0 ≤

t ≤ 1) by Xt = B1−t − B1, then the time reversed process (Xt, 0 ≤ t ≤ 1)
d
=

(Bt, 0 ≤ t ≤ 1), in this sense, Brownian motion is time-reversible.

Physically, it seems that Brownian motion apparently violates the Second Law

of Thermodynamics, because the motion of a Brownian particle never slows down.

At the end of the 19th century, Louis Georges Gouy suggested that “Brownian

motion might offer a ‘natural laboratory’ in which to directly examine how kinetic

theory and thermodynamics could be reconciled” [39]. This mystery was solved

by Einstein [27] [39]. In 1905, Einstein developed a statistical molecular theory

of liquids. When he applied the molecular theory of heat to liquids, he predicted

that the random motions of molecules in a liquid impacting on larger suspended

particles would result in irregular, random motions of the particles. His prediction

corresponded to Brownian motion precisely. Einstein’s work on Brownian motion

indirectly confirmed the existence of atoms and molecules, and in 1908 Perrin and

his students conducted an exhaustive set of experiments and confirmed Einstein’s

theory [39].

2.2.3 Time Reversibility in Optimal Filtering Process

Statistical mechanics, also known as statistical thermodynamics, provides macro-

scopic predictions based on microscopic properties of the system. Under certain

conditions, the evolution of the observable dynamical variables of a thermody-
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namics system can be captured in a Markov process formulation, in particular,

through Kolmogorov’s forward equation as the evolution equation for the statis-

tical state as a probability distribution or density function [76]. A considerable

amount of work has been done on this subject.

Recently, Mitter and Newton studied the information and entropy flow in op-

timal filtering algorithms [80]. They found that the information flows for such

filters can be explained by the entropy flows of non-equilibrium statistical me-

chanics. Usually, this kind of statistical mechanical system is held away from its

equilibrium state by an interaction with an exogenous system.

By introducing some thermodynamics concepts, the average energy, entropy

and free energy, into the optimal filtering process, they analyzed the signal process,

observation process, the filtering process and their interactions using principles

from statistical mechanics. Their work provides helpful intuitive insights into

the optimal filtering process from a statistical mechanics perspective. They also

addressed the time reversal property in such filtering processes. Their results are

developed for stable, time-homogeneous systems. By appropriate initializations

for both the signal and observation, they investigated the evolution of both linear

and nonlinear filters in finite time interval. We summarize their main conclusions

below [80] [69] [70] [71]:

• The signal X can be thought of as an abstract statistical mechanical system

interacting with a heat bath. This interaction drives the signal towards a sta-

tionary state - its invariant distribution which minimizes its free energy. During

26



2.2 Time Reversibility

this convergence, it can be shown the entropy of the “universe” containing the

signal and the heat bath is non-decreasing and the abstract system obeys a law

similar to the Second Law of Thermodynamics. Here using statistical mechan-

ics terminologies, a system in its invariant distribution can be in its stationary

equilibrium states or stationary non-equilibrium states according to the net flow

of entropy. The authors also defined the entropy production rate of the signal

process and showed if the signal is self-adjoint [80], then this flow is zero in

the stationary state, which is also an equilibrium state; otherwise, it is called

a non-equilibrium state. When the signal is in its stationary state there is on

average no flow of energy between the heat bath and the signal. However, for

individual outcomes of the signal there is a continuous exchange of energy back

and forth between the components.

• The existence of the observation process Y can reduce the entropy of the uni-

verse containing the signal and the heat bath, resembling the role of Maxwell’s

demon. Analogous to the thermodynamics concepts, the energy of the signal

can be split into two components, one is in analogy to “work”, which corre-

sponds to the part which can be observed by the observation; the rest can be

regarded as “heat”. Being able to partially observe the signal, the filter can ex-

tract energy from the signal and return it to the heat bath without increasing

the entropy like a perfect Maxwell’s demon [59]. In the stationary state, in the

presence of observation, the overall rate of entropy change of the “universe” re-

mains the same as the original one, but there is some energy circulating between
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the heat bath, the conditional signal X̂ and the filter, which shows similarity

to a type of non-equilibrium statistical mechanics.

• When taking the signal and the conditional signal to make a joint process, in the

linear Gaussian case, such as the Kalman-Bucy filter [80], it can be shown that

the process is “physically reversible” in the sense that the interactive entropy

flow of the time-reversed joint process is the same as that of the forward-time

process in the stationary state. However, in nonlinear cases, this joint process

is in general irreversible [71].

• In the case of a linear, partially observed, Gaussian system, since the signal,

observation, and the conditional distribution of the signal are all Gaussian, the

filter propagates the mean and covariance matrix of the conditional distribution.

Through the physical analogy, the authors pointed out that “Bayesian filters

achieves the maximum possible reduction in entropy from a given supply of

observations, and stores no more information than is strictly necessary to do

this” [80].

• The authors point out that the observations allow entropy reduction which

providing a quantitative example for Landauer’s Principle [57].

2.2.4 Time Reversibility in Visual Tracking System

In this dissertation, we are designing visual tracking systems that accept video

data. The data is the record of the physical world. Although the dynamics of

the objects moving in physical world could be complex and hard to model, once
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the motion is recorded, it becomes a deterministic process, in the sense that the

position of object is fixed in every time frame. If we play the video backward, it

will exhibit the exact motion reversal property.

Since the purpose of visual tracking algorithm is to obtain the position of an

object at every frame, a perfect tracker should give correct position of the object

at every frame. If we view the output of the tracker, the estimated position, as

a virtual object, in ideal situations when the tracker is perfect and the video is

played back, this virtual object should also return to the starting point. This is

referred to as time-reversibility of the tracking algorithm.

Most of the existing tracking algorithms are forward-only tracking. The iden-

tity of the object is usually loosely defined by its initial appearance in most track-

ing algorithms. As we analyzed before, the appearance of the object can change

dramatically due to many possible factors during the tracking procedure, therefore

the tracker can hardly know if it is tracking the correct object or not because using

appearance information to verify the identity of the object is unreliable, especially

when an updating strategy for the appearance model is adopted in the tracking

algorithm. We notice that in practice neither the deterministic nor the stochastic

algorithms can show time-reversibility property in the presence of tracking errors.

Suppose a tracker starts from time 0 with a good initialization of the object and

tracks forward to time t, the tracking procedure can be viewed as a process trans-

porting information about the object contained at time 0 to time t. We claim that

if the tracker tracks backward to time 0 and can not return to the initialization
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point, then there is information loss during this round of the tracking procedure

and its performance at time t is unlikely to be good.

Stochastic visual tracking algorithms usually assume that the object dynamics

forms a temporal Markov chain. Brownian motion is a widely used motion model

for generic object tracking using optimal filtering algorithms. We have already dis-

cussed their time-reversible properties. Time-reversibility in stochastic processes

has statistical meanings which differ from those in deterministic processes. For

a specific object tracking using optimal filtering algorithms, only one realization

of the stochastic tracking process is performed; therefore, their statistical time-

reversal properties discussed earlier are different from the one we define a perfect

tracker, where it requires exact trajectory reversal. We will further discuss these

points in detail in the next two chapters.
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Chapter 3

Online Performance Evaluation of Visual

Tracking Algorithms

3.1 Visual Tracking and Performance Evaluation

Visual tracking forms one of the most important components in a wide range of

application domains. Robust tracking of features forms the primary input to clas-

sical vision problems such as structure from motion and registration. In addition,

tracking finds use in diverse application areas such as surveillance, markerless mo-

tion capture and medical imaging. The need for robust tracking algorithms that

work over a broad spectrum of application domains cannot be understated. How-

ever, practical realities and the diverse nature of data dictate that even the most

sophisticated algorithm will have failure modes where the tracking performance is

poor and the algorithm loses track. In this chapter, we address the problem of au-

tomatic evaluation of tracking algorithms with the goal of detecting track failures

and evaluation of tracking performance without the need for ground truth.

There are multiple reasons why a self-evaluation framework is needed. Its

most straightforward use is in online characterization of tracking performance to

enable a system to recover from track failures. Further, in the context of dis-
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tributed sensor network, evaluation of the performance of the tracking algorithm

(associated with each modality) can be used to characterize its reliability for the

tasks of multi-modal fusion.

Self-evaluation can also be used to rank different tracking algorithms based on

their performance. In this sense, self-evaluation can be used to choose a tracking

algorithm with better performance at run time. It also potentially allows for

tracking algorithms to tune their parameters to the specifics of an individual

video (as opposed to a training set, which may or may not capture the nuances

of a single instance). While ground truth allows the same, it is not self-contained

to the tracking algorithm and is not easily extensible.

There exist many evaluation schemes [8] [73] [82] that use ground-truth infor-

mation to evaluate tracking algorithms, and more importantly rank-order them

in terms of performance. The PETS1 and CLEAR2 workshops, along with the

ETISEO [72] effort focused mainly towards characterizing algorithms in terms of

performance in the presence of ground truth. The CAVAIR3 and the VACE4 ef-

forts were geared towards evaluation of object detection and tracking [54, 67]. In

addition to this, there has been some research on defining distance metrics for

matching the ground truth information to the tracker outputs, and in tuning the

parameters of the tracking algorithm [33]. However, collecting ground truth is

time consuming, and has its own variabilities [61]. Further, performance evalua-

1http://petsmetrics.net
2http://isl.ira.uka.de/clear07
3http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
4http://www.ic-arda.org/InfoExploit/vace/
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tion using ground truth is not possible for real time field testing or on sequences

which are unlabeled. This motivates the need for online performance characteri-

zation in the absence of ground truth.

Evaluation of tracking performance and detection of track failure is similar

to the problem of model validation, especially when the underlying formulation

is in terms of dynamical systems. Tracking performance is bound to deteriorate

when the data violates the modeling assumptions significantly. There exist many

ways to detect the incompatibility between the models and the observed data. For

stochastic nonlinear systems, measurements based on the innovation error forms

a common choice as an evaluation metric. The statistics of the innovation error

can be cross-checked with those of the model (such as white Gaussian noise),

and a hypothesis test can be performed to determine model validity. Similar

metrics such as the tracking error (TE) and observation likelihood (OL), and

their corresponding cumulative summations in time (CUSUM) have been used for

change detection and model validation [92]. TE and OL detect only sharp changes

which results in loss of track, and do not register slow changes. A statistic for

detection of slow changes called the negative expected log likelihood of state (ELL)

and its generalization, gELL are proposed in [92]. ELL is defined as a measure

of inaccuracy between the posterior at time t and the t-step ahead prediction of

the prior state distribution. Interestingly, as we point out later, the evaluation

methodology proposed in this chapter mirrors the ELL method in spirit.

In [2] [34] [94], under the hypothesis that the model is correct, a random pro-
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cess in the scalar observation space is shown to be a realization of independent

and identically distributed variables uniformly distributed on interval [0, 1]. This

result holds for any time series and may be used in statistical tests to determine

the adequacy of the model. An extension to vector-valued measurements is pre-

sented in [23], where a χ2-test for multi-dimensional uniform distribution is used

to determine if the system behaves consistently. However, when it comes to visual

tracking, as the observation could be in a very high-dimensional image space, the

computation of the test statistics is infeasible. In [63], an entropy based criterion

is used to evaluate the statistical characteristics of the tracked density function.

The definition of good performance for tracking a single object is that the poste-

rior distribution is unimodal and of low variance. In contrast, a multi-modal and

a high variance distribution implies poor or lost tracking. In practice, tracking in

the presence of multiple objects and clutter does lead to the presence of multi-

modality in the object’s posterior density. This, however, does not necessarily

imply poor tracking.

While model validation and change detection literature offers formal and rig-

orous approaches to formulate the problem, in many cases, the underlying models

for tracking are unable to handle wide variations that occur in visual tracking

problems. Further, given the complexity of the visual information, it is virtu-

ally impossible to accurately model all the information in all its variabilities.

Towards this end, there has been a body of research that exploits the inherent

characteristics of tracking output to automatically characterize the performance.
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In [28], Erdem et al. address an on-line performance evaluation method for con-

tour tracking. Metrics based on color and motion differences along the boundary

of the estimated object are used to localize regions where segmentation results are

of similar quality, and combined to provide a quantitative evaluation of bound-

ary segmentation and tracking. As an extension, [29] uses a feedback loop to

adjust the weights assigned to the features used for tracking and segmentation.

This method of evaluation is specific to contour-based tracking systems. We also

presented a method for self-evaluation in [101] before. This empirical method

evaluates the trajectory complexity, motion smoothness, scale constancy, shape

and appearance similarity, combining each evaluation result to form a total score

of the tracking quality. However, this heuristic method can only be applied to a

static camera system.

In this chapter, we propose an online evaluation methodology that can be

applied to many tracking algorithms to detect tracking failures and to evaluate

tracking performance [100]. The intuition behind our algorithm lies in the re-

versibility of the physical motion exhibited by an object, and relating it to the

time-reversibility of the tracking algorithm. When this tracking problem is de-

fined in terms of dynamical systems exhibiting Markovian properties, we construct

a time-reversed Markov chain for the sole purpose of evaluation. The posterior

probability density of the time-reversed chain is propagated all the way back to

the initial time instant when the tracking algorithm is initialized. The prior used

to initialize the tracker is now compared to the posterior of the time-reversed
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chain to form the evaluation statistic. For a well behaved system, the two proba-

bility distributions are expected to show proximity in some statistical sense, with

significant discrepancies between them in the presence of tracking error. The

proposed approach finds applicability in a host of tracking algorithms that use

a dynamical system formulation. In this regard, the use of particle filtering for

estimating inferences is very common given the non-linearity of most models and

the non-Gaussian noise distribution. The proposed evaluation method involves

filtering back to the initial time instant, and gets slower with increasing time.

