Computational Intelligence, Volume 59, Number 000, 2009

LEARNING AND VERIFICATION OF SAFETY PARAMETERS
FOR AIRSPACE DECONFLICTION

ANTONS REBGUNS, DEREK GREEN, DIANA SPEARS

University of Wyoming, Department of Computer Science
Laramie, WY 82071, USA

GEOFFREY LEVINE
University of Illinois at Urbana-Champaign, Department of Computer Science
Urbana, IL 61801, USA

UGUR KUTER
University of Maryland, Institute for Advanced Computer Studies
College Park, MD 20742, USA

We present a Bayesian approach to learning flexible safety constraints and subsequently verify-
ing whether plans satisfy these constraints. Our approach, called the Safety Constraint Learner/Checker
(SCLC), is embedded within the Generalized Integrated Learning Architecture (GILA), which is an
integrated, heterogeneous, multi-agent ensemble architecture designed for learning complex problem
solving techniques from demonstration by human experts. The SCLC infers safety constraints from
a single expert demonstration trace, and applies these constraints to the solutions proposed by
the agents in the ensemble. Blame for constraint violations is then transmitted to the individual
learning/planning/reasoning agents, thereby facilitating new problem-solving episodes. We discuss
the advantages of the SCLC and demonstrate empirical results on an Airspace Planning and De-
confliction Task, which was a benchmark application in the DARPA Integrated Learning Program.

Key words: Keyword 1; Keyword 2.

1. INTRODUCTION

It is becoming increasingly apparent that sophisticated, multi-agent systems are needed for full
automation in real-world applications involving complex, uncertain, and time-sensitive situations.
Such real-world applications require a variety of capabilities including: planning under uncertainty
and time, learning knowledge for planning, reasoning about world dynamics, and coordinating all of
the above in an integrated artificial intelligence (AI) system.

One approach to addressing such a problem is to develop a single, centralized planning (and
scheduling) system that provides all of these capabilities. However, such large monolithic centralized
systems tend to be too brittle and complex, and are notoriously difficult to debug.

At the other extreme, we have completely decentralized and distributed multi-agent systems.
These systems can provide a wide variety of capabilities and they are much simpler, and more
robust and fault-tolerant, than monolithic centralized systems. However, fully decentralized systems
with desirable joint behavior are much harder to design and construct initially than centralized
systems. Therefore Xuan and Lesser, for example, propose that designers of planning systems start
by engineering a monolithic centralized system, and then follow a procedure for converting to a
decentralized system (Xuan and Lesser, 2002). This results in a fully-distributed, robust multi-agent
planning system. The drawback, however, of decentralized multi-agent planning (and scheduling)

Address correspondence to Diana Spears, University of Wyoming, Department of Computer Science,
Laramie, WY82071, email: dspearsQcs.uwyo.edu.

© 2009 The Authors. Journal Compilation © 2009 Wiley Periodicals, Inc.

2 COMPUTATIONAL INTELLIGENCE

systems is that their behavior can be extremely difficult to understand and predict. In fact, successful
formal verification of the behavior of such systems can be quite challenging, e.g., see (Gordon, 2000).

This paper describes a new approach to automated learning and application of problem-solving
knowledge in the form of safety constraints. When reasoning in real-world domains, providing a
safe solution can be just as important as fulfilling the goals. In particular, if the plan is used to
determine the activities of humans in dangerous environments (as is the case for the military airspace
deconfliction domain presented below), failing to adhere to safety constraints can lead to catastrophic
results. We call our new approach the Safety Constraint Learner/Checker (SCLC). The SCLC is part
of a very large system called the Generalized Integrated Learning Architecture (GILA), funded by
DARPA. GILA adopts a multi-agent planning approach that consists of a loosely-coupled ensemble
of heterogeneous learning and planning agents; it is a compromise between the fully-centralized and
fully-decentralized extremes. (Hereafter, we sometimes abbreviate the term “learning and planning
agent” with the term “agent.”) By adopting a compromise between the two extremes, GILA is more
robust than the centralized extreme and more comprehensible and predictable than the decentralized
extreme.

Although GILA’s ensemble approach yields many benefits, it introduces a new challenge. GILA
combines multiple agents with a global system executive, thereby instantiating a hybrid of decen-
tralization and centralization. The use of multiple agents gives the system multiple perspectives on a
problem, and the central executive combines and arbitrates inputs from the loosely-coupled agents.
The challenge in such a hybrid approach is that combining the outputs from the individual learning
and planning agents into a single coherent plan can be a monumental task. Our solution to this
challenge is to introduce SCLC constraints that can ameliorate this situation to a large extent, e.g.,
by helping to prune unacceptable subplan mergings, thereby resulting in a more tractable search
space. Therefore, the SCLC plays a critical role in GILA.

This paper focuses on the learning and application of constraints in the context of the GILA
architecture. Here, we describe the SCLC, which has been experimentally determined to be critical
to the outstanding performance of GILA. The SCLC consists of two components — a learner and a
checker:

(1) The SCLC’s Constraint Learner (CL) automatically infers safety constraints over a given domain
from a trace demonstrating an example of a human expert’s solution to a problem within that
domain. Such a demonstration trace consists of a sequence of actions and/or decisions taken
by the expert while solving the planning problem. The CL uses a Bayesian learning technique
to analyze such traces of expert behavior and generate safety constraints for the domain. The
safety constraints are subsequently used to pinpoint safety violations within solutions generated
by the ensemble of agents. Any proposed plan containing actions that violate safety constraints
will result in an incorrect or unsafe solution. One of the most important tasks of a human expert
is to resolve such conflicts. The constraint information allows the GILA system to more closely
mimic such expert behavior.

(2) The SCLC’s Safety Checker (SC) is responsible for verifying the correctness of plans (proposed
solutions) in terms of their satisfaction or violation of the safety constraints. The SC inputs a final
proposed plan (composed by the executive from plan fragments from the individual planners),
along with the set of safety constraints from the CL. It then outputs a degree of violation, which
is used by GILA’s executive module to assign blame for each constraint violation found. The
output of the SC can then be used as diagnostic feedback within the system for the purpose of
proposing improved solutions.

Why is the SC needed if the learning/planning agents may use the safety constraints during their
operations? The reason is that although the individual agents may use the safety constraints during
their planning operations, they do not interact with one another during that phase. Because each
agent may not have the domain knowledge, representational expressiveness, or learning and planning
capabilities to solve the entire input problem, the agents output partial (incomplete) solutions, also
called solution fragments. These incomplete solutions are intended to solve portions of the entire
problem. The executive subsequently merges these results into a final full plan. This final plan needs
to be checked because interactions between the partial solution plans will not emerge until they have
been composed into the final plan.

A. REBGUNS et al. LEARNING AND VERIFICATION OF SAFETY PARAMETERS 3

We have implemented the SCLC as a component of the GILA multi-agent system. It could
be considered yet another agent, but we do not call it an “agent” in this paper — because that
might confuse the reader; we reserve the term “agent” for the agents that do planning (as well as
learning and reasoning). The objective of the SCLC within GILA is to automate the constraint
learning/satisfaction subtask in order to simulate the expert’s verification process. Learning and
checking constraints is especially important and challenging for systems that learn or adapt their
strategies (Spears and Gordon, 2000). Sophisticated credit assignment and system recovery /repair
algorithms are needed in order to compensate for the tendency of GILA’s agents to propose schedules
that, when combined, violate domain constraints. Although this is a considerable challenge, most
recently (after two years of research) GILA has become competitive with and even slightly exceeded
human novice trainee performance, which we believe is a considerable accomplishment. The SCLC
appears to have played a notable role in this success, as described in the experimental results section
below.

