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Access to historically significant email collections poses challenges that arise less

often in personal collections. Most notably, people exploring a large collection of emails,

in which they were not sending or receiving, may not be very familiar with the discussions

that exist in this collection. They would not only need to focus on understanding the

topical content of those discussions, but would also find it useful to understand who the

people sending, receiving, or mentioned in these discussions were.

In this dissertation, the problem of resolving personal identity in the context of large

email collections is tackled. In such collections, a common name (e.g., John) might easily

refer to any one of several hundred people; when one of these people was mentioned in

an email, the question then arises: “ who is that John?”

To “resolve identity” of people in an email collection, two problems need to be

solved: (1) modeling the identity of the participants in that collection, and (2) resolving

name-mentions (that appeared in the body of the messages) to these identities. To tackle

the first problem, a simple computational model of identity, that is built on extracting

unambiguous references (e.g., full names from headers, or nicknames from free-text sig-



natures) to people from the whole collection, is presented. To tackle the second problem,

a generative probabilistic approach that leverages the model of identity to resolve men-

tions is presented. The approach is motivated by intuitions about the way people might

refer to others in an email; it expands the context surrounding a mention in four direc-

tions: the message where the mention was observed, the thread that includes that message,

topically-related messages, and messages sent or received by the original communicating

parties. It relies on less ambiguous references (e.g., email addresses or full names) that are

observed in some context of a given mention to rank potential referents of that mention.

In order to jointly resolve all mentions in the collection, a parallel implementation

is presented using the MapReduce distributed-programming framework. The implemen-

tation decomposes the structure of the resolution process into subcomponents that fit the

MapReduce task model well. At the heart of that implementation, a parallel algorithm

for efficient computation of pairwise document similarity in large collections is proposed

as a general solution that can be used for scalable context expansion of all mentions and

other applications as well.

The resolution approach compares favorably with previously-reported techniques

on small test collections (sets of mention-queries that were manually resolved beforehand)

that were used to evaluate the task in the literature. However, the mention-queries in those

collections, besides being relatively few in number, are limited in that all refer to people

for whom a substantial amount of evidence would be expected to be available in the

collection thus omitting the “long tail” of the identity distribution for which less evidence

is available. This motivated the development of a new test collection that now is the

largest and best-balanced test collection available for the task. To build this collection, a



user study was conducted that also provided some insight into the difficulty of the task

and how time-consuming it is when humans perform it, and the reliability of their task

performance. The study revealed that at least 80% of the 584 annotated mentions were

resolvable to people who had sent or received email within the same collection.

The new test collection was used to experimentally evaluate the resolution system.

The results highlight the importance of the social context (that includes messages sent or

received by the original communicating parties) when resolving mentions in email. More-

over, the results show that combining evidence from multiple types of contexts yields

better resolution than what can be achieved using any individual context. The one-best

selection is correct 74% of the time when tested on the full set of the mention-queries,

and 51% of the time when tested on the mention-queries labeled as “hard” by the annota-

tors. Experiments run with iterative reformulation of the resolution algorithm resulted in

modest gains only for the second iteration in the social context expansion.
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Chapter 1

Introduction

Informal conversational media (such as email, instant messaging, discussion lists,

and voice messaging) are now increasingly popular and an important part of daily life for

many people. Software systems that enable users to communicate with text, voice, and

video are widely available and significantly affecting our social experience. Because of

the declining cost of long-term storage, such services have the potential to be an invalu-

able future resource for understanding the past. For example, the National Archives of

the United States has received 32 million emails from the White House adminstration of

former President Bill Clinton and hundreds of millions of emails from George W. Bush’s.

Making sense of collections at this scale will require new types of tools.

Unlike the traditional collections of news articles that steered the initial research in

the field of information retrieval, informal textual communication media that are conver-

sational put more emphasis on several remarkable characteristics:

• The data is naturally temporal in the sense that events, actions, and topics evolve

over time. This can make it hard for searchers who are neither involved in the dis-

cussions nor familiar with the specific topics to understand what is actually meant

without reconstruction of the surrounding context.

• New (non-dictionary) words may have been introduced. Moreover, some existing

dictionary words may have been used non-traditional meanings that are understand-
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able only by a small group of people communicating closely.

• The metadata that are associated with each unit of conversation can help people

recognize who is talking to whom and when, hence understand and make sense

of the conversations. While the users of more formal documents can rely on the

source characteristics (e.g., journal reputation), the central role of individuals in

the construction of informal conversations results in an explosive proliferation of

sources (e.g., email participants) that searchers new to these conversations could

have great difficulty comprehending.

• The conversational nature makes the identity of individuals a key factor for tasks

such as exploratory search and social network analysis.

• Informality makes handling such data more challenging for automated natural lan-

guage processing systems. It raises some non-trivial issues such as spelling mis-

takes, broken sentences, and interspersed text segments.

All of these characteristics make the problem of handling informal conversational

text different from traditional documents, and thus open a new set of research problems

that were not previously evident; the one addressed in this dissertation is identity resolu-

tion.

People exploring a large collection of informal conversational text in which they

were not involved (by sending or receiving,) may not be very familiar with the discus-

sions that exist in this data. They would not only need to focus on understanding the

topical content of those discussions, but would also find it useful to understand who the

people talking, listening, or mentioned in these discussions were. In fact, resolving (i.e.,
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disambiguating) the identity of people involved in these conversations will be beneficial

to better understand what could be found in this kind of data.

This problem of identity resolution is apparent in several exploratory tasks that deal

with large informal collections (e.g., retained emails, printed letters, and instant messages)

such as:

• a lawyer searching in retained emails, printed documents, and memos for evidence

that relates to intentions, or statements of or about specific individuals in a legal

case.

• an historian putting together a timeline of decisions made that led to the rise of an

organization by analyzing the actions of the key individuals affecting those deci-

sions.

• a police investigator tracking people involved in a specific event through a collec-

tion of their digitally-recorded text conversations.

• an archivist indexing the data (of the White House for example) by who was in-

volved in each conversation.

Email is perhaps one of the most popular and mature informal communication me-

dia.1 Research on email access has traditionally focused on tools for managing personal

collections, in part because larger and more diverse collections were not available for re-

search use. That is starting to change, most notably with the introduction of the Enron

1An October 2006 report by technology market research firm “The Radicati Group” (www.radicati.com)

estimated that there were 1.1 billion email users and 1.4 billion active email accounts worldwide.
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collection [48] to the research community. The availability of this collection motivated

the work in this dissertation to focus on email as the domain in tackling the problem of

identity resolution for this dissertation. The problem is concerned with modeling and re-

solving the identity of the involved participants (i.e., who sent email, received email, or

were mentioned in email).

1.1 Identity Resolution in Email

 

 

“Herman” 

Date: Thu Mar 08 11:30:00 EST 2001 
From: Kay Mann <kay.mann@enron.com> 
To: Carlos Sole <carlos.sole@enron.com> 
Subject: Re: Aquila letter 
 
I would want to make sure that the structure of the deal goes through  
Herman. There may be a tweak or a change which can have an impact on what 
gets booked on mark to market basis, etc. He may have absolutely nothing to  
add, but I wouldn't take the chance.  

?

Figure 1.1: An example of an actual email message from the Enron collection that illus-
trates the problem of identity resolution.
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As the largest (to the author’s knowledge) email collection available for research

purposes, the Enron collection was elected to be used in the experiments conducted in this

dissertation. The collection was first released by the Federal Energy Regulatory Commis-

sion (FERC) during the investigation of the former energy trading company. The email

dataset was later purchased by Leslie Kaelbling at MIT, and then a number of folks at SRI

tried to address some of the email-formatting issues. The version of the collection used

in this dissertation is the one finally hosted by CMU.2 It has a large number of communi-

cating parties and includes 517,431 messages in 150 top-level directories; each of which

contains the retained emails of a former Enron employee on the date that the collection

was obtained, but without attachments.

A typical email message from the Enron collection is shown in figure 1.1. For the

user to understand that email, it could be useful to know who “Herman” is. There might

be tens (or hundreds) of people involved in the collection whose first name is “Herman”,

but the question arises: “which of them is the one intended here?” A simple automatic

resolution output would either be the email address (as a unique identifier) of the most-

probable referent, or a ranked list of the most-probable ones by their identifiers (assuming,

of course, that the referent actually has an email address in the collection.)

Solutions to the above problem can be leveraged in different applications, either for

an automatic downstream process or an end-user:

• It can be used in exploratory tools for email collections by users such as historians,

archivists, and lawyers, to produce online resolutions of ambiguous mentions. The

resolutions can be linked to other emails in which the same people were involved
2http://www.cs.cmu.edu/∼enron
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as well. An example of the type of tools that can benefit from this work is NetLens

[45]; an iterative analysis tool that enables the exploration of content-actor network

data.

• It can be used to enrich social networks inferred from email communications. Re-

solving mentions in the body of emails has the effect of adding an indirect relation,

labeled “mentioned by”, to the social network in addition to the traditional “sent

to” and “received from” relations.

• It can be used to replace the ambiguous mentions by the true referent’s full name

or email address, in order to improve the performance of automatic email retrieval

systems. This could be done at indexing time.

• It can be used as a component in generating biographies of participants using sum-

maries of emails in which they were mentioned in addition to the emails they sent

or received.

• It can be used in an expert finding task by an automated system that can jointly

model both content and people to suggest experts for specific topics.

1.2 Structure of the Problem

The task of identity resolution in email is defined as follows. Given a collection

of raw emails, the goal is to build a system that seeks to resolve (i.e., disambiguate) the

identity of the persons who were involved (i.e., participated) in that collection, whenever

references to them are observed. In the resolution process, the system infers which per-
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Figure 1.2: Basic components of identity resolution system.

sonal identity sent, received or was mentioned in an email. Since the senders and receivers

of an email are easily identified by their email addresses, this dissertation focuses on re-

solving ambiguous names that are mentioned in the body of an email. Collectively, the

general goal is to determine for each participant, all the emails that refer to that partici-

pant, either in the email headers or in the body. No side information about the participants

(e.g., their names, job titles, relationships) is assumed to be available, in order to focus

the research on the general problem.

The problem can conceptually be considered a special case of the more general

problem of “Word Sense Disambiguation” (WSD) which is well-studied in the field of

natural language processing [80]. WSD is concerned with labeling an ambiguous word

(e.g., bank) with the appropriate sense (either river or financial institution) according to
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the context in which the word appears. In our problem, the ambiguous word is a name-

mention (e.g., Alan) and the potential senses are people who can be called by that name.

The domain is also specific; email. The biggest difference that makes our special case

much more challenging is that the cardinality of the potential candidate set of referents

for a name-mention in email data (which sometimes reaches hundreds in Enron collection

as shown in Chapter 7) is much larger than the case in typical WSD problems.

The task can also be formulated as a classification task, where the references are the

objects being classified and the personal identities are the actual classes. In fact, there is a

closely-related problem that is called “cross-document co-reference resolution” in which

all mentions that refer to the same person are clustered together, without the need of a

personal identifier that plays the role of a class label.

There is a basic set of sub-problems that are inherent in the problem of identity

resolution in email. Three sub-problems, illustrated in figure 1.2, are to be addressed:

1. How to model identity: In order to resolve references to people, a computational

model of each participant in the email collection is needed. The specific structure

of the identity model, that supports the use of the whole system, should be provided

and how the model is populated and then leveraged in the resolution process should

be determined. The accuracy of the resulting models should be evaluated before

being used in the resolution process.

2. How to resolve name-mentions: Ambiguous name-mentions should be resolved

to the true referent, or computationally to the referent’s unique identifier (e.g., email

address.) A mention resolution system that can accurately resolve name-mentions

8



in the collection should be designed. The resolution output of one reference can

be either one identity (selected from a set of potential candidates) or a ranked list

of candidates, each assigned a score (e.g., an estimated probability of being the

true referent.) This depends on how the downstream process will use that output.

The process of both identity modeling and mention resolution is called identity

resolution.

3. How to evaluate the resolution system in a repeatable yet affordable way: Au-

tomated resolution of mentions should be evaluated to measure the effectiveness of

the system. For an affordable evaluation of variants of the system, an appropriate

test collection should be used. A test collection generally consists of three com-

ponents: a set of documents, a set of queries that represent actual user needs, and

true answers to that set of queries [86]. The test collection in our case consists of

an email collection, a set of ambiguous name-mentions, and manual resolutions of

these mentions.

The three sub-problems impose the structure of the proposed solution to the main

problem. First an identity representation that captures the main personal attributes such

as email addresses, full names, and nicknames that can identify participants, is designed.

The representation forms the basis of a computational model that is used in the resolu-

tion process. An automated resolution algorithm is then designed to resolve mentions in

the whole collection, using a model that is motivated by the way an email author might

mention a person in an email. The resolution system should be accurate (for a reliable

downstream reasoning) and probably scalable (for downstream applications that require
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resolving all mentions in the collection.) Finally, a representative test collection and eval-

uation measures are specifically identified for this task to evaluate the performance of the

resolution system.

1.3 Contributions

This dissertation makes the following contributions:

• A computational model of identity that can be used for resolving mentions in email

is designed and implemented. The model associates names (including nicknames)

and email addresses for participants in the email collection.

• A generative probabilistic model for mention resolution is proposed. A complete

resolution system based on that model is implemented and evaluated on every test

collection suitable for that task that the author knows of. The system achieves ac-

curacy that is at least as good as, and often better than, previously-reported results.

• A parallel algorithm for resolving all mentions in an email collection using the

MapReduce framework [30] is designed and implemented. This scalable solution

resolves approximately 1.3 million mentions in about 3 hours.

• A parallel algorithm for efficient computation of pairwise document similarity in

large collections using MapReduce is designed and implemented. This algorithm is

a general solution that has been shown to be useful in the implemented resolution

system, and for other applications (e.g., query-by-example retrieval [53].)

10



• A new large and balanced test collection for mention resolution in email, that is

now the best available test collection for that task, is developed.

1.4 Dissertation Outline

The rest of this dissertation is organized as follows. Chapter 2 reviews related re-

search. Chapter 3 introduces the computational model of identity designed for the resolu-

tion task. The mention resolution algorithm is discussed in Chapter 4 and its MapReduce

implementation is detailed in Chapter 5. The new test collection developed specifically

for the task is presented in Chapter 6, followed by an experimental evaluation of the res-

olution system in Chapter 7. Finally, Chapter 8 concludes the dissertation with some

remarks about future work.
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Chapter 2

Related Work

This chapter discusses research related to the work of this dissertation from several

perspectives. Research on the general problem of entity resolution is first introduced,

followed by an overview of the related work on the dissertation main problem, iden-

tity resolution in email, in its two major sub-problems: mention resolution and identity

modeling. There is also a large body of work on other problems in the email domain;

this chapter gives some pointers to it. The chapter concludes by a brief introduction to

MapReduce, the tool used in implementing the proposed resolution approach, and other

related alternative frameworks that were recently presented.

2.1 Entity Resolution

The problem of identity resolution in email is a special case of a more general

problem referred to as “entity resolution.” Entity resolution is generically defined as the

process of determining a mapping from references observed in data to real-world enti-

ties. Examples of references are names, words, and phrases. Data can be structured (e.g.,

a relational database) or unstructured (e.g., news articles). Real-world entities can, for

example, be people, organizations, or locations. The general problem is also known as

“entity disambiguation,” “co-reference resolution,” “anaphora resolution,” or “deduplica-

tion” in different domains. The specific problem tackled in this dissertation is an instance
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of entity resolution that is concerned with resolving references to people in unstructured

data, specifically emails. In this particular domain, mentions refer to references, and iden-

tities refer to people.

2.1.1 Resolution in Structured Data (Relational Databases)

Most of the research on entity resolution has been focused on structured data. Here

a few recent approaches are cited.

A generic perspective to approach the entity resolution problem in relational data

was taken by Benjelloun et al. [13]. Their model was based on two black-box functions,

“match” and “merge,” provided as input to the resolution engine. Given such black-boxes,

an efficient resolution strategy was developed to minimize the number of invocations to

these potentially expensive black-boxes. A set of properties that the black-boxes should

have were identified that would lead to a well-defined single “answer” to the problem, as

well as to efficient algorithms.

An underlying assumption in that model was that local pairwise matching decisions

could be made. While this simplifies the solution from a generic perspective, other studies

have shown that leveraging global relational information between groups of references

can yield better results.

In one such study, Malin [56] adopted a social network-based disambiguation ap-

proach that leverages community similarity, rather that lexical similarity, to resolve refer-

ences in relational databases.

Another study was conducted by Bhattacharya and Getoor [15]. They formalized
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the problem as a clustering problem and proposed similarity measures for clustering refer-

ences, taking into account the different relations that are observed among them in addition

to their attribute (i.e., local) similarities. They also developed a probabilistic generative

model [14] that extends Latent Dirichlet Allocation. They used the notion of collaborating

groups of entities and developed an unsupervised sampling algorithm for doing inference

in that model. The algorithm jointly determines the most likely number of entities and the

mapping of references to entities. Experiments on two different citations datasets showed

improvements over traditional attribute-based models when relations were leveraged. Al-

though, these approaches have been applied to relational data, they can also be applied to

resolve references in email headers. However, it is not clear how conversational, topical,

or time aspects could be leveraged in their model.

