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When asked to change one’s beliefs in the face of new information, or to revise a

book given errata, we commonly strive to keep our changes relevant, that is, we try to

restrict the beliefs (or chapters) we change to those that bear some content relation to

the new information. One kind of relevance, topicality, is interesting for two reasons:

First, topicality tends to be strongly encapsulating, e.g., we shouldn’t make any off-topic

changes. Second, topicality tends to be weaker than strict relevance. Consider a panel of

three papers on the topic of Kant’s life and works. It would be entirely possible for each

of the papers to have no bearing on the truth of any sentence in any of the other papers,

and yet for all of the papers to be on topic.

In this dissertation, I explore theories of logical topicality and their effect on for-

mal theories of belief revision. Formal theories of belief revision (in the Alchourròn,

Gärdenfors, and Makinson (AGM) tradition) model the object of change (my beliefs, a

book) as a collection of formulae in a supra-classical logic and provide a set of postulates

which express constraints on the sorts of change that are, in principle, formally rational.

In 1999, Rohit Parikh proposed that signature disjointness captured a reasonable notion



of topicality but that taking topicality into account required changes in the standard AGM

postulates (and thus, the notion of rational change). He, and subsequent theorists, aban-

doned this notion of topicality in order to deal with the revision of inconsistent objects of

change. In this thesis, I show 1) that a disjoint signature account of topicality does not

require changes to the AGM rationality postulates and 2) a disjoint signature account of

topicality can apply to inconsistent objects of change. Additionally, I argue that signature

disjointness has a strong claim to being at least a sufficient condition of logical topicality.
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Chapter 1

Introduction

One of the strong appeals of regimenting theories within a formal logic is the clarity

of the resultant regimented theory. The logical commitments of the regimented theory are

exactly the logical commitments of the axiomatization itself. One is forced to be precise

where vagueness used to reign, and complete where hand-waving once sufficed. (The

adequacy of the regimentation as a presentation of the original theory is a different story.)

With the advent of sufficient computation power to make state of the art theorem

provers practical for a large variety of axiom sets, regimented theories become even more

appealing. Not only can the formalized theories be used in programs for a variety of

purposes, but automation can make large-scale theory construction feasible. Syntactic

correctness, consistency, and verified consequences are all crucial to developing large

theories, but there are an increasing number of services that can be mobilized, from the

quotidian (version control; document management) to the more exotic (concept unifica-

tion and other search techniques; visualization; explanation). The field of knowledge

representation (KR) and reasoning (&R) in part focuses on developing formalisms that,

while representationally adequate for a domain, lend themselves to effective automation.

Large machine-oriented formal theories in expressive logics (e.g., those with dis-

junction and classical negation) present a number of challenges. Their sheer size in con-

junction with the intractability of the logic can overwhelm systems. Similarly, even with
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good search and visualization capabilities, human users can easily get lost. This tendency

can be exacerbated when the theory concerns a number of diverse subject matters. Large,

shared, evolving theories often do, especially if they incorporate application-dependent

extensions to theories developed by other people.

Reuse of theories by sheer aggregation is not a generally workable strategy for sev-

eral reasons. It is easy for aggregated theories to be too large both for people and programs

to effectively handle. Uncoordinated development of theories can contain contradictions

and other infelicities which require attention to the whole of the unwieldy aggregate, as

well as the source theories. Finally, aggregation, absent very careful factoring, brings in

too much: the relevant and the irrelevant; the center, the periphery, and the rather random

digressions.

People use all sorts of filters to manage the array of sentences they are nominally

committed to. They give differential weight to trusted proponents and schools of thought.

They are inattentive to consequences and connections. They also compartmentalize based

on context and concern. In particular, for particular tasks in particular circumstances, they

identify topics of concern, and the subset of sentences that are relevant to that topic. These

might be disconnected and confused; contradictory; or coherent and comprehensive. In

other words, there might be a subset of the sentences I am generally prepared to mobilize

that deal primarily with the topic at hand and deal with it well. Furthermore, I am certainly

not compelled, by the dictates of rationality, to root out all the difficulties of the broader set

of sentences before pronouncing on a topic — even, or perhaps especially, with authority.

Expertise critically depends on being able to focus on the subject of discussion and is not

directly damaged by kookiness in other areas. Challenges based on the strangeness of
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irrelevant beliefs are ad hominem, almost by definition (such challenges are paradigmatic

of the fallacy). However, they may be non-fallaciously mobilized to shift the burden

of proof, for example. If one’s general competency is impugned by some beliefs, it is

reasonable to raise those beliefs regardless of topic.

Given a diverse, formalized theory captured as a knowledge representation1, it is

reasonable to wonder if the strategies used by human cognizers have a place. Part of

the point of mechanization is to transcend human limitations such as that of attention

span, so one might think that human focusing and scoping techniques are not of interest

for knowledge representation. After all, theorem provers can detect contradictions in

knowledge bases far too large for any human to survey, much less comprehend without

the need for significant chunking of the representation. Of course, on the face of it, such

wondering is a bit silly as knowledge representations are targeted at people as well as

programs:

Finally, knowledge representations are also the means by which we express

things about the world, the medium of expression and communication in

which we tell the machine (and perhaps one another) about the world. This

role for representations is inevitable so long as we need to tell the machine

(or other people) about the world, and so long as we do so by creating and

communicating representations. The fifth role for knowledge representa-

tions is thus as a medium of expression and communication for use by us.

1I shall use the term “knowledge representation” primarily to talk of computational artifacts, that is,

of logical theories with a concrete encoding in a language meant for mechanical processing, especially

automated reasoning.
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[Davis et al., 1993]

However, the worry can be sharpened. Given the support of automated reasoning

(and similar representation processing tools), are the kinds of filtering and focusing peo-

ple do worth emulating? Can other services do better? As I mentioned above, size can be

a problem in and of itself. Even if the logic underlying a knowledge representation has

decidable inference problems, it is rare that those will be (worst case) tractable. After all,

even propositional logic satisfiability is NP-complete. So, even small representations can

be hopeless if they hit the worst case, or simply if they are not amenable to state of the art

optimizations. Similarly, if the representation has logical difficulties such as contradic-

tions, they must be managed somehow. For contradictions, either they must be resolved

by people (with the aid of “debuggers”), resolved entirely by a program, or the logic must

be paraconsistent. In the first case, the problem of attention remains even with significant

automation, and worse, the problem might lie in a portion of the representation outside

the expertise of the human trying to resolve the contradiction. In the second case, even

if computationally feasible, there are serious issues of non-determinism and trust. Users

will typically want to understand the repair performed (and the ramifications thereof), at

least in general terms, and also need good reason to accept the resultant situation. Since

no one can hold very large theories in mind (or even sensibly work with them manually),

some sort of filtering will be required just to understand repairs, even if it is just listing

the specific axioms changed. While many changes do not have “global” effect, some do

— the obvious case being the introduction of a contradiction. To present a change as a

reasonable repair, the system needs to show what parts of the representation are signifi-
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cantly affected. More importantly, the affected parts have to matter to the user and their

current application. In the third case, the logic must be (in broad terms) comprehensible

and, in general, appropriate. While all paraconsistent logics avoid, at least in some cases,

ex contradictione quodlibet, they do so in significantly different ways and answer to a

wide range of logical intuitions.

For example, non-adjunctive logics (i.e., logics without or with a weakened &-

introduction) can be plausibly read (following [Jaśkowski, 1969]) as modeling the ag-

gregation of belief sets where each belief set must be consistent. That is, contradictions

within a belief set are treated as devastating, where contradictions between belief sets are

handled more gently, which, given the prevalence of disagreement, is wise. But there are

many ways of being gentle, not equally pleasing, but also not clearly ranked. One could

take the “consensus” view of the beliefs sets (i.e., the intersection of the belief sets), or a

more expansive, “non-disputatious” view (i.e., where every belief without a contradictory

belief in any belief set is accepted), or impose an ordering on the belief sets where higher

ranked sets trump lower ranked one where there is a dispute and aggregates otherwise.

When the “belief sets” are in fact large multi-topic knowledge representations,

then these three options generate either a minimal (consensus) or nigh-maximal (non-

disputatious) or maximal common, consistent (presuming each is self-consistent) repre-

sentation. But are any of these desirable? Certainly from the perspective of having a

consistent representation that contains some or most of the information in the original

representations, all three possibilities, properly conceived, deliver the goods. However,

consider the following three representations:

B1 = ∀.x(P(x, y)→ C(y)
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B2 = ∀.x(P(x, y)→ C(y)

B3 := P(a, b)

On the non-disputatious view, considering only the explicit formulae, the result is the

union of B1, B2, and B3. However, their union is inconsistent (since b is forced to be both

C and ¬C). Even if we consider non-disputatiously unioning their respective deductive

closures, we get an inconsistent set.

If one is only concerned with a particular topic, dealing with the whole of each

representation as such is wasteful at best unless they each are about that topic alone.

Intuitively, there is no need to reconcile parts of representations that do not bear upon

the current purpose. One may wish to defer such reconciliation for as long as possible if

only to avoid work if those parts are never used. Also, there is a discomfort in meddling

with parts of a representation which are not pertinent. It seems risky. Given that in

many logics axioms can have highly non-local effects — even discounting the effects of

contradictions — it is sensible to be conservative in the adaptations one makes. Of course,

if one is concerned with the amalgamated representation itself, then its entire rectification

is of concern (though, in a practical setting, one might chose to focus on certain bits

at a time, or to divide the labor between various experts). If one is merely trying to

reuse the representation in a particular context for a particular purpose, then there are

considerations driving a tighter focus. These task-specific considerations might conflict

with more general ones. In the above example, one might have a general preference for

one belief set over another based on the general reliability of the advocates for each.

However, the generally less reliable might be idiosyncratically highly reliable on certain

matters. Context sets certain parameters for the evaluation of repairs to the amalgam, and
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brings some criteria of relevance.

Again, considering only the problem of contradictions, we are led to consider rel-

evant logics. Presuming that the representation will be used as a data source to evaluate

queries against (given a suitable proof theory), then various relevant logics will, for each

query, be sensitive to only the relevant (given the signature of the queries) sentences in

the representation:

One of the fundamental ideas in relevance logic is to keep track of which

sentences are used in the derivation of other sentences. If a derivation of

sentence C is possible given sentence A, it does not follow that A relevantly

implies C, for A may not have played any role whatsoever in the proof of C.

One of the signs that a formula has played a role in the proof of another is if

they contain common notation. In many relevance logics, A implies C only

if there is a variable common to both A and C. This property allows the data

that are relevant for proving a given conclusion to be neatly circumscribed.

pg. 213[Garson, 1989]

Garson appeals to relevance logic and its circumscribing properties to character-

ize the partitioning of a (first-order) logical theory into what he calls logical modules.

His purpose is to increase the performance of reasoning by dividing the task among

domain-focused reasoners (perhaps with domain-tuned reasoning procedures), inspired

by [Fodor, 1983]’s vision of cognition as a collection of specialized modules. A logical

module has a number of features:

A sentence is correct (for [some global logic,] G) just in case it is provable
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in G from the global data. A sentence is provable in a module just in case

there is a proof of that sentence from the module’s data, using the module’s

inference rules. A module is locally consistent for the global logic G just in

case any sentence provable in a module is correct, and a module is locally

complete (for G) just in case every sentence in the module’s domain that is

correct is provable in the module. A module is logical (for G) just in case it

is both locally consistent and locally complete. A sentence is provable in a

reasoner just in case the sentence can be proven in the module that is selected

for it. pg. 210, [Garson, 1989]

The measure of adequacy of a logical module (and its associated reasoner) is the global

logic, G. For the purpose of reasoning, we want modular fragments of a knowledge rep-

resentation to encapsulate some aspect of the whole, in particular, enough so that we can

perform the reasoning task at hand. Ideally, we would be able to reason with the modular

fragment as if it were the whole. One could hope that this would improve efficiency of

reasoning, either by avoiding unnecessary work by permitting tuned subreasoners (e.g.,

[Amir and McIlraith, 2005]), or by allowing parallel reasoning.

However, modularization for reasoner performance is not, in itself, an especially

compelling application of modularization. From an automated reasoning perspective,

enormous strides have been made without modular segmentation of representations ex-

pressed in all sorts of logics, from propositional to full first-order logic. Even in program

optimization it is well known that whole program analysis [Allen, 1974] can dramatically

improve the performance of programs.
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In any case, when exploited for performance, modularity should be semantically

neutral. That is, qua optimization, exploiting modularity should not affect the meaning of

a representation (which is a problem for Garson’s account since he requires shifting from

first-order logic to a relevance logic).

For other tasks, modularity might play a more significant role. In particular it seems

possible that the effect of changes to a representation might vary depending on whether

one whises to respect the modular structure. As a limit case, one could imagine that the

only difference between modular and non-modular theory change would be performance.

That is, one could impose a constraint that the two forms of alteration should give the

same results. However, it is not at all clear that this can be, or even should be, the case.

The purpose of this thesis is to investigate modular, specifically topic oriented, re-

vision of knowledge representations.
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Chapter 2

Background & Preliminaries

In this chapter we present a brief overview of the basics of computationally oriented

belief revision.

2.1 Representations

While very little of the discussion in this thesis is specific to the revision of know-

ledge representations, it is strongly informed by such considerations. AGM style belief

revision theory is, by design, very general and intended to be a suitable framework for

informing investigations of change to psychological states, legal frameworks, books, or

group consensus. However, the particular application in mind certainly affects the fla-

vor of the discussion and the plausibility of various arguments. Ultimately, the results

of this thesis will be applied to working with knowledge representations (specifically,

those expressed in various description logics, i.e., fragments of first order logic). Thus, it

behooves us to consider knowledge representation formalisms.

2.1.1 Logic

While there have been many proposals for representing knowledge including se-

mantic nets [Collins and Quillian, 1969], frames systems [Minsky, 1974], programs and

procedures [McDermott, 1987], production rules [Buchanan and Shortliffe, 1985], and
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much more exotic mechanisms [Gärdenfors, 2000], by far the dominant approach has

been some sort of logic — typically a variant, subset, or extension of first order logic.1

First order logic has a lot of attractive properties for KR including being exceedingly well

understood ([McCarthy, 1958]). It is the standard example of a formalism with a model

theoretic semantics and various sound and complete inference systems.

It’s hard to overestimate the importance of these features. In the early history of KR,

there were many proposals for novel mechanisms for encoding representations. However,

these attempts were plagued by ambiguity, unclarity, and implementation dependence.

Ron Brachman, famously in [Brachman, 1983], identified 29 different senses of “is-a”

common in KR systems of the time, often without any explicit indication of which sense

was in force in any particular representation at any particular point.2 Frame systems

and semantic nets have, at least in their monotonic aspects, been replaced with descrip-

tion logics [Levesque and Brachman, 1987, Hayes, 1979], while the non-monotonic as-

pects have been dealt with by a variety of non-monotonic logics including circumscrip-

tion [Brewka and Augustin, 1987], logic programming [Kifer et al., 1995], default logic

1The three major extensions (or alternatives) are modal logic, higher order logic, and various flavors of

non-monotonic logic. Of the three, only the last tends to break key assumptions of belief revision theory.
2For example, [Kashyap and Borgida, 2003] describes an attempt to migrate the “Semantic Network”

(SN) portion (i.e., the knowledge portion) of the Unified Medical Language System to a description logic

based representation: “SN types, relationships and their hierarchies, as well as inverses have clear corre-

sponding OWL/DL constructs. However, there are serious difficulties in accurately capturing the semantics

of the SN, due both to the under-specified meaning of the notion of “link” between two semantic types, and

the somewhat unusual inferences/constraints that are associated with them in SN. ” See [Woods, 1975] for

a similar critique.
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[Baader and Hollunder, 1995] (but see [Horty, 1994] for a counter both to a logic transla-

tion account and for issues with using default logic), or other exotica [Thomason and Horty, 1989].

For our purposes, it is sufficient to note that, following [Gärdenfors, 1988], we only

consider logics which are propositionally complete, that is, contain propositional logic.

We use the following connectives ∨, ∧, ¬,→, and↔ with their conventional truth func-

tional readings of disjunction, conjunction, negation, material conditional, and material

biconditional. As common, we use uppercase letters, A . . . Z for atomic sentences. |=

indicates entailment and we shall generally allow both single sentences and sets of sen-

tences to appear on the left hand side as is convenient. We use Cn(X) operator to denote

the deductive closure of the set of sentences X (i.e., Cn(X) =de f {α|X |= α}). Addition-

ally, Sig(S ) denotes the set of non-logical vocabulary in the set or sentence S , i.e., the

signature.

2.1.2 Extra-Logical Aspects

A distinctive feature of KR formalisms which distinguishes them from the logics

that underlying them is that various non- or extra-logical aspects are critical aspects of

the language. For example, the gensym fallacy notwithstanding [McDermott, 1976], the

names used in a representation are often of critical importance to applications or to rep-

resentation developers. For KRs which underlie controlled vocabularies, the annotations

(i.e., textual or structural information associated with a term) are often the point of the rep-

resentation, with the logical aspects serving as an organization tool [Sioutos et al., 2007].

Similarly, various sorts of metadata such as author, modifier, source, or date changed may
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have a great deal of influence on how the representation is used or evolved. In some cases,

the underlying logic is made sensitive to such features (e.g., [Kifer and Subrahmanian, 1992])

but more often such features are outside the base formalism. In this thesis, we will ignore

those features entirely, except to note that where there is a choice of change operator it

may be that desirable operators are sensitive in specific ways to this extra-logical infor-

mation.

2.2 The Standard Operations and their Postulates3

The starting place for any account of theory, knowledge, or belief change is the

AGM4 theory originally propounded in [Alchourrón et al., 1985] and influentially elab-

orated in [Gärdenfors, 1988]. The AGM account (and AGM-like accounts) comprises a

model of the belief object, at least three transformation operators which go from the belief

object to other belief objects, and a set of axioms which constrain the behavior of those

operators. In standard AGM theory, the belief object is a belief set, that is, a set of propo-

sitions (formulae, sentences, what have you) which are closed under some (deductive)

consequence relation. In other words, for any set of sentences, T , Cn(T )5 is a belief set.

3The formulation of the postulates is taken primarily from Stanford Encyclopedia of Philosophy’s

article on belief revision, http://plato.stanford.edu/entries/logic-belief-revision/, and

[Gärdenfors, 1988]. The names for the postulates are mostly taken from the former. The discussion, while

standard, closely follows that in [Gärdenfors, 1988].
4Named after the prime movers, Alchourrón, Gärdenfors, and Makinson.
5One can parameterize the Cn operator by different consequence relations over (i.e., different semantics

for) the same set of sentences (e.g., Datalog under minimal model vs. first order semantics with respect

to existential queries [Horrocks et al., 2005]). In this thesis, the consequence relation is generally truth-
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All of the operators take, as arguments, a belief set and an input (i.e., a new sentence) and

return a modified belief set.

In AGM theory, the primary (at least, in the sense of first) presentation of the three

operations is given as a set of postulates held to be true of any rational version of the op-

erator. In the case of expansion, the postulates determine a univocal operational definition

of the operator. However, for contraction and revision (which are interdefinable) this is

not the case. The set of rational operators are (standardly) equivalently characterized in

terms of a variety of other mechanisms (including operational). By their equivalents and

the lack of any intuitive additional constraining abstract factors, the various accounts lend

plausibility to each other.

2.2.0.1 Expansion (+)

Expansion is the operation of adding new beliefs to one’s belief set. The addition

is uncritical in the sense that nothing is removed in response to the input, even if the

input contradicts the original belief set. Thus, expansion is simply the closure of the set

theoretic union of the belief set and the input. Nevertheless, we can give a set of postulates

that characterize this operator more abstractly:

E1 Closure: T + α = Cn(T + α)

E2 Success: α ∈ T + α

E3 Inclusion: T ⊆ T + α

E4 Vacuity: If α ∈ T , then T + α = T

E5 Monotonicity: If T ⊆ T ′, then T + α ⊆ T ′ + α

E6 Minimality: T + α is the smallest belief set that satisfies E1-E5.

functional propositional logic.
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If the input is not in conflict with the belief set, then expansion is sensible. When it

is in conflict, i.e., when ¬α ∈ T and the input is α, then expansion trivializes the belief set

by making it inconsistent. By Closure, expanding by a conflicting input adds every legal

sentence of the language to the belief set.