2. BACKGROUND: GENERALIZED INTEGRATED LEARNING
ARCHITECTURE (GILA)

We start with a summary of the Generalized Integrated Learning Architecture (GILA), funded
by DARPA. (Zhang et al., 2009) gives a much more detailed description of the GILA system. GILA
consists of a set of three learning and planning agents, integrated and coordinated by a central
meta-reasoning executive, and the SCLC.

2.1. Application Domain: Airspace Deconfliction and Management

The domain of application for the GILA project is military Airspace Management in an Air
Operations Center (AOC). Airspace Management is the process of making changes to requested
airspaces so that they do not overlap with other requested airspaces or previously approved airspaces.
The task of de-conflicting these requested changes is normally executed by a human expert, the
airspace manager. The airspace manager receives an Airspace Control Order (ACO) which specifies
all the locations and trajectories of currently approved airspace objects. A set of Airspace Control
Means Requests (ACMReqs) specifies the locations and trajectories of new airspaces that have been
requested. Figure 1 is included to give an impression of the complexity of the problem. Notice the
large number of overlapping airspace shapes. The airspace manager merges the ACMReqs with the
initial ACO. He then modifies the airspaces to remove any spatio-temporal conflicts and/or safety
constraint violations. The types of modifications include movements in latitude, longitude, time and
altitude. Modifications are made with the intention of minimizing the impact on the mission.

The overall task objective is to derive a solution plan consisting of airspace modification actions
that, when executed, merges the ACMRegs into the ACO, while de-conflicting all airspaces and
satisfying all safety constraints. An airspace manager’s task, namely, that of generating such airspace
modification plans, is extremely complex and challenging. In fact, discussions with the DARPA
BlueForce experts at this task reveal that it takes many years to become an expert. In some respects
it is analogous to solving a huge jigsaw puzzle. However, in a puzzle each piece has one correct
location, whereas in airspace deconfliction there are multiple good (or even optimal) solutions. This
complicates the problem, thereby making it exceptionally difficult to automate — because re-planning
might lead an airspace manager down a very different path.

The airspace manager usually uses some implicit expert knowledge in terms of safety constraints
in order to resolve the ambiguity and conflicts between the proposed solutions — i.e., the airspace
manager ensures that the overall solution adheres to critical safety, liveness, and stability constraints
such that when the solution is executed there are no unsafe side effects.

2.2. GILA System Description

GILA has been developed as part of a large team effort, and was funded by DARPA in 2006-
2008. There are three major learning and planning agents in GILA: namely, the Symbolic Agent, the

4 COMPUTATIONAL INTELLIGENCE

FIGURE 1. An example of an ACO (left) and its de-conflicted solution (right). Yellow: ACO airspaces.
Light Blue: airspace requests. Red: conflicts.

Decision-Theoretic Agent, and the Case-Based Agent. We next describe these agents, which were
designed and implemented by other GILA researchers.

Symbolic Agent. GILA’s Symbolic Agent learns and applies hierarchically-organized planning knowl-

edge as well as plans. It selects one of three top-level tasks, each of which corresponds to one
way of modifying an airspace. These tasks are: modify the geometry (i.e., latitude and longitude) of
an airspace, modify the altitude, and modify the airspace’s schedule (i.e., starting and ending times).
Each task is associated with a cost function.
The Symbolic Agent starts with one of the three tasks, along with an expert demonstration
trace, and it learns a primitive sequence of modification operations analogous to those seen in the
demonstration trace but tailored to the current problem. The learning process is similar to that in
a macro-operator learner (see (Botea et al., 2005) for a recent example of macro-operator learning
in automated planning). However, unlike typical macro learners, the Symbolic Agent represents
macros with a Hybrid Hierarchical Representatation Machine that combines both numeric and
symbolic reasoning (Yoon and Kambhampati, 2007). The learning process is a form of simple
logical deduction augmented by numeric reasoning (Yoon and Kambhampati, 2007).

Decision-Theoretic Agent. The primary objective of the Decision-Theoretic Agent is to learn the
expert’s cost function that he/she uses while solving airspace-deconfliction problems. This agent
assumes that the expert implicitly applied an optimized cost function when generating the input
demonstration trace. This implicit cost function must be inferred; therefore, the Decision-Theoretic
Agent applies a decision-theoretic gradient boosting algorithm to infer numeric weights for domain
features. Like the Symbolic Agent, the Decision-Theoretic Agent also learns minimal-cost plans.

Case-Based Agent. Note that the Symbolic Agent plans at an abstract symbolic level, whereas the
Decision-Theoretic Agent provides lower-level numeric weights and costs. Therefore, these agents
have biases (i.e., representational and procedural preferences) that are complementary. However,
neither of these agents capitalizes on previous experience. The Case-Based Agent has been intro-
duced to fill this gap. The Case-Based Agent learns, stores and uses a feature-based case database,
by applying case-based reasoning (CBR) techniques (Aamodt and Plaza, 1994). It reuses the stored

A. REBGUNS et al. LEARNING AND VERIFICATION OF SAFETY PARAMETERS

Meta-Reasoning Executive
- System Execution Coordination
- Collaborative Performance
- Conflict Management

-9
Integrated Learners
, and Reasoners

4 Blackboard N (] A
- World State <> Symbolic Planner L/R
- Traces ¥ s
e ~
Domain |e=a - Knowledge
Knowledge « Ontologies 4D Constraint L/R
» Constraints _)
World * elc. (")
Knowledge - Sub-problems <> Case-based L/IR
- Proposed Solutions _)
e N
<—> Decision Theoretic L/R
- J L)

Execution Workflow

Trace Executor

(swebap cuI |

FIGURE 2. GILA System Architecture.

cases for solving previous deconfliction problems to derive plans for solving new (but similar)
deconfliction problems.

The Case-Based Agent uses the expert demonstration to learn cases that describe conflicts and
their solutions. The cases are formed by identifying and grouping modification steps corresponding
to a conflict. Then, when a new airspace-deconfliction problem is presented to the system, the Case-
Based Agent generalizes and matches the conflicts in that problem with the previously-learned
cases, and it proposes generalizations of the sequence of steps (in the trace) as potential solutions
for the new conflict. Unlike the other agents that generalize at learning time, the Case-Based agent
does “lazy learning” in the sense that it generalizes cases at performance time.

The complementary biases of the three agents, when combined in the GILA loosely-coupled
ensemble, demonstrate a favorable synergy for improved performance. GILA’s ensemble of the above
three agents, plus the SCLC and the executive module, are shown in the context of the GILA overall
system architecture in Figure 2. The figure uses the terminology “L/R” to indicate that each agent,
as well as the SCLC, is both a learner L and a reasoner R. The SCLC is called the “4D Constraint
L/R” in the figure to clarify the SCLC’s role.

A highly simplified version of the overall GILA algorithm contains the following main steps:

6 COMPUTATIONAL INTELLIGENCE

2.2.0.1. Learning phase:

(1) Input an expert-generated demonstration trace, to be used as an illustrative example of expert
behavior, along with a practice problem and its (expert-provided) solution.

