
  

 

ABSTRACT 

 

 

 

Myofibrillogenesis is a process of precise assembly of sarcomeric proteins 

into the highly organized sarcomeres which are essential for muscle cell 

differentiation and function. Myofibrillogenesis requires proper folding and assembly 

of newly synthesized sarcomeric proteins. Mutations of the sarcomeric proteins are 

known to cause skeletal and cardiac muscle diseases.  
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smyd1b is a skeletal and cardiac muscle-specific gene which encodes two 

alternatively spliced isoforms, smyd1b_tv1 and smyd1b_tv2. Knockdown of smyd1b 

(tv1 and tv2) expression resulted in zebrafish larvae without locomotion and heart 

contraction. Thick filament assembly was significantly disrupted in smyd1b 

knockdown embryos. Yeast Two-Hybrid study showed that Smyd1 associates with 

another muscle-specific protein—skNAC, however, skNAC function in muscle cells 

is unknown. 

In order to expand the understanding of smyd1b function and study the 

working mechanism, I further characterized the function of Smyd1b and its partners 

including skNAC and Hsp90α1 during muscle development, and carried out 

mechanistic studies using zebrafish as a model system. 

Our findings show that: 1) In addition to the thick filament, smyd1b plays an 

important role in the assembly of thin and titin filaments, as well as Z-line and M-

line. 2) Knockdown of smyd1b has no effect for heart tube formation; however, it 

disrupts the myofibril assembly of the cardiac muscle that causes the heart defect. 3) 

Smyd1b_tv1, but not Smyd1b_tv2 can be localized on the M-line of sarcomeres. 4) 

Ser225 on Smyd1b_tv1, which is a potential phosphorylation site, is important for the 

M-line localization of Smyd1b_tv1. 5) Knockdown of smyd1b causes the 

upregulation of hsp90α1 and unc45b gene expression. 6) hsp90α1 plays an important 

role for myofibril assembly. 6) Knockdown of smyd1b or hsp90α1 causes the 

reduction of myosin protein accumulation. 7) Smyd1b_tv1, but not Smyd1b_tv2 

associates with the myosin chaperones Hsp90α1 and Unc45b. 8) sknac is required for 



  

the thick and thin filaments assembly. 9) Knockdown of sknac causes the reduction of 

myosin protein accumulation. 

These studies provide us an in-depth characterization of smyd1b and its 

partners’ function and expands the mechanistic understanding of how smyd1b fulfils 

its vital role in myofibrillogenesis. Most importantly, this study provides new insights 

to help us understand the complex process of myofibrillogenesis and sarcomere 

diseases. 
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CHAPTER 1: GENERAL INTRODUCTION 

 

1. Skeletal muscle origin and somite formation 

 

The muscle progenitors originate from the paraxial mesoderm which lies on 

either side of the axial mesoderm along the embryo’s axis. Specification of paraxial 

mesoderm is controlled by distinct signals such as fibroblast growth factor (FGF), 

Wnt signal transduction components, from the anterior and posterior regions of the 

embryos (Kimelman & Griffin 2000). 

 Once the anteroposterior (AP) axis of the embryos forms; the paraxial 

mesoderm would undergo a process of segmentation to establish the characteristic 

metameric body plan of vertebrates. Segmentation is closely coupled with somite 

formation in bird and mammalian embryos. Somites form by epithelialization of the 

paraxial mesoderm along either side of the neural tube (Engel et al 2004). However, 

in fish and frog, the embryos develop more rapidly than avian and mammalian 

embryos. Paraxial mesoderm in these embryos becomes segmented without 

epithelialization and somite formation (Pownall et al 2002). 

The segmentation and somite formation are coupled to the gene regulatory 

program that initiates expression of regulatory genes for specification of muscle 

progenitors. The gene regulatory program is initiated by the inductive signals from 

the surrounding tissue of the myogenic progenitors (Boryck and Emerson, 1999). 
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2. Molecular control of muscle differentiation 

 

Myoblast differentiation is a complex process which is regulated by the well-

known transcriptional networks involving myogenic regulatory factors (MRFs) and 

myocyte enhancer factor 2 (MEF2), as well as growth factors such as fibroblast 

growth factor (FGF) and signaling molecules such as sonic hedgehog (Shh). The 

discovery of miRNA as a previously unrecognized component of this complex 

process starts to add an entirely new layer of complexity at the post-transcriptional 

level to our understanding of how muscle gene expression is regulated (Chen et al 

2009).  

 

1) Muscle differentiation regulated by transcription factors 

The myogenic regulatory factors are well studied for their regulatory functions 

in the specification and differentiation of muscle progenitors in vertebrate and 

invertebrate embryos. MRFs are an evolutionarily conserved family of four bHLH 

(basic helix-loop-helix) transcription factors including MyoD, Myf5, Myogenin, and 

MRF4 (Davis et al 1987, Emerson 1990). MRF expression is highly restricted to 

skeletal muscles in vertebrate and invertebrate embryos (Pownall et al 2002).  

Myf5- and MyoD- expressing myoblasts are a renewable source of progenitors 

that proliferate in the embryos at sites of myogenesis. The daughter cells of the 

progenitors undergo G1-specific cell-cycle withdrawal to initiate myocyte 

differentiation. MyoD expression persists in newly formed differentiated muscle 
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fibers, while Myf5 expression is shut down during differentiation (Engel et al 2004). 

The expression pattern indicates their functions in myoblast differentiation.  

MRFs coordinates with MEF2 to control the transcriptional activation of 

genes encoding contractile and scaffold proteins. Vertebrates have four mef2 genes, 

mef2a, b, c, and d. These are members of the MADS domain family of transcription 

factors (Molkentin & Olson 1996, Naya et al 1999). Accumulation of contractile 

proteins is controlled by the coordinated transcriptional activation of muscle genes 

including isoforms for all of the functionally related muscle-specific myofibrillar 

proteins as well as proteins involved in synapse formation and calcium signaling.  

 

2) Muscle differentiation regulated by growth factors and signaling molecules 

Growth factors and signaling molecules have been reported to play key roles 

to control myoblast proliferation and differentiation. FGF2 is a key growth factor 

regulator of myoblast proliferation and an inhibitor of differentiation in cell culture 

(Clegg et al 1987). The TGF-β ligand GDF-10 (also known as Myostatin) also has a 

role in the control of muscle differentiation. Mice and cattle mutant for GDF-10 have 

significantly increased muscle mass (McPherron et al 1997, McPherron & Lee 1997). 

Shh also is shown to control muscle proliferation and differentiation in the limb. 

Study shows that retroviral misexpression of Shh in limb progenitors increases 

muscle growth likely by promoting myoblast proliferation to control the initiation of 

differentiation (Bren-Mattison & Olwin 2002, Duprez et al 1998). However, it 

remains to be determined of how FGF, GDF-10 and Shh signaling are coordinated to 

control myogenesis.  
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3) Muscle differentiation regulated by microRNAs 

microRNAs (miRNAs) are RNAs which are about 22 nucleotides long that 

control gene expression at the post-transcriptional level through various regulatory 

mechanisms. Those regulatory mechanisms include messenger RNA (mRNA) 

deadenylation, translation, and decay of target mRNAs (Bushati & Cohen 2007, 

Filipowicz et al 2008). A subset of miRNAs are either specifically or highly 

expressed in muscles, providing an opportunity to understand the post-transcriptional 

level regulation of gene expression in muscles by miRNAs (Chen et al 2006, Lagos-

Quintana et al 2002, Wienholds et al 2005).  

Studies have shown that the serum response factor (SRF) and MEF2, which 

are known for their regulation on muscle differentiation, can both regulate the 

expression of two pairs of related muscle-specific miRNAs genes: miR-1-1 and miR-

133a-2, and miR-1-2 and miR-133a-1 (Chen et al 2006, Liu et al 2007, Niu et al 

2007, Rao et al 2006). A third pair of the skeletal muscle-specific miRNAs, miR-206 

and miR-133b are controlled by MEF2, MyoD, myogenin and other regulators (Kim 

et al 2006, Rao et al 2006, Rosenberg et al 2006). miR-1 promotes muscle 

differentiation by repressing the expression of histone deacetylase 4 (HDAC4) which 

can repress MEF2 activity to inhibit muscle differentiation. However, miR-133 

reduces protein levels of SRF and results in enhancing the proliferation of myoblasts 

and inhibiting myoblast differentiation (Chen et al 2009). The identification of these 

previously unrecognized regulators provides new insights on the molecular 

mechanisms that underlie muscle development. 
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3. Muscle maturation and muscle fiber type 

The postmitotic daughters of myoblasts are called myocytes. During muscle 

development, the mononucleated myocytes fuse to form multinucleated skeletal 

muscle cells termed myotubes. There are two waves of mononucleated cell 

proliferation which result in the formation of primary and secondary myotubes. They 

share a common basal lamina and are coupled by gap junctions (Engel et al 2004). 

The myotube maturation is a process that the centrally positioned nuclei move to the 

periphery. The primary and secondary myotubes lose their interconnecting junctions 

and gain their own basal lamina to become independent muscle fibers (Ling et al 

1992, Rubinstein & Kelly 1981, Takekura et al 1993). 

Vertebrate skeletal muscles are typically composed of slow- and fast-twitch 

fibers that differ in their morphology, gene expression profiles, contraction speeds, 

metabolic properties and patterns of innervation. In mammalian embryos, positions of 

fiber-type-specific myogenic precursor cells are unknown. During myogenesis, how 

muscle precursors are induced to mature into distinct slow- or fast-twitch fiber types 

is inadequately understood (Liew et al 2008).  

In zebrafish, slow and fast muscle precursors occupy separate positions within 

the embryo and their origin has been characterized (Bessarab et al 2008, Devoto et al 

1996, Ingham & Kim 2005). Slow muscle precursors (adaxial cells) are the most 

medial cells in the segmental plate and they are located on either side of the 

notochord (Devoto et al 1996). Upon somite formation, adaxial cells elongate and 

migrate to the surface of the myotome forming a superficial layer of mononucleated 



 

 6 
 

slow MyHC-positive fibers. Cells of the segmental plate located laterally to the 

adaxial cells develop into fast muscle (Devoto et al 1996). After the differentiation 

program of the slow muscle cells is underway, myoblasts committed to the fast-twitch 

fate fuse with each other and mature into arrays of syncytial fibers that ultimately 

constitute the bulk of the myotome (Groves et al 2005, Hamade et al 2006, Liew et al 

2008, Roy et al 2001, Srinivasan et al 2007).  

The relative simplicity of cell lineages within the zebrafish myotome makes it 

an excellent system to dissect the genetic pathways that specify the fates of the 

distinct muscle cell-types. Studies have shown that loss-of-function mutations in the 

Hedgehog (Hh) signaling pathway eliminate the specification of slow myoblasts 

(Barresi et al 2000, Lewis et al 1999). Conversely, ectopic Hh can transform somitic 

cells located in a more lateral position away from the midline, which normally adopt 

the fast-twitch fate, into slow-twitch muscles (Blagden et al 1997, Du et al 1997, 

Hammerschmidt et al 1996).  

Compared with slow muscle development, less is known about signals that 

promote development of fast muscle. The mammals Six1 homolog Six1a, which is a 

homeodomain transcription factor is implicated to be required for the onset of fast 

muscle differentiation in zebrafish (Bessarab et al 2008). The medial to lateral wave 

of fast muscle fiber is shown to be induced by slow muscle cells migration (Henry & 

Amacher 2004). 
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4. Myofibrillogenesis and sarcomere assembly 

During muscle cell differentiation, contractile proteins are coordinately 

expressed. The newly synthesized proteins must assemble together into highly 

complex myofibrils. This process is called myofibrillogenesis which requires the 

ordered synthesis and assembly of the sarcomeric proteins. One muscle cell typically 

contains bundles of myofibrils, each consisting of many sarcomeres, the basic 

functional contractile unit of muscle. Sarcomere is a highly organized structure. The 

initial step of myofibrillogenesis, also called myofibril assembly, is the formation of a 

regular array of sarcomeres. The sarcomeres later grow in width and in some cases in 

length, and eventually align and attach to each other and the sarcolemma. The details 

of this process are not well understood. An important question in muscle 

differentiation is how muscle cells produce these myofibrils with such regular arrays 

of sarcomeres (Sparrow & Schock 2009).  

 

1) Structure of the sarcomere 

A sarcomere is defined as the segment between two neighbouring Z-lines (or Z-

discs, or Z bodies), in which thin filaments are anchored and crosslinked by dimeric 

actin binding α-actinin molecules (Clark et al 2002, Frank et al 2006). Thin filaments 

consist of actin and the tropomyosin–troponin complex. The head of myosin in thick 

filaments binds to the actin of thin filaments to produce contraction. Thin filaments 

are polar and their plus and minus ends are capped by CAPZ and tropomodulin, 

respectively. Vertebrate skeletal muscle thin filaments additionally contain nebulin, a 
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long protein that regulates the length of thin filaments (Sparrow & Schock 2009). M-

line is localized in the middle of the sarcomere which crosslinks and anchors the thick 

filaments. The region that the thick filaments occupy is called the A‑band, whereas 

the region in which thin filaments do not overlap with thick filaments is known as the 

I‑band. The interactions between actin and myosin generate contractile forces and the 

sarcomeres shorten owing to the sliding of the two filament systems. The giant 

protein titin spans the half sarcomere with their amino termini anchor at the Z-line 

and their carboxyl termini anchor at the M-line (Labeit & Kolmerer 1995, Trinick 

1996). Titin anchors at the Z-line, closes to the thin filament, it crosses the I-band and 

then binds along thick filament as far as the M-line. The I-band region of titin forms 

an elastic element, which connects the Z-line to the thick filaments (Sparrow & 

Schock 2009).  

Myofibril termini attach to the skeleton at myotendinous junctions or are 

connected end to end at intercalated discs in cardiac muscle. Heterodimeric integrins, 

which connect thin filaments to extracellular matrix (ECM) ligands, are the main 

structural and functional components of myotendinous junctions. Peripheral 

myofibrils are also laterally anchored to the ECM at the level of the Z-disk in both 

vertebrates and invertebrates (Danowski et al 1992, Hudson et al 2008, Pardo et al 

1983). These adhesion sites are termed costameres, and, as with myotendinous 

junctions, they consist of many components that are typically found in integrin 

adhesion sites (Ervasti 2003, Pardo et al 1983, Quach & Rando 2006). 
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Figure 1. Structure and organization of the skeletal muscle and sarcomere. 

  
The skeletal muscle consists of many muscle fibers. Each muscle fiber is composed 

of a lot of myofibrils. The basic unit of the myofibril is called sarcomere which is 

composed of hundreds of highly organized filamentous proteins. 

(http://themedicalbiochemistrypage.org/muscle.html) 
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2) Current models for sarcomere assembly  

 

Currently there are three prevalent models for the myofibrillogenesis process. 

While all these models agree with one point of view that the first step of 

myofibrillogenesis occur in association with the cell surface or sarcolemma (Engel et 

al 2004), it still remains to be discovered for the specific assembly events which lead 

to a whole mature myofibril. 

 

Premyofibril model of myofibrillogenesis 

 The main theory for this model is that there are three sequential structures 

exist during myofibrillogenesis, which are premyofibrils, nascent myofibrils and 

mature myofibrils (Du et al 2003, Rhee et al 1994). In this model, premyofbrils are 

considered to consist of minisarcomeres with the Z-bodies containing muscle alpha-

actinin as the boundaries. The actin filaments interdigiate with nonmuscle myosin П 

filaments and the barbed ends of the actin filaments are anchored on the Z-bodies. 

With the alignment and growth of the premyofibrils, titin and muscle myosin П 

appear in fibrils. The fibrils of this stage are termed nascent myofibrils. With the 

transformation of Z-bodies to Z-lines or Z-bands and the alignment of muscle myosin 

П into A-bands, the mature sarcomere structure is set up. M-band proteins may be 

responsible for the final alignment of the thick filaments (Sanger et al 2005). Most of 

the studies for this model were done in living avian cells, first from cardiac muscle 
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cells and then extend to skeletal muscle cells. More recently, this group confirmed 

their model in zebrafish embryos (Sanger et al 2009).  

 

Figure 2. The premyofibril model of myofibril assembly. 

Assembly begins premyofibrils composed of minisarcomeres that contain sarcomeric 

proteins in the α-actinin enriched z-bodies and thin filaments of actin. Nonmuscle 

myosin II filaments are present in the minisarcomeres of the premyofibrils. Z-bodies 

in adjacent fibrils begin to align in nascent myofibrils, forming beaded Z-bands that 

gradually become linear Z-bands or Z-lines in mature myofibrils. Titin molecules and 

muscle myosin II thick filaments are also present in nascent myofibrils. The thick 

filaments in the nascent myofibrils are not aligned, but are in an overlapped 

relationship. M-band proteins are recruited to the mature myofibrils; thick filaments 

become aligned into A-bands, while nonmuscle myosin II proteins are absent (Sanger 

et al 2005). 
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Template model of myofibrillogenesis 

The main theory of this model is that at the early stage of myofibrillogenesis, 

there are stress fibers or stress-line structures which serve as a temporary template for 

the elements necessary to make one myofibril (Dlugosz et al 1984). The studies for 

this model were conducted on fixed and stained cell. However, later studies in living 

muscle cells showed that the stress fiber-like structures in muscle cells contains 

muscle-specific proteins (Almenar-Queralt et al 1999, Rhee et al 1994). In addition, 

those structures can response to inhibitors of polymerization which are not shown by 

stress fibers (Sanger et al 1990).  

 

Independent subunit assembly model of myofibrillogenesis 

The third model for myofibrillogenesis proposes that the I-Z-I bodies (which 

contain actin filaments, titin and Z bodies) and thick filaments assemble 

independently of one another. Titin plays an important role in joining them together 

and promote their assembly into mature myofibrils (Epstein & Fischman 1991, 

Holtzer et al 1997, Lu et al 1992). This model was first proposed from the studies in 

cardiac muscle cells, and then extended to skeletal muscle cells (Holtzer et al 1997, 

Lu et al 1992).  

All these models focus on the morphogenesis of the sarcomere structure and 

only a rough structure has been set up. It remains undetermined of how most of the 

sarcomeric proteins are assembled and organized, as well as of how 

myofibrillogenesis is regulated by different kinds of factors.  
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5. Molecular regulation of myofibrillogenesis 

During myofibrillogenesis, there are different levels of regulation to make it 

possible to set up and maintain the highly organized structure of the myofibrils. It was 

discussed earlier that the expression of contractile and scaffold proteins are regulated 

by transcription factors such as MRFs and MEF2. In addition, histone modification in 

transcriptional regulation of muscle gene expression has become another hot topic in 

recent years. Moreover, translational and post-translational regulations are very 

important for the folding and assembly of the myofibril proteins. 

1) Myofibrillogenesis regulated by histone modification 

Histone modifications such as histone acetylation and histone methylation are 

common reversible posttranslational modifications on histone tails that modulate 

chromatin structure and gene transcription, both positively and negatively. Many 

studies have shown that histone modifications play important roles in muscle-specific 

gene expression and muscle cell differentiation (Cirillo & Zaret 2004, Lee et al 2004, 

McKinsey et al 2002, Rupp et al 2002). 

Histone acetylation is a dynamic process controlled by the antagonistic actions 

of two large families of enzymes ̶ the histone acetyltransferases (HATs) and the 

histone deacetylases (HDACs) (Haberland et al 2009). Function for HDACs has been 

described during skeletal muscle development. The transcription factor MEF2 is a 

target for calcium signalling in skeletal muscle and is a key regulator of the slow 

myofiber phenotype. This function of MEF2 is mediated through its regulation by 
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class IIa HDACs (Potthoff et al 2007). In addition, a highly conserved MEF2-binding 

site in the proximal promoter of the HDAC9 gene has been shown to drive the 

expression of HDAC9, which establishes a negative feedback loop in which MEF2 

drives the expression of its own repressor. This feedback loop is thought to provide 

robust and fine-tune to the gene programming controlled by HDAC9 and MEF2 

(Haberland et al 2007).  

 Histone methylation is carried out by a class of enzymes called histone 

methyltransferase (HMTase). SET domain-containing family members have been 

well studied for their regulation on histone methylation (Cheng et al 2005, Rea et al 

2000). More and more studies have shown the function of SET domain-containing 

proteins during muscle development. Previous study has reported that the histone 

methyltransferase, Ezh2, is a negative regulator of muscle differentiation, and its 

expression is down-regulated during myogenesis (Caretti et al 2004). Studies from 

our group have demonstrated that a muscle-specific SET domain-containing protein 

Smyd1b can work as an HMTase to control myofibril assembly (Tan et al 2006).   

Although these studies have shown that histone modification enzymes control 

the expression of myofibril proteins, it remains to be determined of how they control 

the myofibril assembly, whether they are involved directly or through their target 

genes. 

 

2) Myofibrillogenesis regulated by molecular chaperones 

 The myofibrils are highly organized macromolecular structures. 

Myofibrillogenesis demonstrates the need for intricately protein quality control to 
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ensure the assembly of macromolecular structures such as the sarcomere. The 

synthesis, assembly and organization of sarcomeric proteins during 

myofibrillogenesis require the temporal and spatial regulation by specialized 

molecular chaperones (Kim et al 2008).  

 

Hsp90 and myofibrillogenesis 

Although the precise folding and assembly of myosin has not been well 

studied, it is widely known that chaperone-mediated myosin folding is an integral part 

of myofibril assembly (Hutagalung et al 2002). Efficient folding and assembly of 

myosin isoform is possible only when it is expressed in muscle cells, suggesting that 

unique components from muscle cells are required for myosin folding and assembly 

(Chow et al 2002). Heat-shock proteins (Hsps) are molecular chaperones for huge 

numbers of proteins and Hsp90 alone may be able to interact with more than 400 

different proteins (Zhao et al 2005). In vitro studies in myocytes indicated that Hsp90 

forms a complex with newly synthesized myosin proteins and is involved in myosin 

folding and assembly. Inhibition of Hsp90 function by geldanamycin blocked 

myofibril assembly and triggered accumulation of myosin folding intermediates in 

C2C12 myocytes (Srikakulam & Winkelmann 2004). Hsp90α is expressed strongly in 

developing somites and skeletal muscles during zebrafish development, but the in 

vivo function of Hsp90α in vertebrate development has not been revealed (Sass et al 

1999). 
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Unc45 and myofibrillogenesis 

UNC-45 functions both as a molecular chaperone and as an Hsp90 

cochaperone for myosin folding and assembly during myofibrillogenesis (Etard et al 

2007). Genetic studies in C. elegans showed that UNC-45 played an essential role for 

myosin assembly. Mutations in UNC-45 resulted in paralyzed animals with severe 

myosin disorganization (Barral et al 1998, Epstein & Thomson 1974). In vertebrates, 

two unc45 isoforms have been identified: a general cell ubiquitous isoform named 

unc45a and a striated muscle-specific isoform named unc45b. Knockdown or 

mutation of unc45b resulted in zebrafish embryos with no locomotion and a loss of 

myosin filaments in trunk muscles (Etard et al 2007, Wohlgemuth et al 2007). 

 

Myofibrillogenesis and other molecular chaperons 

Besides Hsp90, other heat-shock proteins can also work as molecular 

chaperones for muscle proteins. For example, the small heat-shock protein αB-

crystallin exerts chaperone activity on a variety of filamentous and cytoskeletal 

proteins such as actin and the intermediate filament protein desmin (Bennardini et al 

1992, Singh et al 2007). Two more molecular chaperones, GimC (also known as 

Prefoldin) and TRiC (TCP-1 Ring Complex, also known as CCT), are also known to 

play a synergistic role in the process of actin folding (Kim et al 2008). During actin 

translation, GimC can capture nascent actin polypeptide chains and help actin folding 

(Hansen et al 1999). GimC also works as a co-chaperone for the general chaperone 

TRiC. Partially folded actin is handed over from GimC to TRiC to mediate the 

subsequent maturation of actin. (Siegers et al 1999, Vainberg et al 1998). 
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6. Mutations of sarcomeric proteins cause sarcomere 

diseases 

 
Mutations of the sarcomeric proteins are known to cause skeletal and cardiac 

muscle diseases. The diseases vary in severity from paralysis at birth, to mild 

conditions compatible with normal life span (Laing & Nowak 2005). Deciphering the 

precise relationships among striated muscle components often reveals candidate 

molecules for myopathies (the genetic lesions for which had not been identified) 

(Clark et al 2002). It has been known that human skeletal myopathies are associated 

with mutations in at least 20 sarcomeric proteins (Bonnemann & Laing 2004, Laing 

& Nowak 2005). Similarly 300 dominant mutations in sarcomeric proteins have been 

identified to be associated with human cardiomyopathies (Bashyam et al 2003, Morita 

et al 2005, Redwood et al 1999). Because of the nature of these mutations, familial 

hypertrophic cardiomyopathy (familial HCM or FHC) is known as a “disease of the 

sarcomere” (Thierfelder et al 1994). Mutations in myosin, a molecular motor, are 

responsible for both skeletal myopathies and cardiomyopathies (Fananapazir et al 

1993, Laing & Nowak 2005). The identification of the disease genes allows more 

accurate diagnosis, including prenatal diagnosis, and to enhanced potential for 

prognosis, genetic counseling and developing possible treatments for these diseases 

(Laing & Nowak 2005).  
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Current knowledge on the relation between contractile protein dysfunction and 

the muscle disease pathogenesis has failed to decipher the mechanistic links between 

the gene mutations of sarcomere proteins and skeletal myopathies (Tajsharghi 2008). 