Hence, we also propose an approximation by tracking back and comparing the

performance against a point in time where by prior verification we are confident

that the performance is good. We analyze the performance of the evaluation

methodology by extensive experimentation using a wide variety of videos. It is

shown that when ground truth is available, the track failures detected by our ap-

proach correlate significantly with those validated by the ground truth. We also

show the applicability of the core ideas for tracking algorithms which are not mod-

eled as dynamical systems. Examples of such algorithms include the KLT feature

tracker [64] [89] [85] and the mean-shift tracking algorithm [16] [17]. Finally, we

show that the proposed evaluation algorithm can be used for ranking different

tracking algorithms based on their performance.
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3.2 Particle Filtering in Visual Tracking

In Chapter 2, we have summarized the necessary background of Bayesian filtering

methods used in dynamical systems, in particular, the particle filtering method

which is used widely in visual tracking systems [43] [44]. In this section, we briefly

discuss some of the common state space approaches to visual tracking focusing in

particular on the kind of motion and appearance models commonly used.

3.2.1 State Models

For rigid objects, most tracking algorithms formulate tracking over a state space

that typically comprises of locations on the image plane, the scale and orienta-

tion of the object all of which can be re-parametrized as affine deformations of

some basic shape. For non-rigid objects, the affine deformation state could be ex-

tended to include contour deformation parameters (usually encoded with splines

or level sets). Finally, the state space may include components that relate to the

appearance of the object, so as to characterize and track the changes in object’s

appearance with changing pose and illumination.

The state transition model for the dynamical system is usually the motion

model describing the kinematics of the object. Depending on the requirements

of the application, these could vary from a simple Brownian motion model or a

constant velocity model, to activity specific motion models [93] when tracking

complicated behaviors that have been learned a priori.
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3.2.2 Observation Models

Finally, probably the most important component is the observation model, typi-

cally a characterization of the object’s appearance encoded either as a gray-scale

or color template, or a histogram of such features. The key property of the ob-

servation model is that it provides discriminability of object-specific features over

background and other scene constructs. Further, the models are expected to be

fairly robust to outliers. Finally, there is the need for robustness to changes in ob-

ject pose and scene illumination. This can be achieved by explicitly modeling such

pose and illumination parameters in the state space of the system, or by having

observation models that are invariant (partially or otherwise) to such changes.

In this context, it is important to discuss the role of online appearance models

for visual tracking. In many practical systems (especially in surveillance), most

objects are opportunistic, with the tracking algorithm having no significant prior

characterization of their appearance. In such a scenario, the only identification of

object appearance is in the initial frame provided to the tracker, typically in the

form of the prior density of the object. As the object moves in the scene, online

appearance models (OAMs) try to adapt to the changing appearance of the ob-

ject. However, the OAM needs to be updated in order to incorporate new features

exhibited by the object without introducing undesirable background artifacts that

could potentially cause the tracking algorithm to diverge. This results in two con-

tradicting requirements for the adaptation rules used to update the OAM. The

need for updating the appearance models to account for the changing appearance
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of the object is balanced by the possibility that undesirable background artifacts

might be introduced. Invariably, a strategy is chosen that balances these two ef-

fects. This leads to scenarios in visual tracking, where the appearance models may

no longer represent the same object that was used in initialization. Hence, this

leads to a case where the tracking performance is poor not because of incompatibil-

ity between the models and the data (the premise of model validation) or because of

lack of smoothness and continuity of tracks (the premise of heuristic works), but

because the model characterizing the dynamical system are fundamentally flawed

due to undesirable updates.

In the next section, we outline our approach for performance evaluation, in-

cluding detection of error such as the one described above. The key point that

we like to retain from the discussions given above is the overwhelming role of the

prior density in defining the object identity.

3.3 Online Performance Evaluation Using Time-Reversed

Chains

It is insightful to understand the challenges in visual tracking, and where some

of the existing tracking algorithms and evaluation schemes fail. We begin with

a discussion of failure modalities of tracking algorithms and the challenges in

designing a self-evaluation scheme.
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3.3.1 Failure modes of Tracking Algorithms

Visual tracking needs to be robust against a wide variety of operating conditions,

dealing with poor video resolution, occlusion, changes in pose and illumination,

camera motion and clutter. Under such diverse operating conditions, descriptions

of objects, such as appearance, color, shape and texture almost always change

unpredictably. At the same time, motion consistency is a feature that most al-

gorithms use to reduce the search space, and it is one feature that is frequently

violated when the camera itself is moving.

The range of failures is even more enhanced when the tracking algorithm uses

an adaptive and online observation (appearance, shape) model. Adaptive appear-

ance models are crucial for achieving robustness to changing pose and illumination.

However, there is almost always the posibility of incorporating undesirable fea-

tures into the model, such as features from the background. However, in spite

of the large variations in operating conditions, the identity encoded by the ap-

pearance and shape information at the initializing frame provides a reference for

validation. This forms the basis for the intuition behind the algorithm proposed

in this dissertation.

3.3.2 Intuition

Our goal is to provide a general, online evaluation method for visual tracking sys-

tems based on dynamical systems. We will refer the Markov chain associated with

the tracker algorithm as the “forward” chain. The prior used to initialize the for-
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ward chain is the reference distribution which we use to evaluate the performance

of the tracking algorithm. In order to evaluate the tracking performance at a time

instant (say t = t0) we first need to account for the difference in time instant

between the prior (t = 0) and the output of the tracker. To achieve this, we con-

struct a time-reversed Markov chain with models that are similar to the forward

chain. The key idea is to compute the posterior distribution of this time-reversed

Markov chain at the initialization time (t = 0) and compare it to the prior of

the forward chain. For algorithms employing OAMs, the identity of the object is

defined in the initializing frame and the prior used to initialize the system. This

prior information encodes all the knowledge given to the tracking algorithm, and

arguably is most critical in determining the performance of the algorithm. In this

sense, the tracking performance can be determined by verifying the output of the

tracker at any particular time instant (say t = t0) against the prior with suitable

handling.

From the point of view of information captured in the tracking algorithms, the

underlying intuition is that if, at time t, the tracker contains enough information

about the object, then the ability to track well until time t along the forward

Markov chain implies that it is very likely to be able to track back to the end

along a time-reversed Markov chain equally well.

To get an intuitive understanding of the proposed algorithm, consider a video

sequence in which the first frame and the last frame are identical (in camera

placement as well as the location of every scene and object point). Good tracking
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performance would require a tracking algorithm to localize the object in the last

frame at the same location as the prior given in the first frame. Such an idea is

exploited for detecting drift in feature point tracking in [108]. Our algorithm can

be viewed as an extension of that idea for performance characterization.

3.3.3 Formalizing the Concept

The forward Markov chain describing the tracking algorithm is defined using the

prior density p(x0), the state model p(xt|xt−1) and the observation models p(yt|xt).

At time T , given an observation sequence YT = {y1, . . . , yT}, the posterior is πT =

p(xT |YT ). To evaluate the performance of the system, we propose a backward

time tracker that uses πT as its prior and the observation sequence YT in the time-

reversed order. Using the notation q(·) for probability density functions associated

with the time-reversed system, the reverse tracker is formulated as follows. For

evaluation at time T , the system is initialized at time T + 1 and filtered through

the observations YT .

• Prior at time T + 1:

q(xT+1) = p(xT+1|YT )

=
∫

p(xT+1|xT )p(xT |YT )dxT

(3.1)

• State Transition Model: For t ∈ (0, T ),

q(xt|xt+1) =
p(xt+1|xt)p(xt)

p(xt+1)
(3.2)

This can be directly computed from the models for most systems used to define

the tracking problem.
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• Observation Model: We retain the same observation model used in the

forward model.

∀t, q(yt|xt) = p(yt|xt) (3.3)

With this characterization of the system, we can now filter the observation se-

quence Yb
T = {yT , . . . , y1} in reverse time. The posterior density function of this

filter is of great interest to us. At time t, the posterior density πb
t = q(xt|Y

b
t ) =

q(xt|yT , yT−1, . . . , yt).

We can now estimate the posterior density at time t = 0, πb
0 by recursion.

From intuition, we expect this density to be close in some statistical sense to the

prior density p(x0). the following property.

Suppose we initialize the time-reversed Markov chain using the density p(xT+1)

as opposed to p(xT+1|YT ). It is easy to verify that the final posterior distribution

in the time-reversed process is equal to the smoothing result [55] at the beginning

of the forward process using all the observations till time T , i.e, πb
0 = p(x0|y1,...,T ).

Now, πb
0 and the p(x0) are close in the sense that

∫

x0p(x0)dx0 =

∫

Yt

∫

x0

x0π
b
0dYtdx0 (3.4)

Suppose we compare E(x0) and EYt
(x0), then on an average (over the ensemble

set of possible observations) the two means will be the same.

It should be noted that the above result is true only when the time-reversed

system is initialized with the prior p(xT+1). However, for most tracking models,

it is the observation model with its characterization of object appearance and/or

shape that allows for discrimination of the object from the background. In this

43



Chapter 3. Online Performance Evaluation of Visual Tracking
Algorithms

sense, the observation model allows for accurate localization (or equivalently, low

variance estimation) of the object with the state model used mainly to regularize

and smoothen the result. Further, under the assumption that the data YT fits

the underlying models, the density p(xT+1|YT ) is expected to localize the object

better, in the sense of the sharpness of the density around its expected value.

Hence, the system defined with prior p(xT+1|YT ) is over-trained and provides a

model that fits the data better.

3.3.4 Evaluation Statistic

There exist distance metrics and measures for comparing density functions such as

the Kullback-Leibler (KL) divergence and the Bhattacharya distance [26]. How-

ever, in our case, the distributions are represented by particles or samples from the

density function. In general, given the differences in the individual proposal den-

sities and random number generators, the exact locations at which the densities

are sampled will be different. Computing the KL divergence or the Bhattacharya

distance for such non-overlapping sample sets would require interpolation (using

Parzen windows [26] ) or the use of approximations such as the Unscented Trans-

formation [35]. We circumvent this problem with the use of the Mahalanobis

distance that depends only on the moments of the distributions.

Denoting p as the prior distribution p(x0) and π as the posterior of the time-

reversed chain q(x0|YT ), the distance d(p, π) between the two distributions can be
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Figure 3.1: Schematic of the reference point used in the proposed algorithm. Evaluation

of the performance of the tracker requires validation with the prior density using a time-

reversed chain for suitable time normalization.

computed as:

d(p, π) = (µp − µπ)T Σ−1
p (µp − µπ)+

(µp − µπ)T Σ−1
π (µp − µπ)

(3.5)

where µp and Σp are the mean and the covariance matrix of the distribution p and

µπ and Σπ are those of the distribution π, all of which can be easily computed

or estimated from the particles or in some cases, analytically. An outline of the

proposed evaluation framework is in Table 3.1.

3.3.5 Fast Approximation

The proposed evaluation framework poses a requirement to process (or track)

across all the frames seen by the tracking algorithm. For such an algorithm,

the computational requirements increase linearly with the number of frames (see

Figure 3.1). This makes it increasingly harder for the evaluation algorithm to

satisfy real time constraints.

However, a set of sufficient (though not necessary) conditions can be designed
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Table 3.1: Outline of the Proposed Evaluation Algorithm.

To evaluate the performance of the tracker at time T , the density πT is

represented by the samples {x
(i)
t }

N
i=1,

1. Propagate the particles using p(xT+1|xT ) to get samples from p(xT+1|YT ),

x̃
(i)
T+1 ∼ p(xT+1|x

(i)
T ), i = 1, . . . , N (3.6)

2. Using the prior represented by the particle set {x̃
(i)
T+1}

N
i=1, iterate the steps

3, 4 and 5 for t ∈ {T, T − 1, . . . , 1},

3. Proposition: At time t, propose a new particle set {x̃
(i)
t }

N
i=1 using the state

transition model,

x̃
(i)
t ∼ q(xt|x̃

(i)
t+1), i = 1, . . . , N (3.7)

4. Weight Computation: Compute the weight w
(i)
t associated with the

particle x̃
(i)
t ,

w
(i)
t = q(yt|x

(i)
t ) (3.8)

5. Normalize the weights and resample them to obtain an unweighted particle

set.

6. Using the particle set x̃
(i)
0 ∼ q(x̃0|YT ), compute mean µ̂π and covariance

matrix Σ̂π using sample statistics.

7. The evaluation statistic is computed using (3.5).
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to alleviate this problem. We argue that if the performance at time T is good,

then not only does the final posterior match well with the prior density, but

that the posterior densities of the forward and backward tracker should match at

all intermediate time instants. A fast approximation is now proposed using this

observation. Suppose at time t0, the performance of the system is evaluated to

be good, then for an evaluation at a future time instant t′ > t0, the time t0 can

be used as a reference point in the place of t = 0 (see Figure 3.2). Extending

this concept, we can recursively shift the reference point to keep a constant upper

bound on the computational time for the evaluation. Let ∆t be the time interval

between successive reference points, i.e, the time instants t0 = 0, ∆t, 2∆t, 3∆, . . . ,

are used as the reference points. For a time instant t′, the reference point chosen is

∆t⌊t′/∆t⌋. However, the suitability of the approximation depends on the length

∆t. The trade-off here is between the computation time, which is proportional

to ∆t and the ability to detect slow changes that are of the order ∆t. A clever

choice of ∆t can go a long way in reducing the computational requirements of the

proposed algorithm.

Finally, even with the approximation scheme described above, it might be

difficult to achieve real-time processing for the evaluation at every time instant.