(2) The SCLC learns safety constraints about the domain from the demonstration trace.

(3) The three agents study the trace and the constraints and learn (using the practice problem and
solution) to perform the deconfliction task as the expert does.

2.2.0.2. Performance phase:

(1) A new problem is presented to the system, divided by the executive into sub-problems.

(2) Each of the three learning, planning, and reasoning agents proposes solution fragments for sub-
problems that they can solve, and sends these fragments to the executive module.

(3) The executive may optionally send solution fragments to the SC to check for constraint violations.
The executive can then use this information to prune unacceptable paths from its search space.

(4) The executive module composes the solution fragments into one candidate solution.

(5) The SCLC verifies whether the final composed solution violates any of the constraints.

(a) If violations are found, the violation details, including the degree of violation, are reported
to the executive module, which then assigns blame to the agents. The process then returns
to step 2 to continue the search for an acceptable solution to the problem.

(b) If no violations are found, the solution is returned and the performance phase terminates.

In other words, the executive module decomposes each (practice or final) problem into an ordered
set of sub-problems (where each sub-problem corresponds to one airspace conflict), sends these sub-
problems to a blackboard for the three learning/reasoning agents to solve, and then composes the
solutions from the agents. Each of the three agents inputs the same expert demonstration trace
generated by an airspace manager, in addition to a jointly-shared airspace-deconfliction problem to
learn on, and outputs a solution to whatever sub-problems it believes it can solve (where this belief
is based on previous experience and previously stored self-knowledge), resulting in what we call a
“plan fragment” or a “solution fragment” for solving a sub-problem. Note that multiple agents often
tackle the same sub-problem(s).

Once the fragments of the deconfliction solution are generated by the three learning, planning,
and reasoning agents and sent to the executive, the executive may optionally send them to the SCLC
to check for constraint violations. This check is optional because the agents may have already used
the constraints during their planning process. The executive then uses different heuristics in order to
search to find the “best” solution (plan fragment) to each sub-problem, and it composes the sequence
of best solutions into one overall, final solution (plan). In the context of the executive’s search, “best”
is defined as the executive’s estimate (based on the demonstration trace and confidence values from
the agents) of what would be most similar to a decision made by the human expert. While the
executive module performs plan composition, it prunes unacceptable plan fragments from the search
space, i.e., fragments that exceed the safety constraint violation threshold.

Ultimately, the executive sends the final composed plan to the SCLC to verify that the plan
satisfies all of the safety constraints. Constraint satisfaction implies that the number and degree of
constraint violations do not exceed a predetermined threshold. The SCLC outputs a violation report
that includes the set of constraint violations for each proposed solution. The violation report is used
by the executive module for assigning blame to the agents to use in re-planning and re-learning, and
for guidance in its own plan composition process. As mentioned previously, the final plan must be
checked in order to determine whether any violations were introduced by interactions between plan
fragments.

Consider how GILA fits into a broader context. DARPA’s purpose for initiating the GILA project
was to explore learning and planning in the context of very few training examples. DARPA posed
the extreme challenge of one training example in order to advance the state-of-the-art in machine
learning, which typically assumes a large number of training examples. Mitchell et al’s LEAP system
was one of the first to tackle the challenge of few examples — it used explanation-based learning to infer
concepts from very few training examples and an extensive domain theory (Mitchell et al., 1985). In
a similar fashion, GILA maximizes the amount of information derived from a training example, but
DARPA has further challenged GILA in two ways. First, GILA is only allowed one training example.

A. REBGUNS et al. LEARNING AND VERIFICATION OF SAFETY PARAMETERS

Second, its domain theory is minimized (to prevent over-engineering the solution). To meet these
challenges, GILA exploits the single example and a minimal amount of domain knowledge by using
its heterogeneous ensemble of learning/planning/reasoning agents and its SCLC. To the best of our
understanding, GILA’s challenges and its solution to these challenges are novel. GILA is also unique
because although ensembles are very popular, and there have been very successful uses of bagging and
boosting ensembles for classification learning (Polikar, 2006), GILA is the first ensemble system of
which we are aware that has been applied in the context of complex problem solving. Because of the
heterogeneous ensemble approach with complementary sub-systems, GILA has demonstrated that it
performs as well or better than humans, after learning on the same training data (Zhang et al., 2009).
Furthermore, experimental results described in (Zhang et al., 2009) demonstrate that the quality
of the final plans produced by GILA’s ensemble of all three agents is superior to that produced
by the individual planners (when they are run independently without the other two agents, for
experimental purposes). This confirms the value of our design methodology of choosing an ensemble
of agents that are intended to be complementary and synergistic. For evaluating the entire GILA
system, the performance of each plan, including its quality, is measured by a DARPA-assembled
team of human airspace deconfliction experts, who give a score to each plan output by GILA. In this
paper, we specifically evaluate the contribution of the SCLC — using our own evaluation methodology
and performance metrics, as described in Section 6.

In the future, the DARPA BlueForce intends to use GILA to augment or replace human
experts at the task of airspace management. Furthermore, we would like to apply it to different
domains/problems. Its methodology, architecture and algorithms are sufficiently general for task
transfer; only its ontology (including the specific constraints) would need to be replaced.

3. DEFINITIONS AND NOTATION

In the sections below, we will describe the SCLC architecture. However, before we are able to
do that, some preliminary definitions and concepts need to be presented.

The SCLC learns and applies three types of constraints: usage, shape, and airspace constraints.
A usage constraint specifies properties on a class of airspaces with the same mission (e.g., Combat Air
Patrol (CAP)). A shape constraint (e.g., an air corridor (AIRCORR) or an Orbit) specifies properties
on a class of airspace with the same airspace shape. Finally, an airspace constraint specifies properties
on a specific airspace. Constraint templates are provided to the system, and the SCLC learns specific
values to fill into the templates. For example, a constraint template might specify that an airspace
has a maximum altitude, and the SCLC has to learn the value of this maximum.

Each constraint has a bound value, e.g., an upper bound value for an altitude constraint on an
airspace, and a probability distribution associated with that bound, which represents the uncertainty
associated with knowing the precise value. In our work, we use a dense, discrete set of probability
points to approximate the continuous probability distribution. The probability at each point is
inferred via Bayesian learning, described below. The Safety Checker then uses this set of probability
points in its calculations of the Expected Degree of Violation (see below).

A constraint specifies a lower bound, or an upper bound, or both for the particular type of
parameter for which it is defined. Typically, these bounds are used to provide an upper bound on the
distribution for a maximum value, or to provide a lower bound on the distribution for a minimum
value. Figure 3 illustrates this. Example 1 shows that given any ACM, when its ID is “F4,” its
maximum altitude should be no greater than the upper bound of 15000 feet. Example 2 shows that
given any ACM, when its usage is “CAP,” its maximum altitude should be no greater than the upper
bound of 30000 feet and its minimum altitude should be no smaller than the lower bound of 10000
feet.

For the sake of clarity in our discussion on Bayesian learning, we use the following mathematical
notation for our ontology concepts and the properties over those concepts. Let C be the set of all
concepts defined for an airspace deconfliction problem. Let F be the set of all properties defined
over those concepts. Formally, an object property is a function f : C — R. For example, if F4 is a
fighter, then its maximum altitude could be described as fmazai:(F'4) = 60000.