Expansion to the entire language is not rational (not even in a paraconsistent view,

since, after all, paraconsistent logicians argue that contradictions are not trivializing), thus

expansion only makes sense when there is no conflict between the belief set and the input.

2.2.0.2 Contraction (−)

Contraction is a far more interesting operation on belief sets. Contraction is the

operation of removing an input belief from one’s belief set. It is thus the reciprocal (in

some sense) of expansion. Unlike expansion, contraction is complex in several ways, but

first let’s examine the “core” postulates:

C1 Closure: T − α = Cn(T − α)

C2 Inclusion: T − α ⊆ T

C3 Vacuity: If α < Cn(T ), then T − α = T

C4 Success: If α < Cn(∅), then α < Cn(T − α)

C5 Recovery: T ⊆ (T − α) + α

C6 Extensionality: If α↔ β ∈ Cn(∅), then T − α = T − β

Closure, Inclusion, Vacuity, and Success straightforwardly parallel their expansion

counterparts, at least in the formulation. If we consider Closure, it’s clear that we cannot

use set theoretic removal as a contraction operator. This fact is easy to illustrate:

Example 1. Let T = Cn(P ∧ Q). Consider T ′ = T \ P. Clearly P ∧ Q ∈ T ′. Thus, when
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we take the Cn of T ′ to satisfy closure, we reintroduce P since P ∧ Q |= P. Thus, \ is not

an AGM rational contraction operator, as it violates Inclusion.

As a consequence of the need to cope with entailment, not only can we not rely

on simple set theoretic operators plus Cn, but there is no single, logically non-arbitrary

operator that is determined by the postulates. This follows from the fact that there will

often be multiple ways of breaking an entailment from a belief set. Thus, there is often

the possibility of choice.

This fact is easier to see if we consider operationally based accounts (or, following,

[Gärdenfors, 1988] “constructions”) of contraction operators. The core tool for defining

contraction operators is the notion of a maximal non-entailing subset, aka, a remainder:

Definition 1. For a belief set, T , and a sentence, α, the remainders of T given α, T⊥α are

all sets, t, such that:

1. t ⊆ T
2. t 6|= α

3. there is no t′ ⊆ T such that t ⊂ t′ and t′ 6|= α.

If we take the set of remainders for the negation of some input, i.e., T⊥α, it is easy

to see that the closure of any particular remainder will be a non-trivial belief set and,

furthermore, than such an operator (i.e., one that creates a contracted belief set by picking

the closure of one of the remainders as the output) will conform to the core postulates.

Such operators are called maxichoice operators. They are “maximal” in exactly the sense

that there are no more sentences in T that could be added to T−maxi and still have Success.

Of course, since T⊥α can have a cardinality greater than one, merely being maxichoice

is not sufficient to determine a unique operator.
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The problem with maxichoice contraction is that the outputs are too large. Consider

a simple example:

Example 2. Let T = Cn(P ∧ Q). Clearly, P ∨ Q is an element of T as is P ∨ ¬Q. Now,

consider t ∈ T⊥P. It is either the case that

1. {Q, P ∨ Q} ⊆ t and P ∨ ¬Q < t (since {P ∨ ¬Q,Q} |= P), or

2. {P ∨ ¬Q} ⊆ t while Q < t and P ∨ Q < t (since, additionally,{P ∨ ¬Q ∨ Q} |= P ).

So, every remainder contains either P ∨ Q or P ∨ ¬Q (though not both).

Given this face, if we expand by the negation of the contracted input (which defines

revision, see section 2.2.0.3), we end up with a maximal belief set, that is, one where for

every sentence the belief set contains either that sentence or its negation. This is a rather

surprising and counterintuitive result, so maxichoice contraction is generally considered

to be an inappropriate operator. Of course, one might instead take the intersection of all

the remainders, that is, be more cautious in one’s commitment and thus more ruthless in

one’s pruning. Such a contraction operator yields full meet contraction. Full meet contrac-

tion has the additional attractive property that it does determine a univocal operator—no

choice involved. Unfortunately, full meet contraction is too ruthless and thus its results

are too small:

Example 3. Let T = Cn(P ∧ Q). Clearly, P ∨ Q is an element of T as is P ∨ ¬Q. Now,

consider t ∈ T⊥P. It is either the case that

1. {Q, P ∨ Q} ⊆ t and P ∨ ¬Q < t (since {P ∨ ¬Q,Q} |= P), or

2. {P∨¬Q} ⊆ t while Q < t and P∨Q < t (since, additionally,{P∨¬Q, P∨Q} |= P ).
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So, there is always at least one remainder which does not contain one of {Q, P ∨ Q, P ∨

¬Q}. Thus, T− f ull P will not contain any of those sentences, or, indeed, any other sentence

that follows from P or from Q. In fact, T − f ull P will only contain sentences such as ¬P∨Q

which follow from ¬P alone.

When combined with the expansion by 6 P we end up with a revision that replaces

the entire belief set with the input. While that may sometimes be desirable, it’s clearly

not a generally rational operator.

The middle ground operator, that is, that which takes a distinguished subset of the

remainders and intersects them, yields partial meet contraction which avoids both the too

much and the too little problem. One cost, as with maxichoice contraction, is that we

do not have a purely logical determination of a rational contraction operation. Distinct

partial meet contraction operators are generated by a variety of remainder selection mech-

anisms, most prominently by priority orderings on remainders. Such orderings are called

epistemic entrenchment relations.6

If a selection function is defined in terms of an ordering over (all possible) re-

mainders, then it is a relational selection function and generates a relational partial meet

contraction operator. If the relation is transitive as well, then the generated operator is a

transitively relational partial meet contraction operator. These two conditions on selec-

tion functions are significant not just for their naturalness, but because they correspond to

6Entrenchment can be defined over remainders or over sentences (for the latter, see 3.4 of

[Gärdenfors, 1988]. While entrenchment orderings over sentences are more natural, they do not change

anything essential about the operators. Since orderings on remainders are more convenient for the purposes

of this thesis, we shall stick with them.
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two additional postulates on contraction, the so-called supplementary postulates:

C7 Conjunctive Overlap: (T − α) ∩ (T − β) ⊆ T − (α ∧ β)

C8 Conjunctive Inclusion: If α < T − (α ∧ β), then T − (α ∧ β) ⊆ T − α

While generally less well regarded as the core postulates, both have some intuitive appeal.

Conjunctive Overlap states that revising by both conjuncts of a conjunction is stronger

than revising by the conjunction itself.7 This seems fairly reasonable as the Success of

T − (α ∧ β) is ensured by either (T − α) or (T − β). Similarly, Conjunctive Inclusion

observes that if contracting by a conjunction doesn’t contain one of the conjuncts then

revising by that conjunct is (equal to or) larger than revising by the conjunction.

What is striking, however, is that the core postulates plus Conjunctive Overlap de-

scribe exactly the set of relational partial meet operators, and the full set of postulates

describe transitively relational partial meet operators. That is, if a contraction operator

is a relational (resp. transitively relational) partial meet operator, then it satisfies C1-C7

(resp. C1-C8). Furthermore, any operator which satisfies C1-C7 (resp. C1-C8) is (or is

equivalent to) a relational (resp. transitively relational) partial meet contraction operator.

Since relational and transitively relational entrenchment are rather intuitive, they lend a

great deal of plausibility to the corresponding postulates.

2.2.0.3 Interdefinability of contraction and revision

As discussed in the prior section, we can think of revision as a process of contraction

then expansion. This reduction is called the Levi identity:
7Technically, the intersection is critical, since it does not give us an iterated contraction, such as (T −

α) − β. However, this does affect the key point.
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Definition 2 (Levi Identity). T ∗ α =de f (T − ¬α) + α

From the Levi identity we can show that if the plain expansion of target belief

set (by a non-self-contradictory input) does not produce a contradictory belief set, then

that revision reduces to plain expansion. This immediately follows from the Vacuity of

contraction. Indeed, the postulates for revision, given the Levi identity, can be (mostly)

straightforwardly derived from the postulates for contraction and expansion. These facts,

and our current presentation suggest that contraction is somehow more fundamental than

revision. (And, indeed, many authors take it to be so.) However, contraction is equally

definable in terms of revision:

Definition 3 (Harper Identity). T − α =de f (T ∗ ¬α) ∩ T

The Harper identity is less intuitive than the Levi identity (which seems to be a

straightforward application of contraction and expansion!), but the idea is that revising by

¬α must remove everything that entails α (on pain of contradiction). If we then intersect

the revision with the original belief set, we remove everything that entails ¬α, which, of

course, could not be in the original belief set (again on pain of contradiction, unless the

original belief set did not contain α).

While the “direct” intuitions favor the Levi identity (and thus contraction as fun-

damental), we saw in section 2.2.0.2 that the problems with maxichoice and full meet

contraction are much starker when considering their effects on revision. We might be

able to fool ourselves into believing that the results of maxichoice or full meet contrac-

tion are sensible taken on their own terms, but certainly not when considering whether it

is rational to always generate a maximal belief set or an obliterating belief set.
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2.2.0.4 Revision (∗)

With the connection to contraction well in hand, we are ready to consider the core

postulates for revision:

R1 Closure: T ∗ α = Cn(T ∗ α)
R2 Success: α ∈ T ∗ α

R3 Inclusion: T ∗ α ⊆ T + α

R4 Vacuity: If ¬α < T , then T ∗ α = T + α.
R5 Consistency: T ∗ α is consistent if α is consistent.
R6 Extensionality: If (α↔ β) ∈ Cn(∅), then T ∗ α = T ∗ β.

As well as the supplementary postulates:

R7 Superexpansion: T ∗ (α ∧ β) ⊆ (T ∗ α) + β

R8 Subexpansion: If ¬β < Cn(T ∗ α), then (T ∗ α) + β ⊆ T ∗ (α ∧ β).

Let’s consider the basic idea of revision. We want to add a new belief to a belief

set but cannot just expand by that belief since it results in a contradiction. Following this,

Closure, Success, Inclusion and Vacuity are clearly desirable properties. Consistency is

what distinguishes revision from expansion and Extensionality is common to all opera-

tors. The supplementary postulates are less obvious, even less than the corresponding

contraction postulates. We should note that Superexpansion relies on the possible incon-

sistency of an expansion to cover the case where the reason that T + (α∧β) is inconsistent

is that T + β is inconsistent.

In the light of the Levi identity, we can construct maxichoice, full meet, and partial

meet revision operators, with maxichoice always yielding a maximal theory and T ∗ f ullα =

Cn(α). Thus, just as with contraction, we generally only attend to partial meet revision

operators.
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The selection function of partial meet revision operators may be, via the Levi iden-

tity, defined in terms of various epistemic entrenchment relations with similar conse-

quences: revision operators satisfy R1-R7 iff they are relational partial meet revision

operators and satisfy R1-R8 iff they are transitively relational partial meet operators.

There have been many additions, alterations, alternatives, criticisms, etc. of stan-

dard AGM theory, but it remains the critical starting point for any discussion of theory

change.
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Chapter 3

Trivial Revision, Splitting Theories, and Parallel Interpolation

Classic AGM belief revision, and a good deal of subsequent work in the field, fo-

cuses on the revision of monolithic belief systems. The object of addition, contraction,

revision, or update is the entire system (whether it is a belief set, belief base, or some

other structure) and only a single system. In the standard idealization, the operators act

without regard for relationships between belief systems. It is certainly worth investigating

the relationship between distinct belief systems, for example, how addition in one belief

system (my own) might relate to changes in another (a friend of mine). This may be as

simple as updating my friend’s beliefs when mine change. After all, my friend has be-

liefs about my beliefs. If my beliefs change, it is a change to the world and to the part

of the world my friend has beliefs about. So this change to the world might fruitfully be

modeled as an update. However, it is also plausible to see my friend and me as sharing

beliefs, so that a change to this shared portion is just a revision (or simple addition) to our

common store.

Similarly, we can consider belief systems that have significant substructure and

want the revision operators to be sensitive to that structure. After all, we rarely make a

change to our own beliefs as a whole, or wait for fully worked out equilibrium before

considering additional changes. For example, when one edits a textbook, it is hard not to

notice that some changes are confined to certain portions of a book because they are only
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relevant to the topic of some specific chapter. Other changes may require touching every

part of the book. But some changes are inherently local.

Even the most hard-core justification holist or coherentist must admit to there being

some sorts of structure in a belief set. For example, this is at the heart of the need to deal

with trivializing contradictions in classical settings. The AGM revision postulates, as is

well known, do not uniquely determine a revision operator. Instead, one must also choose

an appropriate selection function over the remainders of a theory given a contradicting

new belief in order fix the revision function. Standard AGM puts the priorities between

elements of a belief set outside the belief set as if those considerations were extra-logical.

However, this independence of priority and logical structure is not characteristic of

many forms of revision. Sometimes, logical structure matters. In particular, some parts

of a belief set are more strongly interrelated than others. That is, belief sets may cover

a range of topics and these topics may be strongly internally coherent with at best weak

connections to various other topics. In disputation (or even ordinary conversation) it is

commonplace to require disputants to “stay on topic”. One risks fallacy if one tries to

critique an argument by appealing to the lunacy of an opponent’s beliefs in a entirely un-

related area. Forcing them to retract the unrelated belief, even for the sake of argument,

should have little effect on the topic at hand. Of course, there is a rather large ceteris

paribus clause: all other things being equal, lunacy in any area can cast doubt on other-

wise unsupported beliefs. For example, testimony grounded primarily in the credibility

of a witness can be weakened by evidence that the witness has verifiable false beliefs in

other areas.

Staying on topic does not mean, in general, staying very narrowly on point, e.g.,
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only appealing to facts that support a particular conclusion. What is germane to a discus-

sion is subject to a wide variety of considerations, including methodological considera-

tions, larger epistemic goals, and dialectical principles. An obvious example is if one is

trying to learn what one’s interlocutor knows about that topic.

In [Parikh, 1999], Rohit Parikh proposed an intuitively appealing approach to topic

relevance and belief revision: revision should apply to the smallest relevant subset of the

theory that can be “split” from the parent theory. Roughly, relevance is determined by

whether the fragment and the input formulae have intersecting signatures, that is, whether

they share basic vocabulary. What makes a fragment separable is that its signature is

disjoint from the rest of the theory. For example, if we have a theory with sentences

which mention great apes and other sentences which mention paper pulp, but there are no

sentences which mention both great apes and paper pulp, then we could hope that these

topics and their associated sentences could be separated into disjoint subtheories. 1

Parikh justifies his approach in three ways:

1. He offers a rationality critique of the standard AGM revision postulates, to wit, that

they sanction trivializing revision operators. Such operators necessarily destroy

information that is (topic) unrelated to the new belief.

2. Since the portion of a belief set that is (topic) relevant to the new belief can be

smaller than the entire belief set, it is possible that topic-oriented revision is (com-

1Obviously, this disjointness needs to be made precise since in first order logic, it is easy to find sen-

tences that trivially bring signatures together. Thus, if a belief set contains the sentence “Turtles are not

great apes”, then it will also contain the sentence “Turtles are not great apes or paper pulp is used to make

paper.” See section 3.2 for a lengthy discussion.
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putationally) easier than standard revision.

3. Finally, Parikh claims that split-based revision corresponds to (most) actual revi-

sion, and thus is more realistic.

The first and third considerations are related and in tension. AGM theory is an

idealization and, as such, when testing it against practice or against intuition, we must

be careful not to import features that are irrelevant to the idealized context. That is, if

we are trying to determine what is “fully” rational by asking what an ideal agent free

of resource constraints would do, it doesn’t make sense, in the same breath, to require

said agent to adhere to rubrics we impose on resource-bound agents. Requiring such

rubrics inverts the idealization method. We idealize in order to help justify the rationality

of resource-bound principles as either (the best, or the most feasible) approximations of

the ideal ones, or, thinking consequentially, as most likely to reliably lead to (at least,

reasonable approximations of) the ideal outcomes. This picture can be made consider-

ably more complicated. For example, instead of measuring the rationality of principles

designed to guide resource-constrained (or actual!) agents solely by how closely they

approximate the principles guiding an ideal agent, we could claim that at least some of

the resource-sensitive principles are independently rational. This need not entail rejection

of ideal agent methodology, though, obviously, the more situated the rationality consid-

erations, the more indirect the connection to ideal agents. Furthermore, there are many

ways of getting away from approximation; for example, one could justify the rationality

of resource-sensitive principles by showing that they are principles that an ideal agent

would advise us to adopt in the given situation.

26



Since we are, ourselves, not ideal agents, we have to make some judgments about

what should be preserved in the ideal context. If the only reason that we engage in, or

find natural, topic sensitive revision is that it is computationally easier, then there is not a

strong case that it is a core aspect of rational revision, simply because we could discard it

if we had unlimited resources. On the other hand, we might regard some computational

boundaries as more inherent. To pick the most obvious example, we might treat decid-

able problems, semi-decidable problems, and undecidable problems as corresponding to

different sorts of idealized agents: e.g., agents working with arbitrary finite resources or

agents working with arbitrary and infinite resources. Most of the time when reasoning

about algorithms and programs we do confine ourselves to computable functions (i.e., to

universal Turing machines) as the natural ideal agent even though we know that all our

realizations of programs will be quite sharply bounded in time and space. (Clearly, there

are many situations where we want to have those bounds firmly in mind, especially when

faced with large effects due to, e.g., the kind of space — registers, cache, main memory,

or disk — we’re dealing with. When trying to empirically evaluate an algorithm with cer-

tain theoretical complexity properties, we have to take care that our abstraction from the

physical situation doesn’t obscure confounding factors.) It is plausible to appeal to actual

practice and intuitiveness when formulating rationality criteria as a buttressing argument.

All things being equal, a model of rationality that comports well with what real agents

can do and recommend is superior since it requires less departure from actual norms and

thus less of an explanatory gap between what we believe ought to, ideally, guide us and

what works.

One way to distinguish the rationality argument from the naturalness argument is
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in what they recommend. A strong enough rationality point can directly require a change

to the revision postulates themselves (which is what Parikh argues). In other words, ra-

tionality determines a set of permissible revision operators. Assuming we accept the

postulates, naturalness can help us select which rational operator to use. If the set of

rational operators contains some natural (or actual) ones, this buttresses the correctness

of the postulates. Conversely, if no natural operator is sanctioned by the postulates, we

have to either adjust the postulates or have an explanation for why the natural operators

are irrational. Such explanations range from an approximation account (wherein natural

revision operators compromise on rationality to some degree for a variety of historical,

evolutionary, or resource determined reasons) to a full blown error theory a la Mackie

[Mackie, 1977]. After all, people may simply be systematically irrational. People are

certainly quite bad at all sorts of reasoning.

However, we must take care not to go too psychologistic. People might be quite

bad at adhering to various rational norms, but rationality is, in the name, a norm for

and of people. Naturalness of a revision operator is not merely a matter of whether the

operator is psychologically realistic, something which most people would not be able

to assess. A natural revision operator is one that is recognizably related to our general

practice of assessing rationality both theoretically and in practice. In particular, we must

be persuadable that the sanctioned operators are reasonable for us to adopt (at least as

ideals).

As we will see, the direct rationality case Parikh makes (which dominates his argu-

ment) is weak, so we will need to revisit and expand the other arguments.
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3.1 The Problem of Trivial Revision

Parikh’s critique of the standard AGM postulates is that that they are consistent with

trivial revision. Parikh defines the trivial revision2 operator as follows:

If [a formula] A is consistent with [a belief set] T , then T ∗ A = T + A,

otherwise T ∗ A = [Cn](A). [Parikh, 1999]

In other words, a trivial revision, in case of conflict, is simply the replacement of the

revised belief set with the new information. It is certainly the case that such a revision

operator is consistent with the core AGM postulates for revision. Furthermore, the risk of

such a revision operator well known in the literature. For example, consider the discussion

of full meet contraction in [Alchourrón et al., 1985]:

[I]t is tempting to try the [contraction] operation A ∼ x defined as
⋂

(A⊥x)

when A⊥x is nonempty, and as A itself in the limiting case that A⊥x is empty.

But as is shown in Observation 2.1 of [2], this set is in general far too small.