However, online evaluation in real time is possible if we do not perform evaluation

at every frame. For most practical systems, evaluation needs to be performed

at regular time intervals. Choosing a fast approximation scheme with ∆t as

the time difference between reference points as well as the time instants when
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Figure 3.2: Schematic of the reference point used in the faster approximation to the

proposed algorithm. As opposed to the implementation described in Figure 3.1, the

approximation shifts the reference point from t = 0 to create multiple reference points

separated by time interval of ∆t = ∆. This keeps the overall computational require-

ments for the evaluation scheme bounded.

evaluation is performed can go a long way in reducing the computing requirements

for evaluation.

3.4 Extensions beyond particle filtering

3.4.1 Evaluations of the Kanade-Lucas-Tomasi tracker

The basic idea of the proposed evaluation methodology can be used for tracking

algorithms that do not use particle filtering. Here, we show how to apply the eval-

uation method for feature point tracking using the KLT algorithm [64] [89] [85].

KLT is among the most widely used feature point trackers for many applications

and we use it for showcasing our evaluation algorithm.

The original KLT algorithm works under the assumption of brightness con-

stancy and small motion (typically, translation), that is, I(t,p) = I(t+1,p + ∆p)

where I(t,p) is the intensity at pixel coordinate p = (x,y) in the frame at time t.
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Under this assumption a linear system in ∆p is solved to obtain the translation.

In practice, the assumptions of brightness constancy and small motion used in the

derivation of the solution are almost always violated eventually, leading to drifts

in the tracking of feature points. In vision problems, especially those pertaining

to geometry (such as structure from motion and estimation of epipolar geometry,

homography), the presence of drift contributes to measurement errors which could

subsequently be exaggerated by the following estimation algorithms.

The proposed evaluation methodology provides an elegant way to evaluate the

tracking performance. As in the case of the particle filter, we formulate a KLT

tracker for tracking back from the current frame to the initial frame. On the one

hand, if the assumptions of brightness constancy and small motion are indeed

satisfied and that the tracking remains stable and free of drift, the KLT tracker is

expected to work well both forward and backward directions. Brightness consis-

tency as a constraint is inherently time-reversible and with sufficient smoothness

on the function (I,x) and its derivatives, it can be shown that the forward and

time-reversed systems behave similarly under the small motion assumption.

On the other hand, in the presence of drift due to model failure, when we do

the backward tracking, the tracker does not go back to the initialization point due

to the unmodeled errors that affect tracking. Therefore, the strategy used earlier

for evaluation of particle filtering-based trackers along with the fast approximation

techniques is also applicable to the KLT tracker. The interested reader is referred

to a feature point algorithm described in [98] that uses this concept of time-reversal
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for achieving robust tracking.

Finally, KLT as a tracking algorithm is a point tracker and does not estimate

uncertainty in any specific form (such as density or covariances). We base our eval-

uation statistic on just the Euclidean distance between the initial point provided

to the tracker and the result of the time-reversed KLT tracker. The Euclidean

distance between the two points replaces the Mahalanobis distance used for the

particle filtering scenario.

3.4.2 Evaluations of the Mean-Shift tracker

The proposed evaluation algorithm can also be extended to the mean-shift tracker

[16] [17]. The mean-shift tracker contains two major components: object repre-

sentation and localization. Histogram-based appearance representation is adopted

for the object. Object localization is achieved through a mean-shift optimization

process. The mean-shift tracker is popular due to its computational efficiency and

ease of implementation. However, there are two major limitations that usually

cause the traditional mean-shift tracker to fail [105]. The first limitation is that

the basic mean-shift procedure assumes that the scale of the object remains un-

changed during tracking, which may not be true in many practical situations. To

handle scale change, it will bring uncertainty to the convergence of the tracker.

The second limitation is that the traditional mean-shift tracker uses radially sym-

metric kernels which cannot adequately represent various object shapes. There-

fore, like other tracking algorithms, the traditional mean-shift tracker may also

often encounter difficulties during tracking, which makes it necessary to evaluate
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its performance in real-time.

Based on the same idea we used for particle filter based trackers and the KLT

tracker, we evaluate the mean-shift tracker using the distance between the forward

and backward tracker. Here, the status of the tracking object can be characterized

by the location (assuming the scale remains constant). Hence, simple Euclidean

distance between the forward and backward kernel modes found by the mean-shift

method is used for evaluation.

3.5 Discussion

In this section, we discuss some of the properties of the evaluation algorithm. In

particular we highlight potential similarities between our algorithms and tools in

existing literature. For example, ideas similar to time-reversal have been applied

to the image registration problem where it is desirable for the forward and the

backward maps to be inverses of each other [104] [14].

3.5.1 Similarity to the ELL

The proposed evaluation methodology is similar to the ELL statistic [92] in spirit,

both involving posterior of the tracking algorithm and the prior at time t = 0. ELL

propagates the prior density to time t and computes the inaccuracy between the

t-step predicted prior and the posterior πt. In contrast, the proposed methodology

time reverses the posterior πt back to the initial time using a time-reversed system

and compares it against the prior at time t = 0. The main difference in our
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formulation is that the t-step reverse prediction is conditioned on the observed

data, while the t-step prediction in ELL is unconditional.

3.5.2 Smoothing filter

In Bayesian smoothing algorithms, the quantity of interest is p(xt|y1:T ), the poste-

rior of the state conditioned on all observations y1:T , including those in the future.

Computation of these smoothing posteriors involves running a forward PF and a

backward PF and fusing their respective posteriors systematically [55]. However,

in the smoothing algorithm, there are no new constraints that are used, in the

sense, that the dynamical system model (prior + state transition + observation

models) is still the same. However, the proposed evaluation method depends on

this concept of time-reversibility of the physical models, which is a property that

is extraneous to the basic definition of the dynamical systems. In this regard,

the concept of smoothing filters and the evaluation methodology are two different

concepts; it is possible to apply the evaluation methodology to the smoothing

filter.

3.5.3 Failure Modes of the Proposed Algorithm

While the proposed evaluation algorithm works well across a wide range of tracking

algorithms (see Section 3.6), there are some cases when it fails. Such failures vary

with the selected tracking model and the specifics of data. In particular, we discuss

two cases where the evaluation algorithm can potentially fail.

The first scenario deals with tracking algorithms that lock onto the initial posi-
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tion, thereby losing track of a moving object. However, the time-reversed tracker

used for evaluation will also remain locked at the initial position (of the forward
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Figure 3.3: Performance evaluation over occlusion. The object is completely occluded

by frame number 100. (Top left to bottom right) Tracking results at frame numbers

1, 20, 40, 60, 80, 100, 120, 135 and 150 (Bottom row) Evaluation results using the

proposed algorithm (∆t = t) and its fast approximations (∆t = 5, 15, 30, 60).
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tracker), and give low evaluation scores, indicating a good tracking performance.

This is clearly a failure mode of the evaluation methodology, although for an un-

reasonable tracking algorithm. However, it highlights a potential scenario where

the evaluation methodology might fail.

A second instance of failure involve trackers that are completely guided by

their motion models. This could possibly happen due to the observations being

rejected as outliers by the observation model, or in cases where a data association

step associates a missing data state with the tracker. In such a case, the time-

reversibility of the motion model (most commonly used motion models are time-

reversible in the sense that the same model with different parameters can explain

the time-reversed motion) would naturally guide the tracker back to its initial

value.

A more realistic situation involves a combination of the two above-mentioned

scenarios. Consider an example, where a tracking algorithm loses an object in the

initial few frames of a video. For the remaining frames of the video, the output of

the tracking algorithm is unpredictable. However, without sufficient observations

to guide the estimate, the state transition model becomes the pre-dominant model

in governing the evolution of the posterior density. For tracking algorithms that

use a Brownian motion model on the state transition, the mean of the posterior

does not change (and hence, remains close to the prior p(x0)). The evaluation

score in this case can possibly be of low value.

In short, the proposed method is very useful for many types of tracking prob-
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lems; with certain potential failure modes that can be detected using simple heuris-

tics. It is also noteworthy that the proposed evaluation might fail for a particular

instance of data-algorithm pair, it does not have a consistent failure mode (say

such as occlusion or illumination).

3.6 Experimental Results

In this section, we present experimental results of the proposed performance evalu-

ation method with particle filtering-based visual trackers, the KLT and the mean-

shift tracker. We first show that the proposed evaluation algorithm can detect

various common failure modes in visual tracking systems using particle filters.

We use the algorithm proposed in [110] as the representative tracking algorithm

for this set of experiments. This algorithm uses a six-dimensional state space

for capturing affine deformations, with a Brownian motion model for the state

dynamics. The observation model is a template based OAM, which is a specific

mixture of Gaussian model proposed in [46].

3.6.1 Evaluation under common Tracking scenarios

Figure 3.3 shows results for a video where the object is completely occluded.

We used our evaluation algorithm once every 15 frames. The object undergoes

occlusion around 100th frame. The proposed statistic and its fast approximations

register peaks or sharp rises in value around this frame. It is noteworthy that

evaluation using ∆t = 5 does not seem large enough to capture the tracking
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failure. However, a higher value of ∆t registers the loss of track. Finally, as

expected, inference using fast approximations is not useful after a track failure

is registered. This is because that reference point against which the algorithm is

being compared is corrupted.
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Figure 3.4: Performance evaluation over slow pose change. (Top three rows) Tracking

results at frame numbers 1, 40, 80, 120, 160 and 200 (Bottom rows) Evaluation results

using the proposed algorithm (∆t = t) and its fast approximations (∆t = 5, 15, 30, 60).
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Figure 3.4 shows the results of evaluation for a sequence in which the object

exhibits a small change in pose, easily tracked by the tracker. As expected, the

proposed evaluation methodology generates a test statistic which takes low values

indicating a good tracking performance. Figure 3.5 shows evaluation results on

an aerial sequence in which the tracker loses track of the object due to the jerky

motion of the camera. The test statistics registers sharp peaks around the point

where the loss of track happens.

The proposed algorithm was tested on sequences in the PETS-2001 data set

and the evaluation is compared with the ground truth. The comparison with the

ground truth is done by computing the distance between the center of the object

as hypothesized by the tracker to the ground truth. Figures 3.6 and 3.7 show

the results on two sequences from the dataset. In Figure 3.6, the tracker tracks

the object fairly well. Both the proposed statistic and the comparison against

the ground truth take a low value. Figure 3.7 shows the evaluation results for

a scenario involving tracking failure. While all statistics register the failure of

track, the proposed statistic registers the track failure before the ground truth.

This is because of the specific evaluation criterion used with the ground truth,

which involves comparing only the centers of the object, while the bounding box

is inaccurate before the loss of track (frame 60).

3.6.2 Receiver Operating Characteristic

To further give a statistical evaluation of the proposed evaluation method, we cre-

ated a data set containing 40 sequences obtained from various scenarios, like out-
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Figure 3.5: Performance evaluation in an aerial sequence. The tracker loses track of the

object around frame 110 due to jerky camera motion. (Top three rows) Tracking results

at frame numbers 1, 20, 40, 60, 80, 100, 120, 140 and 160. The true object location is

marked in red after the algorithm loses track. (Bottom row) Evaluation results using the

proposed algorithm (∆t = t), its fast approximations and the KL divergence between

prior density and posterior of time-reversed chain.
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Figure 3.6: Performance evaluation on a PETS sequence including ground truth. (Top

three rows) Tracking results at frame numbers 1, 30, 60, 90, 120 and 160. (bottom

three rows) Evaluation results using proposed statistics and its fast approximations and

the ground truth. Tracking performance remains fairly constant as shown by both the

ground truth and the proposed evaluation strategy.

door/indoor, vehicle/human, optical/infrared, static/moving camera, ground/airborne,

etc. These video sequences were each obtained from standard video datasets such

as the PETS 2001, 2002 dataset, the aerial sequences from the VIVID dataset,
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Figure 3.7: Performance evaluation for a PETS sequence including ground truth. (Top

three rows) Tracking results at frame numbers 1, 20, 40, 60, 80, 100, 120, 140 and 160.

The true object location is marked in red after the algorithm loses track. (bottom three

rows) Evaluation results using proposed statistics and its fast approximations and the

ground truth.
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Figure 3.8: The collected data set for obtaining ROC curve of the proposed evaluation

method.

the TSA dataset and other videos collected at the University of Maryland. Each

sequence composes of 200 frames. The first frames of each sequence are shown in

Figure 3.8.

Ground truth for each video was obtained manually, and comprises of a tight

bounding box (parallelogram) around the object at frames 1, 20, 40, . . . , 200. A

detection event corresponds to detecting the failure of the tracking algorithm. The

true state of nature is obtained by using the spatial overlap between the ground

truth and the region assigned as the object by the MAP estimate of the tracking

algorithm. A low overlap between the two confirms that the tracking performance

is poor, and is denoted as a detection of failure.

After obtaining the evaluation statistic values, we vary a threshold to get dif-

ferent detection and false alarm rates and plot the ROC curve. We plot operating
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Figure 3.9: We characterize the performance of evaluation as the length of the video

(number of frames) changes. The encircled points are the (Bayesian operating points)

for equi-prior, and 0− 1 cost structure.

curves under various scenarios.

3.6.2.1 Length of the Video

We performed experiments characterizing the performance of the evaluation algo-

rithm as the length of the video increases. This is to quantify the possible small

degradation of performance as the length of the video increases. Figure 3.9 shows

the ROC curves for videos of length l = (20, 60, 100, 200) frames. Also marked

are the Bayes’ operating point for equi-prior and 0− 1 cost structure. This allows

us to get a quantitative assessment of the Bayes risk and its degradation as the

length of the video increases. This allows us to interpret the ROC curves better.
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Figure 3.10: The ROC curves of the proposed evaluation method for OAM-based particle

filtering. The evaluation was performed at the final frame of a 200 frame long video.