Similarly, we also entertain binary domain relations g : C x C — R that define properties on
pairs of airspaces. For example, gdistance(F4, F15) = 5 represents that airspaces F4 and F15 are

8 COMPUTATIONAL INTELLIGENCE

ex:consl ConstraintACM

hasAcmidFilter "F4"

hasValueRestriction ex:restrictionl BoundRestriction
hasProperty hasMaxAltitude
hasUpperBound "15,000"

ex:cons2 ConstraintACM

hasUsageFilter "CAP"

hasValueRestriction ex:restriction21 BoundRestriction
hasProperty hasMaxAltitude
hasUpperBound "30,000"

hasValueRestriction ex:restriction22 BoundRestriction
hasProperty hasMinAltitude
hasUpperBound "10,000"

FI1GURE 3. Example instances of safety constraints on lower and upper bounds of airspaces.

located 5 nautical miles from each other. Below, we show how these properties can be rephrased
in the form of safety constraints. There is also background knowledge — in the form of facts.
The background knowledge is minimized, according to DARPA’s restrictions; however without any
background knowledge at all, learning from a single expert demonstration trace would be impossible.
The domain theory D consists of the available concepts, the relations among them, and the set of
all known facts.

A learning element is a tuple of either of the following forms: (¢, f) or (c1,c2,9g) where f is an
object property and g is a binary domain relation. We call the former a property learning element
and the latter a relational learning element.

Let A be the set of all possible actions provided for the airspace deconfliction domain. A
demonstration trace T is defined as a sequence of actions provided by the expert. Figure 4 shows
an example of a demonstration trace for deconflicting airspaces. Each row in the figure describes a
particular action in this domain. For example, row 37 in the figure shows a “Set-ACM-Min-Altitude”
action being applied to ACM F4. This action sets the minimum altitude of airspace F4 to 34000.
Row 41 shows a selection action where the GILA system chooses the next conflict for deconfliction.
The many different actions are used to change various properties of the airspaces. These actions form
a basis for learning constraints.

Next, consider our constraint representation. Let C' be a domain concept, let F' be a set of
properties over C, G the set of binary relational properties (where we use F' and G because they are
functions), and let T be a demonstration trace. A safety constraint is a triple of the form (e, lb, ub),
where e is a learning element as previously defined. We define two types of safety constraints learned
by the CL. If e is a property learning element (c, f) then lb and ub are respectively the lower and

A. REBGUNS et al. LEARNING AND VERIFICATION OF SAFETY PARAMETERS

33| Select-Conflict ﬁgm :B z% ;@ACSl
34 Get-Conflict-Details ﬁgm :B i; ZsVAC51
35| Select-ACM ACM ID: F4
36 Begin-Altitude-Modification | ~CM!D:F4
37 | Set-ACM-Minimum-Altitude | ACMID: F4

Altitude: 34,000

: . ACM ID: F4
38| Set-ACM-Maximum-Altitude Altitude: 35,000

39 | Commit-Altitude-Change ACM ID: F4

40| Get-Conflicts ACMREQ ID: ACMREQ1
; ACM ID: F15
41 | Select-Conflicts Altitude: 34,000

ACM ID #1: F15

42 | Get-Conflict-Details][5 oo TS

43| Select-ACM ACM ID: F15
44| Begin-Altitude-Modification | ACM 1D F15
45 SetACM-Minimum-Altitude | Ach ID:F1L3

Altitude: 20,000

: . ACM ID: F15
46 | Set-ACM-Maximum-Altitude Altitude: 25,000

47 | Commit-Altitude-Change AC (DB 752

48| Get-Conflicts ACMREQ ID: ACMREQ1

FIGURE 4. An example demonstration trace for deconflicting airspaces.

upper bounds on the possible values of f(c). In this case the triple (e, lb,ub) is referred to as a
property safety constraint. If, on the other hand, e is a relational learning element (c1, ¢z, g), then
the triple (e, Ib, ub) is referred to as a relational safety constraint and b and ub are lower and upper
bounds on g(c1,c2). When expanded, the property safety constraint appears as (c, f,1b, ub) and the
relational safety constraint becomes (c1, ¢2, g, b, ub).

As an example, suppose we wish to represent the lower and upper bounds on the minimum
altitude of the fighter F4 as 5000 and 10000 feet respectively. Formally this would be expressed
as (F4, fminait, 5000,10000). The lower and upper bounds delineate the lowest and highest values
of property f permissible according to the constraint. Finally, note that we need not use both the
lower and upper bound slots in a constraint — only the one that is relevant, such as [b but not ub
on minalt. Also, because we adopt a Bayesian approach to constraint learning, we actually produce
posterior beliefs over the values of b and ub. For this reason, we represent [b and ub with probability
distributions over property values.

Constraints can be learned simultaneously at two or more levels of abstraction, given in the
domain ontology. For example, the aircraft types F4 and F15 can be abstracted to the class “fighter.”
Greater abstraction implies increased succinctness.

10 COMPUTATIONAL INTELLIGENCE

A constraint database, x, consists of a finite set of constraints. Given a demonstration trace T,
X is admissible if the following hold:

e For all property constraints (c, f, b, ub) € ¥, if f(c) appears in T, Ib < f(c) < ub, and
e For all relational constraints (c1, ¢2, g, b, ub) € x, if g(c1,c2) appears in T, Ib < g(c1,c2) < ub.

Note that admissibility implies consistency with respect to 7', which is important because the main
objective of GILA is to produce results that are similar to the results produced by human experts,
as exemplified in T

4. BAYESIAN LEARNING OF SAFETY CONSTRAINTS

Learning safety constraints of any arbitrary syntax and semantics is intractable. Therefore, we
focus on a more tractable form of constraint learning. Constraint templates are provided by the
system designer to the Constraint Learner (CL), and then it is the job of the CL to infer the values
of parameters within these templates. For example, a constraint template might state that a fighter
has a maximum allowable altitude, and then the learner would infer what the value of that maximum
should be.

The CL learns an admissible constraint database from a given demonstration trace T'. The CL
notes every object in C' and its properties, F' and G, that appear in the trace. Entities appearing
in the demonstration trace provide evidence of the existence of constraint bounds. This evidence is
appreciated in a Bayesian way, resulting in constraint updates, e.g., increasing the upper bound on
a maximum altitude or decreasing the lower bound on a minimum altitude. In the CL, we assume
that bounds exist for all entities.

Before going into detail about the CL, we first clarify a point of potential confusion. The CL
does not learn absolute physical constraints from an aircraft manual, e.g., the minimum or maximum
possible flying altitude of an airplane. Such physical constraints are provided a priori as part of the
background domain knowledge. It does, however, learn constraints that are “hard” in the sense that
they can never be violated, but they are context-sensitive, where the “context” is the task mission as
exemplified in the ACO. The expert trace in Figure 4, for example, shows the expert setting upper
and lower altitude bounds, based on the context of the ACO, during the process of deconfliction. For
instance, a recommended maximum altitude of an aircraft may be lowered if the scenario involves
the threat of enemy surface-to-air missiles. In other words, the CL infers constraints that capture
the notion that each entity (e.g., airspace) is embedded in a dynamic mission-oriented task; the
constraints are therefore mission-specific.