Strong efforts have been made to understand the myofibrillogenesis in both normal 

muscle development and muscle myopathy. Those efforts have benefited a lot from 

the use of model systems such as cultured myocytes from chick, rat and mouse, and 

from animal model systems including Drosophila, C. elegans, rodents and zebrafish. 

(Chien 2000, Gordon & Hoffman 2001, Marian & Roberts 2001, Seidman & Seidman 

2001, Towbin & Bowles 2002, Tubridy et al 2001).  
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Figure 3. EM picture of a single sarcomere. 

Underneath this is a schematic diagram showing the major compartments of the 

sarcomere. Proteins known for each compartment are listed. Those knownto be 

mutated in human skeletal muscle diseases are highlighted in bold. Those proteins not 

yet associated with human diseases are in plain text (Laing & Nowak 2005). 
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7. Zebrafish as a model to study muscle development and 

myofibrillogenesis 

 

The zebrafish (Danio rerio) is a small tropical freshwater fish, a cyprinoid 

teleost, which originated in rivers in India. They are easy to maintain in aquariums. 

The emergence of using zebrafish as a model organism for modern biological 

investigation began with the pioneering work of George Streisinger and colleagues in 

the early 1980s (Streisinger et al 1981), who recognized many of the virtues of this 

experimental system. These include its short generation time, the large numbers of 

eggs produced by each mating, and the fact that, because fertilization is external, all 

stages of development are accessible (Briggs 2002). Now the zebrafish sequencing 

project is close to completion and it has been more and more widely used in forward 

and reverse genetics and embryology based on the gene similarity between the 

zebrafish and human being. Zebrafish genes share on average of more than 75% 

similarity to human genes. The characterization of many mutants from the large-scale 

mutagenesis performed to date has clearly and repeatedly demonstrated that 

mutations in zebrafish orthologues of human disease genes produce phenotypes 

similar to human disease states. 

 

1) Zebrafish as a model in general muscle development 

 Zebrafish is an excellent model to study striated muscle development because 

it offers many advantages over other model systems. First, fish embryos develop 
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externally, simple patterns of motility and behavior can be observed during 

embryonic and early larval stages. Second, zebrafish embryos have a relatively 

simple muscle system, fast and slow muscles are clearly separated from each other, 

and specific muscle cell types are easily recognized. Third, myogenesis in zebrafish 

embryos begins relatively early during development, the first spontaneous muscle 

contractions occur at 18 hours post-fertilization (hpf) (Felsenfeld et al 1990). By 

24hpf, functional embryonic myofibers are well developed and mechanical stimuli 

induce a wiggle reaction. Sarcomeres can be clearly visualized by anti-myosin 

antibody staining. Fourth, growing collections of zebrafish mutants with defects in 

early muscle development provide a rich resource for studying the roles of candidate 

genes in muscle development. Fifth, the transparent nature of the zebrafish embryos 

plus reliable transgenic technology provides a powerful tool to analyze the regulation 

of gene expression in developing embryos. Sixth, zebrafish embryos can tolerate 

absence of blood flow because the oxygen inside the zebrafish body is delivered by 

diffusion rather than by the cardiovascular system. This makes it possible to study the 

skeletal and cardiac muscle defects in zebrafish embryos with heart failure (Granato 

et al 1996). Finally, the morpholino (MO) antisense technique that has been 

successfully used to knock down gene expression in zebrafish can be designed to 

knock down specific isoform of mRNA transcripts generated by alternative splicing, 

which is difficult to do with gene knockout approach in mice (Ekker & Larson 2001). 
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2) Zebrafish as a model in myofibrillogenesis 

Zebrafish is an ideal model system to study myofibril assembly. The optical 

clarity of the zebrafish body and well-defined sequence of embryonic muscle 

formation make it possible to observe the live muscle cell development with 

fluorescence in situ to determine how the sarcomeres are sequentially formed. In 

addition, the temporal progression of myofibril formation can be followed in a single 

fish in myotomes that form sequentially (Sanger et al 2009). Recent studies have been 

done in zebrafish to reveal how the sarcomeres are set up and how the 

myofibrillogenesis is regulated by all kinds of factors ranging from sarcomeric 

proteins to molecular chaperones. 

 

Zebrafish as a model to study the function of sarcomeric proteins 

Zebrafish genome can be easily manipulated by either gain-of-function 

method using mRNA injection or transgenic technology, or by loss-of-function 

experiments using morpholino knockdown technology (Nasevicius & Ekker 2000). 

Those technologies and large-scale mutagenesis screenings have been widely used in 

functional studies of sarcomeric proteins.  

Studies have been done in zebrafish to discover the function of titin during 

myofibrillogenesis. Titin is the biggest known protein and is the third most abundant 

protein of vertebrate striated muscle, after myosin and actin (Tskhovrebova & Trinick 

2003). It has been proposed that titin provides a scaffold for the assembly of thin and 

thick filaments (Gregorio et al 1999). Two titin orthologs have been found in 

zebrafish, ttna and ttnb (Seeley et al 2007). Loss of function study has shown that 
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ttna is required for later steps of sarcomere assembly, including the assembly of Z-

discs and A-bands, but not for early steps such as the assembly of Z-bodies and 

nonstriated myosin filaments (Seeley et al 2007). This differs from other studies in 

which cultured cells were used (Person et al 2000, van der Ven et al 2000). 

Obscurin/obscurin-MLCK is another giant sarcomere-associated protein with 

multiple isoforms. Obscurin intimately surrounds the myofibrils at the level of the Z 

disk and the M line (Kontrogianni-Konstantopoulos et al 2003). The interactions 

between obscurin with titin and small ankyrin-1 suggest an important role in 

myofibril assembly (Bang et al 2001, Kontrogianni-Konstantopoulos et al 2004, 

Kontrogianni-Konstantopoulos et al 2006, Russell et al 2002, Young et al 2001). 

Depletion of obscurin using morpholino antisense oligos resulted in diminished 

numbers and marked disarray of skeletal myofibrils. The Z band architecture of the 

individual sarcomeres was intact with normal patterns of α-actinin staining, however, 

thick filament organization was not well preserved and there was diminished M band 

localization of obscurin (Raeker et al 2006). This suggested that obscurin was 

incorporated into the sarcomere after the Z bodies were set up. 

 

Zebrafish as a model to study the regulation of myofibrillogenesis 

MEF2 is an important transcription factor that controls the expression of 

contractile and scaffold protein during myofibrillogenesis. Knockdown of mef2s in 

zebrafish severely disrupted thick filament assembly and caused aggregation of thin 

filament. The actin, a-actinin, titin Z-line region and tropomyosin showed as puncta 

in mef2 morphants, suggesting myofibrillogenesis was stuck in a pre-myofibril stage 
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(Hinits & Hughes 2007). This study is consistent with the premyofibril model (Wang 

et al 2005). 

As it was mentioned before, molecular chaprones can regulate 

myofibrillognesis by control the folding and assembly of the sarcomeric proteins. 

Some of those studies were conducted in zebrafish embryos with mutations or gene 

depletion using morpholino oligos (Etard et al 2007, Wohlgemuth et al 2007).  

A recent study has been done for the regulation of sarcomere assembly by 

microRNAs. The muscle-specific miRNAs, miR-1 and miR-133 have been shown to 

regulate actin organization. Knockdown of either miR-1 or miR-133 had a mild effect 

in the actin band; however, knockdown of both disrupted actin organization. No 

effect was detected on actinin organization (Mishima et al 2009). It remains to be 

determined of how miRNAs regulate myofibrillogenesis. 

 

8. smyd1b in myofibrillogenesis 

 

1) The nomenclature of smyd1 

 In our lab, we are interested in a gene called smyd1b. It is also known as skm-

Bop and was first identified as an unknown gene in the opposite transcription 

orientation from the CD8b gene (Hwang & Gottlieb 1995). It was named Bop after 

CD8b opposite. Smyd1 (Bop) was first discovered in cytotoxic T cells and adult heart 

and skeletal muscle (Hwang & Gottlieb 1997). Smyd1 belongs to the Smyd (SET and 

MYND domain) family that represents a subfamily of SET domain containing 
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proteins with unique domain architecture. This family of proteins is defined by a SET 

(su(va)-39, enhancer of zeste and trithorax) domain that is split into two segments by 

an MYND (myeloid-Nervy-DEAF-1) domain, followed by a cysteine-rich post SET 

domain (Rea et al 2000).  

In zebrafish, there are two copies of smyd1 genes because of the gene 

duplication during evolution. One of them is called smyd1a and the other one is called 

smyd1b. Each of them has two alternatively spliced isoforms. The gene we are 

studying is smyd1b and the two isoforms are termed smyd1b_tv1 and smyd1b_tv2. 

The only difference between these two isoforms is that Smyd1b_tv1 has 13 amino 

acids more than Smyd1b_tv2. Generation of smyd1b_tv1 and smyd1b_tv2 by 

alternative splicing appeared to be conserved during evolution because identical 

isoforms have been cloned in chicken and mouse embryos (Gottlieb et al 2002). 

 

2) Functional studies of smyd1b 

smyd1 is known to be required for skeletal and cardiac muscle development. 

Functional studies by gene knockout have clearly demonstrated an important role for 

Smyd1 in cardiac muscle formation in mouse embryos. Smyd1 null mutant mice failed 

to develop a right ventricle and had excessive extracellular matrix that resulted in 

embryonic lethality at approximately day E10.5 (Gottlieb et al 2002).  

In order to determine the function of smyd1b in skeletal muscles, our group 

studied the smyd1b expression and function in zebrafish embryos. Because zebrafish 

embryos can tolerate the absence of blood flow since their oxygen is delivered by 

diffusion rather than by the cardiovascular system, so this made it possible to study 
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smyd1b function during skeletal muscle development without heart beating. 

Knockdown of smyd1b_tv1 and smyd1b_tv2 expression in zebrafish caused severe 

defects in skeletal and cardiac muscles. The embryos could not swim and had no 

heartbeat. Molecular and cellular analyses revealed that thick filament myosin 

structure was highly disorganized in smyd1b morphant embryos (Tan et al 2006).  

 

3) Gene regulation of smyd1b 

 smyd1b is specifically expressed in cardiac and skeletal muscles and this 

tissue-specific expression pattern is controlled by the -500 bp promoter region of 

smyd1b in zebrafish embryos. Multiple E-boxes (MRF binding site) were found in 

this region, which were shown to be important for the skeletal muscle-specific 

expression (Du et al 2006). In mouse, a -637 bp Smyd1 regulatory region was 

identified to be required for Smyd1 expression (Phan et al 2005). Within this 

regulatory region, a single MEF2 consensus-binding site was found as the MEF2C 

target to regulate Smyd1 expression in the anterior heart field. In addition, three E-

boxes surrounding the essential MEF2 site were indentified to bind MyoD and control 

Smyd1 expression in skeletal muscle (Phan et al 2005). Recently, Hepatoma-derived 

growth factor (HDGF) has been shown to repress human SMYD1 gene expression 

through interaction with a transcriptional corepressor C-terminal binding protein 

(CtBP), but no functional study has been done for this regulation (Yang & Everett 

2009).  
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4) Subcellular localization of Smyd1b 

The subcellular localization of Smyd1 was detected during myogenesis in 

C2C12 myoblasts undergoing differentiation using immunofluorescence (Sims et al 

2002). Polyclonal mouse anti-Smyd1 antibody was used in this study. Twenty-four 

hours after the onset of differentiation, Smyd1 was present in both the nucleus and 

cytoplasm of myoblasts, while at 96 h following the switch to differentiation medium, 

Smyd1 displayed high levels of cytoplasmic staining in myotubes, whereas the 

nuclear staining was either absent or very low compared with the staining in the 

cytoplasm (Sims et al 2002). This indicates that Smyd1 may have function in both the 

nucleus and the cytoplasm at different stages of muscle cell differentiation.  

 

5) Mechanistic studies of smyd1b 

Smyd1b has two conserved functional domains, the MYND domain and the 

SET domain. The MYND domain was predicted based on its primary sequence which 

has two putative, non-DNA-binding zinc-fingers (Gross & McGinnis 1996). It is 

known as a protein-protein interaction domain and it has been implicated in the 

recruitment of HDACs (Gelmetti et al 1998, Lutterbach et al 1998, Wang et al 1998). 

The SET domain is known for its histone methyltransferase activity, which is 

involved in permanent silencing of transcription or, in some cases, activation of 

transcription (Jenuwein 2001, Nakayama et al 2001, Rea et al 2000, Schotta et al 

2002). 

Molecular analysis revealed that expression of Hand2, a transcription factor 

essential for right ventricular development, is down regulated in Smyd1 mutant 
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embryos. The presence of both MYND and SET domains in Smyd1 suggests a 

possible role for Smyd1 in chromatin remodeling and transcription regulation during 

muscle cell differentiation. Consistent with this hypothesis, Smyd1 associates with 

HDAC proteins and represses gene transcription in a HDAC dependent manner 

(Gottlieb et al 2002).  

Like other SET domain containing proteins which have been shown to have 

histione methyltranferase activity (Nakayama et al 2001, Rea et al 2000). In vitro 

study indicated that Smyd1b is also a histone methyltransferase (Tan et al 2006), but 

it remains unknown about the in vivo working mechanism of smyd1b during 

myofibrillogenesis. 

 

6) Smyd family members 

Smyd proteins are highly conserved during evolution. Human and mouse 

genome each contains five annotated Smyd proteins (Thompson & Travers 2008). 

Like other SET domain containing proteins, three of Smyd family members including 

Smyd1, Smyd2 and Smyd3, have been identified as histone methyltranseferase in 

vitro (Abu-Farha et al 2008, Hamamoto et al 2004, Tan et al 2006). With the 

identification of non-histone target for other SET containing proteins, Smyd proteins 

have also been shown as non-histone methyltrasnferase. Smyd2 has been shown to 

methylate P53 on lysine 370 to inhibit P53 transcriptional activity (Huang et al 2006). 

In addition, Smyd3 has recently been identified as a methyltransferase for VEGFR1 

(Kunizaki et al 2007). Smyd1 has been shown to work as a histone methyltransferase 
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in vitro, whether it also has non-histone protein methyltransferase activity in vivo is 

totally unknown. 

 

9. Smyd1b interacting proteins 

Yeast Two-Hybrid analyses revealed that Smyd1 interacts with another 

cardiac and skeletal muscle-specific protein skNAC, which is a muscle-specific 

isoform of αNAC (nascent polypeptide-associated complex). NAC is a heterodimeric 

complex that binds the newly synthesized polypeptide chains in the cytoplasm as they 

emerge from the ribosome. NAC has two subunits, one is called αNAC and the other 

one is called βNAC. Like a typical chaperone, NAC interacts with unfolded 

polypeptide chains independent of their amino acid sequence. But what ribosome-

bound NAC exactly does in vivo is poorly understood and controversial (Bukau et al 

2000, Rospert et al 2002, Wiedmann et al 1994). While examining the expression 

pattern of αNAC in adult murine tissue, Yotov and colleagues detected αNAC in all 

tissues postnatally. Interestingly, a larger size transcript was identified in skeletal 

muscle and heart. Cloning of the cDNA corresponding to this 7.0-kb mRNA revealed 

that it arises from differential splicing-in of a 6.0-kb exon giving rise to a proline-rich 

isoform of αNAC that was termed skNAC (skeletal NAC) (Yotov & St-Arnaud 

1996).  

The 220-kD skNAC protein was specifically expressed in cardiac and skeletal 

muscle. It was only detected in differentiated myotubes but not in myoblasts (Yotov 

& St-Arnaud 1996). At the same time, skNAC was found to display transcriptional 
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activating capacity. The murine myoglobin promoter was identified as a natural 

promoter responsive to skNAC. In contrast, αNAC was not active in stimulating 

transcription from reporter constructs; neither did αNAC competitively inhibit 

transcriptional activation by skNAC (Yotov & St-Arnaud 1996). Other studies showed 

that skNAC is involved in the repair process of injured muscle cells, which confirmed 

a specific role of the large splicing variant skNAC in muscle development (Munz et al 

1999). 

Double immunofluorescence of C2C12 myoblasts undergoing differentiation 

showed that Smyd1 and skNAC can be colocalized in the nucleus in the early stage of 

myoblast differentiation, and both of them had a translocation from nucleus to 

cytoplasm during myoblast differentiation (Sims et al 2002).  

Structural mapping revealed that the interaction between Smyd1 and skNAC 

required an intact MYND domain and amino-terminal S sequences of Smyd1 in 

mammalian muscle cells (Sims et al 2002). The Smyd1 interaction domain of skNAC 

was found in a carboxyl terminal region of skNAC. The sequence of the Smyd1 

intercating motif was mapped as PPLIP which was encoded by sequence near the end 

of the skNAC-specific exon-3. Deletion of the PPLIP motif abolished the interaction 

between skNAC and Smyd1 (Sims et al 2002). The consensus PXLXP motif has been 

previously shown to be essential for the interaction of the closely related MYND 

domain of the transcriptional corepressor protein and other proteins (Ansieau & Leutz 

2002). The known function of skNAC is limited and its in vivo function is still a 

mystery. The study of skNAC will give us new insights for its function and will also 

help us to understand the working mechanism of Smyd1.  
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Project hypothesis, objectives and organization 

 

The overall goal of my research was to advance the understanding of the 

function of Smyd1b and its interacting proteins including skNAC and Hsp90α1 and to 

study their working mechanism during myofibrillogenesis using zebrafish as a model 

system. 

 

To achieve this goal based on the available knowledge, we stipulated the 

following five hypotheses. Each hypothesis was tested by the following detailed 

objectives and methods: 

 

Hypothesis 1: smyd1b may also be required for other sarcomeric protein assembly 

besides the thick filament myosin in skeletal muscle and knockdown of smyd1b may 

also affect the overall sarcomere assembly of cardiac muscles.  

To test this hypothesis, our objectives were: 1) to determine whether the thin 

filament, Z-line, M-line and titin were affected in skeletal muscle of smyd1b 

knockdown embryos; 2) to detect whether the sarcomere assembly of cardiac muscles 

was affected in smyd1b knockdown embryos. 

To achieve these objectives, we have: 1) detected the assembly of the thin 

filament using actin as a marker, the Z-line assembly using α-actinin as a marker, the 

M-line assembly using myomesin as a marker and titin assembly in skeletal muscle 
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with smyd1b knockdown; 2) detected whether the early development of the heart—

the heart looping was affected by smyd1b knockdown; 3) detected the sarcomere 

assembly of the cardiac muscle using myosin as a marker for the thick filament and 

actinin as a marker for the Z-line. 

 

Hypothesis 2: Smyd1b may have a sarcomeric localization and work directly on 

sracomere assembly. 

To test this hypothesis, our objectives were: 1) detect the sarcomere 

localization of both Smyd1b_tv1 and Smyd1b_tv2 during muscle development; 2) 

map the exact sarcomere localization; 3) detect whether Smyd1b_tv1 and 

Smyd1b_tv2 show different or same sarcomere localization. 

To achieve these objectives, we have: 1) detected the sarcomere localization 

of both Smyd1b_tv1 and Smyd1b_tv2 in the myoblast, myotube and muscle fibers; 2) 

detected the localization of Smyd1b_tv1 on the sarcomere using double staining with 

actinin or myomesin antibody; 3) mutated several amino acid residues one by one to 

see which one is important for the sarcomere localization of Smyd1b_tv1.  

 

Hypothesis 3: Smyd1b interacting protein skNAC may have similar function as 

Smyd1b during myofibrillogenesis. 

To test this hypothesis, our objectives were: 1) to clone sknac in zebrafish; 2) 

to determine the temporal and spatial expression pattern of sknac mRNA during 

zebrafish development; 3) to knockdown the endogenous sknac and to determine the 

phenotype on muscle development. 
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To achieve these objectives, we have: 1) cloned the cDNA sequence of sknac 

and analyzed the gene structure during evolution; 2) checked the expression pattern of 

sknac using both RT-PCR and in-situ hybridization; 3) knocked down the sknac in 

zebrafish using morpholino oligos and characterized the phenotype. 

 

Hypothesis 4: hsp90α1 may play an important role during myofibrillogenesis. 

To test this hypothesis, our objectives were: 1) to determine whether 

expression of hsp90α1 was affected in smyd1b knockdown embryos; 2) to determine 

the phenotype of hsp90α1 knockdown on the sarcomere assembly. 

To achieve these objectives, we have: 1) compared the mRNA level of 

hsp90α1 in the control and smyd1b knockdown embryo; 2) knocked down hsp90α1 

using morpholino oligos and detected the effect of hsp90α1 on the sarcomere 

assembly using myosin, actin, actinin and myomesin as markers for the thick 

filament, thin filament, Z-line and M-line, correspondently. 

 

Hypothesis 5: Smyd1b may work together with Hsp90α1 and Unc45b to control 

myofibrillogenesis. 

To test this hypothesis, our objectives were: 1) to determine whether Smyd1b 

can specifically interact with Hsp90α1 or Unc45b; 2) to determine the critical 

subcellular localization of Smyd1b in myofibril assembly. 

To achieve these objectives, we have: 1) analyzed the interaction between 

Smyd1b and Hsp90α1, or Smyd1b and Unc45b using Co-Immunoprecipitation; 2) 

determined the subcellular localization of Smyd1b in mouse myoblast C2C12 cells; 
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3) demonstrated that the cytoplasmic localization is critical for Smyd1b function in 

myofibrillogenesis. 
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CHAPTER 2: M-LINE LOCALIZATION OF SMYD1B_TV1 
IN SARCOMERES IS DETERMINED BY A SERINE 
RESIDUE AT POSITION 225 

 

1. Abstract 

smyd1b is a member of the smyd family that contains the highly conserved 

SET and MYND domains. smyd1b encodes two alternatively spliced isoforms, 

smyd1b_tv1 and smyd1b_tv2. These two isoforms differ by a 13 aa insertion encoded 

by a smyd1b_tv1-specific exon 5. Both smyd1b_tv1 and smyd1b_tv2 are expressed in 

skeletal and cardiac muscles and play a key role in myofibril assembly during 

myogenesis. Knockdown of smyd1b (tv1 and tv2) expression resulted in paralyzed 

zebrafish larvae without heart contraction. Myofibril assembly was significantly 

disrupted in smyd1b knockdown embryos. To better understand the mechanism of 

action in sarcomere assembly, we analyzed the subcellular localization of 

Smyd1b_tv1 and Smyd1b_tv2 in transgenic zebrafish expressing a myc-tagged 

Smyd1b_tv1 or Smyd1b_tv2, respectively. We showed that Smyd1b_tv1 and 

Smyd1b_tv2 are primarily localized in the cytosol of myoblasts and myotubes of 

early stage zebrafish embryos. However, in differentiated myofibers, Smyd1b_tv1 

and Smyd1b_tv2 showed distinct pattern of subcellular localization. Smyd1b_tv1 was 

strongly localized on the M-line of sarcomeres whereas Smyd1b_tv2 showed a 

diffuse pattern of distribution in the cytosol. The Ser225 located within the 

Smyd1b_tv1-specific 13 aa insertion appears to be critical for the M-line localization. 

Mutation of Ser225 to alanine abolished the sarcomeric localization of Smyd1b_tv1 
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in myofibers. However, replacing Ser225 with theronine or aspartic acid had no 

effect, suggesting that modification by phosphorylation may be involved in the 

sacromeric localization of Smyd1b_tv1. 

 

2. Introduction 

smyd1, also known as Bop, is a member of the smyd family. This family is 

characterized by the presence of the conserved SET and MYND domains involved in 

protein methylation and protein-protein interaction, respectively (Gelmetti et al 1998, 

Gross & McGinnis 1996, Hwang & Gottlieb 1995, Hwang & Gottlieb 1997, 

Lutterbach et al 1998, Rea et al 2000, Wang et al 1998). Five members of the smyd 

family have been identified in vertebrates, including Smyd1 through 5 (Sun et al 

2008). Members of the smyd family play several important roles in development and 

cancer. Smyd1 is required for the development of skeletal and cardiac muscles 

(Gottlieb et al 2002, Tan et al 2006). Smyd2 and Smyd3 have been shown to be 

involved in cancer cell proliferation (Hamamoto et al 2004, Huang et al 2006).  

Smyd1 is specifically expressed in skeletal and cardiac muscles of mouse and 

zebrafish embryos (Hwang & Gottlieb 1995, Hwang & Gottlieb 1997, Tan et al 

2006). Knockout studies revealed that Smyd1 plays a key role in cardiomyogenisis in 

mouse embryos (Hwang & Gottlieb 1995, Hwang & Gottlieb 1997). In zebrafish, 

there are two smyd1 duplicates, smyd1a and smyd1b. Both of them are expressed in 

muscle cells during development. Knockdown of smyd1b expression resulted in 

paralyzed zebrafish larvae with highly disorganized myofibrils in skeletal and cardiac 

muscles (Tan et al 2006).  
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The molecular mechanism by which smyd1b control the myofibrillogenesis is 

not clear. It has been reported that smyd1 represses gene transcription in vitro in an 

HDAC (histone deacetylase) dependent fashion (Gottlieb et al 2002). In vitro 

biochemical analysis indicated that Smyd1b could methylate histone H3 proteins in 

vitro (Tan et al 2006). Smyd1 appears to undergo translocation from the nucleus to 

the cytoplasm during myoblast differentiation into myotube and myofibers. Smyd1 

protein is initially localized in the nucleus of C2C12 myoblasts and translocated to 

the cytosol after myoblast differention into myotube and myofibers in vitro (Sims et 

al 2002). The biological significance of this translocation is unknown. Moreover, it is 

not clear whether this Smyd1 translocation also occurs during muscle development in 

vivo.  