Reuther [79] offered some insights into the importance of leveraging temporal and

topical aspects to match personal names in co-authorship networks, but those aspects were

not reflected in his approach.

2.1.2 Resolution in Unstructured Data (Text Documents)

Several techniques have been proposed to resolve references in text collections,

mostly on collections of web pages and news articles.

An intuitive way to resolve mentions is to extract unique personal information that

co-occurs with each mention and then cluster that information into groups that refer to

the same underlying person. This approach was adopted by Mann et al. [57] to distin-

guish personal names with multiple real referents in Web pages, based on little or no
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supervision. The approach utilizes a clustering technique over a rich feature space of bi-

ographic facts (e.g., date of birth, location of birth), which were automatically extracted

via a language-independent bootstrapping process.

The traditional structure of news articles that usually refers to unambiguous (e.g.,

full names) before ambiguous references are used, has motivated a two-step approach

for resolving mentions in news text [18]. First, within-document co-reference resolution

is performed to aggregate information about each entity mentioned in each document.

Then this information was used along with other features found in documents to deter-

mine which documents mention the same entity. Within-document resolution may, of

course, be less useful in the context of conversational text because of the phenomenon of

early negotiation, in which a private vocabulary is “negotiated” early in the conversational

interaction.

Probabilistic models have been successfully applied to tackle the entity resolution

problem. McCallum and Wellner [61] introduced a probabilistic model for proper noun

co-reference resolution across text documents. The model defines a conditional probabil-

ity distribution over partitions of mentions, given all observed mentions.

Lie et al. [52] presented two learning approaches to the entity resolution problem

in the context of news articles. The first was a supervised discriminative approach where

a pairwise local classifier was trained, followed by a global clustering algorithm that

used the classifier to produce a similarity measure. Their second approach developed an

unsupervised generative model that aimed to better exploit the natural generation process

of documents and the process of how names are scattered into them, taking into account

dependencies among entities. While these performed well, they have only been applied
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on small datasets, and they have not been demonstrated to be scalable.

The most similar approach to the one adopted in this dissertation (in the sense that

both try to leverage the context of a reference) was adopted by Pedersen et al. [73].

They proposed an unsupervised approach that resolves name ambiguity by clustering the

instances (passages of text) of a given name into groups, each of which is associated

with a distinct underlying entity. A vector for each instance is built using features of

words that co-occur in the set of all instances with the words that appear in a window

surrounding the given names in that specific instance (i.e., second order co-occurrence).

The general intuition behind the second order representation is that it captures indirect

relationships between words. The method was applied to a newswire corpus with pairs of

manually conflated names (pseudo-names). This approach was first proposed by Schutze

in the context of word sense discrimination [82]. Results of that approach showed good

performance for a sample of natural and artificial ambiguous words.

Bagga and Baldwin [7] suggested a Vector Space Model solution of that problem

and described a scoring algorithm for evaluating the coreference chains (i.e., clusters). A

comparison of different statistical methods in the task of cross-document coreference res-

olution was conducted by Gooi and Allan [41]. The study showed that the agglomerative

vector space clustering algorithm consistently yields acceptable performance.

To link references of same entity in different languages, Aktolga et al. [3] used

entity language models to capture the contextual language around a given alias, which

aids in finding new aliases to the same entity in another language. This is very similar to

the approach adopted in [81] to detect coreferences in Arabic documents using English

training data.
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More recently, Wick et al. [89] proposed a discriminatively-trained model that rea-

sons over the entities not the references, and thus jointly performed coreference resolution

and canonicalization (i.e., extracting attributes of the entities). Their approach achieved

an error reduction of up to 62% when compared to a method that reasons about references

only.

2.2 Mention Resolution in Email

In contrast to the other types of text, the nature of email as a conversational medium

has suggested different approaches to the problem. Email messages are often short, so

within-document clues for mention resolution are typically rare. Moreover, individual

messages are often not self-contained, so complementary context might be found outside

the collection. Furthermore, email is personal, so terms might be specific to the com-

municating parties. By contrast, news articles and Web pages are often one-shot, self

contained, and public, so a mention can most probably be resolved from earlier mentions

in the same document. Therefore, it is tempting to exploit a broad range of collection

resources in searching for evidence that can help with resolving mentions found in email.

All of the research cited above has focused on the task of resolving all references

in a collection collectively. This task is referred to as “joint resolution.” Since performing

this task is costly and time-consuming in practice, especially in growing collections, there

is a related task that is concerned only with resolution of a specific reference. This task is

referred to as “query-based” resolution. One way of query-based resolution is to reduce

the problem to joint resolution, but for only a subset of references that are related to the
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original reference. An example that adopted that reduction approach is the adaptive strat-

egy introduced in [16] for extracting the set of most relevant references for collectively

resolving a query.

Entity (or identity) resolution in email has not received much research attention un-

til the recent introduction of fairly large publicly available email collections, most notably

the Enron collection. Two approaches have been tried by Diehl et al. [31] and by Minkov

et al. [63].

Diehl et al. used temporal models of email traffic to resolve name references in

a subset of Enron email collection. The candidates were restricted to individuals who

had communicated with the sender of the message in which the reference to be resolved

was found. The candidates were scored based on the temporal characteristics of their

interaction with the participants of the message in which the mention to be resolved was

found. Two averaging filters (autoregressive and moving average) were applied to the

past and future interaction patterns. Experiments with varying time periods showed that

long-term patterns exhibited the greatest utility for mention resolution. In contrast to this

dissertation’s work with the entire collection, they focused only on Enron-domain email

addresses. Their test collection and queries have been used in the experiments in this

dissertation as one reference test collection.

Minkov et al. adopted a different approach using a graphical framework to repre-

sent all of the specific objects in an email collection. Their defined objects were: email

messages, persons, email addresses, terms, and dates. Similarity between these objects

were estimated using a multi-step lazy graph walk (where there is a fixed probability of

halting the walk at each step.) Each object was represented as a node in that graph and
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relations between pairs of objects were represented by the edges. Related objects that are

not directly linked to a query could be reached via a multi-step graph walk. Among the

applications of this framework is the task of resolving references in the emails.

Minkov et al. automatically generated two small test collections by simulating

a non-trivial matching of references to individuals whose names appeared in the “Cc”

header field. While they showed that a resolution based on that framework was effective

on two small subsets of the Enron collection, no results were reported for larger collec-

tions, leaving the scalability of the technique uncertain. Their test collections have been

used in the experiments conduced in this dissertation for comparison.

It is worth noting that joint resolution in email has not yet been researched. This

might be because (1) the task is complex, and (2) evaluation of that task requires a sig-

nificant human annotation effort (and thus understanding) of a large collection. This dis-

sertation tackles both problems. An efficient and scalable solution for joint resolution is

implemented, and a new test collection is developed for the task. The new test collection

is much larger than existing collections and spans a broader range of mentions than has

been investigated in previous work.

2.3 Identity Modeling in Email

Research on modeling identity in email collections can draw on a substantial amount

of prior work.

Carvalho and Cohen [21] applied machine learning methods to effectively detect

signature blocks and quoted text in the Enron collection. The approach adopted in this
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dissertation uses a simpler unsupervised technique and extends it by detecting salutations

and nicknames as well. Studies have also used the Web as an external source.

Culotta et al. [27] used the Web to extract contact information for people whose

names and email addresses were extracted from email headers.

Holzer et al. [43] proposed a graph-proximity-based technique to determine which

email addresses correspond to the same entity. This is exactly the problem of extracting

”address-address associations” discussed in Section 3.3. They approached the problem by

analyzing the relational network of addresses extracted from Web pages. The proposed

solution in this dissertation is restricted to the email collection.

Exploiting name repetition in the email collection, Minkov et al. [64] proposed a

recall enhancing technique for name recognition in email collections. They used name

dictionaries to help train their models.

There are a wide range of research problems that take some form of an identity

model as a starting point, the most deeply explored of which is social network analy-

sis. McArthur and Bruza [59] found explicit and implicit connections between people by

mining semantic associations inferred from their email communications. McCallum et al.

[60] proposed a Bayesian network that learns a topic distribution for communication be-

tween two entities based on the content of the messages sent between them. Finally, Keila

and Skillicorn [46] applied a model based on patterns of word usage to detect deceptive

emails in Enron collection.

Finding experts in social networks has also been studied using a variety of tech-

niques [83, 96]. The Text Retrieval Conference (TREC) also introduced the expert finding

task using W3C mailing list emails [87] as part of the Enterprise Search track [26].
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Dome et al. [32] used graph-based ranking measures to rank people on their ex-

pertise of a given topic. The nodes of the graph represent people, and edges represent

on-topic emails between them.

Two algorithms for determining expertise from email have been proposed by Campell

et al. [20]: the first considers the content of the messages communicated between can-

didates and the other considers the communication graph as well. Results show that

considering both the graph and the content performs better than the content-only algo-

rithm. This conceptually matches the “combination of evidence” approach adopted in

this dissertation.

Balog and de Rijke [9] adopted an approach that locates messages on a topic, and

then finds the associated experts using a standard language modeling for IR approach;

their approach combined evidence from both metadata and content of the email messages.

Balog at al. [8] later generalized the approach into two methods: The first directly models

an experts knowledge based on the documents that they are associated with, whilst the

second locates documents on topic, and then finds the associated expert. Experiments

show that the second strategy consistently outperforms the first. Finally, Balog and de

Rijke [10] complemented both document and proximity-based approaches by importing

global evidence of expertise (i.e., evidence obtained using information that is not available

in the immediate proximity of a candidate expert’s name occurrence or even on the same

page on which the name occurs.) Examples include candidate priors, query models, as

well as other documents a candidate expert is associated with. Results show that the

refined models significantly outperform existing state-of-the-art approaches.
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2.4 Research on Email-Related Problems

There has been extensive work that tackles other different problems on email genre,

such as sentiment analysis [91], name matching [40], event extraction[22], discussion

search [88], question answering [84], author identification [6, 28, 29], expert search [32,

20, 9, 8, 10], email summarization [94, 33], and email clustering [47, 12, 58].

This section briefly touches some work done on two of these problems, where sim-

ilar ideas to the work proposed in this dissertation have been adopted.

2.4.1 Email Classification

The problem of email classification is somewhat different from the standard prob-

lem of topic classification due to the nature of email; the task is subjective and the user

may apply different criteria that are difficult to detect [12].

Klimt et al. [47] used both structured email fields such as “From” and “To” and

unstructured fields such as “Subject” and “Body” as classification features. They also

studied how to use the threads for the task of email classification, but time information

was left out of their experiments. Bekkerman et al. [12] used a new evaluation method

based on the email timeline and found that the classification accuracy (using different

classification methods) was relatively low due to difficulty of the task. Martin et al. [58]

used a collection of behavioral features of a users email traffic to rapidly detect abnormal

email activity. They specifically analyzed the outgoing email behavior for virus detection.
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2.4.2 Email Summarization

Emails are often short and hard to understand in isolation; therefore approaches to

the task of email summarization tend to use contextual information that can be observed

in threads and other related emails.

Zajic et al. [94] suggested two approaches to email thread summarization: collec-

tive message summarization (CMS) that considers a multidocument approach, while indi-

vidual message summarization (IMS) treats the problem as a sequence of single-document

summarization tasks. Both approaches involved selecting important sentences from email

messages and compressing them (i.e., removing unimportant fragments). Experimental

results on the Enron collection revealed that CMS performs better. Dredze et. al [33]

developed an unsupervised learning framework for selecting summary keywords from

emails using latent representations of the underlying topics in a users mailbox, rather

than simply selecting keywords based on a single message in isolation. They tested the

proposed approach extrinsically using two email tasks over Enron collection: automated

foldering and recipient prediction. The results obtained demonstrate that summary key-

words do indeed serve as a good approximation of message content.

2.5 MapReduce: Distributed Programming Framework

Over the past few years, there has been a remarkable interest in mapping a broad

range of applications into MapReduce framework. MapReduce [30] is a distributed pro-

gramming framework that allows developers to easily form their data processing tasks

into a 2-stage model: map and reduce; the map stage runs in parallel on multiple process-
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ing nodes that each handles a unit of data and produces a list of intermediate key-value

pairs that are transparently sorted and finally processed by the reduce stage, which in

turn runs on multiple processing nodes as well, to produce the final output. The run-time

environment is responsible for all the rest, such as load balancing, scheduling, and fault

tolerance, which makes it very convenient for developers to only focus on actual problem

solving, rather than handling of low-level system issues. It also opens the door to process

very large amounts of data on a cluster of commodity hardware.

The MapReduce pattern has been shown to be useful for many applications, e.g.,

those from machine learning [24, 72], relational data processing [92], semantic annotation

[49], machine translation [34], and optimization problems [62].

There was recently work on efficiently implementing MapReduce and providing a

high-level library-oriented parallel programming framework on multi-core and multi pro-

cessor architectures [77, 54]. The significant speedup shown in these studies indicated

that the MapReduce model is promising for scalable performance on shared-memory sys-

tems with simple parallel code.

There are also other compelling competitors to MapReduce as distributed/parallel

programming environments, most notably the graphics processing unit (GPU) computing

and Dryad.

GPU is not only a powerful graphics engine but also a highly parallel programmable

processor featuring peak arithmetic and memory bandwidth that substantially outpaces its

CPU counterpart [70], with a scalable parallel programming model [65]. Recently, there

was some attempts to integrate MapReduce and GPU computing [23, 42]. Dryad [44] is

another distributed programming framework that focuses the computations on a dynamic
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dataflow graph whose vertices are physically mapped to processing nodes, whether on

different computers or different CPU cores, and the developer has the control over the

communication graph.

2.6 Chapter Summary

In this chapter, the research work on the general problem of entity resolution and the

specific problem of identity resolution and modeling in email was reviewed. The chapter

also cited some other research studies that looked at solutions of other problems in the

email domain. It finally introduced MapReduce framework and other related distributed

programming paradigms. The next chapter introduces the first step in the proposed ap-

proach to the specific dissertation problem, modeling identity in email.
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Chapter 3

Identity Modeling

The first step in automatically resolving a personal name that is mentioned in the

body of an email is to identify who the potential referents are, before choosing one of

them. To repeat that process for any name-mention, the system needs to identify all

possible people who are participating in the email collection. Identification here means

building models of identity of those people that can computationally leveraged by the

resolution algorithm. Therefore, two major questions are addressed:

1. How can identities in email collections be represented?

2. How can such model be computationally exploited in resolving observed mentions?

This chapter presents answers to both questions. First, some definitions are introduced in

Section 3.1. The design of a representational model of identity is then presented in section

3.2, followed by an implementation in Section 3.3 [37]. The representational model is

intrinsically evaluated in Section 3.4. Based on the representational model, Section 3.5

finally shows how a computational model, that is exploited in the resolution task, is built

[38].

3.1 Definitions

In order to be precise about what an identity means in the context of email collec-

tions, three foundational concepts must be distinguished: (1) an entity, (2) an identity, and
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(3) a model of identity.

An entity indicates a communicating party that is involved in any communication

process in the email collection and that acts in some way that can be observed. There are

generally three different types of entities in email collections: (1) a person, (2) a group of

people, as in the case of a mailing list with a unified email address, and (3) a machine (e.g.,

an automatic email-generator that sends a periodic message reporting on stock prices.)

The notion used in this dissertation of a personal identity, the focus of the research,

is somewhat more fine-grained:

• One person may adopt more than one identity (e.g., striving to completely sepa-

rate their persona at work from a business that they run from their home trading

merchandise on eBay.)

• An identity may have several (forms of) names that refer to that identity. A person

whose name is “Robert E. Bruce” may also be known for example as “Robert,”

“Rob,” “Bob,” “Rob Bruce,” or “Mr. Bruce.”

• An identity might have multiple email addresses and can send email from any of

them.

• Sometimes, several identities may send email from the same address. This happens

with administrative assistants to senior executives, for example. It also happens

frequently in customer service replies.

• An identity may also be referred to by role, for example as in “the executive director

accepted the offer.”
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In the context of emails, identities rather than persons are modeled, because that is typ-

ically as far as the observable data will reveal. In fact, real identity is a hidden variable

but the usage in emails is observable, so the hidden variable are estimated based on the

observations. A representation of an identity is referred to as a model of identity. Using

this model, an automatic system can computationally deal with the concept of a real iden-

tity. More details on how the models of identity are designed, constructed, and used in

the context of email collections are presented in the following sections.