4.1. Generating the Conditional Probabilities

Bayesian learning is a method in which observed evidence, F, is used to infer the probability of
a hypothesis, H. For certain learning problems, it may be difficult to directly define the conditional
probability of a hypothesis given the evidence, i.e., P(H|E). However, after conditioning on a
hypothesis, it is straightforward to define the probability of observing a certain piece of evidence,
i.e., P(H|E). We leverage this fact, along with Bayes’ theorem, to describe P(H|E):

P(E|H) - P(H)
P(H|E) = — B (1)
In the Bayesian framework, our learning algorithm proceeds as follows. As described previously,
CL is given a set of domain objects C' = {c1,c2,...}, a set of object properties F' = {f1, f2,...},
G = {qg1, 92, ...} on the objects in C, and a demonstration trace 7' made up of demonstrations of
acceptable values for the individual domain properties, { f-(c:), fs(¢;), gu(cr, 1), ...}
For example in our airspace-deconfliction trace from Figure 4, the set C' of objects includes an
F4, an F5, and an F15. An example of an object property f on F4 is a bound restriction specifying
a lower bound on the possible maximum altitude that F4 should fly in the given context. The
demonstration trace, shown in Figure 4, consists of examples of expert-generated modifications to
the airspaces and their properties, such as Set-ACM-Minimum-Altitude of the F15 to 20000 feet.

A. REBGUNS et al. LEARNING AND VERIFICATION OF SAFETY PARAMETERS 11

The objective of Bayesian Learning in SCLC is to learn the probability distribution over con-
straint databases, given the expert trace. For Bayesian learning, the CL represents the constraints
as follows: x = {(e1, P(e1)), (e2, P(e2)), ..., (én, P(en))}, where P(e;),i = 1,2,...,n are discrete
probability distributions over the values of properties and relations in e;.

For simplicity, we assume that constraints corresponding to distinct objects and properties are
independent. It would be possible to entertain more complex probability models where observations
regarding one type of airspace will influence our opinion of other related airspaces. If constructed
properly, these probability models could hasten learning. However, designing such models would
be very domain knowledge intensive. For example, observing a reconnaissance airspace of an A-10
Thunderbolt aircraft could justifiably have a strong influence on our beliefs over the safety parameters
for A-10 aircraft involved in escort, but less so for a refueling aircraft or unmanned aerial vehicles.
Furthermore, in many practical cases, such domain knowledge may not be available due to the
fact that experts are not available or are simply non-existent.! Therefore, instead of considering
the relationship between the properties of all such aircraft, we chose to make the independence
assumption stated above. With this assumption, we have:

PIn) = [Plen.PleDy < [Pl ezg P(er,c2),))IT).

ceC,feF c1€C,c2€C,geG

The above assumption also enables us to decompose the general problem into manageable
learning sub-problems. Consider one such sub-problem, the case of learning the constraint w; mazait =
(ei,mazalt, P(€i,mazait)), where €;mazait = (Ci, fmazait), for the range of values of the maximum
altitude associated with a particular airspace ¢;. 2 Learning proceeds by witnessing evidence at
each step k of the demonstration trace. This evidence from the expert is in the form f*__ ..(c:).
For example this might be a change in maximum altitude that occurs as the expert positions and
repositions an airspace for the purpose of avoiding or removing conflicts. On line 38 of Figure 4,
the expert sets the maximum altitude to 35000 feet. Then on line 46, he sets it to 25000 feet. Each
of these pieces of evidence appears in the expert demonstration trace. The expert may change
his mind as the context changes, and the trace reflects this. Bayesian learning from this trace
proceeds as follows. Our prior belief over the value of P(wi mazait), which is equivalent to the prior
belief distribution P(fmazait), is represented by a distribution Pprior(Wimazatt). When we observe
evidence from the expert, f¥_....(c:), this prior distribution is updated to become the posterior
P(wi,mazait| [azate (¢i))-

4.2. Learning the Posterior Distributions

We estimate P(x|T'), the posterior probability of x, given the observed demonstration trace 7.
Bayes’ rule implies that P(x|T) = P(T|x) x P(x)/P(T), where P(T|x) represents the probability
of observing demonstration trace T given constraint database x, P(x) is the prior belief over
constraint databases from our domain theory, and P(T) is the normalizing probability of observing
demonstration trace 7. For example, given the trace shown in Figure 4, the probability that the
constraint database x will contain a property such as “the minimum altitude for F15 for this mission
is 20000 is encoded in P(x|T") above. The probability P(T'|x) specifies the probability of observing
a trace T in which “the minimum altitude for the F15 is 20000.”

In general, applying Bayes’ rule to find the posterior distribution, we have that:

P(fr(ci)‘wi,r) X Pprior(wi,r)
P(fr(ci)

Here, Pprior(ws,r) represents the prior distribution over property fr of airspace ¢;, and P(fr(¢:)|ws,r)
is the probability that the demonstration trace will contain a particular value of f, for object c;, given

P(wir|fr(ci)) =

(2)

IRecall that DARPA restricted the amount and nature of domain knowledge allowed in GILA in order to
see if GILA could learn effectively despite such restrictions.

2More precisely, if the property is the maximum altitude, then P(e; maxait) is actually a probability
distribution over the upper bound on mazxalt. Likewise, if the property is the minimum altitude, then
P(ei,mazalt) is a distribution over the lower bound on minalt.

12 COMPUTATIONAL INTELLIGENCE

Observations
Instance 1 2 3 4 5 6 7 8
Min Altitude (ft) 36000 24000 30000 22000 42000 30000 25000 33000
Max Altitude (ft) 50000 40000 42000 38000 55000 40000 40000 45000

Posterior Distributions after n Observations

n=0 n=1 n=3 n=38
4 .3 3 4
x 10 %10 %10 x 10 02
87 15 87 15 87 005 | 87 ’
= 2 S 1
= 6 = 6 = 6 004 = 6 015
< < < <
E ! £ L E 003 [g 01
g5 g5 i g5 o2 | E5
5 2| g - ot | B 005
=4 =a =4 ' =4
0 0
0 2 4 0 2 4 a 2 4 0 2
4 4 4 4
Minimum Alutudg 10 Minimum Almudg 10 Minimum Alt\tudg 10 Minimum AII\tud@(10
0.05 0.05 0.06 / 02
0.04 ~ 0.04 ~ / 015
2 / 2 / \ 2004 / z
Z 003 / Z 003 \ = =
® / ® / L © ® 01
£ 002 € 002 / 8 s
E / £ / & 002 & 5ig
0.01 0.01 -
; / / F
0 E 0 0 0
0 0.5 1 1.5 2 0 05 1 15 2 0 05 1 15 2 0 05 1 1.5 2
Minimum Aftitude Bandx 10* Minimum Altitude Bandx 10' Minimum Altitude E!andx 10* Minimum Altitude Bandx 10!

FIGURE 5. Bayesian Constraint Learning. The CL observes the airspace instances (top). Bayesian
updates lead to tight posterior distributions over the safety constraint values (bottom).

the constraint w; . These values can usually be defined using reasonable assumptions. Pprior(wi,r)
uses an uninformed uniform distribution over allowable values as a default. The uniform distribution
assumption is the most common choice for situations where information is lacking. If available, the
prior can be obtained from a Gaussian approximation of the real distribution by asking the expert
for approximations of the average, variance, and covariance of the minimum and maximum altitudes.