Each line corresponds to a fast approximation scheme with different approximation

length. Note that performance does not degrade much between the basic evaluation

strategy ∆t = 200 and an approximation ∆t = 100.

For example, at l = 60 the detection probability is PD = 0.94 at a false alarm

probability PF = 0.13, which falls to PD = 0.73 when l = 200 (same the same

false alarm rate PF ).

Length of the Video 20 60 100 200

Bayes Risk 0.12 0.1 0.18 0.21

Table 3.2: The Bayes risk of the evaluation algorithm.
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Figure 3.11: The performance comparisons of the proposed evaluation method for OAM-

PF and FAM-PF trackers. The evaluation performance remains fairly same over two

different tracking algorithms hinting at the robustness of the evaluation strategy over

different tracking algorithms.

3.6.2.2 Fast Approximation

We next show the differences in performance between the basic evaluation method

and its fast approximations at various ∆t. The curves in Figure 3.10 show the ROC

for evaluation at the last frame of the video (at t = 200) using the basic algorithm

(∆t = 200) and fast approximations at ∆t = 20, 40, 100. Note that in the fast

approximation method, if an intermediate point is declared as a track failure, then

all subsequent points are also declared as track failures. This contributes to the

poor performance at ∆t = 20. It is seen from the figure that with appropriate

intervals, like 100 frames, the performance of the fast approximation strategy is

comparable to the basic framework, while keeping the computation time constant.
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Figure 3.12: Performance comparisons of the proposed evaluation method by using

Mahalanobis distance and KL divergence based evaluation statistics respectively. Eval-

uation performance seems fairly similar under either metric. This could possibly hint

at the unimodality of the densities around the prior time instant t = 0. The similarity

in evaluation justifies the use of the faster Mahalanobis distance in the place of KL

divergence which is expensive to compute for point clouds.

3.6.2.3 Tracking Algorithm

We ran the evaluation method for particle filter-based tracking algorithms based

on the OAM and a fixed appearance model (FAM). We show both the ROC curves

in Figure 3.11. The test data set is the same for both trackers, while the evaluation

performance is different by a small margin. Further, a comparison with the ROC

curves in the evaluations of the KLT and mean-shift trackers (shown in Figures

3.16 and 3.14) suggests that the performance of the evaluation method may reveal

some characteristics of the underlying tracking algorithm. We plan to explore this

as a part of future work.
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3.6.2.4 Choice of Evaluation Metric

In computing the evaluation statistic, we proposed to use Mahalanobis distance in

place of distances such as the KL divergence which directly compares two densities.

To test the effectiveness of this Mahalanbois metric, we also computed the KL

divergence-based distance when using the basic framework where the computation

is feasible given the Gaussian prior distribution. The comparisons in Figure 3.12

show that there is no significant difference between using the Mahalanobis distance

and the KL divergence in our experiments. This could possibly be due to the

unimodality of the densities around the prior time instant t = 0. The similarity

in evaluation justifies the use of the faster Mahalanobis distance in place of the

KL divergence which is expensive to compute for point clouds.

3.6.2.5 Evaluation of Mean Shift Tracker

Using the same data set as used for the particle filtering-based tracker evaluation,

we tested the evaluation algorithm on the traditional mean-shift tracker. By

excluding some sequences where the traditional mean-shift tracker completely

fails from the very beginning, which makes the evaluation completely unreliable

as we discussed earlier, the final test set contains 26 sequences and 260 evaluation

points in total. Figure 3.13 shows the evaluation results for a sequence with slow

tracking drift. The corresponding evaluation score for this sequence increases

indicating the increasing drift in tracking. We use the same ground truth as in the

particle filtering case. The true state of the track (failure or not) was determined

66



3.6 Experimental Results

0 50 100 150 200
0

10

20

30

40

Time (in frame numbers)

∆ t = t

Figure 3.13: Performance evaluation for a sequence tracked by the mean shift tracker

with slow tracking drift. (Top three rows) Tracking results at frame numbers 20, 40,

60, 100, 120, 140, 160, 180 and 200. (bottom) Evaluation results using the proposed

statistics under the basic mode.

by comparing the hypothesized region to the ground truth. Lack of sufficient

overlap between the two was labeled as a failed tracker. The evaluation metric

was designed based on the distance between the output of the time-reversed mean-

shift and the initial guess. The Euclidean distance between the two was used (as

the scale of the tracker remains fixed, which makes the Euclidean distance almost
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equivalent to spatial overlap). As before, we computed the ROC curve using

the dataset of 26 sequences (see Figure 3.14) show-casing the performance of the

evaluation method for the mean-shift tracker. We designed this work based on

the code from http://www.cs.bilkent.edu.tr/ ismaila/MUSCLE/MSTracker.htm.
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Figure 3.14: Evaluation results for the mean shift tracking algorithm over a dataset of

26 videos, snapshots from which are shown at the top. The ROC curve of the evaluation

algorithm for the tracker using the basic mode is shown at the bottom. From 26 videos

of 200 frames each, we obtained 260 evaluation points which were used to generate the

ROC curves.
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3.6.2.6 Evaluation of KLT Feature Tracker

Figure 3.15: Test images used for the KLT tracking algorithm overlaid with the selected

feature points. Each image was translated to create a synthetic video providing ground

truth for evaluation.

We also tried to use the proposed method to detect tracking failures when

the KLT feature tracker is used. The KLT is a feature point tracking algorithm

and hence, we can generate multiple test cases from a single image. For our

experiments, we used four images, and selected 200 features per image using the

KL feature selection criterion (see Figure 3.15). Selecting 200 features per image

gives us a mix of good and bad feature points (in terms of their tractability). We

create a synthetic sequence by translating the images. This gives us the ground

truth for the sequence. A feature point is considered to have drifted if it diverges
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Figure 3.16: Performance of the evaluation method for the KLT feature point tracking

algorithm. (Top left column) The initial frame and the enlarged details for KLT track-

ing. The red dot shows the initialization of the KLT tracker and the green plus sign

shows the ground truth. (Top right column) The final frame and its enlarged details

for KLT tracking. As we can see, many tracking feature points (red dot) have drifted

away from their ground truth locations (green plus sign) and been detected by the eval-

uation algorithm (the blue circles indicate the drifted points which are connected with

their ground truth locations by blue line). (Bottom) The ROC Curve of the evaluation

method for KLT tracker using 4 images and 800 feature points.
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by more than 2 pixels from the ground truth. As before, we use ROC curves to

characterize the detection of drift using our evaluation methodology. The ROC

curve in Figure 3.16 indicates that the evaluation method works very well for the

KLT tracker. We also show some detection results in Figure 3.16.

3.6.3 Ranking the Performance of Trackers

We have showed above that the proposed online evaluation algorithm can detect

tracking failures in the absence of ground truth data. In addition to this, the

proposed algorithm can also be used to compare the performance of different

trackers. We compared the performances of the three trackers used in this chapter:

the particle filter-based tracker with OAM, the particle filter-based tracker with

FAM and the mean-shift tracker. Since the KLT tracker is a feature tracking

algorithm and requires a different test set, we did not include it in this ranking

experiment.

The experiment was performed as follows. For each tracker, we count the

number of tracking failures reported at different false alarm rates over the data

set shown in Figure 3.14. For each tracker, we have 260 evaluation points (26

sequences, with 10 evaluation points each). We can see from the figure that at

a false alarm rate of 0.6, the detection rates for all three trackers are very close,

therefore we can compare the performance of each tracker in terms of the number

of detected tracking failures at this point. Intuitively, a tracking algorithm with

more detected track failure should correspond to a poorer tracking performance.

From the figure, the ranking order for the three trackers we used here results in
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(PF tracker with FAM) < (PF tracker with OAM) < (Mean-shift tracker), from

left to right, worst to best performance. Notice that:

Dbad = Gbad ∗Detection Rate + Ggood ∗ False Alarm Rate

Gbad + Ggood = Total number of evaluation points

(3.9)

where Dbad is the detected number of failures, Gbad is the real number of failures

( ground truth).

With the help of the ROC curves of the proposed evaluation algorithm together

with the number of detected failures, we can recover the ground truth number of

tracking failures. The results are: 152 (PF tracker with FAM), 90 (PF tracker

with OAM) and 66 (Mean-shift tracker). As we can see, the ground truth ranking

result of these three trackers gives the same ordering as the proposed evaluation

algorithm.

It is noteworthy that the above comparison is valid only because that the

detection rates for the tracking algorithms are similar at the false alarm rate of

0.6. At a different operating point where the detection rates are not similar (for

the same false alarm) such a comparison becomes invalid as tracking with a higher

detection rate tends to report larger number of detected failures.

3.6.4 Summary

To summarize, the following properties of the proposed evaluation scheme are

highlighted. The proposed evaluation algorithm is shown to detect common failure

modes in visual tracking and also compares favorably with ground truth based
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Figure 3.17: The ranking result of the three trackers: the particle filter-based tracker

with OAM and FAM, the Mean-shift tracker. The above is the corresponding ROC

curve of each tracker on the data set described in Figure 3.14. The bottom plot is the

number of detected failures (the number is in percentage) using the proposed evaluation

algorithm for each tracker at different false alarm rates.

evaluation. The value of ∆t is shown to be critical in the efficiency of the fast

approximations. A value of ∆t = 40, or 60 seems reasonably large enough to

register failures. It should be noted that fast approximations are meaningless

after detection of failure, as the reference point against which they are compared

does not correspond to good tracking. The choice of threshold to declare poor

performance can be decided for a specific tracking system by inspection from the

ROC curve. The choice is also influenced by the value of ∆t. It can be seen that for

all the experiments in this dissertation, the inference from the proposed evaluation

agrees well with subjective evaluation of track failures. The supplemental material
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includes videos showcasing the working of the evaluation algorithm.

3.7 Conclusion

In this chapter, we present a method to provide automatic and online evaluation

of the tracking performance in visual systems without the knowledge of ground

truth. The proposed evaluation algorithm works by verifying the prior at time

t = 0 against the posterior of a time-reversed chain. The time-reversed chain

is initialized using the posterior of the tracking algorithm. We characterize the

performance of the algorithm using ROCs under various operating conditions.

While the focus in the dissertation has been on systems using particle filtering,

the evaluation method is fairly independent of the tracking algorithms used. In

this regard, we show that the algorithm works well for other tracking approaches

such as the KLT and the mean shift tracker. We also show that the evaluation

methodology can also be used to rank different tracking algorithms according to

their performance. We envision the use of the evaluation methodologies proposed

in this dissertation for online verification and ranking of tracking performance.

Future research efforts include tracking algorithms that optimize the evaluation

metric so as to minimize the chances of track failure.
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Bi-directional Visual Tracking

4.1 Introduction

In the last chapter, we applied the time reversibility property of object motion to

online performance evaluation of tracking systems. This online evaluation method

can greatly improve the robustness of tracking systems and enable persistent track-

ing of objects. In this chapter, we continue to apply the time reversibility idea to

improve the accuracy of visual trackers.

Given that the kinematic and dynamic information of the object can not be

observed from the video directly, researchers try to infer the motion information

through some observable properties of the object under motion, among which

the appearance of the object is probably the most widely used. There are sev-

eral tracking algorithms that have been developed based on the assumption that

the appearance of the object is unchanged or the change can be explained us-

ing some object motion models. Most matching-based tracking algorithms fall

in this category, along with the popular KLT [64] [89] [85] and the mean shift

tracking algorithm [16] [17]. To improve the tracking performance, various 2D

or 3D appearance models have been developed to handle the appearance change
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during tracking. Researchers have also incorporated additional knowledge, like

camera calibration, scene geometry, scene illumination, etc., for appearance-based

tracking. Algorithms like CONDENSATION [44] and particle filtering based al-

gorithms [25] directly incorporate the dynamic model of the object motion into

tracking methods. These algorithms generally involve an object state transition

model and an observation model, which combines both motion and appearance

models of the object. The dynamic models used in these algorithms are generally

loosely defined, which are good for general object motion, not just for a specific

motion model, like constant speed, constant acceleration or a random walk plus

some noise.

Researchers have taken various approaches to exploit and incorporate more

information about the true object motion, like adaptive speed or trajectory pre-

diction models [106]; however, to the best of our knowledge, a fundamental char-

acteristic called time-reversibility of object motion has been ignored in most of

the past and current works. Simply speaking, since all the targets to be tracked

are macroscopic solid objects in the physical world and the physical laws of clas-

sical mechanics are time-symmetric, all the motion process of the targets should

be time-reversible, which means that the time-reversed process satisfies the same

dynamical equations as the original process. This motion reversibility directly

implies the reversibility of tracking algorithms if they can perfectly follow the

moving of objects. Therefore, a good tracking algorithm should perform equally

well during backward tracking. However, most of the existing tracking algorithms
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are designed by looking forward only in the time domain instead of looking bidi-

rectionally during tracking.

If we look at the tracking problem as a black box shown in Figure 4.1, the

inputs of the black box are the observations and object state at t−1, the output is

the object state at the current frame t. The process of how the object evolves from

the previous state to the current state is not totally obvious to the observers due to

the limited information contained in the video data. We claim that irrespective of

the specific trajectory of object motion, if we switch the time axis in the physical

world, we can expect that the object will go back to the exactly same state at time

t− 1. Hence, if the tracking strategy does capture the true object motion during

this time interval, which implies that the object state is well estimated at time

t, then using the same tracking strategy, the backward estimated object state at

time t− 1 should be identical to the forward state at time t− 1. On the contrary,

if the tracking algorithms do not preserve the time-reversibility characteristic of

the motion process, it is very possible that it has failed to track the object or may

fail soon. In practice, it is very difficult for the forward tracking algorithms to

maintain the time-reversibility property with time.

