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Abstract

This note discusses the linear discrete and continuous time consensus problem for a network of

dynamic agents with directed information flows and random switching topologies. The switching is

determined by a Markov chain, each topology corresponding to a state of the Markov chain. We show

that, under doubly stochastic assumption on the matrices involved in the linear consensus scheme,

average consensus is achieved in the mean square sense and almost surely if and only if the graph resulted

from the union of graphs corresponding to the states of the Markov chain is strongly connected. The

aim of this note is to show how techniques from Markovian jump linear systems theory, in conjunction

with results inspired by matrix and graph theory, can be used to prove convergence results for stochastic

consensus problems.

I. INTRODUCTION

A consensus problem consists of a group of dynamic agents who seek to agree upon certain

quantities of interest by exchanging information among them according to a set of rules. This

problem can model many phenomena involving information exchange between agents such as

cooperative control of vehicles, formation control, flocking, synchronization, parallel computing,

etc. Distributed computation over networks has a long history in control theory starting with the

work of Borkar and Varaiya [1], Tsitsikils, Bertsekas and Athans [23], [24] on asynchronous

agreement problems and parallel computing. A theoretical framework for solving consensus

problems was introduced by Olfati-Saber and Murray in [17], [18], while Jadbabaie et al. studied

alignment problems [8] for reaching an agreement. Relevant extensions of the consensus problem

were done by Ren and Beard [16], by Moreau in [11] or, more recently, by Nedic and Ozdaglar

in [13], [12].
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Typically agents are connected via a network that changes with time due to link failures, packet

drops, node failure, etc. Such variations in topology can happen randomly which motivates

the investigation of consensus problems under a stochastic framework. Hatano and Mesbahi

consider in [9] an agreement problem over random information networks, where the existence

of an information channel between a pair of elements at each time instance is probabilistic

and independent of other channels. In [15], Porfiri and Stilwell provide sufficient conditions for

reaching consensus almost surely in the case of a discrete linear system, where the communication

flow is given by a directed graph derived from a random graph process, independent of other time

instances. Under a similar model of the communication topology, Tahbaz-Salehi and Jadbabaie

give necessary and sufficient conditions for almost sure convergence to consensus in [21], while

in [22], the authors extend the applicability of their necessary and sufficient conditions to strictly

stationary ergodic random graphs.

This paper deals with the linear consensus problem for a group of dynamic agents. We assume

that the communication flow between agents is modeled by a (possible directed) random graph.

The switching is determined by a homogeneous, finite-state Markov chain, each communication

pattern corresponding to a state of the Markov process. We address both the continuous and

discrete time cases and, under certain assumption on the matrices involved in the linear scheme,

we give necessary and sufficient conditions such that average consensus is achieved in the mean

square sense and in the almost sure sense. The Markovian switching model goes beyond the

common i.i.d. assumption on the random communication topology and appears in the cases

where Rayleigh fading channels are considered.

The aim of this paper is to show how mathematical techniques used in the stability analysis

of Markovian jump linear systems, together with results inspired by matrix and graph theory,

can be used to prove (intuitively clear) convergence results for the (linear) stochastic consensus

problem.

A. Basic notations and definitions

We will denote by 1 the vector of all ones. If the dimension of the vector needs to be

emphasize, and index will be added for clarity (for example, if 1 is an n dimensional vector, we

will explicitly mark this by using 1n ). Let x be a vector in Rn. By av(x) we denote the quantity

av(x) = x′1/1′1. The symbols ⊗ and ⊕ represent the Kronecker product and sum, respectively.
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Given a matrix A, Null(A) designates the nullspace of the considered matrix. If X represents

some finite dimensional (sub-) space, dim(X ) gives us the dimension of X .

Let M be a set of matrices. By M ⊗A, where A is some arbitrary matrix, we understand

the following matrix set: M ⊗A = {M⊗A | M ∈M }. Also by M ′ we denote the set of the

transpose matrices of M , i.e. M ′ = {M′ | M ∈M }. By writing that AM = M we understand

that AM ∈M , for any M ∈M .

Let P be a probability transition matrix corresponding to a homogeneous, finite state, Markov

chain. We denote by P∞ the limit set of the sequence {Pk}k≥1, i.e. all matrices L for which there

exists a sequence {tk}k≥1 in N such that limk→∞ Ptk = L. Note that if the matrix P corresponds

to an ergodic Markov chain, the cardinality of P∞ is one, with the limit point 1π ′, where π

is the stationary distribution. If the Markov chain is periodic with period m, the cardinality of

P∞ is m. Let d(M,P∞) denote the distance from M to the set P∞, that is the smallest distance

from M to any matrix in P∞:

d(M,P∞) = inf
L∈P∞

‖L−M‖,

where ‖ · ‖ is a matrix norm.

Definition 1.1: Let A be a matrix in Rn×n and let G = (V,E) be a graph of order n. We

say that matrix A corresponds graph G or that graph G corresponds to matrix A if an edge ei j

belongs to E if and only if the (i, j) entry of A is non-zero. The graphs corresponding to A will

be denoted by GA.

Definition 1.2: Let s be a positive integer and let A = {A1, . . . ,As} be a set of matrices with

a corresponding set of graphs G = {GA1, . . . ,GAs}. We say that the graph GA corresponds to

the set A if it is given by the union of graphs in G , i.e.

GA ,
s⋃

i=1

GAi.

In this note we will use mainly to type of matrices: probability transition matrices (row sum

up to one) and rate transition matrices (row sum up to zero). Using an abuse of designation, a

rate matrix whose both rows and columns sum up to zero will be called doubly stochastic rate

transition matrix.

To simplify the exposition we will sometimes characterize a probability/rate transition matrix

as being irreducible or strongly connected and by this we understand that the corresponding

Markov chain (directed graph) is irreducible (strongly connected).