P(fr(ci)|ws,r) is the probability that an airspace will be placed at a certain altitude, given the
altitude constraint. We assume that the expert (in the demonstration trace) always adheres to safety,
and that the expert has no other inherent preferences for airspace altitude placement. Whereas in
reality the airspace is placed at a particular location given the mission goals and interaction with
other airspaces, inferring these intentions is out of the scope of the CL. Thus, we assume that the
expert’s placement of each airspace is with uniform probability within the safe altitude band.

This assumption has two nice properties. First, it enables the Bayesian update described above to
assign a zero probability to any constraint that is inconsistent with the expert’s airspace placements,
because we know that the expert’s actions are always safe. Thus, any constraint database generated
by the CL is guaranteed to be admissible. Second, P(f(c;)|ws,r) is greater for more constraining sets
of constraints. This means that if we observe an airspace repeatedly placed at or below 50000 feet,
our confidence that the true maximum altitude constraint is near to 50000 feet (as opposed to much
higher) will grow. Thus, more evidence will produce more confident posterior belief distributions,
which will result in tighter constraints. This property has the effect that constraints can be learned
even in the absence of negative examples. This is fortunate because negative examples are not
provided in the demonstration trace.

4.3. An Example

An example of the Bayesian Constraint Learning appears in Figure 5. Consider some type of
airspace for which there is a lower bound on the airspace’s minimum altitude, an upper bound on the
maximum altitude, and a lower bound on the altitude band of the airspace (the difference between

A. REBGUNS et al. LEARNING AND VERIFICATION OF SAFETY PARAMETERS

the maximum altitude and minimum altitude). From the demonstration trace, the CL observes
several expertly placed instances of the airspace type in order to learn the associated constraints.
A broad Gaussian prior distribution over constraint values is used for n = 0 observations. After
one observation, all constraint settings inconsistent with the observed placement are ruled out (for
example, the minimum bound cannot be greater than the observed minimum altitude), but their
posterior distributions are still fairly broad. However, at three and eight observations we witness
a tightening of the posterior belief over constraint values due to the properties mentioned in the
previous paragraph. Finally, note that Gaussian distributions can be summarized with their mean
and standard deviation.

In summary, the final outcome of Bayesian learning is a set of constraints, where each constraint
contains value restrictions represented by bounds, and each bound is associated with a discrete proba-
bility distribution representing the uncertainty over its possible values. Some of these probabilities are
associated with values input from the original demonstration trace. Recall that each such probability
is associated with a probability point. Probability points, as well as the CL-learned constraints, are
used by the Safety Checker, described next. Finally, note that although minimum/maximum altitudes
are used as illustrative examples in this paper, the SCLC in fact learns a wide variety of constraints.

5. SAFETY CHECKING LEARNED CONSTRAINTS

After constraints have been learned by the CL, they are used to verify (partial) solutions. In
the context of GILA and airspace deconfliction problems, recall that a partial solution consists of
actions that modify (i.e., move) airspaces in order to resolve conflicts among the airspaces in a given
problem. GILA’s planning and learning agents generate such partial solutions from a demonstration
trace.

For example, consider the demonstration trace shown previously in Figure 4. Given this trace,
the Symbolic Agent might solve the high-level task modify the altitude for a new problem using the
same action sequence found in the demonstration trace: Select-ACM, Begin-Altitude-Modification, Set-
ACM-Minimum-Altitude, Set-ACM-Maximum-Altitude, and Commit-Altitude-Change — see rows 35 to
39 in Figure 4. The other agents use the same trace to infer alternative partial solutions. The actions
in these partial solutions should be checked in order to verify whether they violate any constraints.
For example, if the Case-Based Agent sets the maximum altitude of the F4 to 40000 feet, then this
change needs to be checked to see if it violates any constraints. The Safety Checker (SC) portion of
the SCLC is responsible for this verification task. The SC also checks the final solution composed by
the executive.

5.1. Safety Checker Overview

To illustrate the Safety Checker’s procedure, we use the airspace deconfliction task. Each of the
three agents in GILA has the job of proposing a sequence of deconfliction actions (which constitutes
a candidate partial plan). These actions are intended to be applied to an ACO, which consists of
spatio-temporal trajectories of all airspaces. To verify that the candidate partial deconfliction satisfies
all safety constraints, the SC is invoked. The SC applies the sequence of deconfliction actions that
constitutes a proposed solution. By applying this solution, the SC develops a hypothetical scenario
— a modified ACO. The SC then uses its 4D Spatio-Temporal Reasoner to verify whether each
constraint is still satisfied (preserved) or not. Any violations are reported for evaluation. Violation
reports include the violated constraint, specific information about the violation, optional advice for
plan repair, and the degree (severity) of violation normalized to a value in the range [0.0, 1.0]. This
severity is called the Ezpected Degree of Violation (EDoV), and it is further described below. Specific
information about the violation states which aircraft in the ACO caused the violation, e.g., fighter
F4. The EDoV is used by the agents to rank violations. This ranking guides the agents so that they
concentrate problem resolution on more severe violations first.

The three agents, Symbolic, Case-Based, and Decision-Theoretic, as well as the executive, use

13

14 COMPUTATIONAL INTELLIGENCE

the violation reports from the SC for assigning blame and to repair and re-plan, until a solution is
found that is violation-free or has an acceptable violation level.®

5.2. Inferring the Expected Degree of Violation (EDoV)

Recall that our Bayesian constraint learning approach results in a posterior probability dis-
tribution for each parameter value within a constraint template. For example, the CL’s posterior
belief over the upper bound on the maximum altitude of a fighter may be represented by a Gaussian
distribution with a mean of 30000 feet and a standard deviation of 5000 feet. Let Py be the set
of < wvalue, probability > pairs (recall that these were called “probability points” in Section 3)
representing the discretized distribution for constraint parameter f learned and provided by the CL.
Let < x,p > be a pair that appears in Py. We assume that Py (z) represents the probability p of the
value x within the given pair from the discrete distribution.

The goal of the Safety Checker is to test whether the updated ACO (modified by the proposed
solutions) still satisfies the safety constraints. To do this, it examines values in the newly-revised
ACO and sees whether they are acceptable. To verify each change made in the hypothetically-
revised ACO, the SC inputs the specific, instantiated constraint along with the distribution over the
corresponding parameter value (P(f)), and the airspace position value seen in the revised ACO. Let
v denote an action taken in a solution proposed by one of the planning agents. Then the SC executes
the following algorithm to calculate the EDoV for each value v:

(1) Consider a simple constraint w = R (where R is an instantiation of constraint w). These are
constraints learned by the CL from a demonstration trace. As an example, suppose w specifies
a lower bound on the minimum altitiude of F4. One possible instantiation R of w specifies that
the lower bound in question is 20000 feet for F4, which becomes the value of x. On the other
hand, a proposed solution fragment might place an F4 at 30000 feet, which is the value of v.
The EDoV captures the expected error of the proposed solution.
We have the following definition for the Expected Degree of Violation for R:

EDoVannormatizea (R) = Y Py(x) - maz(0, (z - v)) (3)

for a minimum threshold and

EDO‘/unnormalized (R) - Z Pf ((L‘) N max(O, (U - x)) (4)

for a maximum threshold. In general, for a value that is not a maximum or minimum, the
expected error is:

EDOVunnormalized (R) = pr(w) . I.’E — ’U|. (5)

(2) The SC also builds complex constraints from simple constraints using conjunctions or disjunc-
tions. Currently we do not include negation in the constraints. For conjunctions within complex
constraints, i.e., (R1 N---N Ry) where each R; is a simple constraint, we have:

EDOVunnormalized (Rl n---N Rn) = g EDOVunnormalized (Rz) /’I’L (6)
i=1
and for disjunctions we have:

EDOVunnormalized (Rl y---u Rn) = max; [EDOVunno'rmalized (Rl)} . (7)

(3) Normalize this expected value to a number between 0 and 1. An assumed absolute (mechanical)
maximum altitude « for all aerial vehicles is derived from limited domain knowledge available to
GILA and to human subjects. EDoVyormatized = W, where (3 is the most probable

o—

3When the GILA system cannot find a solution in the allotted time or when the number of iterations
exceeds a preset limit, it returns failure.