Molecular analysis revealed that smyd1b encodes at least two mRNA 

transcripts, smyd1b_tv1 and Smyd1b_tv2, that are expressed in skeletal and cardiac 

muscles (Hwang & Gottlieb 1995, Hwang & Gottlieb 1997, Tan et al 2006). 

smyd1b_tv1 and Smyd1b_tv2 are generated by an alternative splicing of exon 5 

encoding 13 aa (Hwang & Gottlieb 1995, Hwang & Gottlieb 1997, Tan et al 2006). 

Functional analysis via ectopic expression revealed that both smyd1b_tv1 and 

smyd1b_tv2 could rescue the smyd1b knockdown phenotype in zebrafish (Tan et al 

2006), suggesting that they may have similar biological activity. However, it is not 

clear whether smyd1b_tv1 and smyd1b_tv2 each have their own unique functions and 

subcellular localization patterns. 

To better understand the mechanistic action of smyd1b, we analyzed the 

subcellular localization smyd1b_tv1 and smyd1b_tv2 during muscle development in 
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zebrafish embryos and in adult skeletal muscles. The data showed that Smyd1b_tv1 

and Smyd1b_tv2 are primarily localized in the cytosol of myoblasts and myotubes of 

fish embryos at early stage. However, in mature myofibers of late stage embryos, a 

sarcomeric localization was evident for Smyd1b_tv1 but not for Smyd1b_tv2. Double 

immunostaining revealed that Smyd1b_tv1 was localized on the M-line of 

sarcomeres. The M-line localization appeared to be determined by the Ser225 located 

within the Smyd1b_tv1-specific 13 aa insertion. Mutation of the Ser225 to alanine 

abolished the sarcomeric localization of Smyd1b_tv1. However, replacing the Ser225 

with theronine or aspartic acid had no effect, suggesting that post-translational 

modification by phosphorylation may be involved in the sacromeric localization of 

Smyd1b_tv1. 

 

3. Materials and methods: 

1) Synthesis of Morpholino-modified antisense oligos for splicing blockers 

The splicing blocker (E9I9-MO) of smyd1b was based on the sequence of 

splicing donor at the exon-9 and intron-9 junction (Tan et al 2006). The hsp90α1 

translation blockers (ATG-MO) were targeted to sequence near the ATG start codon. 

Sequence of E9I9-MO: 5'-CGTCACCTCTAGGTCTTTAGTGATG-3' 

Sequence of hsp90α1 ATG-MO: 5’- CGACTTCTCAGGCATCTTGCTGTGT- 3’ 

(Du et al 2008). 
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2) Morpholino microinjection in zebrafish embryos 

Morpholino antisense oligos were dissolved in 1×Danieau buffer (Nasevicius 

& Ekker 2000) to a final concentration of 0.5 mM. 1-2 nl of the smyd1b E9I9-MO or 

hsp90α1 ATG-MO was injected into zebrafish embryos at the 1-2 cell stages. 

 

3) Immunostaining of cryostat sections and whole mount zebrafish embryos  

Skeletal muscles were dissected from adult WT mouse or adult Smyd1b_tv1 

and Smyd1b_tv2 transgenic zebrafish at 90 dpf. The muscle tissues were fixed in 4% 

paraformaldehyde for 1 h at room temperature. The fixed samples were washed with 

1×PBS-Tween (PBS, 0.1% Tween) 2×10 min, and then soaked in 30% sucrose for 2 

h. The samples were transferred into an embedding chamber filled with OCT cryostat 

embedding medium (Tissue Tek). The embedding chambers were frozen on dry ice, 

and the frozen blocks were cut on a cryostat at -20℃ to produce 15 mm sections. 

Sections were transferred to subbed slides and allowed to dry completely at 37℃ for 

1 h. Sections were rehydrated in PBS-Tween, and non-specific binding was blocked 

using 10% goat serum in PBS-Tween for 10 min. Sections were then incubated 

overnight at 4℃ in primary antibodies diluted in PBS-Tween. They were then washed 

with PBS-Tween for 5×5 min and incubated with the appropriate fluorescence-

labeled secondary antibodies for 1 h at room temperature. Sections were coverslipped 

in 50% Vector shield (Invitrogen) and observed under fluorescence microscopy 

(Axioplan-2, Zeiss). 
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Immunostaining with whole-mount zebrafish embryos was carried out as 

previously described (Tan et al 2006). 

 The following antibodies were used for both cryostat sections and whole 

mount zebrafish embryos: anti-myc antibody (9E10, DSHB), anti-α-actinin (clone 

EA-53, #A7811, Sigma), anti-MHC for slow muscles (F59, DSHB), anti-myomesin 

(mMaC myomesin B4, DSHB). Secondary antibodies were FITC or TRITC-

conjugates (Sigma). 

 

4) BTS (N-benzyl-p-toluene sulphonamide) treatment 

BTS was used at a final concentration of 50 µm to treat WT embryos from 2 

dpf for 24 h. The treated and control embryos were fixed in 4% paraformaldehyde for 

1 h at room temperature. Whole mount antibody staining was done as previously 

described (Tan et al 2006). The following primary antibodies were used: anti-myc 

antibody (9E10, DSHB), anti-MHC for slow muscles (F59, DSHB), anti-myomesin 

(mMaC myomesin B4, DSHB). Secondary antibodies were FITC or TRITC-

conjugates (Sigma). 

 

5) Analysis of protein expression by Western blot 

smyd1b transgenic embryos or smyd1b transgenic embryos injected with 

morpholino (50 embryos each) were dechorinated manually at 24 hpf. The embryos 

were washed with 1 ml of PBS and crushed gently to remove the yolk by pipetting 

with a glass pipet in 0.5 ml of PBS. The embryos were collected by a quick spin at 
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3000 rpm for 1 min. The embryonic extract was washed once with 0.5 ml of PBS and 

solublized in 100 µl of 2×SDS loading buffer (0.125 M Tris-Cl pH 6.8, 4%SDS, 20% 

Glycerol, 0.2 M DTT, 0.02% Bromophenol Blue). Two micrometers of DTT (1M) 

and 2 µl of PMSF (100mM) were added to the protein extract to reduce protein 

degradation. The proteins were denatured by boiling for 5 min and analyzed on a 

SDS-PAGE of 7.5%. Proteins from 5-10 embryos were loaded on each lane of the 

SDS-PAGE. Proteins from the SDS-PAGE were transferred onto a PVDF membrane 

(Immobilion-P, Millipore) by electrophoresis. Immunodetection of myc-tagged 

proteins was carried out with their primary antibody anti-myc antibody. Anti-α-

Tubulin (Clone B-5-1-2, Sigma) antibody was used as a loading control. The primary 

antibody incubation was followed by corresponding peroxidase-conjugated secondary 

antibodies. 

 

6) Mutagenesis: 

 To generate Smyd1b_tv1 constructs with mutations in the exon 5, Ser217 and 

Thr221 were mutated to alanine residues by PCR using primers S217A+T221A-f and 

S217A+T221A-r. Ser225 was mutated to alanine, thronine or aspartic acid by PCR 

using primers S225A-f and S225A-r, A225T-f and A225T-r, or S225D-F and S225D-

F, respectively. The mutagenesis was carried out on smyd1b-smyd1b_tv1myc DNA 

constructs by using QuikChange site-directed mutagenesis kit (Stratagene).  

S217A+T221A-f: 5'-AATCAGGCGGCCATCGATGCTGTGTTT-3' 

S217A+T221A-r: 5'-AAACACAGCATCGATGGCCGCCTGATT-3' 
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S225A-f: 5'-GTGTTTCACGCTCAGAAGAGG-3' 

S225A-r: 5'-CCTCTTCTGAGCGTGAAACAC-3' 

A225T-f: 5'-GATACTGTGTTTCACACTCAGAAGAGGATTG -3' 

A225T-r: 5'- CAATCCTCTTCTGAGTGTGAAACACAGTATC -3' 

S225D-F: 5’-ATACTGTGTTTCACGATCAGAAGAGGATTGA-3’ 

S225D-R: 5’-TCAATCCTCTTCTGATCGTGAAACACAGTAT-3’ 

4. Results 

1) Characterization of Smyd1b_tv1 and Smyd1b_tv2 subcellular localization 

during muscle development in zebrafish embryos. 

In zebrafish, smyd1b encodes two alternatively spliced isoforms, smyd1b_tv1 

and smyd1b_tv2, that are specifically expressed in muscle cells and play important 

roles in myofibril assembly during muscle development (Tan et al 2006). Knockdown 

of smyd1b_tv1 and smyd1b_tv2 resulted in defective myofibers with disorganized 

myofibril assembly. Previous studies have shown that Smyd1 undergoes a 

translocation from nucleus to cytoplasm during myoblast differentiation in vitro 

(Sims et al 2002). However, it is not clear whether this translocation occurs during 

muscle development in vivo, or if these two isoforms have similar or distinct 

subcellular localization in muscle cells during muscle development.  

To better understand smyd1b function in myofibril assembly, we analyzed the 

subcellular localization of Smyd1b_tv1 and Smyd1b_tv2 during muscle cell 

differentiation using transgenic zebrafish embryos that expressed a myc-tagged 

Smyd1b_tv1 or Smyd1b_tv2 under the control of the muscle-specific smyd1b 
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promoter. smyd1b_tv1 or smyd1b_tv1 transgenic zebrafish embryos were fixed at 

several development stages that contain myoblast, myotube and myofiber. The 

subcellular localization of Smyd1b_tv1 or Smyd1b_tv2 at these stages was 

determined by anti-myc antibody staining. 

The results showed a dynamic change of Smyd1b_tv1 localization during 

muscle cell differentiation. In myoblats and myotubes of early stage zebrafish 

embryos, similar subcellular localization of Smyd1b_tv1 and Smyd1b_tv2 was 

observed (Figure 4 A-D). Both Smyd1b_tv1 and Smyd1b_tv2 appeared to be 

primarily localized in the cytosol of myoblats and myotubes at early stage. However, 

in myotubes and myofibers of late stage zebrafish embryos, Smyd1b_tv1 and 

Smyd1b_tv2 showed distinct pattern of subcellular localization. Sarcomeric 

localization was detected for Smyd1b_tv1 but not for Smyd1b_tv2 in myofibers of 

zebrafish embryos (Figure 4 C-F).   

The sarcomeric localization of Smyd1b_tv1 appeared in a progressive fashion 

from anterior to posterior myotomes. Smyd1b_tv1myc first exhibited sarcomere 

localization in myotome 1-3 in the early stage embryos at 20 hpf or 22 hpf (Figure 4 

A, C). Within a defined myotome, a dynamic pattern of Smyd1b_tv1 sarcomere 

localization was also observed. Smyd1b_tv1myc first exhibited sarcomere localization 

in muscle pioneer cells located in the middle region of the myotome in the early stage 

embryos at 20 hpf or 22 hpf (Figure 4 A, C). The majority of muscle cells in the 

dorsal and ventral region of the myotome did not show any sarcomeric localization 

until 26 hpf (Figure 5 C). By 48 hpf, sarcomeric localization of Smyd1b_tv1 was 

detected in all myofibers in most of the myotome (Figure 4 E), suggesting that 



 

 44 
 

sarcomeric localization of Smyd1b_tv1 appeared in a progressive fashion during 

muscle cell differentiation. 
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Figure 4. Smyd1b_tv1myc and Smyd1b_tv2myc show different sarcomere 

localization pattern during early muscle devlopment. 
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A-B. Whole-mount immunostaining with anti-myc antibody show the cytosolic 

localization of Smyd1b_tv1 (A) or Smyd1b_tv2 (B) in myoblasts of the 

smyd1b_tv1myc (A) or smyd1b_tv2myc (B) transgenic fish embryos at 16 hpf. C-D. 

Whole-mount immunostaining with anti-myc antibody show the cytosolic localization 

of Smyd1b_tv1 (C) or Smyd1b_tv2 (D) in myotubes of the smyd1b_tv1myc (C) or 

smyd1b_tv2myc (D) transgenic fish embryos at 20 hpf. The arrow shows the sarcomere 

localization of Smyd1b_tv1 in muscle pioneer cells located in the middle region of 

the myotome.  E-F. Whole-mount immunostaining with anti-myc antibody show the 

cytosolic localization of Smyd1b_tv1 (E) or Smyd1b_tv2 (F) in muscle fibers of the 

smyd1b_tv1myc (E) or smyd1b_tv2myc (F) transgenic fish embryos at 48 hpf. The 

arrows indicate the enlarged the fibers to show the detail. 
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2) Knockdown of endogenous smyd1b advances the timing of sarcomeric 

localization of Smyd1b_tv1myc in zebrafish embryos  

Considering that the sarcomeric localization of Smyd1b_tv1 was detected in 

transgenic zebrafish expressing a myc-tagged Smyd1b_tv1, we decided to test 

whether knockdown of the endogenous smyd1b could affect the subcellular 

localization of ectopically expressed myc-tagged Smyd1b_tv1. We have shown that 

the smyd1b_tv1myc transgene could functionally replace the endogenous smyd1b in 

knockdown assays (Tan et al 2006). A splicing antisense oligo (E9I9-MO) targeted to 

smyd1b exon-9 intron-9 junction was injected into smyd1b_tv1 or smyd1b_tv2 

transgenic zebrafish embryos at 1 or 2 cell stage to knock down the expression of 

endogenous smyd1b during development. The E9I9 splicing MO could knock down 

the expression of endogenous smyd1b (both tv1 and tv2), but had no effect on the 

expression of the smyd1b_tv1myc or Smyd1b_tv2myc transgene because the transgene 

was constructed using the smyd1b cDNA which does not require splicing for 

expression.   

The expression and subcellular localization of Smyd1b_tv2myc or 

Smyd1b_tv1myc was analyzed in the E9I9-MO injected embryos by anti-myc antibody 

staining at 24 hpf (Figure 5 I, J) or 20 hpf (Figure 5 A, D), 22hpf (Figure 5 B, E), 24 

hpf (Figure 5 C, F) and 26 hpf (Figure 5 G, H) respectively. The results showed that 

the E9I9-MO injection in Smyd1b_tv2myc transgenic embryos did not change the 

cytosol localization of Smyd1b_tv2myc (Figure 5 I, J). However, knockdown the 

expression of the endogenous smyd1b advanced the timing of Smyd1b_tv1 
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sarcomeric localization. The knockdown embryos showed an earlier appearance of 

sarcomeric localization relative to the uninjected transgenic control. Without 

knockdown of the endogenous smyd1b_tv1, the exogenous smyd1b_tv1 cannot be 

localized on the sarcomere until 26 hpf (Figure 5 A-C). In contrast, the morpholino 

injected embryos showed much earlier sarcomeric localization. At 20 hpf, 

Smyd1b_tv1myc showed sarcomeric localization only in muscle pioneer cells (Figure 

5 D). While at 22 hpf, Smyd1b_tv1myc showed clear localization in naïve sarcomeres 

(Figure 5 E). The sarcomeric localization of Smyd1b_tv1 appeared to be correlated 

with sarcomere formation in myofibers as revealed by anti-actin and anti-myosin 

antibody staining.  This staining also revealed progressive sarcomere formation in the 

medial myotome, which then expanded both dorsally and ventrally (Figure 5 L-Q). 

Collectively, these results suggest that Smyd1b_tv1 may play a regulatory role in 

myofibril assembly and sarcomere formation.  

To determine whether the early sarcomeric localization was caused by 

changes of Smyd1b_tv1myc expression resulting from knockdown, we compared the 

protein expression of Smyd1b_tv1myc in E9I9-MO injected and control transgenic 

embryos by western blot analysis. Western blot was done using 24 hpf smyd1b_tv1myc 

transgenic embryos either with or without E9I9-MO injection. The result showed that 

injection of E9I9-MO did not affect the expression of the smyd1b_tv1myc transgene 

(Figure 5 K). Similar levels of Smyd1b_tv1myc protein expression were detected in 

control or E9I9-MO injected embryos, suggesting that the earlier appearance of 

Smyd1b_tv1myc sarcomeric localization was not due to changes of its protein 

expression.   
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Figure 5. Knockdown of endogenous Smyd1b advances the timing of sarcomeric 

localization of Smyd1b_tv1myc in zebrafish embryos. 

Knockdown of endogenous smyd1b advances the timing of sarcomeric localization of 

Smyd1b_tv1myc in zebrafish embryos. A-C. Immunostaining using anti-myc antibody 

show the sarcomere localization of Smyd1b_tv1 at different development stages in 

smyd1b_tv1myc transgenic fish embryos. At 20 hpf (A) and 22hpf (B) stages, 

Smy1b_tv1 show sarcomere localization only in muscle pioneer cells. Smy1b_tv1 

starts to show clear sarcomere localization on the whole myotome from 26 hpf (C).  

D-F. Immunostaining using anti-myc antibody show the sarcomere localization of 

Smyd1b_tv1 at different development stages in smyd1b_tv1myc transgenic fish 
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embryos with endogenous smyd1b gene knockdown. At 20 hpf (D) stages, 

Smy1b_tv1 show sarcomere localization in muscle pioneer cells and their adjacent 

cells. Smy1b_tv1 starts to show clear sarcomere localization on the whole myotome 

from 22 hpf (E) and at 26 hpf (F), the sarcomere localization is pretty strong. G-H. 

Immunostaining using anti-myc antibody show the sarcomere localization of 

Smyd1b_tv1 at 24 hpf in smyd1b_tv1myc transgenic fish embryos without (G) or with 

(H) endogenous smyd1b gene knockdown. I-J. Immunostaining using anti-myc 

antibody show the sarcomere localization of Smyd1b_tv2 at 24 hpf in smyd1b_tv2myc 

transgenic fish embryos without (I) or with (J) endogenous smyd1b gene knockdown. 

K. Western blot show that compared with the control, the level of myc-tagged 

Smyd1b_tv1 transgene protein level is not changed in smyd1b-smyd1b_tv1myc 

transgenic embryos with morpholino injection. L-Q. Immunostaing using anti-actinin 

(L, M), anti-MHC (N, O) and anti-myc (P, Q) shows progressive sarcomere formation 

in the medial myotome, which then expanded both dorsally and ventrally. 
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3) Smyd1 is localized on the sarcomere in adult mouse skeletal muscles 

We have illulstrated distinct sarcomeric localization of Smyd1b_tv1 and 

Smyd1b_tv2 in transgenic zebrafish embryos. To confirm the sarcomere localization 

of the endogenous Smyd1b in skeletal muscles, we analyzed the subcellular 

localization of Smyd1 in mouse skeletal muscles. An anti-mouse Smyd1 polyclonal 

antibody was used in this analysis. The result showed a clear sarcomeric localization 

of Smyd1b in mouse skeletal muscles (Figure 6 A). This antibody recognizes both 

Smyd1b_tv1 and Smyd1b_tv2 in mouse. As a result it could not reveal the specific 

subcellular localization of each isoform (Smyd1b_tv1 and Smyd1b_tv2). As this 

antibody does not recognize zebrafish Smyd1b, it was not used in zebrafish study. 

 

4) Smyd1b_tv1 is localized on the M-lines of sarcomeres in adult skeletal muscles 

To determine subcellular localization in adult skeletal muscles of transgenic 

zebrafish, we analyzed the smyd1b_tv1myc and smyd1b_tv2myc subcellular localization 

in transgenic zebrafish at 90 dpf. Anti-myc antibody staining was performed on 

longitudinal sections of skeletal muscles of transgenic or WT zebrafish. The result 

indicated that Smyd1b_tv1 had a clear sarcomeric localization (Figure 6 C), whereas 

Smyd1b_tv2 did not show up on the sarcomere (Figure 6 D). No signal can be 

detected on muscle sections from the WT zebrafish (Figure 6 B).  

To better characterize the sarcomeric localization of Smyd1b_tv1myc in 

skeletal muscles, we carried out a double immunostaining with M- and Z-line specific 
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antibodies. Skeletal muscles were dissected from adult transgenic zebrafish at 90 dpf. 

Double staining was performed with longitudinal muscle sections using anti-myc 

antibody together with anti-myomesin or anti-a-actinin antibodies labelling the M-

line and Z-line, respectively. The result showed that Smyd1b_tv1myc is colocalized 

with myomesin on the M-line (Figure 6 H-J, L), but not with a-actinin on the Z-line 

(Figure 6 E-G, K). 
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Figure 6. Smy1b_tv1 can be localized on the M-line of the sarcomere in adult 

muscle fibers. 

A. The longitudinal cryostat sectioning shows the sarcomere localization of the 

endogenous Smyd1 in adult mouse muscle tissue using anti-Smyd1 polyclonal 

antibody. B-D. The longitudinal cryostat sectioning shows the immunostaining using 

anti-myc antibody in adult WT zebrafish (B), Smyd1b_tv1myc transgenic zebrafish (C) 

and Smyd1b_tv2myc transgenic zebrafish muscle tissue (D). E-G and K. Double 

immunostaining using both anti-α-actinin and anti-myc antibodies shows that α-

actinin can not be colocalized with Smy1b_tv1 myc. H-I and L. Double 

immunostaining using both anti-myomesin and anti-myc antibodies shows that 

myomesin can be colocalized with Smy1b_tv1 myc. 
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5) The Smyd1b-tv1 sarcomeric localization was disrupted in Hso90a1 knockdown 

embryos 

We have known that knockdown of Hsp90α1 severely affects the organization 

of the thick and thin filaments as well as the Z-lines and M-lines (Du et al 2008). In 

contrast, treating zebrafish embryos with BTS (N-benzyl-p-toluene sulphonamide), an 

inhibitor of myosin and actin interaction, specifically disrupts the organization of 

thick and thin filament without a significant effect on the M-line and Z-line 

organization (Kagawa et al 2006, Pinniger et al 2005). To confirm the M-line 

localization of Smyd1b_tv1, and to test whether Hsp90a1 knockdown and BTS 

treatment might have different effect on the Smyd1b_tv1 sarcomeric localization, we 

analyzed the subcellular localization of Smyd1b_tv1 in Hsp90α1 knockdown or BTS 

treated zebrafish embryos. Smyd1b_tv1 transgenic zebrafish embryos were injected 

with hsp90α1 ATG-MO at 1-2 cell stage. The Smyd1b_tv1 localization and 

sarcomere organization was determined by antibody staining using anti-myc (Figure 7 

G-I), anti-MHC (F59) (Figure 7 A-C), or anti-myomesin antibodies (Figure 7 D-F). 

The result showed that Hsp90α1 knockdown abolished the sarcomeric localization of 

Smyd1b_tv1 (Figure 7 I). In contrast, BTS treatment which disrupted the organization 

of myosin and actin filaments but not the M- and Z-lines, had little effect on the 

sarcomeric localization of Smyd1b_tv1 (Figure 7 B, E, H). Together, these data 

indicate that the sarcomeric localization of Smyd1b_tv1 depends on the organization 

of M-line structure. 
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Figure 7. The sarcomeric localization of Smyd1b_tv1 depends on the 

organization of M-line structure. 

A-C. F59 staining show the organization of slow muscle myosin in Smyd1b_tv1myc 

transgenic embryos (A), Smyd1b_tv1myc transgenic embryos with BTS treatment (B) 

and Smyd1b_tv1myc transgenic embryos with hsp90α1 ATG-MO injection (C) at 3 

dpf. D-F. Immunostaining using anti-myomesin antibody show the organization of 

myomesin in Smyd1b_tv1myc transgenic embryos (D), Smyd1b_tv1myc transgenic 

embryos with BTS treatment (E) and Smyd1b_tv1myc transgenic embryos with 
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hsp90α1 ATG-MO injection (F) at 3 dpf. G-I. Immunostaining using anti-myc 

antibody show the organization of Smyd1b_tv1 in Smyd1b_tv1myc transgenic embryos 

(G), Smyd1b_tv1myc transgenic embryos with BTS treatment (H) and Smyd1b_tv1myc 

transgenic embryos with hsp90α1 ATG-MO injection (I) at 3 dpf. 
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6) The sarcomeric localization of Smyd1b_tv1 requires Serine 225 within the 

Smyd1b_tv1-specific 13 aa insertion 

The distinct subcellular localization of Smyd1b_tv1 and tv2 suggests that 

amino acid residues within the Smyd1b_tv1-specific 13 aa insertion may be involved 

in the sarcomeric localization. To identify the key amino acid residue(s) that required 

for the sarcomeric localization, we compared the protein sequence of the 13 aa 

sequence among Smyd1b_tv1 orthologs from several vertebrate species. Several 

conserved amino acid residues were identified within this region, including three 

potential phosphorylation sites at Ser217, Thr221 and Ser225 (Figure 8 A).   

To test directly whether these conserved residues are required for the 

sarcomeric localization of Smyd1b_tv1, single or double mutation was made at the 

three positions by replacing them with alanine. The mutant constructs were injected 

into zebrafish embryos at 1 or 2 cell stage. Expression of myc-tagged mutant proteins 

was directed in muscle cells using the smyd1b muscle-specific promoter. Muscle 

specific expression of the mutant proteins was clearly detected in myofibers of the 

injected zebrafish embryos by anti-myc antibody staining (Figure 8 B-E). The 

subcellular localization of mutant proteins was carefully examined in the expressing 

myofibers. The results showed that substitution of Ser217 and Thr221 with alanine 

had no effect on the sarcomeric localization of Smyd1b_tv1 (Figure 8 B). However, 

substitution of Ser225 with alanine completely disrupted the sarcomeric localization 

of Smyd1b_tv1 (Figure 8 C). In contrast, mutating Ser225 to theronine had no effect 
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on the sarcomeric localization of Smyd1b_tv1 (Figure 8 D). Together, these results 

indicate the Ser225 is required for the sarcomeric localization of Smyd1b_tv1. 