In particular, when A is a theory which x ∈ A, then A ∼ x = A∩Cn(¬x). And

thus, as noted in Observation 2.2 of [2], if revision is introduced as usual via

the Levi identity as Cn((A ∼ ¬x)∪ {x}), it reduces to Cn((A∩Cn(x))∪ {x}) =

Cn(x) for any theory A and proposition x inconsistent with A. In other words,

if we revise a theory A in this way to bring in a proposition x inconsistent

with A, we get no more than the set of consequences of x considered alone

2Parikh actually calls this trivial update, but I prefer to maintain the distinction between revision and

update a la [Katsuno and Mendelzon, 1991].
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— a set which is far too small in general to represent the result of an intuitive

process of revision of A so as to bring in x.

The locus classicus of the standard AGM postulates acknowledges that the trivial

revision operator is permitted by the core revision postulates, but instead of modifying the

postulates, it mobilizes the intuitive irrationality of trivial revision as a justification of par-

tial meet contraction (and yet, partial meet contraction contains trivial revision as a limit

case). The standard development is repeated several times (e.g., see [Gärdenfors, 1988]):

1. Argue for the core contraction postulates.

2. Note that contraction postulates do not uniquely determine an operator (unlike ex-

pansion).

3. Explicate the remainder operation

4. Consider in turn maxichoice (too big), full meet (too small), and partial meet con-

traction (what’s left, and a generalization of the other two).3

5. Show how to generate sensible partial meet contraction operators using epistemic

entrenchment.

In this dialectic, that the core postulates alone do not rule out trivial revision (or

revision that always results in a complete theory independently of whether the original

belief set was complete) is not a problem with the postulates. Obviously, in general, other

considerations are required to narrow down contraction. A choice must be made. Partial

3This Goldilocks story is repeated several times in the literature.
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meet contraction locates this choice in the selection function — if your selection func-

tion returns, at best, a singleton, then you have maxichoice contraction; if your selection

function returns all the remainders, then you have full meet contraction. These form the

upper and lower bounds of rational contraction operators, though they are not, typically,

themselves sensible. Of course, there are specific cases where a given, sensible selection

function intersects with a maxichoice or a full meet selection function, at least, for some

particular pair of theory and proposed revision. One must be careful to distinguish be-

tween the odd trivial (or maximizing) revision, and a revision operator that does nothing

but trivial (or maximizing) revisions. But there are lots of selection functions of dubious

rationality. For example, instead of returning the maximally entrenched (according to

some entrenchment relation) elements of A⊥x, a selection might return a random subset.

Obviously, such a contraction operator can be critiqued for being somewhat arbitrary and

for ignoring critical information about A⊥x. It seems a bit much to expect the postulates

alone to rule out such an operator, along with an arbitrary number of similar ones. At

least, it’s hard to see why new postulates are required, instead of a simple discussion of

selection functions.

Perhaps more importantly, while the general irrationality of this example is plau-

sible, it also seems to be the case that it is sometimes sensible. For example, if one is

concerned that a given entrenchment relation is biased or otherwise problematic, a ran-

dom selection function might be more reliable overall. Similarly, there could be contexts

where a trivial or a maximizing revision operator was sensible. In general, one could

regard the postulates as giving necessary conditions for rational operators, not sufficient

ones. Indeed, as AGM theory aims to be a fairly general account of revision (useful
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for modeling anything from people changing their mind, to communities evaluating legal

changes) we should expect and prefer it to err on the side of liberality.

Before delving into the rationality of trivial revision, we shall examine Parikh’s

approach to restricting it. It is curious that maximizing revision receives no consideration

from Parikh, especially since the lack of rationality of maxichoice is given equal attention

in the literature.

Perhaps maxichoice is not as intuitively or severely irrational to him. It certainly

is odd and odd in a symmetric way to full meet. Maxichoice revision has the bizarre

consequence that every revision is a complete theory (that is, for every formula φ, it

includes either φ or ¬φ. For Parikh the core motivation is avoiding the loss of unrelated

information:

The existing set of beliefs T may contain information about various matters.

E.g. my current state of beliefs contains beliefs about the location of my

children, the state of health of my teeth, and beliefs about the forthcoming

election in India. In case one of my beliefs about the location of my children

turns out to be false, it surely ought not to affect my beliefs about the election,

since the subject matters of the two beliefs do not interact in any way.

Thus, for Parikh, the problem of trivial revision is specifically a problem of topic

relevance. That is, it is the lack of interaction — that is, the disjointness — of the subject

matters of the beliefs that is key. However, this does not explain the neglect of maxichoice

revision. Presumably, adding information about irrelevant topics is as bad as removing

some.
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3.2 Splitting Theories

One obvious tactic for modeling this disjointness would be to partition the belief set

into disjoint subsets. However, there are a number of problems with this move. Consider

the case of the belief set, T = Cn({P,Q}). Clearly, there is at least one partitioning of T

into two parts, T1 and T2 such that P ∈ T1 and Q ∈ T2. But since T1 and T2 partition

T , they must be disjoint. But then it is unclear where to put P ∨ Q or P ∧ Q, both of

which are elements of T . Clearly, there are (at least) four distinct (families of) partitions

with regard to these two compound formulae (depending on where we put the disjunction

and conjunction). The elements of the partitions cannot be both disjoint and deductively

closed themselves (since adjunction will have to be blocked in one of them), and there is

an unsettling arbitrariness to the division. In particular, it is hard to say that the partition

divides the formulae of T into sets of formulae which do not interact with formulae

in another partition. Obviously, there are inferential relations that can cross partitions.

Indeed, for any partitioning of a deductively closed set into more than one partition, there

will be formulae in some partition that are entailed by formulae in a distinct partition (and

thus in the deductive closure of that partition).

First, if we consider tautologies, then it is trivial, since any tautology is entailed by

an empty set of formulae (and given that our formalism is monotonic), then no matter

which element of the partition a particular tautology goes in, it will be entailed by each

formula in all the other elements. Second, if the belief set is inconsistent, then since it

contains all formulae, it will contain the self contraction P ∧ ¬P, and no matter which

element we put that in, it will entail all the other formulae, thus some formula in another
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element. But perhaps these are cheats, since tautologies do not really have a subject matter

at all and standard AGM revision presumes consistent belief sets (by and large).

Third, suppose you have a partition of the contingent formulae of a consistent T ,

{T1 . . . Tn}. Let Ti be an element of the partition such that for all fi ∈ Ti, there is no

f j ∈ T j (for any j , i) such that f j |= fi. ( fi ∨ f j) ∈ T since fi ∈ T and T is deductively

closed. Suppose ( fi ∨ f j) ∈ Ti. Then, since f j |= ( fi ∨ f j), there is at least one element

of the partition (namely, Ti) which contains a formula entailed by a formula in a distinct

element. If ( fi ∨ f j) < Ti, then it is in some other element of the partition (since the

partition is exhaustive), say T j. But then T j contains a formula entailed by a formula in a

distinct element.

Just partitioning the formulae, even neglecting the tautologies, fails to yield a non-

inferentially-interacting partition. If we consider again the initial example where T =

Cn({P,Q}), it is clear that some formulae interact directly (e.g., P |= (P∨Q), Q |= (P∨Q))

and some interact only indirectly (e.g., P 6|= Q and Q 6|= P, but {P,Q} |= (P ∧ Q)). For

example, formulae which are either an atomic letter or the negation of an atomic letter

(i.e., the literals) do not directly interact with literals with a different atomic letter (that

is, with literals with a different signature) but require some other formula to mediate their

interaction. This follows fairly quickly from Craig’s Interpolation. In any consistent T ,

for any pair of complementary literals (e.g., {A,¬A}) only one can be an element of T .

Literals fix the basic facts about the world, and sets of literals could be thought of as a

subject matter. Some belief sets follow from a set of (consistent) literals alone, obviously,

such as Cn({P,Q}) or Cn({P, (Q ∧ R)}), but some do not, such as Cn({P, (Q ∨ R)}). In the

latter case, the set Cn({P, (Q∨R)} entails neither Q nor R, and is not entailed by {P,Q,R}.
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These points lead naturally to Parikh’s splitting methodology. Instead of literals, per

se, he first partitions the signature4 of the logic (or simply of the belief set in question).

In the propositional case, a partition will be a set of pairwise disjoint sets of propositional

variables. A partition splits a belief set (aka theory) T if we can find formulae in T

whose signatures each are subsets of a distinct element of the partition and those formulae,

together, entail T . More formally:

Definition 4. (From [Parikh, 1999]:) For a theory T with a signature S , a partition of S ,

{S 1, . . . , S n} splits T if T = Cn(A1, . . . , An) and for all i, formula Ai is in S i. The partition

is a splitting, or, more specifically, a T-splitting.

It is possible for Cn(A1) . . . Cn(An), even excluding tautologies, to have non-empty

intersections. Indeed, if the consequences are with regard to the entire signature of T ,

then they must have non-empty intersections (since for each element in some Cn(Ai),

one can always form a disjunction with some element of Cn(A j) where j , i). But,

if Cn(Ai) defined over the signature of Ai, which is disjoint with that of every other

A j, then Cn(Ai) . . . Cn(An), excluding tautologies5, will all be likewise disjoint. Thus,⋃
({Cn(Ai), . . . ,Cn(An)}) ⊂ Cn(A1, . . . , An) = T .

It seems that Parikh’s notion of a splitting does fit in with the idea that there may

be distinct subject matters in a theory which are in some way independent. For a belief

4Parikh calls them “languages” in [Parikh, 1999], but that is a bit confusing since “languages” seem

more naturally, in this context, to refer to the set of well formed formulae of a grammar with regard to a

specific signature.
5Though, again, if the tautologies are expressed only in the signature of Ai, they will be disjoint from

the tautologies of the other partitions.
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set, we can capture all the significant beliefs with regard to a subject matter (that is, a

signature) if we find beliefs which generate all the other beliefs about nothing but that

subject matter. The generating set of beliefs then, themselves, can be divided according

to their (joint) signatures. There will be quite a few cross cutting beliefs which are part

of the theory but not part of any of these generated sets. These “extra” beliefs are not free

standing in the sense that they are required in order to capture aspects of the totality of

the theory. That is, we can create a generating base for the entire theory without having

to incorporate these formulae or any formula which has an identical signature. This is

exactly the sense in which they are extra...they are not required in order to completely

characterize the theory’s commitments to a (disjoint) topic.

Alone, this might not make for a compelling purely logical model of subject matter

or “topic”. In general, there are many ways to split a belief set. Consider the following

example:

Example 4. Let A =‘Roses are red’; B =‘Violets are blue’, C =‘Sugar is sweet’.

Let T = Cn(A ∧ B ∧C).

The sets {{A, B}, {C}}, {{A,C}, {B}}, {{B,C}, {A}}, and {{A}, {B}, {C}} all split T (e.g.,

as Cn(A ∧ B,C), Cn(A ∧C, B), etc. respectively).

Intuitively, {{A, B}, {C}} seems more naturally topic oriented than the others, but

only because of external information that roses and violets are flowers and red and blue

are colors. These connections are, of course, opaque to the representation, thus provide

no purely logical grounds for preferring the {{A, B}, {C}} split over the others.

Fortunately, there is a purely structural criterion that distinguishes splittings: the
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granularity of the splitting. In example 4, some splittings are not maximal, that is, there

is another splitting which, in Parikh’s terminology, refines those splittings. {{A}, {B}, {C}}

refines {{A, B}, {C}} because some element of the latter (i.e., {A, B}) can be further sub-

divided into (disjoint) elements of the former (i.e., {A} and {B}), and both are splittings

of T . Parikh establishes (for the propositional, finite signature case) that there is always

a unique finest splitting. The elements of such a splitting cannot be further subdivided

while remaining a splitting.

Example 5. Let A =‘Roses are red’; B =‘Violets are blue’, C =‘Sugar is sweet’.

Let T = Cn((A∨ B)∧C). The set {{A, B}, {C}} splits T and it is the unique maximal

splitting. It is also the sole splitting (other than the identity splitting).

Let us pause for a moment to recognize that the fact of there always being a unique

finest splitting is rather a striking one. Even recognizing that a finest splitting might

be, in some sense, too fine (as in example 4, where the content of A and B, against

our general background knowledge suggests co-topicality), the univocality is compelling.

The elements of a finest splitting cannot be further split. They are logically cohesive.

The flip side of their cohesion is their separability from other elements of the splitting.

While there will be formulae in a belief set T that are only entailed (and thus only in

T ) by the combination of several of the splitting formulae, the key point is that to prove

them, you do not need formulae whose signature intersects the signature of more than one

element in the finest splitting. That is, there are no required formulae which essentially

span elements of the finest splitting. The “extra” formulae of the finest splitting are, in

principle, inherently extra. The splitting isolates the way basic vocabulary is used in the
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belief set. (In section 3.3, this point is highlighted in Kourousias and Makinson’s notion

of parallel interpolation.)

These two components are critical to the splitting account of topicality. Any split-

ting separates parts of the signature and it certainly seems that separability is necessary

for non-topicality. If you can separate two terms of the signature and preserve the theory,

then the theory does not rely on any connection between those terms. Finest of granularity

takes that further: if the theory doesn’t rely on a connection between two terms, then they

should be separated. If there were multiple distinct finest splitting, then (logical) topi-

cality would be indeterminate: it would depend on some extra logical choices one made.

Univocality of the finest splitting tells us that there is a purely logical topic structure in all

theories.

To tie this back to revision, Parikh proposes to use splitting to rule out trivial re-

vision. Intuitively, what’s wrong with trivial revision is that it touches irrelevant parts of

the belief set. “Irrelevance” is characterized by disjointness of signature. If the signature

of an element of a splitting does not intersect with the incoming formula, the revision

operator should not affect formulae entailed by the characteristic formula of that element

alone. If T = Cn(A, B) where A and B are respectively expressed in the signature of

a finest splitting of T , {TA,TB}, then, where Sig(α) ∩ TA = ∅, Cn(A) ⊆ T ∗ α. Parikh

expresses this as an additional revision axiom to the core AGM axioms:

Axiom P. (From [Parikh, 1999]:) Let T be split by S T = {S 1, . . . , S n} and let C be an

arbitrary formula. Let S C =
⋃

({S ∈ S T | Sig(C) ∩ S , ∅}). Let S FT = {S F1, . . . , S Fn}

be formulae such that T = Cn(S F1, . . . , S Fn) and Sig(S Fi) ⊆ S i for all 1 ≤ i ≤ n. Let
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S FC = {S F ∈ S FT | Sig(S F) ∩ S C , ∅}.

Then T ∗ C = (Cn(S FC) ∗i C) + ({S F1, . . . , S Fn} \ S FC), where ∗i is the update

operator for Li.

Essentially, Axiom P states that actual revision must be performed only on the com-

ponents of the split theory that are related, by their signature, to the input formula.

It is easy to see that Axiom P blocks triviality in many cases. Even if ∗i itself is

trivializing, it will only affect Ai, leaving the rest of the theory intact. In fact, it is fairly

plausible to make ∗i trivializing in many circumstances, especially if the splitting is very

fine: Upon receiving new information about a topic that contradicts current beliefs on

that topic, one might find oneself rejecting all of one’s prior beliefs on that topic on the

grounds that if one is wrong on that point, perhaps one is not trustworthy on that topic at

all. Similarly, if there are several ways to resolve the contradiction, one might not feel in

a position to determine which is the correct resolution. It may be reasonable to suspend

judgment on those matters until one can perform a more systematic review of that subject

area. (We shall take up this point below.) Of course, if there is no splitting of T finer than

T itself, then ∗i = ∗ and thus ∗ can be trivial in some cases.

So, is Axiom P a solution to “the problem of trivial revision”?

Axiom P certainly improves the preservation properties of the core AGM axioms,

by blocking many trivial (or wanton) revisions. It does not prevent revision operators

from either sometimes being trivial, or from being trivial within the scope of a topic. The

former is perhaps less worrisome. It hardly seems irrational that sometimes a revision

operator will throw out everything — sometimes new information does in fact conflict
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(strongly) with our prior beliefs. Perhaps the revised belief is central, or our belief set is

relatively impoverished. In these cases, we might expect the revision to be extreme. In

fact, splitting gives us a way of determining when a new belief is strongly conflicting with

the whole of our current beliefs, thus yielding operators that are (globally) trivializing

only when justifiably so.

However, localized trivial revision seems intuitively problematic. A local revi-

sion operator ∗i can be relentlessly trivializing for its topic. Indeed, we could define

∗i by full meet contraction. Nothing in Axiom P rules that out. But, to repeat from

[Alchourrón et al., 1985] :

In other words, if we revise a theory A in this way [i.e., via full meet

contraction/trivial revision] to bring in a proposition x inconsistent with A,

we get no more than the set of consequences of x considered alone — a set

which is far too small in general to represent the result of an intuitive process

of revision of A so as to bring in x.

This seems no less true when revising a topic coherent subpart of A with a topic

specific belief x. We know that there are operators that will preserve more! It seems that

localizing revision only solves the problem if the only reason that trivializing revision was

irrational was because it eliminated irrelevant beliefs. Axiom P mitigates trivial revision,

but it does not eliminate the problem. If one has to appeal to considerations beyond the

axioms anyway to rule out locally trivializing operators, why not do so in the global case?

Consider the following case:

Example 6. Let T = Cn(A, B → ¬A,C). T can be split by {{A, B}, {C}}. T ∗ B, if * is
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locally trivializing, will be Cn(B,C). However, now neither B→ ¬A nor ¬A nor A are in

T ∗ B. We have lost all information about A.

While in this example, A and B are connected and thus, logically speaking, are

related, it seems completely wanton to obliterate all our prior understanding of A when

adding B to our knowledge. While not as bad as a globally trivializing revision (since at

least C is safe), it certainly seems bad enough to demand some justification.

Parikh might respond that Axiom P has some inherent advantages that are sufficient

to justify it even if it does not entirely block trivial revision. Adopting a splitting ap-

proach is, Parikh argues, computationally helpful as the revision operation is performed

on a subset of T , perhaps a small one (though one must deal with the consequences of

computing the splitting). The idea of revising only the “relevant” portion of a belief set is

very natural in a wide variety of settings. Axiom P conforming operators are better in that

they do protect logically irrelevant information. So entrenchment relations can be more

topic specific and thus, one can hope, a bit nicer, or even more stable between revisions.

However, Axiom P does not come for free. Parikh argues that the supplementary

AGM axioms, 7 and 8 should be discarded:

We do not feel that these axioms [7 and 8] are consistent with the spirit

of our work for the following reason. Suppose that A = (¬P ∨ Q) and B =

(P∨Q), then A∧B is equivalent to Q and says nothing about P. Now revising

a theory T first by A could cause us to drop some P-related beliefs we had,

and revising after that with B we might not recover them. But revising with

A∧B should leave our P beliefs unchanged, provided that our beliefs about P
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and Q were not connected. Thus contrary to 7, revising with the conjunction

may at times preserve more beliefs than revising first with A and then with B.

This is why it does not seem to us that axioms 7 and 8 should hold in general.

Giving up 7 and 8 breaks the connection between the revision axioms and transi-

tively relational partial meet contraction functions (given by the representation theorem

4.16 of [Gärdenfors, 1988], pg. 82). In general, axioms 7 and 8 (and their corresponding

contraction postulates) correspond to ordering conditions on the remainders, that is, to

conditions on the epistemic entrenchment relations. While axioms 7 and 8 may be a bit

counterintuitive on their face, the transitively relational orderings of remainders seems

very natural.

This de-emphasis of the operators is characteristic, as George Kourousias and David

Makinson point out in [Kourousias and Makinson, 2006]:

Parikh and collaborators have studied the problem of modifying the no-

tion of partial meet revision so as to ensure that it satisfies the relevance

criterion. They have done so syntactically, i.e., by exampling what further

postulates may be added to the standard ones of AGM to ensure respect of

relevance. . . However one may also approach the situation from a more se-

mantic angle, asking how we might modify the definitions of partial meet

contraction and revision so as to ensure that they respect relevance.

Since they approach localized revision from the semantic point of view6, their ac-

6Though, we quibble a bit with their notion of “semantic”. The contraction and revision operators seem

just as syntactic as the postulates. Model theoretic accounts seem much more semantic.
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count might illuminate the problems discussed above.

3.3 Normalized Revision

Parikh starts from the core AGM axioms and asks what can be added to rule out

(certain forms of) trivial revision. Kourousias and Makinson start from partial meet con-

traction and try to find under what conditions it avoids (certain forms of) trivial revision.

They characterize the problem of trivial revision in terms of it removing “irrelevant” be-

liefs, where relevance is defined in terms of finest splittings:

Definition. (Parikh-)Irrelevant to a belief change (Viz def. 3.1 in [Kourousias and Makinson, 2006].)