3.2 Representational Model of Identity

Identity is at best imperfectly observable in informal communication. People might

sometimes intentionally hide their identities. So, what a model of identity can represent is

just a merged set of “observable” features of the same identity. Evidence must therefore

be combined from the available sources and reason based on that evidence if models of

identity with the greatest possible degree of confidence are sought.

This section first identifies the observable elements of identity from which the mod-

els can be built. Next, sources of evidence, in the context of email collections, where those

elements can be observed are presented. Finally, the design details of the proposed model

are introduced.

3.2.1 Observable Features of Identity

Two basic elements that can be exploited in modeling the identity are identified:

1. Attributes that characterize observable distinguishing features of an identity. There
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are two types of these attributes:

• Referential attributes that represent relatively stable explicit features of the

identity such as name and email address.

• Behavioral attributes that represent basic communication features of the

identity, such as patterns of communication or selection of discussion topics.

2. Associations that can serve as a basis for linking attributes together (e.g., email

address to a name,) attributes to identities (e.g., reference to an identity,) and models

of identities to other models of identities (e.g., model instance to another.) These

associations provide greater support for inference when observed more often.

3.2.1.1 Referential Attributes

The most common personal attribute that is available in email collections is the

email address. Email addresses are particularly useful because they control the routing

of email and are thus strongly bound to identity. A second common personal attribute

in email collections is the name. Names are often found in locations (e.g., headers or

signature blocks) that make it relatively easy to associate them with email addresses.

Names for the same identity can, of course, appear in different forms (e.g., full name, first

name, or nickname). An observable instance of a referential attribute is called a reference.

References can be observed either in the headers of the email (e.g., an email address) or

in free text (e.g., “Bob” as in “I wrote to Bob yesterday”.) In the latter case, a reference is

called a mention as well.
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3.2.1.2 Behavioral Attributes

A substantial number of behavioral attributes can be detected, including topic choice,

lexical features (e.g., characteristic misspellings or use of emoticons,) stylistic features

(e.g., whether new and quoted text are typically interleaved, or tendencies towards terse-

ness or verbosity,) frequent correspondents (both individually and as groups,) conversa-

tional initiative, temporal rhythms (e.g., at what times on which days is email being sent,)

and response times [37].

In the suggested model of identity, referential rather than behavioral attributes are

focused on exclusively because (1) that is where the intuition was strongest, and (2) the

referential attributes are the basis of the mention resolution technique as discussed in

Chapter 4.

3.2.1.3 Associations of Attributes

Several types of evidence can be used to reason about associating two attributes

of the same identity. Perhaps the most obvious is attribute orthographic similarity. For

example, if “joe.engle@enron.com” as an email address and “Joe Engle” as a name were

both observed, perhaps this similarity would support an inference that they refer to the

same identity. This notion of similarity can be extended using side information (e.g.,

knowing that “Bill” is a common nickname for “William”.) Attribute co-occurrence of-

fers a complementary source of evidence. An example of attribute co-occurrence is the

co-occurrence of an email address with any observed referential (or behavioral attribute,)

within an email (e.g., in “Joe Engle <joe.engle@enron.com>”.)
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In general, the degree to which evidence of association is useful depends on the

degree to which it is surprising (e.g., it might not be surprising to find “Joe Engle”

is associated with “joe.engle@enron.com” but it is surprising to find it associated with

“mrlilie@tvspot.com”,) and the degree to which it is reinforced (since random variation

will naturally produce some surprising but meaningless coincidences.) It is this tension

between surprise and reinforcement that makes it necessary to work with large collections

if interesting associations are to be discovered. Small collections simply lack the potential

for multiple instances of rare (and thus surprising) events.

3.2.2 Sources of Evidence

Message-ID: <1494.1584620.JavaMail.evans@thyme> 
Date: Mon, 30 Jul 2001 12:40:48 -0700 (PDT) 
From: elizabeth.sager@enron.com 
To: sstack@reliant.com 
Subject: RE: Shhhh.... it's a SURPRISE ! 
X-From: Sager, Elizabeth </O=ENRON/OU=NA/CN=RECIPIENTS/CN=ESAGER> 
X-To: 'SStack@reliant.com@ENRON' 

Hi Shari 

Hope all is well. 
Count me in for the group present. 
See ya next week if not earlier 
Liza 
 
Elizabeth Sager 
713-853-6349 

-----Original Message----- 
From: SStack@reliant.com@ENRON 
Sent: Monday, July 30, 2001 2:24 PM 
To: Sager, Elizabeth; Murphy, Harlan; jcrespo@hess.com; 
wfhenze@jonesday.com 
Cc: ntillett@reliant.com 
Subject: Shhhh.... it's a SURPRISE ! 

Header 
Section 

Main Body Salutation 

Signature Block

Quoted Header

Please call me (713) 207-5233 
Thanks! 
 
Shari 

Quoted Signature

Quoted Body

Body 
Section 

Quoted 
Text 

Figure 3.1: An example email message (Enron collection).
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The typical structure of email messages provides a rich resource for extracting ele-

ments of identity. An example email message from the CMU Enron collection is shown

in Figure 3.1.

Email message in general has two main sections; header section and body section.

The message header comprises the basic metadata part of the email and consists of a set

of RFC-822 [1] header fields (e.g., from, to, cc, bcc, date, and subject) along with other

fields (e.g., routing fields)–some of which are optional and some of which are specific to

the email client application. The whole set of the header fields is called the “main header.”

There are a number of special header fields that are specific to the CMU version of

Enron collection, e.g., “X-To” field in Figure 3.1. Typical fields that represent the parties

communicating in the email consist only of email addresses without names. The names

then come in separate fields–sometimes they do not appear in the same order as email

addresses in the corresponding RFC-822 header fields.

The rest of the message is considered the “message body.” The text that the sender

of the message originally wrote (including signature blocks) is referred to as the “main

body” or sometimes the “new text.” The message body may also include “quoted text,”

text that appeared in older email messages, if the message was a reply to or forward of

another. The quoted text may start with a (system generated) “quoted header” section

that includes information that was in the main header of the quoted message. The quoted

header is usually structured header that resembles RFC-822 header (as shown in the fig-

ure). They may also start with an introductory line that is in a human-readable form such

as “— Original Message —” or “On Wed, 12 Apr 2006, Martinez-Boyd, John R. wrote:”.

Such lines are referred to as “semi-structured” header lines, because they often resem-
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ble free rather than structured text. The body of the quoted message, referred to as the

“quoted body,” may in turn include another quoted message, and so on.

The lines of any email body (either main or quoted) can be further classified into

salutation, free text, and signature sections. The salutation (if any) may appear as a sepa-

rate line or at the beginning of the first line of body. The free text is considered the actual

message that the sender intends to express to the recipient(s). The signature section may

consist of a manually-typed signature (called a “free signature”) and/or a relatively static

set of system-generated signature lines (called a “signature block”.)

Fortunately, the above typical structure of email messages provides a substantial

amount of evidence that opens up opportunities for building identity models. There are

three basic sources of regularities that represent sources of evidence for observations:

• Email standards in terms of the standard format of the header section of the email

(RFC-822), although it might not be perfectly adopted by the email client. This

kind of metadata is naturally structured, and information extracted from it is often

reliable.

• Email-client behavior represented by the rules followed by the email client when

a user composes a new email or replies to another. An example of such behavior

is the format of the quoted header that often embedded in the body of a reply-

email. Sometimes, RFC-822-like quoted header is also included, as illustrated in

Figure 3.1. The client also determines the quotation style of the replied-to message.

Another behavior is the static signature block that the client automatically attaches

to the end of each email. This source of evidence is not as reliable as the standards
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for two reasons (1) it can be manually modified by the user since it is included in

the body section of the email, and (2) it is client-dependent (i.e., not standard,) thus

its format might be different in different clients.

• Regularities from user habits that the user often does when writing an email, such

as greeting the recipients(s) by name at the beginning of the email, signing at the

end, and interspersing quoted text with new text within an email in a way that is

evocative of a conversation. Since they are more informal, these regularities may

be harder to observe hence less accurate. However, they become very informative

once observed and correctly extracted.

Section 3.3 describes how these sources were exploited to extract the basic referential

attributes of the identity model.

3.2.3 Model Design

` 

robert.bruce@enron.com

robert e. bruce

robert  bruce

bob 

email address 
name 

username 
nickname 

association 

main headers (973) 
quoted headers (13) 

main headers (915) 
quoted headers (8) 

salutations (7)
signatures (9)

Figure 3.2: An example representational model of identity.

In a collection of emails, individuals often use different email addresses, multiple
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forms of their names, and nicknames. The idea is to capture as many as possible of these

different types of attributes that can be observed in one representation; in this dissertation,

this is called a representational model of identity.

An identity is modeled as a set of referential attributes, much in the same way that

WordNet1 models meaning (i.e., a word sense) as a set of words that express that meaning.

Four types of referential attributes are extracted: email addresses, names, nicknames, and

usernames. Names, nicknames, and usernames are distinguished as follows:

• The string that is attached to the email address in the header is considered a “name”.

Many forms of names are observed in the header but the most frequent are “First

Last”, “Last, First”, and “First MI Last”. Individual tokens found in full names are

further distinguished for the task of mention resolution, as explained in section 3.5.

• The string that is used to refer to an identity in the salutation and signature lines is

considered a “nickname.”

• “Username” is a tokenized version of the substring that precedes “@” in the email

address; for example a username extracted from “susan scott@enron.com” is “su-

san scott”. The user name is sometimes useful in absence of any other type of

names.

The model is built on pairwise co-occurrence of referential attributes (i.e., co-

occurrence associations.) For example, an “address-nickname” association < a, n >

is inferred whenever a nickname n is observed in signature lines of emails sent from

1http://wordnet.princeton.edu
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email address a. The observed name could actually be a first or last name, but it is al-

ways treated differently as a “nickname.” Each association is weighted by the occurrence

frequency that reflects the strength of its observation evidence.

Figure 3.2 depicts an example representational model of identity. In this simple

example, three different associations were observed; each has “robert.bruce@enron.com”

co-occurred with a different referential attribute. Sources and frequency of observation

are indicated on each association. Notice that for each type of association, there are

specific sources of evidence. A model can be viewed as an undirected graph in which the

nodes represent attributes and the edges represent associations. Considering all the nodes

in one graph, one model is one connected component.

Since an email address is bound to one personal identity (except in rare cases, when

more than one person share the same email address,) email addresses serve as the basis

on which the models are built. This is achieved by mandating that at least one email

address must appear in any observed association. Therefore, only four types of associa-

tions exist; each associates an email address with one of the four different attributes listed

above. Details on how each type is extracted are provided in Section 3.3. Notice that the

selection of email addresses to be the basis in building the models facilitates subsequent

merging of model instances of same identity by reducing it to simply linking different

email addresses, as discussed in Section 3.3.3.
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Figure 3.3: Data flow for identity modeling.
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3.3 Implementation: IdModeler

In this dissertation, a system called IdModeler is implemented to populate the rep-

resentational model of identity for the Enron collection. This section presents an overview

of the implementation, followed by the details of each step in the subsections.

Figure 3.3 shows the feed-forward implementation for preprocessing and populat-

ing the identity models. The system can be outlined as follows:

1. Collection Preprocessing

(a) Duplicates of emails in the collection are detected and information about these

duplicates is retained as metadata attached to the unique copies.

(b) All unique emails are parsed into main header, main body, quoted header(s),

and quoted bodies. Email addresses and names (if available) of the sender and

receivers(s) are also extracted from the headers.

(c) The unique emails are indexed with each parsed part indexed in a separate

field for future retrieval.

(d) Threads are then reassembled using the quoted text technique proposed by

Lewis in [51]. Each email is linked to its parent in the reply chain with a score

that indicates how confident the system is in linking these two emails.

(e) Signature blocks and salutation lines in the main body are detected and labeled

for each email.

(f) The threading links and labeled signature and salutation lines are added to the

index.
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2. Linking Attributes

(a) For each email address that appears in the main header, nicknames (for the

person who uses this address) are detected from manually-typed signature and

salutation lines. This kind of association is called address-nickname associa-

tion.

(b) Three other types of associations are also extracted in this phase. Address-

name associations are extracted from the main and quoted headers when both

names and email addresses are provided together. Association of two email

addresses for the same person (i.e., address-address associations) are also de-

tected specifically in the Enron collection. Finally, an address-username as-

sociation is considered between every email and its username part. The fre-

quency of observing the email address is assigned as the frequency of such

association.

3. Linking Associations

(a) Having detected attributes and associations of them, all address-name, address-

nickname, and address-username associations that have a common email ad-

dress are first linked together in a graph whose nodes are the attributes and

edges are the associations. This is valid as long as it is assumed that one email

address is used by one identity. The graph now has a number of disconnected

components equal to the number of detected email addresses. This initial set

of models are called “seed models,” since they are very simple models that

each is built of only one email address.
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(b) Address-address associations are then leveraged to merge such seed models

into a more complex set of disconnected components (or clusters), each of

which is a model of identity.

(c) A further simple merging step, that is based only on shared full names that

have high degree of association strength, is implemented.

(d) Mailing lists are often attached to different names (probably the names of the

sending members) in different header sections. Therefore, the models that

have a long list of different full names are filtered out, and the focus will only

be on the potential personal identities.

The following subsections describe each implementation step in greater details.

3.3.1 Collection Preprocessing

Email Parsing IdModeler has a parser for the main header of Enron emails. For the

sender and recipients header fields, a set of regular expressions are used to detect names

and email addresses. Different forms of names are supported for extraction.

In the CMU version of Enron collection, the email addresses and the associated full

names are separated into two different sets of headers, as shown in Figure 3.1. Email

addresses are included in “From, To, Cc and Bcc” headers, while corresponding names

appear (when they are present at all) in the “X-From, X-To, X-Cc, and X-Bcc” headers

(called X-header fields). Surprisingly, the number of entries in the address header does

not always match the number in the corresponding name header. IdModeler relies on

orthographic similarity to link a name (if possible) to the appropriate email address.
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In order to identify the main (original) body of an email message, IdModeler first

has to detect any quoted text included in that message. The quoted text generally ap-

pears in two forms. The first, used generally for forwarded messages (and sometimes for

replied-to messages, by some email clients), typically consists of an entire message (i.e.,

the header section of the quoted message in RFC-822 format, followed by the main body

of that quoted message) in its original format. In the other common style, used generally

for messages that are being replied to, just the body of the quoted message appears (usu-

ally with each line marked on the left by some special character such as ”>” or ”|”). In

either form, the quoted text is normally introduced by a single line that may include in-

formation extracted from the header of the message being quoted (e.g., the sender and the

date). Quoted messages can themselves be quoted, and the two forms can be interleaved

(as could happen if a forwarded message is later replied to, for example).

IdModeler detects the quotation style normally associated with forwarding by using

a set of regular expressions that first detect the common forms of the system-generated

head-line then detect the different header fields that come next. Because quoted body text

is not generally marked in this format, it treats all of the lines following as the body of

the quoted message. The process of quoted text detection is then repeated on that body.

Detection of quoted body text in the form associated with replies is also performed.

Duplicate Detection In implementing IdModeler , two emails are considered duplicate

if they have exactly the same: (1) email addresses of sender and receivers, (2) subject, and

(3) body (after being normalized by Lucene’s2 standard tokenizer). This process resulted

2An open-source Java search engine available at http://lucene.appache.org/
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in detection of 268,980 duplicate emails, about 52% of the whole CMU Enron collection.

Subsequent processing was therefore restricted to the remaining 248,451 unique emails.

This is just slightly fewer than the 250,484 unique emails found by Corrada-Emmanuel

by using an MD5 hash function for duplicate detection [25]. The additional discovered

duplicates could result from inconsequential differences such as date formats, layout dif-

ferences, or optional header fields to which MD5 is sensitive.

Thread Reassembly Threads (i.e., reply chains) are imperfect approximations of fo-

cused discussions since people sometimes switch topics within a thread (and indeed some-

times within the same email). Threads are nonetheless expected to exhibit a useful degree

of focus and therefore adopted in this dissertation as a computational representation of a

discussion. Although thread relationships are sometimes encoded in an optional in-reply-

to header field, reliable thread reconstruction generally involves more complex processing

[51, 63, 93]. IdModeler adopted a technique similar to that introduced by Lewis [51] in

which the quoted header fields and quoted text are used to form a query in an effort

to identify the parent email in the same thread. If no parent is found in the collection,

the child email is flagged as “having broken link to parent.” That flag is used to deter-

mine whether the quoted parts of an email contain otherwise unavailable information that

should therefore be processed.

Signature Line Detection IdModeler defines signature lines as lines that often appear

similarly-formatted near the end of email messages sent from the same email address.