4

Definition 1.3: Let A ∈ Rn×n be a probability/rate transition matrix. We say that A is block

diagonalizable if there exists a similarity transformation P, encapsulating a successions of row

permutations, such that PAP′ is a bloc diagonal matrix with irreducible blocks on the main

diagonal.

For simplicity, the time index for both the continuous and discrete-time cases of the consensus

problem is denoted by t.

Paper organization: This paper has five sections besides the introduction: In Section II we

present the setup and formulation of the problem and we state our main convergence theorem.

In Section III we derive a number of results which will constitute the core of the proof of our

main result, presented in Section IV. We continue with a discussion of the convergence result

in Section V, and we end the paper with some conclusions.

II. PROBLEM FORMULATION AND STATEMENT OF THE CONVERGENCE RESULT

We assume a group of n agents, labeled 1 through n, organized in a communication network

whose topology is give by a time varying graph G(t) = (V,E(t)), where V is the set of n vertices

and E(t) is the time varying set of edges. The graph G(t) has an underlying random process

which governs its evolution, given by a homogeneous continuous or discrete time Markov chain

θ(t), taking values in the finite set {1, . . . ,s}. In the case of a discrete-time Markov chain,

θ(t) has a transition probability matrix P = (pi j) (rows sum up to one), while in the case of a

continuous time Markov chain it has a rate transition matrix Λ = (λi j) (rows sum up to zero).

The random graph G(t) takes values is a finite set of graphs G = {G1, . . . ,Gs} with probability

Pr(G(t) = Gi) = Pr(θ(t) = i), for i = 1 . . .s. We denote by q = (qi) the initial distribution of

θ(t).

Letting x(t) denote the state of the n agents, we model the discrete-time dynamics of the

agents by the following linear stochastic difference equation

x(t +1) = Dθ(t)x(t), (1)

where Dθ(t) is a random matrix taking values in the finite set D = {D1, . . . ,Ds}, with probability

distribution Pr(Dθ(t) = Di) = Pr(θ(t) = i). The matrices Di are stochastic matrices (row sum up

to one) with positive diagonal entries and correspond to the graphs Gi, for i = 1 . . .s.
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The continuous-time dynamics is modeled by the following linear stochastic equation

dx(t) = Cθ(t)x(t)dt, (2)

where Cθ(t) is a random matrix taking values in the finite set C = {C1, . . . ,Cs}, with probability

distribution Pr(Cθ(t) = Ci) = Pr(θ(t) = i). The matrices Ci are rate transition like matrices (row

sum up to zero) and correspond to the graphs Gi, for i = 1 . . .s. The initial state x(0) = x0, for

both continuous and discrete models, is assumed deterministic. The underlying probability space

(for both models) is denoted by (Ω,F ,P) and the solution process x(t,x0,ω) (or simply, x(t))

of (1) or (2) is a random process defined on (Ω,F ,P). We note that the stochastic dynamics (1)

and (2) represent Markovian jump linear systems for discrete and continuous time, respectively.

For a comprehensive study of the theory of (discrete-time) Markovian jump linear systems, the

reader can consult [2] for example.

Assumption 2.1: Throughout this paper we assume that the matrices belonging to the sets S

and C are doubly stochastic (row and column sum up to one or zero) and in the case of the set

D have positive diagonal entries. We assume also that the Markov chain θ(t) is irreducible.

We can use for instance a Laplacian based schemes to construct the matrices in the afore-

mentioned sets in the case of (possible weighted) undirected or balanced (for every node, the

inner degree is equal to the outer degree) communication graphs. If Li denotes the Laplacian of

the graph Gi, we can choose Ai = I− εLi and Ci =−Li, where ε > 0 is chosen such that Ai is

stochastic. The above assumption will ensure reaching average consensus, desirable in important

distributed computing applications such as distributed estimation [19], distributed optimization

[14] , etc. Any other scheme can be used as long as it produces matrices with the properties

stated above and it reflects the communication structures among agents.

Definition 2.1: We say that x(t) converges to average consensus

I. in the mean square sense, if for any x0 ∈ Rn and initial distribution q = (q1, . . . ,qs) of

θ(t),

lim
t→∞

E[‖x(t)−av(x0)1‖2] = 0.

II. in the almost sure sense, if for any x0 ∈Rn and initial distribution q = (q1, . . . ,qs) of θ(t),

P( lim
t→∞
‖x(t)−av(x0)1‖) = 1.
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Problem 2.1: Given the random processes D(t) and C(t), together with Assumption 2.1, we

derive necessary and sufficient conditions such that the state vector x(t), evolving according to

(1) or (2), converges to average consensus in the sense of Definition 2.1.

In the following we state the convergence result for the linear consensus problem under Marko-

vian random communication topology.

Theorem 2.1: The state vector x(t), evolving according to the dynamics (1) (or (2)) converges

to average consensus in the sense of Definition 2.1, if and only if GD (or GC ) is strongly

connected.

The above theorem formulates an intuitively obvious condition for reaching consensus under

the linear scheme (1) or (2) and under the Markovian assumption on the communication patterns.

Namely, it expresses the need for persistent communication paths among all agents. We defer for

Section IV the proof of this theorem and provide here an intuitive and non-rigorous interpretation.

Since θ(t) is irreducible, with probability one, all states in S are visited infinitely many times.

But since the graphs in G are jointly, strongly connected, communication paths between all

agents are formed infinitely many times, which allows for consensus to be achieved. Conversely,

if the graphs in G are not strongly connected, , then (as we will see later) under Assumption

2.1 it does not have a spanning tree either. Therefore, there exists at least two agents, such

that for any sample path of θ(t), no communication path among them (direct or indirect) is

ever formed. Consequently, consensus can not be reached. Our main contribution in this note is

to prove Theorem 2.1 using an approach based on the Markovian jump linear system stability

theory in conjunction with a set of results we derive based on matrix and graph theory.