A formula, β ∈ T, is (Parikh-)irrelevant to T ∗α (or T −α) iff for the unique finest splitting

of T , S T = {S 1 . . . S n}, the intersection of Sig(β) and
⋃

({S ∈ S T | S ∩ Sig(α) , ∅}) is

empty.

Irrelevant formulae, on this definition, are not just formulae that have nothing in

common with the input, but also have nothing in common with any formulae that are

relevant to the input. Note that relevant formulae need not have an overlapping signature

with the input formula — just a signature that is connected to that of the input (e.g., via a

chain of overlappings).

Example 7. Let T = Cn(A → B, B ∨ C,C ∨ D, E ∨ F, F ∨ G). The finest splitting

is S = {{A, B,C,D}, {E, F,G}}. Consider the contraction T − (A → B). In this case,

C ∨D is relevant even though the respective signatures of the formulae are disjoint, since

their signatures both intersect with a common element of the finest splitting. Similarly,
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(E ∨ F) ∧ (B ∨C) is relevant to this change. E ∨ F is not relevant to T − (A→ B), but is

to T ∗G (though, in this case, we just have an expansion by G).

Clearly revision operators which conform to the AGM core axioms + Axiom P

respect this sort of relevance, since Axiom P explicitly constructs revision operators to

add in all the “irrelevant” formulae. Kourousias and Makinson show that you can respect

Parikh-relevance by massaging the belief set into a specific form, then applying standard

partial meet contraction (and revision) upon that. The normal form in question is a belief

base which consists of a set of generating formulae which characterize the finest splitting

of a theory. That is, a set of sentences each of which have maximally disjoint signatures

and which collectively entail the original theory.

Definition 5. A split base, {S F1, . . . , S Fn}, of a set of sentences, S F, is a (maximally)

split base of a (consistent) belief set T iff for a (finest) splitting of T , S T = {S 1, . . . , S n},

Sig(S Fi) ⊆ S i for all i such that 1 ≤ i ≤ n and T = Cn(S F1, . . . , S Fn).

For any splitting of T there is an equivalence class of (maximally) split bases of T .

Kourousias and Makinson establish the following theorem:

Theorem. Split base contraction respects Parikh-relevance

(From [Kourousias and Makinson, 2006], theorem 4.1.)

Let T be a belief set and let S FT be a maximally split base of T . For any partial

meet contraction operator, −, if β ∈ T is [Parikh-]irrelevant to T − α, then β ∈ S FT − α.

(The corresponding theorem for revision follows immediately from the Levi iden-

tity.)
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In their informal discussion of this theorem, Kourousias and Makinson point out

that the reason that partial meet contraction against the split base respects Parikh relevance

is that when constructing the remainders of T with regard to α (i.e., T⊥α), all formulae

in “irrelevant” elements of the splitting have to go into each remainder. Essentially, the

normalization process removes from consideration all sentences that are inessential, thus,

all “trivial” material conditionals. Such conditionals force there to be signature overlap

chains between otherwise unrelated sentences.

Example 8. In this example, we examine three representations of the same belief set: the

belief set itself, a generating belief base, and a split base with respect to the belief set:

• Tbase = {A, A→ B,C → B}

• T = Cn(Tbase)

• Tnbase = {A, B} (the split base of T).

Note that it makes a difference whether we consider the language of Tnbase, Ln, to

include C or not. If C < Ln, then T , Cn(Tnbase). The splitting language, in this

case, should be {{A}, {B}, {C}}. We can force C into either other element, but then

the choice is arbitrary.

Each of these representations has a distinct set of remainders with respect to B:

• T⊥B = {Cn(A→ B,C → B),

Cn(A→ B,¬C → B),

Cn(A,¬A→ B,C → B),

Cn(A,¬A→ B,¬C → B)}
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• Tbase⊥B = {{A,C → B}, {A→ B,C → B}}

• Tnbase⊥B = {{A}}

Clearly, (non-empty) selection functions on these remainders will vary in their re-

sults by quite a bit. For example, Tnbase⊥B has only one possible selection (and thus, the

intersection of the elements of the selection will just be {A} again). No selection from

either T⊥B or Tbase⊥B can be {A}, or even Cn(A). Furthermore, there is no intersection

of any of those selections which is equal to {A}. Thus, there is no (non-trivial) revision

common to all these remainders. Furthermore, there are selection operators on T⊥B and

Tbase⊥B which generate revision operators that do not respect Parikh-relevance (i.e., any

revision which does not contain A, which are easy to generate from T⊥B and Tbase).

Notice that both in T and in Tbase, A is entangled with B in an inessential way via

A → B (i.e., ¬A ∨ B). Tbase illustrates some of the consequences of not taking care to

avoid A→ B. The (somewhat redundant) base {A, B,C → B} has only a single remainder,

{A,C → B}, and as a result, all of its (non-trivial) revisions contain A. Interestingly, those

revisions are not the same as those of the split base.

In example 8, the non-split revision operators include some which preserve formu-

lae (when revising by ¬B) that are lost by the split ones, especially those formulae with C

in their signature, even though those formulae do not entail B. It seems quite reasonable to

allow for the possibility that (C → B) ∈ (T ∗¬B) or (C → B) ∈ (Tbase ∗¬B). The situation

is perhaps starker if we consider a case with no freestanding propositional variables:

Example 9. Again, consider three representations of the same belief set: the set itself, a

generating base, and a split base:
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• Tbase = {A ∨ B,C ∨ B}

• T = Cn(Tbase)

• Tnbase = {(A ∨ B) ∧ (C ∨ B)}

Now let us compare the remainders with respect to A ∨ B (for simplicity, we just display

the remainders for the two bases):

• Tbase⊥(A ∨ B) = {{C ∨ B}}

• Tnbase⊥(A ∨ B) = ∅

T⊥(A ∨ B) will have elements containing formulae such as C → (A ∨ B), that is, various

conditionals generated off the elements in the generating base, with both positive and

negative antecedents.

Since B is connected to both A and C, there is no finer splitting than the entire

signature of T . As we see in this case, we can lose more information by performing

normalized revision than straight (even base) revision. This seems to be a devastating

blow against Parikh’s professed motivation for Axiom P and the whole splitting move.

While (C ∨ B) is related by topic to our input formulae, it is not inferentially related to

(A∨ B). Whether we use the AGM axioms alone, or we augment them with Axiom P, the

set of conforming operators will contain overly aggressive operators.

We should also notice that this is a case where the Axiom P formulation and the

split base formulations yield different sets of operators. In example 9, Axiom P sanctioned

operators are just the normal partial meet operators (including full meet!) since the finest

splitting is the original base. However, normalizing allows for only trivializing operators.
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Thus, Axiom P (and similar) does not rule out trivial revision in all cases, and some

of the cases where it fails to rule out trivial revision are not degenerate, that is, trivial

revision would result in loss of information which is plausibly irrelevant to the change.

Axiom P also blocks the supplementary postulates which, given the representation the-

orems, means that it blocks transitively relational operators. Whatever your attitude to

the supplementary postulates, they are not completely bonkers. Gardenförs argues exten-

sively for them, e.g., in [Gärdenfors, 1988], especially pp. 55-58. There, he motivates

them as a way of capturing an intuitive constraint on iterative revision, gives a possible

worlds justification, and explores the “useful consequences” of adopting them. Immedi-

ately thereafter, he discusses “three principles that have a certain prima facie plausibility

but that must be rejected as general postulates for revision functions” ([Gärdenfors, 1988],

pg. 58). The supplementary postulates are independently motivated, but then gain a great

deal of plausibility from their correspondence to conditions on the entrenchment relation.

He later develops a sui generis account of epistemic entrenchment ([Gärdenfors, 1988],

pp. 86-91) which is closely related to the full set of AGM postulates. Scorning the sup-

plementary postulates must be done with care.

Obviously, if Axiom P does not block trivial revision in the case where the finest

splitting corresponds with the whole belief set, it likewise does not block trivial revision

of a particular partition even when the number of partitions is greater than one. This is so

obvious that Parikh uses it as an example of a revision operator that meets his modified

postulates in a proof!

[I]f A is not consistent with T , then write T = Con(B,C) where B, C
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are in LT
A

7, L − LT
A. Then let T ∗ A = Con(A,C). . . In this update procedure

we used the trivial update on the sub-language LT
A, but we did not need to.

[emphasis added]

We need not think that this is a paradigm operator; it was just convenient for

Parikh’s existence proof (i.e., that the set of operators conforming to the core postulates

plus Axiom P was not empty). However, given his extreme distaste for global trivial-

izing revision operators, this blasé acceptance of a locally trivializing operator is a bit

off. Surely it should not go without comment that this local trivialization is fine whereas

global trivial revision is anathema (though not really, since Axiom P rules it out anyway).

If core AGM + Axiom P only sanctioned local trivial revision, would this be an accept-

able outcome? Would this be a more acceptable outcome than normal AGM sanctioned

operators?

Clearly the answer to both questions is “no”, at least from the perspective of min-

imizing information loss. The only reason given (thus far) to add Axiom P is to rule

out operators which remove information that could have been preserved (i.e., in disjoint

splits). However, if AGM + Axiom P only sanctioned local trivial revision, then there

would be operators that it ruled out which preserved more information than the sanc-

tioned ones. While we can argue (as we do below) that locally trivial revisions, or even

globally trivial revisions, are sometimes justifiable, it is hard to see that they are required.

At least, such a requirement is not compatible with any recognizable notion of informa-

tional economy, as it forces one to always select revisions that throw out more, sometimes

much more, than is strictly necessary. As we have already noted, it is standard to mark
7I.e., the partition of L such that Sig(A) is a subset of it.
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trivial revision operators as unacceptable operators except as a lower bound. It is hard

to see how Parikh can appeal to this sort of move only in the topic sensitive case. If it

justifies locally trivial revision operators, it justifies global ones as well. More precisely,

the move is to argue that the inclusion of trivial revision operators in the set of AGM

sanctioned operators does not show that there is a problem with AGM theory, merely that

the postulates do not capture every aspect of the rationality of revision.

This does not mean that topic oriented contraction and revision based on disjoint

splitting must be abandoned, only that it cannot be the case that they eliminate the need

for additional considerations to mark the boundaries of rational operators. More interest-

ingly, along the lines discussed in section 3.2, localized trivial revision may be rationally

justifiable in some circumstances. For example, suppose that one is trying to understand

an economic theory that is contrary to one’s own. In that case, it is perfectly reasonable

to toss out all prior economic beliefs, but it would be (intuitively) beside the point to

also toss out one’s (presumably disjoint) beliefs about physics. The goal is to test out

the wholesale replacement of one’s economic beliefs, not of one’s beliefs in general. Of

course, if it turned out that one’s economic beliefs were so intertwined with one’s beliefs

about physics that they were not separable, then, of course, there’s a pretty strong sense

in which the beliefs about physics are, also, beliefs about economics. What is somewhat

compelling is that in the case where the topics are separable, and we want to throw out all

beliefs concerning one topic, we would like to do so while preserving “all” beliefs on the

other topics. (As we shall see in section 3.5, we must take care in the notion of “all”.)

From the angle of human psychology, local trivial revision is nowhere nearly as

uncanny as global trivial revision, at least. The idea that everything you believed about
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the mating habits of land snails is wrong is not particularly insane. One might doubt that

it makes sense to throw out all one’s beliefs about land snails just because it turns out that,

contrary to prior belief, land snails are hermaphroditic. Usually, it does not. But if one’s

confidence in the belief of snail sexual dimorphism were very strong, finding out that one

was wrong about that could give good epistemic ground for giving up the rest of one’s

snail beliefs. Or, the error might give good methodological grounds for giving up the

rest until they are verified. The cases where giving up all one’s beliefs upon getting new

information are methodologically warranted (if even coherent) are pretty much limited

to philosophical contexts and science fiction scenarios. Local trivial revision is, at least,

occasionally plausible as a model of human belief revision where the belief sets are large,

complex, and difficult to deal with.

Global trivial revision is more plausible in cases where either it has less significant

consequences or the thing to be revised is more scoped. It is often perfectly sensible to

delete an entire database upon discovering an error because the data can be regenerated

from original sources, whereas trying to find and repair the error and all the effects of the

error may be much, much more difficult and lead to unwanted side effects. We typically

want to distinguish between the revision that eliminates an error due to a typo in a conver-

sion script and a revision which expresses a disagreement with the original sources. It is

not surprising that when we can, in principle, add back all the obliterated beliefs, global

trivial revision is less frightening. One might argue that this is not really trivial revision

at all but part of the internal dynamic play that constitutes the action of the revision op-

erator. That is, it may be that what makes global trivial revision less frightening is that

although the database passes through the wiped state, that state is not the real outcome of
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the revision.

There is some force to this concern, but not a huge amount. Since AGM theory

is supposed to cover cases such as accepting a belief for the sake of argument, contrary

to your own beliefs (see [Gärdenfors, 1988], page 48), it is hard to see why deleting all

the sentences in a word processing document to replace them with a fresh start is out of

bounds. In fact, people do irrevocably (or near irrevocably) throw away large works (the

road through graduate school is littered with the corpses of abandoned theses), though

they are more likely to radically revise when there is at least the perception of revoking

the radical revision.

Given that the mere presence of trivial revision in the set of sanctioned operators is

not enough to undermine a set of rationality constraints, and, in fact, given the stronger

point that ruling out trivializing revision operators itself might be irrational, there does

not seem to be anything left to Parikh’s direct rationality argument for topic-relevance

respecting operators. Global trivial revision can make sense for at least some, perhaps

rare, cases. Local trivial revision is plausible, but that very plausibility undermines the

brute horror of trivial revision in general. The standard AGM discussion which argues

against trivial revision is best understood as an argument against trivial revision as the

only sanctioned revision operator. Clearly, in most cases, trivial revision is too small, but

that does not mean that it is always too small.
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3.4 Computational Considerations

There is the hope that localized revision will be easier, at least in some circum-

stances. In particular, Parikh suggests that it will be computationally easier, as the revision

operator will, in some cases, be applied to a smaller belief set.

In the case of large, collaboratively developed logical theories, localizing the change

is a common and promising way of reducing both the communication overhead and the

reasoning overhead.

There are several parameters we can vary when examining the computational prop-

erties of revision schemes including the consequence relation (i.e., the logic of the know-

ledge base), e.g., whether we are revising a belief base or a belief set; if we are revising a

belief base whether revision is syntax oriented or model oriented (among other choices);

in any case, we can vary the sorts of selection function used (or, relatedly, entrenchment

relations). Furthermore, there are different services with regard to the revision that we

might be interested in, for example, query answering against the revised beliefs, or com-

puting a representation of the revised beliefs (e.g., [Liberatore, 2000].)

A point to notice straight off: splitting revision cannot have a lower worst case

complexity than normal revision, since there are belief sets which cannot be split (e.g.,

if generated from a single literal or from a disjunction of positive literals). If the finest

splitting of a belief set is the belief set itself, then applying the revision operator to the

finest splitting is the same as applying it to the belief set.

Furthermore, there is the cost of finding the normalized base to consider. It is

not a particularly easy task, and, in some cases (i.e., when the split base has only one
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component) it could be a complete waste of effort. Consider the propositional case with

a finite vocabulary when we are given the belief set, B, by some finite base, Bb, which

is in clausal form. In order to determine a split base for B, we make use of the set of

prime implicates of Bb. An implicate of knowledge base is a clause (i.e., a disjunction of

literals) entailed by that knowledge base. A prime implicate is a minimal length implicate,

that is, an implicate such that if one deleted any literal from the clause, then the resulting

clause would not be an implicate. Prime implicates have the interesting property that

the set of prime implicates of a knowledge base entail the knowledge base. Quite often,

the full set of prime implicates is redundant, that is, one can remove elements of the set

and still entail the original knowledge base (in the boolean function lingo, one still has a

cover of the original set). Some prime implicates may occur in every cover of the original

knowledge base; these are the essential prime implicates.

Example 10. 8

Consider the propositional knowledge base, B:

{P ∨ Q ∨ ¬S ,Q ∨ S ,¬Q ∨ ¬S }

The prime implicates of B are:

{P ∨ Q, P ∨ ¬S ,Q ∨ S,¬Q ∨ ¬S}

(The bolded formulae are the essential prime implicates of B.)

There are two irredundant prime covers of B:

1. {P ∨ Q,Q ∨ S,¬Q ∨ ¬S}; split by {{P,Q, S }}
8This is example is taken from one in [Hammer and Kogan, 1996].
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2. {P ∨ ¬S ,Q ∨ S,¬Q ∨ ¬S}; split by {{P,Q, S }}

(Obviously, each cover must contain the essential prime implicates.)

Now let us consider B′ = B ∪ {S }. The prime implicates of B′ are:

{P,¬Q, S }

Which is also the only minimal cover. It is also a split base, where the splitting

language is {{P}, {Q}, {S }}.

Prime implicates are used for compilation of knowledge bases, for example, to pro-

duce propositional theories for which query answering is in P (arbitrary propositional

query answering is co-NP-complete). Of course, this “merely” shifts the computational

pain to the compilation step and perhaps involves an exponential increase in the size of the

knowledge base [Reiter and de Kleer, 1987]. Knowledge compilation is somewhat anal-

ogous to Kourousias and Makinson’s preprocessing approach, except that in knowledge

compilation, typically the same operation is performed on the original and on the com-

piled knowledge base. Furthermore, the operation should be strictly less complex in the

compiled setting (or the compilation is pointless) [Liberatore, 2001]. We can use prime

implicates to compute a finest split base as in [Bienvenu et al., 2008].

It would be a happy coincidence if the maximal split base were also a compilation.

For some revision operators and forms of theory this is true.9

9Though this is a complex topic: for example, instead of compiling to a form for which your service

is tractable in the size of the compiled form, but the compiled form may be exponential in the size of the

original form, one might reasonably choose some form which is not as tractable, but which is much smaller

than the original.
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Some attention to splitting the given base is also reasonable: by the finest splitting

theorem, we know that every splitting is an approximation of the finest one. So, at the

very least, for a given input, one can reduce the amount of compilation required by first

splitting the base, then getting the implicates of only the partitions relevant to the input.

Splitting a given base is very cheap as it is basically a sort of the signatures of the axioms.

Given base splitting is potentially helpful either for base revision or belief set revision,

and one can achieve better approximations by performing obvious transformations on the

base, e.g., splitting conjunctions. Given base splitting may be stymied by semantically

inessential connections, as seen in example 9.

But in the end, the computational advantages of splitting, while often promising,

seem more ambiguous and less profound than we might have hoped. It is true that “divid-

ing and conquering” is a useful strategy, in general, but that aspect of splitting just seems

to be one among several (compare with compilation or syntax sensitive base revision).

At the very least, it depends strongly on the logic in question and whether computing the

smaller portion is easier than computing the revision against the entire knowledge base.

In many cases the complexity may coincide exactly.

3.5 Naturalness

We come to the final justification for Parikh-relevance respecting revision: its “nat-

uralness”. This is distinguishable from Parikh’s anti-trivial revision argument essentially

in that the naturalness argument can be used to justify globally trivial revision operators

when they respect Parikh-relevance, e.g., if the finest splitting has only one element. It
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also can provide support for the rationality of local trivial revision operators, whereas it

is hard to ground endorsement of local trivial revision on revulsion for trivial revision in

general. If Parikh-relevance can be justified on independent grounds, then we do have a

basis for distinguishing between local and global trivial revision, that is, we are not forced

by the principle of informational economy to prefer operators that presume more beliefs

(overall) to those which prefer more topic-irrelevant beliefs.

Topic orientation is very natural. Intuitively, changes with regard to one’s belief

about a certain subject matter should be independent of disjoint subject matters, that is,

of subject matters that the input does not touch upon. This consideration smells a bit of

foundationalism, especially when phrased in terms of relevance. But topic orientation

does not necessarily prejudice the case against coherentism 10. While the fact of unique

finest splittings suggests that the associated splitting formulae, that is, the equivalence

class of normalized bases is the foundation, one could argue than any properly coher-

ent belief set will have a singleton splitting. Imagine the merge of two belief sets with

disjoint signatures. It seems rather extreme that their mere set theoretical union should

generate strong, epistemically significant connections between the two domains. Instead,

a coherentist could ask that coherence itself be non-trivial. In this scenario, non-singleton

splittings are a measure of incoherence. Such a scenario is fairly realistic too. While one

could treat the information as uniform, it would be more sensible to organize it into parts

10For discussions of interpreting base revision as modeling justificatory foundationalism and of be-

lief set revision as modeling justificatory holism or coherentism, see [Gärdenfors, 1990, Doyle, 1992,

Bochman, 1999]. Also, [Bochman, 1998] gives an account where standard AGM theory can be seen to

support a foundationalist approach.
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that can stand alone, where everything in stand-alone parts is required, and and those parts

capture the rest of the information. In other words, coherentists do not have to be against

there being significance to logical structure.