In this chapter, we present a new bi-directional KLT feature tracker. Instead

of just looking forward in the time domain, we simultaneously perform both the

forward and backward tracking using the time-reversibility constraint. The new

algorithm reduces the possibility of the tracker getting stuck in local minima and

significantly improves the tracking robustness and accuracy. The experimental
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Figure 4.1: An illustration of visual tracking

results show that the improved KLT tracker significantly outperforms the orig-

inal KLT tracker without demanding additional computational resources. The

proposed time-reversibility constraint is general enough to be incorporated into

many existing tracking algorithms, as well as for computing optical flow.

Before proceeding further, we clarify the notion of time-reversibility and dis-

tinguish it from backward processing or smoothing. Some algorithms also consider

backward tracking [87] [10]; however, they perform forward and backward tracking

separately and then merge the results in order to get better performance. There

are some other works using backward tracking in video coding area [83] [84]; how-

ever, these strategies do not exploit the notion of time-reversibility in tracking.

The consistent image registration method proposed by Christensen et al [14] [13]

is probably the closest to exploiting time-reversibility in spirit.
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CONDENSATION and particle smoothing methods [55] [45] [25] consider both

the past and future observations to get a smoothed estimate, which also involves

backward processing. There is no contradiction between the time-reversibility

constraint and the Bayesian smoothing strategy. In Bayesian smoothing, the

performance improvement is due to the backward-flow of information from future

data while time-reversibility means that the entropy involved in the motion process

is non-increasing. In practice, time-reversibility is only approximately satisfied

due to noise or partial observations. Bayesian filtering or smoothing is trying to

minimize the information decrease during tracking [80], which in effect is similar

to using the time-reversibility constraint.

Many of the current tracking algorithms maximize a likelihood function or

minimize a cost function. Since the likelihood functions usually have multiple

local minima, especially for high dimensional data like images, the tracker may

get stuck in some local minima in practice. In the approach using the time-

reversibility constraint, the chance to find the global minima is higher because

more constraints are incorporated into the optimization process. In the next

section, we apply this bidirectional tracking strategy to the widely used KLT

feature tracker.

4.2 The New KLT with the Time-Reversibility Constraint

In Chapter 2, we have introduced the KLT feature tracker. We notice that the

final solution in (2.11) seems to smooth the forward and backward tracking results
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by simply averaging them. In general the forward KLT results will differ from the

backward KLT results due to asymmetry in image information. The symmetric

expression in (2.8) may be confused with the time-reversibility constraint pro-

posed in this dissertation. However, we can see from (2.8) that after switching

to symmetric expression, the objective function tries to minimize the difference

between I(p− d
2
) and J(p + d

2
) while the KLT method attempts to find the best

match for the feature centering at I(p). We will further explain this point in the

next.

4.2.1 The New KLT using the Time-Reversibility Constraint

Following the original definitions in KLT, we propose a new objective function for

KLT using the time-reversibility constraint.

(d̂, d̂b) = arg min
d,db

∫ ∫

W

[J(p + d)− I(p)]2w(p)dp

+

∫ ∫

W

[I(p + d + db)− J(p + d)]2w(p)dp

+λ(d + db)T (d + db) (4.1)

where db is the backward displacement vector when tracking from t to t− 1,

λ is a regularization parameter. Assuming d and db are small, we can perform

the following approximations using the first order Taylor expansion:

I(p + d + db) ≈ I(p) +∇I(d + db)

J(p + d) ≈ J(p) +∇Jd (4.2)

By setting the derivatives with respect to d and db to zero respectively, we
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have the following constraints which are given in their discrete forms:

0 =
∑ ∑

W

[H(∇H −∇J)T + (∇HT∇I)db]

+
∑ ∑

W

[(∇JT∇J +∇HT∇H)d] + λ(d + db)

0 =
∑ ∑

W

[H∇IT + (∇IT∇H)d]

+
∑ ∑

W

(∇IT∇I)db + λ(d + db) (4.3)

where H = I − J . Solving the above equation group, we finally get:

Ud = ε

U = AD−1C + λD−1C −
1

2
B

ε = (A + λI)D−1(V −W ) +
1

2
(S −R) (4.4)

where the definitions of A,B,C,D, V,W, S,R are given below:

A =
∑ ∑

W

(∇I)T∇I; B =
∑ ∑

W

(∇I)T∇J ;

C =
∑ ∑

W

(∇J)T∇J ; D =
∑ ∑

W

(∇J)T∇I;

R =
∑ ∑

W

I(∇I)T ; S =
∑ ∑

W

J(∇I)T ;

V =
∑ ∑

W

I(∇J)T ; W =
∑ ∑

W

J(∇J)T ; (4.5)

If we re-write the original KLT equation using the above defined variables, we

get:

Z =
1

2
(A + B + C + D);

e =
1

2
(R− S + V −W ); (4.6)
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4.2.2 Comparison to the Original KLT

By comparing the new KLT and the original KLT, we find that although all the

variables appear in both the original and the new KLT equations, the interactions

between these variables are different. The original KLT just linearly combines

the forward-only and backward-only mappings while in the new KLT process,

the forward and backward are performed simultaneously, actually improving the

performances of each other.

Also, we notice that the new KLT has almost the same computational cost as

the original one. Actually in practice, the new KLT even requires less computa-

tions than the original one because the required number of iterations is lower to

achieve the same performance.

An interesting observation is that even when λ = 0, the new KLT still has a

completely different expression from the original KLT. When λ = 0, U and ε are:

U = AD−1C −
1

2
B

ε = AD−1(V −W ) +
1

2
(S −R) (4.7)

This is due to the second term in (4.1). In our experiments, we found that the

new KLT outperforms the original KLT even when λ equals to 0. The reason

is that the first two terms in (4.1) still involve the interaction between forward

and backward processing, implicitly enforcing the time-reversibility constraint. In

fact, the second and third terms in (4.1) both improve the tracking performance.

We will further study their contributions in section 4.3.
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4.2.3 Good Features to Track

Shi and Tomasi [85] presented a method to select good features to track. The

method is based on the rationale that if both the eigenvalues of the matrix R

as defined above are larger than some threshold, which implies that the KLT

equation can be robustly solved, then the feature in general will exhibit complex

textures and be good for tracking.

Since the new KLT has the same form as the original one, we can also judge

if a feature is good for tracking or not. Actually in both symmetric KLT and

the proposed new KLT, the corresponding matrix contains information from two

images, so the explicit physical interpretation of the eigenvalues is hard to see.

Both the original KLT matrix and the new KLT matrix show good properties in

terms of their stability in solving the equations. We studied the condition number

of the both matrices, which is in general an indication of good stability if the

value is close to 1. The experimental result shows that the condition number of

the new KLT matrix is on the average more closer to 1 than the original KLT.

This provides an explanation for the improvement due to the new constraint.

As different tracking algorithms lead to different matrices, evaluating if a fea-

ture is good or not for tracking is not completely determined by the characteristic

of the feature itself. A bad feature in one algorithm can be good in the other. In

the experiments, we find that the proposed new KLT can track some features well

when the original KLT fails to track them.
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4.3 Experimental Results and Discussions

We implemented the new KLT algorithm based on the latest C code of the original

KLT algorithm which is widely used and can be downloaded from the website:

http://www.ces.clemson.edu/ stb/klt/.

4.3.1 Performance Evaluation on Clean Sequences

4.3.1.1 On Real Sequence With No Ground Truth

First, we compare the results on the sequence contained in the KLT code package,

which we call ‘the Table sequence’. In the Table sequence the camera exhibits a

rotation from left to right. To fairly evaluate the performance, we used the same

set of parameters for both algorithms. We also disabled some thresholds for

removing bad features during the tracking procedure unless they are out of the

image region.

We selected 200 feature points for both algorithms using the same method

contained in the package which is based on [85], so the starting feature points

are the same for both algorithms. The iteration number is set to 10 which is

sufficient for both algorithms to converge. Figure 4.2 shows the results for both

algorithms at the starting and ending frames together with some enlarged details.

The feature points are colored as red dots. We circled the points where the two

algorithms differ significantly, say, by more than 3 pixels. By visual inspection,

we found that the new KLT kept tracking well on those points while the original

KLT lost track of them.
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Figure 4.2: Tracking results of the original KLT (left column) and the proposed KLT

(right column) using the time-reversibility constraint at the starting and ending frames.

The green circled points on the left side differ significantly with the yellow circled points

on the right side. It is easy to see that the new KLT keeps tracking those points well

while the original KLT fails to track them.
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error λ = 0 0.05 0.2 2 20

n 1427 1427 1427 1427 1426

mean original KLT 0.2351 0.2351 0.2351 0.2351 0.2353

new KLT 0.1429 0.1424 0.1435 0.1487 0.1429

variance original KLT 1.7419 1.7419 1.7419 1.7419 1.7431

new KLT 0.7935 0.7936 0.7928 0.7983 0.7898

Table 4.1: The generated random translation is uniform between 0 and 12 pixels in both

directions, where we can see the best performance is achieved when λ = 0.05. The value

of λ is normalized by the size of the feature window. n is the number of points involved

in the experiment. The value of error is in pixel unit.

4.3.1.2 On Synthesized Sequence With Generated Ground Truth

To further quantitatively evaluate the performance, we use the first frame of the

Table sequence to generate a new sequence with random translations in both

x and y directions. Therefore all the features points have the same motion as

the generated random translations. Two-level image pyramids are used in both

algorithms. The results of the algorithms are then compared with the ground

truth. The effect of different λ has been studied on two synthetic sequences with

different motions. We summarize the quantitative results in Table 4.1 and 4.2.

For the sequence with translation distributed between 0 to 12, the mean error

curves with respect to λ are plotted in Figure 4.3 with red and blue lines for the

original and new KLT respectively. As we can see, the new KLT using the time-

reversibility constraint consistently outperforms the original KLT in different λ

values. The average improvement is more than 35%.
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Figure 4.3: The mean errors of the original KLT and the new KLT. The red and blue

lines are the results for the sequence with translation uniformly distributed from 0 to

12; the yellow and green lines are the results for the sequence with translation uniformly

distributed from 0 to 20.

In this sequence, the change due to λ is quite small between λ = [0, 20].

Comparing the error at λ = 0 and others, there is not a significant change while

the performance is still much better than the original KLT. This result shows

that the second term in (4.1) does contribute to improving the results. Both the

average errors of the original and new KLT methods on this sequence are quite

small, primarily due to the motion being small translation. From these results,

we probably can say that the improvement on good sequences mainly comes from

the second term.

We also generated another sequence with increased translation magnitude. We

can see the improvement due to the third term in Table 4.2. We find the value

of λ to achieve the best performance increased in the new sequence with larger
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Figure 4.4: Tracking results of the original KLT (left column) and the proposed improved

KLT (right column) at the ending frame on the generated sequence with known ground

truth. The green and yellow cross signs provide the ground truth positions of the feature

points. The up-left corner of the small red block should overlay on the center of the

cross if tracking were perfect.

motion. The mean errors of both algorithms are shown in yellow and green curves

respectively in Figure 4.3. This result tells us that the third term helps more

when the original KLT has more difficulties in tracking than in situations where

it is easier to track. Figure 4.4 shows the tracking results of both algorithms at

the ending frame, where λ used in the new KLT equals to 0.2.
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error λ = 0 0.05 0.2 2 20

n 1235 1232 1231 1233 1237

mean original KLT 1.0973 1.1001 1.1009 1.0974 1.0659

new KLT 0.5019 0.5405 0.4777 0.5066 0.6181

variance original KLT 40.2333 40.3281 40.3601 40.2967 39.2340

new KLT 9.9528 13.7966 9.2691 9.4448 11.3291

Table 4.2: The generated random translation is uniform between 0 and 20 pixels in both

directions, where we can see the best performance is achieved at λ = 0.2. The value of

λ is normalized by the size of the feature window. n is the number of points involved

in the experiment.The value of error is in pixel unit.

4.3.2 Performance Comparison on Noisy Sequences

We add Gaussian noise to the sequence with random translations uniformly dis-

tributed between 0 and 12. The variance of the zero-mean noise is 0.005 which

is normalized by the range of the image intensity. Table 4.3 shows the results of

both algorithms for different λ; and the mean errors are plotted in Figure 4.5. It

is seen that the best performance is achieved at λ = 40, which confirms the above

conclusion that larger value of λ should be used for more difficult sequences. This

is because the values of the first two intensity evaluation terms increase for more

difficult sequences; thus to make the third term comparable to the first two terms,

a larger λ is needed. Figure 4.6 provides the tracking results for both algorithms,

where λ equals to 40 in the proposed new KLT.
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error λ = 0 2 20 40 60

n 1311 1310 1282 1269 1264

mean original KLT 1.3192 1.3158 1.3395 1.3331 1.3210

new KLT 0.9666 0.9278 0.9180 0.9165 0.9306

variance original KLT 11.9968 12.0254 12.3895 12.1590 11.7519

new KLT 2.4290 2.3080 3.3098 3.4253 3.5468

Table 4.3: Results on the noisy sequence with random translation uniformly distributed

from 0 and 12 pixels in both directions, where we see the best performance is achieved

at λ = 40. The value of λ is normalized by the size of the feature window. n is the

number of points involved in the experiment. The value of error is in pixel unit.
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Figure 4.5: The mean error of the original KLT and the new KLT. Gaussian noise is

added in the sequence with translations uniformly distributed from 0 to 12.
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Figure 4.6: The tracking results of the original KLT (left column) and the improved

KLT (right column) on a noisy sequence at the ending frame. The green and yellow

cross points provide the ground truth positions of the feature points. The up-left corner

of the small red block should overlay on the center of the cross if tracking were perfect.
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Figure 4.7: The mean error of the original KLT and the new KLT for different iteration

numbers from 1 to 10.