III. PRELIMINARY RESULTS

In this section we introduce a set of results the proof of Theorem 2.1 is based on. We start

with a number of general results, whose proofs can be found in the Appendix. Then, we will

continue with results characteristic to the discrete and continuous time cases.

A. General preliminary results

Theorem 3.1: ([25]) Let s be a positive integer and let {Ai}s
i=1 be a finite set of n×n ergodic

matrices. Consider a map r :N→{1, . . . ,s} such that for any finite sequence {r(i)} j
i=1, the matrix
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product ∏
j
i=1 Ar(i) is ergodic. Then, there exists a vector c with non-negative entries (summing

up to one), such that:

lim
j→∞

j

∏
i=1

Ar(i) = 1c′. (3)

From the above Theorem we can immediately obtain the following corollary.

Corollary 3.1: Under the assumptions of Theorem 3.1, if the matrices in the set {Ai}s
i=1 are

doubly stochastic, then

lim
j→∞

j

∏
i=1

Ar(i) =
1
n
11′. (4)

Lemma 3.1: [8] Let m≥ 2 be a positive integer and let {Ai}m
i=1 be a set of nonnegative n×n

matrices with positive diagonal elements, then
m

∏
i=1

Ai ≥ γ

m

∑
i=1

Ai,

where γ > 0 depends on the matrices Ai, i = 1, . . . ,m.

The following Corollary is an immediate consequence of Corollary 3.5 of [16].

Corollary 3.2: A rate transition matrix G has algebraic multiplicity equal to one for its

eigenvalue λ = 0 if and only if the graph associated with the matrix has a spanning tree.

Remark 3.1: The homogeneous finite state Markov chain corresponding to a doubly stochastic

transition matrix P can not have transient states. Indeed, since P is doubly stochastic, the same

is true for Pt , for all t ≥ 1. Assuming that there exist a transient state i, then limt→∞(Pt) ji = 0 for

all j. But this means that there exist some t∗ for which ∑ j(Pt∗) ji < 1 which contradicts the fact

that Pt∗ must be doubly stochastic. This means that we can relabel de vertices of the Markov

chain such that P is block diagonalizable.

Remark 3.2: Since the Markov chain corresponding to a doubly stochastic transition/rate

matrix can not have transient states, the Markov chain (seen as a graph) has a spanning tree if

and only if is irreducible (strongly connected).

Lemma 3.2: Let A∈Rn×n and B∈Rn×n be two block diagonalizable rate transition matrices.

Then

Null(A+B) = Null(A)∩Null(B).
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Corollary 3.3: Let s be a positive integer and let A = {Ai}s
i=1 be a set of doubly stochastic

(probability transition) matrices. Then,

Null(
s

∑
i=1

(Ai− I)) =
s⋂

i=1

Null(Ai− I),

and dim(Null(∑s
i=1(Ai− I))) = 1 if and only if GA is strongly connected.

The following Corollary is the counterpart of Lemma 3.7 of [16], in the case of rate transition

matrices.

Corollary 3.4: Let G ∈ Rn×n be a rate transition matrix. If G has an eigenvalue λ = 0 with

algebraic multiplicity equal to one, then limt→∞ eGt = 1v′, where v is a nonnegative vector

satisfying G′v = 0 and v′1= 1.

Proposition 3.1: Consider a matrix Q ∈Rn×n such that ‖Q‖1 ≤ 1 and a set of matrices S =

{S1, . . .Sm}, for some positive integer m≤ n. Assume that there exist a subsequence {tk} ⊂ Z+

such that S is a limit set for the sequence {Qtk}k≥0 and that for any S ∈S , QS ∈S , as well.

Then, S is a limit set for the sequence {Qk}k≥0, i.e.

lim
k→∞

d(Qk,S ) = 0,

where d(Q,S ) = minS∈S ‖Q−S‖1 .

B. Preliminary results for the discrete-time case

Lemma 3.3: Let s be a positive integer and let {Ai j}s
i, j=1 be a set of n×n doubly stochastic,

ergodic matrices. Let P be a s×s stochastic matrix corresponding to an irreducible, homogeneous

Markov chain and consider the ns×ns dimensional matrix Q whose (i, j)th block is defined by

Qi j , p jiAi j. Then P ′
∞⊗

(1
n11

′) is the limit set for the matrix sequence {Qk}k≥1, i.e.:

lim
k→∞

d
(

Qk,P ′
∞⊗

(
1
n
11′
))

= 0. (5)

Proof: The proof of this lemma is based on Corollary 3.1. The (i, j)th block entry of the

matrix Qk can be expressed as follows:

(Qk)i j = ∑
1≤i1,...ik−1≤s

p ji1 pi1i2 . . . pik−1iAii1Ai1i2 . . .Aik−1 j. (6)

Let p∞
ji be the ( j, i) entry of some matrix in P∞, i.e. there exist a sequence {tk}k≥1 ⊂N such

that limk→∞(Ptk) ji = p∞
ji.
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We have that

‖(Qk)i j− p∞
ji

1
n
11′‖ ≤ ∑

1≤it1 ,...ik−1≤s
(p ji1 . . . pik−1i)‖Aii1 . . .Aik−1 j−

1
n
11′‖+

+ ∑
1≤i1,...ik−1≤s

(p ji1 . . . pik−1i− p∞
ji)≤

≤ max
i1,...ik−1

{‖Aii1 . . .Aik−1 j−
1
n
11′‖} ∑

1≤i1,...ik−1≤s
(p ji1 . . . pik−1i)+

+ ∑
1≤i1,...ik−1≤s

(p ji1 . . . pik−1i− p∞
ji),

where ‖ ·‖ was used to denote some matrix norm. Consider the limit of the above left hand side

for the sequence {tk}k≥1. By Corollary 3.1 we know that

lim
k→∞

Aiit1
. . .Aitk−1 j =

1
n
11′

for all sequences it1, . . . , itk−1 and since obviously,

lim
k→∞

∑
1≤it1 ,...itk−1≤s

(p jit1
. . . pitk−1 i) = p∞

ji,

it results

lim
k→∞

(Qtk)i j = p∞
ji

1
n
11′.