Two types of signature lines are of interest: (1) machine-generated static signature lines,
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from which signature blocks can be detected, and (2) lines containing manually typed

free-form text from which nicknames can be detected. IdModeler identifies candidate re-

gions for signature lines by identifying blank lines in the body text in a (possibly quoted)

email, using those blank lines to separate blocks of contiguous text, and then focusing on

the last two blocks of contiguous text. For each line in these two blocks, IdModeler tok-

enizes the text in that line using Lucene’s standard tokenizer and then count the number of

lines in which the same pattern of stemmed tokens are found. Use of a standard tokenizer

suppresses some variations that are observed in hand-typed signatures (e.g., “-Dave”,

“dave”, “–Dave”, and “Dave”). Tokenized lines with a message-count that meet a pre-

established threshold (in the conducted experiments described in Section 3.4.1, exactly 2

for the “weakest evidence” threshold and at least 3 for the “stronger evidence” threshold)

are passed to further processing as signature lines. Signature blocks are reconstructed in

order from the original (untokenized) lines, while nickname detection (described below)

is performed using tokenized lines.

Salutation Line Detection The process of detecting salutations (brief greetings at the

start of a message) is similar to that used to detect signature blocks. IdModeler ’s imple-

mentation of salutation line detection is quite rudimentary, focusing solely on lines that

contain nothing but a salutation. The process starts by identifying the first line of the

main body of every email message in which the recipient’s email address is alone in the

”To” header (cc to other people is allowed) and in which the message body contains at

least two lines. Lines that start with “fyi” or that end with “?”, “!”, “.” and any line with

a length exceeding two words are then filtered out. What remains is normalized using

43



Lucene’s standard analyzer and then consider each normalized line that appears exactly

three times (for the “weakest evidence” condition) or at least four times (for the “stronger

evidence” condition) to be a salutation line. Limitations of this process are: (1) salutations

embedded in the start of a longer line will not be detected, (2) complex salutation forms

(e.g., “hey Bobbie Rae!!”) are not detected, and (3) no use is made of evidence found in

messages addressed to more than one primary recipient.

Indexing Emails All of the emails in the test collection are indexed using Lucene. Each

identifiable part of the email (the header, main body, salutation, signature lines, quoted

header and quoted body) are automatically identified using pattern matching and sepa-

rately indexed. Any free text found in the subject header, main body or quoted body is

stemmed using the Porter stemmer [76], and stop-words are removed using the Lucene

stop-word list.

3.3.2 Linking Attributes

Extracting Attributes and Associations from Main Headers “Address-name” asso-

ciations are constructed by mapping an email address in a header to a name in the cor-

responding X-header. Email addresses are sometimes found together with names in the

X-headers; such cases are also extracted. If an address found in this way in the X-header

differs from the address in the corresponding address header, an ”address-address” as-

sociation is also extracted. This process results in identification of 70,214 address-name

associations and 10,708 address-address associations. Of course, some of these associa-

tions could be incorrect, since both attribute detection and orthographic matching employ
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imperfect heuristics.

Extracting Attributes and Associations from Quoted Headers Once all quoted head-

ers have been identified, address-name associations are then extracted from those quoted

headers in which email addresses are associated with names (From, To, Cc and Bcc.)

This process results in the extraction of 11,870 additional address-name associations that

were not extracted before from main headers, increasing the relative recall by about 17%.

An additional 9,289 address-name associations that were previously extracted from main

headers were observed again in the quoted headers. Quoted messages normally (and in

the CMU Enron collection) do not use separate header fields for names, so no address-

address associations are extracted from quoted headers.

Nickname Extraction IdModeler uses a precision-oriented approach to detect nick-

names from signature and salutation lines. For each known email address, IdModeler ap-

plies a set of filtering rules to each detected unique signature and salutation line. First, a

set of hand-selected stop words (e.g., “Hi” or “Dear” for salutations or “Thanks” or “Re-

gards” for signatures) are removed. Any line that includes one or more non-alphabetic

characters (after Lucene’s normalization, this mainly removes digits), and any line found

in a signature block after the fourth line in that block are then filtered out. Lines with

more than one word are then compared with the first part of the email address (before the

”@”) using an edit distance measure, and those with little similarity are discarded. The

entirety of any remaining line is then considered to be a nickname, with its frequency in

salutation and signature lines serving as a measure of the strength of evidence for that
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assignment. A total of 3,151 address-nickname associations were discovered in this way.

There are, of course, many ways in which the exhaustivity (i.e., recall) of this process

could be improved. For example, cue words (e.g., ”Mr.”) and name lists are often used by

named entity recognition systems.

3.3.3 Linking Associations

Building Initial models The foregoing processes resulted in extraction of a total of

82,084 address-name associations, 19,708 address-address associations, and 3,151 address-

nickname associations. These associations form links in an undirected graph on which

IdModeler performs agglomerative clustering to identify connected components, each of

which represents an identity model. Because it treats addresses as unique pivot points,

address-name, address-nickname, and address-username links result in no reduction in

the number of entities. Address-address associations can, however, connect two discon-

nected model instances (although the accuracy of those associations will naturally depend

on the strength of the evidence.) The complete process resulted in 66,715 models that to-

gether cover 77,420 unique email addresses (58% of the 133,581 unique email addresses

identified in the collection).

Merging Multiple Model Instances Since a person can have multiple email addresses

and detecting these association of addresses can enrich the models, IdModeler have adopted

a simple technique that merges two identities whenever they share a common full name,

with a relatively high frequency in both. Only one merging pass is performed over the

detected models. Since each identity model must have at least one email address, the new
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(merged) identity inherits the union set of these addresses. This strategy may, of course,

incorrectly merge different people with common names (e.g., John Smith), but within a

single organization people will often adopt different name variants to prevent just that sort

of confusion. Figure 3.4 illustrates a real example, extracted from Enron collection, that

merges 7 instances of models for “Susan Scott.” In the whole set of models, this process

merged only 77 pairs of initial model instances.

Detecting Mailing lists The goal is to resolve personal identities, but the CMU Enron

collection contain email addresses for mailing lists as well. As a simple (and naive)

expedient to guard against inappropriate attempts to build a personal identity model for a

mailing list, all identity models that have more than 10 different associated full names are

removed.

3.4 Evaluation

The perceived accuracy and utility of the representational models of identity ex-

tracted from the CMU Enron collection are intrinsically evaluated. There are three levels

of extraction to evaluate: attributes, associations, and identities. The evaluation focuses

on the associations because (1) association accuracy can be extrapolated to estimate the

accuracy of identity extraction, and (2) errors in attribute extraction can incidentally be

detected when assessing the relationships that an attribute participates in.

The total number of extracted associations (95,943) is far larger than they could

be assessed, so it was necessary to sample that set in some way. The 12-cell stratified

sampling strategy shown in Table 3.1 was adopted to characterize the results based on
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Table 3.1: Stratified samples and population sizes.
Association Type Weakest Evidence Stronger Evidence

Address-Name Associations

Main header only 50 / 29677 50 / 31248

Quoted header only 50 / 8042 50 / 3828

Both headers 50 / 9289

Address-Nickname Associations

Salutations only 50 / 272 50 / 465

Signatures only 50 / 172 50 / 1754

Both types 50 / 490

Address-Address Associations

Main header 50 / 6514 50 / 4194

association type, source of evidence, and strength of evidence. Samples from all types of

associations, except address-username, are judged. The “weakest evidence” was defined

as the minimum absolute detected strength of evidence (indicated by 1 observation in

headers, 3 in salutations, and 2 in signature lines), and the “stronger evidence” was defined

as any other stronger condition. Address-address associations has only one source of

evidence, so they were stratified based only on the strength of evidence in that case.

3.4.1 Evaluation Measures

Three cases of correct associations (for which real examples from the Enron collec-

tion can be found in Table 3.2) are distinguished:

1. “not informative”: A correct association is “not informative” if a simple rule could

have been used to extract one of the associated attributes from the other (e.g., a

name from an email address), or if simple string matching would have indicated
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that two attributes (e.g., email addresses) were likely for the same person.

2. “somewhat informative”: A correct association is “somewhat informative” if its

detection would have been possible, but only with some side knowledge (such as a

list of common names.)

3. “very informative”: A correct association is “very informative” if the information

contained in the name and/or address(es) was not sufficient to reliably infer the

association.

In order to measure both the accuracy and utility of the associations and based on

the above categories, three evaluation measures were defined as follows:

Accuracy =
|correct|
|judged|

(3.1)

Informativeness =
|somewhat informative|+ |very informative|

|judged|
(3.2)

Strong Informativeness =
|very informative|

|judged|
(3.3)

Accuracy is the percentage of judged associations that is correct, regardless of usefulness

of these associations. Two levels of utility are then supported: Informativeness is the

percentage of judged associations that are informative (i.e., non-trivial and thus perhaps

useful for subsequent processing by automated techniques) according to the definition

above, and Strong Informativeness is the percentage of judged associations that would

provide new information to a human user.

Notice that the fraction of the judged associations that are not informative (i.e.,

neither somewhat informative nor very informative) can serve as an estimated accuracy
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Table 3.2: Examples of different types of correct associations.
Judgment Association Examples

Not informative june-deadrick@reliantenergy.com⇐⇒ “june deadrick”
robbie.lewis@enron.com⇐⇒ “robbie lewis”

Somewhat informative terriecovarrubias@hotmail.com⇐⇒ “terrie covarrubias”
randal.maffett@enron.com⇐⇒ “randy”

Very informative lemelpe@nu.com⇐⇒ “phyllis”
piazzet@wharton.upenn.edu⇐⇒ “tom”

of an obvious baseline approach that links attributes by string matching techniques.

Baseline Accuracy = 1− Informativeness (3.4)

3.4.2 Judgment Process

Based on the above definitions and evaluation measures, one independent assessor,

who had experience with email search system design, was recruited to judge the accu-

racy and potential utility of the sampled associations based on the following criteria: an

address-name or address-nickname association is considered incorrect if either of the two

attributes is incorrectly extracted or if both of them are correctly extracted but linking

them is incorrect. Otherwise, the association is considered correct. For address-address

associations, only the correctness of the linking was assessed. For correct associations,

the assessor followed the definitions given in Section 3.4.1 to label each correct associ-

ation. To simplify the judgment process, a java GUI tool, that is specifically designed

to search the Enron collection using Lucene, was developed. A screen shot of the tool

is shown in figure 3.5. The interface enables the assessor to search in headers (by ei-
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Figure 3.5: The GUI used in the judgment process.

ther email address and/or name), subject, or body text. The assessor can also restrict the

search to the main body, quoted text, or both. The tool displays a ranked list of emails

that match the query, and gives the user a chance to see each result in either raw text or

HTML that can be customized to display any of the different email parts shown earlier

in Figure 3.1. For each email listed in the search results, a list of the extracted attributes

and associations is presented as well. The assessor then can use the assessed attributes

to compose search queries that may help find evidences for the current judged associa-

tion. If the assessor could not judge a specific association from the available evidence

(including counter-evidence), then she could choose a fifth option: “Can’t tell.” This oc-

curred in only 19 of 600 cases. As Figure 3.6 illustrates, stronger evidence never hurt and

sometimes helped, and associations found in salutations were surprisingly reliable.
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Figure 3.6: Unjudged Assocociations.

3.4.3 Results

Figures 3.7 and 3.8 show the evaluation results for address-name and address-

nickname associations respectively. Each graph in those figures shows one type of associ-

ation, one metric (on the vertical axis) and each source of evidence (along the horizontal

axis). For ease of comparison with the “both” condition (where weakest and stronger

evidence are combined) a weighted average is shown between the weakest and stronger

evidence bars for the single sources of evidence. Figure 3.9 shows the results for address-

address associations. The three performance measures are plotted side by side in that case

since they are all based on just one source of evidence (main headers).

3.4.3.1 Accuracy

As Figures 3.7(a) and 3.8(a) illustrate, 100% accuracy was achieved whenever mul-

tiple sources of evidence supported an extracted association, regardless of the strength of

each component of that evidence. Address-name association was nearly perfect in every

case; while the minimum accuracy in any single source of evidence was 80% (in the case
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Figure 3.7: Evaluation of Address-Name associations.

of weakest evidence in signature-based address-nickname associations.) This is not sur-

prising, since the proposed approach to address-name association exploits regularities in

system behavior, while address-nickname association is based on more variable human

behavior.

As Figure 3.8(a) illustrates, increasing the strength of evidence improved the accu-

racy of address-nickname association extraction from signatures, but a similar effect was

not evident for salutations. This may result from deficiencies in the process of determin-

ing the start of signature blocks. As the weighted average indicates, however, there were

relatively few cases with the weakest evidence.

As Figure 3.9 shows, address-address associations are almost always accurate. If

the overall accuracy of address-name association extraction (squared) is factored in, sin-
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Figure 3.8: Evaluation of Address-Nickname associations.

gle address-address associations would be expected to be completely correct 97% of the

time.3 Inspection of the sample indicates that most address-address associations are for

Enron employees. This might be an artifact of the cleanup preprocessing that was done

before the release of that version of Enron collection.

The average identity model includes 1.23 address-name associations, 0.16 address-

address associations, and 0.05 address-nickname associations, so the overall accuracy of

an entity can be estimated as (0.98)1.23 ∗ (0.97)0.16 ∗ (0.92)0.05 ∗ 100 = 96.7% (assuming

independence between extraction of different associations).

Using the definition of the baseline accuracy in Section 3.4.1 and given the infor-

3A correct address-address association depends on the accuracy of two address-name associations (eval-

uated as 0.982) and its extraction accuracy (evaluated as 1.0).
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Figure 3.9: Evaluation of Address-Address associations.

mativeness results illustrated in figures 3.7(b), 3.8(b), and 3.9(b), the baseline accuracy

can be estimated as (0.39)1.23 ∗ (0.58)0.16 ∗ (0.03)0.05 ∗ 100 = 24.2%

3.4.3.2 Utility

As figures 3.7(b)-(c) and 3.8(b)-(c) illustrate, address-nickname associations are

generally less informative than address-name associations. This makes sense, since nick-

names are usually just one word, while full names typically include two words. Inter-

estingly, nicknames that appear in both salutations and signatures are almost uniformly

uninformative. Most nicknames in that category belong to Enron employees. Enron email

addresses were usually constructed from their first and last names separated by dot, thus

leaving little opportunity for surprise. The opposite is true for address-name associations:

when observed in both main and quoted headers, informativeness is higher than when the

same type of association is inferred from a single source of evidence. In that case, it turns

out that most of the email addresses were from non-Enron domains, for which it is less

common to find the full name embedded within the email address.

Surprisingly, Figure 3.8(c) shows that in the case of evidence from signatures, the

most informative associations resulted from the weakest evidence. Since this was exactly
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the case in which the accuracy was lowest, this points up the importance of considering

both accuracy and informativeness. A focused effort to improve the accuracy of address-

nickname association extraction from signatures could therefore have a high payoff.

Overall, address-address associations were almost always very informative (97%),

address-name associations were very informative in more than half the cases (57%), and

address-nickname associations were very informative in about a quarter of the cases

(23%). This is considerably higher than what was initially expected, suggesting that

further work on increasing the accuracy of the extraction, and extending the range of

evidence that can be productively exploited would be a good investment.

3.5 Computational Model of Identity

The model described in section 3.2 represents the identity of a communicating par-

ticipant as a set of pairwise co-occurrence of referential attributes (i.e., co-occurrence “as-

sociations”,) each weighted by the frequency of occurrence. That model captures what

can be observed in the emails and can generally serve as a basis for more sophisticated

models designed for specific computational tasks. This section describes how that model

can be used in the context of name-mention resolution in emails. For that task, a “compu-

tational model of identity” is needed to help associate names to identities and vice versa.

That is achieved in two steps: (1) labeling observed names, described in section 3.5.2, and

(2) building the reasoning model, described in section 3.5.3. Section 3.5.1 first introduces

some notations.
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3.5.1 Notations

Chapter 4 proposes a probabilistic approach that ranks the candidates based on the

estimated probability of having been mentioned. Formally, the goal is to estimate the

probability p(c|m) that a potential candidate c is referred to by the given mention m,

observed in email em, over all candidates C.

A mention m is defined as a tuple < lm, em >, where lm is the “literal” string of

characters that represents m and em is the email where m is observed.4 In order to focus

the research work on the resolution framework, the problem of detecting unresolvable

mentions was not attempted. Consequently, the resolution process assumes that m can be

resolved to a participant for whom at least one email address is present in the collection

E.

3.5.2 Labeling Observed Names

For the purpose of resolving name-mentions, it is necessary to compute the proba-

bility p(l|c) that a person c is referred to by a given “literal” mention l. Intuitively, that

probability can be estimated based on the observed “name-type” of l and how often that

association occurs in the representational model. T is defined as the set of 3 types of

single-token name-types: first, last, and nickname. Just for simplicity, middle names and

initials were not handled. Names that are extracted from salutation and signature lines

are labeled as nicknames whereas full names extracted from headers are first normalized
4The exact position in em where lm is observed can also be included in the definition, but it is ignored

assuming that all exactly-matched literal mentions in one email refer to the same identity.
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to “First Last” form and then each single token is labeled based on its relative position

as being the first or last name. Usernames are treated similarly to full names if they have

more than one token, otherwise they are ignored. Note that the same single-token name

may appear as a first name and a nickname.