Serine and theronine are potential sites for post-translational modification by 

phosphorylation. To determine whether phosphorylation of Ser225 could be involved 

in sarcomeric localization of Smyd1b_tv1, we mutated Ser225 to aspartic acid. It has 

been reported that substitution of serine residues with aspartic acid mimics serine 

phosphorylation (Leger et al 1997, Saad et al 2007). The S225D mutant construct was 

generated by replacing the Ser225 with aspartic acid. The subcellular localization of 

myc-tagged S225D was analyzed in zebrafish embryos by anti-myc antibody staining.  

The results showed that replacing Ser225 with aspartic acid did not alter the 

sarcomeric localization of Smyd1b_tv1 (Figure 8 E). Collectively, these data indicate 

that post-translational modification by phosphorylation may be involved in the 

sarcomeric localization of Smyd1b_tv1.  
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Figure 8. The sarcomere localization difference between Smyd1b_tv1 and 

Smyd1b_tv2 was caused by the Serine 225 of Smyd1b_tv1. 

A. Comparison of Smyd1b_tv1 and Smyd1b_tv2 from different organisms, the 

potential post-translational modification sites are highlighted. B. Immunostaining 

using anti-myc antibody indicates that Smyd1b_tv1myc with S217A+T221A mutations 

still shows sarcomere localization. C. Immunostaining using anti-myc antibody 

indicates that the sarcomere localization of Smyd1b_tv1myc is deprived by S225A 

mutation (C). D-E. Immunostaining using anti-myc antibody indicates that the lost 

sarcomere localization of Smyd1b_tv1myc can be retrieved by A225T mutation (D) or 

A225D mutation (E). 
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5. Discussion  

In this study, we analyzed the subcellular localization of Smyd1b_tv1 and 

Smyd1b_tv2 during muscle development using transgenic zebrafish models 

expressing a myc-tagged Smyd1b_tv1 or Smyd1b_tv2. A primary cytosolic 

localization of both Smyd1b_tv1 and Smyd1b_tv2 was found in myoblasts and 

myotubes of early stage zebrafish embryos.  However, in differentiated myofibers of 

late stage zebrafish embryos; a distinct pattern of subcellular localization was 

detected for Smyd1b_tv1 and Smyd1b_tv2 in skeletal muscles. Smyd1b_tv1 was 

predominantly localized on the M-line of sarcomeres whereas Smyd1b_tv2 showed a 

diffused pattern of distribution throughout the cytosol. The Ser225 located within the 

Smyd1b_tv1-specific 13 aa insertion appears to be critical for the M-line localization.   

 

1) Cytosolic localization of Smyd1b_tv1 and Smyd1b_tv2 in myoblasts 

It has been reported that in C2C12 myoblasts, Smyd1 is localized in the 

nucleus of myoblats and undergoes a nucleus to cytoplasm translocation to the 

cytoplasm during myoblast differentiation (Sims et al 2002). In this study, we showed 

that Smyd1b_tv1 and Smyd1b_tv2 are primarily localized in the cytosol of myoblasts 

and myotubes of early stage zebrafish embryos. Very little nuclear localization could 

be detected in myoblasts and myotubes of zebrafish embryos in vivo. The discrepancy 

between these two studies is not clear. There are several possible explanations. First, 

different antibodies in these two studies detected different Smyd1 proteins. In the 
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C2C12 culture studies, anti-mouse Smyd1 polyclonal antibodies were used to detect 

the endogenous Smyd1. In contrast, in this study we used the anti-myc antibody to 

detect the ectopically expressed myc-tagged Smyd1b. The myc-tagged Smyd1b may 

not exhibit similar subcellular localization as endogenous Smyd1b. However, arguing 

against this possibility, we showed that the myc-tagged smyd1b could functionally 

replace the endogenous smyd1b in a rescue assay (Tan et al 2006). Alternatively, the 

cultured mouse C2C12 cells may be different from myoblats cells in zebrafish 

embryos. C2C12 myoblast cells in culture may not fully resemble the development of 

muscle cells in zebrafish embryos in vivo. The nuclear localization was reported in 

cultured C2C12 myoblasts in vitro, whereas in this study, we directly analyzed the 

subcellular localization of Smyd1b_tv1 and Smyd1b_tv2 in developing zebrafish 

embryos in vivo. Nuclear localization may be transient and occur at low levels in 

zebrafish embryos that is below the sensitivity of detection by immunostaining. 

Consistent with this possibility, we expressed zebrafish Smyd1b_tv1 in C2C12 cells 

by DNA transfection, and a weak nuclear localization was detected. The nuclear 

localization only became prominent after addition of the nuclear export blocker LMB 

(Leptomycin B) was added in the cell cuture (Li et al., unpublished data). 

Collectively, these studies argue that Smyd1b may exhibit a dynamic subcellular 

localization and nucleus to cytoplasm translocation during muscle cell differentiation, 

and moreover Smyd1b_tv1 and Smyd1b_tv2 show distinct subcellular localization in 

sarcomeres of zebrafish skeletal muscles. 
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2) Smyd1b_tv1 is localized on the M-line of sarcomeres 

We showed in this study that Smyd1b_tv1 and Smyd1b_tv2 have different 

subcellular localization in myofibers. The Smyd1b_tv2 is primarily localized in the 

cytosol of myotube and myofibers, whereas Smyd1b_tv1 is localized on the M-line of 

sarcomeres in myofibers. The sarcomeric localization appeared in a progressive 

fashion, correlating with the differentiation and maturation of myofibers in zebrafish 

embryos. Although the different subcellular localization of Smyd1b_tv1 and 

Smyd1b_tv2 was detected using transgenic zebrafish, it is unlikely that this difference 

is caused by an artifact from the specific transgenic line because similar difference in 

sarcomeric localization was detected in zebrafish embryos injected with smyd1b_tv1 

or smyd1b_tv2 DNA constructs. In such a transient expression assay, hundreds of 

injected zebrafish embryos were analyzed and no sarcomere localization of 

Smyd1b_tv2 was detected. These data suggest that the Smyd1b_tv1-specific 

sarcomere localization was an intrinsic property of Smyd1b_tv1, not an artifact from 

the specific transgenic line. It should also be noted that within a single zebrafish 

embryo, different degrees of sarcomeric localization was observed in myofibers 

expressing different levels of ectopic Smyd1b_tv1. A better sarcomeric localization 

was observed in myofibers with low or modest levels of expression. Myofibers with 

high levels of protein expression failed to reveal the sarcomeric localization. The 

reason for this difference is not clear. 

To our knowledge, this is the first report showing the different subcellular 

localization of Smyd1b_tv1 and Smyd1b_tv2 in the sarcomere of zebrafish skeletal 

muscle fibers. These studies could not be performed with monoclonal and polyclonal 
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antibodies against Smyd1b_tv1 or Smyd1b_tv2. No isoform-specific antibody is 

available and it may be difficult to generate due to the small difference (13 aa) 

between these two proteins. The transgenic lines thus provide useful models to study 

the regulation of subcellular localization of Smyd1b_tv1 or Smyd1b_tv2, and their 

specific biological function during muscle development in vivo.   

 

3) Nucleus to sarcomere translocation 

The nuclear to sarcomeric translocation has been noted with several proteins 

expressed in muscles. Transcription factor NFATc, for example, exhibits a dual 

localization in the nucleus and the Z-line of skeletal muscle cells. Its nuclear 

translocation is activity dependent in mature fibers and also is developmentally 

regulated (Liu et al 2001). The translocation could be involved in the response of 

muscle cells to mount efficient physiological response to muscle stress, load 

requirements, and/or stretch. In addition, several other proteins also show the dual 

nuclear and sarcomeric localization. Sarcomeric components such as human C-193 

(Chu et al 1995), rodent cardiac ankyrin repeat protein (Zou et al 1997) and cardiac 

adriamycin-responsive protein (CARP) (Jeyaseelan et al 1997) have all been shown 

to localize to the I-band and the nucleus. Two titin-interacting proteins, the muscle-

specific calpain p94 and MURF-1, also may participate in linking nuclear and 

sarcomeric functions (McElhinny et al 2002, Theriault et al 1999, Zeng et al 1998).  

Protein phosphorylation is a common post-translational modification involved 

in the regulation of protein subcellular localization and shuttling of proteins between 

nucleuses and cytoplasm. It has been shown that the phosphorylated NFATc proteins 
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reside in the cytosol in an inactive state. Upon dephosphorylation by the Ca2+- 

dependent phosphatase calcineurin, NFATc proteins translocate to the nucleus and 

become activated. (Beals et al 1997, Luo et al 1996). An NFATc mutant bearing 

S→A mutations is constitutively localized in the nucleus independent of calcium 

stimulation ((Beals et al 1997). Here we showed that the M-line localization of 

Smyd1b_tv1 requires Serine 225.  Substitution of Ser225 to alanine abolished the 

sarcomeric localization of Smyd1b_tv1. In contrast, replacing Ser225 with theronine 

had no effect on its sarcomeric localization. It appears that phosphorylation of Ser225 

is required for the subcellular localization. Substitution of Ser225 with aspartic acid 

did not significantly affect the sarcomeric localization of Smyd1b_tv1, suggesting 

that the sarcomeric localization of Smyd1b_tv1 is regulated by protein 

phosphorylation. 
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CHAPTER 3: SMYD1B_TV1 WORKS TOGETHER WITH 
MYOSIN CHAPERONES TO CONTROL MYOFIBRIL 
ASSEMBLY 
 

1. Abstract 

Smyd1b is a member of the Smyd family, which is specifically expressed in 

skeletal and cardiac muscles. Smyd1b plays a key role in myofibril assembly. 

Knockdown of smyd1b results in complete disruption of thick filament organization 

in skeletal muscles of zebrafish embryos. To better characterize smyd1b function and 

its mechanism of action in myofibrillogenesis, we have characterized the myofibril 

defects in skeletal and cardiac muscles of smyd1b knockdown zebrafish embryos. The 

results showed that in addition to thick filament defect, knockdown of smyd1b caused 

significant disruption of other sarcomeric structures including the thin and titin 

filaments, as well as M- and Z-lines in skeletal muscles of zebrafish embryos. 

Moreover, the sarcomere assembly of the cardiac muscles was also affected in 

smyd1b knockdown embryos. Smyd1 knockdown zebrafish embryos exhibited a 

significant increase in unc45b and hsp90α1 expression. Both of them are myosin 

chaperones expressed in muscle cells. Functional study of hsp90α1 indicated that 

hsp90α1 also plays a vital role in myofibrillogenesis. Knockdown of hsp90α1 or 

smyd1b caused reduction of myosin accumulation. Biochemical analysis revealed that 

Smyd1b_tv1 associates with myosin chaperone Hsp90α1 and Unc45b. Together, 

these data support the idea that Smyd1b_tv1 may work together with myosin 

chaperones to control sarcomere assembly during myofibrillogenesis. 
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2. Introduction 

Myofibrillogenesis, the process of sarcomere assembly, is critical for muscle 

cell differentiation and contraction. Myofibrillogenesis involves hundreds of 

sarcomeric proteins assembled into a highly organized sarcomere, the basic 

contractile unit in striated muscles. The sarcomere is divided into four major 

compartments—the Z-line, I band, A band and M-line. The Z-line anchors the thin 

(actin) filaments of the I-band. The M-line anchors the thick (myosin) filaments of the 

A band. The assembly (and disassembly) of these multiprotein complexes follows 

ordered pathways, which are regulated at the transcriptional, translational and 

posttranslational levels. Disruption of these pathways in myofibril assembly is 

implicated in muscle diseases (Ehler & Gautel 2008).   

More and more evidence suggests that correct folding and assembly of 

myofibrillar proteins into sarcomeres require auxiliary proteins (Barral & Epstein 

1999, Srikakulam & Winkelmann 1999). Genetic studies in Caenorhabditis elegans 

and biochemical analyses in vitro indicated that chaperone-mediated myosin folding 

is an integral part of myofibril assembly during muscle development (Hutagalung et 

al 2002).  

Molecular chaperones Hsp90 and Unc45 have been implicated in myosin 

folding and assembly in striated muscles (Srikakulam & Winkelmann 2004). hsp90α 

and unc45 are strongly expressed in developing somites and skeletal muscles during 

development (Sass et al 1999). Biochemical studies revealed that Hsp90 and Unc45 

form a complex with newly synthesized myosin proteins (Sass et al 1999, Srikakulam 



 

 71 
 

& Winkelmann 2004). Knockdown or mutation of hsp90α1 or unc45 in embryonic C. 

elegans or zebrafish resulted in paralysis with severe myofibril disorganization in 

muscle fibers (Barral et al 1998, Barral et al 2002, Du et al 2008, Epstein & Thomson 

1974, Etard et al 2007, Wohlgemuth et al 2007). All these studies indicated that both 

hsp90 and unc-45b play vital roles during sarcomere assembly.      

We showed recently that smyd1b, a member of the Smyd family, plays a vital 

role in cardiogenesis and myofibrillogenesis (Gottlieb et al 2002, Tan et al 2006). 

smyd1b, also known as skm-Bop, is specifically expressed in skeletal and cardiac 

muscles (Hwang & Gottlieb 1995, Hwang & Gottlieb 1997). There are two copies of 

smyd1 in zebrafish, smyd1a and smyd1b. smyd1b has two alternatively spliced 

isoforms, smyd1b_tv1 and smyd1b_tv2. Targeted deletion of Smyd1 in mice is lethal. 

Embryos die at around embryonic day 10.5 due to the disruption of the 

cardiomyocyte maturation and the right ventricle formation (Gottlieb et al 2002). 

Knockdown of smyd1b (tv1 and tv2) resulted in paralysis with disorganized thick 

filament assembly in slow muscles of zebrafish embryos (Tan et al 2006). Smyd1b 

function in other sarcomeric structures and its mechanistic action are unknown.   

In this study, we have characterized the myofibril defects in skeletal and 

cardiac muscles of smyd1b knockdown zebrafish embryos. We demonstrated that in 

addition to thick filament defect, knockdown of smyd1b caused significant 

disorganization of thin and titin filaments, as well as M- and Z-lines in skeletal 

muscles of zebrafish embryos. Moreover, the cardiac muscles were also disrupted in 

smyd1b knockdown embryos. Disruption of myofibril organization by smyd1b 

knockdown resulted in increased expression of myosin chaperones, unc45b and 
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hsp90α1. Functional studies of hsp90α1 indicated that hsp90α1 has similar function 

as smyd1b and knockdown of either one caused the reduction of myosin 

accumulation. Biochemical analysis revealed that Smyd1b_tv1 associates with 

myosin chaperones Hsp90α1 and Unc45b. Together, these data support the idea that 

Smyd1b_tv1 may work together with myosin chaperones to control sarcomere 

assembly during myofibrillogenesis. 

 

3. Materials and methods: 

1) Morpholino and DNA microinjection in zebrafish embryos 

Morpholino antisense oligos were dissolved in Danieau buffer (Nasevicius & 

Ekker 2000) to a final concentration of 0.5 mM. Zebrafish embryos were injected at 

the 1 or 2 cell stage with 2 nl of MO as described (Tan et al 2006). DNA 

microinjection was carried out as described (Du et al 1997). 

 

2) Production of smyd1-Smyd1b_tv1myc and smyd1-smyd1bmyc Transgenic Zebrafish 

smyd1b-smyd1b_tv1myc and smyd1b- smyd1b_tv2myc minigenes were 

constructed by using cDNA encoding the myc-tagged Smyd1b_tv1 or Smyd1b_tv2 

cloned after the 5.3-kb zebrafish smyd1b promoter and its 5′ flanking sequence. The 

transgenic fish were raised as described (Tan et al 2006). 
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3) Immunostaining of whole mount fish embryos  

  Immunostaining was carried out using whole mount zebrafish embryos as 

previously described (Tan et al 2006) with the following antibodies: anti-α-actinin 

(clone EA-53, #A7811, Sigma), anti-MHC for fast muscles (F310, DSHB), anti-

myomesin (mMaC myomesin B4, DSHB), anti- α-actin (Ac1-20.4.2, Progen), Anti-

α-Tubulin (Clone B-5-1-2, Sigma) and anti-titin (Clone T11, #T9030, Sigma). 

Secondary antibodies were FITC or TRITC-conjugates (Sigma).  

 

4) Immunostaining of the fish heart 

Forty-eight hpf zebrafish embryos, both WT and morpholino injected, were 

fixed in 4% paraformaldehyde in PBS for 1hr at room temperature, followed by 

washing with PBST 3×10min. The fixed embryos were then incubated in 1mg/ml 

collagenase for 45 minutes, followed by washing with PBST. The embryos were 

incubated in blocking buffer (5% goat serum in BDP) for 1hr at room temperature. 

The primary antibodies were suspended in BDP. The embryos were then incubated 

overnight at 4°C in these antibodies. On the second day, the embryos were washed 

with PBST 3×10min, followed by incubation in the secondary antibody (either anti-

IgG1-FITC or anti-IgG2b-TRITC, 1:100 in BDP) at room temperature for 1hr. Then 

the embryos were washed with PBST 3×10min. The embryonic fish heart was 

dissected and observed using fluorescence microscopy (Axionplan-1, Carl Zeiss, 

Germany). 
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5) Cell culture and immunostaining 

Murine skeletal myoblasts of the C2C12 line were maintained in growth 

medium (GM) consisting of Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS) and antibiotics (100 U each 

penicillin/ streptomycin) in 5% CO2 at 37°C. When the cells had reached 80% 

confluence, the DNA construct cmv-smyd1b_tv1/bmyc or cmv-smyd1b_tv2/bmyc was 

transfected into the cells using the Lipofectamine reagent, according to the 

instructions of the manufacturer. Twenty four hours after transfection, cell 

differentiation was induced by changing the culture medium to a differentiating 

medium (DM). This DM contained fresh DMEM supplemented with 2% horse serum 

and antibiotics. All culture reagents were purchased from Invitrogen. C2C12 cells, 

grown on separate coverslips, were fixed at different stages with 4% 

paraformaldehyde for 15 min and washed with PBS. The cells were treated with 

monoclonal anti-myc antibody (9E10) at a 1:2000 dilution for 1 h and then exposed to 

FITC-conjugated secondary antibodies. In addition, cell nuclei were stained for 10 

min using Hoechst 33258 solution (1 µg/ml; Sigma) and observed using fluorescence 

microscopy (Axioplan-1; Zeiss). 

 
 

6) Construction of smyd1-2NLS-smyd1b_tv1myc 

Two primers were designed to get smyd1-2NLS-smyd1b_tv1myc. The 

sequences for these primers are:  
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NLS-smyd1bmyc-f: 5-

GAATTCACCTCCAAAGAAGAAGCGAAAGGTAATGGAGTTTGTGGAAGT

TTTTGATTC-3;  

2NLS-smyd1bmyc-f: 5-ACC ATG GCT CCA AAA AAG AAA CGT AAG GTA 

CCT CCA AAG AAG AAG CGA AAG-3.  

The first two rounds of PCR were done using one of the two primers 

together with the reverse primer smyd1b-myc-r: 5-CTA ATT CAG GTC CTC 

TTC AGA GAT GAG CTT CTG CTC CTT CCT GCG GAA CAG GTT CTT-

3, to obtain the full length 2NLS-smyd1b_tv1myc. smyd1-smyd1b_tv1 construct was 

used as template. This fragment was cloned into linearized smyd1b/SmaI vector. 

 

7) Analysis of protein expression by Western blot 

Wild type or MO-injected zebrafish embryos (50 embryos each) were 

dechorinated manually at 24 hpf. The embryos were washed with 1 ml of PBS and 

crushed gently to remove the yolk by pipetting with a glass pipet in 0.5 ml of PBS. 

The embryos were collected by a quick spin at 3000 rpm for 1 min. The embryo 

extract was washed once with 0.5 ml of PBS and solublized in 100 µl of 2×SDS 

loading buffer (0.125 M Tris-Cl pH 6.8, 4% SDS, 20% Glycerol, 0.2 M DTT, 0.02% 

Bromophenol Blue). DTT and PMSF were added at the final concentration of 1nM to 

the protein extract to reduce protein degradation. The proteins were denatured by 

boiling for 5 min and analyzed on a SDS-PAGE of 7.5%. Proteins from 5-10 embryos 

were loaded on each lane of the SDS-PAGE gel. Proteins from the gel were 
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transferred onto a PVDF membrane (Immobilion-P, Millipore) by electrophoresis. 

Immunodetection of MHC, α-tubulin, α-actin or myc-tagged proteins was carried out 

with their primary antibodies and followed by corresponding peroxidase-conjugated 

secondary antibodies.  

8) Real time PCR analysis 

Real time PCR was carried out using 7500 Fast Real-Time PCR System 

(Applied Biosystems). The PCR reaction was carried out using the standard SYBR 

Green PCR Mater Mix (Applied Biosystems). Standard curves of cDNA samples 

were constructed using 10 fold serial dilutions. The relative levels of gene expression 

were compared based on the normalized value of the endogenous control ef-1α. Real 

time PCR was carried out using the following primers.  

zfhsp90α1-P6: agccagacttcggtgaatcaa 

zfhsp90α1-P7: ttctctctgtttctcaatgtaaa 

zfmyhz2-P4: gctcacctaccagactgagga 

zfmyhz2-P5: actcagcaatatcagcacgct 

zfsmyhc1-P4: gctcacctaccagactgagga 

zfsmyhc1-P5: catcttgttgacctgagattca 

zfunc45b-P4: gctgcaaggaggtccaagaca 

zfunc45b-P5: gatcatcagcatccagcatgt 
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zfef1a-P3: cttcaacgctcaggtcatcat 

zfef1a-P4: acagcaaagcgaccaagagga 

zsmyd1-RT-F: atctgaacgtgtctgcaga 

smyd1-P6: tcttccggcaccttgactccatcc 

 

9) Whole-mount in situ hybridization 

 Whole-mount in situ hybridization was carried out using digoxigenin-labeled 

antisense probes as previously described (Du & Dienhart 2001a). The Plasmid 

Hsp90α1-P was digested with NcoI and transcribed with Sp6 RNA polymerase to 

synthesize digoxigenin-labled antisense RNA probes. Antisense probes against 

zebrafish slow myosin heavy chain 1 or fast muscle myosin heavy chain 2 were 

synthesized by Sp6 RNA polymerase from NcoI or SphI linearized pGEM-smyhc1 or 

pGEM-myhz2 plasmid, respectively. The zebrafish unc-45b antisense probe was 

synthesized with Sp6 RNA polymerase from plasmid pGEM-unc45b linearized with 

BamHI.  

10) Immunoprecipitation and immunoblotting 

HEK 293 cells were seeded at 2.5×105 per well in 6-well plates one day 

before transfection. Four micrograms of each indicated plasmid were transiently 

transfected by calcium phosphate precipitation. Cells were harvested 24 h after 

transfection and lysed in 1× cell lysis buffer (10 mM Tris -HCl pH 7.5, 150 mM NaCl, 
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1 mM EDTA, 1 mM EGTA and 0.2% Nonidet P-40) with 1× protease inhibitor 

mixture (Sigma P2714). For immunoprecipitation (IP), 300 µg of total protein were 

incubated with 30 µl of prewashed Anti-FLAG M2 Affinity Gel (Sigma A2220) at 

4°C for 2 h in a total volume of 600 µl containing 4% glycerol in 1× cell lysis buffer. 

The beads were washed 3 times in 1× cell lysis buffer before processing for 

SDS/PAGE and immunoblotting. 

11) Heat shock and cold shock of zebrafish embryos 

For the heat shock experiment, 50 wild type zebrafish embryos at 24 hpf were 

treated for 15 min from 28.5°C to 38°C, then 38°C for 30 min, and then another 15 

min from 38°C to 28.5°C. For the cold shock experiment, 50 wild type zebrafish 

embryos at 24 hpf were treated for 30 min at 4°C. For real-time PCR, total RNA of 

the heat-shocked or cold-shocked embryos, as well as WT control embryos was 

extracted by using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). cDNA was 

synthesized using the first strand cDNA synthesis kit (Life Sciences). For in situ 

hybridization, the heat-shocked or cold-shocked and WT embryos were fixed in 4% 

paraformaldehyde.  

 

4. Results 

 

1) Knockdown of smyd1b expression disrupted sarcomere formation in skeletal 

muscles 
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We have previously demonstrated that smyd1b plays an important role in the 

organized assembly of thick filaments in skeletal muscles of zebrafish embryos (Tan 

et al 2006). Knockdown of smyd1b completely disrupts the assembly of myosin thick 

filaments in slow muscles of zebrafish embryos (Tan et al 2006). However, the 

effects of smyd1b knockdown on other sarcomeric structures are not clear. Moreover, 

it is not known if smyd1b is required for myofibrillogenesis in fast muscles, the major 

muscle type in fish. To clarify these questions, we examined the organization of thin 

filaments and Z-line at earlier stage in slow muscles; thick filaments, titin filaments 

and M-lines in fast muscles at later stage in smyd1b knockdown zebrafish embryos. 