Therefore P ′
∞⊗

(1
n11

′) is the limit set for the sequence of matrices {Qk}k≥1.

Lemma 3.4: Let s be a positive integer and consider a set of doubly stochastic matrices

with positive diagonal entries, D = {Di}s
i=1, such that the corresponding graph GD is strongly

connected. Consider also P the s×s probability transition matrix of an irreducible, homogeneous

Markov chain and consider the ns×ns matrix Q whose blocks are given by Qi j , p jiWj. Then

P ′
∞⊗

(1
n11

′) is the limit set of the sequence of matrices {Qk}k≥1, i.e.:

lim
k→∞

d
(

Qk,P ′
∞⊗

(
1
n
11′
))

= 0. (7)

Proof: Our strategy consists in showing that there exist a k ∈N, such that each (i, j)th block

matrix of Qk becomes a weighted ergodic matrix, i.e (Qk)i j = p(k)
ji A(k)

i j , where A(k)
i j is ergodic
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and p(k)
ji = (Pk) ji. If this is the case, we can apply Lemma 3.3 to obtain (7). The (i, j)th block

matrix of Qk looks as in (6), with the difference that in the current case Ai j = D j:

(Qk)i j = ∑
1≤i1,...ik−1≤s

p ji1 pi1i2 . . . pik−1iD jDi1 . . .Dik−1 = p(k)
ji A(k)

i j (8)

where

A(k)
i j , ∑

1≤i1,...ik−1≤s
αi1,...ik−1D jDi1 . . .Dik−1,

with

αi1,...ik−1 ,

 p ji1 pi1i2 . . . pik−1i/p(k)
ji , p(k)

ji > 0

0, otherwise

Notice that each of the matrix product D jDi1 . . .Dik−1 appearing in A(k)
i j , corresponds to a path

from node j to node i in k− 1 steps. Therefore, by the irreducibility assumption of P, there

exists a k such that each matrix in the set D appears at least once in one of the terms of the

sum (8), i.e. {1, ...,s} ⊆ {i1, . . . ik−1}. Using a similar idea as in Lemma 1 in [8] or Lemma 3.9

in [16], by Lemma 3.1, we upper bound such term

D jDi1 . . .Dik−1 ≥ γ

s

∑
l=1

Dl = γsD̄, (9)

where γ > 0 depends on the matrices in D and D̄ is a doubly stochastic matrix with positive

entries

D̄ =
1
s

s

∑
i

Di.

Since GD is strongly connected, the same is true for GD̄. Therefore, D̄ corresponds to an

irreducible, aperiodic (D̄ has positive diagonal entries) and hence ergodic, Markov chain. By

inequality (9), it follows that the matrix product D jDi1 . . .Dik−1 is ergodic. This is enough to

infer that A(k)
i j is ergodic as well, since is a result of a convex combination of (doubly) stochastic

matrices with at least one ergodic matrix in the combination. Choose a k∗ large enough such

that for all non-zero p(k∗)
i j , the matrices A(k∗)

i j are ergodic ∀i, j. Such k∗ always exists due to

irreducibility assumption on P. Then according to Lemma 3.3, we have that for the subsequence

{tm}m≥0, with tm = mk∗

lim
m→∞

d
(

Qtm ,P ′
∞⊗

(
1
n
11′
))

= 0. (10)

The results follows by Proposition 3.1 since ‖Q‖1 ≤ 1 and since Q
(
P ′

∞⊗
(1

n11
′))= P ′

∞⊗(1
n11

′).
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Corollary 3.5: Under the same assumptions as in Lemma 3.4, if we define the matrix blocks

of Q as Qi j , p jiD j⊗D j, then P ′
∞⊗

(
1
n211

′
)

is the limit set of the sequence {Qk}k≥1, i.e.

lim
k→∞

d
(

Qk,P ′
∞⊗

(
1
n211

′
))

,

where the vector 1 above has dimension n2.

Proof: In the current setup (8) becomes:

(Qk)i j = ∑
1≤i1,...ik−1≤s

p ji1 pi1i2 . . . pik−1i(D j⊗D j)(Di1⊗Di1) . . .(Dik−1⊗Dik−1). (11)

The result follows from the same arguments used in Lemma 3.4 together with the fact that the ma-

trix products in (11) can be written as (D j⊗D j)(Di1⊗Di1) . . .(Dik−1⊗Dik−1) = (D jDi1 . . .Dik−1)⊗

(D jDi1 . . .Dik−1) and with the observation that the Kronecker product of a ergodic matrix with

itself produces an ergodic matrix as well.

C. Preliminary results for the continuous time case

The following two corollaries emphasize geometric properties of two matrices arising from

the linear dynamics of the first and second moment of the state vector.

Corollary 3.6: Let s be a positive integer and let C = {C1, . . . ,Cs} be a set of n×n doubly

stochastic matrices such that GC is strongly connected. Consider also a s×s rate transition matrix

Λ = (λi j) corresponding to an irreducible Markov chain with stationary distribution π = (πi).

Define the matrices A , diag(C′i , i = 1 . . .s) and B , Λ⊗ I. Then A+B has an eigenvalue λ = 0

with algebraic multiplicity one, with corresponding right and left eigenvectors given by 1ns and

(π11
′
n,π21

′
n, . . . ,πs1

′
n), respectively.