3.5.3 Reasoning
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Figure 3.10: A computational model of identity.

Having tokenized and labeled all single-token names, the association of a single-

token name l of type t to an identity c is modeled by a simple 3-node Bayesian network

illustrated in Figure 3.10. In the network, the observed mention l is conditionally dis-

tributed on both the identity c and the name-type t. p(c) is the prior probability of observ-

ing the identity c in the collection. p(t|c) is the probability that a name-type t is used to

refer to c. p(l|t, c) is the probability of referring to c by l of type t. These probabilities
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can be estimated from the representational model as follows:

p(c) =
|assoc(c)|∑

c′∈C |assoc(c
′)|

p(t|c) =
freq(t, c)∑

t′∈T freq(t
′ , c)

p(l|t, c) =
freq(l, t, c)∑

l′∈assoc(c) freq(l
′ , t, c)

(3.5)

where assoc(c) is the set of observed associations of referential attributes in the repre-

sented model c.

The probability of observing a mention l given that it belongs to an identity c, with

no assumption of a specific token type, can then be inferred as follows:

p(l|c) =
∑
t∈T

p(t|c) p(l|t, c) (3.6)

In the case of a multi-token names (e.g., John Smith), the first is assumed either a first

name or nickname and the last is a last name. The probability is then computed accord-

ingly as follows:

p(l1l2|c) = {
∑

t∈{f,n}

p(t|c) p(l1|t, c)} · p(l2|last, c) (3.7)

where f and n above denote first name and nickname respectively.

Email addresses are also handled, but in a different way. Since each of them

uniquely identifies the identity, all email addresses for one identity are mapped to just

one of them, which then has half of the probability mass (because it appears in every

extracted co-occurrence association).

The proposed computational model of identity can be thought of as a language

model [75] over a set of personal references, so it is important to account for unobserved

references. If a specific first name often has a common nickname (using a dictionary of
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commonly used first to nickname mappings (e.g., Robert to Bob)), but this nickname was

not observed in the corpus, then smoothing is needed [95]. That is achieved by assuming

the nickname would have been observed n times where n is some fraction (0.75 in the

conducted experiments) of the frequency of the observed name. That process is repeated

for each unobserved nickname then they were treated as if they were actually observed.

3.5.3.1 Context-Free Resolution

This model can now be used to estimate how probable a name-mention l could refer

to an identity c by computing p(c|l) using Bayes’ rule as follows:

p(c|l) =
p(l|c) p(c)∑

c′∈C p(l|c
′) p(c′)

(3.8)

All the terms above are estimated as discussed earlier. Notice that the model estimates

that probability ignoring the context in which this mention is observed; that resolution

model is called a “Context-Free” resolution.

3.6 Chapter Summary

Two models of identity are introduced in this chapter. The representational model

associates names and nicknames to email addresses of a participant by observing co-

occurrent attributes, while the computational model shows how to leverage those associa-

tions for the task of mention resolution using a simple 3-node Bayesian network. The next

chapter introduces a richer model that takes the context of a mention into consideration

in the resolution process, but it still builds upon that simpler computational model.
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Chapter 4

Mention Resolution

The previous chapter presents an abstract model of identity that is built using the

repetitive observations of personal attributes (e.g., email addresses and names) in the

whole email collection, and shows how it could be used to resolve a name-mention with-

out considering the context surrounding it. The problem addressed in this chapter is the

resolution of a name-mention in a given email in the collection, i.e. given the (potentially

observed) context in which the true referent was mentioned. The goal of this work is

to develop a system that provides a list of potential candidates, ranked according to how

strongly the system believes that a candidate is the true referent meant by the email author.

The discussion is this chapter starts with two motivating views in Sections 4.1 and

4.2 that both inspire the probabilistic approach for mention resolution described in detail

in sections 4.3 and 4.4.

4.1 Finding Evidence: A Searcher’s View

Imagine that a user is searching an email collection from an enterprise to figure out

how a specific decision was made. During the search, the user finds that the decision was

made during the conference call referred to in the email shown in Figure 4.1. The

email clearly shows that the individuals “Sheila” and “Scott” are probably involved in

the decision and so the user decides to look for some information about their identities.
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Date: Wed Dec 20 08:57:00 EST 2000
From: Kay Mann<kay.mann@enron.com>

To: Suzanne Adams <suzanne.adams@enron.com>

Subject: Re: GE CONFERENCE CALL HAS BEEN RESCHEDULED

Did Sheila want Scott to participate? Looks like the call will be too late for him.

Figure 4.1: An email example from Enron collection.

Examining the header of the email, the mentions could not be resolved since neither

“Sheila” nor “Scott” is the sender or recipient of the email. Moreover, the text of the

email does not uniquely identify either person. The user extends the search to discover

that this email was part of a longer discussion between a larger set of participants. Given

the context of the name mentions, the user tries to find a clue in one of the emails in that

discussion. If nothing is found there, the user may use the knowledge that for the email

to have made sense to the recipient(s), the mention must have been unambiguous to both

the sender and the receiver(s) of the email at the time it was sent. Consequently, the user

may search the recent emails sent or received by those participants, trying to reconstruct

the required context that may lead the user to the right referents. The user may also

need to search for other emails or discussions that talk about the same topic in the near

past or future. For example, the user may look at other emails about a GE conference

call. Finally, once the user finds some evidence that provides a potential mapping of both

mentions to identities, the user has the choice to stop and immediately draw a conclusion

based on what has been found, or to continue to collect more evidence to gain more

confidence in the resolution.

The intuitive evidence-based search strategy adopted in that example sheds light on
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3 important questions:

• What kind of evidence to look for (e.g., which evidence can support the resolution

of a given mention?).

• Where to look for evidence (e.g., which emails should be searched for evidence?).

• How to combine evidence to rank candidates (e.g., how can scores be assigned to

candidates?).

These questions outline a framework for a family of mention resolution algorithms that

are evidence-based. Each different set of answers to the above questions represents a

specific strategy.

Motivated by this view, a heuristic approach for mention resolution, detailed in

[36], was developed and evaluated. That approach was then modeled more rigourously

by the generative view outlined in Section 4.2. The remainder of this chapter discusses

the improved approach.

4.2 Generative Scenario: A Sender’s View

The proposed probabilistic approach is motivated by a generative story of mention-

ing people in email. The story begins with the author of an email, intending to refer to a

person in that email. To do that, the email author will:

1. Select a person to mention.

2. Select a context that is appropriate to mention that person.
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3. Select a specific lexical mention to refer to that person given the context.

For example, suppose John is sending an email to Steve and wants to mention a common

friend Edward. John knows that he and Steve know 2 people named Edward, one is a

friend of both known by “Ed” and the other is his soccer trainer. If John would like to

talk about the former, he would use “Ed,” but he would likely use “Edward” plus some

special terms (e.g., “soccer,” “team,” etc.) for the latter. John relies on the social context,

or the topical context, for Steve to disambiguate the mention.

This story seems to answer the three questions raised by the searcher’s view in

Section 4.1. It proposes other “observed mentions” as the type of evidence to look for.

It considers the “context” of a mention as the search space. Finally, it suggests that a

generative probabilistic model can be used to rank candidates, based on the observed

mentions in the context.

The steps of this scenario also impose a certain structure to the proposed solution:

1. A computational model of identity that supports reasoning about identities is needed.

Chapter 3 presented such model.

2. Reconstruction of the context of the queried mention is needed. How this is achieved

is described in Section 4.3.

3. A resolution technique that leverages both the identity models and the context to

rank the potential candidates is needed. The technique is detailed in Section 4.4.

Within the above structure, this chapter presents a probabilistic approach that ranks

the candidates based on the estimated probability of having been mentioned. Recall that
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the goal is to estimate the probability p(c|m) that a potential candidate c is referred to

by the given mention m, observed in email em, over all candidates C. As introduced in

Section 3.5.1, a mention m is defined as a tuple < lm, em >, where lm is the “literal”

string of characters that represents m and em is the email where m is observed. m is

called the “mention-query,” and em is called the “mention-email.” Details of the approach

are introduced in the following sections.

4.3 Contextual Space
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Figure 4.2: Contextual Space of an email m.

It is obvious that understanding the context of an ambiguous mention helps with

resolving it. Fortunately, the nature of email as a conversational medium and the induced

relationships between emails and people through communication, can reveal clues that

can be exploited to partially reconstruct that context.

The contextual space X(m) of a mention m is defined as a mixture of 4 types of

contexts with λk as the mixing coefficient of context xk. The four contexts (illustrated in
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Figure 4.2) are:

1. Local Context: the email em where the mention is observed.

2. Conversational Context: emails in the broader discussion that includes em, typi-

cally the thread that contains em.

3. Social Context: discussions that some or all of the participants (sender and re-

ceivers) of em joined or initiated at around the time of the mention-email. These

might reveal some otherwise-undetected relationship to the mention-email.

4. Topical Context: discussions that are topically similar to the mention-discussion

that took place at around the time of em, regardless of whether the discussions

share any common participants.

These generally represent a growing (although not strictly nested) contextual space around

the mention in concern.

All mentions in an email are assumed to share the same contextual space. Therefore,

the context of a mention is treated as the context of its email. However, each email in the

collection has its own contextual space that could overlap with another email’s contextual

space.

K defines the set of the 4 types of contexts. A context xk is represented by a

probability distribution over all emails in the collection. An email ej belongs to the kth

context of another email ei with probability p(ej|xk(ei)).

How each context is represented and how the distribution is estimated depend upon

the type of the context. The following subsection explains that in detail.
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4.3.1 Context Reconstruction

The “contextual space” of an email is defined as a mixture of four different contexts,

each is a probability distribution over emails: (1) local, represented by the email message

itself, (2) conversational, represented by the thread that contains the email, (3) social,

represented by the other threads that involve some (or all) of the participants of the email,

and (4) topical, represented by the threads that are topically relevant to the mention-query

email. The social and topical contexts can also encode a notion of temporal similarity; this

is modeled by assigning higher probabilities to messages that are temporally closer to the

mention-email. Figure 4.3 illustrates the evidence used schematically. Reconstruction of
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Figure 4.3: Contextual space of an email, relative to time, content, and people dimensions.

local context is pretty simple; em is assigned the whole probability mass.

In the case of conversational context, threads are adopted as a computational rep-

resentation of a conversation in the implementation. Thread reconstruction results in a

unique tree containing the mention-email. Although different paths or subtrees can be

distinguished, a uniform distribution over all emails in the same thread was elected.
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The reconstruction of the social and topical contexts are somewhat more sophisti-

cated. The general approach adopted to estimate the probability distribution of the (so-

cial/topical) context of an email ei is to first compute a (social/topical) context similarity

score s(ei, ej) of ei and every other email ej , and finally normalize the similarity scores

(i.e., adjust them to sum to 1.0) to get the estimated probabilities p(ej|xk(ei)).

Two main factors should be considered when computing the context similarity

s(ei, ej) of two emails ei and ej:

1. Their social/topical similarity sx(ei, ej)

2. Their temporal similarity st(ei, ej).

To account for both factors, the overall similarity is computed as the geometric mean of

the two:

s(ei, ej) =
√
st(ei, ej) ∗ sx(ei, ej)

The following subsections discuss different ways of computing each of the required sim-

ilarities. Notice that the approaches adopted to reconstruct the social and topical contexts

were chosen for their relative simplicity, but there are clearly more sophisticated alterna-

tives. For example, topic modeling techniques [60] could be leveraged in the reconstruc-

tion of the topical context.

4.3.2 Temporal Similarity

The temporal similarity of two emails should decay as the time difference increases.

Earlier version of the resolution algorithm used the reciprocal rank of the absolute value of

the time difference to achieve that effect [38]. This imposes a rather steep decay, which
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Table 4.1: Temporal similarity functions
Time Difference (d) Rank (r)

Gaussian gd(d) = ae−
1
2
( d
T/4

)2 gr(r) = ae−
1
2
( r
Nx(T )/2

)2

Linear ld(d) = T
2
− d lr(r) = Nx(T )− r

might not be the best choice. Therefore a Gaussian of the form g(z) = ae−
1
2
( z−µ
σ

)2 is

chosen to model this effect, where z is the time difference between the two emails, a is a

constant factor, and µ and σ are the mean and variance parameters respectively. Given a

time window T centered at the time the mention-email was sent, the mean µ is 0. Since

95% of the area under the Gaussian distribution is within two standard deviations of the

mean, the standard deviation σ is set at half of the maximum allowed time difference.

One could instead emphasize the order by which messages sent with respect to the email

of interest. In such a case, z denotes the rank of the absolute value of the time difference,

and σ becomes half of the number of the emails selected by the contextual similarity

within T , Nx(T ). This approach might be better with bursty email streams in which a

time difference of an hour during normal working hours may be more meaningful than a

time difference of a day over a weekend. Another, simpler, function that can model the

required effect is the linear function of the form l(z) = a− z. As before, z can represent

either the absolute time difference d, in such case a = T/2, or the rank r, in such case

a = Nx(T ). Table 4.1 summarizes the different tried temporal functions.

4.3.3 Topical Similarity

The goal of expanding the topical context of an email message e is to find other

emails that are topically-relevant to e. From the information retrieval perspective, this is a
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traditional query-by-example problem that has been well researched in, for example, the

TREC routing task [50] and the Topic Detection and Tracking evaluations [4].

Representing an email solely by its content in a bag-of-words similarity model

might not yield satisfactory results, since many emails are quite terse. To partially mit-

igate this effect, the conversational structure of email threads can be exploited to obtain

some (hopefully) topically related text. In earlier work in [38], only the body of the root

of the thread was used as a content representation for every email in that thread. More

generally, any subset of the messages between an email and the root of its thread could be

used, as illustrated in Figure 4.4.

Three alternatives were tried: the email only (the black node in that figure,) the

root of the thread (the highest grey node,) or the entire path from the root to the email

(all the black and grey nodes, but none of the white ones.) In each case, any quoted text

was automatically deleted. Not doing that would otherwise have the effect of limiting

the differences between these alternatives. In each case, BM25S was used for similarity

computations [69].

4.3.4 Social Similarity

The social context of an email e aims to include all other emails that involve any

of its communicating participants p(e). In prior work, only temporal similarity was used

in constructing the social context [31, 38]. However, for the task of resolving mentions,

emails that involve many common participants with the mention-email are expected to

be more informative (i.e., more likely to be chosen in the generative story) than those
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Table 4.2: Social similarity functions
Overlap(ei, ej) = |v(ei) ∩ v(ej)|
Jaccard(ei, e2) =

|v(ei)∩v(ej)|
|v(ei)∪v(ej)|

OvJacc(ei, ej) =
√
Overlap(ei, ej) ∗ Jaccard(ei, ej)

that involve fewer. One possible social similarity measure for two emails ei and ej is

the size of overlap between the two participating sets v(ei) and v(ej) that each include

the email addresses of the sender and the recipient(s). The Jaccard coefficient (union

over intersection) is another way of accounting for the overlap, in this case with some

normalization. Both measures may have strengths, so their geometric mean would also

be taken. Table 4.2 summarizes the three proposed social similarity measures.

4.4 Ranking Candidates Using Context Expansion

Section 4.3 described how to reconstruct the context of an email in its 4 different

types. It remains to present how to use the reconstructed context to rank candidate refer-

ents of a given mention. Given a specific mention m and the set of identity models C, the
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goal in this step is to compute p(c|m) for each candidate c and rank them accordingly.

As described in section 3.5.3.1, a simple solution ignores the context ofm and relies

solely on the identity models to compute a “context-free” resolution. In that case, p(c|m)

is computed by applying Bayes’ rule as follows:

p(c|m) ≈ p(c|lm) =
p(lm|c) p(c)∑

c′∈C p(l
m|c′) p(c′)

(4.1)

Alternatively, the rich context of m can be used to help observe evidence for the

potential candidates. The mention is expanded with its context to get

p(c|m) = p(c|lm, X(em))

Bayes’ rule is then applied to get

p(c|lm, X(em)) =
p(c, lm, X(em))

p(lm, X(em))
(4.2)

where p(lm, X(em)) is the probability of observing lm in the context. This probability

can be ignored since it is constant across all candidates in the ranking. The focus now is

restricted to the numerator p(c, lm, X(em)); that is the probability that the sender chose

to refer to c by lm in the contextual space. As discussed in Section 4.3, X is defined as a

mixture of contexts, therefore it can be further expanded as follows:

p(c, lm, X(em)) =
∑

k

λk p(c, l
m, xk(e

m)) (4.3)

Following the intuitive generative scenario introduced earlier, the context-specific proba-

bility can be decomposed as follows:

p(c, lm, xk(e
m)) = p(c) p(xk(e

m)|c) p(lm|xk(e
m), c) (4.4)

73



where p(c) is the probability of selecting a candidate c, p(xk(e
m)|c) is the probability of

selecting xk as an appropriate context to mention c, and p(lm|xk(e
m), c) is the probability

of choosing to mention c by lm given that xk is an appropriate context to mention m.