4.3.3 Speed Comparison

The new KLT using the time-reversibility constraint is a real-time algorithm,

which does not add noticeable increase in computational cost, compared to the

original KLT. This can be expected from the similar linear equations solved in

both the original and new KLT. We plot the mean error of both algorithms under

different iteration numbers in Figure 4.7. It can be seen that the new KLT even

converges a little bit faster than the original KLT.

4.3.4 Good Features to Track

We studied the condition number in the original KLT matrix Z and the new KLT

matrix U. The condition number here is defined as the absolute ratio of the

maximal eigenvalue to the minimal eigenvalue of a matrix. When solving a linear
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Figure 4.8: The average condition number of the matrices for 200 points at each frame

during tracking.

equation like Mx = µ, if the condition number of M is large, even a small error

in µ may cause a large error in x. In the original Table sequence, the average

condition number of the original KLT matrix is about 8.9171 while the condition

number of the new KLT matrix is about 2.6621. This is based on the evaluations of

200 points across 10 frames. And from Figure 4.8, we also find that the condition

number increases in the original KLT while it remains nearly constant in the new

KLT based on the time-reversibility constraint. We believe that this explains the

performance improvement due to the new constraint, from the view of numerical

computation stability.
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4.3.5 Additional Results on Large Object Tracking

To test the improvement of the new tracking strategy using the time-reversibility

constraint on tracking large objects, we performed an exhaustive search based

tracking on a generated very noisy sequence. The objective functions used are

the same as the original KLT and the new KLT. The difference is in that in KLT,

a gradient decent like search method is used while an exhaustive search method

is used here. The results are shown in Figure 4.9. We can see that using the

time-reversibility constraint, the block can be tracked well while it can not be

tracked without such a constraint. Thus we believe that by combining the time-

reversibility constraint with some large-object tracking algorithms could improve

the tracking performance too.

4.4 Conclusions

In this chapter, we exploited the time-reversibility constraint in designing visual

tracking algorithms, which has not been studied before. We applied this idea to the

popular KLT feature tracking algorithm and developed a new KLT algorithm using

the time-reversibility constraint. Extensive experimental results were presented

comparing the performance between the original KLT and the new KLT. The

results show that the performance of the new KLT algorithm has been significantly

improved. A simple experiment on tracking large object is also given, which shows

that the proposed strategy is very promising for tracking large objects. The work

on improving other tracking algorithms, such as mean shift tracking, and optical
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Figure 4.9: Tracking the black block by searching in a neighborhood around the ob-

ject using a fixed appearance model. The top row shows the result without the time-

reversibility constraint at the starting and ending frames, which fails to track the block.

The bottom row shows the result using the time-reversibility constraint at the corre-

sponding frames, which obtained good tracking of the block.
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flow methods will be studied in the future.
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Chapter 5

Boosted Ranking Model for Model Alignment

Model alignment has been an active research topic in computer vision for over

two decades. The task of model alignment is to adjust a shape model or tem-

plate to be in accordance with the shape of an object in images. Model align-

ment has broad interactions with many other vision tasks, such as, object detec-

tion/tracking/recognition, activity analysis, human expression recognition, etc.

The performance of model alignment is very important for subsequent applica-

tions; however, the accuracy and robustness of present algorithms are still not

sufficient for practical applications on large data sets.

5.1 Model Alignment Problem

Model alignment can be viewed as a special registration problem. In general, from

the perspective of data to be processed, the registration problem can be divided

into three categories: image to image, graphics to graphics and graphics to image.

Usually the registration procedures are converted to minimize a distance metric or

maximize a similarity measure which is defined to indicate how good the current

registration is.

Model alignment task belongs to the third category, which tries to overlay a
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deformable shape template on an image to indicate the locations of object com-

ponents or features. Unlike the other two categories where the distance metric

or similarity measure can be straightforwardly defined, in the model alignment

problem, it is rather tricky when one has to evaluate the distance or similarity

between two different types of data: images and graphical shape models. This

intrinsic difficulty makes model alignment and other similar registration problems

very challenging yet attractive to many researchers. Therefore, how to avoid or

solve this problem actually characterizes various algorithms developed. Intuitively,

there are two ways to handle this problem: either convert images to graphical fea-

tures or build image instance from the shape model. The first method extracts

graphical features from the image, like edge, corners, structures, etc., and mea-

sures the distance between graphical features and the shape model; however, due

to the difficulty in extracting enough clean and meaningful graphical features

from images, this method has not been successful in practice. The second method

compares the object image and some “standard” image instance built from the

training data to measure the distance in image domain. Algorithms based on

this strategy have dominated the deformable model based alignment/registration

area. The well-known ASM [19], AAM [5] [18] and the most recently developed

BAM [62] algorithms belong to this category. In the following, we will intro-

duce these algorithms for solving the face alignment problem, which is useful for

developing recognition algorithms for non-frontal face images.
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5.2 Prior Work

Cootes et al. proposed successful ASM and AAM algorithms in 1992 [19] and

2001 [18] respectively. The majority of the prior work in face alignment is based

on ASM, AAM or their variations [20] [21] [22] [24] [52] [81] [96].

5.2.1 Active Shape Model and its extensions

We first look into the ASM algorithm proposed by Cootes et al [19]. In ASM, an

object shape is represented by a set of landmark points. The coordinates of the

2D shape landmarks, (xi, yi), i ∈ [1, v], are concatenated in some predefined order

to form a vector denoted by s, where s = (x1, y1, x2, y2, ..., xv, yv)
T . Then the

statistical shape model, which is also called the point distribution model (PDM),

is built using principal component analysis (PCA):

s = s0 + Σn
i=1pisi (5.1)

where s0 is called the mean shape and si is the ith shape basis, the coefficient

pi is the shape parameter computed by projecting s onto the ith shape basis.

Differing from non-statistical active models like Kass’s Active Contour Models

(ACM or ’snakes’) [53] which only aim at imposing smoothness on the curves, sta-

tistical shape models learnt from a training set using PCA analysis represent the

shape model in a parametric way. It gives a compact representation of allowable

variations while prohibiting arbitrary deviations. The active shape model uses a

local appearance model. By sampling along the profile normal to the boundary

in the training set, it builds a statistical model of grey-level structure for each
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landmark. When aligning the shape model to a new face image, the ASM fitting

procedure alternates between searching local landmark, and the projections of the

statistical shape model.

The ASM-based algorithms often suffer from local minima problem while

searching for local landmarks because the 1-D profile appearance model is in-

sufficient to distinguish feature points from their neighbors. Many algorithms

have been presented to improve the performance, including more sophisticated

representative and discriminative local appearance models. some examples are

Gabor wavelet presented by Jiao et al. [47], nonlinear kNN-classifier by Ginneken,

et al. [91], and boosted local appearance classifiers like Harr wavelet [30], Fisher-

Boost [90], and real-adaboost [107].

Except for the convergence problem caused by local appearance models, inade-

quate interaction between search steps over shape parameters and local landmarks

also makes the two alternative fitting procedures less efficient and prone to con-

verge to a wrong solution in some circumstances.

5.2.2 Active Appearance Model and its extensions

In the original AAM algorithm proposed by Cootes et al. [18], both the statistic

shape and texture models are built using a manually labeled training set and the

principal component analysis.

At the same time, they also try to learn how to adjust the model parameters

for fitting an image after both the texture and shape models have been built. The

shape model is the same as in the ASM algorithm. In a similar way, the statistical

100



5.2 Prior Work

texture model can be constructed from the shape normalized training images:

g = g0 + Σm
i=1rigi (5.2)

The purpose of AAM is to find the optimal shape and texture parameters, p and

r, by minimizing the residual error between the synthesized model instance and

the given image I:

E = ‖g0 + Σm
i=1rigi − I(W (x;p))‖2 (5.3)

where x is the pixel coordinates inside the image patch defined by the current

shape model parameters p, and W (·) warps this image patch to the normalized

shape.

This is a difficult high-dimensional optimization problem as there are usually

dozens of shape and texture parameters to be optimized. The direct gradient

descent algorithms could be very slow and often get stuck in local minima. Ob-

serving that the residual image contains useful information to adjust the model

parameters towards a better fit, the authors used linear regression to establish the

relationship between the residual image and the model parameters:

∆p = As∆I;

∆r = Ag∆I; (5.4)

where

∆I = g0 + Σm
i=1r

0
i gi − I(W (x;p0)) (5.5)
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and

∆p = popt − p0

∆r = ropt − r0 (5.6)

r0,p0 are initial model parameters.

Notice that As,Ag are constants. However this constant linear relationship is

incorrect in general as pointed out by other researchers [5]. The authors have also

noted that this linear relationship only exists in a small neighborhood around the

true solutions [18].

Besides the statistical shape model, AAM algorithms also construct a gener-

ative global statistical texture model to generate a synthetic image that can be

directly compared to the given face image. AAM learns a locally linear relation-

ship between model parameter displacements and the residual errors between the

synthetic image and the image from the training data. The associated search al-

gorithm then uses this linear model to predict changes to the current parameters

to get a better fit. AAM algorithms are expected to achieve more efficient fitting

and better convergence than ASM, as more information is used in training and

fitting processes.

The AAM-based approaches perform well on small data sets. However, learn-

ing the linear prediction models based on texture difference vectors demands sig-

nificant resources when the training data set gets larger. The demand on memory

makes AAM training very difficult even with a moderate number of images.

Furthermore, the constant locally linear relationship between the error image
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and the model parameters is in general incorrect, which affects both the con-

vergence rate and fitting accuracy. Hence, Baker and Matthews presented the

Inverse Compositional(IC) and Simultaneously Inverse Compositional(SIC) algo-

rithms for AAM fitting to avoid inaccurate modeling of this relationship [65]. The

authors use this efficient analytical gradient descent algorithm to minimize the

squared error between the given image and the synthetic image. However, like

other gradient descent algorithms, IC/SIC needs extra measures to avoid the local

minima problem. The authors also point out in [37] that if AAM fails to fit, the

main reason is due to the difficulty of the fitting process rather than the inability

of the AAM to model the image.

It has been reported that the AAM alignment performance degrades quickly

when processing an image that is not in the training set [62]. Also, according to

Gross, et al. [37], person specific AAMs are easier to build than generic AAMs.

The global eigenspace-based appearance model is asserted to be the main reason

to cause these problems.

Most of the AAM body of work is based on the generative model of [5], which

greatly improves the efficiency of the AAM-based face alignment. Some AAM

variations include discriminative fitting methods [24] [81]. Other representative

works include [60] [111]. There are also many other improvements to AAM, for

handling occlusion, illumination change and other problems in alignment [38] [36]

[50] [51], but the generalization and convergence problems are seldom addressed.

103



Chapter 5. Boosted Ranking Model for Model Alignment

5.2.3 Bossted Appearance Model

Lately, motivated by some learning based-tracking and detection algorithms [4]

[41] [97], Liu presented [62] a boosted appearance model-based face alignment ap-

proach to alleviate the generalization problem of conventional AAM algorithms.

Instead of training a generative eigenspace-based appearance model, BAM tries to

train a two-class classifier which is able to distinguish correct and incorrect align-

ments using the GentleBoost algorithm and Haar wavelet features. Fitting a shape

model into an image is an optimization process of maximizing the classification

score.

Figure 5.1: Shape Model and Warping Function. (a) Representation of the mean shape.

(b) The face image with a superimposed shape. (c) The face image warped to the mean

shape domain.

The appearance model of BAM is simply a collection of m features {ϕi}i=1,...,m,

computed over the shape-normalized face image I(W (x; p)) as shown in Figure

5.1. The popular rectangular Haar-like features [74] [95] are chosen here, mainly

because of their computational efficiency, which exploits the integral image repre-

sentation [95], and because of their success in face-related applications [62] [95].
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Figure 5.2: Appearance Features. (a) Warped face image with feature parametrization.

(b) Representation of the five feature types used by the appearance model. (c) Notional

template A.

As shown in Figure 5.2, a rectangular feature can be parameterized as follows

ϕ=̇AT I(W (x; p)) (5.7)

which is intended as the inner product between the vectorized version of an

image template A, and the vectorized version of the warped face image. The inner

product between the template and the warped image is equivalent to computing

the rectangular feature using the integral image. The image template A can in

turn be parameterized by (α, β, γ, δ, τ) , as shown in Figure 5.2(a), where (α, β)

is the top-left corner, γ and δ are the width and height, and τ is the feature type.

Figure 5.2(b) shows the feature types used in this model.

By using discriminative texture features, the BAM algorithms are more robust

to texture variations than AAM-based algorithms. And the boosting method is

capable of learning from a large dataset and generalizing well to new data.

While the idea of using trained classifiers to find the best matches is also

used in some ASM-based algorithms to search for the best local landmarks [30]

[90] [107], BAM differs from these algorithms in its fitting procedure. Owing
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to the continuous output of the GentleBoost classifier, BAM uses an analytical

gradient accent algorithm, which is very similar to IC/SIC methods, except BAM

maximizes the classification score instead of the residual error.

In essence, BAM only learns how to distinguish good and bad alignments.