Proof: We first note that A+B is a rate transition matrix and that both A and B are block

diagonalizable (indeed A has doubly stochastic matrices on its main diagonal and B contains n

copies of the irreducible Markov chain corresponding to Λ). Therefore, A+B has an eigenvalue

λ = 0 with algebraic multiplicity at least one.

Let v be a vector in the null space of A + B. By Lemma 3.2, we have that v ∈ Null(A) and

v∈Null(B). Given the structure of B, v must respect the following pattern v′= {(u′ u′ . . .u′︸ ︷︷ ︸
s times

) | u∈

Rn}. But since u ∈ Null(A), we have that C′iu = 0, i = 1 . . .s, or Cu = 0, where C = ∑
s
i=1C′i .

But since GC was assumed strongly connected, C corresponds to an irreducible Markov chain,
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and it follows that u must be of the form u = α1, for some α ∈ R. By backtracking, we get

that v = α1, for some α ∈ R and consequently Null(A + B) = span(1). Therefore, λ = 0 has

algebraic multiplicity one, with right eigenvector given by 1. By simple verification we note that

(π11
′,π21

′, . . . ,πs1
′) is a left eigenvector corresponding to the eigenvalue λ = 0.

Corollary 3.7: Let s be a positive integer and let C = {C1, . . . ,Cs} be a set of n×n doubly

stochastic matrices such that GC is strongly connected. Consider also a s×s rate transition matrix

Λ = (λi j) corresponding to an irreducible Markov chain with stationary distribution π = (πi).

Define the matrices A , diag(Ci⊕C′i , i = 1 . . .s) and B , Λ⊗ I. Then A + B has an eigenvalue

λ = 0 with algebraic multiplicity one, with corresponding right and left eigenvectors given by

1n2s and (π11
′
n2,π21

′
n2, . . . ,πs1

′
n2), respectively.

Proof: It is not difficult to check that A + B is a rate transition matrix. Also we note

that C′i ⊕C′i = C′i ⊗ I + I ⊗C′i is block diagonalizable since both C′i ⊗ I and I ⊗C′i are block

diagonalizable. Indeed, since Ci is doubly stochastic then it is block diagonalizable. The matrix

C′i ⊗ I contains n isolated copies of C′i and therefore it is block diagonalizable. Also, I⊗C′i it

has a number of n block on its diagonal, each block being given by C′i , and it follows is block

diagonalizable as well.

Let v be a vector in the nullspace of A+B. By Lemma 3.2, v∈Null(A) and v∈Null(B). From

the structure of B we note that v must be of the form v′ = (u′, . . . ,u′︸ ︷︷ ︸
s times

)′ | u ∈Rn2
. Consequently

we have that (C′i ⊕C′i)u = 0, i = 1, . . .s, or (C⊗C)u = 0, where C = ∑
s
i=1C′i . Since, GG is

strongly connected, C is a rate transition matrix corresponding to an irreducible Markov chain.

By applying again Lemma 3.2 for the matrix C⊕C = I⊗C+C⊗ I, we get that u must have the

form u′ = (ū′, . . . , ū′︸ ︷︷ ︸
n times

)′, where ū ∈ Rn and Cū = 0. But C is irreducible and therefore ū = α1n,

or u = α1n2 , or finally v = α1n2s, where α ∈ R. Consequently, Null(A + B) = span(1) which

means the eigenvalue λ = 0 has algebraic multiplicity one. By simple verification, we note that

(π11
′
n2,π21

′
n2, . . . ,πs1

′
n2) is a left eigenvector corresponding to the zero eigenvalue.

IV. PROOF OF THE CONVERGENCE THEOREM

The proof will focus on showing that the state vector x(t) converges in mean square sense to

average consensus. Or, by making the change of variable z(t) = x(t)−av(x0)1, we will actually

show that z(t) is mean square stable for the initial condition z(0) = x0− av(x0)1, where z(t)
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respects the same dynamic equation as x(t). Using results for the stability theory of Markovian

jump linear systems, mean square stability also imply stability in the almost sure sense (see for

instance Corollary 3.46 of [2] for discrete-time case or Theorem 2.1 of [5] for continuous-time

case, with the remark that we are interested for the stability property to be satisfied for a specific

initial condition, rather then for any initial condition), which for us imply that x(t) converges

almost surely to average consensus.

We first prove the discrete-time case after which we continue with the proof for the continuous-

time case.

A. Discrete-time case - Sufficiency

Proof:

Let V (t) denote the second moment of the state vector

V (t) , E[x(t)X(t)T ],

where we used E to denote the expectation operator. The matrix V (t) can be expressed as

V (t) =
s

∑
i=1

Vi(t), (12)

where Vi(t) is given by

Vi(t) , E[x(t)x(t)T
χ{θ(t)=i}] i = 1 . . .s, (13)

with χ{θ(t)=i} being the indicator function of the event {θ(t) = i}.

The set of discrete coupled Lyapunov equations governing the evolution of the matrices Vi(t)

are given by

Vi(t +1) =
s

∑
j=1

p jiD jVj(t)DT
j , i = 1 . . .s, (14)

with initial conditions Vi(0) = qix0xT
0 . By defining η(t) , col(Vi(t), i = 1 . . .s), we obtain a

vectorized form of equations (14)

η(t +1) = Γdη(t), (15)
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where Γd is an n2s×n2s matrix given by

Γd =


p11D1⊗D1 . . . ps1Ds⊗Ds

... . . . ...

p1sD1⊗D1 . . . pssDs⊗Ds

 and η0 =


q1col(x0x′0)

...

qscol(x0x′0)

 . (16)

We notice that Γd satisfies all the assumptions of Corollary 3.5 and hence we get

lim
k→∞

d
(

Γ
k
d,P

′
∞⊗

(
1
n211

′
))

= 0.