A. REBGUNS et al. LEARNING AND VERIFICATION OF SAFETY PARAMETERS

value of x from the probability distribution. For a “maximum constraint” we add one standard
deviation to this value and for a “minimum constraint” we subtract one standard deviation,
allowing for noise. This value is output as the Ezpected Degree of Violation (EDoV).

To illustrate, consider the following example. Suppose we wish to test the Bayesian-derived
constraint (e = (F4, fminait), P(€Fa,minait)). After learning, the posterior probability distribution
P(eFa,minait) has the following discrete probability points:

p(F4,36000) = 0.125
p(F4,30000) = 0.250
p(F4,24000) = 0.125

Furthermore, suppose that the altitude found in the modified (by a partial plan) ACO is 34000.
Then we can calculate the EDoV as:

0.125 - max(0, 36000 — 34000) + 0.250 - max(0, 30000 — 34000) +

0.125 - max(0, 24000 — 34000) + ... = 250.

The value 250 is normalized to a number between 0 and 1, in this case 0.041, and is output by
the SC as the EDoV of the constraint associated with the given proposed solution. Note that this
methodology is identical for relational safety constraints.

During plan composition, the executive module compares each violation’s EDoV to the safety
violation threshold, discarding any plan fragments that exceed that threshold, thereby pruning and
reducing the size of the search space. The threshold value is set by subject matter experts.

6. EXPERIMENTAL RESULTS

In a recent experiment performed by the DARPA BlueForce that compared the quality of
deconfliction solutions generated by GILA against the quality of solutions generated by novice human
airspace managers, GILA was able to perform slightly better than the average. In particular, when
GILA was compared against twelve human novices, the mean score (out of 100%) for the humans
was 90.6% and the mean score for GILA was 92%. For fairness of comparison, the humans and GILA
received the same background knowledge and inputs, according to careful and rigorous measurements
made by the BlueForce. The quality metric included considerations such as the number of solution
steps that differed between the expert and the novice/GILA. For the details of these experiments on
GILA using SCLC, see (Zhang et al., 2009).

We performed further experiments to better understand the impact of the SCLC within GILA.
More specifically, we did an experimental investigation of the following experimental hypothesis:

HYPOTHESIS: GILA with the SCLC generates airspace-deconfliction steps that are more similar
to those of the expert than GILA without the SCLC.

Again, fairness was ensured by having the original GILA (with the SCLC) and the ablated
version use identical inputs. Three airspace deconfliction scenarios were employed. For each scenario,
we used a demonstration trace generated by an expert airspace manager from the DARPA BlueForce.
These traces are similar to the demonstration trace example shown previously in Figure 4. In a typical
run, about 20 to 30 new airspaces were added to the original ACO. This resulted in 10 to 15 conflicts
in the scenario.

We performed a suite of cross-validation experiments using several combinations of these sce-
narios. In each combination, one scenario and its corresponding demonstration trace was designated
for learning, and another scenario was used as the target problem that GILA needed to solve with
the learned knowledge. In order to determine the quality of our solution, we compared it to the
demonstration trace associated with the target problem. For each case, we ran GILA with and
without the SCLC, thereby allowing us to evaluate the impact of constraint learning/enforcement
on the overall GILA system behavior.

For each scenario, GILA had to choose which airspaces should be moved, and in what manner

15

16 COMPUTATIONAL INTELLIGENCE

they should be moved, to eliminate spatio-temporal conflicts. This led to the following two perfor-
mance metrics for our experiments in order to test our hypothesis above:

e Metric 1: We compared all airspaces moved by GILA and the expert by grouping them as true
positives, i.e., those moves performed by both the GILA and the expert, false positives, i.e., those
moves that were only done by GILA but not the expert, and false negatives, i.e., those that were
done by the expert but not by GILA.

e Metric 2: We compared all (airspace, type) move pairs done by GILA and the expert. Type can
be altitude, time, or geometry. For example, a move pair can be as (F4, Altitude), which means
that the move changes the altitude of the airspace F4. As a performance score, we measured how
many pairs were in agreement between GILA and the expert. This is a more specific measure of
how much GILA is in agreement with the expert.

The score of GILA, with versus without the SCLC, is given by the following formula:

TP
TP+ FP+FN’

where TP, FP, and FN are the number of true positives, false positives, and false negatives in an
experiment, respectively. The maximum possible score is 1.0, corresponding to complete agreement
between GILA and the expert. The lowest score, 0.0, occurs when GILA and the expert choose
completely disjoint sets of airspace modifications.

Across all of our five experimental cases, the system generated the following results with the
SCLC: TP = 30, FP = 18, and FN = 22. Based on this outcome, GILA’s score using the first
metric was 0.429 when the SCLC was included. The score of the system dropped to 0.375 when the
SCLC was excluded, with the following results: TP = 27, FP = 20, and FN = 25.

Using the second metric, the relative scores were 0.293 and 0.265 when GILA included or
excluded the SCLC, respectively. These results suggest the value added by including the SCLC:
GILA was able to perform more similarly to the expert by learning safety constraints and checking
the solutions generated by the system against those constraints. This suggests that the learning
and enforcement of safety constraints helps GILA choose correct deconfliction actions, by penalizing
potentially unsafe actions that would be entertained otherwise.

7. RELATED WORK

We first address research related to the Constraint Learner. Our general approach of learning
from observing human expert behavior can be traced at least back to the learning apprentice
paradigm. For example, Mitchell et al’s LEAP is a system that learns to VLSI design by unobtrusively
watching a human expert solving VLSI layout problems (Mitchell et al., 1985). Similarly, (Shavlik,
1985) shows how the general physics principle of Momentum Conservation can be acquired through
the explanation of a “cancellation graph” built to verify the well-formedness of the solution to a
particular physics problem worked by an expert. More recently, the apprenticeship paradigm has
been applied to learning hierarchical task networks (Nejati et al., 2006), and to learning autonomous
control of helicopter flight (Abbeel and Ng, 2005).

Our learning framework, when seen in the context of multiple agents, may at first seem to fit
into the paradigm of integrated architectures (Langley, 2006). These include ACT*, SOAR, THEO,
ICARUS, PRODIGY, and many others. But our architecture is quite different. These architectures
are directed toward integration in a psychologically plausible way, but their mechanisms are more
centralized. Unlike these other cognitive architectures, GILA does not have a single, homogeneous,
unifying computational mechanism, and it does not require sharing of common representations.
GILA is more of a diverse, ensemble approach to modeling the acquisition and application of domain
expertise.