The fact that there is a univocal finest splitting strongly buttresses the naturalness

of Parikh-relevance. The finest splitting is a striking feature of the logical structure of a

belief set that we would seem to ignore at our peril.

Clearly, there are cases where strict topic orientation is what we require. Collabo-

rative authorship of textbooks, for example, often split along topic lines when there are

strictly disjoint topics to be found. Even where there are not, the need for independent

evolution of a the book leads us to treat subparts as effectively disjoint (or, at least, sepa-

rable).

Similarly, large biomedical or bioinformatics ontologies tend to be collaboratively

developed with spatially and temporally distributed teams of editors. Cognitively, it is

much easier for developers to focus on logically coherent subsets of the whole. The dif-

ference between having to work with tens of thousands of classes and only thousands can

be essential to the effectiveness of various cognitive support techniques, such as visual-

ization.

However, topic-orientation has some potentially counterintuitive results, as articu-

lated by Kourousias and Makinson:

[Suppose] we are contracting the letter p from the closed belief set K =

Cn(p, q), or from its base K0 = {p ↔ q, q}. If we are working with the

base, we may perhaps regard it as supplying us with epistemic information,
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namely that its elements are particularly important items that deserve to be

protected more than other items not appearing in it. But even so, the base

gives us no information to discriminate between its elements. In the example

K0 = {p ↔ q, q}, we are not told explicitly that the element letter q deserves

protection more than the biconditional p↔ q. Indeed, we may wish to allow

for the possibility that the latter is more deeply entrenched, less vulnerable,

than the former. In that case, when we discard p we will jettison the letter

q and keep the biconditional, regardless of the fact that q is irrelevant to p

modulo K in the sense that Parikh has defined.

On the other hand, there may be occasions in which we wish to treat el-

ementary letters systematically as the only carriers of epistemic significance.

In our view, this policy is difficult to justify in theoretical terms, but it some-

times appears to be adopted in contexts of artificial intelligence for reasons of

computational convenience. Under such a policy, compound formulae such

as the biconditional p↔ q are of no epistemic significance, and when chang-

ing a belief set we would want to minimize change in the status of elementary

letters and preserve relevance in the sense of Parikh.

The first point to notice is that the alleged bias toward sentence letters (“elementary

letters [are] the only carriers of epistemic significance”!) is not a bias towards sentence

letters (i.e., literals) per se. Consider the a variant of the belief set K, K′ = Cn(p ↔

(q ∨ r), q ∨ r), where we replace q with the disjunction q ∨ r. All of the above consider-

ations go through, except that we do not have any literals to preserve. Parikh-relevance
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is biased toward formulae which have smaller signatures, and literals obviously benefit

from that. Furthermore, this bias is not motivated primarily, by Parikh, by computational

considerations (though computational considerations come up), but by the attempt to sub-

divide the signature as much as possible. It is fair to dispute that topic separability is not a

rationally overriding value, but it is just misguided to assert that there are no independent

theoretical considerations in play.

One strange aspect of the discussion is that Kourousias and Makinson are not de-

fending, or even discussing, untoward global trivial revision (e.g., full meet contraction

based revision). (Strikingly, though trivial revision is the expressed motivation for Parikh,

they do not discuss it at all.) We could ask, “Is AGM’s failure to rule out global trivial

revision really a shortcoming?” but as the standard accounts reject full meet revision (and

some associated proposed axioms) except as a limiting case, this does not change mat-

ters. Alternatively, we might ask “Is ruling out global trivializing revision when it violates

Parikh-relevance worth changing AGM theory?” To answer this, we need to know what

we’re giving up. Kourousias and Makinson claim that we would have to impose an epis-

temic significance scheme that at best has only a pragmatic, computational “convenience”

justification (i.e., that atomic sentences are most important). Since there is, to their eyes,

no general logical consideration, nor, indeed, a generalizable pragmatic consideration

(such as, the revised set being “too small”), there is no reason to make Parikh-relevance a

basic criterion of rational contraction and revision. As one sort of consideration, Parikh-

relevance may be a reasonable filter on revision operators. That is, one epistemic value

that an agent might hold is topicality, but this value is not forced upon us. In their ex-

ample, it is easy to imagine that p ↔ q was vouched for by a less dodgy source (or was
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simply older) than q, and so, especially in a base revision context, should be preserved.

However, in a base revision context, we might well take the finest splitting as the

entire base (K0) since those sentences have overlapping signatures (q appears in both),

and thus cannot be separated. Kourousias and Makinson slide a bit too quickly from

considering the base, as such, to considering general Parikh-relevance. Traditionally,

there is quite a bit of difference between belief set oriented revision and base oriented

revision. If we take K0 as a given base (rather than a generating base, i.e., a base which

is merely a description of the corresponding belief set), then it is unclear why we would

apply standard, belief set oriented AGM principles, even as modified by Parikh. So, it is

not clear that q is irrelevant to p. Indeed, the example strongly suggests otherwise.

If we retreat to the corresponding belief set, K, one can still frame Kourousias

and Makinson’s worry in terms of epistemic entrenchment. We can certainly formally

associate an entrenchment relation over K such that the biconditional is more entrenched

than q, but it is a bit trickier to assess the plausibility of such a relation. If the relation is

derived from something like provenance of the belief, then we start to slide back into a

belief base situation.

On the other hand, revising K by ¬o to get K1 = Cn(¬p, q) vs. K2 = Cn(¬p,¬q)

can be seen as turning on whether one believes the conditional ¬p > ¬q or not (or,

really, the biconditional, but only the one direction matters for this example)11. Obviously,

by the Ramsey test, if one does endorse that conditional, then one should revise to K2

(see the discussion in chapter of [Gärdenfors, 1988]) and thus violate Parikh-relevance.

11There are well known issues with the complete set of AGM postulates and the semantics of condition-

als, see section 7.4 of [Gärdenfors, 1988].
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The epistemic significance priority of p ↔ q is a way of encoding that conditional (or,

conversely, the conditional encodes the priority).

If the entrenchment relation is supposed to ground a conditional belief of the form

¬p > ¬q, then we should consider that conditional when determining the topic structure

of our belief set. ¬p > ¬q clearly connects p and q in in a very strong way. If we added

this conditional to K as an explicit belief, it is hard to see how the adjusted notion of

Parikh-relevance would not respect cross-topic conditionals.

In essence, we’re back to the coherentist question of how seriously to take arbitrary

material conditionals. In classic AGM theory, there was no sense that belief sets had any

structure other than what was imposed upon them by entrenchment (which is, after all,

an extralogical consideration). Base revisionists rebel against that but again impose an

extra logical condition (i.e., the base is just a brute given). Splitting gives us an inherent,

logical reason to neglect certain sentences in a belief set and a reason to prefer certain

classes of base. Of course, different normalized bases might be preferred for any number

of non-logical reasons and we might even choose to avoid normalized bases in some

circumstances. Similarly, we might override splittings by an entrenchment relation. But

these are, or should be, departures from the norm. These override what the logic of the

belief set tells us. We might have good reasons for that overriding, but we cannot claim

that it is not an overriding.
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3.6 Splitting and Transitively Relational Partial Meet Contraction

By their conformance to the core AGM postulates, Parikh-relevance respecting con-

traction operators are also partial meet contraction operators. If they are, as Parikh sug-

gests, incompatible with the supplementary axioms, then they cannot correspond to re-

lational and transitively relational partial meet contraction operators. That is, it would

be the case that selection functions defining Parikh-relevance respecting contraction op-

erators cannot be defined in terms of the most entrenched elements of the remainders.

However, there are cases where Parikh-relevance is not incompatible with transitively

relational partial meet contraction, with the obvious case being when there is only one

element in the finest splitting.

It is certainly possible to build a reasonable story around this degenerate case. The

first point is to grant that if one is going to use remainders (i.e., maximal subsets which do

not entail the to-be-contracted formulae) as a fundamental tool for defining contraction,

and thus revision, then using an ordering (and a transitive ordering) to define the selection

function is overwhelmingly compelling. However, it is unclear that remainders are a

particularly natural object of epistemic focus, at least in the sense that one is obliged to

base one’s extra-logical justificatory structure on them. Compare with safe contractions

[Gärdenfors, 1988], where there is a ranking between formulae in the belief set. As Hans

Rott [Rott, 1992] writes:

[S]afe contraction by its very idea focusses on minimal sets of premises

sufficient to derive a certain sentence. Thus safe contraction has a certain

“foundationalist” appearance, in contrast to the “coherentist” guise of its
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competitors. . .

Safe contractions appear to posses some definite epistemological advan-

tages over both partial meet and epistemic entrenchment contractions. Like

epistemic entrenchment contractions, they are based on some kind of relation

between sentences and not on a relation between sets of sentences, as it is

the case with partial meet contractions. This constitutes an intuitive disad-

vantage of the latter. In addition, safe contractions rest on relatively weak

requirements for the relation involved, which seem to give them the intuitive

priority over epistemic entrenchment contractions.

Unfortunately, the intuitive and epistemological appeal of safe contraction over the

alternatives does not provide us with grounds for rejecting the supplementary postulates.

In the original safe contraction paper [Alchourrón and Makinson, 1985], Alchourrón and

Makinson show (for the case of finite belief sets) that suitable safe contraction operators

are also transitively relational partial meet contraction operators (and vice versa). As

pointed out in [Gärdenfors, 1988], the suitable safe contraction operators are transitively

relational partial meet contraction operators even in the infinite case — a much worse fact

from the current perspective.

The notion that partial meet contraction is especially “coherentist” does open up a

rather different line of attack. If a belief set can be split into more than one topic, then

the natural reading, as we have argued, is that the belief set is not particularly coherent.

That is, the separability of topic indicates that some of the “beliefs” in the belief set are

not strongly mutually supporting. Indeed, they do not talk about the same things. Thus,
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we can take the different levels of coherence within the belief set as indicators as to

when coherentist style considerations should apply. That is, coherentist style operators

should apply only to strongly logically coherent fragments of a belief set. If the belief

set as a whole is strongly coherent (i.e., there is only one element to the finest splitting)

then coherentist considerations take over altogether. Similarly, within a logically coherent

fragment, we can treat things in the standard AGM way, but outside it we have to mobilize

other considerations. This thought is almost a paraphrase of Axiom P.

While appealing, this approach will not fly. The problem is that a new formula can

make the belief set more or less logically coherent. This is easily seen:

Example 11. Let K = Cn(P,Q) and consider what happens if we revise by ¬P ∧ ¬Q (re-

specting Parikh-relevance). In this case the signature of the input formula forces together

all the elements of the splitting (as is appropriate!).

Consider revising K = Cn(P ∨ ¬Q,Q) with P ∨ Q (which reduces to expanding by

P ∨ Q). K is fully coherent; the input signature equals K’s signature, but the resulting

belief base is split by {{P}, {Q}}.

Part of the difficulty is that remainders and splittings cut across each other, making

them difficult to reconcile. But perhaps Parikh was too quick to dismiss the possibility of

compatibility between Parikh-relevance and the supplementary postulates. After all, there

are partial meet and safe contractions which do not satisfy the supplementary postulates!

In fact, we can show that it is not particularly difficult to generate a (safe) contraction op-

erator which respects Parikh-relevance. Recall that a safe contraction operator requires12

an acyclic relation, <, over the formulae in a belief set called a hierarchy. To conform
12In this section, we shall discuss only the aspects of a safe construction operator needed to show con-
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with C7, it is sufficient that < continues up13 the consequence relation. < continues up

|= iff |= transmits <. That is, if a formula is < some other formula, it is also < all the

consequences of the second formula. To conform with C8 as well, it is sufficient that <

is (additionally) virtually connected. That is, “for all A, B,C in K, if A < B, then either

A < C or C < B”14

Given these facts, it is easy to show:

Theorem. There are Parikh-relevance respecting contraction operators that conform to

C7 and C8

Let Kn be the normalized base of a belief set K.

We define a hierarchy, < over K that meets the following conditions:

• for all f ∈ Kn and g ∈ K \ Kn, g < f ,

• for all fi, f j (i , j), fi ≮ f j

• otherwise, < is virtually connected and continues up over the consequence relation

of K

It is easy to see that < is virtually connected and continues up as a whole. Since

there are no formulae, x such that an element of Kn < x, the formulae in Kn vacuously

meet continuing up. Similarly, for virtual connectedness.

The elements of Kn are safe with regard to some formula C unless there is a subset,

formance with the supplementary postulates.
13Or continues down, but we ignore that for now
14[Gärdenfors, 1988], pg. 98. Note that the first condition corresponds to Theorem 4.34 of

[Gärdenfors, 1988], and joint conditions to theorem 4.35.

66



K′n, of Kn (and thus a minimal subset) which entails C. By Craig’s interpolation, Sig(K′n)∩

Sig(C) , ∅, which is exactly what’s needed for Parikh-relevance.

Thus, there is no strong incompatibility between Parikh-relevance respecting oper-

ators and transitively-relational partial meet ones. So, Parikh-relevance cannot be used as

an argument against C7 and C8, at least, in general.

What are we to make, then, of Parikh’s motivating example? One very strange

feature of it is that it actually violates a core AGM postulate!

Example 12. Recall in Parikh’s example, A = P∨Q and B = ¬P∨Q. His point was that

revising by A ∧ B could preserve more P beliefs than revising first by A then expanding

by B (for example, in the case of local trivial revision), since A ∧ B was equivalent to Q

alone “and says nothing about P”.

But by extensionality, revisions by equivalent formulae should be equal, which is

not the case in this example:

Let C = (P ∨ Q) ∧ (¬P ∨ Q) (i.e., the conjunction of A and B) and D = Q.

Clearly, C ↔ D.

Now, suppose we have a belief set, K = Cn(P,¬Q). Using the local trivializing

revision operator, we get:

K ∗C = Cn(Q) K ∗ D = Cn(P,Q)

Thus, K ∗C = K ∗ D.

Violating extensionality is a far more serious issue than violating the supplementary

postulates. In classic AGM theory, there are no acceptable operators which violate a core
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axiom. Furthermore, this example violates the principle of irrelevance of syntax in a

fairly egregious way: syntax is irrelevant in the belief set but not in the input, and it is

only relevant in the input for as long as it is considered as input.

Fortunately, the remedy is fairly straightforward: normalize the input as well. If we

take the supplementary postulates to apply to normalized inputs, then Parikh’s counterex-

ample fails, since Q is not the conjunction of A and B, even though it is equivalent to that

conjunction. But now there’s no reason to be concerned about the fate of postulates 7 and

8.

3.7 Splitting in other logics

Thus far, our discussion has been restricted to propositional logic. Since one of the

strongest arguments for Parikh-relevance has been the univocality of the finest splitting,

it is important to see how widely it extends.

Parikh claims that finest splitting theorem holds for predicate logic without equal-

ity (and fails in the presence of equality). This can be seen more easily if one considers

that proofs of the finest splitting theorem given by Kourousias and Makinson. They show

the finest splitting theorem by appealing to Craig’s interpolation (and to their parallel in-

terpolation, but that is entailed by Craig’s interpolation). Thus, for logics with Craig’s

interpolation, we can prove that there is a univocal finest splitting. In logics where in-

terpolation fails, such as predicate logic with equality, it is not, therefore, surprising that

univocal finest splitting fails. In predicate logic with equality, the failure can be easily

seen more directly, as Parikh points out: equality can be used to fix the size of the inter-
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pretation domain to a given finite size. In such cases, formulae with disjoint signatures

may interact by contending for elements of the domain without any mediating signature.

The interpolation property may fail for other reasons, including not having enough

syntactic richness to express interpolants for all cases (not uncommon in modal and de-

scription logics). In (some of) these cases, unlike the equality case, we can point to a

finest splitting that is inexpressible in the logic in question, but expressible in a richer

logic. For example, if the logic in question is embeddable in predicate logics without

equality (as many modal logics are), we can appeal to the splitting of the belief set in

question with regard to its predicate logic translation. Since belief bases in this case will

also be univocal and approximations of a univocal finest splitting (inexpressible in the

current logics), we have a strong reason to focus on base revision.

3.8 Conclusion

In this chapter, we examined Parikh’s account of topic-oriented belief revision

based on splitting the belief set according to disjoint signatures. We showed that Parikh’s

most prominent argument for it (blocking trivial revision) fails to compel, but that the

major arguments against it (incompatibility with the supplementary postulates; untoward

priority to literals) also fail. Moreover, the naturalness argument, at least for many areas,

seems quite compelling.

In particular, we find the existence of an identifiable (indeed, computable), univocal

logical structure to be impossible to ignore. While one can imagine cases where one might

wish to override that structure, many of those cases are subsumed by a shift to belief
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bases, and, indeed, to syntax orientation. There, while the conditions of the structure

have shifted, the imperative to take that structure into account remains.
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Chapter 4

Coping with Inconsistency

In chapter 3, we developed a Parikhian argument to the conclusion that there is

a class of rational (even AGM rational) belief revision operators which respect a form

of topic oriented relevance. A belief set (or base) is divided into coherent parts such

that each part has a signature disjoint from that of every other part, each signature is

maximally small with respect to the belief set in question, and the characterizing formulae

of each topic jointly entail the original belief set. Topic relevant revision (or contraction)

thus begins with identifying the topics of the input formula (i.e., the set of topics which

intersect with the signature of the input). Topicality, in this sense, has some intuitively

pleasing features: Topicality is univocal and derived solely from the logical structure

of the belief set. It also allows for a more natural coherentism: beliefs don’t cohere

with every other belief, only with topic relevant ones. Revision thus does not focus on

what is narrowly relevant (or implausibly distant), but on the proper subject matter at

hand. Topics are a kind of modular decomposition of the belief set, and revision which

respects topicality gains some of the advantages of modularity, e.g., encapsulation of

information and isolation of effects. This may have computational benefits (assuming

reasonable amortization of the cost of determining the topic structure) and definitely has

cognitive benefits.

When changing belief sets, we revise, rather than expand, the set when there is
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a conflict between our belief set and the new information. The conflict traditionally of

concern in the belief revision tradition is contradiction, that is, the belief set contains

the negation of the new formula. Parikh-relevance sensitive revision isolates the possible

conflict to the relevant topics. But if we can isolate the possible conflict, then it seems

similarly possible to isolate extant conflicts, that is, to isolate contradictions in the object

of revision. Clearly, the object of revision containing topic-isolated contradictions cannot

be a traditional belief set with a supra-classical consequence relation since all such belief

sets would be the same (i.e., the set of all formulae of the language). One prominent

strand of paraconsistent belief revision focuses on belief bases for their ability to distin-

guish between different contradictory sets of beliefs. For example, while Cn(A,¬A, B)

and Cn(B,¬B, A) are the same (for, e.g., propositional logic), the generating bases are ob-

viously quite different. One obvious way to notice the difference is that they can be seen

as the result of expanding the same belief set Cn(A, B) with the distinct, nonequivalent

beliefs ¬A and ¬B, respectively. Of course, the actual resultant belief set is the same in

both cases, but that’s because we have an extra step of generating the deductive closure.

If we focus on the process (rather than the result), it is clear that they are very differ-

ent circumstances. If we replace the expansion with a revision, that difference is clear.

Cn(A, B)∗¬A is very different from Cn(A, B)∗¬B, especially if the operator a locally triv-

ializing topic sensitive one (i.e., in the first case we get Cn(B) and in the second Cn(A)).

It is an unfortunate and surprising feature of belief sets1 that expansion and revision in the

1This is especially clear if one considers not just models of a collection of beliefs but interpretations.

Because belief sets are consequence oriented (and thus, strangely enough, syntactically oriented) they can-

not distinguish between inconsistent theories with different sanctioned sets of interpretations. For example,
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inconsistent case produce such radically different results.

Semi-revision, as described in [Hansson, 1999a] is also sensitive to the difference

between these revisions. Semi-revision is an operation on belief bases and is defined in

terms of expansion and consolidation, that is, an operation that takes in an inconsistent

belief base and returns a consistent one. Semi-revision is expansion by the (contradictory)

input, then consolidation of the inconsistent expanded belief base. Since the input formula

is not privileged by the consolidation operator because of its input status, semi-revision,

thus defined, is non-prioritized.