• Choosing person to mention: p(c) can be estimated as discussed in Section 3.5.

• Choosing appropriate context: Applying Bayes’ rule to compute p(xk(e
m)|c) gets

p(xk(e
m)|c) =

p(c|xk(e
m)) p(xk(e

m))

p(c)
(4.5)

p(xk(e
m)) is the probability of choosing xk to generally mention people. In con-

ducted experiments, a uniform distribution over all contexts was assumed. p(c|xk(e
m))

is the probability of mentioning c in xk(e
m). Given that the context is defined as a

distribution over emails, this can be expanded to

p(c|xk(e
m)) =

∑
ei∈E

p(ei|xk(e
m) p(c|ei)) (4.6)

where p(c|ei) is the probability that c is mentioned in the email ei. This, in turn, can

be estimated using the probability of referring to c by at least one unique reference

observed in that email. By assuming that all lexical matches in the same email

refer to the same person, and that all lexically-unique references are statistically

independent, that probability can be computed as follows:

p(c|ei) = 1− p(c is not mentioned in ei)

= 1−
∏

m′∈M(ei)

(1− p(c|m′))
(4.7)

where p(c|m′) is the probability that c is the true referent of m′ . This is the same

general problem of resolving mentions, but now concerning a related mention m′

found in the context of m.
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This shows that resolving one mention depends on the resolution of other mentions

in its context, which motivates a dependency-graph-like implementation that is dis-

cussed in Chapter 5. It also leads to the discussion of the iterative approach in the

following section.

• Choosing a name-mention: To estimate p(lm|xk(e
m), c), it is suggested that the

email author would choose either to select a reference (or a modified version of a

reference) that was previously mentioned in the context or just ignore the context.

Hence, that probability is estimated as follows:

p(lm|xk(e
m), c) = α p(lm ∈ xk(e

m)|c) + (1− α) p(lm|c) (4.8)

where α ∈ [0, 1] is a mixing parameter (set at 0.9 in the consucted experiments),

and p(lm|c) is estimated as in Section 3.5. p(lm ∈ xk(e
m)|c) can be estimated as

follows:

p(lm ∈ xk(e
m)|c) =

∑
m′∈xk(em)

p(lm|lm
′

)p(lm
′

|xk(e
m)) p(c|lm

′

) (4.9)

where p(lm|lm
′
) is the probability of modifying lm

′
into lm. All possible mentions

of c are assumed to be equally similar tom and estimate p(lm|lm
′
) by 1

|possible mentions of c| .

p(lm
′
|xk) is the probability of observing lm

′
in xk, which is estimated by its relative

frequency in that context. Finally, p(c|lm′) is again a mention resolution problem

concerned with the reference ri which can be resolved as shown earlier.
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4.5 Joint Resolution using Iterative Approach

As presented in section 4.4, the structure of the proposed solution for mention reso-

lution requires the resolution of all mentions that appear in the context of a given mention

m before resolving that mention. This can be formulated as follows:

p(c|m) = f(p(c|m′)) ∀m′ ∈ X(em) (4.10)

where f(p(c|m′)) indicates a function of the estimated probability that c is the true refer-

ent of a mention m′ in the context of m.

There are two alternative solutions that can handle that case:

1. The cycle is broken by computing context-free resolution probabilities for those

mentions in the context. Recall that context-free resolutions do not require any

information from the context of the mention, thus can be computed without the

need of resolving other mentions.

2. Jointly resolve all mentions, since every mention requires the resolution of all other

mentions in its surrounding context.

A solution that combines both alternatives by resolving the mentions by an iterative

approach is proposed as follows:

pn(c|m) = f(pn−1(c|m′)) ∀m′ ∈ X(em) (4.11)

where pn indicates the computed estimated probability at iteration n.

In each iteration n, the resolution of a mention m is updated using the resolution of

other mentionsm′, computed in the previous iteration n−1. The newly updated resolution
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will be propagated to other mentions whose contexts containm in the next iteration n+1.

Initially, p0 is set to the probability estimated by the context-free resolution.

This iterative approach requires a scalable implementation of the algorithm that is

capable of jointly-resolving all mentions in the collection. Chapter 5 discusses the details

of that implementation.

4.6 Chapter Summary

This chapter describes the details of the name-mention resolution algorithm. The

algorithm is based on a generative model that follows one way of referring to a person

in an email message. It initially expands the contextual space surrounding that mention

in four types of contexts, then ranks the candidates based on related mentions that are

observed in each type of context. The next chapter introduces an efficient implementation

of that algorithm that scales well to resolve all mentions in the collection.
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Chapter 5

Parallel Solution Using MapReduce

A sequential implementation of the mention resolution approach presented in Chap-

ter 4 might be sufficient to resolve a few name-mentions in an email collection, but some

applications require an efficient and scalable solution for this problem. This chapter

presents a parallel MapReduce implementation that has two basic goals:

1. Scalable resolution of all mentions in the collection.

2. Joint resolution of all mentions by an iterative process that benefits from the struc-

ture of the resolution approach.

The tool used to achieve the scalable implementation, MapReduce, is first intro-

duced, followed by an overview and detailed description of the implementation.

5.1 The MapReduce Framework

MapReduce [30] is a distributed programming framework that builds on the obser-

vation that many tasks have the same structure: a computation is first applied to a large

number of records (e.g., documents) to generate partial results, which are then aggregated

in some fashion. Naturally, the per-record computation and aggregation vary by task, but

the basic structure remains fixed. Taking inspiration from higher-order functions in func-

tional programming, MapReduce provides an abstraction that involves the programmer

defining two functions, a “mapper” and a “reducer,” with the following signatures:
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Figure 5.1: Illustration of the MapReduce framework: the “mapper” is applied to all input
records, which generates results that are aggregated by the “reducer.”

map: (k1, v1)→ [(k2, v2)]

reduce: (k2, [v2])→ [(k3, v3)]

where k’s indicate keys, v’s indicate values, parentheses indicate single record, and square

brackets indicate an array of records. Key/value pairs form the basic data structure in

MapReduce. The “mapper” is applied to every input key/value pair to generate an arbi-

trary number of intermediate key/value pairs. The “reducer” is applied to all intermediate

values associated with the same intermediate key to generate output key/value pairs (see

Figure 5.1).

Since the mapper is applied to a single input record at a time, independently from

any other record, a set of mappers can work simultaneously in parallel on separate pro-

cessing nodes. Similarly, the reducer is applied to a set of values that are all mapped to a

specific key, thus it can also work in parallel with other reducers on separate processing

nodes.

On top of a distributed file system, the runtime transparently handles all other as-

pects of execution (e.g., scheduling and fault tolerance) on clusters ranging from a few to
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a few thousand nodes. The runtime is responsible for scheduling map and reduce workers

on commodity hardware. The runtime also manages data distribution issues, including

splitting the input across multiple mappers and the potentially very large sorting prob-

lem between the map and reduce phases whereby intermediate key/value pairs must be

grouped by key, a process called “shuffling.”

All of these features make MapReduce an attractive distributed programming frame-

work because it shields the programmer from many low-level issues (such as synchroniza-

tion, data exchange, fault tolerance, and load balancing) which might otherwise hinder a

clear focus on the original problem the programmer is trying to solve.

5.2 Implementation Overview of IdResolver

The mention resolution approach introduced in Chapter 4 can easily be decom-

posed into smaller components that fit the map-shuffle-reduce processing pipeline well,

or at least can benefit from the transparent distributed processing by using that framework

as a parallelization mechanism (using mappers only, without the “shuffle” and “reduce”

stages.)

Figure 5.2 illustrates the main components of the resolution system, called IdRe-

solver . Each block in the figure is implemented by at least one MapReduce job, with the

ones that best fit the framework highlighted using a darker shade. Four major process-

ing steps are required: packing, preprocessing, context expansion, and resolution; all are

described in the following sections.
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Figure 5.2: Overview of the resolution system design

5.3 Packing

The process starts with the index, threads, and identity models resulting from the

identity modeling step described in Chapter 3. This data was packed into sequence files

to fit the MapReduce processing pipeline. A sequence file is a sequence of key-value

pairs. Emails are keyed by their message ids, identity models by their ids (produced as

a sequence number during the process of constructing those models,) and threads by the

message id of the root. The structure the email record includes separate fields for the

participants, subject, body, the body of the thread root (if different), and the concatenated

text of emails in the path to the root; this design facilitates investigation of alternative

content representations with a single processing pipeline.
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5.4 Preprocessing

In order to resolve all mentions, IdResolver must first automatically recognize their

existence. For that goal, IdResolver adopt a simple name extraction approach that is

corpus/dictionary-based. All identified names and nicknames in the identity models are

first cleaned to filter out non-names using a merged set of online dictionaries, and then

the surviving names are augmented with a list of frequent names provided by the U.S.

Census Bureau [19], and with all email addresses in the identity models. The full list is

then fed to the Aho-Corasick linear-time algorithm [2] to build a finite state machine that

is used to scan text for exact matches.

After detecting a mention m (lexically lm) in the body of an email, a likelihood

probability p(lm|c) and a context-free posterior probability p(c|lm) is computed for each

identity candidate c, using equations 3.6 and 3.8 respectively. An identity model is con-

sidered a potential referent for m if lm appears as a name in the extracted list of names of

that identity.

The two steps are implemented in one combined MapReduce job. Mappers load the

Aho-Corasick structure to extract mentions from each email. Each reducer then loads the

identity models and computes the context-free posterior probabilities for each candidate

of each mention in one email.

5.5 Context Expansion

The goal of the context expansion process is to compute, for each email ei, the

probability p(ej|xk(ei)) that an email ej belongs to the context type xk of ei.
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Figure 5.3: Overview of the context expansion process for one email ei.

Theoretically, such a probability value must be computed for each email ej in the

collection, for each context type k. This is practically reasonable for both local and con-

versational contexts; in the former, there is only one email (which is the mention-email)

in the context, while in the latter, only emails that are in the same thread belong to the

context. Expanding either social or topical context, however, requires computing (social

or topical) similarity between ei and every other email ej; repeating this process for every

email in a large collection is computationally challenging.

To make the process tractable, IdResolver used two computational expedients:

1. A time period T defining a time window [time(ei) - T
2

, time(ei) + T
2

] that limits the
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context to the emails that were sent within that period only; emails that were sent

outside that period are assumed to have zero probability( i.e., do not belong to the

context.)

2. A rank cut-off R-cut that indicates the maximum number of emails in the context

whose probabilities will be retained for the subsequent processing. For example,

if R-cut = 4, then only the emails with the highest 4 (or fewer) probabilities are

retained.

Figure 5.3 illustrates the context expansion process for one email ei using both T

and R-cut. Notice that the final output of the expansion of one email is one ranked list of

pairs for each context; each pair consists of an email id associated with the probability of

being in the context. The process can be summarized as follows:

1. Emails are first filtered by the time window [time(ei) - T
2

, time(ei) + T
2

].

2. A score is computed for each surviving email to indicate its similarity with ei.

3. The scores are normalized to sum to 1.0, so that they can be used as probabilities.

Emails are then sorted according to the similarity score.

4. All emails ranked below R-cut are eliminated from the context representation.

The bottleneck in the whole process is the computation of pairwise similarity.

Both social and topical expansion inherently involve computing “similarity” between two

emails, but on different representations; for the topical context, the email is represented

as a bag of “terms” (that appear in the body or concatenated bodies of some emails in

the thread in case the email is topically-represented by its path to the root,) whereas
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Figure 5.4: Pairwise similarity for context expansion.

each email in the social context is represented as a bag of “email addresses” (consid-

ered a special type of “terms” here) of its participants (i.e., sender and recipient(s).) Any

bag-of-words similarity model can then be directly applied to compute social or topical

expansion.

Figure 5.4 shows the pairwise similarity process as a black box controlled by the

email representation, the similarity models and the efficiency parameters. Notice that

the figure shows a df -cut parameter that is introduced in Section 5.5.1. By changing

the similarity models, the social and topical expansion can be performed using the same

mechanism.

Since the computation of pairwise similarity is the heart of the context expansion

process, the attention is focused on how to efficiently solve that abstract problem in Sec-

tion 5.5.1. How IdResolver leveraged that solution for context expansion is then discussed

in Section 5.5.2.
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5.5.1 Pairwise Document Similarity

This section addresses the abstract problem of computing pairwise document sim-

ilarity in large collections [35]. A “document” here indicates text content (e.g., email

message body.) The work described in this section focuses on a large class of document

similarity metrics that can be expressed as an inner product of term weights. A docu-

ment d is represented as a vector Wd of term weights wt,d, which indicate the importance

of each term t in the document, ignoring the relative ordering of terms (i.e., a “bag of

words” model). Only symmetric similarity measures were considered. The measures are

defined as follows:

sim(di, dj) =
∑
t∈V

wt,di · wt,dj (5.1)

where sim(di, dj) is the similarity between documents di and dj and V is the vocabulary

set. In this type of similarity measure, a term will contribute to the similarity between two

documents only if it has non-zero weights in both. Therefore, t ∈ V can be replaced with

t ∈ di ∩ dj as follows:

sim(di, dj) =
∑

t∈di∩dj

wt,di · wt,dj (5.2)

Generalizing this to the problem of computing similarity between all pairs of doc-

uments, it is noted that a term contributes to each pair that contains it.1 For example, if a

term appears in documents x, y, and z, it contributes only to the similarity scores between

(x, y), (x, z), and (y, z). The list of documents that contain a particular term is exactly

what is contained in the postings of an inverted index. Thus, by processing all postings,

the entire pairwise similarity matrix can be computed.

1Actually, since the focus is on symmetric similarity functions, only half the pairs is computed.
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Algorithm 1 Compute Pairwise Similarity Matrix
1: ∀i, j : sim[i, j]⇐ 0
2: for all t ∈ V do
3: pt ⇐ postings(t)
4: for all di, dj ∈ pt do
5: sim[i, j]⇐ sim[i, j] + wt,di · wt,dj
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Figure 5.5: Computing pairwise similarity for a toy collection of 3 documents. A simple
integer term weighting scheme (wt,d = tft,d) is shown for illustration.

Algorithm 1 formalizes this idea. postings(t) denotes the list of documents that

contain term t. For simplicity, term weights are assumed to be also stored in the postings.

For small collections, this algorithm can be run efficiently to compute the entire similarity

matrix in memory. For larger collections, disk access optimization is needed—which is

provided by the MapReduce runtime, without requiring explicit coordination.

Therefore, the proposed efficient solution to the pairwise document similarity prob-

lem, is expressed as two separate MapReduce jobs, illustrated in Figure 5.5:

1. Indexing: A standard inverted index is built [39], where each term is associated

with a list of docid’s for documents that contain it and the associated term weight.

Mapping over all documents, the mapper, for each term in the document, emits the

term as the key, and a tuple consisting of the docid and term weight as the value.

The MapReduce runtime automatically handles the grouping of these tuples, which
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the reducer then writes out to disk, thus generating the postings.

2. Pairwise Similarity: Mapping over each posting, the mapper generates key tuples

corresponding to pairs of docids in the postings: in total, 1
2
m(m− 1) pairs are gen-

erated for a posting, where m is the posting length. These key tuples are associated

with the product of the corresponding term weights—they represent the individual

term contributions to the final inner product. The MapReduce runtime sorts the

tuples and then the reducer sums all the individual score contributions for a pair to

generate the final similarity score.

5.5.1.1 Experimental Evaluation

To evaluate the efficiency of the above implementation, a small experiment is con-

ducted using Hadoop version 0.16.0,2 an open-source Java implementation of MapRe-

duce, running on a cluster with 20 machines (1 master, 19 slaves). Each machine had two

single-core processors (running at either 2.4GHz or 2.8GHz), 4GB memory, and 100GB

disk.

The symmetric variant of Okapi-BM25 [69] was implemented as the similarity

function:

sim(di, dj) =
∑

t∈di∩dj

tft,di

0.5 + 1.5
ldi
lavg

+ tft,di

·
tft,dj

0.5 + 1.5
ldj
lavg

+ tft,dj

· log
N − dft + 0.5

dft + 0.5

(5.3)

where tft,d denotes the frequency of term t in document d, dft denotes the number of

documents in which term t appeared, ld denotes the length of document d, and lavg denotes

2http://hadoop.apache.org/
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Figure 5.6: Running time of pairwise similarity comparisons, for subsets of AQUAINT-2.

the average length of documents in the collection.

The AQUAINT-2 collection of newswire text was used. It contains about 906,000

documents, totaling approximately 2.5 gigabytes. Terms were stemmed. To test the scal-

ability of that technique, the collection was sampled into subsets of 10, 20, 25, 50, 67, 75,

80, 90, and 100 percent of the documents.

After stopword removal (using Lucene’s stopword list), a df-cut was implemented,

whereby a fraction of the terms with the highest document frequencies are eliminated.