Without learning the relationship between the texture change and the shape pa-

rameters change, the BAM fitting procedure is also prone to get stuck in local

maxima. Another potential problem of BAM is that the classification perfor-

mance may drop as the size of the dataset increases, which will result in poor

alignment accuracy.

5.3 Boosted Ranking Model(BRM)

From the analysis given above, we observe that most alignment algorithms focus

on how to build more sophisticated texture/shape models and the optimization

criterion without considering the fitting procedure at the same time. However,

the fitting procedure usually involves the optimization process in very high di-

mensional image and shape spaces. Insufficient or incorrect information(like the

constant linear relationship) of the fitting process will lead to inefficient or bad

alignment.

In this section, we propose a novel and efficient strategy to learn how to im-

prove the score function to simplify the fitting procedure. On the one hand, our

method is different from the rigid constant linear models used to establish the re-

lationship between an image and its synthesized model instance, which has been
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proved to be incorrect in general and an obstacle to improving the alignment

performance; on the other hand, unlike IC/SIC and BAM algorithms which do

not exploit global knowledge about the optimization space, our method provides

sufficient guidance in modifying the shape parameters all the way toward optimal

solutions. This is achieved by learning through a continues boosted ranking al-

gorithm on the deformed face manifold built from a training set. The proposed

method enables the optimization process carried on a local-extrema-free surface

from a random start location to the optimal solution. This greatly improves the

fitting performance and accuracy.

5.3.1 The Intuition Behind BRM

In fact, from the above AAM formulation, it is easy to see that given the initial

model parameters, the synthesized model instance g0 + Σm
i=1r

0
i gi will be fixed for

different images, then according to 5.4, the optimal solution is actually determined

by I(W (x;p0)). This means that from a partially overlayed image patch, one can

infer the whole image information, which is obviously infeasible.

Matthews and Baker [5] proposed IC/SIC algorithms to efficiently minimize

the residual error directly. They use gradient information to guide the fitting

direction; the Gauss-Newton gradient decent algorithms are then alternatively

applied to modify the shape and texture model parameters; however, without

a global view of the optimization space, using only local information leads to

converge to local minima easily, especially in such high dimensional image/shape

joint spaces.
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How to correctly utilize the information of an object which is partially con-

tained in the initialization and intermediate image patches? To record all the

(initialization, optimal solution ) pairs is impossible and inefficient. Even if we

can do that, there is still ambiguity when fitting a new image because of the one

to many mapping between the initial image patch and optimal solutions. Re-

lying only on the local image gradient is unreliable in some circumstances and

insufficient in general.

In this chapter, we propose a novel strategy to learn how to utilize the image

information to guide the fitting process. To illustrate this idea, let us first take a

look at the data manifold consisting of image patches defined by the correct and

incorrect shape models. Given an image I and the hand labeled shape model s0,

by perturbing s0 to get distorted shape models denoted by sj, we can get as many

image patches as possible which are defined by the correct and perturbed shape

models. Now we can warp all these image patches into the normalized shape and

denote the normalized patches as I(W (x, sj)). These patches lay on a manifold

in a high-dimensional image space. Using classic nonlinear dimension reduction

methods like Isomap [88] or LLE [79], etc, we can unfold this manifold and com-

pute their geodesic distances to the patch warped from s0. This geodesic distance

is a global indication of how far it is to a specific reference point. In our case, the

dimension of this manifold is determined by the number of shape eigen-bases. For

example, if we use sj = s0 +Σn
i=1p

j
isi, then the vector (pj

1, p
j
2, ..., p

j
n) identifies each

patch in this manifold and hence ‖p0 − pj‖
2

is a good approximation of geodesic
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distance. If we treat pj as variables to minimize this distance using gradient de-

scent like methods, the optimal direction can always be given by p0−pj and this

process contains no local minima. Therefore, instead of minimizing the residual

error of texture images in (5.3), we aim at directly minimizing the shape distance:

D = ‖p0 − p‖2 (5.8)

However, when fitting a new image without knowing p0, we can not minimize

(5.8) directly. Also, like in minimizing (5.3), we have analyzed that prediction of

p0 using imperfect p, if it is possible, is unreliable and likely to converge to local

minima.

5.3.2 Learn a Score Function without Local Extrema

Noticing that the useful information about how to get closer to the true solution is

actually contained in the image patch defined by the shape model, we can define

a function F on I(W (x,p)) to extract the useful image information and have the

following property:

‖F (I(W (x,p0))− F (I(W (x,p))‖2 ∝ ‖p0 − p‖2 (5.9)

then we can minimize the following distance instead of (5.8):

DF = ‖F (I(W (x,p0))− F (I(W (x,p))‖2 (5.10)

In the original AAM and IC/SIC algorithms, they actually use F (I) = I. Here

we propose to use machine learning methods to learn how to build the function F .
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Different from boosted regression methods used in [21] and BAM which is a two

class regression method, usually requiring F (I) = θ(p), where θ(·) has countable

discrete scalar outputs, we emphasize that it is not proper to force a rigid equality

sign, especially when F is a continues function which is desired in many cases,

based on the following considerations:

• First, for different images, it is unreasonable to require F (I) = F (G) when

pI = pG or θ(pI) = θ(pG).

• Second, even for the same images, it is still unreasonable to require:

F (I(W (x,p1))) = F (I(W (x,p2))) (5.11)

when θ(p1) = θ(p2)

In our method, as shown in Figure 5.3, we only expect the function F to

preserve the ranking order along the steepest descending direction between any

given start point p and p0, namely:

F (I(W (x, α∆p))) > or < F (I(W (x, β∆p))) (5.12)

where∆p = p− p0, and, 0 < α < β < 1

By doing this, on the one hand, if F can perfectly satisfy the above requirement,

then there will be no local extrema during fitting process, otherwise it will contra-

dict (5.12); on the other hand, comparing to the regression requirement, (5.12) is

more reasonable and flexible for learning F . To learn such a function, we need a

rank learning algorithm instead of regression or classification. We also claim here
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that this ranking idea fits the essence of fitting process most. More details of the

proposed training and fitting algorithms are given in the next section.

Figure 5.3: Performance evaluation on a PETS sequence including ground truth. (Top

three rows) Tracking results at frame numbers 1, 30, 60, 90, 120 and 160. (bottom

three rows) Evaluation results using proposed statistics and its fast approximations and

the ground truth. Tracking performance remains fairly constant as shown by both the

ground truth and the proposed evaluation strategy.

5.4 The Detailed BRM Algorithm

From the above analysis, we have concluded that we want to learn a function

F that can preserve the ranking order along the vector p − p0 for any given

start point p. In practice, we should keep in mind that if ‖p − p0‖ is too large,

say the overlapping between I(p) and I(p0) is too small or even no overlapping,

there is no way that we can learn this ranking information to help fitting since

there is insufficient or no information about the fitting direction contained in the

initialization. Hence, the perturbation of the shape parameters should remain in

a reasonable range.
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5.4.1 Balanced Positive and Negative Sample Sets

Given a training set with hand labeled shape models {(I1, s1), (I2, s2), ..., (IN , sN)},

the statistical shape models = s0 + Σn
i=1pisi can be trained in the same way as

in ASM/AAM. Now we start to learn function F as required by (5.12). However,

it is infeasible to exploit all the possible initialization p and α, β. We solve this

problem by sampling on the data manifold and learning a continues function F

which behaves like (5.12) in the neighborhood around each sample; therefore, as

long as the sampling is dense enough, we can still get an approximate but good

enough solution as required.

Considering a face dataset consisting N labeled face images, by perturbing

the shape parameters p in different directions, we can get a series of perturbed

shape models for each training sample, then we sample along p − p0 to get a

vector of discrete samples in ranking order. Suppose for each training samples, we

randomly perturb U times to get K starting points, and for each starting point

we take V samples along the steepest descent direction. U, V can be different for

different images. The perturbed shape parameters can be denoted by:

{pi + v∆pu}i=1,...,N ;u=1,...,U ;v=1,...,V (5.13)

Using pertubed shape parameters, we can generate the perturbed training

images {I
(u,v)
i }, such that

I
(u,v)
i =̇Ii(W (x; pi + v∆pu)) (5.14)

Figure 5.4 shows some examples of the generated training images. Since our
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Figure 5.4: Training Samples. Top two rows and bottom two rows are training samples

generated from the same face image (Ii and Ij respectively). Samples from each row

have been generated from the original shape-normalized face image on the left, and

with shape-perturbation parameters u1, u2, u3, u4. From left to right the parameter v

increases, and the shape parameter is varying according to Equation (5.13)

goal is to learn a function that can maintain the order of the generated traning

samples, the training task can be handled by ranking algorithms. Before learning

the rank function, we need to break the long ordering sequence into pairwise

data, in which a positive sample can be defined as the consecutively ordered

pair x+uv = (I
(u,v+1)
i , I

(u,v)
i ), and will be labeled with y+uv = +1 in our training

algorithm. Similarly, a negative training sample is defined as the inverse ordered

pair x−uv = (I
(u,v)
i , I

(u,v+1)
i ), and will be labeled with y−uv = −1. Therefore, the

training sets of positive and negative samples in our BRM algorithm are given by:

Positive Set = {x+iuv}i=1,...,N ;u=1,...,U ;v=1,...,V −1

Negative Set = {x−iuv}i=1,...,N ;u=1,...,U ;v=1,...,V −1 (5.15)

It is noticable that the positive and negative sets have the same cardinality,
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which means the they are totally balanced. Therefore, our training algorithm

will not suffer from unbalanced training sets as in the BAM algorithm. To learn

a function F (I) which can preserve the ranking order for each training sample,

rank learning methods are needed.

5.4.2 Rank Learning Algorithm:

Rank learning, together with ordinal regression and preference learning, refer to

inductive learning methods from ordered data in the area of supervised learning.

Tailored to solve problems between classification and metric regression, they have

many applications in information retrieval, econometric models, classical statistics

and other social research areas. In contrast to using statistical models, machine

learning-based rank learning/ordinal regression methods have drawn a lot of at-

tentions in recent years. Herbrich et al. [40] proposed a support vector learning

method for ordinal regression which models the ranks as intervals on a real line

and optimizes the loss function based on the true ranks and features. This method

was followed and extended by many other researchers [56] [77] [102] [1]. However,

the absolute numerical ranks used in ordinal regression formulation restricts its

applications where the relative ranking preferences are available between pairs of

training data. Later, by converting paired data ranking into binary classification

problems, Joachims proposed a ranking SVM method which has been successfully

used to improve search engines [48]; Freund et al. designed the RankBoost al-

gorithm in the setting of collaborative filtering [31]. These algorithms and their

derivatives have found abundant applications mostly in the area of information
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retrieval.

In the Computer Vision community, [3] [32] have utilized ranking algorithms

for shape and image retrieval. Some researchers introduced the RankBoost [66]

algorithm into shape localization and detection. Yan et al. [103] proposed the

Constrained RankBoost approach to model the likelihood of local features associ-

ated with the landmarks of an object in their RPBF shape localization framework.

In RPBF, the shape inferring process is conducted through maximizing the pos-

terior probability composed of likelihood of local features and prior probability of

shape; however, the assumption that the local features around different key points

are independent is obviously inaccurate, which reduces the chance that the true

shape can be found from solving the posterior probability even using sophisticated

optimization techniques. Zheng et al. [109] also used RankBoost in their exam-

ple based shape detection work. By creating a sorted image list using predefined

warping templates for each image in the training set, the authors use RankBoost

to learn a relative similarity function. When detecting the shape in a new image,

an exhaustive testing with all the warping templates applied to this image will be

conducted and the top k candidates with the largest responses will be selected to

build the detected shape using the kernel-weighted average. This method lacks

sound shape reconstruction theory from a set of un-orthogonal base shapes.

In order to compare with BAM method, we developed a GentleBoosted ranking

algorithm to learn the rank function in our experiments. We also tested the

RankBoost algorithm and observed that the performances of both algorithms are
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To learn a strong rank function F (I) from paired training samples

1. Build training samples according to 5.15: (I i
k,l, I

i
k,l+1), i ∈ [1, N ], k ∈ [i,K], l ∈

[1, L]. Initialize weights wm = 1/M , M = N ∗K ∗ L.

2. for t = 1, 2, ..., T do

(a) Find the optimal weak rank function ht(I) to minimize the weighted least-

squares mis-ranking error:

ht(I) = argmin
h∈H

M
∑

m=1

wm[1− (h(Im)− h(Im+1))]
2 (5.16)

(b) Update F (I) = F (I) + ht(I).

(c) Update the weights by wm = wme−ht(Im) and normalize the weights such that

∑M

m=1 wm = 1

3. Output the rank function F (I) =
∑T

t=1 ht(I).

Table 5.1: Outline of the proposed training algorithm.

similar.

We generated the positive and negative samples as described above. In our

settings, each positive sample pair has its corresponding negative sample pair and

their contributions to the ranking cost function are exactly the same; therefore,

in our training algorithm, we actually only consider the positive sample pairs as

the input. As a side benefit, our algorithm will not suffer from the unbalanced

positive/negative samples as classification based methods. The training algorithm

is summarized as Algorithm 5.1.

Figure 5.5 shows the selected Harr features by our training algorithm. We
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5.4 The Detailed BRM Algorithm

see that most features are well aligned with the boundaries of the natural facial

features, hence containing abundant image information.

Figure 5.5: Selected Appearance Features. (a) Representation of the top 5 Haar features

selected by Algorithm 1. (b) Representation of the top 6-15 Haar features. (c) Spatial

density map of the top 50 Haar features. Most features are well aligned with the

boundaries of natural facial features.