Semi-revision requires being able to distinguish various inconsistent belief states

(thus, standard belief sets are not feasible representations), but semi-revision operators

consume consistent belief bases and produce consistent belief bases. Inconsistent belief

bases appear only as transitional states. This reasonably models the key distinction be-

tween standard AGM revision and semi-revision: semi-revision doesn’t require success.

Since the inputs and outputs of semi-revision are consistent (and possibly normalized)

bases, it does not seem especially difficult to impose some sort of relevance criterion. For

example, a simple approach would be to normalize the initial base; extract the parts of

the normalized base whose joint signature is the minimal joint signature that is a super-

set of the signature of the input; expand the extraction with the (conflicting) input while

leaving the rest of the normalized base untouched; finally, we can consolidate the (now

intuitively, if you take a theory Cn(A, B) then clearly all the models will assign true to A and false to B. If

we add ¬B then it’s pretty clear that we’ll want to consider interpretations where B is assigned true and ones

where it is assigned false (and thus ¬B assigned true). But there’s no reason to consider interpretations that

assign false to A.
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contradictory) extract part independently of the rest.

At this point, the fact that we can isolate, at least in the dynamic context, the con-

tradiction to its relevant (set of) component(s) of the splitting of the original theory (since

this is what sets up the target of consolidation) strongly suggests that we can split, and

perhaps normalize, a contradictory belief base. Parikh (with collaborators) went in this

direction, so we shall investigate their takes first.

4.1 Motivations

In [Chopra and Parikh, 1999] Samir Chopra and Rohit Parikh make the following

three (naive) observations about people’s doxastic architecture:

1. People often reason in a topic focused way; that is, with a non-arbitrary subset of

their beliefs;

2. People often have inconsistent beliefs;

3. People solve what are computationally intractable problems, e.g., propositional rea-

soning.

The first and third observations are familiar from [Parikh, 1999] as motivations for

Axiom P and as motivations for selecting topic sensitive revision operators, are exten-

sively discussed in chapter 3. One point worth noticing is the much stronger psychologis-

tic flavors of the considerations in [Chopra and Parikh, 1999]. For example:

A third feature is that human beings are not in practice deterred by the

fact that derivability in the propositional calculus is co-NP-complete and that
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in the predicate calculus it is actually undecidable. It is common for people

to answer a query with “I don’t know”, but not with “I don’t know whether an

answer follows from my belief”. If computational complexity were a prob-

lem in real life, such answers would be common-place.

It is tempting to treat this comment (as well as the other motivations derived from

naive psychology) as boilerplate introductory throwaways. However, Chopra and Parikh

treat these considerations as evaluative criteria for a theory of belief revision. Indeed, they

claim that their model of belief provides “ psychologically plausible, computationally

tractable procedures for belief revision”. This is no mere buttressing consideration, nor is

it touted as a mere pragmatic advantage of their theory for the sake of engineering human

-ike systems, but as part of the basic constraints of an account of revision rationality.

It is still tempting to treat these comments as throwaways because of their extreme

silliness. The first question that comes to mind is asking what it is that human beings

are not deterred from doing by the co-NP-completeness of propositional derivation. How

many people even know what propositional derivation is, much less its complexity, much

less the significance of that complexity? (We’ve encountered many graduate students in

computer science who aren’t clear on even the common cant about the significance of

intractable problems, much less the many subtleties of how computational complexity

considerations should affect practice.) It seems much more likely that sheer ignorance is

a better explanation of lack of deterrence. Furthermore, not many people try to derive

things in propositional (or any other) logic outside very specialized contexts. So even

if they would be deterred from trying to find propositional derivations, that’s hardly an
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interesting consideration. (The intractability of 3SAT doesn’t even deter people from

writing propositional satisfiability solvers!)

Finally, it is very hard to see why anyone thought that, for example, AGM with

propositional belief sets was psychologically realistic, that is, was anything remotely re-

sembling what goes on inside our heads. Even if it were a reasonable approximation, it

is very hard to see that people in normal interaction would characteristically distinguish

between knowing something and knowing whether it follows from what they explicitly

believe. In fact, people do so distinguish as the disputation tactics of reductio ad absur-

dum and (non-fallacious) ad hominem illustrate. It is very common to acknowledge that

there are consequences of our beliefs that we are unaware of.

This sort of problematic psychologism is not uncommon in knowledge representa-

tion. For example, Franz Baader, in [Baader, 1999] writes:

Another requirement that is usually imposed on KR formalisms is that

of allowing for a structured representation of the knowledge. This means

that semantically related information (for example, all the knowledge about

knowledge representation based on Description Logics) should also syntac-

tically be grouped together. This requirement is, on the one hand, justified

by cognitive adequacy. [Footnote: In the human brain, correlated informa-

tion is also not stored in unrelated parts.] On the other hand, there are purely

pragmatic reasons, since structured representation allows for faster retrieval.

Gerhard Strube (in [Strube, 1992]) identifies two concepts of cognitive adequacy,

strong and weak. A formalism or representation exhibits strong cognitive adequacy if it

76



correctly models human concepts or cognitive processes. A formalism or representation

is weakly cognitively adequate if it is workable for human beings. The former is a claim

about suitability as an account of cognition, whereas the latter is a claim about usability.

These two claims do not necessarily go together. It may be the case that a formalism is not

particularly usable due to its strong cognitive adequacy: for example, if the phenomenon

itself is complex and difficult to understand or contains many fine details that are irrelevant

to some task at hand, then it is quite likely that the model of it will be complex and hard

to work with. Similarly, if human thinkers are quite bad at some task, an accurate model

is not promising as a candidate prosthesis.

Baader’s appeal is fairly superficial and buttressed by pragmatic performance con-

siderations (which, in fact, are equally superficial in the way that Chopra and Parikh’s

are). One can tie performance, in part, to weak cognitive adequacy as responsiveness

is an important consideration for usability. Also, there is a hint that it is not accidental

that strong cognitive adequacy should indicate other benefits: after all, we are the most

successful knowledge based systems we know of. The flip side is that the presence of the

ancillary benefits is a sign that our formalism is strongly cognitively adequate.

These last two lines are rather worrisome. Our understanding of how humans think,

and our command of “intelligent” technology, is so rudimentary, we should be very wary

of suggestions that the way forward is to replicate “how we do it”. Consider how difficult

a task it would be to replicate the human intestine, or even a kidney, where we have

something close to an equivalent (for some of the functionality). Or consider thinking

that we had to closely mimic a kidney before making a dialysis machine. Or insisting that

mechanized locomotion devices had to be bipedal. Existing systems are, of course, worth
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studying, drawing inspiration from, and even (crudely) emulating. But it is not fruitful to

constrain the design of useful, usable tools by an emulation criterion.

Thus, if our concern is usability, strong cognitive adequacy, in itself, is not inter-

esting. Traditional user studies will be far more relevant than the kind of experiments

described in [Renz et al., 2000]. Interestingly, often there is no need to ratchet up the ade-

quacy stakes. A plausible prima facie case for even the simple kind of structuring Baadar

mentions can be made by observing our general, external information management prac-

tices. After all, librarians have long held that semantically related information should also

be syntactically grouped together. A library doesn’t cognize, but such organization does

allow for faster retrieval.

Similarly, people do things in topic oriented ways. They think, write books, talk,

organize libraries, categorize email, diagram arguments, and build ontologies with quite

a bit of regard to topicality. Indeed, the very task of determining what is topically related

to what is a major activity! For some of these activities, computational complexity is

not a particularly interesting question. For some, for example, ontology development,

computational complexity is very important as we want to automate some tasks.

So, in spite of their problematic origin, these considerations are useful both as in-

put to rationality determination (as seen in section 3.5 and earlier in this chapter) and

pragmatically. We can accept their spirit even if their letter is wanting.

Technically, the key issue is whether we can extend topic oriented revision to the

inconsistent case. As we shall see, the account in [Chopra and Parikh, 1999] falls short

on some critical points.
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4.2 B-structures

[Chopra and Parikh, 1999] propose a model of belief representation and revision

that attends to the following four concerns (stripped of their psychological flavor):

1. Belief revision should meet Gärdenfors’ preservation criterion [Gärdenfors, 1988],

that is, that a revision operator should retain as much of the original theory as

possible.

2. Operations on belief representations need to be computationally practical.

3. A belief representation system should deal sensibly with inconsistent beliefs.

4. Belief representations should allow for some portion of the belief state to be implicit

in the representation.

The first two concerns were met in [Parikh, 1999], which proposed adding an axiom

to the standard core six axioms of AGM theory. However, as stated, AGM theory amended

with Axiom P (what they call “LS” theory) does not handle the remaining two concerns:

inconsistency tolerance and a robust distinction between implicit and explicit beliefs. It

is unclear if there is a robust, independent motivation for this last concern other than

inconsistency tolerance.

In order to handle the remaining concerns, Chopra and Parikh introduce the notion

of a belief structure (B-structure) which deviates from Parikh’s extension of AGM theory

(LS) in three ways:

1. They shift from the traditional AGM focus on logically closed theories to belief sets
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that may be not closed (e.g., the “object of revision” may be a set of beliefs which

does not explicitly contain all the consequences of the set)2,

2. they relax the disjointness requirement on splittings, and

3. they allow for the theory associated with the B-structure to be inconsistent before

and after revision.

Parikh’s splitting languages are strictly disjoint sets of atomic terms. Instead of a

strict partitioning of the language L (and thus of the signature of formulae in the nor-

malized base), Chopra and Parikh allow overlap between the sublanguages. Instead of a

splitting, we have a B-structure:

Definition 6. ([Chopra and Parikh, 1999]) For a set of primitive terms, L, let {L1, . . . , Ln}

be such that L = ∪Li : i ≤ n and {T1, . . . ,Tn} such that for all i, Ti is a theory in Li.

{(L1,T1), . . . , (Ln,Tn)} is a B-structure on L.

When n = 1, then we have a normal theory T in L. When {L1, . . . , Ln} are disjoint

(that is, strictly partition L) and T = Cn({T1, . . . ,Tn}), then {L1, . . . , Ln} is a T -splitting.

So all splittings have related B-structures, but, due to possible signature overlap, not all

B-structures are splittings. Chopra and Parikh motivate allowing overlap by mobilizing

intuitive considerations against the disjointness of (logical) topics:

Consider the following example: Bill Clinton’s problems over Monica

Lewinsky may perhaps be connected with the bombing of Iraq, which in turn

may affect the price of oil and which may then affect my airfare to India.

2A standard move, e.g., see chapter 3 of [Hansson, 1999b].
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Normally, we do not reason with all these topics together at one time. More

often than not, they will be kept separate. However, the connections may be

noticed on occasion, if there is an article in the newspaper connecting a price

hike in airfares with the shortage of oil.

Unfortunately, this example is problematic. As we saw, split theories do contain

sentences with signatures that straddle more than one element of the splitting; indeed, it is

impossible for them to not have such. Just consider tautologies over the whole signatures.

Secondly, it’s not clear that this is a case of topics being fluid in a static structure. If

we have a belief set wherein Clinton and Lewinsky are part of a splitting element that

is disjoint from the element concerning Iraq, then, when we read in the newspaper that

Clinton is the one who is bombing Iraq we have a change to our belief set. This change

alters the topic structure of our belief set. But this should not be surprising at all. Clearly

different theories are going to have different logical structure.

It may be the case that these topics, in any appropriate regimentation, are never

going to be (logically) separable into disjoint areas. Clinton is a person, as is Lewinsky,

as are the bomber pilots, and the Air India pilots. It just might be the case that common

sense is highly non-modular and thus the finest splitting of a faithful representation always

will be identical with the whole regimentation (and thus too bad for Parikh-relevance in

that context). However, there are other contexts where things are more structured.

In any case, a B-structure, {L1, . . . , Ln} does not have to strictly partition L, instead

it may k-partition L:

Definition 7. [Chopra and Parikh, 1999] Let {L1, . . . , Ln} be such that L = ∪ Li : i ≤ n.
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{L1, . . . , Ln} k-partitions L if any symbol in L appears in at most k elements of {L1, . . . , Ln}.

Finally, B-structures may be inconsistent to varying degrees: in particular, while

each element of the B-structure must be consistent, sets of elements (due to the sharing of

symbols) may be jointly inconsistent.

Definition 8. [Chopra and Parikh, 1999] A B-structure is m-consistent if there is no set

of Ti of cardinality m such that the Ti are jointly inconsistent.

Chopra and Parikh require that each component, Ti be consistent, that is, that

all B-structures are 1-consistent (and thus all inconsistent B-structures are at least 2-

partitioned). The discussion of this requirement is a bit thin:

Suppose an agent believes theories Ti in languages Li and the Li are mu-

tually disjoint. Then if the Ti are individually consistent, they are also jointly

consistent. Thus the LS model cannot explain how an agent can be locally

logically omniscient — i.e., derive logical consequences within each Li but

still fail to be globally consistent. But the B-structure model we shall now

propose will permit agents to be globally inconsistent (as unfortunately most

of us are) while still operating locally in consistent frameworks.

Note that the sort of model we are considering will also be appropriate

for group reasoning. Each agent will have its own language and be individu-

ally consistent in it. But the languages of different agents may overlap and a

particular question α may be resolved by consulting those agents whose lan-

guages overlap with the language of α . . . Even a single agent maybe thought

of as consisting of a collective entity. . .
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The second paragraph aims to provide an independent motivation for the local con-

sistency criterion, that is, that it is helpful for modeling groups. But this is independent as

it requires a justification for the consistency requirement on the individual agents (in the

group) in the first place. Presumably, these “agents” can also be human beings and all the

psychologistic points hold (i.e., such agents do have inconsistent beliefs and can function

in group situations; they can, and do, have both intra- and inter-agent conflict). Indeed,

the first paragraph claims that most agents are in fact globally inconsistent! So how is it

that in the second paragraph we can impose an agent-global consistency constraint?

It is perhaps technically convenient to reuse classical reasoning at least at the local

level (much in the way that Kourousias and Makinson reuse the standard AGM axioms

on a normalized base), but it is hard to see why it is more than a technical convenience3

in this case. Even if we embrace a homuncular view of individual agents, it is unclear

3Or a dialectical convenience, albeit a dodgy one. There is sometimes the feeling that if one can some-

how claim not to have modified classical logic, but just to be using it in a clever way, that this is somehow

inherently less suspect. In reply, we appeal to [Makinson, 1982]:

The authors are at pains to insist that their approach is not based on a non-classical logic,

saying for example that “our logic can continue to be altogether classical” (p. 22) and “the

present approach . . . dispenses entirely with any need to modify the principles of classical

logic” (p. 58). In one respect this is perfectly true: the definition of an intelligible system, as

we have seen, does not depend on any prior construction of a formal system of non-classical

logic. . . But it does nevertheless generate a non-classical logic in a quite direct fashion:. . . So

there is a sense in which the authors’ approach does determine, even though it does not issue

from, a non-classical logic.
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why the homunculi require the stricter standard. Furthermore, the consistency criterion

for components entails that B-structures cannot contain self-contradictory beliefs.4 Of

course, some paraconsistent systems (e.g., [Rescher and Brandom, 1979]) similarly rule

out self-contradictions (generally by forbidding adjunction) but this needs some more

justification, especially as the self-contradiction might not be very obvious). Finally,

the requirement for local consistency will inevitably force the unnatural separation of

things which are most intimately related. Just consider any proposition and its negation:

they must be slotted in distinct compartments (hence the 2-partitioning requirement on

inconsistent B-structures). But now compartments do not, in any intelligible way, capture

coherent fragments of the theory. They most certainly do not encapsulate the error we

often presume the contradiction to be. This pushes the notion of topicality out of the

logical structure of the theory and into some logically arbitrary choice. While we are

used to the fact that AGM-style rationality constraints are exceedingly loose (that is, there

are always other considerations which must be brought into play to uniquely determine

a revision operator), the uniqueness of the finest splitting is a powerful reason to treat

Parikh-relevance as a significant core feature of revision. While it may be justifiable in a

variety of circumstances to violate Parikh-relevance, it does capture some core intuitions

about Standard Operating (revision) Procedure.

This neglect of local paraconsistency is deep-seated. For example, in their discus-

sion of various potential relevance relations, they write:

For instance it is not clear what intuition about relevance R2 [that α is
4Presumably, we can treat B-structures which fail 1-consistency as a degenerate case, or as a indication

of a problematically contradictory set of beliefs.
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relevant to β ∧ γ if and only if α is relevant to β → γ] captures. If we let

β = p, γ = ¬p, then β → γ is equivalent to ¬p and of course relevant to p.

However, β ∧ γ is p ∧ ¬p, a downright contradiction and not relevant (in our

opinion) to anything.

It would be hard to imagine a more direct denial of contradiction compartmentalization:

no contradiction is relevant to anything. But surely our intuitions are pretty clear about

the relevance of contradictory sentences, self-contradictory sentences, and explicitly self-

contradictory sentences. For example, if I believe that all birds have feathers, no slug

has feathers, and some slugs are birds, clearly these remain relevant to my beliefs about

birds, slugs, and feathers regardless of whether they form a set of three sentences, one

conjunction, or we add the more explicit “all birds have feathers and some birds (which

are slugs) don’t have feathers”. Indeed, it hardly seems correct to say that β ∧ ¬β is

not relevant to anything, wherein both β and ¬β are relevant to something, and remain

relevant even when they are in the same set. For example, it’s obvious that β and ¬β are

both very relevant to β ∧ ¬β.

4.2.1 Applying B-structures: Implicit Beliefs

B-structures are supposed to be a better model of belief states than traditional AGM

belief sets. The very fact of their inconsistency tolerance is an important facet of their im-

proved modeling of belief states. Chopra and Parikh attempt to shows this by developing

a theory of implicit beliefs. Implicit beliefs are a special subset of the entailments of an

inconsistent B-structure (and its corresponding theory). Chopra and Parikh explicate this
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via a notion of query answering. Given a query formula, A, query answering consists of

two stages:

1. Find all the sublanguages (and thus subtheories) that are relevant to determining

whether A. A sublanguage is relevant to a query just in case the language of the

query (i.e., the smallest subset of L in which A or some formula equivalent to A

may be expressed) has a nonempty intersection with that sublanguage.

2. Using Belnap’s standard four values, if the union of those subtheories (ΓA) is incon-

sistent, then the answer to A? is > (i.e., the query is inconsistent). If ΓA ` A, then

the answer to A? is yes. If ΓA ` ¬A, then no, with ⊥ otherwise.

Chopra and Parikh say that one implicitly believes everything that, if queried, one affirms.

For an inconsistent B-structure, the affirmations will be a subset of the entailments —

since, after all, the inconsistent B-structure still entails everything. Query answering

(thus affirmation) is not directly defined in terms of the entailment of all the beliefs in

the belief structure, but only of the “relevant” ones. Relevance is purely a matter of the

relationship between the signature of the query and the signatures of the components

of the B-structure. In this, B-structure theory is similar to splitting theory. However,

the components of a B-structure — thus, the beliefs which are relevant to the query —

will partially depend on logically arbitrary choices. Recall that the only constraint on B-

structure components is that they must be consistent. They need not be minimal, nor need

they encapsulate their signature. It is still the case that every component whose signature

overlaps the signature of the query (or the revision input) is relevant, but this leaves a lot

of room for separating contradictions out. If the contradiction in the belief base does not
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directly involve the signature of A, then it is often possible to find a B-structure for which

A is an implicit belief.

Example 13. Let β = {A, B → ¬A,C → B,C}. Let β1 = {{A, B → ¬A}, {C → B,C}},

β2 = {{A}, {B → ¬A}, {C → B,C}}, and β3 = {{A}, {B → ¬A}, {C → B}, {C}} (that

is, β1, β2, and β3 are distinct B-structures defined over β). Now consider for which of

these B is an implicit belief. It is a consequence of all them, as all are inconsistent. The

following table shows the relevant compartments, the state of their union (consistent or

inconsistent), and the value for B (true, f alse,>, or⊥) given those components:

B-structure Relevant components Union is? Value of B

β {A, B→ ¬A,C → B,C} inconsistent >

β1 {A, B→ ¬A}, {C → B,C} inconsistent >

β2 {B→ ¬A}, {C → B,C} consistent true

β3 {B→ ¬A}, {C → B} consistent ⊥

Notice that B is an implicit belief only of β2 and varies from being inconsistent (in β and

β2) to being underdetermined. Essentially, in order to affirm B, we need to ensure that

C gets into the selected components while A does not. The query itself, B, requires both

B → ¬A and C → B no matter how they are distributed in the B-structure (since the

signature of B intersects with that of both those sentences). It’s easy to verify that A is

true and ¬A is ⊥ in β1, β2, and β3 (though there are B-structures over β for which ¬A is

true).