Results show that knockdown of smyd1b completely disrupts the organization of thin 

filaments in skeletal muscles at 24 hpf. Compared with the control-MO injected 

embryos, the smyd1b knockdown embryos have little or no organized thin filaments 

in slow muscles (Figure 9 A, B). Similarly, the sarcomeric localization of the Z-line 

protein α-actinin was also affected, but not as severe as the thin filament (Figure 9 C, 

D). At 3 dpf, the sarcomere localization of the thick filament myosin, the giant 

protein titin and the M-line protein myomesin were detected in the fast muscles, the 

result indicated that knockdown of smyd1b also disrupted the organization of thick 

filament, titin filament and M-line in fast muscles (Figure 9 E-J). 
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Figure 9. Knockdown of smyd1b expression results in defective thin filament, Z-

line, M-line and titin assembly. 

A and B. Anti-α-actin antibody (Acl-20.4.2) staining shows organization of thin 

filaments in slow muscle fibers of control-MO (A) or ATG-MO (B) injected embryos 
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at 24 hpf. C and D. Anti-actinin antibody (EA-53) staining shows Z-line structure in 

control-MO (C) or ATG-MO (D) injected embryos at 24 hpf. E and F. Anti-MHC 

(F310) antibody staining (lateral view) shows thick filaments in fast muscle fibers of 

control (E) or ATG-MO (F) injected embryos at 3 dpf. Scale bar: 20 µm. G and H. 

Anti-myomesin antibody (mMaC Myomesin B4) staining shows M-line structure in 

control-MO (G) or ATG-MO (H) injected embryos at 3 dpf. I and J. Anti-titin (T11) 

antibody staining shows the sarcomeric localization of titin in fast muscle fibers in 

control-MO (I) or ATG-MO (J) injected embryos at 3 dpf. 
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2) smyd1b-tv1myc transgene can rescue the muscle defect  

To confirm the specificity of the sarcomeric phenotype from smyd1b 

knockdown, we performed a rescue experiment using a transgenic zebrafish line 

expressing a myc-tagged Smyd1b_tv1. smyd1-MO was injected into transgenic 

embryos and their non-transgenic siblings at the one or two cell stages. Expression of 

the smyd1b_tv1 transgene could not be knocked down by the splicing MO. The 

transgene was constructed using the smyd1b_tv1 cDNA which does not require 

splicing for expression. The injected embryos were analyzed by double staining with 

anti-myc and anti-actin antibodies. The results showed that the smyd1b transgene 

could completely rescue the defective organization of thin filaments in zebrafish 

embryos (Figure 10 A, B). Similarly, the transgene could also rescue the structural 

defects of the Z-line, the thick filament, M-line and the giant protein titin as revealed 

by immunostaining with the anti-α-actinin, anti-MHC (F310), anti-myomesin and 

anti-titin antibodies, respectively. (Figure 10 C-J). Together, these data indicate that 

smyd1b is required for myofibril assembly of both thick and thin filaments, as well as 

the organization of Z-line, M-line and titin in all skeletal muscles. Thus smyd1b is 

essential for myofibrllogenesis of all key sarcomeric structures. 
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Figure 10. smyd1b_tv1myc transgene rescues the disruption in skeletal muscles 

of zebrafish embryos. 

A and B. Anti-α-actin and anti-myc (9E10) antibody double staining shows that 

smyd1b_tv1myc transgene (B) can rescue the disruption of actin in ATG-MO injected 
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embryos at 24 hpf (A). C and D. Anti-actinin and anti-myc antibody double staining 

shows that smyd1b_tv1myc transgene (D) can rescue the disruption of actinin in ATG-

MO injected embryos at 24 hpf (C). (Scale bar: 20µm.). E and F. Anti-MHC (F310) 

and anti-myc antibody double staining shows that smyd1b_tv1myc transgene (F) can 

rescue the disruption of the thick filament in ATG-MO injected embryos at 3 dpf (E). 

G and H. Anti-myomesin and anti-myc antibody double staining show that 

smyd1b_tv1myc transgene (H) can rescue the disruption of the M-line in ATG-MO 

injected embryos at 3 dpf (G). I and J. Anti-titin and anti-myc antibody double 

staining shows that smyd1b_tv1myc transgene (J) can rescue the disruption of titin 

assembly in ATG-MO injected embryos at 3 dpf (I). (Scale bar: 25µm.). 
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3) Knockdown of smyd1b disrupts filament assembly in cardiac muscles 

The smyd1b morpholino injected zebrafish embryos have no heartbeat (Tan et 

al 2006). It has been shown that Smyd1 knock out in mouse embryos is lethal because 

heart development was inhibited (Gottlieb et al 2002). It is still unknown how smyd1b 

can affect heart development in zebrafish embryos. To detect whether smyd1b can 

affect the early heart development of zebrafish embryos, the myosin antibodies MF20 

and S46 were used for double immunostaining. MF20 recognizes a sarcomeric 

myosin heavy chain epitope found in both the ventricle and atrium (Stainier & 

Fishman 1992). The monoclonal antibody S46 recognizes an atrium-specific 

sarcomeric myosin heavy chain epitope in zebrafish (Stainier & Fishman 1992). 

smyd1b knockdown embryos showed no difference in heart tube formation compared 

with control embryos (Figure 11 A-F). Therefore, heart failure in the morphant 

embryos was not caused by a defect in the heart formation  

To further determine whether the sarcomere assembly in the cardiac muscles 

was affected similarly to skeletal muscles, the slow muscle myosin antibody F59 was 

used for the whole mount immunostaining. Hearts was dissected from both morphant 

and the control embryos. The results showed that thick filament myosin assembly was 

totally disrupted in the heart of smyd1b knockdown embryos. The muscle cells in the 

morphant were big and round (Figure 11 G, H). Anti-α-actinin staining also showed 

that the Z-line protein α-actinin was disorganized and less sarcomeres were observed 

compared with the control (Figure 11 I, J). These studies indicate that smyd1b is 
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required for cardiac muscle assembly and knockdown of smyd1b causes collapse of 

the sarcomereic structure in cardiac muscles. 
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Figure 11. Immunostaining shows disorganized thick filaments and Z-lines in 

cardiac muscles of smyd1 knockdown embryos. 

A-C. S46 (A) and MF20 (B) double staining (C) shows the atrium and ventricle 

formation in control-MO injected embryos at 2 dpf. D-F. S46 (D) and MF20 (E) 

double staining (F) shows the normal atrium and ventricle formation in ATG-MO 

injected embryos at 2 dpf. (Scale bar: 30µm.). G and H. Anti-MHC (F59) staining 

shows thick filaments in control-MO (G) and ATG-MO injected (H) embryos at 2 

dpf. I and J. Anti-α-actinin staining shows Z-lines in control-MO (I) and ATG-MO 

injected (J) embryos at 2 dpf. (Scale bar: 15µm.). 
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4) Knockdown of smyd1b resulted in upregulation of hsp90α1 and unc45b gene 

expression 

It has been shown that members of the Smyd family are methyltransferases 

that methylate histone proteins in vitro (Brown et al 2006, Hamamoto et al 2004, Tan 

et al 2006). Histone methylation has been implicated in regulation of gene expression. 

To test whether knockdown of smyd1b may affect gene expression involved in 

myofibrillogenesis, we carried out a cDNA microarray analysis comparing the 

expression profile of 20,000 genes in smyd1b knockdown and control zebrafish 

embryos at 24 hpf. The data revealed that 12 genes were upregulated by 2 to 6 fold in 

smyd1b knockdown embryos compared with the control. Strikingly, 10 of them 

represent members of the heat shock protein family (Table 1). In contrast, over 200 

genes were found to be down regulated in smyd1b knockdown embryos and 18 of 

them may be related to muscle development (Table 1). However, no clear trend 

(common pathway) could be noted among those down regulated genes.  

Among these upregulated hsp genes, hsp90α1 is especially interesting. It has 

been shown that hsp90α1 is specifically expressed in muscle cells of zebrafish 

embryos. In vitro studies indicated that Hsp90 forms a complex with newly 

synthesized myosin protein and is involved in myosin folding and assembly in 

developing myocytes (Sass et al 1999, Sass et al 1996, Srikakulam & Winkelmann 

2004). To validate the results from the microarray analysis, we analyzed hsp90α1 

gene expression in smyd1b knockdown embryos by in situ hybridization and 



 

 90 
 

quantitative RT-PCR. The results confirmed that knockdown of smyd1 significantly 

upregualted hsp90α1 gene expression by 3.4 folds (Figure 12 A, B, G).  

The upregulation of hsp90α1 gene expression by smyd1b knockdown raises a 

question of whether smyd1b could be involved in stress response. To test this idea, we 

stressed zebrafish embryos with heat or cold shock. Expression of hsp90α1 and 

smyd1b was subsequently determined in the stressed embryos. Although both heat 

and cold shock significantly increased hsp90α1 expression, little or no change in 

smyd1b expression could be detected in heat- or cold-stressed embryos (Figure 12 H-

N). Together, these data indicate that knockdown of smyd1b could create stress in 

zebrafish embryos; however, smyd1b itself is not directly involved in stress response.  

It has been reported that Unc45 associates with Hsp90 and functions as a 

muscle-specific chaperone involved in myosin folding and assembly (Barral et al 

2002, Etard et al 2007). To determine whether unc45b expression was also 

upregulated in smyd1b knockdown zebrafish embryos, we conducted in situ 

hybridization and quantitative PCR in the smyd1b morphant embryos. The result 

showed that unc45 expression was significantly increased in smyd1b knockdown 

embryos compared with the controls (Figure 12 C-F). Together, these results indicate 

that disruption of myofibril organization by smyd1b knockdown increases myosin 

chaperone expression in skeletal muscles of zebrafish embryos.  
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Table 1. smyd1b cDNA microarray result of MO vs WT at 24 hpf.  

Upregulated 
genes 

1. Danio rerio HSP70 mRNA for stress protein HSP70 (Hsp70A) 
2. Danio rerio inducible 70 kDa heat shock protein (hsp70) gene 

(Hsp70B)  
3. Danio rerio Hsp70 gene (Hsp70C) 
4. Danio rerio heat shock protein 90 (hsp90) mRNA 
5. Danio rerio heat shock cognate 70.II 
6. Danio rerio heat shock protein 47 

Downregulated 
genes 

1. Danio rerio DMbeta2a mRNA 
2. Danio rerio mesoderm posterior a (mespa) 
3. Danio rerio clone VH88 immunoglobulin heavy chain variable region  
4. Danio rerio ets related protein erm (erm) 
5. Danio rerio homeobox protein (hoxb10a) gene 
6. Danio rerio eukaryotic translation initiation factor 4e 1b(eif4e1b)  
7. Danio rerio SRY-box containing gene 21a (sox21a) 
8. Danio rerio Cecr1 (cecr1) 
9. Danio rerio zinc finger homeobox 1 (zfhx1) 
10. Danio rerio translocon-associated protein beta 
11. Danio rerio L-plastin 
12. Similar to Homo sapiens mRNA for alpha actinin 4 
13. Similar to Fugu rubripes beta-cytoplasmic actin2 gene 
14. 14.Similar to Homo sapiens TANK binding kinase TBK1 (TBK1) 
15. Similar to Homo sapiens deubiquitinating enzyme UnpES (UNP)  
16. Similar to Homo sapiens calbindin 2, 29kDa (calretinin) 
17. Smimilar to Oryctolagus cuniculus mRNA for calmodulin-dependent 

protein kinase 
18. Similar to Sus scrofa CYP51 gene for lanosterol 14 alpha-demethylase 
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Figure 12. Knockdown of smyd1b causes the upregulation of hsp90α1 and 

unc45b gene expression. 
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A-B. In situ hybridization shows that there is an upregulation of hsp90α1 gene 

expression in smyd1b knockdown embryo (B) than in control embryo (A). C-F. In-

situ hybridization shows that there is an upregulation of unc45b gene expression in 

smyd1b knockdown embryo (E, F) than in control embryo (C, D). G. The 

upregulation of both hsp90α1 and unc45b in smyd1b knockdown embryos is 

confirmed by qRT-PCR. H-M. In situ hybridization shows there is an increase of 

hsp90α1 gene expression in cold (J) or heat shocked (L) embryos than in WT 

embryos (H), but there is no change of smyd1b gene expression (I, K, M). N. The 

expression level of both hsp90α1 and smyd1b in the cold or heat shocked embryos 

and WT embryos is confirmed by qRT-PCR. 
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5) Knockdown of hsp90α1 disrupted myofibril organization in skeletal muscles but 

not in cardiac muscles of zebrafish embryos.  

To determine whether hsp90α1 also plays a role like smyd1b in muscle 

development in vivo, we knocked down hsp90α1 expression in zebrafish embryos. 

The hsp90α1 translational blocker ATG-MO was used to specifically target the 

sequence flanking the start codon of the hsp90α1 transcripts. Studies from our lab has 

shown that the ATG-MO can specifically knockdown the expression of hsp90α1 

efficiently (Du et al 2008). Although the ATG-MO injected embryos appeared 

morphologically normal, they were unable to swim and failed to show any sign of 

skeletal muscle contraction in response to physical stimulation by touch.  

To determine whether blocking hsp90α1 expression might disrupt myofibril 

organization during myofiber maturation, the hsp90α1 knockdown embryos were 

examined by immunostaining with an anti-MHC antibody F59. Knockdown of 

hsp90α1 expression severely disrupted the sarcomere formation and thick filament 

organization in slow muscles. Very few sarcomeres could be detected in hsp90α1 

knockdown myofibers (Figure 13 B). In contrast, injection with the control MO had 

no effect on the sarcomere formation and myofibril organization (Figure 13 A). To 

test whether the thin filaments were also affected by hsp90α1 knockdown, hsp90α1 

knockdown embryos were stained with anti-α-actin antibody. Compared with the 

control-MO injected embryos (Figure 13 C), hsp90α1 knockdown embryos showed 

few or no thin filaments (Figure 13 D). To test whether other sarcomeric structures, 

such as the M and Z lines, were also affected in the hsp90α1 knockdown of slow 
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muscles, we analyzed the localization of myomesin and α-actinin, the respective M- 

and Z-line-specific proteins, by antibody staining. Both M- and Z-line organization 

was significantly disrupted (Figure 13 E-H). Immunostaining with the anti-myomesin 

antibody confirmed that the M-line was disorganized in fast muscles of hsp90α1 

knockdown embryos (Figure 13 H). Together, these data indicate that hsp90α1 is 

required for myofibril organization in both slow and fast muscles during muscle 

development in zebrafish embryos. 

To determine whether the sarcomere assembly in cardiac muscles was also 

disrupted, immunostaining with anti-MHC (F59) and anti--α-actin antibody was done 

in both control and ATG-MO injected embryos. The result showed that although the 

skeletal muscle assembly was disrupted by ATG-MO, there was no effect on cardiac 

muscle assembly in the same zebrafish embryo (Figure 13 I-P). Both the thick and 

thin filament had normal organization in the cardiac muscle in ATG-MO injected 

muscle. This indicated that knockdown of hsp90α1 had no effect on cardiac muscle 

assembly.  
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Figure 13. Knockdown of hsp90α1 expression resulted in myofibril 

disorganization in skeletal muscles of zebrafish embryos. 

A and B. Anti-MHC antibody (F59) staining shows the organization of thick 

filaments in trunk slow muscles of control-MO (A) or hsp90α1-ATG-MO (B) 

injected embryos at 24 hpf. C and D. Anti-actin antibody staining shows the 

organization of thin filaments in control-MO (C) or hsp90α1-ATG-MO (D) injected 

embryos at 24 hpf. E and F. Anti-α-actinin antibody staining shows the organization 

of the Z-line in control-MO (E) or hsp90α1-ATG-MO (F) injected embryos at 24 hpf. 

G and H. Anti-myomesin antibody staining shows the organization of the M-line in 

control-MO (G) or hsp90α1-ATG-MO (H) injected embryos at 72 hpf. I-L. Anti-

MHC antibody (F59) staining shows the organization of thick filaments in cardiac 

muscles of control-MO (K) or hsp90α1-ATG-MO (L) injected embryos at 72 hpf. M-

P. Anti-actin antibody staining shows the organization of thin filaments in cardiac 

muscles of control-MO (O) or hsp90α1-ATG-MO (P) injected embryos at 72 hpf. 
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6) Smyd1b_tv1 associates with myosin chaperone Hsp90α1 and Unc45b 

It has been reported that Hsp90α1 and Unc45b are chaperones that work 

together to control myosin folding and assembly (Barral et al 2002, Etard et al 2007). 

Knockdown or mutation of hsp90α1 or unc45b resulted in defective myofibril 

organization in skeletal muscles of zebrafish embryos (Etard et al 2007, Hawkins et al 

2008, Wohlgemuth et al 2007). Strikingly, the myofibril defects are similar to that 

observed in smyd1b knockdown zebrafish embryos. To test whether Smyd1b could 

physically interact with myosin chaperone Hsp90α1, we performed co-

immunoprecipitation (Co-IP) analysis using HEK293 cells co-transfected with cmv-

hsp90α1flag and cmv-smyd1b_tv1myc or cmv-smyd1b_tv2myc DNA expression 

constructs. The result showed that Smyd1b_tv1 immunoprecipitated with a complex 

containing Hsp90α1 (Figure 14 A). This interaction appears to be isoform specific, 

because Smyd1b_tv2, an alternatively spliced isoform of Smyd1b, did not show any 

interaction with Hsp90α1 in the Co-IP assay (Figure 14 A). To test whether Smyd1b 

also interacts with Unc45b, we performed similar Co-IP in HEK293 cells co-

transfected with cmv-unc-45bflag and cmv-smyd1b_tv1myc or cmv-smyd1b_tv2myc 

constructs. Interestingly, similar results were obtained from the Co-IP assay with 

Unc45b. Unc45b interacts with Smyd1b_tv1 but not Smyd1b_tv2 (Figure 14 B). 

Together, these data indicate that Smyd1b_tv1 associates with Unc45b and Hsp90α1 

and may work together with these myosin chaperones to control myofibril assembly.  

Hsp90α1 is a well known chaperone required for proper folding of many 

client proteins (Zhao et al 2005). The association of Smyd1b_tv1 with Hsp90α1 could 
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be due to functional interaction between these two proteins. Alternatively 

Smyd1b_tv1 may be a Hsp90α1 client protein. To test these ideas, we analyzed 

Smyd1b_tv1 protein expression in hsp90α1 knockdown zebrafish embryos. The result 

showed that hsp90a1 knockdown had no effect on Smyd1b_tv1 protein accumulation 

in zebrafish embryos (Figure 14 C). These data argue against the idea that 

Smyd1b_tv1 being a client protein of Hsp90α1, suggesting that their interaction may 

be more functionally significant. 
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Figure 14. Co-immunoprecipitation shows Smyd1b_tv1, but not Smyd1b_tv2 

interacts with myosin chaperones Hsp90α1 and Unc-45b. 
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A. Co-IP shows that myc-tagged Smyd1b_tv1 can be pulled down by the flag-tagged 

Hsp90α1 co-expressed in HEK293 cells. B. Co-IP shows that myc-tagged 

Smyd1b_tv1 can be pulled down by the flag-tagged Unc-45b co-expressed in 

HEK293 cells. C. Western Blot shows that there is no degradation of Smyd1b_tv1 in 

hsp90α1 knockdown embryos at different development stages. 
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7) Knockdown of hsp90α1 or smyd1b resulted in reduced myosin protein 

accumulation 

In vitro studies have suggested that Hsp90α associates with myosin proteins 

and is required for myosin folding and assembly in C2C12 myoblast cells 

(Srikakulam & Winkelmann 2004). To test whether knockdown of hsp90α1 might 

disrupt myosin folding and result in myosin degradation, we analyzed the levels of 

myosin in hsp90α1 knockdown embryos by western blot using the anti-MHC 

antibody (MF20). MHC protein levels were significantly reduced in hsp90α1 

knockdown embryos compared with wild type control (Figure 15 A). In contrast, 

expression of total actin appeared normal (Figure 15 A). 

Data from the functional and biochemical analyses revealed that smyd1b plays 

a vital role in myosin folding and assembly in conjunction with hsp90α1 and unc45b. 

It has been shown that knockdown or mutation of hsp90α1 resulted in significant 

decline in the accumulation of myosin proteins (Du et al 2008, Hawkins et al 2008). 

To determine whether or not knockdown of smyd1b affects myosin accumulation in 

zebrafish embryos, we compared myosin protein levels in smyd1b knockdown and 

control zebrafish embryos at 24 hpf by western blot analysis. Compared with the 

control, there was a clear reduction of myosin protein levels in smyd1 knockdown 

embryos (Figure 15 B). The expression of α-tubulin, serving as a loading control, was 

not affected (Figure 15 B). Together, these data indicate that smyd1b is required for 

myosin expression or stability.  
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To test whether this reduced protein accumulation was due to decreased gene 

transcription, we analyzed myosin mRNA levels by in situ hybridization and 

quantitative RT-PCR. The result showed little or no change of myosin mRNA levels 

in smyd1b knockdown embryos compared with control (Figure 15 C-J). Together, 

these data indicate that the reduced myosin accumulation was not due to decreased 

myosin mRNA expression; it is likely caused by myosin degradation. 
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Figure 15. Knockdown of hsp90α1 or smyd1b results in decreased levels of 

myosin proteins. 

A. Western blot using MF20 shows decreased levels of myosin protein in hsp90α1 

knockdown embryos. B. Western blot using MF20 shows decreased levels of myosin 

protein in smyd1b knockdown embryos. C-F. In-situ hybridization (C-F) shows the 

mRNA levels of SMHC in control-MO (C and D) or ATG-MO injected (E and F) 

embryos at 24 hpf at different views. G-J. In-situ hybridization (G-J) shows the 

mRNA levels of FMHC in control-MO (G and H) or ATG-MO injected (I and J) 

embryos at 24 hpf at different views. 
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8) The cytosolic localization of Smyd1_tv1 is important for its function in 

myofibrillogenesis. 

We have shown that zebrafish Smyd1b is primarily localized in the cytoplasm 

of myoblasts and sarcomeres of differentiated myofibers in fish embryos (Li et al. 

unpublished data). To detect whether Smyd1b shows the same distribution pattern in 

muscle cells, murine skeletal myoblasts of the C2C12 line was transfected with cmv-

Smyd1b_tv1/bmyc. The expression of Smyd1b_tv1/b was then detected by anti-myc 

immunostaining. The result indicated that Smyd1b showed very clear cytoplasmic 

localization (Figure 16 A-C). It has been shown that Smyd1 is primarily localized in 

the cytoplasm of cultured myotubes (Sims et al 2002). Smyd1 appears to undergo a 

nucleus to cytoplasm translocation during C2C12 myoblast differentiation (Sims et al 

2002). The biological significance of this translocation is not clear. In order to see 

whether zebrafish Smyd1b undergoes a similar translocation process, the cells were 

treated by Leptomycin B (LMB). LMB is a potent and specific nuclear export 

inhibitor (Julien et al 2003). Interestingly, the differentiated cells treated with LMB 

showed clear nuclear localization (Figure 16 D-F). This suggested that zebrafish 

Smyd1b has a transient nucleus to cytoplasm translocation during myoblast 

differentiation. 

To determine whether the cytoplasmic or the nuclear localization of Smyd1b 

is more critical for its biological function in myofibrillogenesis, we generated a 

nuclear Smyd1b_tv1 containing two strong nuclear localization signal (NLS) at the 

N-terminus. The nuclear Smyd1b_tv1 showed a clear nuclear localization when 
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expressed in myofibers of zebrafish embryos (Figure 16 H, K). To determine whether 

nuclear localization of Smyd1b_tv1 alters its function in myofibril assembly, the 

nuclear Smyd1b_tv1 was used in a rescue assay in smyd1b knockdown zebrafish 

embryos. DNA constructs expressing the wild type or nuclear form of Smyd1b_tv1 

were co-injected with smyd1b morpholino into zebrafish embryos. Compared with the 

DNA construct expressing the regular Smyd1b_tv1, the nuclear Smyd1b_tv1 showed 

less efficiency in the rescue assay (Table 2). In contrast to wild type Smyd1b_tv1 

(which showed almost a 100% rescue), approximately 67% of the slow myofibers 

expressing the nucleaus and cytosol localization was rescued (Figure 16 G-I). 33% of 

the embryos that had a strong nuclear localization showed no rescue (Figure 16 J-L). 

This result indicated that the Smyd1b_tv1 nuclear localization reduced its activity in 

myofibril assembly, arguing that the cytoplasmic localization of Smyd1b_tv1 is 

important for its biological function in myofibrillogenesis. 
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Figure 16. The cytosolic localization is important for Smyd1b_tv1 function. 

A-C. Anti-myc immunolabelling shows clear cytoplasmic localization of 

Smyd1b_tv1/2 in C2C12 cells under differentiation (A), DAPI shows the nuclear 

localization (B). D-F. Anti-myc immunolabelling shows both nuclear and 

cytoplasmic localization of Smyd1b_tv1/2 in C2C12 cells treated with LMB (D), 

DAPI shows the nuclear localization (E). G-L. Anti-myc and anti-MHC (F59) double 
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staining show that there is a rescue if Smyd1b_tv1 has both nuclear and cytoplasmic 

localization (G-I), whereas there is no rescue if Smyd1b_tv has a dominant nuclear 

localization (J-L). 

 
Table 2. The addition of the two NLS decreased the activity of smyd1b_tv1myc. 