Using the observation that
1
n211

′col(x0x′0) = av(x0)21,

the limit of the sequence {η(tk)}k≥0, where {tk}k≥0 is such that limk→∞(Ptk)i j = p∞
i j, is

lim
k→∞

η(tk)′ = av(x0)2


∑

s
j=1 p∞

j1q j1
...

∑
s
j=1 p∞

jsq j1
′

 .

By collecting the entries of limk→∞ η(tk) we obtain

lim
k→∞

Vi(tk) = av(x0)2

(
s

∑
j=1

p∞
jiq j

)
11′,

and from (12) we get

lim
k→∞

V (tk) = av(x0)211′ (17)

since ∑
s
i, j=1 p∞

jiq j = 1. By repeating the previous steps for all subsequences generating limit

points of {Pt}t≥0 we obtain that (17) holds for any sequence in N.

Through a similar process as in the case of the case of the second moment (in stead of

Corollary 3.5 we use Lemma 3.4), we show that:

lim
k→∞

E[x(t)] = av(x0)1. (18)

From (17) and (18) we have that

lim
t→∞

E[‖x(t)−av(x0)1‖2] = lim
t→∞

trace(E[(x(t)−av(x0)1)(x(t)−av(x0)1)′]) =

= lim
t→∞

trace(E[x(t)x(t)′]−av(x0)1E[x(t)′]−av(x0)E[x(t)]1′+av(x0)211′) = 0.

Therefore, x(t) converges to average consensus in the mean square sense, and consequently in

the almost sure sense, as well.
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B. Discrete-time case - Necessity

Proof: If GA is not strongly connected then by Corollary 3.3, dim(
⋂s

i=1 Null(Ai− I)) > 1.

Consequently, there exist a vector v ∈
⋂s

i=1 Null(Ai− I)) such that v /∈ span(1). If we choose v

as initial condition, for every realization of θ(t), we have that

x(t) = v, for all t ≥ 0,

and therefore consensus can not be reached in the sense of Definition 2.1.

C. Sufficiency - Continuous time

Using the same notations as in the discrete-time case, the dynamic equations describing the

evolution of the second moment of x(t) are given by

d
dt

Vi(t) = CiVi(t)+Vi(t)C′i +
s

∑
j=1

λ jiVj(t), i = 1 . . .s, (19)

equations whose derivation is treated in [6]. By defining the vector η(t) , col(Vi(t), i = 1 . . .s),

the vectorized equivalent of equations (19) is given by

d
dt

η(t) = Γcη(t), (20)

where

Γc =


C1⊕C1 0 · · · 0

0 C2⊕C2 · · · 0
... · · · . . . ...

0 0 · · · Cs⊕Cs

 and η0 =


q1col(x0x′0)

q2col(x0x′0)
...

qscol(x0x′0)

 .

By Corollary 3.6, the eigenspace corresponding to the zero eigenvalue has dimension one,

with unique (up to the multiplication by a scalar) left and right eigenvectors given by 1n2s and
1
n2 (π11

′
n2,π21

′
n2, . . . ,πs1

′
n2), respectively. Since Γ′c is a rate transition matrix with an eigenvalue

zero of algebraic multiplicity one, by Corollary 3.4 we have that limt→∞ eΓ′ct = v1′, where v′ =
1
n2 (π11

′,π21
′, . . . ,πs1

′). Therefore, as t goes to infinity, we have that

lim
t→∞

η(t) =


π1

11′

n2 · · · π1
11′

n2

... . . . ...

πs
11′

n2 · · · πs
11′

n2




q1col(x0x′0)
...

qscol(x0x′0)

 .
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By noting that
11′

n2 col(x0x′0) = av(x0)21n2,

we farther get

lim
t→∞

η(t) = av(x0)2


π11n2

...

πs1n2

 .

Rearranging the columns of limt→∞ η(t), we get

lim
t→∞

Vi(t) = av(x0)2
πi11

′,

or

lim
t→∞

V (t) = av(x0)211′.

Through a similar process (using this time Corollary 3.6), we can show that

lim
t→∞

E[x(t)] = av(x0)1.

Therefore, x(t) converges to average consensus in the mean square sense and consequently in

the almost surely sense.

D. Necessity - Continuous time

Follows the same lines as in the discrete-time case.

V. DISCUSSION

In the previous sections we proved a convergence result for the discrete and continuous time

linear, stochastic consensus problem. Our main contributions consist of considering a Markovian

process, not necessarily ergodic, as underlying process for the random communication graph and

of the Markovian Jump theory inspired approach we took for proving this result. In what we

have shown, we assumed that the Markov process θ(t) was irreducible and that the matrices Di

and Ci were doubly stochastic. We can assume for instance that θ(t) is not irreducible (i.e. θ(k)

may have transient states). We treated this case in [10] (only for discrete-time dynamics), and

we showed that convergence in the sense of Definition 2.1 is achieved if and only if the union

of graphs corresponding to each of the irreducible closed sets of states of the Markov chain
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produces a strongly connected graph. This should be intuitively clear since the probability to

return to a transient state converges to zero as time goes to infinity, and therefore the influence

of the matrices Di (or Ci), corresponding to the transient states, is cancelled. We can also assume

that Di and Ci are not necessarily doubly connected. We treated this case (again only for the

discrete-time dynamics and without being completely rigorous) in [xxx] and we showed that the

state converges in mean square sense and in almost sure sense to consensus, and not necessarily

average consensus. From the technical point view, the difference consist of the fact that the

n2×n2 block matrices of Γd (or Γc) no longer converge to πi
1
n211

′ but to πi1c′, for some vector

c ∈ Rn2
with non-negative entries summing up to one, vector c which in general can no be

a priori determined. In relevant distributed computation application (such as distributed state

estimation or distributed optimization) however, convergence to average consensus is required,

and therefore the assumption, that Di or Ci are doubly stochastic, makes sense.