Each B-structure can be seen as encoding a different relevance structure. β is the

same as the finest base splitting of itself — there are explicit formulae whose signature
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includes B which touch explicit formulae involving every part of the overall signature. B1

says that B is relevant to A and C separately. That is, B’s relevance to each of them does

not make them relevant to each other. B2 suggests that C is more tightly relevant than A to

B. And β3 tries to keep things maximally independent. In β3, a query formula’s signature

must directly contain an atom if it is to pull in all the formulae in β3 with signatures

containing that atom.

In example 13, β and β3 represent two extremes: β1 is the most “signature coher-

ent”, whereas β3 maximizes consistency opportunities. β is closest to a split base where

the thing split was itself a belief base (i.e., we were respecting the explicit syntax of the

base). Of course, if we were to normalize it, we could use several explicit contradictions

to capture the belief set. Perhaps something like {A ∧ ¬A, B ∧ ¬B,C ∧ ¬C} would be

appropriate (though boring and trivial, which itself may be appropriate). However, con-

sider β \ A and β \ (B → ¬A). Each of these is consistent, and we can easily find the

respective normalized bases: {¬A, B,C} and {A, B,C}. Each of these has the same (obvi-

ous) splitting language. Interestingly, their union forms the set of implicit atomic beliefs

of β2, but not β3. Not surprisingly, finer grain avoids more contradiction, but also min-

imizes the interesting inferential power of a B-structure. Greater refinement (as shown

by Chopra and Parikh’s Theorem 6.1) involves trading off some answers being implicit

(because no longer inconsistent) for some answers no longer being implicit (because the

components they touch no longer support them). As one might expect, there is no promise

that there will be a refinement with the maximal set of implicit beliefs, nor even that there

is one maximal set of implicit beliefs. If we just consider β, we see that A will be im-

plicit in some B-structures and ¬A in others, but they cannot both be implicit in the same
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B-structure.

The most refined B-structure will always be the set of singleton sets each containing

one formula from the base. Another way of characterizing this is by the query procedure:

instead of components, a query α is evaluated against the subset of a belief base, B, such

that if b ∈ B then Sig(α) ∩ Sig(b) , ∅.5 The evaluation base for any formula will, thus,

be minimal. Unlike with splitting, this maximality has a strong whiff of pointlessness: if

we always ground on individual formulae, there doesn’t seem to be much structure left

— certainly no inter-formula structure. While this leaves a role for extra-logical informa-

tion to supply structure, it does so at too high a cost. Consistent B-structures may defy

splitting considerations, or may not, but it is not clear why. Avoiding contradiction is a

worthy goal, but merely avoiding contradiction seems a strange motivation for structur-

ing a theory (without eliminating the contradictions!). Indeed, the wily airline example

seems foolish as well as distasteful. In this example, the airline overbooks a 100 seat

flight with 110 reservations. The airline is supposed to assert to each customer that they

have a seat, but we also model a constraint that there can be only 100 customers with

seats. Because we can separate all the “you have a seat” assertions and the constraint into

separate components, they will all be implicit beliefs of the system. (Since each reserva-

tion supposedly only pulls in the cardinality constraint, which, if evaluated together with

only one assignment, is satisfied.)

But this is clearly nonsense. Surely the relevant constraint would be that no two

passengers have the same seat (except, perhaps, a baby held in a lap). Each passenger

would have a seat assignment, and some seats would have two passengers. There are

5Notice that we are sneaking ever closer to a relevance logic per se.
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several other ways of modeling this, but none seem nearly as odd as an airline tolerating

a contradiction and saying that everything is hunky dory so long as not everyone shows

up. (In point of fact, that is what happens, but then this is simply modeled as well, such

that overbooking isn’t contradictory. That is, we want our theory to entail that there is an

overbooking, not that the theory is inconsistent because there was an overbooking.)

While we might concede, even embrace, the idea that there could be extra-logical

considerations which help structure a theory, B-structures leave no role for the logical

structure to matter. Indeed, the mere introduction of a contradiction seems to throw all

splitting considerations (and thus signature coherence) to the wind.

4.2.2 Applying B-structures: Revision

B-structure revision involves two features of a B-structure: the beliefs themselves,

and their organization. This generates two basic revision strategies: one which respects

the antecedent structure and one which alters that structure. Chopra and Parikh refer to

these as Options A and B, or “non-merging” revision and “merging” revision. In non-

merging revision, the input formula revises each relevant component of the B-structure

independently. In merging revision, first all the relevant components are gathered up,

then the revision is performed on the merged component. Merged revision destroys some

of the organization of the B-structure.

One feature of B-structures that we elided in our earlier discussions is the role

of explicit beliefs. While a B-structure is a set of theories (with their associated lan-

guages), each theory (Ti) has an associated set of explicit beliefs (Γi). The whole B-

90



structure has an associated belief base, and, as we have seen, many B-structures can be

derived from a single belief base. The role of the implicit/explicit belief distinction in

[Chopra and Parikh, 1999] is not entirely clear. Clearly, given an inconsistent belief base,

B, one cannot derive a sensible B-structure by first going through the corresponding belief

set, Cn(B), as it is trivial. However, there is no need to retain the exact beliefs of the ini-

tial base. Once one has derived a set of Γ, that is, consistent sub-bases, then even though

the corresponding theories T cannot be all merged together on pain of triviality, the B-

structure now is independent of the Γs. For example, one could derive new characteristic

formulae for the theories. Since each is consistent, there is no triviality.

At this point, a strong technical motivation for requiring consistent subtheories (or

sub-bases) emerges. If each sub-base is consistent, then we can have a set of non-trivial

subtheories. While we cannot, on pain of contradiction, union and take the closure of

these subtheories, we can still treat each subtheory as if it were an entire belief set (at

least some of the time) and thus reuse standard AGM revision operators on subtheories,

instead of having to generate a new set of rationality constraints. As we saw in chapter 3,

whatever you think about the intuitive basis for standard AGM theory, the rather striking

inter-reduction between the various ways of conceiving revision (given by representation

theorems) lends a lot of weight to them. Similarly, it is both technically and dialectically

convenient to be able to drop in standard AGM operators.

In particular, this move eliminates one aspect of syntax sensitivity. Although, for

some applications like ontology debugging, strict syntax sensitivity is critical, the gen-

eral sense is that the principle of irrelevance of syntax should be adhered too insofar as

is possible. B-structures have some syntax sensitivity, since they depend on logically
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arbitrary divisions of the base. But distinct explicit beliefs themselves can give rise to

the same B-structure (if it is correct to treat the definition of B-structures as being en-

tirely a set of language/theory pairs; if two B-structures can be significantly different

solely in their explicit beliefs, then the syntax of the base clearly matters). It may be that

from some bases one cannot generate certain B-structures, e.g., {P ∧ Q} cannot generate

{〈{P},Cn(P)〉, 〈{Q},Cn(Q)〉} without some normalization of the base; this is strictly analo-

gous to the fact that {P∧¬P} doesn’t generate a B-structure at all. In this way, B-structures

exhibit a rather peculiarly hidden syntax sensitivity: The syntactically explicit beliefs con-

strain the segmentation of the signature, including whether there can be any substructure

at all. Thus, there are split base driven B-structures which are not derivable from alter-

native bases (trivially, if you take a normalized base and they conjoin every characteristic

formula, you will have a base which generates no B-structure with a component smaller

than the entire theory).

These considerations lead us to tighten the definition of B-structures a bit to make

clear the role of explicit beliefs:

Definition 9. A B+-structure Bst, on a set of beliefs, B, is a set {〈S 1, B1,T1〉, . . . , 〈S n, Bn,Tn〉},

such that, for all : i ≤ n:

1. B =
⋃

Bi;

2. S i = Sig(Bi) = Sig(Ti)

3. Ti = Cn(Bi);

4. Sig(B) =
⋃

S i = Sig(
⋃

Bi) = Sig(
⋃

Ti), (let this be Sig(Bst));
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5. for any B j and Bk: j, k ≤ n, B j ∩ Bk = ∅

6. for any S j and S k: j, k ≤ n, it is possible that S j ∩ S k , ∅

7. for any T j and Tk: j, k ≤ n, it is possible that T j ∩ Tk , ∅

8. B may be inconsistent

A B+-structure is strict or strictly consistent iff Ti ⊂ Cn(⊥) (that is, each component

theory is (individually) consistent).

A S i is called a topic, and each S i is the topic for Bi and Ti.

A Bi is the set of explicit beliefs about a topic S i.

A Ti is the set of beliefs about a topic S i. If Ti is consistent, then Ti \ Bi is the set of

implicit beliefs about S i.

If we consider revision to be an operation from B+-structures to B+-structures

it is clear that there are three aspects that such operations could work on correspond-

ing to the three parts of the components of a B+-structure. For example: Let Bst =

{〈{P,Q}, {P,¬Q},Cn({P,¬Q})〉}. (In general, we will leave the theory part implicit.) Now,

Bst ∗ P ∨ S could result in either

{〈{P,Q, S }, {P,¬Q〉}

or

{〈{P,Q, S }, {P,¬Q, P ∨ S }〉}

(note that, Cn({P,¬Q}) = Cn({P,¬Q, P ∨ S })), if the signatures of the sets are the same

and, thus, in the first set, non-minimal). These are consistent with Option A/non-merging

revision. However, the revision could also result in
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{〈{P,Q}, {P,¬Q}, . . .〉, 〈{P, S }, {P ∨ S }, . . .〉}.

In other words, a revision operator could change the nature of a topic, and leave the

corresponding explicit beliefs (though not the total beliefs) untouched. An operator could

change some topic-specific set of explicit beliefs (and thus, perhaps but not necessarily,

the topic). An operator could introduce a new topic with new explicit beliefs. Another

possibility is that an operator might cause topics (and their related explicit beliefs) to

merge, or perhaps to split. While the above example reduced to expansion, suppose in-

stead we tried to revise Bst by ¬P ∧ S . In this case, it seems plausible that we should be

able to achieve, with some operator the B+-structure {〈{P,Q}, {P,¬Q}〉, 〈{P, S }, {¬P∧S }〉},

as well as {〈{P,Q, S }, {¬P,¬Q, S }〉} since we could easily derive the latter from the incon-

sistent base {P,¬Q,¬P ∧ S }. In fact, neither B-structure is a possible outcome of Chopra

and Parikh’s non-merging revision:

Definition 10. [Chopra and Parikh, 1999]. For a signature, S , let the set of well-formed

formulae for a given logic using S be LS . For a formula, α, let the shadow, Shad(α, LS ),

of α on LS (or, by abuse of notation, on S ) be such that Shad(α, LS ) = {Cn(α) ∩ LS }.

A shadow of formula, α on a language6 LS with signature S is the intersection of

the consequences of α and LS , i.e.: Shad(α, LS ) = {Cn(α) ∩ LS }

A characteristic formula, Cf(T ), for a theory, T , is any formula which entails the

theory, i.e., Cn(Cf(T )) = T.

A revision operator, ∗, on a B-structure, Bst = {〈S 1,T1〉, . . . , 〈S n,Tn〉}, derived from

a belief base, B, is a non-merging revision operator just in case, for any formula α and

i ≤ n:
6Where a language is all the well-formed formulae over the signature.
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1. if Cn(Shad(α, LS i)) = Cn(∅), then 〈S i,Ti〉 ∈ (Bst ∗ α),

2. otherwise 〈S i,Ti〉 < (Bst ∗ α) but 〈S i,Ti〉 ∗i Cf(Shad(α, LS i)) ∈ (Bst ∗ α)7.

Intuitively, a non-merging revision operator does not touch compartments with sig-

natures that do not intersect with the signature of the input formula. If a compartment

does have an relevant signature, then we revise each of those compartments with the in-

put formula separately from all the others.

Example 14. Let Bst be the B-structure

〈{P},Cn(¬P)〉, 〈{Q},Cn(Q)〉, 〈{Q, P},Cn(P ∨ ¬Q)〉}

(Note that Bst is inconsistent.) Also let

α = ¬Q

the result of a non-merging revision with a trivializing local revision policy is

〈{P},Cn(¬P)〉, 〈{Q},Cn(¬Q)〉, 〈{Q, P},Cn(¬Q, P ∨ ¬Q)〉}

while Bst ∗ α happens to be consistent, this was accidental. If Bst had had another com-

partment, 〈{P},Cn(P)〉, that would have been left untouched in any non-merging revision.

It is clear that non-merging revision operators do not satisfy the AGM postulates as

they need not satisfy any analogue of Success. They are, in fact, semi-revision operators.

Chopra and Parikh, in fact, give an example that demonstrates this:

Example 15. [Chopra and Parikh, 1999]. Let Bst be the B-structure

{〈{P},Cn(P)〉, 〈{Q},Cn(Q)〉}

and
7∗i is any specified standard revision operator. These can vary from compartment to compartment.
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α = (P→ ¬Q)

With a non-merging revision operator, (Bst ∗ α) is just Bst again. While α is Parikh-

relevant to both components of Bst (due to the non-empty intersection between Sig(α)

and the various S i), in fact Cn(Shad(α, LP)) = Cn(∅) (and likewise for LQ). To see this,

observe that α cannot entail any non-tautological formula with a signature smaller than

{P,Q}. Thus, there is no component theory, T of Bst ∗ α such α ∈ T. That is, α is neither

an explicit nor an implicit belief of Bst ∗α. It is not even a contradictory belief in Bst ∗α.

Non-merging revision invariantly preserves the old topic structure. While one may

be able to justify this when the signature of any input formula is a subset of the signature

of the B-structure (that is, one might regard all inputs which are partially “off topic” as

so confused that they must be rejected until reformulated in a topic appropriate way), it

is very counter-intuitive in the face of signature expansion.8 Indeed, it requires rejecting

any formula involving new subject matter altogether, as well as ignoring the inherent

topicality of an input.

Merging revision does attend to the topicality of the input, but still falls down on

new subjects:

Definition 11. [Chopra and Parikh, 1999]9. A revision operator, ∗, on a B-structure,
8This is true whether one considers true signature expansion, or if one populates the B-structure with

empty compartments for all “new” terms or, somehow, with groups of new terms. It is possible to think

of signature expansion as occurring in a different stage than the revision, i.e., first one considers the new

signature; then adjusts the topic structure; and then, only then, one revises. This seems a little odd as one

would expect to derive insight into a new topic structure on the basis of the revision process!
9We note that in [Chopra and Parikh, 1999], this definition is rather strangely given in terms of explicit

beliefs. This is unnecessary and not exploited at all in [Chopra and Parikh, 1999].
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Bst = {〈S 1,T1〉, . . . , 〈S n,Tn〉}, derived from a belief base, B, is a merging revision operator

just in case, for any formulae α and i ≤ n:

• If Sig(α) ∩ S i = ∅, then Ti ∈ Bst ∗ α.

• Let Tα = {Ti|S i ∩ Sig(α) , ∅}.

Let Tα = Cn(
⋃
Tα).

Then, Bst ∗ α = (Bst \ Tα) ∪ {〈Sig(Tα),Tα ∗ α〉}.

That is, to revise Bst by α, first gather together all the α relevant components, union

them, revise the union, then replace the relevant components with the unioned, revised

one. Merging revision can change the topic organization of a B-structure. In principle,

merging revision revises all the beliefs that are topic-relevant to the input as a whole —

that is, as falling under a single topic induced by the input — whereas non-merging re-

vision revises each topic separately, preserving their distinctness. Unfortunately, Chopra

and Parikh do not discuss what happens when Tα = Cn(⊥), that is, when the merge topic

is inconsistent. If we follow the spirit of non-merging revision, we could simply reject

such inputs (that is, fall back on semi-revision), on the grounds that we’re already con-

fused on that topic (being inconsistent) or on the grounds that no new information on that

topic is possible. Alternatively, presuming that the input is not self-inconsistent, we could

fall back on non-merging revision. If the topic is self-inconsistent, then it’s not clear we

can do anything but reject it, given the consistency constraint on components. Again, the

inability to massage the input is a pretty severe problem.

While we might accept that these two families of operators, as with revision vs.

update operators, must be selected on the basis of extra-logical evidence, it is harder
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to understand why new information can only alter our topic structure by merging top-

ics. It is hard to see what intuitions would ground forbidding splits or mere expansions.

In fact, if we take B-structures to model multi-agent scenarios (where each topic corre-

sponds to an agent), then neither merging nor splitting make much sense (though con-

tracting and expanding topics do), and the inability to have duplicate topics (with possi-

bly distinct theories) likewise seems wrong. Consider a pair of contrarian recluses who

live together10. It seems possible that a correct B-structure would have two components

with the same signature (they talk to each other about everything they think about), i.e.,

Bst = {〈S ,T1〉, 〈S ,T2〉}. Now suppose they are given a fresh input P such that ¬P < T1 but

¬P ∈ T2. Presumably, after applying non-merging revision, P ∈ T1,T2. But this would

be incorrect. Perversity would preserve T2 and expand T1 by P. While an extreme case,

one could also imagine a case where wherein a conflicting input was isolated in its own

component of a B-structure e.g., when one is playing devil’s advocate. If separating con-

tradictory formulae was sensible in the first place (in order to generate the B-structure) it

is hard to see why it would not sometimes be a sensible revision strategy.

Of course, definition 6 permits duplicate signatures in B-structures: they just can-

not be induced by a revision. While this mis-match is disturbing, as is the priority of

topic-merging over any other sort of topic modification, the mere fact of duplicate top-

ics undercuts the whole Parikhian project. After all, in what sense do the components

of a B-structure, Bst = {〈S ,T1〉, 〈S ,T2〉}, deal with different topics? The theories may

be different, but this is not, in itself, surprising. For any given topic, we know there are

multiple distinct, perhaps incompatible, theories. Theories with overlapping topics also

10See the play Knock Knock by Jules Feiffer.
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make sense, though generally we want a bit more structure to the overlap. For example,

do two theories agree or disagree on their common topic and to what extent? Is one

theory a subtheory of another? But it is not too surprising when physics overlaps with

statistics and thus with economics. We might consider some notion of the proportion of a

theory devoted to a sub-topic as a way of indicating what is “essential” vs. “incidental” to

a topic. Indeed, we might consider two theories with slightly (or inessentially) differing

topics to “really” be about the same (general) topic. But if the topics coincide exactly,

its hard to see that the topic is driving the separation of the theories, especially given that

merging revision is promiscuous in its merging. It doesn’t try to create a new topic that

covers the input sentence in some minimal way. In fact, it doesn’t offer that as an option.

If a component topic overlaps with the signature of the input formulae, it is pulled in.

While in non-merging revision, topicality does play a strong role (indeed, forcing

semi-revision), the overall picture is that theories, not signatures, are the primary object

of consideration. After all, the prime considerations for division are consistency (of the

theory), which is a strict condition, and the set of implicit beliefs. Topicality itself plays

an incidental role in the generation of sub-theories.

Returning to B+-structures, we can see several advantages. Since we maintain base

formulae, we can accept self-inconsistent inputs. Since we allow topics to be altered, we

can merge, split, or add topics as seems appropriate, which allows us to accept inputs with

new signatures, or inputs that span more than one topic (either by merging, or creating a

new topic). In general, if we shift our attention from topicality to segmentation of belief

bases, we easily arrive at Sven Ove Hansson and Renata Wassermann’s theory of local

change.
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4.3 Local Change

In [Hansson and Wassermann, 2002], we find an account of local theory change op-

erations (including, revision, semi-revision, contraction, and consolidation) in terms of a

localized consequence relation. This relation, and the associated change operations, is de-

fined strictly in terms of belief bases and their associated (global) consequence relation.11

As in splitting and B-structures theory, Hansson and Wassermann wish to divide

belief bases into smaller components. As in splitting theory (though less so with B-

structures) they wish these divisions to be driven by the logical structure of the belief

base:

Compartments of belief bases can be seen as representations of compart-

ments of our minds or databases. There are two major ways to introduce

them. First, they may be introduced as an addition to the logic, so that one

and the same belief base can be divided into compartments in different ways.