5.4.3 Fitting On a Ranked Surface

The weak function used in our experiments is the monotonic arctan function,

which can be substituted by other continuous sigmod functions. Using the Harr

wavelet features, the analytical expression of the weak function is constructed as:

ht(p) =
2

π
arctan(gtAtI(W(x;p)− vt) (5.17)

Therefore, the learned rank function can be written as:

F (p) =
T

∑

t=1

2

π
arctan(gtAtI(W(x;p)− vt) (5.18)

As the objective of our training algorithm, this function is designed to preserve

the ranking order along the steepest descending direction from any given start

point p to the true solution p0. This guarantees that the optimal solution can be
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found by even using the basic gradient ascent method. The derivative of function

F with respect to p is:

dF

dp
=

2

π

T
∑

t=1

gm[∇I ∂W
∂p

]TAt

1 + [gtAtI(W(x;p)− vt]2
(5.19)

Like IC/SIC and BAM algorithms, by triangulating the landmark sets and

defining a piecewise affine warping function, we can pre-compute the Jacobian

∂W
∂p

. More details can be found from IC/SIC and BAM algorithms [5] [62]. Since

the rank function has exactly the same form as BAM’s classification function, our

fitting procedure is straight forward.

Figure 5.6 shows a few face images with green initial shape masks are well

aligned by the red shape masks resulting from our fitting algorithm.

Figure 5.6: Alignment Examples. Face images with superimposed initial face model

(green), and aligned face model (red).

5.4.4 Comparison with Other Models

The BRM belongs to the same class of models as the BAM model [62]. Therefore,

compared to AAM [18] [65], it enjoys the same benefits, such as robustness to par-

tial occlusions, improved alignment speed, and ability to incorporate knowledge

about both good and bad alignments, while being substantially more parsimo-

nious. In comparison with BAM, our model is the outcome of a very different
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problem formulation. More precisely, the BAM is produced by learning a strong

classifier that is able to distinguish between correct and incorrect alignment, and

the results in [62] empirically show that face alignment can be achieved via gra-

dient ascent on the corresponding classifier score function. However, there is no

guarantee that the gradient will be aimed at improving the alignment (because

the strong classifier can distinguish only between right or wrong fittings). On the

other hand, we consider this fundamental issue at the outset, and propose to solve

the alignment problem by looking for a score function that is concave, hence opti-

mizable via gradient ascent. This leads to learning a strong classifier that is able

to say whether by switching from one alignment to another one we are actually

making an improvement, as opposed to saying whether or not the alignment is

correct. Another advantage (as opposed to BAM), is also the fact that positive

and negative training sets naturally have the same cardinality, which makes the

training problem balanced. These advantages lead to a superior alignment per-

formance of the BRM over the BAM, as we will show in the experiment section.

5.5 Experimental Results

5.5.1 Face Dataset

We start by describing the dataset used for training and testing our approach. It is

composed of a total of 964 images constituted from the aggregation of three pub-

licly available datasets: ND1 [12] (534 images of 200 subjects appearing in frontal
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Chapter 5. Boosted Ranking Model for Model Alignment

Figure 5.7: Face Dataset Samples. ND1 database [12] (left), FERET database [75]

(center), and BioID database [86] (right).

view), FERET [75] (200 images of 200 subjects appearing in different pose), and

BioID [86] (230 images of 23 subjects appearing under different background and

lighting conditions). Figure 5.7 shows some typical face images from the datasets.

Each image has 33 manually labeled landmarks. To speed up the training process,

we down-sample each image so that the face width is roughly 40 pixels. We divide

the 964 images in three parts, namely Set 1, Set 2, and Set 3. Set 1 contains the

200 images from FERET, and 200 images from ND1 (one image per subject). Set

2 contains the remaining 334 images from ND1. Set 3 is the BioID dataset. Set 1

is used as training dataset. All the three sets are used in the alignment tests. In

particular, Set 2 allows for testing the performance over unseen data of seen sub-

jects (because different images of them have been used for training), whereas Set

3 allows for testing the performance over unseen data of unseen subjects (never

used for training). Note that Set 3 is particularly challenging because the subjects

are captured under different cluttered background, and illumination.
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5.5.2 Training

Throughout the section we compare three models: the proposed BRM, BAM,

and an adaptation of Rank- Boost [31] that uses the same weak rankings, and

training pairs of the BRM. We do not compare our model against AAM-based

methods [5] [18], as it has been shown in [62] that the BAM outperforms them. We

train the three models with Set 1, which originates the training samples {I
(
i u, v)},

where i = 1, · · · , 400, u = 1, · · · , 10 and v = 0, · · · , 6, corresponding to 24000

positive (and also negative) training pairs. In contrast, the BAM uses 400 positive

and 4000 negative samples, since each image generates 10 negative samples. The

resulting appearance models are such that the BRM and RankBoost have 50 weak

rankings, whereas the BAM has 50 weak classifiers. The shape model has 33 shape

bases and it is the same for all the models.

5.5.3 Convergence Properties

Figure 5.8 plots the false alarm rate (FAR) of the strong feedback functions of

both BRM and RankBoost, as a function of the number of weak rankings, when

the miss-detection rate on the training set is set to 0%. This shows that the BRM

converges faster than RankBoost. In particular, for 50 weak rankings the FARs

of BRM and RankBoost are 1.44%, and 6.58%, respectively.
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Figure 5.8: Feedback Function Performance. False alarm rate of the strong feedback

function when the miss-detection rate on the training set is set to 0%.

5.5.4 Score Function Concavity

Figure 5.9(a) presents the learned score (ranking) function F for 3 images, per-

turbed along 10 different shape-perturbation parameters. Figure 5.9(b) presents

the score function for 100 images of Set 1, each of which is perturbed along one

shape-perturbation parameter. Both cases highlight the concavity properties of

F .

Another way to show the score function is by using grayscale values, as in

Figure 5.10, where each column represents F computed for one image, and each

image has been produced by varying the intensity of only two shape bases. The

range of perturbation is ±1.6 times the eigenvalue of the corresponding bases.

For both seen data in Figure 5.10(a), and unseen data in Figure 5.10(b), F shows

concave properties, as required by construction, with the brightest pixel in the

center, and intensity fading towards the borders.

122



5.5 Experimental Results

Figure 5.9: Alignment Score Function Profile. (a) Score functions of 3 images, cor-

responding to 10 shape-perturbation parameters. (b) Score functions of 100 training

images, each of which corresponding to one shape-perturbation parameter.
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Figure 5.10: Alignment Score Function Surface. Score function F of 5 images randomly

selected from Set 1 (a), and 5 images from Set 2 (b), one per column. Each image is

produced by varying the shape parameter corresponding to two shape bases at a time.

From the top to the bottom rows we vary: (p1; p2), (p3; p4), (p5; p6), and (p7; p8). F

is concave in both seen and unseen data, and this ensures high frequency of convergence

of the alignment.
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5.5.5 Ranking Performance

Using the same methodology for building the training sets of pairs, we build two

testing sets of pairs, one from Set 1, and one from Set 3, and test the ranking

performances of BRM, BAM, and RankBoost. The correct ranking rates are

reported in Figure 5.11(a), which shows the superiority of the BRM versus the

BAM, especially for Set 3, highlighting the stronger generalization capabilities of

the BRM to unseen data. Also, the BRM performs slightly better than RankBoost

on both sets, and therefore it is expected to achieve better alignment performance

as well. Figure 5.11(b) shows that BRM outperforms the BAMalso in a much

harder scenario, where testing pairs are built from Set 3, but with half, and

one quarter of the perturbation used to produce Figure 5.11(a). The reader may

notice the slight drop in ranking performance of both methods as the perturbation

becomes smaller, because it makes the ranking task more difficult.

5.5.6 Alignment Performance

In order to evaluate the alignment quality of the modeling framework, we ran-

domly perturb the ground truth landmarks of a face image, and use them as

initial conditions to align the model. The procedure is repeated multiple times

on each image of the testing set in order to perform a statistical evaluation of

the result. The initial positions of the landmarks are generated by perturbing

the components {pi} of the shape parameter with independent Gaussian noise

with variances that are multiples of the eigenvalues of the corresponding shape
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Figure 5.11: Ranking Performance. (a) Correct ranking rates of the BRM, BAM, and

RankBoost on test pairs from Set 1 and Set 3. (b) Correct ranking rates of the BRM

and BAM on test pairs sampled from Set 3, but with half (12 samples) and one quarter

(24 samples) of the perturbation used in (a).
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bases. An alignment is said to have converged if the Root Mean Square Error

(RMSE) between the aligned landmarks and the ground truth is less than one

pixel. Finally, we assess the alignment robustness and accuracy by computing:

(a) the Average Frequency of Convergence (AFC), given by the number of trials

where the alignment converges divided by the total number of trials; and (b) the

histogram of the RMSE (HRMSE) of the converged trials, which measures how

close the aligned landmarks are to the ground truth.

We test BRM and BAM under the same conditions. For example, both algo-

rithms are initialized with the same set of randomly perturbed landmarks. Both

algorithms have the same constant v in equation (5.13), and also the same termina-

tion condition. That is, if the number of iterations is larger than 55 or the RMSE

between consecutive iterations is less than 0.025 pixels. Figures 5.12(a)(c)(e) plot

the AFC of the BRM and BAM against the amount of the initial landmarks per-

turbation, computed over Set 1, Set 2, and Set 3, respectively. In particular, for

each perturbation value, each image of each set is randomly perturbed 5, 6, or 9

times depending on whether it belongs to Set 1, Set 2, or Set 3, respectively.

The AFC plots in Figure 5.12 show that BRM-based alignment is substan-

tially more robust than BAM-based alignment for both seen and unseen data. In

contrast, the accuracy improvement of the BRM over the BAM, demonstrated by

HRMSE, is not as large as the AFC melioration. For example, on Set 3 the average

( ± the standard deviation) BRM-RMSE is 0.5745± 0.1725, whereas the average

BAM-RMSE is 0.6533±0.1594. This means that, when approaching convergence,
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Figure 5.12: Alignment Performance. From top to bottom, AFC and HRMSE of both

BAM and BRM computed on Set 1, Set 2, and Set 3, respectively. The HRMSE is

computed on the trials where both algorithms converge.

BAM and BRM have comparable ability to rank pairs. This aspect is confirmed

also by the left-most plot of Figure 5.11(b). Speed. When computing Figure

5.12(c) on a low-end PC, we recorded the time and number of iterations taken by

our MatlabTM implementation of the BAM, and of the BRM, to converge. When

both algorithms converge, the BAM takes an average of 8.06 iterations, and 0.122

seconds, whereas the BRM takes an average of 7.4 iterations, and 0.112 seconds.

We attribute this improvement to the superior property of the ranking function

of the BRM, compared to the classifier function of the BAM.
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5.6 Conclusion

We have introduced the Boosted Ranking Model (BRM), a new discriminative

face model suitable to perform face alignment. The BRM is associated to a score

function learned from data, which is meant to be local extrema free to ensure

that fitting can be achieved via gradient ascent. Learning a BRM corresponds to

training a boosted classifier with a particular structure, that makes it equivalent

to learning a boosted ranking function. This is done by extending GentleBoost

to rank-learning, which we found to work better than other methods. The BRM

outperforms the BAM for both seen and unseen subjects, especially in terms of

alignment robustness (due to the concave properties of the score function), while

slightly improving the accuracy and computational speed. This is a parsimonious

model (especially if compared with the AAM), with enhanced generalization prop-

erties, that holds the promise of fitting multiple face models to new subjects in

real-time. Our approach is not bounded to work with faces, and it could be ex-

tended to work with other objects of interest. Moreover, the idea of building a

local extrema free function through rank-learning could be applied to other vision

problems, such as discriminative object tracking, which could greatly benefit from

a smooth and local extrema free tracking score function.
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Chapter 6

Future Research Directions

In this dissertation, we have exploited the notion of time-reversibility in visual

tracking. We developed an online performance evaluation method for visual track-

ing systems and presented a bi-directional visual tracking framework. In addition,

we proposed a boosted ranking algorithm to reduce the local extrema in the score

function learned from training samples. In this chapter, we discuss some future

directions and summarize the dissertation.

6.1 Future Directions

We applied the time-reversibility constraint to the well-known KLT tracker and

developed a new KLT algorithm. Extensive experimental results were given com-

paring the performances between the traditional KLT and the new KLT. The

results show the new KLT using the time-reversibility constraint significantly out-

performs the traditional one. We are working toward applying this strategy to

other tracking algorithms, like mean-shift tracker and CONDENSATION/particle

filtering-based trackers. Also, the time-reversibility constraint can be combined

with optical flow to get more accurate motion estimates.

As we know, the model alignment problem can be viewed as a more accurate
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tracking problem. In fact the face alignment algorithm we developed can be

directly used as a face tracking algorithm. This motivates us to extend this work

to develop a visual tracking algorithm with similar motivation, that is, to avoid

being stuck in local extrema during tracking. However, general object tracking

presents its own difficulties: In face alignment, the human face has a relatively

stable structure and the same topology, so we can learn a statistical shape and

appearance models to help alignment. In the general object tracking problem,

different objects have different appearances and shapes, so we cannot use the same

strategy to learn the shape and appearance model. This is the major obstacle for

developing similar tracking algorithms. We will further explore the possibility

developing a novel rank learning algorithm for visual tracking.

6.2 Closing Summary

In this dissertation, we have looked into a seldom noticed but very intrinsic prop-

erty of object motion, time-reversibility, in visual tracking systems. We also

exploited a new learning algorithm for optimization problems. We sucessfully

applied these new algorithms to solve visual tracking and model alignment prob-

lems. In the future, we will continue to explore the applications of these ideas to

different problems.
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