The proof of Theorem 2.1 was based on the analysis of two matrix sequences {eΓct}t≥0 and

{Γt
d}t≥0 arising from the dynamic equations of the state’s second moment, for the continuous and

discrete time, respectively. The reader may have noted that we approached differently the analysis

of the two sequences. In the case of continuous-time dynamics, our approach was based on

showing that the left and right eigenspaces induced by the zero eigenvalue of Γc have dimension

one, and we provided the left and right eigenvectors (bases of the respective subspaces). The

convergence of {eΓct}t≥0 followed from Corollary 3.4. In the case of the discrete-time dynamics,

we analyzed the sequence {Γt
d}t≥0, by looking at how the matrix blocks of Γt

d evolve as t goes

to infinity. Although, similar to the continuous-time case, we could have proved properties of Γd

related to the left and right eigenspaces induced by the eigenvalue one, this would not have been

enough in the discrete-time case. This is because, through θ(t), Γd can be periodic, in which

case the sequence {Γt
d}t≥0 does not converge (remember that in the discrete-time consensus

problems, the stochastic matrices are assumed to have positive diagonal entries, to avoid the

possibility of being periodic).

In the case of i.i.d. random graphs [21], or more general, in the case of strictly stationary,

ergodic random graphs [22] , a necessary and sufficient condition for reaching consensus almost

surely (in the discrete-time case) is |λ2(E[Dθ(t)])| < 1, where λ2 denotes the eigenvalue with

second largest modulus. In the case of Markovian random topology a similar condition, does not

necessarily hold, neither for each time t, nor in the limit. Take, for instance, two (symmetric)
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stochastic matrices D1 and D2 such that each of the graphs GD1 and GD2 , respectively, are

not strongly connected but their union is. If the two state Markov chain θ(t) is periodic, with

transitions given by p11 = p22 = 0 and p12 = p21 = 1, we note that λ2(E[Dθ(t)]) = 1, for all

t ≥ 0. Also note that λ2(limt→∞ E[Dθ(t)]) does not exist since the sequence {E[Dθ(t)]}t≥0 does

not have a limit. Yet, consensus is reached. The assumption that allowed for the aforementioned

necessary and sufficient condition to hold, was that θ(t) is a stationary process (which in turn

implies that E[Dθ(t)] is constant for all t ≥ 0). However, this is not necessarily true if θ(t)

is a (homogeneous) irreducible Markov chain, unless the initial distribution is the stationary

distribution.

For the discrete-time case we can formulate a result involving the second largest value of the

time average expectation of Dθ(t), i.e. limN→∞

∑
N
t=1 E[Dθ(t)]

N , which reflects the proportion of time

Dθ(t) spends in each state of the Markov chain.

Corollary 5.1: Consider the stochastic system (1). Then, under Assumption 2.1, the state

vector x(t) converges to average consensus in the sense of Definition 2.1, if and only if∣∣∣∣∣λ2

(
lim

N→∞

∑
N
t=0 E[Dθ(t)]

N

)∣∣∣∣∣< 1.

Proof:

The time average of E[Dθ(t)] can be explicitly written as

lim
N→∞

∑
N
t=0 E[Dθ(t)]

N
=

s

∑
i=1

πiDi = D̄,

where π = (πi) is the stationary distribution of θ(t). By Corollary 3.5 in [16], |λ2(D̄)|< 1 if and

only if the graph corresponding to D̄ has a spanning tree, or in our case, is strongly connected.

But the graph corresponding to D̄ is the same as GD , and the result follows from Theorem 2.1.

Unlike the discrete-time, in the case of continuous time dynamics, we know that if there exists

a stationary distribution π (under the irreducibility assumption), the probability distribution of

θ(t) converges to π , hence the time averaging is not necessary. In the following we introduce

(without proof since basically its similar to the proof of Corollary 5.1) a necessary and sufficient

condition for reaching average consensus, involving the expected value of the second largest

eigenvalue of Cθ(t), for the continuous-time dynamics.
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Corollary 5.2: Consider the stochastic system (2). Then, under Assumption 2.1, the state

vector x(t) converges to average consensus in the sense of Definition 2.1, if and only if

Re
(

λ2

(
lim
t→∞

E[Cθ(t)]
))

< 0.

Our analysis provides also estimates on the rate of convergence to average consensus in the

mean square sense. From linear dynamic equations of the state’s second moment we notice

that the eigenvalues of Γd and Γc dictates how fast the second moment converges to average

consensus. Since Γ′d is a probability transition matrix and since Γc is a rate transition matrix, an

estimate of the rate of convergence of the second moment of x(t) to average consensus is given

by the second largest eigenvalue (in modulus) of Γd , for the discrete-time case, and by the real

part of the second largest eigenvalue of Γc, for the continuous time case.

VI. CONCLUSION

In this note we treated the continuous and discrete time stochastic consensus problem. We

analyzed the convergence properties of the linear consensus problem, when the communication

topology is modeled as a directed random graph with an underlying Markovian process. Un-

der additional assumptions on the directed communication topologies, we provided a rigorous

mathematical proof for the intuitive necessary and sufficient conditions for reaching average

consensus in the mean square and almost surely sense. These conditions are expressed in terms

of connectivity properties of the union of graphs corresponding to the states of the Markov chain.

The aim of this note has been to show how mathematical techniques from the stability theory

of the Markovian jump systems, in conjunction with results from the matrix and graph theory

can be used to prove convergence results for consensus problems under a stochastic framework.
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APPENDIX

A. Proof of Corollary 3.1

By Theorem 3.1 we have that

lim
j→∞

j

∏
i=1

Ar(i) = 1c′.