This has the effect of removing least-discriminative terms. For this experiment, a 99%

cut was adopted, which means that the most frequent 1% of terms were discarded (9,093

terms out of a total vocabulary size of 909,326.) This technique greatly increases the

efficiency of the proposed algorithm, since the number of tuples emitted by the mappers

in the pairwise similarity phase is dominated by the length of the longest posting (in the

worst case, if a term appeared in all documents, it would generate approximately 1012

intermediate pairs.)
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Figure 5.7: Effect of changing df -cut thresholds on the number of intermediate document-
pairs emitted, for subsets of AQUAINT-2.

Figure 5.6 shows the running time of the pairwise similarity phase for different

collection sizes.3 The computation for the entire collection finishes in approximately

two hours. It is empirically found that running time increases linearly with collection size

over this region, which is a desirable property. To get a sense for the space complexity, the

number of intermediate document pairs, that are emitted by the mappers, were computed.

The space savings is large (3.7 billion rather than 8.1 trillion intermediate pairs for the

entire collection), and space requirements grow linearly with collection size over this

region (R2 = 0.9975).

5.5.1.2 Complexity of the Algorithm

The complexity of the pairwise similarity algorithm is tied to the number of doc-

ument pairs that are emitted by the mapper, which equals the total number of multipli-

cations required in O(N2) inner products, where N is the collection size. This is equal

3The entire collection was indexed in about 3.5 minutes.
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to:

1

2

∑
t∈V

dft(dft − 1) (5.4)

where dft is the document frequency, or equivalently the length of the postings for term

t. Given the necessity of computing O(N2) inner products, it may come as a surprise

that empirically the algorithm scales linearly (for the explored collection sizes.) The key

to this behavior is the df-cut technique, which eliminates the head of the df distribution.

Eliminating the top 1% of terms reduces the number of document pairs by several orders

of magnitude.

As Figure 5.7 illustrates, relaxing the df-cut to a 99.9% threshold still results in

approximately linear growth in the requirement for intermediate storage (at least over

this region). Recent experiments suggest that a df-cut of 99.9% results in almost no loss

of effectiveness on a query-by-example task, compared to no df-cut [53]. In essence,

optimizing the df-cut is an efficiency vs. effectiveness tradeoff that is best made in the

context of a specific application; alternative approaches to similar problems based on

locality-sensitive hashing [5, 78] face similar tradeoffs in tuning for a particular false

positive rate; cf. [11].

5.5.2 Context Expansion using Pairwise Similarity

The 2-step pairwise similarity algorithm presented in Section 5.5.1 represents the

core of the context expansion process. However, as illustrated in Figure 5.8, other steps

are required:

1. A specific email representation (as a document) has to be chosen, based on the type
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Figure 5.8: MapReduce components of context expansion process.
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of the context and the similarity model. For topical context, four representations

were tried: subject of the message, body of the message, body of the root of the

thread, and concatenated bodies of all messages in the path back to that root. For

social context, an email is represented as a textual list of email addresses of sender

and recipient(s).

2. The length of each email is computed and stored in a table for lookup by the simi-

larity computations when needed. A similar table is computed for dates of emails.

3. The use of df -cut as a percentage requires the computation of a df histogram that

is used to convert the percentage into a df -threshold used in the pairwise similarity

job to eliminate terms based on their df values. Notice that this process is only

performed for the topical context; since the length of the social representation is

already short (it only has the email addresses of the sender and recipients,) it was

elected not to use df -cut for social expansion.

4. Generating the partial scores for a pair of emails is conditioned on the pair being

sent within a time window T of each other. This limits the number of generated

pairs, which in turn reduce the amount of data shuffled across the network. This

has been included in pairwise similarity job.

5. A Map-only job (i.e., a MapReduce job that uses no reducers) is used to compute the

temporal similarities and thus the final context similarity values. It takes 4 inputs:

the output of the pairwise similarity job, a temporal similarity measure, R-cut, and

the email date table. This process could equivalently be added at the end of the
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reducers in the pairwise similarity job, but this approach allows the easy use of the

same context similarity output with different temporal measures. The output of this

job associates each email id with a list of tuples consisting of the email ids in the

specified context and normalized weights.

This implementation allows the reuse of the same MapReduce design for both topical

and social expansion by changing the document representation, the context similarity

measure, and the temporal similarity measure.

5.6 Mention Resolution

The output of the expansion step for one context for all emails can be viewed as a

graph, in which nodes are emails and edges connect emails in that context. That output,

as shown in Figure 5.3, is actually in adjacency list representation, where each node,

representing an email, has a list of edges from other nodes, representing emails that appear

in its context. In fact, there are 4 different graphs, one per context type, with the local

94



graph as a special one that has self-edges only.

Since all mentions in one email share the same context, this email-graph can virtu-

ally be mapped into a mention-graph, as illustrated in Figure 5.9. Ideally, the resolution

of one mention would benefit from first resolving all other mentions in the context (i.e.,

all other mentions that have edges to it in the mention-graph.)4

This can be approximated iteratively. Initially (at iteration 0), each mention is re-

solved using context-free resolution, therefore each node in the mention-graph (which

represents an email with its recognized list of mentions), has a resolution vector (that tells

how probable it is that each candidate could be the true referent) for each mention. At the

start of iteration 1, each node shares its resolution vectors with its neighboring nodes, so

that each can update its current resolution vectors. Those updated resolution vectors then

start the next iteration, and so on.

This can easily be implemented in MapReduce. Figure 5.10 shows the three MapRe-

duce jobs needed for the task; the first two are performed only once, initially, whereas the

third can be repeated iteratively:

1. Since what is encoded in the context graph is the list of in-edges (i.e, from emails

providing context information), not the out-edges (i.e, to emails that need context

information for resolving its own mentions), a MapReduce job is required to con-

vert in-edges into out-edges. Each mapper in that job processes one node in the

graph (i.e., one email) and emits key/value pairs that associate each email in the

ranked list (as the key of the output pair) to the email id of the node along with

4Such setup is very similar to the problem of ranking Web pages, of which PageRank [71] is the famous

solution.
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the context weight of the key (as the value of the output pair;) this indicates an

out-edge. Reducers then combine all out edges of the same node.

2. The resolution vectors, initially computed using context-free resolution, are merged

with the out-edges list using one MapReduce job. The job has “identity mappers”

that take both the out-edges list and the resolution vectors, both keyed by email ids,

and passes them all to the shuffler. The Out-edges list and the resolution vectors that

are associated with the same email id are combined by the reducer in one structure

that is eventually emitted to represent an initialized node in the graph.

3. The MapReduce job that does the actual resolution runs next to conclude the pro-

cess. At iteration n, each mapper processes one node (email) and emits its current

resolution vectors through its out-edges, keyed by the id of the destination node.

All information coming to one node is grouped by the shuffling mechanism. Each

reducer, processing one node updates its own resolution values (using the resolution

approach described in Chapter 4) and writes the updated resolution vectors for the

node to disk. The updated resolution vectors can then be fed back as an input to the

same MapReduce job for a subsequent iteration.

That process is repeated for each type of context separately. Eventually, the scores

are merged through one additional MapReduce job that is similar to the merging step

described above.

One big graph could equivalently have all different types of context, and then one

resolution step is needed for all contexts combined, but the present design was favored

because it is simpler, it reduces the maximum memory and disk space needed in any one
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MapReduce job, and it allows easier experimental evaluation of individual contexts. For

a system with enough processing resources, it might be more efficient to merge graphs

and do one consolidated resolution iteration.

5.7 Chapter Summary

The MapReduce implementation described in this chapter can be used to resolve

all recognized mentions in the email collection. The implementation makes use of the

inherent characteristics of the MapReduce framework to represent the mention graph and

distribute the resolutions across different types of contexts. In doing that, an efficient

algorithm for computing pairwise document similarity is developed to help reconstruct

the contextual space of all emails simultaneously. Chapter 6 discusses how the results of

that implementation can be evaluated.
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Chapter 6

New Test Collection for Mention Resolution

Prior work in [31, 63, 38] has been evaluated on test collections that focused on

resolution of only some types of references (in general, references for which substantial

evidence was available;) for example, all of the queries in the collections described in

[38] are selected from emails sent from Enron email domain to at least one recipient

in the same domain, and all resolved to addresses in the same domain as well. This

chapter introduces a new test collection in which random sampling is used to characterize

accuracy across the full range of references to individuals that can be found in the Enron

collection. The study described in this chapter is conducted not only to produce, to the

best of the author’s knowledge, the largest and least-biased test collection for the task, but

also to provide some insights on the feasibility of the task in terms of how hard and how

time-consuming it is when humans perform it, and reliability of their performance.

As a task model, it is assumed that the user wishes to resolve all mentions of single-

token names (which are the ones that are expected to be most ambiguous) in some specific

email. A three-step process is designed for building the new collection:

1. Selecting the mention-queries from the whole collection.

2. Manually resolving the selected queries.

3. Measuring inter-annotator agreement on the primary resolution of a subset of the

queries.
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The following sections describe each of these steps in detail.

6.1 Query Selection

As a preprocessing step, duplicate emails (which amount to about half the collec-

tion, as described in section 3.3.1) are automatically removed. Quoted text is also au-

tomatically removed if that same text appeared elsewhere in the collection (e.g., as the

original quoted message).

Figure 6.1: Name extraction tool used for mention-query selection.

1,500 emails were then randomly selected and an annotator was recruited to anno-

tate all name mentions in those emails. Figure 6.1 shows a screen-shot of the simple Java

tool developed to help extract names from this list of emails; the user can select an email,

highlight names to be extracted and optionally write comments about the extracted list.

Using that tool, the annotator removed all messages that in their opinion contained no
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single-token references to people and all emails that could not reasonably be character-

ized as communication between people (e.g., automatically generated replies, spam, news

articles, weather reports, and forwarded jokes.) In the remaining 346 emails, the annota-

tor identified all single-token person names in the body text of the email (but disregarding

salutations and signatures.) This resulted in 781 single-token names extracted from 346

emails. After removing duplicate names within the same email, 584 single-token names

remained, about 1.7 names per retained email. Those names indicate the mention-queries.

6.2 Manual Resolution

Figure 6.2: Resolution annotation tool.

Three new annotators were recruited to create ground truth resolutions for these 584

101



Figure 6.3: Enron search interface.

mention-queries; each was assigned about one-third of the mention-queries. An annota-

tion interface (illustrated in Figure 6.2) that lists the queries and records the resolution

decisions taken by the annotator was developed. Alerts were displayed at 6 minutes and

at 10 minutes to encourage the annotator not to spend too much time on any one mention-

query. The annotator could flag any mention-query as “unresolvable” if they could not

resolve it (e.g., if there was not enough evidence available, or if no email address was

found in the collection for the true referent.) In such cases, the annotator was asked to

guess whether the true referent was an Enron employee. Annotators were also asked to

record a confidence value for each resolution, and to indicate how difficult the resolution

process had been; each was recorded on a 3-point scale. For a resolution decision to be
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valid, the annotator was also required to identify specific email messages that support

their decision, and to write a brief comment explaining their reasoning.

To facilitate the manual resolution task, the annotation tool was linked to a search

interface, shown in Figure 6.3, that allows the user to pose queries to search the whole

collection using different email fields (e.g., from/to, subject, date, main body, etc.). The

search results are presented as a ranked list of messages, and the user can select any

individual message for display. The system memorizes the search history, so the user can

go back to any previously issued query from the same session.

6.3 Results of Primary Annotations

Coverage: As Figure 6.4(a) shows, the annotators were able to resolve about 80%

of the mention-queries. The proposed automated resolution techniques always attempt

a resolution; these results suggest that is reasonable in about 80% of the cases (for this

collection). Most of the resolvable mention-queries were resolved by the annotators to

people from Enron, and nearly half of the unresolvable mentions were estimated by the

annotators to also refer to people at Enron. This suggests that the existing collections used

earlier in [31] and [38] may be somewhat more representative than first suspected.

Confidence and Difficulty: Figure 6.4(c) shows how the confidence of the anno-

tators differed by mention-query type; annotators had somewhat more confidence when

resolving queries to people inside Enron than outside Enron. Overall, annotators recorded

that they were “very confident” in their decisions in more than 80% of the cases. Reported

task difficulty exhibited a similar pattern; as Figure 6.4(b) illustrates, a considerably larger
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Figure 6.4: Characteristics of the new test collection

fraction of non-Enron resolutions were reported to be at least moderately difficult.

Effort: Table 6.1 shows that on average annotators spent more time on unresolv-

able mentions than on those that they could resolve. The automated “nag alerts” at 6 and

10 minutes do not seem likely to have affected many cases, since on average even the

unresolvable mentions were completed in about five minutes. This is also supported by

the histograms shown in Figure 6.5. The figure shows that the alerts generally had a slight

effect on the finishing time.
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Table 6.1: Annotation statistics; new test collection.
Number of mention queries 584
Average time spent/query 4 min 10 sec
Average time spent/Enron-resolvable query 3 min 52 sec
Average time spent/non-Enron-resolvable query 4 min 19 sec
Average time spent/resolvable query 3 min 56 sec
Average time spent/unresolvable query 5 min 6 sec
Max time spent for a query 12 min 9 sec
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Figure 6.5: Time spent on the queries.

6.4 Collection Availability

The collection was made available for research community by posting it at:

http://www.cs.umd.edu/ telsayed/collections/elsayed-mention-resolution-enron.zip.

Both mention-queries and their answers given by the annotators were provided in

TREC-style queries and qrels format [68]. Only resolvable mentions were included in the

available collection.

6.5 Measuring Inter-Annotator Agreement

At that point, each mention-query is handled by one annotator, but not all of the

mention-queries were handled by the same annotator. In general, the resolution decisions
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Table 6.2: Pairwise inter-annotator agreement.

Primary Queries Secondary

Type Number a2 a3

a1

Enron 132 12/16 16/16
Non Enron 27 1/5 2/4

Unresolvable 36 2/2 4/7

Total 195 15/23 22/27

a2

Enron 135 - 35/38
Non Enron 18 - 2/2

Unresolvable 37 - 6/10

Total 190 - 43/50

a3

Enron 123 24/27 -
Non Enron 35 5/12 -

Unresolvable 41 11/11 -

Total 199 40/50 -

taken by different annotators on the same query might vary, based on how accurate the

annotator was and the search technique the annotator used to find clues that support the

decision. Measuring how reliable the first-pass resolution process was is therefore neces-

sary before using the test collection in evaluating automatic systems. This can be achieved

by conducting an inter-annotator agreement study to estimate the accuracy of the anno-

tations. In this kind of study, a mention-query that was already annotated by a primary

annotator is double-annotated by a different secondary annotator. The agreement of two

annotators on a the resolution of a mention-query is declared in one of two cases: both

annotators resolved it to the same email address, or both have flagged it as unresolvable.

Any other combination of annotations is considered disagreement.

Among the three primary annotators, a1, a2, and a3, who participated in the first

resolution pass, only two, a2, and a3, participated in the inter-annotator study. 150 queries,
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Figure 6.6: Inter-annotator agreement with annotators.

about 25% of whole set, were selected for double-assessment; 50 queries were randomly

sampled from the query set of each annotator, and then each sampled query was randomly

assigned to a secondary annotator who was different from the primary one, so that each

is guaranteed to be double-assessed by two different annotators.

6.6 Results of Secondary Annotations

Agreement of Individual Annotators: Table 6.2 shows how the queries were as-

signed to each annotator. The ratio x/y in row ai and column aj indicates that y queries

annotated primarily by ai were attempted by a secondary annotator aj who only agreed

on x queries of them. For example, 23 queries out of the 195 queries that were primarily

annotated by a1, were double-annotated by a2; both annotators agreed only on 15 of them.

Numbers in the third column indicate the total number of queries annotated by the pri-

mary annotator. Figure 6.2 also shows the inter-annotator agreement on the three different

categories of queries based on the resolution of the primary annotator: Enron-resolvable,
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Figure 6.7: Inter-annotator agreement based on self-reported difficulty.

non-Enron-resolvable, and unresolvable. It is evident that agreement on Enron-resolvable

mention-queries were higher than that of non-Enron-resolvable on all arrows but one that

only has 2 non-Enron-resolvable queries. The agreement on unresolvable queries was

generally also higher than that of non-Enron queries, while the agreement on non-Enron-

resolvable queries didn’t exceed 50% in three of the four arrows, which indicates how

difficult it was to resolve such queries. This is also shown by Figure 6.6 which illustrates

the overall agreement for each primary annotator, regardless of who double-annotated the

primary annotator mention-queries.

Difficulty and Confidence: Inter-annotator agreement based on the difficulty

and confidence indicated by the primary annotator are illustrated in Figures 6.7 and 6.8.