 

  
smyd1b-MO+ 

smyd1b-2NLS-
smdy1b_tv1-myc 

smyd1b-MO+ 
smyd1b-smdy1b_tv1-myc 

Rescued 65 fibers 53 fibers 

Non-rescued 22 fibers 0 fibers 

Percentage of rescue 67% 100% 

 
 

5. Discussion 

In this study, we have characterized the myofibril defects in skeletal and 

cardiac muscles of smyd1b knockdown zebrafish embryos. We demonstrated that in 

addition to thick filament defects, knockdown of smyd1b caused significant 

disorganization of the thin and titin filaments, as well as M- and Z-lines in skeletal 

muscles of zebrafish embryos. In addition, sarcomere assembly of the cardiac muscle 

was also disrupted in smyd1b knockdown embryos. Disruption of myofibril 

organization by smyd1b knockdown resulted in increased expression of the myosin 

chaperones unc45b and hsp90α1. Functional studies of hsp90α1 indicate the 

importance of hsp90α1 during myofibrillogenesis. A Biochemical analysis revealed 
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that Smyd1b_tv1 associates with myosin chaperone Hsp90α1 and Unc45b. Together, 

these data support the idea that Smyd1b_tv1 may work in a complex together with 

myosin chaperones to control sarcomere assembly during myofibrillogenesis. 

 

1) smyd1b function in cardiac muscle myofibrillogenesis 

Our study shows a vital function of smyd1b in cardiac muscle development. 

The morphants die 5 dpf due to lack of heart function. Targeted deletion of Smyd1 in 

mice is lethal; the mouse embryos die at E10.5 because of heart malformation. This 

indicates that Smyd1 is required for normal heart development in mouse (Gottlieb et 

al 2002). The Smyd1 knockout study in mouse showed that this peptide is required for 

the expression of Hand2 in the precardiac. Additionally, Smyd1 is necessary for 

maturation of cardiomyocytes and morphogenesis of the right ventricle (Gottlieb et al 

2002). A study of hand2 in zebrafish showed that the hand2 mutant hans6 developed 

two small lateral clusters of myocardial cells that never fuse together. This differs 

from the wild type, where a single midline heart tube develops (Yelon et al 2000). 

While the wild type heart is clearly divided into two distinct chambers – an anterior 

ventricle and a posterior atrium – the hans6 myocardial tissue is primarily atrial 

(Yelon et al 2000). In our study we showed that knockdown of smyd1b does not 

affect heart tube formation and looping. This suggests that hand2 may not be a target 

gene of smyd1, which is consistent with our microarray data, indicating hand2 was 

not detected downregulated in smyd1b knockdown embryos. Here we showed that 

knockdown of smyd1b caused disorganization of sarcomeric proteins in the heart. 

This indicated that smyd1b is required for cardiac muscle sarcomere assembly.  



 

 113 
 

 

2) Smyd1b_tv1 interaction with myosin chaperones  

We showed by Co-IP that Smyd1b_tv1 associates with myosin chaperones 

Hsp90α1 and Unc45b. Hsp90α1 and Unc45b are specifically expressed in skeletal 

muscles of zebrafish embryos and have been shown to function as myosin chaperones 

involved in myosin folding and assembly. Knockdown or mutation of unc45b or 

hsp90α1 resulted in paralyzed zebrafish embryos with a loss of myosin filaments in 

trunk muscles (Du et al 2008, Etard et al 2007, Hawkins et al 2008, Wohlgemuth et al 

2007). The disruption of myosin thick filaments in smyd1b knockdown embryos is 

consistent with the idea that Smyd1b_tv1 may work together with Hsp90α1 and 

Unc45b to control myosin folding and assembly into sarcomeres.,  

We showed that myosin protein levels were significantly reduced in hsp90α1 

or smyd1b knockdown zerafish embryos. However, we noted that in addition to thick 

filament defects, thin and titin filaments, as well as Z- and M-lines were also 

disrupted in skeletal muscles of smyd1 knockdown embryos. Results from these 

studies raise the question of whether some of the myofibril defects in smyd1b 

knockdown embryos were caused indirectly by myosin degradation and thick 

filament disorganization.   

Several pieces of evidence suggest that the sarcomeric defects in smyd1b 

knockdown embryos may not result entirely from the disruption of myosin thick 

filament organization in skeletal muscles of the zebrafish embryo. We showed that 

knockdown of smyd1b disrupted titin organization. Titin is the largest known protein 

molecule in muscle fibers and spans half the length of the sarcomere. The N terminus 
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of titin is anchored in the Z-disc where actin filaments are anchored, whereas its C 

terminus extends into the M-band where myosin filaments are anchored (Labeit & 

Kolmerer 1995). It has been reported that titin plays a key role in myofibrillogenesis. 

Depletion of titin in zebrafish and mouse embryos disrupts the assembly of the A-

band, Z- and M-line in both skeletal and cardiac muscles (Seeley et al 2007, Weinert 

et al 2006). Our recent studies show that knockdown myosin heavy chain in slow 

muscle affects the thin filament organization, but had little effect on Z-line 

organization (Codina et al unpublished). Therefore, although thick filament 

disorganization may affect the assembly of the thin filament, it is unlikely that thick 

filament defects could disrupt titin association at the Z line structure. Therefore, we 

argue that the disruption of the sarcomere structure in smyd1b or hsp90a1 knockdown 

embryos was not solely caused by their effect on myosin.  

 

3) Upregulation of hsp90α1 and unc45b from disruption of myofibril organization 

In this study, we showed that knockdown of smyd1b resulted in upregulation 

of hsp90α and unc45b expression in zebrafish embryos. The mechanism underlying 

their increased expression is not clear. Hsp90α1 is a protein chaperone also involved 

in the stress response (Kampinga 2006). The upregulation of hsp90α1 expression may 

be induced by a stress response to myofibril disorganization in smyd1b knockdown 

embryos. Consistent with this idea, it has been shown that disruption of myofibril 

organization by unc45 mutation or knockdown also led to the upregulation of 

Hsp90α1 expression; and vice versa, upregulation of unc45b expression was noted in 

hsp90α1 mutant or knockdown zebrafish embryos (Du et al 2008, Etard et al 2007). 
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However, unlike hsp90α1 or unc45b, smyd1b does not appear to be involved in the 

stress response. Disruption of myofibril organization by hsp90α1 or unc45b 

knockdown did not result in up-regulation of smyd1b gene expression. Moreover, we 

showed that stress from heat or cold treatment did not alter smyd1b expression in 

zebrafish embryos. Together these data indicate that although Smyd1b_tv1 associates 

with chaperone Hsp90α1 and plays a critical role in myofibril assembly, smyd1b and 

hsp90a1 may have a different role in stress response.  

Members of the Smyd family with the conserved SET domain have been 

implicated in protein methylation (Brown et al 2006, Hamamoto et al 2004). We have 

reported that Smyd1b can methylate histones in vitro (Tan et al 2006). Recent studies 

indicate that Smyd proteins could methylate both histone and non-histone proteins. 

More and more non-histone proteins have been identified as the substrate of SET 

domain containing proteins (Huang & Berger 2008). Lysine methylation is a common 

post-translational modification for muscle proteins. Several key sarcomeric proteins, 

such as myosin, α-actin, muscle creatine kinase, have been shown to be methylated at 

lysine residues by anti-methyl-lysine antibody staining (Iwabata et al 2005, Tong & 

Elzinga 1983). We hypothesize that the methyltransferase works together with the 

chaperone machinery for the target proteins. To date, no muscle-specific 

methyltransferase has been identified. It remains to be determined whether 

Smyd1b_tv1 functions as a muscle-specific methyltransferase that methylates 

sarcomeric proteins required for myofibril folding and assembly.    
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4) The cytosolic localization is critical for Smyd1b_tv1 function in myofibril 

assembly 

Our studies indicate that the cytosolic localization of Smyd1b_tv1 is critical 

for its biological function in myofibril assembly. Nuclear localization of Smyd1b_tv1 

reduced its activity in the rescue assay, which suggested an important function of 

Smyd1b_tv1 in the cytoplasm. The cytosolic function of Smyd1b_tv1 is consistent 

with the idea that Smyd1b_tv1 may function directly in methylation of myofibrillar 

proteins required for folding and assembly of myofibrils. It is also consistent with the 

subcellular localization of Smyd1b_tv1 in muscle cells of zebrafish embryos. We 

noted that Smyd1b_tv1 is primarily localized in the cytosol of myoblasts in early 

stage fish embryos and later on the sarcomeres of myofibers (Li et al., unpublished).  

A Recent study showed that mammalian Unc45b is a cytosolic protein that 

forms a stable complex with Hsp90 in the cytosol, selectively binds the unfolded 

conformation of the myosin motor domain, and promotes motor domain folding 

(Srikakulam et al 2008). This suggests that Smyd1b_tv1 may form complex with 

Hsp90α1 and Unc-45b in the cytoplasm to control sarcomere assembly.  

We can not rule out that smyd1b may also have a biological function in the 

nucleus. It has been shown that Smyd1 is initially localized in the nucleus of cultured 

myoblast cells (Sims et al 2002). Smyd1 appears to undergo a nucleus to cytoplasm 

translocation during myoblast differentiation into myotube (Sims et al 2002). The 

biological significance of this early nuclear localization and subsequent translocation 

is not clear. Smyd1b may be required for chromatin remodeling via histone 

methylation at an early stage of myoblast proliferation and differentiation. It has been 



 

 117 
 

shown that histone modification plays a key role in muscle cell differentiation (Cirillo 

& Zaret 2004, Lee et al 2004, McKinsey et al 2001, McKinsey et al 2002, Rupp et al 

2002). However, at later stage of muscle cell differentiation, Smyd1b may need to be 

translocated to the cytosol and play an important role in myofibril assembly. 

Although we did not observe a clear nucleus to cytoplasm translocation in muscle 

cells of zebrafish embryos, subcellular localization studies revealed that zebrafish 

Smyd1b could be localized in the nucleus of transfected C2C12 myoblasts in the 

presence of LMB, a nuclear exporter inhibitor. This is consistent with histone 

methylation activity of Smyd1b in vitro. Moreover, it is consistent with previous 

studies showing that Smyd1 represses gene transcription in a HDAC dependent 

manner (Gottlieb et al 2002). Together, these studies indicate that Smyd1b may have 

dual functions in both nucleus and cytoplasm during muscle development. 
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CHAPTER 4: SKNAC (SKELETAL NACA), A MUSCLE-
SPECIFIC ISOFORM OF NACA (NASCENT 
POLYPEPTIDE-ASSOCIATED COMPLEX ALPHA), IS 
REQUIRED FOR MYOFIBRIL ORGANIZATION IN 
ZEBRAFISH EMBRYO 
 
 

1. Abstract 

Myofibrillogenesis, the precise assembly of sarcomeric proteins into the 

highly organized sarcomeres which are essential for muscle cell differentiation and 

function. Myofibrillogenesis requires proper folding and assembly of newly 

synthesized sarcomeric proteins. sknac (skeletal naca) is an alternatively spliced 

isoform of naca which encodes the nascent polypeptide-associated complex alpha 

polypeptide that binds to newly synthesized polypeptides emerging from the 

ribosome. sknac is specifically expressed in skeletal and cardiac muscles. However, 

little is known about the function of sknac in muscle development in vivo. To 

determine sknac function, we have isolated and characterized the sknac gene from 

zebrafish. Zebrafish sknac cDNA differs from naca by containing an extra large exon 

that encodes 815 amino acids. Knockdown of sknac expression by antisense oligos 

resulted in zebrafish embryos with skeletal muscle defects. The sknac knockdown 

embryos showed a paralyzed phenotype with little muscle contraction. In contrast, 

injection of a control oligos had no effect. Immunostaining and histological analyses 

revealed that sknac knockdown embryos contained disorganized thick and thin 

filaments. Western blot analysis reveraled that myosin protein levels were 
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significantly reduced. Collectively, these results demonstrate that skNAC plays a vital 

role in myofibril assembly and function during muscle cell differentiation. 

 
 

2. Introduction 

Muscle fibers are composed of myofibrils, one of the most complex and 

highly ordered macromolecular assemblies known. Each myofibril is made up of 

highly organized repetitive structures called sarcomeres, the basic contractile unit of 

striated muscle. Sarcomeres contain thick and thin filaments that are primarily 

composed of myosin and actin, respectively. The precise expression of myofibrillar 

proteins and their assembly into sarcomeres are critically important for muscle 

function. However, the regulatory mechanisms that lead to the formation of this 

highly ordered structure are not completely understood despite extensive 

investigation in the past few decades (Sanger et al 2002).   

Myofibrillogenesis requires proper folding and assembly of newly synthesized 

sarcomeric proteins. Although several chaperone proteins, including Hsp90α and 

Unc45, have been implicated in the correct folding and assembly of myosin and 

myofibrillar proteins (Du et al 2008, Etard et al 2007, Hawkins et al 2008, Liu et al 

2008, Srikakulam & Winkelmann 2004), others are required and remain to be 

identified. sknac (skeletal naca) is an alternatively spliced isoform of naca which 

encodes the nascent polypeptide-associated complex alpha polypeptide that binds to 

newly synthesized polypeptides emerging from the ribosome (Sims et al 2002, 

Wiedmann et al 1994). The Naca has been found in all eukaryotes from yeast to 

human (Shi et al 1995). In contrast, skNAC has only been reported in mouse (Yotov 
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& St-Arnaud 1996). naca and sknac exhibit different patterns of expression; naca is 

expressed ubiquitously whereas sknac is expressed specifically in muscle cells (Yotov 

& St-Arnaud 1996). While most studies focused on Naca (Lopez et al 2005, Moreau 

et al 1998, Wang et al 1995, Yotov & St-Arnaud 1996), little is known about the 

biological function of skNAC in vivo.  

skNAC has been implicated in muscle cell differentiation because of its 

muscle-specific expression and increased levels of expression during muscle damage 

and repair (Munz et al 1999). Yeast two-hybrid analysis indicated that skNAC 

associates with Smyd1, a protein methyltransferase involved in cardiogenesis and 

myofibrillogenesis (Gottlieb et al 2002, Sims et al 2002, Tan et al 2006). However, 

the biological significance of this interaction is unknown and skNAC function in 

muscle development has not been demonstrated in vivo. This is likely due to the early 

embryonic lethality of naca gene knockout mice (Deng & Behringer 1995), and the 

lack of skNAC-specific knockout models.  

To determine skNAC specific function in muscle cell differentiation in vivo, 

we isolated and characterized sknac from zebrafish, an animal model that has been 

successfully used to study myofibrillogenesis in vivo (Du et al 2008, Etard et al 2007, 

Hawkins et al 2008, Raeker et al 2006, Tan et al 2006). We showed that sknac 

transcripts are specifically expressed in developing somites and skeletal muscles of 

zebrafish embryo. Knockdown of skNAC expression by antisense oligos resulted in 

zebrafish embryos with skeletal muscle defects. The sknac knockdown zebrafish 

embryos showed little muscle contraction. Immunostaining with anti-myosin and 

anti-α-actin antibodies revealed disorganized thick and thin filaments. Western blot 
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analysis demonstrated that the levels of myosin heavy chain (MHC) were 

significantly reduced in sknac knockdown embryos.  The myofibril defects appeared 

to be caused by specific knockdown of sknac because ectopic expression of Naca had 

no effect on myofibrillogenesis. Together, these data suggest that skNAC plays a vital 

role in myofibril organization and sarcomere assembly during myofibrillogenesis. 

 

3. Materials and methods: 

1) Isolation of sknac and naca cDNAs from zebrafish 

Total RNA was extracted from 24 hours-post-fertilization (hpf) zebrafish 

embryos by using TRIzol reagent (Invitrogen Corp., Carlsbad, CA, USA). A RACE 

cDNA library (5') was made from the purified total RNAs using a RACE cDNA kit 

(BD Biosciences). Zebrafish naca and sknac cDNA were cloned from the 5'RACE 

library using a 5’ NAC-EcoRІ primer which has an EcoRІ site upstream of the start 

codon and a 3’ NAC-XhoІ primer which has a BamHІ and an XhoІ site downstream 

of the codon. The PCR products were purified and cloned into pGEM-T easy vector 

to generate pGEM-naca and pGEM-sknac plasmid, respectively.   

NAC-EcoRІ: 5'-GGAATTCCATGCCAGGCGAAGCCACAGAA-3' 

NAC-XhoІ: 5'-CCGCTCGAGCGGATCCCTACATCGTCAATTCCATAAT- 3' 

 

2) Whole mount in situ hybridization  

Whole mount in situ hybridization was carried out using digoxigenin-labeled 

antisense probes as described (Du & Dienhart 2001b). A naca antisense probe was 
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synthesized using the pGEM-naca plasmid as a template. pGEM-naca was linearized 

with SalI and transcribed with T7 RNA polymerase. This antisense probe hybridizes 

with both naca and sknac mRNA transcripts because the sequence covered by the 

probe is identical in naca and sknac mRNA transcripts. Sknac specific antisense 

probe was synthesized using the pGEM-NAC-EX3 plasmid as a template. pGEM-

skNAC-EX3 contains the 5' region of skNAC specific exon 3 sequence. It was 

generated by PCR from genomic DNA using skNAC-P1 and skNAC-P2 primers and 

cloned into pGEM-T easy vector.  pGEM-skNAC-EX3 was linearized with SalI and 

transcribed with T7 RNA polymerase.  

skNAC-P1: 5'-gtgatggattacaccatgcaact-3' 

skNAC-P2: 5'-actgctactcttccaaagcctg-3’ 

skNAC-P3: 5'-caggctttggaagagtagcagt-3' 

 

3) Synthesis of morpholino-modified antisense oligos for splicing blockers 

The sknac splicing blockers (E3I3-MO and I2E3-MO) were made based on 

the antisense sequence of splicing sites at the exon-3 and intron-3 junction, or the 

intron-2 and exon-3 junction, respectively. In addition, a control mopholino was made 

based on the sense sequence of the exon-3 and intron-3 junction. A p53-MO was 

purchased from Gene Tools and used as described (Robu et al 2007). 

E3I3-MO: cagaaagagagatacCCGTGTCGTTCTTGATG 

I2E3-MO: agcccttttatttccattagCCACACCTGCTGCTGCAGCCC 

Control MO: CATCAAGAACGACACGGgtatctctctttctg 
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4) Construction of cmv:nacamyc, cmv:sknacmyc, smyd1:nacamyc smyd1:sknacmyc and 

smyd1:sknacc-myc constructs 

To generate DNA constructs expressing a myc-tagged Naca or skNAC, the 

naca or sknac coding sequence was released by EcoRI and XhoI digestion. The DNA 

insert of naca or sknac was then subcloned into EcoRI and XhoI site of the CS2+-MT 

vector (Rupp et al 1994, Turner & Weintraub 1994). This vector contains a cmv 

promoter and an N-terminal myc-tag sequence to produce the plasmid cmv:nacamyc or 

cmv:sknacmyc, respectively. To generate the DNA construct expressing a N-terminal 

myc-tagged Naca or skNAC specifically in muscle cells, the naca or sknac coding 

sequence was released from the cmv:nacamyc or cmv:sknacmyc plasmid by BamHI 

digestion and cloned downstream of the zebrafish muscle-specific smyd1 promoter 

(Tan et al 2006). The resultant constructs were named smyd1:nacamyc or 

smyd1:sknacmyc, respectively. To generate a C-terminal myc-tagged skNAC, a new 

reverse primer (skNAC-myc) of sknac containing a myc-tag on the C-terminus was 

used to generate the sknaccmyc by PCR. The PCR product was then subcloned after the 

zebrafish muscle-specific smyd1 promoter to generate the smyd1:sknaccmyc DNA 

construct. 

skNAC-myc: 5′- ctaattcaggtcctcttcagagatgagcttctgctccatcgtcaattccataatagc-3′ 

 

5) Morpholino and DNA microinjection in zebrafish embryos 

Morpholino antisense oligos were dissolved in Danieau buffer (Nasevicius & 

Ekker 2000) to a final concentration of 0.5 mM except E3I3-MO, which was 0.25 

mM. Zebrafish embryos were injected at the 1 or 2 cell stage with 2 nl of MO as 
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described (Tan et al 2006). DNA microinjection was carried out as described (Du et 

al 1997). 

 

6) Analysis of sknac specific expression in wild type or MO injected embryos by RT-

PCR 

Total RNA was extracted from zebrafish embryos at 0h, 3h, 6h, 9h, 12h, 14h 

19h, 24h, 2d, 3d, 4d, 5d and 6d post fertilization. naca was amplified using primers 

NAC-5' and NAC-3', and sknac was amplified using primers skNAC-P1 and skNAC-

P3. To determine the effect of E3I3-MO or I2E3-MO on sknac splicing, total RNA 

was extracted from WT or MO injected embryos at 24 hpf. Expression of sknac 

transcripts was analyzed by RT-PCR using sknac specific primers skNAC-P1 and 

skNAC-P3. Elongation factor 1α (ef-1α) was amplified as control.   

NAC-5': 5'-ccagaatgccaggcgaagccacag-3' 

NAC-3': 5'-ccatctacatcgtcaattccataa- 3' 

skNAC-P1: 5'-gtgatggattacaccatgcaact-3' 

skNAC-P3: 5'-caggctttggaagagtagcagt-3' 

ef-1α-P1: 5’-gcatacatcaagaagatcggc-3’ 

ef-1α-P2: 5’-gcagccttctgtgcagactttg-3’ 

 

7) Immunostaining of whole mount fish embryos  

Immunostaining was carried out using whole mount zebrafish embryos or 

tissue sections as previously described (Tan et al 2006) with the following antibodies: 



 

 125 
 

anti-α-actinin (clone EA-53, #A7811, Sigma), anti-MHC for slow muscles (F59, 

DSHB), anti-MHC (F310, DSHB), anti-myomesin (mMaC myomesin B4, DSHB), 

and anti- α-actin (Ac1-20.4.2, Progen). Secondary antibodies were FITC or TRITC-

conjugates (Sigma). The embryos were photographed under an upright microscope 

(Zeiss, Oberkochen, Germany) equipped with a confocal image analyzer (BIO-RAD 

Radiance 2100 Imaging Systems, Hercules, CA). 

 

8) Phalloidin-FITC staining  

Zebrafish embryos were fixed at 24 hpf or 3 dpf in 4% paraformaldehyde for 

1h at room temperature. The fixed embryos were washed 3 times for 10 minutes each 

with 1×PBST. To achieve a better permeation, 3 dpf embryos were treated with 

collagenase (1mg/ml, Sigma C-9891) for 75 min at room temperature, and then were 

washed 3 times for 10 minutes each with 1×PBST. All embryos were subjected to 

cold acetone treatment at -20 °C for 10 minutes. The embryos were washed 3 times 

for 10 minutes each with 1×PBST, and then stained with phalloidin-FITC at 10 µg/ml 

(Sigma P5282) for 40 minutes at room temperature. The embryos were washed 3 

times with PBST, 10 minutes each and photographed using a confocal microscope 

(BIO-RAD Radiance 2100 Imaging Systems, Hercules, CA). 

 

9) Histological analyses using thin plastic sections  

Wild type and E3I3-MO injected zebrafish embryos were fixed at 3 dpf in 

2.5% glutaraldehyde overnight at 4oC. The fixed embryos were used for plastic 

section as described (Tan et al 2006).   
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10) Cell culture and immunostaing 

Murine skeletal myoblasts of the C2C12 line were maintained in growth 

medium (GM) consisting of Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS) and antibiotics (100 U each 

penicillin/streptomycin) in 5% CO2 at 37oC. When the cells had reached 80% 

confluence, DNA construct pCS-skNACmyc was transfected into the cells using the 

LipofectAMINE reagent according to the instructions of the manufacturer. Twenty 

four hours after transfection, cell differentiation was induced by changing the culture 

medium to differentiating medium (DM) which contains fresh DMEM medium 

supplemented with 2% horse serum and antibiotics. All culture reagents were from 

Invitrogen (La Jolla, CA). 

C2C12 cells grown on separate coverslips were fixed at different stages with 

4% paraformaldehyde for 15 min and washed with PBS. The cells were treated with 

monoclonal anti-myc antibody (9E10) at a 1:2000 dilution for 1 h and then exposed to 

FITC-conjugated secondary antibodies. In addition, cell nuclei were stained for 10 

min using Hoechst 33258 solution (1μg/ml; Sigma, St. Louis, MO) and observed 

using fluorescence microscopy (Axionplan-1). 

 

11) Western blot analysis 

Wild type or MO-injected zebrafish embryos at 24 hpf (100 embryos each) 

were dechorinated manually and crushed gently to remove the yolk by triturating with 

a glass pipet. The embryos were solublized in 200 µl of SDS loading buffer (0.125 M 
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Tris-Cl pH 6.8, 4% SDS, 20% Glycerol, 0.2 M DTT, 0.02% Bromophenol Blue) 

containing PMSF (1mM) as a protease inhibitor. Samples (20 ul each; 10 embryos) 

were boiled for 5 min and the proteins were separated on a 7.5% SDS-PAGE. 

Proteins were electrophoretically transferred onto a PVDF membrane (Immobilion-P, 

Millipore). Immunodetection of α-tubulin and MHC was carried out with the anti-α-

tubulin or anti-MHC (MF-20) antibodies, followed by incubation with peroxidase-

conjugated secondary antibodies. 