Since the matrices considered are doubly stochastic and ergodic their transposes are ergodic as

well. Hence, by applying again Theorem 3.1 on the transpose versions of {Ai}s
i=1, we obtain

that there exist a vector d such that

lim
j→∞

(
j

∏
i=1

Ar(i)

)′
= 1d′.

But since the stochastic matrix 1c′ must be equal to d1′, the results follows.

B. Proof of Corollary 3.2

Follows immediately from Corollary 3.5 of [16], by forming the probability transition matrix

P = I + εG, for some appropriate ε > 0, and noting that Null(P− I) = Null(G).

C. Proof of Lemma 3.2

Obviously, v ∈ Null(A)∩Null(B) implies v ∈ Null(A + B). Since A is block diagonalizable,

then there exists a similarity transformation T such that Ā = TAT ′ is a block diagonal rate

transition matrix (with irreducible blocks). Let Āi ∈ Rni×ni , i = 1 . . .m denote the irreducible

blocks on the main diagonal of Ā, where m is the number of such blocks and ∑
m
i=1 ni = n. The

nullspace of Ā can be expressed as

Null(Ā) =




α11n1
...

αm1nm

 | αl ∈R, l = 1 . . .m

 .

We assumed that B is block diagonalizable, which mean that GB is a union of isolated, strongly

connected subgraphs, property which remains valid for the graph corresponding to B̄. By adding

B̄ to Ā two phenomena can happen: we can either leave the graph GĀ unchanged or we can
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create new connections among the vertices of GĀ. In the first case, GB̄ ⊂ GĀ and therefore

Null(Ā+ B̄) = Null(Ā). In the second case we create new connections among the blocks of Ā.

But since all the subgraphs of B̄ are strongly connected this means that if Āi becomes connected

to Ā j, then necessarily Ā j becomes connected to Āi, hence Āi and Ā j form an irreducible (strongly

connected) new block, whose nullspace is spanned by the vectors of all ones. Assuming that

these are the only new connections that are added to GĀ, the nullspace of Ā + B̄ will have a

similar expression to the nullspace of Ā with the main difference that the coefficients αi and α j

will be equal. Therefore, in this particular case, the nullspace of Ā+ B̄ can be expressed as

Null(Ā+ B̄) =




α11n1
...

αm1nm

 | αl ∈R, αi = α j, l = 1 . . .m

 .

In general all blocks Āi which become interconnected after adding B̄ will have equal coefficients

in the expression of the nullspace of Ā+ B̄, compared to the nullspace of Ā. Therefore, Null(Ā+

B̄) ⊂ Null(Ā), which means also that Null(A + B) ⊂ Null(A). Therefore, if (A + B)v = 0, then

Av = 0 which implies also that Bv = 0 or v ∈ Null(B). Hence if v ∈ Null(A + B) then v ∈

Null(A)∩Null(B), which concludes the proof.

D. Proof of Corollary 3.3

Since Ai, i = 1 . . .s are doubly stochastic then Ai− I are block diagonalizable doubly stochastic

rate transition matrices. Therefore, by recursively applying Lemma 3.2 s−1 times, the first part

of the Corollary follows. For the second part of the Corollary, note that, by Corollary 3.5 of

[16], 1
N ∑

s
i=1 Ai has the algebraic multiplicity equal to one, of its eigenvalue λ = 1 if and only

if the graph associated to 1
N ∑

s
i=1 Ai has a spanning tree, or in our case is strongly connected,

which in turn implies that dim(Null(∑s
i=1(Ai− I))) = 1 if and only if GA is strongly connected.

E. Proof of Corollary 3.4

Choose h1 > 0 and let {t1
k }k≥0 be a sequence given by t1

k = h1k, for all k ≥ 0. Then

lim
k→∞

eGt1
k = eh1kG = Pk

h1
,

where we defined Ph1 , eh1G. From the theory of continuous-time Markov chain we know that

Ph1 is a stochastic matrix with positive diagonal entries and that, given a vector x∈Rn, x′Ph1 = x′
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if and only if x′G = 0. This means that the algebraic multiplicity of the eigenvalue λ = 1 of Ph1

is one. By Lemma 3.7 of [16], we have that limk→∞ Pk
h1

= 1v′h1
, where vh1 is a nonnegative vector

satisfying P′h1
vh1 = vh1 and v′h1

1= 1. Also G′vh1 = 0. Choose another h2 > 0 and let Ph2 , eh2G.

Similarly as above, we have that

lim
k→∞

Pk
h2

= 1v′h2
,

where vh2 satisfy similar properties as vh1 . But since both vector belong to the nullspace of G′

of dimension one, then they must be equal. Indeed if x is a left eigenvector of G, then vh1 and

vh2 can be written as vh1 = α1x and vh2 = α2x. However, since 1′vh1 = 1 and 1′vh2 = 1 it follows

that α1 = α2. We have shown that for any choice of h > 0,

lim
k→∞

eGtk = ehkG = 1v′,

where v is a nonnegative vector satisfying G′v = 0 and 1′v = 1, and therefore, the result follows.

F. Proof of Proposition 3.1

Pick a subsequence {t ′k}k≥0 given by t ′k = tk +δk, where δk ∈ Z+. It follows that

d(Qt ′k ,S ) = min
S∈S
‖QδkQtk ,Qδ k

S‖1 ≤ ‖Qδk‖1 min
S∈S
‖Qtk ,S‖1 ≤ d(Qtk ,S ).

Therefore, we get S is a limit set for the sequence {Qt ′k
k≥0} and the result follows since we can

make {t ′k}k≥0 arbitrary.