Secondly, they may be derived from the logic. The second method is the more

economical, requiring no extra entities, and should be tried out first. We are

going to use it here.

B-structures introduce new features to the logic, to wit, the particular split of the lan-

guage. Clearly, the very same belief base can generate many different B-structures, and

11They briefly describe the motivation for belief bases: essentially, better computability and greater

expressive power — in particular, the ability to distinguish between inconsistent belief states. The only

downside they mention is increased complexity over belief sets ([Hansson and Wassermann, 2002], pg.

50.).
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not merely in a refinement hierarchy. Different (inconsistent) B-structures have differ-

ent consequence relations (i.e., sanction different implicit beliefs) and react differently to

revision.

While logical structure does drive membership in a compartment, unlike with split-

ting theory, logical structure alone does not drive membership. As with B-structures,

some choices are made based on logically arbitrary considerations. Unlike B-structures,

after the initial choice of a “seed”, the rest of a compartment is determined by logical

structure alone. The seed of a compartment is a subset of the belief base. Compartments

for sets with cardinality greater than one can be defined as the union of the compartments

of each formula. Intuitively, the compartment of a formula in a belief base is the set of

all the relevant formulae in the belief base. Here, these are the sentences which entail

the compartmentalized formula or its negation, with the proviso that contradictions and

tautologies are not relevant to anything:

Definition 12. [Hansson and Wassermann, 2002] (definition 2.3, quoted exactly) Let C

be an inference operation. The function c is the compartmentalization function based on

C if and only if, for all A, B ⊆ L12: c(A, B) =
⋃

α∈A c(α, B), where

c(α, B) = ∅, if α ∈ C(∅) or ¬α ∈ C(∅)

c(α, B) =
⋃

((B yC
13α) ∪ (B yC ¬α) \ (B yC ⊥), otherwise.

In other words, like B-structures, compartments cannot contain self-inconsistent

12Presumably, L is the set of all formulae, i.e., the language.
13y is the kernel operator, parameterized to a consequence relation, C. Essentially, B yC α is the

set of minimal subsets of B which entail α according to C. Kernels are also known as justifications

[Kalyanpur et al., 2007].
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formulae, even relevant ones. For example, the compartment of P in B1 = {P ∧ ¬P,¬P ∧

(Q ∧ ¬Q),R ∧ ¬R} is the empty set. Yet, the compartment for P in B2 = {P,¬P,¬P ∧

Q,¬Q,R ∧ ¬R} is {P,¬P,¬P ∧ Q}. In the first case, we seem to be missing crucially

relevant formulae, although we do exclude the clearly irrelevant R ∧ ¬R. In the second

case, one might be disturbed by the fact that the compartment is not complete with regard

to its signature. In splitting theory, having Q in the signature is enough to pull in all the

formulae with Q in their signatures. Clearly, there will be overlap between c(P, B2) and

c(Q, B2) = {¬P ∧ Q,¬Q}, but, unlike with splitting theory, there is no way to determine

topicality from mere inspection of the component or its signature. Instead, we need to

inspect the original base to determine, given the base, what, e.g., c(Q, B2) could be a

compartment for.

Hansson and Wassermann follow the standard pattern of defining local consistency

and local implication in terms of compartments, and then defining the (base) revision op-

erators on top of these. One interesting feature of [Hansson and Wassermann, 2002] is

that the definition of local change operations is nearly an afterthought. Instead of defin-

ing local operations directly, they first give very general definitions of the various change

operations (in their case, contraction, consolidation, external and internal revision, and

semi-revision). The definitions are general in two respects: First, they abstract away,

where possible, the distinction between belief base vs. belief set change.14 Second, they

14In some cases, a change operation doesn’t really make sense in the belief set, aka, theory context.

Consolidation and thus external revision are the obvious cases. Consolidation isn’t meaningful for standard

belief sets (i.e., those defined by an explosive consequence relation) because all contradictory belief sets

are identical, reducing the “choice” of how to contract by a contradiction to mere selection of an arbitrary
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rely on very general properties of a consequence relation. For example, in definition 3.2

of [Hansson and Wassermann, 2002], the kernel contraction operator is defined in terms

of an arbitrary inference operation CR, then theorem 3.3 (their generalized representation

theorem for their contraction operation) begins, “Let C be an inference operation satis-

fying monotony and compactness. Then ÷ is an operation of kernel contraction on B

determined by C and some incision function if and only if for all sentences α...[a series of

AGM style axioms].” As long as localized implication satisfies monotony and compact-

ness, it defines a set of (kernel) contraction operations.

Unfortunately, the local change operators do not apply to B-structures in the general

case, since the components of a B-structure (or B+-structure) do not have to be compart-

ments. This is easily seen:

Example 16. In the B-structure:

{〈{P},Cn(P)〉, 〈{P,Q},Cn(Q→ ¬P,Q)〉}

neither component is a compartment for P, for ¬P, for Q, or for (Q→ ¬P) (if we take the

underlying base to be {P,Q → ¬P,Q}). For the first two, both components are too small

(i.e., they do not contain the kernels for the complementary literal). For the second two

formulae, the second component is too big, i.e., contains things which could be removed

without breaking the entailment.

B-structures, being based on (logically) arbitrary decisions, can easily come apart

from compartments. Furthermore, compartments are relative to a seed. What’s more

or less stable is the compartmentalization function — the compartments returned from

consistent set of sentences from the language. External revision relies on consolidation.
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that function depend on the second argument. So any static division, even if it generates

compartments for some cases, invariably will fail to capture compartments for other cases.

Thus, local change has three points of arbitrariness:

1. It depends on the syntactic form of the base. Equivalent bases can give radically

different revision results.

2. Compartments depend on the seed in question.

3. Seeds in question depend on the sentences to be retracted.

Local change is always merging — compartments pull in everything relevant to the input

as a unitary whole. Local change is also, surprisingly, computationally reasonable. Intu-

itively, computing kernels is no harder than reasoning itself (assuming that reasoning is

NP-hard), and, for many logics, we have good empirical evidence that computing kernels

(i.e., justifications) is reasonable (see, [Kalyanpur et al., 2007]). (How difficult the over-

all procedure is depends on the change operators). This reasonableness claim is a little

different that Parikh’s computational claims: We observe that as long as we can reason

with a theory, we can (in all probability) compute the kernels as well. That is, we accept

the worst case complexity of the logic, but observe that we can, for many real cases, do

just fine with it. That is, compartmentalization does not alleviate the complexity, but it

also doesn’t make it worse.

However, the fact that we cannot determine a compartment without knowing the in-

put is, prima facie, quite damaging to the ability of local change to underwrite an account

of topicality and topic oriented revision. To put it bluntly, local change does not provide

any sort of analysis of the object of revision. With splitting theory, we had an intuitively
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plausible criterion of topicality (disjointness of signature) and some reinforcing results

(univocal finest splittings). With B-structures, topicality was extra-logically determined,

but clearly there. Indeed, the structure of B-structures given by topics drove different

fundamental sorts of revision operators. Local change says nothing until you try to revise

and then we don’t have topicality so much as exact relevance. In spirit, compartments are

very similar to maximal non-entailing subsets, minimal entailing subsets, and all the other

sorts of apparatus AGM style theories have mobilized. (This shouldn’t be too surprising

given that kernels are a basic part of base revision.) Thus, we aren’t really exploiting the

structure of the theory in any interesting way.

4.4 Parikhian Compartments

While disappointing as a theory of topical revision, local change does provide some

apparatus that allows us to rehabilitate splitting theory to meet the critique presented

in [Chopra and Parikh, 1999] without the failings of B-structures(or even B+-structures).

Let us consider consistent theories first. It is clear that the finest splitting of a theory (or a

base) is a collection of compartments for the set of all15 topic-confined inputs. Recall that

15A split can contain components that are not minimal with respect to specific inputs confined to the

corresponding language, and typically will. But this is exactly what one would expect when considering

the topic of an input, rather than the specific content of an input. For example, if my beliefs entail that I

believe that my refrigerator is sentient, it’s entirely possible that the kernals supporting that belief (or its

negation) omit beliefs that support my implicit belief that my refrigerator has a door. But if I am considering

everything that I believe about the topic of my refrigerator, I would to expect to consider both its sentience

and its door.
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each component theory (or base) of a splitting is sufficient to capture all the entailments

of the parent theory which are expressed in terms of that splitting’s signature. That is, a

splitting element captures all the entirely on-topic implicit beliefs of a theory. This fol-

lows directly from parallel interpolation. Thus, for any (consistent) theory (or base), B,

and any contraction input with a signature confined to some element Bi, α, the kernels of

α in B are all going to be subsets of Bi. So they aren’t quite compartments, since they are

somewhat larger. But this is what we’d expect from a topic account! Not every on-topic

entailment follows from the whole topic — i.e., topics have substructure. This distin-

guishes topicality from relevance. Not every on topic sentence is relevant to arbitrary

input.

Similarly, if we have a cross-topic formula to contract, we need merely take all the

topics whose signature intersects with the signature of the input to form a (superset of a)

compartment for that input. This is, of course, exactly what we do for Parikhian revision

under Axiom P. Whether we choose to make our topic focused revision operator a local

change operator as well depends on the situation. If we are modeling situations where the

topic is well accepted and considered to be stable, reliable, or well entrenched, we might

well choose to localize the change as much as possible. Similarly, if the overall theory

is shaky, new, or otherwise unstable, we might prefer to let new inputs have more radical

and far reaching (yet still topic oriented) effects.

If we consider inconsistent theories, we can still point to univocal splittings if we

simply consider split (unnormalized) bases. That is, we divide the base into a series of

minimal subsets with disjoint signatures. At this point, we will (potentially) have both

consistent and inconsistent components. For the consistent ones, the above arguments
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hold (i.e., they are appropriate supersets of the union of compartments for all entailments

expressible in the signature of that component, i.e., “on-topic” entailments). For inconsis-

tent components, presuming no self-inconsistent formulae, it is easy to see that they are

supersets of the relevant compartments as well. Given that there are no self-inconsistent

statements, we can consider only consistent sentences α such that (B y α) (B y ⊥) is

non-empty. That is, we focus only on formulae which do not follow from the inconsis-

tency of B alone. Now, suppose that Bi is the only inconsistent component of B. We know

that
⋃

(B y α) ⊆ Bi because, by splitting, Sig(α) ⊆ Sig(Bi). By parallel interpolation, no

formula with a disjoint signature can entail (or be part of a minimal support for) α. The

same principle applies for ¬α. Thus, Bi is a superset of the compartment for α and the

principles of local change apply.

We now have a theory of topicality (minimal disjoint subsets of the base) for which

topics are univocal, entirely logic-driven, and reasonably computable. Furthermore, we

have a bog-standard account of revision (local change) which, with slight modifications,

applies to our topic structured bases. Our theory of topicality confines contradictory be-

liefs, though, like other accounts, it does not handle self-contradictions.
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Chapter 5

Conclusion

In this thesis, we have investigated a series of accounts of logically determined

topicality and their relation to revision operators. One interesting fact we discovered is

that topic-respecting operators are, in general, sanctioned by broader sorts of AGM (or

base) postulates. Parikh’s idea that topic based considerations give a strong basis for

revising one’s account of the rationality of operators seems seriously misguided. Aside

from the fact that the various sorts of topicality we investigated simply had less radical

implications than the authors sometimes claimed, it should be clear that sometimes topic-

relevance isn’t an overridingly rational consideration. Topicality is one consideration

that comes into play in various circumstances and it is not irrational to consider topic

organization when one is revising one’s beliefs or editing a book or modifying a database.

However, there are considerations which cut across topicality, for example, the origin of

a belief. Similarly, not all revisable structures benefit from strict topical organization:

Consider an introductory book which covers lots of topics in a pedagogic, or merely

aesthetically, effective way. Or just consider a wide-ranging conversation that touches

on many topics via digressions. Such things are clearly not second-order irrational (i.e.,

there are good reasons — pedagogy, aesthetics, comfortableness — for not being strictly

topical) and, arguably, they shouldn’t be first order irrational (i.e., analogical reasoning

crosses topics; provenance crosses topics; etc.).
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We have developed a logic-based notion of topicality that:

• is intuitive (i.e., disjoint signatures indicate disjoint topics);

• works for inconsistent belief bases (i.e., topics capture and confine their errors);

• is univocally determined by logically considerations alone;

• is computable;

• selects reasonable revision operators (by borrowing from the theory of local change;

this also makes it applicable to a very wide range of logics).

As such, it meets more and more essential desiderata for a theory of topicality than split-

ting theory, B-structures, or local change. However, it still fails on some fronts:

• As with both local change and B-structures, it does not handle self-inconsistency

at all. While one might argue (as many do) that self-inconsistency is inherently

irrational, we have argued strenuously against that view. At the very least, a theory

of topicality should be able to identify the topic of a self-inconsistent statement!

• Unlike splitting theory, our notion, being base dependent, is strongly syntax sensi-

tive (which also drives the prior issue).

• Our topics do not overlap, nor do they say much, if anything, about topic substruc-

ture. Coupled with syntax sensitivity, we get topicality being less minimal than

we would prefer. For example, with consistent theories, normalized bases give us

smaller, more focused topics. On the other hand, this syntactic sensitivity allows us
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to couple otherwise separate signatures without having to add extra syntax to our

language.

While coping with all these issues is beyond the scope of this thesis, we can identify

several promising approaches to solving them.

Going in reverse order, the key point to notice about splittings is not their disjoint-

ness, but the effect disjointness has upon entailments. Originally, of course, Parikh was

motivated by the intuition that, at least, disjointness of signature was a sufficient condi-

tion for distinct topics (that is, there is no common topic between partitions with disjoint

signatures). That still seems correct. But the question is why? If we consider parallel

interpolation, the answer seems to be that a partition captures all entailments expressed

in the language of the partition alone. Furthermore, any union of partitions captures all

entailments expressed in the language of that union. Intuitively, if we have a disjoint par-

tition that contains sentences about hedgehogs, we know that the rest of the belief set or

base has nothing else to say about hedgehogs alone. If we have another partition that con-

tains sentences about the Swedish heavy metal rock band, Opeth, we know that anything

our belief set (or base) has to say about hedgehogs and Opeth alone is captured by the

union of their respective partitions.

While signature disjointness is sufficient (given the appropriate logic) for separable

topics it is not clear that it is necessary. The idea of “capturing all entailments” is naturally

parameterized by the consequence relation underlying those entailments. We can vary the

consequence relation in a number of ways:

• We can vary the signature of entailments.
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• We can vary the syntactic structure of entailments. For example, for databases we

might only care about entailing ground answers to conjunctive queries, or ground

answers to unions of conjunctive queries, or even arbitrary first order answers to

unions of conjunctive queries. Different sorts of query may be more or less sensitive

to the structure of the models of the belief set (or base).

• We can vary the entailment relation by changing the semantics of our logic or

adding new, unsound inference rules.

The last possibility is already accounted for by the rather broad conditions we have im-

posed on our logics i.e., restricted equality, monotony, supra-classicality, etc. Further-

more, if we change the logic of our beliefs we should expect a change in the logical

structure, and thus the logical topicality of our beliefs.

The second is similarly uninteresting and can be seen as a variant of the first with

the exception that more sensitive queries may affect the topic analysis.

The first is critical. We have already seen how queries can force otherwise distinct

topics to come together. Similarly, we’ve also seen how narrow focus on the query (i.e.,

for compartments) can give us finer grain structures. The question is whether there is

a natural way of distinguishing the signature for a class of queries in a principled way

such that the queries would induce a different, perhaps overlapping set of topics. In

combination with restrictions on the syntactic structure of queries, this might be quite

effective. For example, if we restrict ourselves to atomic class conditional queries (i.e.,

in description logic lingo, atomic subsumptions between concepts, aka, unary predicates)

then binary predicates (aka, roles) will never appear in any query. They still might affect
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topicality since they can affect atomic subsumptions. But since they don’t appear in any

possible query, it is at least possible that they can be shared between otherwise disjoint

topics.

Syntax sensitivity was introduced in order to cope with inconsistency. We need

to be able to distinguish between objects of revision that are, themselves, inconsistent.

However, radical syntax sensitivity isn’t necessary, even without switching to a full-blown

paraconsistent consequence relation. For example, we could stick with belief bases but

require that they be normalized. For example, following [Horridge et al., 2008], we could

apply the well known structural transformation [Plaisted and Greenbaum, 1986] to our

belief base. The structural transformation separates all “parts” of a formula, including all

nested substructure. It’s a common alternative to conjunctive or disjunctive normal form.

One consequence of this separation is that each complementary literal appears in their

own characeristic formaula. Thus, after transformation, there are no self-contradictions.

There are also no syntactically arbitrary couplings (e.g., random conjunctions of oth-

erwise unrelated literals). We could extend this further by allowing certain classes of

entailment of individual sentences (e.g., equivalents). It seems reasonable that we could

achieve a considerable degree of syntactic freedom in this way.
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Appendix A

A preliminary experiment

A.1 Empirical Issues

Even though there are strong theoretical considerations in favor of disjointness of

signature between two subsets of a theory (in appropriate logics) as a sufficient condition

(at least) for logical topic separateness, if real theories tend to be highly connected then

there are two obvious families of conclusion to draw: 1) that the analysis is correct but

logical topicality isn’t a comment feature of such theories or 2) that the analysis is wrong

and we should look elsewhere.

To this end, a simple experiment would be to take a corpus of formalized theories

and examine at least the first approximation of logical topicality. This appendix describes

the results of such an experiment.

A.2 Description

The TONES ontology repository at the University of Manchester1 is a collection of

ontologies (in the computer science sense, aka, logical theories in a restricted syntax) pub-

lished on the open Web by a variety of parties including NASA (about earth science) and

the National Cancer Institute. The corpus is not randomly gathered, but was assembled

by the maintainers from “likely” sources of “interesting” (esp. from a tool and logical ser-

1http://owl.cs.manchester.ac.uk/repository/browser
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vice point of view) ontologies. The repository contains (as of this writing) 230 ontology

with a wide range of size, complexity, and minimal background logic.

For this experiment, we implemented a naive version of base splitting without any

normalization and applied it to the ontologies from the repository. Even so, the time to

split an ontology, esp. larger ones, was dominated by download time.

The goal is to see if naturally occurring ontologies exhibit significant disjoint topic

structure.

A.3 Results

Of the 230 ontologies in the repository, we were able to download and process 199.

Of these, 132 had only one partition, indicating no significant disjoint substructure. Of

the remaining 67, 58 had between 2 and 9 disjoint partitions (weighted toward the low

end), and the last nine had up to 25 disjoint partitions (see figure A.1)

A.4 Analysis

While the large majority of ontologies showed no disjoint subsigntures, a rea-

sonable number did which does show that Parikhian topicality is not an unknown phe-

nomenon. Several factors suggest a bias against disjoint topicality being present in the

sample and detectable by our methodology:

1. We used a rather crude approximation method: Splitting the explicit base. We made

no attempt to normalize the base so it is possible that many of the ontologies had a

finer grain substructure.
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Figure A.1: This graph does not include the 132 ontologies with no topic substructure.
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2. Ontologies themselves are often “single topic’. Most of the ontologies in the reposi-

tory have disjoint signatures and, thus, themselves could be seen as exhibiting topic

structure with respect to each other. Of course, syntactic considerations alone in-

cline this way (i.e., uncoordinated parties don’t stumble across the same spellings),

so this would require some analysis of the content of terms and perhaps mapping

attempts between ontologies with related or overlapping domains.

3. In some ontologies (Galen is a good example) the developers used user vocabulary

to simulate functions that should be part of the logical or linguistic apparatus. For

example, Galen introduced a “top class” part of whose function was to provide a top

node in a browser. These sorts of modeling hack can destroy logically detectable

topicality.

4. It’s also possible that the particular linguistic affordances of the formalisms used

encourage a non-topical style.

Overall, we believe this experiment provides limited, prima facie support for the

general analysis in this thesis. As future work, we intend to delve further into the ap-

parently non-topic structured ontologies to see whether they are intuitively cohesive, to

develop algorithms which compute the normalized base, and to further investigate the

possibility of subtopics and overlapping topics.

We should point out that one area that experiment is unhelpful is in providing insight

into what happens when there are contradictions. Published OWL ontologies tend to be

contradiction free for several reasons including that contradictions are repaired before

publishing and OWL makes it fairly easy to produce nominally consistent ontologies.
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