  

12) Real time PCR analysis 

Real time PCR was carried out to analyze myosin gene expression using 7500 

Fast Real-Time PCR System (Applied Biosystems). The PCR reaction was carried 

out using the standard SYBR Green PCR Mater Mix (Applied Biosystems). Standard 

curves of cDNA samples were constructed using 10 fold serial dilutions. The relative 

levels of gene expression were compared based on the normalized value of the 

endogenous control ef-1α. Real time PCR was carried out using the following 

primers designed at the junctions of two adjacent exons to eliminate potential 

problem with genomic DNA contamination.  

zfmyhz2-P4: gctcacctaccagactgagga 

zfmyhz2-P5: actcagcaatatcagcacgct 

zfsmyhc1-P4: gctcacctaccagactgagga 

zfsmyhc1-P5: catcttgttgacctgagattca 

zfef1α-P3: cttcaacgctcaggtcatcat 

zfef1α-P4: acagcaaagcgaccaagagga 
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4. Results: 

1) Isolation and characterization of zebrafish sknac 

A full-length sknac cDNA was isolated from zebrafish embryos by RT-PCR. 

Two DNA products were generated by the PCR reaction. The shorter PCR product 

encodes a protein of 215 amino acids that shares high sequence identity with Naca 

from yeast to humans, suggesting that it is a naca ortholog. The longer product, the 

sknac isoform, encodes a protein of 1030 amino acids, considerably larger than the 

naca isoform (Figure 17 A). Sequence analysis indicates that naca and sknac are 

generated by alternative splicing of RNA transcripts from the same gene (Figure 17 

A). sknac contains 9 exons, including the sknac specific exon 3, whereas naca shares 

8 exons with sknac but omits the large exon 3.  

To better characterize sknac structure and expression, we searched through a 

nucleotide blast for sknac transcripts and analyzed genomic sequences of several 

invertebrates and vertebrates. No sknac sequence could be identified in Drosophila or 

in C. elegans although they both contain the highly conserved naca transcripts. sknac 

appears to be unique to vertebrates. Analysis of potential transcripts using Gene Tool 

(Genetool, Bio Tools Incorporated) predicts a sknac spliced isoform in tetrodon and 

fugu. Sequence alignment revealed that the length of exon-3 varies dramatically 

among sknacs from mammals and predicted from different organisms (Figure 17 B). 

The skNAC protein in zebrafish is shorter than that in mice and humans, which are 

2187 aa and 2078 aa, respectively. The size difference is exclusively attributed to 

exon 3, encoding a 815 aa peptide in zebrafish and a 1972 aa peptide in the mouse.  
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A sequence comparison of zebrafish and mouse revealed that the skNACs are 

highly conserved at the N- and C-terminal regions, containing the Naca sequence, 

with 96.3% identity. The sequence encoded by the sknac-specific exon 3 is less 

conserved. Nevertheless, exon 3 encodes a common proline rich region among the 

vertebrate sequences. Proline residues represent 17% and 23% of the amino acid 

sequence encoded by the exon 3 in zebrafish and human skNAC, respectively. In 

addition, exon 3 encodes several repetitive sequences. Zebrafish skNAC contains 

eight 28 aa repeats, while human skNAC contains eighteen 23 aa repeats. Except 

being proline rich, no conserved motif has been identified among these repetitive 

sequences. 
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Figure 17. Alternative splicing of the zebrafish naca gene generates naca and 

sknac mRNA transcripts. 

The zebrafish naca gene contains 9 exons including a large, alternatively spliced exon 

3, specific for the sknac transcript expressed in cardiac and skeletal muscles. In 
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contrast, the naca transcript contains 8 exons in common with the sknac transcript but 

missing exon 3. The primers P1, P2, P3 and P4 were used for analyzing the 

expression of naca and sknac by RT-PCR, and the cloning of the DNA fragment for 

making specific probes against naca and sknac. B. Sequence comparison showing the 

size variation of sknacs from different organisms. Translated amino acid sequences 

are shown from known transcripts of zebrafish and mouse, and predicted transcripts 

from tetraodon, fugu, and human. The N-terminal and C-terminal sequences, shared 

with Naca, are highly conserved during evolution. However, the encoded sequences 

and the length of the muscle-specific exon 3 in sknac varies dramatically among 

different species. One common feature is the proline-rich content of the sequence, 

ranging from 9% in tetraodon to 23% in human. 
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2) Muscle specific expression of sknac in zebrafish embryos 

The temporal and spatial expression of naca and sknac was determined in 

zebrafish embryos by RT-PCR and whole mount in situ hybridization (Figure 18 A). 

naca and sknac exhibited distinct patterns of expression. naca transcripts could be 

detected in fertilized eggs, suggesting that it was expressed maternally (Figure 18 A). 

In contrast, sknac expression was first detected around 12 hpf (Figure 18 A). The 

level of naca expression remained high in all embryonic and larval stages analyzed, 

from fertilization up to 6 days post-fertilization (Figure 18 A), whereas the levels of 

sknac expression increased significantly during somitogenesis and myogenesis 

between 19-24 hpf (Figure 18 A).  

To determine whether naca and sknac have different spatial patterns of 

expression, we analyzed naca and sknac expression in zebrafish embryos by whole 

mount in situ hybridization (Figure 18 B-K). Two antisense probes were used: one 

was the full-length naca cDNA, capable of hybridizing with both naca and sknac 

RNA transcripts, the other was a sknac-specific probe derived from part of the exon 3 

sequence. In situ hybridization using these two probes revealed two distinct patterns. 

The naca probe showed a ubiquitous pattern of expression in zebrafish embryos 

(Figure 18 B-F). In contrast, the sknac specific probe showed a tissue-specific 

expression in skeletal and cardiac muscles of zebrafish embryos (Figure 18 G-K). 
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Figure 18. Temporal and spatial patterns of naca and sknac expression in 

zebrafish embryos. 

A. RT-PCR results showing different temporal expression patterns of naca and sknac 

mRNAs in zebrafish embryos. naca is expressed both maternally and zygotically 
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during the 6 day development period analyzed here. In contrast, sknac is only 

expressed zygotically starting around 12 hpf. B-F. Whole mount in situ hybridization 

showing the spatial patterns of naca and sknac expression using a dig-labeled naca 

antisense probe. The following stages were analyzed: 12hpf (B), 14hpf (C), 16hpf 

(D), 24hpf (E,F). Dorsal (B-D,F) and side (E) views are shown. Scale bar: (B-D), 200 

µm, (E,F), 400 µm. G-K. In situ hybridization showing the spatial patterns of sknac 

expression using a dig-labeled antisense probe from exon 3 sequence specific for 

sknac mRNA transcripts. The following stages were analyzed: 12 hpf (G), 14 hpf (H), 

16 hpf (I), 24 hpf (J-K). Dorsal (G-I) and side (J) views are shown. The arrow in J 

indicates cardiac muscles. K is a view from a cross section showing the expression of 

sknac in skeletal muscles.  Scale bar: (G-I), 200 µm, (J), 400 µm. 
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3) Knockdown of sknac expression resulted in skeletal and cardiac muscle defects 

To characterize the function of skNAC in muscle development, we performed 

a knockdown analysis of sknac expression in zebrafish embryos. Two splicing 

blockers, I2E3-MO and E3I3-MO, were synthesized based on the DNA sequences at 

the 5’ and 3’ regions surrounding the muscle-specific exon 3 (Figure 19 A). The 

I2E3-MO or E3I3-MO was injected into zebrafish embryos at 0.5 mM or 0.25 mM, 

respectively. Their effect on sknac splicing was analyzed by RT-PCR (Figure 19 A-

C). As shown in Figure 19 B, C, injection of either one of these two morpholinos 

blocked the splicing of sknac transcripts. Compared with the PCR results from un-

injected embryos, expression of sknac transcripts was completely blocked in E3I3-

MO injected embryos (Figure 19 B). The I2E3-MO appeared to be less effective than 

the E3I3-MO, but still knocked down sknac transcripts by approximately 70% (Figure 

19 C). To determine whether naca  splicing was affected in sknac knockdown 

embryos, we analyzed naca expression by RT-PCR. A strong naca expression was 

detected in sknac knockdown embryos (Figure 19 D), suggesting that knockdown of 

sknac by the morpholinos was selective. 

To further confirm the knockdown of sknac transcripts in zebrafish embryos, 

we performed a whole mount in situ hybridization using the sknac specific probe, 

corresponding to part of the exon 3 sequence, in E3I3-MO injected embryos. 

Compared with control embryos (Figure 19 E, G), E3I3-MO injected embryos 

showed little or no sknac expression (Figure 19 F, H). Together, these data indicate 
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that the splicing blocker is very effective in knocking down the splicing of sknac 

transcripts in muscle cells of zebrafish embryos. 

 

 
 
Figure 19. Knockdown of sknac transcripts using splicing blockers. 

A. Locations of the morpholino splicing blockers I2E3-MO and E3I3-MO. I2E3-MO 

is targeted at the intron-2/exon-3 junction, while the E3I3-MO is targeted at the exon-
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3/intron-3 junction. Both splicing blockers knocked down the splicing of sknac 

transcripts. B and C. RT-PCR results showing the decreased sknac mRNA levels 

induced by E3I3-MO (B) or I2E3-MO (C). E3I3-MO appears to be more efficient 

than I2E3-MO in knocking down sknac transcripts. elongation factor 1α (ef1α) was 

used as an internal control. D. RT-PCR results showing the normal expression of 

naca in E3I3-MO injected zebrafish embryos. E-H. In situ hybridization using a dig-

labeled sknac specific antisense probe showing the lack of sknac mRNA transcripts in 

E3I3-MO injected embryos at 24hpf (F and H) compared with un-injected embryos 

(E and G). Scale bar: (D-G), 400 µm. 
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4) Knockdown of sknac expression blocks muscle contraction without any effect on 

myoblast specification and early differentiation. 

To determine the morphological phenotype of the sknac knockdown embryos, 

the E3I3-MO or I2E3-MO injected embryos were examined every day for 4-5 days 

following the injection. The sknac knockdown embryos showed a paralyzed 

phenotype with little locomotion and muscle contraction. The morphant embryos also 

exhibited a clear heart edema on day 3 (Figure 20 C, D). These data suggest that 

knockdown of sknac expression may affect the normal function of skeletal and 

cardiac muscles in zebrafish embryos. The morphant embryos died around day 5 and 

6. 

To determine which step of muscle development was affected by sknac 

knockdown, we analyzed myoblast specification, differentiation and maturation in 

sknac knockdown embryos using several molecular markers. Compared with control 

embryos (Figure 20 E, G), expression of the myogenic regulatory genes myod and 

myogenin was normal in E3I3-MO injected embryos (Figure 20 F, H). Moreover, 

specification of slow and fast muscles also appeared normal (Figure 20 J, L). 

However, MHC expression levels appeared weaker in sknac knockdown embryos 

(Figure 20 L). 
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Figure 20. Knockdown of sknac expression has no effect on myoblast 

specification and slow and fast muscle fiber differentiation. 

A–D) Morphological comparison of control-MO-injected (A, B) or sknac-E3I3-MO-

injected embryos (C, D) at 72 hpf. A clear edema was detected in sknac-knockdown 

embryos (arrows). E-H) In situ hybridization shows expression of myod (E, F) and 

myogenin (G, H) in sknac knockdown (F, H) or control embryos (E, G) at the ten 

somite stage. Scale bar: 200 µm. I-J) Immunostaining with F59 antibody on cross 

sections showing normal distribution of slow muscle fibers at 24 hpf in control (I) and 

E3I3-MO (J) injected embryos. Scale bar: 50 µm. K-L) Immunostaining with MF-20 

antibody on cross sections showing the distribution of all slow and fast muscle fibers 

at 24 hpf in control (K) and E3I3-MO (L) injected embryos. Scale bar is 50 µm. 
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5) Knockdown of sknac expression disrupts thick and thin filament assembly in 

slow muscles 

To determine whether knockdown of sknac expression might disrupt 

myofibril assembly during myofiber maturation, sknac knockdown embryos were 

closely examined for thick filament organization in slow muscles. Immunostaining 

with anti-MHC antibody (F59) showed that thick filament alignment was completely 

disrupted in slow muscles of E3I3-MO injected embryos (Figure 21 C, 85%, n=250). 

The sknac knockdown myofibers contain a large nucleus at the center, a characteristic 

of immature myofibers (Figure 21 C). Injection of I2E3-MO also resulted in 

disruption of thick filament organization although to a less degree compared with 

E3I3-MO. This is consistent with the lower efficacy of I2E3-MO in knockdown of 

sknac splicing compared with E3I3-MO. Injection of a control MO based on the sense 

sequence at the exon 3 and intron 3 junction did not result in any muscle phenotype 

(Figure 21 B).  

To further rule out the possibility that the disorganized thick filament pattern 

was not caused by nonspecific morpholino toxicity, a p53 MO was co-injected with 

sknac E3I3-MO into zebrafish embryos. The p53 MO has been shown to reduce the 

non-specific effects of MO injection (Robu et al 2007). A clear myofibril defect was 

found in thick filaments of E3I3-MO and p53 MO co-injected embryos (Figure 21 D). 

In contrast, the thick filament defect was not observed in zebrafish embryos injected 

with p53 MO alone, confirming that the thick filament disorganization was not 
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caused by MO toxicity. Together, these data indicate that the skNAC may play an 

important role in thick filament organization and assembly in zebrafish embryos. 

To test whether knockdown of sknac affected the thin filament organization in 

slow muscles, the sknac knockdown embryos were examined with anti-α-actin 

antibody. Compared with the control-MO injected embryos (Figure 21 E), sknac 

knockdown embryos showed few or no thin filaments (Figure 21 F). This was further 

confirmed by phalloidin staining (Figure 21 H). Together, these data indicate that 

skNAC was also required for the thin filament assembly. To test whether the 

sarcomeric structure Z-line was affected in the sknac knockdown embryos, we 

analyzed the localization of α-actinin by antibody staining. Interestingly, a sarcomeric 

localization of α-actinin was detected, suggesting that organization of Z-line was not 

severely disrupted (Figure 21 J). However, the sknac knockdown fibers appeared a 

little twisted compared with control (Figure 21 J). This is likely due to a secondary 

effect from the large central nucleus within the sknac knockdown fibers. Together, 

these data indicate that knockdown of skNAC might have a specific effect on the 

organization and assembly of both thick and thin filaments. This is consistent with 

previous in vitro studies showing that the basic framework of the sarcomere 

consisting of Z-line and M-line is maintained in isolated myofibrils stuck to glass 

slides when both thick and thin filaments are removed by gelsolin and potassium 

acetate treatment (Funatsu et al 1990, Funatsu et al 1993). 
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Figure 21. Knockdown of sknac expression resulted in defective thick- and thin-

filament assembly in slow muscles of zebrafish embryos. 

A, B) Anti-MHC (F59) antibody staining (lateral view) shows thick filaments in slow 

muscle fibers of control (A) or control-MO-injected embryos (B) at 24 hpf. Scale 

bar=20 µm. C, D). F59 staining shows defective thick-filament organization in slow 

fibers of E3I3-MOinjected (C) or E3I3-MO- and p53 MO-coinjected embryos (D) at 

24 hpf. Note that higher gain was used in images C and D to show the disorganized 

thick filaments. E, F) Anti-α-actin antibody (Acl-20.4.2) staining shows organization 

of thin filaments in slow muscle fibers of control-MO-injected (E) or E3I3-MO-

injected embryos (F) at 24 hpf. G, H) Phalloidin-FITC staining shows organization of 

thin filaments in slow muscle fibers of control-MO-injected (G) or E3I3-MO-injected 



 

 145 
 

embryos (H) at 24 hpf. I, J) Anti-α-actinin antibody (EA-53) staining shows Z-line 

structure in control-MO-injected (I) or E3I3-MO-injected embryos (J) at 24 hpf. 
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6) Knockdown of sknac expression disrupts filament assembly in fast muscles 

To determine whether fast muscles located in the deep region of myotome are 

also affected in sknac knockdown embryos, immunostaining was carried out in 

zebrafish embryos at 3 dpf when functional fast fibers are well developed. Fast fibers 

could be easily distinguished from slow fibers by their location and myofiber 

projection (Roy et al 2001). Unlike slow fibers that are localized in the superficial 

layer with a parallel projection to the midline structure, fast muscles are located 

within the deep myotome and project with a 20-30 degree angle with respect to the 

midline structure (Figure 22 A). Immunostaining with anti-MLC and anti-α-actin 

antibodies showed that knockdown of sknac disrupted thick and thin filament 

organization in fast muscles (Figure 22 B, D). The thin filament disorganization was 

further confirmed by phalloidin staining (Figure 22 F). Similar to slow muscles, there 

was little effect on the sarcomeric localization of α-actinin and myomesin in the Z-

line and M-line in fast fiber although the fibers appeared to be twisted (Figure 22 H, 

J). Histological analyses further confirmed the results from the immunostaining. 

Multinucleated fast fibers contained few or no sarcomeres in the sknac knockdown 

embryos (Figure 22 L). Consistent with data from immunostaining in slow muscles, 

large central nuclei were also found in sknac knockdown fast muscles (Figure 22 L). 

Collectively, these results support a specific function of skNAC on the 

myofibrillogenesis of thick and thin filaments in skeletal muscles. 
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Figure 22. Knockdown of sknac expression resulted in defective thick- and thin-

filament assembly in fast muscles of zebrafish embryos. 

A, B) Anti-MHC (F310) antibody staining (lateral view) shows thick filaments in fast 

muscle fibers of control (A) or E3I3-MO-injected embryos (B) at 72 hpf. Scale 

bar=20 µm. C, D) Anti-α-actin antibody staining shows disorganized thin filaments in 

E3I3-MO-injected embryos (D) compared with control (C) at 72 hpf. E, F) 

Phalloidin-FITC staining shows disorganized thin filaments in E3I3-MO-injected 

embryos (H) compared with control (E) at 72 hpf. G, H) Anti-α-actinin antibody 

staining shows sarcomeric localization of actinin on Z-lines of fast muscle fibers in 

control-MO-injected (E) or E3I3-MO-injected embryos (F) at 72 hpt. I, J) Anti-

myomesin antibody (mMaC Myomesin B4) staining shows M-line structure in 

control-MO-injected (G) or E3I3-MO-injected embryos (H) at 72 hpf. K–N) 

Toluidine blue staining on longitudinal (K, L) and cross (M, N) plastic sections of 

control-MO-injected (K, M) or E3IE-MO-injected embryos (L, N) at 72 hpf. 

Structures of neurotube (Neu), notochord (Not), and myotome are indicated. 
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7) Naca and skNAC shows different subcellular localization in muscle cells 

To better understand skNAC function in myofibrillogenesis, we analyzed the 

subcellular localization of skNAC and Naca during muscle cell differentiation in 

zebrafish embryos. DNA constructs expressing a N-terminal myc-tagged Naca or 

skNAC were constructed after a muscle-specific smyd1 promoter (Du et al 2006). The 

expression constructs were injected into fertilized zebrafish eggs. A typical mosaic, 

but muscle-specific, pattern of expression was clearly detected in muscle fibers of the 

injected embryos by anti-myc antibody staining (Figure 23 A-F). Interestingly, Naca 

and skNAC showed different subcellular localization in myoblasts and myotubes of 

zebrafish embryos. Naca was found in the nucleus (Figure 23 B, C) whereas skNAC 

was localized in the cytosol (Figure 23 D-F). Moreover, Naca exhibited a nuclear to 

cytoplasmic translocation during myotube differentiation into myofibers (Figure 23 

A). Myoblasts and newly formed myotubes in the posterior somites contained mostly 

the nuclear Naca (Figure 23 B, C). In contrast, myofibers in the anterior somites 

contained mostly cytosolic Naca (Figure 23 A). The nuclear to cytoplasmic 

translocation was, however, not seen in skNAC expressing muscle cells (Figure 23 D-

F). To rule out the possible interference of the N-terminal myc-tag on skNAC 

subcellular localization, another DNA construct expressing a C-terminal myc-tagged 

skNAC was injected into zebrafish embryos. A similar cytoplasmic localization was 

found in the skNAC expressing myoblasts and myotubes (Figure 23 G-I). The 

cytoplasmic localization of skNAC was further confirmed in C2C12 myoblast cells 

expressing a myc-tagged skNAC in cell culture (Figure 23 J-L). Together, these data 
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indicate that skNAc and Naca are localized differently in muscle cells and thus may 

have different functions in muscle development. 

 

 
 
Figure 23. Subcellular localization of Naca and skNAC in myoblasts and 

myotubes of zebrafish embryos. 

DNA constructs expressing a myc-tagged Naca or skNAC were injected into 

fertilized zebrafish embryos at 1–2 cell stages. Expression and subcellular 

localization of Naca or skNAC were determined by anti-myc antibody staining in 

zebrafish embryo at 18 and 24 hpf. A–C) Anti-myc antibody staining (TRITC 



 

 152 
 

conjugated) showing nuclear (B, C) to cytoplasmic (A) translocation of Naca during 

muscle cell differentiation; myotubes in anterior (A) or posterior (B) myotome of a 

zebrafish embryo at 24 hpf; myoblast cells in posterior myotomes of 18-hpf embryos 

(C). D–F) Anti-myc antibody staining (FTIC conjugated) showing primary 

cytoplasmic localization of N-terminal tagged skNAC in myoblasts and myotubes; 

myotubes in anterior (D) or posterior (E) myotome of a zebrafish embryo at 24 hpf; 

myoblast cells in posterior myotome of 18-hpf embryos (F). G–I). Anti-myc antibody 

staining (FTIC conjugated) showing primary cytoplasmic localization of C-terminal-

tagged skNAC in myoblasts and myotubes. Myotubes in anterior (G) or posterior (H) 

myotome of a zebrafish embryo at 24 hpf; myoblast cells in posterior myotome of 18-

hpf embryos (I). J–L) Anti-myc (J) and DAPI (K) staining shows cytosolic 

localization of skNAC in C2C12 cells expressing a N-terminal myc-tagged skNAC; 

merged image also shown (L). 
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8) Overexpression of Naca or skNAC does not affect thick filament assembly 

Blocking the splicing of sknac will result in production of naca. Previous 

studies have indicated that overexpression of Naca and skNAC altered myoblast 

differentiation in vitro (Yotov & St-Arnaud 1996). Interestingly, the effects appeared 

to be different for Naca and skNAC. Overexpression of Naca in C2C12 cells inhibited 

their differentiation and cell fusion. In contrast, overexpression of skNAC induced 

myoblast fusion to form gigantic, myosin heavy chain-positive, multinucleated 

myosacs (Yotov & St-Arnaud 1996).  

To determine whether ectopic expression of Naca or skNAC affect 

myofibrillogenesis, zebrafish embryos injected with Naca or skNAC expression 

construct were analyzed by double staining. The double staining was performed with 

anti-myc antibody (9E10) and anti-myosin antibody (F59) antibodies. Organized 

thick filament assembly was clearly observed in myofibers with extopic expression of 

Naca or skNAC (Figure 24). These results indicate that overexpression of Naca or 

skNAC did not affect the myofibril assembly in zebrafish embryos, suggesting the 

muscle defect in skNAC knockdown embryos is not likely caused by overexpression 

of Naca. 
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Figure 24. Overexpression of Naca or skNAC does not affect myofibril assembly 

in zebrafish embryo muscle cells. 

A–C) Double staining with anti-MHC (A) and anti-myc (B) antibodies shows that 

expression of the naca transgene did not affect the thick-filament organization; 

merged image also shown (C). Arrows indicate myofibers with ectopic Naca 

expression. D–F) Double staining with anti-MHC (D) and anti-myc (E) antibodies 

shows that overexpression of skNAC did not affect the thick-filament organization; 

merged image also shown (F). Arrows indicate myofibers with ectopic skNAC 

expression. 
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9) Knockdown of sknac expression results in low levels of MHC protein 

accumulation in zebrafish embryos 

Coordinated expression of myosin and other myofibrillar proteins is critical 

for myofibril assembly during myofiber maturation. To test whether myosin 

expression was altered in sknac knockdown embryos, we analyzed myosin expression 

at the RNA and protein levels. Western blotting analysis demonstrated that the MHC 

protein levels were significantly reduced in sknac knockdown embryos (Figure 25 A).  

To test whether this was affected at the transcriptional or post-transcriptional 

level, we analyzed myosin gene expression whole mount in situ hybridization. The 

results showed that knockdown of sknac expression did not alter MHC gene 

expression at the RNA level (Figure 25 B-I). This was further confirmed by real time 

PCR (Table 3). Together, these data indicate that skNAC is required for translation 

and/or stabilization of myosin proteins. Knockdown of skNAC results in low levels of 

myosin expression, leading to defective thick and thin filament assembly. 
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Figure 25. Knockdown of sknac results in low levels of MHC protein 

accumulation. 

A) Western blot analysis shows low levels of MHC protein accumulation in sknac-

knockdown embryos at 24 hpf. β-Tubulin was used as the loading control. B–E) 

Whole-mount in situ analysis shows similar levels of MHC mRNA expression in fast 

muscle (fMHC) of control (B, C) or E3I3-MO-injected embryos (D, E) at 24 hpf. F–I) 

Whole-mount in situ analysis shows similar levels of MHC mRNA expression in 

slow muscle MHC (sMHC) of control (F, G) or E3I3-MO-injected embryos (H, I) at 

24 hpf. 
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Table 3. Analysis of gene expression in skNAC knockdown and wild type 

embryos by qPCR. 

 

 

5. DISCUSSION 

In this study, we have isolated and characterized sknac, the muscle-specific 

isoform of naca, from zebrafish and demonstrated that skNAC plays an important 

role in myofibrillogenesis. Knockdown of sknac expression resulted in defective 

myofibers with completely disorganized thick and thin filaments. The sknac 

knockdown embryos showed low levels of myosin protein accumulation. To our 
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knowledge, this is the first demonstration of skNAC function in muscle cell 

differentiation in vivo.   