Our research is also strongly related to learning control rules for search/planning. This area
has a long history, e.g., see (Minton and Carbonell, 1987), and has more recently evolved into the
learning of constraints (Huang et al., 2000) for constraint-satisfaction planning (Kautz and Selman,
1999).

Next, we address research related to the Safety Checker. One area of related work is on “safe

A. REBGUNS et al. LEARNING AND VERIFICATION OF SAFETY PARAMETERS

planning.” The purpose of safe planning is to ensure that plans made by agents obey safety constraints
that prevent them from resulting in dangerous consequences (Weld and Etzioni, 1994; Gordon, 2000).
Our safety constraints have a similar motivation.

The Safety Checker is also related to formal verification, such as model checking (Clarke et al.,
1999). However our work has a more novel twist that is more akin to the recent work by Chockler
and Halpern, in which formal verification is extended to include a “degree of blame” (Chockler
and Halpern, 2004). Chockler and Halpern present a theoretical framework for the degree of blame
in relation to an agent’s epistemic state. Unlike traditional models that treat causality as binary
(true/false), Chockler and Halpern take into account a more refined ezxpected degree of responsibility,
taken over the epistemic state of an agent. The SC’s EDoV is also an expected degree of responsibility
in the sense that expectation is taken over the violation and is then used by the executive to assign
blame to individual agents. The novelty of our SC approach is its application of expected degree of
responsibility in the context of a multi-agent system.

A final novelty of both the CL and the SC is that they are learning and applying constraints in
an unusual context of very few examples, a minimized domain theory, and multiple learners. This is
in sharp contrast to the traditional learning paradigm that consists of one learner and many training
examples, or few examples but a rich domain theory. Our context poses an enormous challenge, i.e.,
that of maximizing the information gleaned from a minimal amount of data and little background
knowledge. The heterogeneity of the ensemble of agents helps in this respect because the bias of each
agent can counteract the biases of the others. Another way that our approach maximizes its gain
from little data is by simultaneously learning at multiple levels of abstraction. The GILA results
demonstrate the value of our approach.

8. CONCLUSIONS AND FUTURE WORK

This paper has described a new framework for learning and applying safety constraints in
an important, real-world airspace deconfliction problem. Learning occurs from observation of a
demonstration trace generated by a domain expert. The trace includes information about the expert’s
behavior, but it does not include complex high-level problem-solving knowledge. An implementation
of our approach in a multi-agent system developed for the DARPA Integrated Learning Program
demonstrated its effectiveness at facilitating the production of safe plans.

The next step in this research will be to extract the SCLC from GILA so that it can run as a
standalone module. This will enable us to run extensive experiments to test hypotheses about our
constraint methodology, and it can lead to further algorithmic improvements. Another future direc-
tion will be to reason explicitly about the system’s biases and the incompleteness of its knowledge.
An example of the former would be if the executive were to collect a history of the types of conflicts
that each agent is good/poor at solving and then use this history to prioritize which agent(s) to
suggest first for solving each new conflict. An example of the latter would be to adopt the approach
of (Garland and Lesh, 2002), which identifies and mitigates the effects of knowledge incompleteness.

9. ACKNOWLEDGMENTS

This work was funded by the DARPA GILA Contract # FA8650-06-C-7605. The opinions
expressed in this paper are those of authors and do not necessarily reflect the opinions of DARPA.
Special thanks go to Dutch Van Sloten and others on the DARPA Blueforce for helping us to
understand and appreciate the job of airspace planning and deconfliction.

REFERENCES

Aamodt, A. and Plaza, E. (1994). Case-based reasoning: foundational issues, methodological
variations, and system approaches. AI Communications, 7(1), 39-59.

Abbeel, P. and Ng, A. Y. (2005). Exploration and apprenticeship learning in reinforcement learning.
In ICML, pages 1-8.

17

18 COMPUTATIONAL INTELLIGENCE

Botea, A., Enzenberger, M., Mueller, M., and Schaeffer, J. (2005). Macro-FF: Improving Al planning
with automatically learned macro-operators. Journal of Artificial Intelligence Research, 24,
581-621.

Chockler, H. and Halpern, J. Y. (2004). Responsibility and blame: A structural-model approach. J.
Artif. Intell. Res. (JAIR), 22, 93-115.

Clarke, E. M., Grumberg, O., and Peled, D. (1999). Model Checking. MIT Press.

Garland, A. and Lesh, N. (2002). Plan evaluation with incomplete action descriptions. In
AAAI/IAAI, pages 461-467.

Gordon, D. (2000). Asimovian Adaptive Agents. JAIR, 13, 95-153.

Huang, Y., Selman, B., and Kautz, H. (2000). Learning declarative control rules for constraint-based
planning. In Proc. 17th International Conference on Machine Learning (ICML’00), pages 337—
344.

Kautz, H. and Selman, B. (1999). Unifying SAT-based and graph-based planning. In Proceedings of
the International Joint Conference on Artificial Intelligence (IJCAI), pages 318-325.

Langley, P. (2006). Cognitive architectures and general intelligent systems. Al Mag., 27(2), 33-44.

Minton, S. and Carbonell, J. (1987). Strategies for learning search control rules: An explanation-
based approach. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pages 228-235.

Mitchell, T. M., Mahadevan, S., and Steinberg, L. I. (1985). Leap: A learning apprentice for vlsl
design. In IJCAI, pages 573-580.

Nejati, N., Langley, P., and Konik, T. (2006). Learning hierarchical task networks by observation.
In ICML, pages 665—672.

Polikar, R. (2006). Ensemble based systems in decision making. IEEFE Circuits and Systems
Magazine, 6(3), 21-45.

Shavlik, J. W. (1985). Learning about momentum conservation. In IJCAI, pages 667-669.

Spears, W. M. and Gordon, D. F. (2000). Evolution of strategies for resource protection problems.
In in Advances in evolutionary computing: theory and applications, pages 367-392. Springer
Verlag.

Weld, D. S. and Etzioni, O. (1994). The first law of robotics (a call to arms). In AAAI-94, pages
1042-1047.

Xuan, P. and Lesser, V. (2002). Multi-agent policies: from centralized ones to decentralized ones. In
AAMAS ’02: Proceedings of the first international joint conference on Autonomous agents and
multiagent systems, pages 1098-1105, New York, NY, USA. ACM.

Yoon, S. and Kambhampati, S. (2007). Hierarchical strategy learning with hybrid representations.

Zhang, X., Yoon, S., DiBona, P., Appling, D., Ding, L., Doppa, J. R., Green, D., Guo, J., Kuter,
U., Levine, G., MacTavish, R., McFarlane, D., Michaelis, J., Mostafa, H., Ontanon, S., Parker,
C., Radhakrishnan, J., Rebguns, A., Song, Z., Trewhitt, E., Zafar, H., Zhang, C., Corkill, D.,
DelJong, G., Dietterich, T., Kambhampati, S., Lesser, V., McGuinness, D., Ram, A., Spears,
D., Tadepalli, P., Whitaker, E., Wong, W.-K., Hendler, J., Hofmann, M., and Whitebread, K.
(2009). An ensemble learning and problem solving architecture for airspace management. In
Proceedings of the Innovative Applications of Artificial Intelligence Conference (IAAI).