 

1) Characterization of sknac orthologue in zebrafish  

Sequence analysis revealed that the zebrafish naca gene encodes two 

alternatively spliced mRNA transcripts, naca and sknac.  Naca is highly conserved 

throughout evolution, with only 7 amino acid differences between zebrafish and 

mouse Naca. The expression of naca transcripts has been detected in species ranging 

from yeast to human. The production of sknac by alternative splicing, however, 

appears to be specific in vertebrates because no sknac transcripts have been reported 

in invertebrates. Gene Tool analyses failed to identify a large exon 3 in naca genes in 

C. elegans and Drosophila. Our identification of sknac from zebrafish thus represents 

the first sknac identified in lower vertebrates.  

 

2) The size of sknac exon-3 evolves during evolution 

Sequence comparison revealed that zebrafish sknac is significantly shorter 

than that found in mouse and human. The difference is due entirely to the size of exon 

3. sknacs from mammals contain a large exon 3 (approximately 6 kb). In contrast, 

sknac from zebrafish contains an exon 3 of only 3 kb.  

To better understand the size variation of exon 3 during evolution, we 

examined the sequences of several vertebrate organisms through a genome blast and 

analyses of the exon 3 sequence. An interesting observation was noted. Although the 

sequence and location of all 8 exons included in naca cDNAs are highly conserved 
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during evolution, the size and sequence of the sknac specific exon 3 changed 

dramatically during evolution. In lower vertebrates, including fugu, medaka and 

zebrafish, the size of sknac specific exon 3 is less than 3 kb, while the size increased 

significantly to 6 kb in mammals. The mechanism underlying this increase is 

unknown. Analysis by Gene Tool discovered that there are two Alu repeats in intron 2 

and intron 5 in the human naca gene. In addition, one B1 repetitive sequence and two 

mouse B2 repetitive sequences were identified in intron 2 and intron 5 of the mouse 

naca genome. The mouse B1 and B2 repetitive sequences are short interspersed 

elements (SINEs) which are equivalent to primate Alu elements (Maraia, 1991). It has 

been shown that retrotransposition of Alu elements can insert novel sequences within 

or near genes, leading to altered transcriptional expression (Britten 1996, Norris et al 

1995, Vansant & Reynolds 1995). Whether these repetitive sequences are involved in 

the expansion of the exon 3 sequence in mammalian sknacs is still unknown.  

 

3) The skNAC-specific exon 3 encodes a proline rich sequence  

The protein sequence encoded by the sknac-specific exon 3 is characterized 

by the rich contents of proline residues. Over 19% of the amino acid residues are 

prolines in the zebrafish sknac exon 3 coding region, and over 23% are proline 

residues encoded by human sknac exon 3. The position of proline residues are highly 

conserved between mouse and human exon 3 coding sequences. The biological 

significance of the proline rich region in skNAC is unknown. Interestingly, a proline 

rich sequence has been identified in the EH domain of EH-myomesin, an alternatively 

spliced isoform of myomesin that is specifically expressed in embryonic heart and 
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slow muscles (Schoenauer et al 2005). Like the skNAC-specific exon 3, the sequence 

of the EH domain is rather heterogeneous in sequence between different species. The 

EH domain has no defined secondary structure and is present in a mostly as non-

folded state at physiological condition. This is very similar to the proline rich PEVK 

domain found in titin that has been suggested to function as an entropic spring 

(Schoenauer et al 2005). It is not clear whether the skNAC specific sequence is also 

present in a random coil conformation and involved in increasing the structural 

flexibility of skNAC protein.   

It should be noted that the proline-rich protein domains have also been 

implicated in binding to the SH3 domain involved in many protein-protein 

interactions (Hiroaki et al 2001, Lim & Richards 1994, Yu et al 1994). Interestingly, 

the tail regions of myosins I, IV, VII, XII and XV contain a putative SH3 domain, and 

have been shown to interact with the C-terminal proline-rich region in Myosin VII 

(Wang et al 2007). Whether skNAC interacts with myosin proteins through the 

proline rich region remains to be determined.  

 

4) skNAC functions in myofibrillogenesis 

  In this study, we demonstrated that skNAC has a specific function in muscle 

development that could not be replaced by naca transcript. This is consistent with the 

muscle-specific expression of sknac in muscle cells of zebrafish and mouse embryos 

(Sims et al 2002). It appears that skNAC plays an important role in organized 

assembly of thick and thin filaments. Knockdown of skNAC expression disrupted the 

organization of thick and thin filaments, but had little effect on the organization of Z-
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disc and M-bands. This result is consistent with previous studies showing that there is 

a basic stabilizing structure within the sarcomere, consisting of α-actinin at the Z-

disc, titin and an integrating molecule at the M-bands (Handel et al 1991, Komiyama 

et al 1993, Wang et al 1988). Together, these studies indicate that the organization of 

Z-disc and M-band may occur independently of thick and thin filaments. 

The molecular mechanism by which skNAC controls myofibril organization is 

not clear at present. It has been demonstrated that Naca functions as a protein 

chaperone involved in folding of newly synthesized protein emerging from the 

ribosome (Wiedmann et al 1994). Given that skNAC is an alternatively spliced 

isoform of Naca and skNAC shares the same protein sequence as Naca in the N-

terminal and C-terminal regions, skNAC may play a role in folding and assembly of 

newly synthesized proteins in muscles. Consistent with this hypothesis, we showed 

that knockdown of skNAC resulted in significant reduction of myosin protein levels 

in zebrafish embryos. Considering the high demand for protein synthesis in muscle 

cells, muscle cells may have a tissue-specific chaperone system to facilitate the 

folding and assembly of high levels of myofibrillar proteins during myofibrillogensis. 

Recent studies demonstrate that the heat shock chaperone system is very active in 

muscle cells and required for myofibrillogenesis in skeletal muscles (Du et al 2008, 

Hawkins et al 2008). 
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CHAPTER 5: GENERAL DISCUSSION 
 

In this chapter, the major findings of this thesis will be summarized and the 

overall conclusions will be discussed. In addition, our understanding of the Smyd1b 

working mechanism will be addressed based on our current research .The future 

direction of Smyd1b mechanistic studies will also be discussed.  

 

1. The function of smyd1b, sknac, hsp90α1 in myofibrillogenesis 

Our study had shown that smyd1b, sknac and hsp90α1 play vital roles in 

sarcomere assembly. Knockdown of any one of them by morpholino antisense oligos 

causes a similar, but not identical, phenotype. Table 4 summarizes the morphological 

phenotype and the sarcomere structure in smyd1b, sknac and hsp90α1 knockdown 

embryos.  

 
Table 4: Skeletal muscle sarcomere assembly 
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1) sknac and myofibrillogenesis 

From Table 4 we can see that sknac is required for both thin and thick 

filament assembly, but not important for the Z-line and M-line assembly. It has been 

widely accepted that sarcomeric proteins are expressed and assembled in a defined 

sequence during muscle development. The first protein appearing on the sarcomere is 

desmin, an intermediate filament protein. Desmin is subsequently followed by titin 

and the I-Z-I complexes (Ehler et al 1999, Furst et al 1989). The organization of titin 

precedes the accumulation of actin and thick filaments (Handel et al 1991, Komiyama 

et al 1993, Wang et al 1988). This suggests that there is a basic stabilizing structure of 

the sarcomere composed of α-actinin at the Z-disk, titin, and an integrating molecule 

at the M-line (Ehler et al 1999). Our studies provide new evidence that the M-line can 

be assembled independently of the thick filament.  

This is the first time that sknac has been cloned in zebrafish and the in vivo 

function has been identified. Little is known about the sknac working mechanism 

during sarcomere assembly. From our study in zebrafish, we hypothesized that sknac 

may work as a chaperone for either myosin or actin. This is based on the following 

facts:  

1) Naca functions as a protein chaperone involved in folding of newly 

synthesized protein emerging from the ribosome (Wiedmann et al 1994). sknac 

includes all the sequence that Naca has, indicating they may share similar character; 

 2) skNAC has a large exon encoding proline-rich sequence. A Proline-rich 

domain  is known as a protein-protein interacting domain of the SH3 domain and the 
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tail regions of myosins I, IV, VII, XII, and XV has been shown to contain a putative 

SH3 domain (Hiroaki et al 2001, Lim & Richards 1994, Wang et al 2007);  

3) skNAC can only be detected in the cytoplasm under normal circumstances, 

which suggests a vital role in the cytoplasm.  

Molecular chaperones appear necessary for de novo folding and structural 

maintenance of myosin and actin. Expression of the myosin motor domain in bacteria 

results in the misfolding of myosin (McNally et al 1988). In vertebrate systems, the 

chaperonin containing TCP-1 (CCT), as well as molecular chaperones Hsp90 and 

Hsc70, are necessary but not sufficient in the folding of striated muscle myosin 

(Srikakulam & Winkelmann 1999, Srikakulam & Winkelmann 2004). Recent studies 

from our lab and others demonstrated the important function of Hsp90α1 and Unc45 

working as myosin chaperones in sarcomere assembly (Barral et al 2002, Du et al 

2008, Landsverk et al 2007, Liu et al 2008, Wohlgemuth et al 2007). The correct 

folding and assembly of actin also requires chaperones. These include αB-Crystallin, 

a Small Heat Shock Protein has been shown to modulate actin filament dynamics in 

vivo (Singh et al 2007). Two more molecular chaperones, GimC (also known as 

Prefoldin) and TRiC (TCP-1 Ring Complex, also known as CCT), are also known to 

play a synergistic role in the process of actin folding (Kim et al 2008). Interestingly, 

TRiC has also been proposed to play an active role in the folding pathway of skeletal 

muscle myosin (Srikakulam & Winkelmann 1999). skNAC may also be one of the 

chaperones for myosin or actin or both to help their folding and assembly. 
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2) hsp90α1 and myofibrillogenesis 

From Table 4, we can clearly see that hsp90α1 is required for the assembly of 

actin and myosin, as well as the Z-line and M-line in the skeletal muscle. Anti-MHC 

and anti-myomesin immunoactivity is reduced dramatically in hsp90α1 knockdown 

embryos, while anti-actin and anti-α-actinin immunoactivity is comparable with the 

control. This suggests a vital role of hsp90α1 in the folding of both myosin and 

myomesin in the skeletal muscle.  

Heat-shock proteins are molecular chaperones of a large number of proteins. 

Hsp90 alone may work as a chaperone and interact with about 400 proteins (Zhao et 

al 2005). We can imagine that myosin may not be the only target of Hsp90α1 in 

skeletal muscle; myomesin may also represent another target. In our study we showed 

a significant influence of hsp90α1 on the M-line protein myomesin. To the best of our 

knowledge, this is the first time that the M-line protein myomesin has been reported 

to be affected by hsp90α1. This may provide us new insights of the working 

mechanism of hsp90α1 during sarcomere assembly.  

Although in situ hybridization showed clear expression of hsp90α1 in the 

cardiac muscles, knockdown of hsp90α1 didn’t affect the function of the heart (Du et 

al 2008). In zebrafish genome, there are two highly related hsp90α genes, hsp90α1 

and hsp90α2. Sequence alignment revealed that hsp90α2 shares more similarity with 

human and mouse Hsp90α and is likely the ortholog of Hsp90α in zebrafish (Du et al 

2008). Hsp90α2 also shows a strong expression in cardiac and skeletal muscles. In 

addition, it can also be detected in the head and eye regions (Du et al 2008). It is 
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possible that Hsp90α2 has a redundant function in the heart to compensate for the loss 

of Hsp90α1 function.  

 

3) smyd1b and myofibrillogenesis 

Our study showed that Smyd1b_tv1 is localized on the M-line of the 

sarcomere. The M-line is the cytoskeletal structure that cross-links the myosin and 

titin filaments in the middle of the sarcomere. It is known to stabilize the thick 

filament lattice in the sarcomere during the contraction cycle (Agarkova & Perriard 

2005). Although the structure of the M-line is quite complex, it is surprising that only 

a small number of M-line constituents have been identified to date (Clark et al 2002). 

Apart from the myosin tails and the C-termini of titin, there are only three closely 

related structural proteins detected at the M-line, myomesin, myomesin 3 and M-

protein (Eppenberger et al 1981, Grove et al 1984, Labeit & Kolmerer 1995, 

Schoenauer et al 2008). Little has been known relating to the function of these M-line 

proteins and how the M-line contributes to the sarcomere assembly. Our study 

showed that knockdown of smyd1b disrupts the assembly of the Z-line, the myosin 

thick filament and the M-line. This is consistent with previous reports demostrating 

that M-line deletion of titin affected the maturation of the Z-line, myosin and the M-

line (Musa et al 2006, Weinert et al 2006). The study of Smyd1b_tv1 will provide us 

some new insights on how the M-line is involved in the process of sarcomere 

assembly.  

The localization study also shows that Smyd1b_tv1 has potential 

phosphorylation site which causes the different sarcomere localization between 
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Smyd1ba and Smyd1b_tv2. This suggests the post-translational modification of 

Smyd1b_tv1 may regulate its activity.   

In addition to the skeletal muscle defect, our study also showed a dramatic 

effect of smyd1b knockdown on the cardiac muscle organization. This is the first time 

a clear function of smyd1b has been identified during cardiac muscle assembly. A 

Smyd1b knockout study in mouse has shown that Smyd1b is required for the 

expression of hand2 in the precardiac. Additionally, Smyd1b is necessary for 

maturation of cardiomyocytes and morphogenesis of the right ventricle (Gottlieb et al 

2002). Our study indicates that knockdown of smyd1b does not affect heart tube 

formation and looping. When compared with a previous study in the embryonic 

zebrafish indicaging that hand2 is important for ventricle formation (Yelon et al., 

2002), we argue that hand2 may not be a target of smyd1b.  This is consistent with 

our microarray data, showing that hand2 expression was not affected in smyd1b 

knockdown embryos. 

 

2. Smyd1b and skNAC 

Yeast two hybrid analyses revealed interaction between Smyd1b and skNAC. 

This result was further confirmed by co-immunoprecipitation assays (Sims et al 

2002). Mutagenesis analyses identified that this interaction requires the MYND 

domain of Smyd1b and the PXLXP motif within skNAC (Sims et al 2002).  

Our study showed similar defects in thick and thin filaments in smyd1b and 

sknac knockdown embryos. The morphants are immobile and lack heartbeat prior to 

deatharound 5 dpf. Immunostaining using different markers demonstrated the similar 
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but not identical effect on sarcomere assembly between smyd1b and sknac. smyd1b 

can affect the assembly of the thick filament, thin filament, M-line, and Z-line. 

Knockdown of sknac only affects the thick and thin filaments. Both the interaction 

between Smyd1b and skNAC and the similar functions between them suggest that 

they may work together to control the assembly of thick and thin filaments. 

Moreover, Smyd1b may have its additional roles in the assembly of other sarcomeric 

structures that does not requires skNAC 

Recent study revealed that skNAC can be methylated by Smyd1b and the 

direct interaction is necessary for the methylation to occur (Li Zhu’s dissertation, 

2006). This study also showed that both of the two splicing isoforms---Smyd1b_tv1 

and Smyd1b_tv2--- can methylate skNAC in vitro, while only Smyd1b_tv2 can 

methylate skNAC in vivo (Li Zhu’s dissertation, 2006). This is consistent with our 

study, showing that sknac and smyd1b_tv2 exhibit the same temporal expression 

pattern during zebrafish muscle development, whereas smyd1b_tv1 is expressed 5 hrs 

earlier than sknac and smyd1b_tv2.  

 

3. Smyd1b interacts with myosin chaperones Hsp90α1, Unc45b 

I demonstrated in these studies that knockdown of smyd1b resulted in a 

phenotype similar to that of hsp90α1 knockdown during sarcomere assembly of 

skeletal muscles. Biochemical studies by Co-IP showed that Smyd1b_tv1 interacts 

with Hsp90α1, whereas Smyd1b_tv2 cannot. In general, Hsp90 binding proteins 

belong to two different protein families. One protein family members are the Hsp90 

substrates, which are also known as client proteins. The other protein family members 
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are co-chaperones, which help Hsp90’s action on substrates or mediate Hsp90-

substrate recognition (Sbroggio et al 2008). Myosin is a substrate for Hsp90α1, so it 

belongs to the first group. Unc45b and other Hsp90 interacting protein such as 

melusin, a muscle-specific stress response protein, belong to the second group 

(Sbroggio et al 2008). We ruled out the possibility that Hsp90α1 is a chaperone for 

Smyd1b_tv1. It remains to be determined if Smyd1b_tv1 may work as a co-

chaperone of Hsp90a1.  

It should be noted that Hsp90 protein could be modified by methylation 

(Cimmino et al 2008). Interestingly, Hsp90α1 expression overlaps with Smyd1b_tv1 

during muscle development (Sass et al 1996, Tan et al 2006). It remains to be 

determined whether Hsp90α1 may represent a methylation target of Smyd1b_tv1.  

Heat shock proteins are well known as stress responsers whose expression can 

be enhanced by multiple stress stimuli, including heat shock and cold shock (Gething 

& Sambrook 1992). Our study showed that knockdown of smyd1b resulted in 

upregualtion of Hsp90a1 expression. However, unlike hsp90α1, smyd1b was not 

upregulated in either heat shocked or cold shocked embryos. Moreover, knockdown 

of hsp90a1 expression did not result in increased smyd1 expression. Together, these 

studies indicate that Smyd1b may not be involved in a general stress response as 

Hsp90α1 does.  

Unc45b is a myosin co-chaperone specifically expressed in skeletal and 

cardiac muscles (Wohlgemuth et al 2007). Knockdown of unc45b in zebrafish results 

in paralysis and ventricular dysfunction, which is also very similar to the phenotype 

from smyd1b knockdown (Wohlgemuth et al 2007). Immunostaining indicates that in 
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addition to myosin defects, other sarcomeric structures such as thin filaments, the Z-

line and M-line are also disrupted in unc45b knockdown embryos, a phenotype very 

similar to that of smyd1b or hsp90α1 knockdown (Bernick and Du, unpublished data).  

We demonstrated in this study that Smyd1b_tv1 could also interacts with 

Unc45b, suggesting that they may work together to control myobril assembly. It has 

been well documented that Unc45b and Hsp90α1 work together to control myosin 

folding and assembly. (Barral et al 2002, Liu et al 2008). Because Smyd1b_tv1 can 

bind to both one of them, it suggests that Smyd1b_tv1 may form complex with the 

myosin chaperone machinery to help myosin folding and assembly.  

In addition to myosin thick filaments, our studies indicate that 

Smyd1b_tv1/Hsp90α1/unc45b complex may play a direct role in folding and 

assembly of other sarcomeric proteins. One particular candidate is the M-line protein 

myomesin. We showed that knockdown of smyd1b, hsp90α1 or unc45b compleletely 

abolished the expression of myomesin. This is unlikely due to an indirect effect from 

disruption of myosin thick filaments because knockdown of myosin directly had little 

effect on myomesin expression and M-line organization (Codina and Du, 

unpublished). 

The identification of Smyd1b_tv1 interacting protein Hsp90α1 and Unc45b, 

together with the functional study of Hsp90α1, links Smyd1b_tv1 with the sarcomeric 

protein chaperone machinery, which will lead us to a new direction to detect how 

Smyd1b_tv1 to fulfill its function. Hsp90α1 and Unc45 have been very well studied 

for their functions during myosin assembly, which will help to study the relationship 

between Smyd1b_tv1 and myosin, vice versa; the study of Hsp90α1 and Unc45’s 
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function on other contractile components will also benefit from the mechanistic study 

of Smyd1b_tv1. 

 

4. The proposed model of smyd1b working mechanism 

In this study, we have demonstrated several important roles of smyd1b and its 

partners during skeletal and cardiac muscle development. Smyd1b belongs to a 

subfamily which contains a SET and a MYND domain. Members of this protein 

family are conserved from yeast to vertebrates. The human and mouse genomes each 

contain five annotated Smyd proteins (Thompson & Travers 2008). The SET domain 

has been identified as a histone methyltransferase domain in Smyd1, Smyd2 and 

Smyd3 (Abu-Farha et al 2008, Hamamoto et al 2004, Tan et al 2006).  

More recently, nonhistone proteins have been found to be methylated by 

members of the Smyd family. Smyd2 has been shown to methylate p53 K370 to 

repress its activity both in vitro and in vivo (Huang et al 2006). In addition, recent 

study reported that VEGFR1 is a novel nonhistone target of Smyd3 histone 

methyltransferase(Kunizaki et al 2007). Smyd2 and Smyd3 have both nuclear and 

cytoplasm localization, which makes it possible for them to work as a histone 

methyltransferase to control gene expression in the nucleus and work as nonhistone 

mehtyltransferase to modify other proteins in the cytoplasm. In our study, we also 

showed the nuclear and cytoplasm localization of Smyd1b. This suggests Smyd1b 

may fulfill its function in vivo in the same way as Smyd2 and Smyd3.  

It has been reported that cytoskeleton associated proteins often display 

dynamic distributions in cells and can participate in signal transduction cascades to 
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control gene expression (Clark et al 2002). In skeletal and cardiac muscles, several 

sarcomeric proteins have been shown to shuttle between the nucleus and the 

cytoplasm to fulfill their functions. They could associate with the sarcomere to 

maintain organization. They may also participate in the response of the muscle cells 

to the structural and functional changes of the contractile machinery. One example is 

the M-line protein myomesin-1, which was long thought as a cytoskeletal protein in 

the cytoplasm. Myomesin-1 has been found in the nucleus and may control gene 

expression (Price & Gomer 1993, Reddy et al 2008, Vinkemeier et al 1993). Another 

example includes the transcription factor NFATc, whose nuclear translocation is 

activity dependent in mature fibers and also is developmentally regulated (Liu et al 

2001). NF-AT3 can be tethered to the Z-line and dephosphorylated by calcineurin. 

This activates NF-AT3 and allows it to enter the nucleus (Frey et al 2000, Olson et al 

2000). Two titin-interacting proteins, the muscle-specific calpain p94 and MURF-1, 

the RNA-binding protein raver1, and the actin binding protein myopodin also 

participate in linking nuclear and sarcomeric functions and their dynamic localization 

coincident with different stages of muscle differentiation (Centner et al 2001, 

Huttelmaier et al 2001, McElhinny et al 2002, Sorimachi et al 1995, Weins et al 

2001). These cases illustrate several potential mechanisms by which communication 

between the sarcomeres and the nucleus may be mediated by sarcomeric proteins. 

The sarcomeric proteins which also have roles inside the nucleus could make it 

possible for the muscle cells to have the ability to respond to mechnical stress and 

other physiological signals. This kind of communication may be critical for the 
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maintenance of the muscle cell homeostasis as well as muscle plasticity (Clark et al 

2002).  

Smyd1b may represent another example of this kind of protein which can 

transfer stress or other kind of signals from the contractile machinery to the nucleus. 

Smyd1b thus may play an important signaling role between the nucleus and the 

contractile components to maintain cytoarchitectural integrity of muscle cells. Based 

on all our studies as well as previous studies, we propose the following model of how 

Smyd1 may fulfill its biological function in vivo.   

We propose that Smyd1b may have roles both inside the nucleus and in the 

cytoplasm. Smyd1b may work as a histone methyltransferase to control gene 

expression inside the nucleus during muscle cell differentiation. In addition, Smyd1b 

in the cytoplasm may modify proteins by methylation, regulating the activity of the 

target proteins. It has been demonstrated that several sarcomeric proteins, such as 

myosin and actin, are modified by methylation (Iwabata et al 2005, Tong & Elzinga 

1983). Post-translational modification by methylation may be important for protein 

folding, assembly and stability.  

We further hypothesize that Smyd1b_tv1 may share the same targets as 

Hsp90α1 and Unc45b because of their close association. Hsp90α1 may help the 

folding and assembly of these target proteins that are modified by Smyd1b_tv1. 

Moreover, we can not rule out the possibility that Hsp90α1 may be a target of 

Smyd1b_tv1. Methylation of Hsp90a1 by Smyd1b_tv1 may regulate its chaperone 

activity. 
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Figure 26. Final model of Smyd1b working mechanism. 

Smyd1b may work as a histone methyltransferase to control gene transcription inside 

nucleus during early muscle differentiation or under stress at adult stage. 

Within the cytoplasm, Smyd1b may work as methyltransferase for sarcomeric 

proteins or Hsp90a1. Studies have shown that skNAC is a target for Smyd1b_tv2.  

The interaction between Smyd1b_tv1 and Hsp90α1 may indicate Smyd1b_tv1 can 

Smyd1b 

Gene Transcription 
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methylate Hsp90α1 or methylate other contractile components which need the help of 

Hsp90α1 for folding and assembly. 

 

5. Future directions 

As for future directions, it is important to further dissect the mechanistic 

action of Smyd1b and its partners. Epigenetic studies via CHIP (chromatin 

immunoprecipitation) would be used to identify the gene targets of smyd1b, and to 

determine whether altering the expression of these target genes would affect 

myofibril assembly. Equally important, proteomic analyses via Co-

immunoprecipitation and western blot by anti-methyllysine antibody would be carried 

out to identify the protein targets of Smyd1b that are methylated by post-translational 

modification. Potential candidates include myosin, myomesin, and Hsp90a1. 

Together, these studies will further advance our mechanistic understanding of smyd1b 

function in myofibrillogenesis. Moreover, results from these studies will establish the 

basis for investigating the potential involvement of Smyd1b and its partners in cardiac 

and skeletal muscle diseases in human. 
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