Mention-queries that the primary annotators annotated as easy are distinguished from any

other query that the annotator thought it is not (i.e., not easy, including both moderately-

hard and hard ones); similar distinction was applied to confidence levels between very-

confident and less-confident levels. As expected, Figure 6.7 shows that agreement on
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Figure 6.8: Inter-annotator agreement based on confidence.

easy queries is higher than that of not-easy ones. Moreover, the decrease in the non-

Enron-resolvable queries is noticeably greater. Figure 6.8 shows similar pattern but with

smaller decrease of agreement, probably due to inaccurate reported confidence levels.

Overall Agreement: Figure 6.9 shows the overall agreement on the three query

categories. The inter-annotator study resulted in 90% agreement on Enron-resolvable

queries when 97 queries were sampled, which is quite high considering that the average

ambiguity level of the sampled queries is 194 candidates (in a range from 0 to 1512). A

lower level of agreement (77%) was achieved on unresolvable ones, which indicates that

secondary annotators were able to resolve about 23% of the sampled queries that were

originally unresolved by the primary annotators. Although, the agreement on these two

categories indicates that the resolution decision on those queries were quite reliable, the

figure shows substantial drop in agreement in case of non-enron-resolvable; the annotators

only agreed on about 45% of the type of queries, which means that they disagreed in more

than half of the sample (13 out of 23 queries in particular). This low level of agreement

suggested that extending the sample by double-annotating more queries of this category
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was needed to obtain a more accurate estimate of agreement. Therefore, the double-

annotation of non-enron-resolvable queries was extended to 71 queries out of 80 available

from the first pass. It was originally planned to double-annotate all of them, but that was

not feasible due to lack of annotators at different points in time. The result illustrated in

Figure 6.10 shows a 62% agreement in the larger sample.

6.7 Chapter Summary

This chapter describes the development of a new test collection for the task of men-

tion resolution that is more balanced and larger than previously-used test collections. The

basic characteristics of the collection are presented and an inter-annotator study was con-

ducted to measure human agreement on the resolution decisions. The mention resolution

approach can be tested using this collection as described in chapter 7.
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Chapter 7

Experimental Evaluation of Mention Resolution

Chapter 1 raised the question of how to evaluate the mention resolution system

in a repeatable yet affordable way. The new test collection, developed and presented

in Chapter 6, was the first half of the answer that was concerned with the test collection,

whereas the second half of the answer, which is the main goal of this chapter, is to explain

how this test collection can be used to evaluate the system experimentally.

The chapter starts with a description of the experimental setup in Section 7.1, fol-

lowed by the system training process in Section 7.2. Finally, the results produced by

IdResolver are presented and discussed in Section 7.3.

7.1 Experimental Setup

For evaluating IdResolver , the following should be specified:

• The mention-queries and email collection used to test IdResolver

• The measures used to evaluate the results

• The training/testing strategy adopted for the evaluation

• The hardware configuration in which IdResolver implemented and tested

The following sections discuss each of these.
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7.1.1 Test Collections

Eight test collections were used to evaluate the mention resolution approach; all

are based on the CMU version of the Enron collection; each was created by selecting a

subset of that collection, selecting a set of query-mentions within email messages from

that subset, and creating an answer key in which each query-mention is associated with a

single email address.

Table 7.1 lists all of these test collections with a brief description of each. The

first four collections were previously used in experiments by other researchers in [63]

and [31]. Preliminary results were also reported on these four collections using two ear-

lier techniques with non-scalable sequential-processing implementations in [36] and [38].

Notice that the name of each collection starts with the last-initial of the researcher who

created them.

The first two test collections were created by Minkov et al [63]. These test col-

lections correspond to two email accounts in CMU-Enron email collection: “sager-e”

(the “M-Sager” collection) and “shapiro-r” (the “M-Shapiro” collection). Their mention-

queries and answer keys were generated automatically by identifying name mentions that

probably correspond uniquely to individuals referenced in the cc header, and eliminating

that cc entry from the header.

Namata et al. [38] created the third test collection, “N-Subset,” which is a larger ver-

sion of the test collection originally created by Namata’s collaborators, Diehl at al. [31].

Emails from all top-level folders were included in the collection, but only those that were

both sent by and received by at least one email address of the form<name1>.<name2>@enron.com
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were retained. A set of 78 mention-queries were manually selected and manually asso-

ciated with the email address of the true referent by the third author using an interactive

search system developed specifically to support that task. The set of queries was limited

to those that resolve to an email address of the form <name1>.<name2>@enron.com.

Names found in salutation or signature lines or that exactly match<name1> or<name2>

for any of the email participants (indicated in “from”, “to”, “cc”, or “bcc” header fields)

were not selected as query-mentions. Those 78 queries include the 54 used by Diehl et al.

For the fourth test collection, “N-Extended”, the same 78 mention-queries and the

answer key from the N-Subset collection were used, but now all emails from the full CMU

version of the Enron collection (with duplicates removed) were included.

The fifth collection, “E-All,” is the one described in Chapter 6. The remaining

three are subsets of E-All, with all the subsequent ones being subsets of it based on the

annotations of the primary annotators.

Some descriptive statistics for each test collection are shown in Table 7.2. The

M-Sager and M-Shapiro collections are typical of personal collections, while the others

represent organizational collections. These two types of collections differ markedly in

the number of known identities and the candidate list sizes as shown in the table (the

candidate list size is presented as an average over that collection’s mention-queries, as a

median, and as the range of values.)1

1The maximum cardinality 1512 appears for disjoint mention-query sets because more than one ‘John”

appears as a mention-query (in different messages.) The zeros correspond to names that were not recognized

by IdResolver because they were not included in any identity model, and thus generate no candidates.
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Table 7.1: Test collections used in the experiments.
Test Collection

(Created by)
Email Messages Queries

M-Sager
(Minkov et al. [63])

One directory of CMU-
Enron

Automatically created by
removing CCed referent

M-Shapiro
(Minkov et al. [63])

One directory of CMU-
Enron

Automatically created by
removing CCed referent

N-Subset
(Namata et al. [38])

Only emails between
@enron addresses in
CMU-Enron

Manually resolved men-
tions, all to Enron domain

N-Extended
(Namata et al. [38])

Whole CMU-Enron Manually resolved men-
tions, all to Enron domain

E-All
(Elsayed et al.)

Whole CMU-Enron Randomly-selected
manually-resolved single-
token mentions

E-Enron
(Elsayed et al.)

Whole CMU-Enron Subset of E-All resolved to
@enron addresses

E-NonEnron
(Elsayed et al.)

Whole CMU-Enron Subset of E-all not resolved
to @enron addresses

E-Hard
(Elsayed et al.)

Whole CMU-Enron Subset of E-all labeled as
“hard” by the primary anno-
tator.

Table 7.2: Descriptive statistics for the rest collections used in the experiments.
Test Collection Emails Addresses Queries Candidates

Average Median Min Max

M-Sager 1,628 627 51 3 2 1 10
M-Shapiro 974 855 49 5 4 1 16
N-Subset 54,018 27,340 78 131 91 1 441
N-Extended 248,451 123,783 78 454 338 3 1512
E-All 248,451 123,783 470 241 116 0 1512
E-Enron 248,451 123,783 390 246 121 0 1512
E-NonEnron 248,451 123,783 90 213 66 1 1512
E-Hard 248,451 123,783 51 267 150 0 1512
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7.1.2 Evaluation Measures

There are two commonly used single-valued evaluation measures for “single-answer”-

retrieval tasks. The “Success @ One” (S@1) measure characterizes the accuracy of one-

best selection, computed as the mean across queries of the precision at the top rank for

each query. For a single-valued figure of merit that considers every list position, “Mean

Reciprocal Rank” (MRR), computed as the mean across queries of the inverse of the rank

at which the true referent is found, is commonly reported.

7.1.3 Training/Testing Plan

The adopted evaluation strategy is standard: train the system (i.e, tune its parame-

ters) using one collection, and test the trained system on another collection. E-All and all

of its subsets are not used in the training process, so that IdResolver can be evaluated on

the best available collection. The E-Extended collection was chosen as the training collec-

tion, since it is the closest collection to E-All in terms of the number of email messages

and the query set. The trained system was then evaluated on the other test collections.

Two caveats on that choice are worth mentioning here:

1. There is a big difference in scale between the training collection and the two small

collections specially, M-Sager and M-Shapiro.

2. All of the mention queries in the training collection are focused on Enron employ-

ees, for which there is likely to be a substantial amount of evidence in Enron email.

This is surely not the only type of queries in E-All.
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7.1.4 Hardware Setup

Experiments were run on a large cluster of approximately 480 machines provided

by Google and managed by IBM, shared among a few universities [55]. Each machine has

two single-core processors (2.8 GHz,) 4 GB memory, and two 400 GB hard drives. The

entire software stack (down to the operating system) is virtualized; each physical machine

runs one virtual machine hosting Linux. Experiments used Java 1.5 and Hadoop version

0.17.2, an open-source Java implementation of MapReduce. Experiments reported in this

chapter were limited to 200 processing nodes (cores.)

7.2 Tuning Parameters

Table 7.3 lists the parameters that were tuned for the social and topical contexts.

Local and conversational context do not have specific parameters. In this section, the

tuning process for both the social and topical context is described.

Table 7.3: Parameters for the social and topical contexts.
Parameter Social Context Topical Context

Context Similarity Jaccard/Overalp/OvJacc Subject/Root/Body/Path
Temporal Similarity gd, gr, ld, lr gd, gr, ld, lr

Context Time Period (T ) > 0 > 0
Rank Cut-off (R-cut) > 0 > 0
DF Cut-off (df -cut) - ≥ 99%

7.2.0.1 Social Context

R-cut was first fixed at 250 while changing T to one of 3 values: 10, 100, and 200

days; these values were adopted in previous research in [31] and [38]. Both the social and
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temporal similarity models were then jointly changed over all possible values. Figure 7.1

shows MRR results for these experiments. Figure 7.1(a) indicates that MRR is not very

sensitive to the choice of the temporal similarity at T=10. Figures 7.1(b) and 7.1(c) show

that MRR improves for some temporal similarity measures with wider time windows, and

that the combination <OvJacc, ld > is a good choice over both periods.

To further refine values for T , possible values were stepped through in a range

from 50 to 400 days with a step size of 50 days, as shown in Figure 7.2. A sharp peak

discovered at 100 days motivated a more fine grained search that eventually found the

peak MRR value at 138 days.

With the similarity models and time period T tuned, the only remaining parameter

of the social context to be tuned is R-cut, the size (in messages) of the context of a single

message. The values of R-cut were tried in a range from 50 to 500 emails, as illustrated

in Figure 7.3, to find a peak value between 250 and 300. A value of 250 messages was

then chosen for efficiency reasons.

7.2.0.2 Topical Context

A similar tuning process is repeated for the parameters of the topical context. The

df -cut value was initially fixed at 99.9% and BM25S [69] was used as the term weighting

function for computing topical similarity of pairs of emails. Unlike the social context,

MRR continues to improve slightly as T increases to 200, with the Path representation

clearly superior at the highest value of T . In this case, gd seems to be a good choice for

measuring temporal similarity, as illustrated in Figure 7.2.0.2.
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Figure 7.1: Effect of changing social and temporal similarity with different time periods
(N-Extended collection, R-cut=250).
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Figure 7.2: Effect of changing social time period T (N-Extended collection, Sim = [Ov-
Jacc, ld], R-cut=250).
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Figure 7.3: Effect of changing social R-cut (N-Extended collection, Sim = [OvJacc, ld],
T=138).
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Table 7.4: Tuned parameter values of social and topical contexts.
Parameter Social Context Topical Context

Context Similarity OvJacc Path
Temporal Similarity ld gd

Context Time Period T 138 250
Rank Cut-off R-cut 250 200

df -cut - 99.9%

It is noticed that the “Path” representation, which represents the content of an email

by a concatenated text from all emails that belong to its path to the root of the thread, was

substantially better than the other alternatives; it captures more content about the original

email, which is important since many emails are often short.

Peak values of T and R-cut were 250 days and 200 messages, as shown in Figures

7.5 and Figure 7.6 respectively. Finally, the tuned system was tested on different values

of df -cut at 99%, 99.5%, 99.95%, and 99.99%. Figure 7.7 shows precision improvement

with higher values up to 99.9%, followed by an unexpected drop at 99.99%. That drop

(which happened by removing smaller number of highest frequent terms) indicates that

tuning the term weighting function might be a good idea for future work.

The final tuned parameter values for both social and topical contexts are listed in

Table 7.4. The MRR values achieved of the tuned system were 0.858 and 0.927 for the

social and for the topical contexts respectively.

7.3 Evaluation

The trained system obtained in section 7.2 were then tested on all of the collections

listed in Table 7.1. All of the possible combinations of contexts were tried, with the mix-
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Figure 7.4: Effect of changing topical and temporal similarity with different time
periods(N-Extended collection, R-cut=250, df -cut=99.9%).
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Figure 7.6: Effect of changing topical R-cut (N-Extended collection, Sim = [Path, gd],
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T=250, R-cut=200).
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ing coefficients λk and the context priors p(xk) in each case set to a uniform distribution

over all included contexts. The figures and tables of this section use initials of the names

of the four contexts to indicate which of them comprise a specific combination (L: Lo-

cal, C: Conversational, S: Social, and T: Topical.) The “context-free” resolution (which

gives no attention to the context of a given mention-query, as described in Chapter 3) was

included as a baseline system and labeled “None.”

There are four basic questions addressed in the experimental evaluation:

1. How does the resolution approach perform compared to other approaches?

2. How is it affected by the size of the collection?

3. Which context makes the most important contribution to the resolution task?

4. Does the mixture help?

The trained system is first tested on the training collection as described in Section 7.3.1,

followed by testing on small collections as described in Section 7.3.2, and the new col-

lection and its subsets as described in Section 7.3.3.

For statistical significance test, the Wilcoxon Matched-Pairs Signed-Ranks Test,

a non-parametric test used to determine differences between sets of paired samples [90],

was used. It is preferred here over the more popular Student t-test, since it doesn’t assume

that the difference (in measurements of the paired samples) is normally distributed.
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7.3.1 Testing on Training Collection: N-Extended

Figure 7.8 shows the MRR results of the trained system on the training collection,

N-Extended. The combinations are grouped based on the number of contributing con-

texts.

Since the individual contexts were well tuned for that collection and the mixing

parameters are equally weighted, there is no statistical significance improvement from

combining contexts over the best individual context, topical.
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Figure 7.8: Results on N-Extended collection.

7.3.2 Testing on Small Collections

A summary of the results on the small collections are shown in Tables 7.5 and 7.6

with the best results for each test collection highlighted in bold. The table includes results

of context-free resolution, the best individual context, the best combination of contexts,

and the combination of all four contexts. It also includes the results reported in Minkov
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Table 7.5: MRR results on small collections.
Test Coll. Context-Free Best Context Best Comb. LCST Literature

M-Sager 0.708 T 0.784 LCT 0.905 0.856 Minkov 0.899

M-Shapiro 0.628 S 0.844 LCS 0.894 0.888 Minkov 0.879

N-Subset 0.288 S 0.893 LCST 0.934 0.934 - -

et al [63] and Diehl et al. [31] for comparison purposes.2 Given these scores, the results

compare favorably with the previously reported results for all of those collections.

Table 7.6: S@1 results on small collections.
Test Coll. Context-Free Best Context Best Comb. LCST Literature

M-Sager 0.627 T 0.686 LCT 0.863 0.765 Minkov 0.804

M-Shapiro 0.571 S, T 0.755 LCS 0.837 0.816 Minkov 0.779

N-Subset 0.128 S 0.833 LCST 0.897 0.897 Diehl (0.82)

7.3.3 Testing on the New Test Collection and Subsets

Table 7.7: Summary of MRR and S@1 results on E-All and subsets.
Test Coll. MRR S@1

E-All 0.785 0.738

E-Enron 0.820 0.774

E-NonEnron 0.611 0.563

E-Hard 0.582 0.510

Figures 7.9, 7.10, 7.11, and 7.12 illustrate the MRR results of all context combina-

tions on E-All and its subsets. A large drop in MRR values is generally noticed from the

results reported earlier on N-Extended and the smaller subsets. For example, the highest

2For N-Subset collection, it is not known which 54 mention-queries Diehl et al used in [31], so it is not

possible to directly compare the results reported here to theirs. Notice that they reported S@1 but not MRR

values.
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Figure 7.9: Results on E-All collection.

MRR value achieved on E-All is 0.785 (as indicated in Table 7.7) compared to values

around 0.9 in the case of the other collections. This is somewhat expected for two rea-

sons: (1) the queries in the other collections are biased; they are all resolvable to Enron

employees, while the queries of E-All are fairly sampled, and (2) 25 mention-queries in

E-All, about 5.5% of the query set, were not automatically recognized by IdResolver ;

an adjusted MRR score (after removing those queries) for E-All would be 0.829. An

adjusted MRR value for E-Enron is 0.867, which is closer to the results on the similar

type of queries of Minkov’s and Namata’s collections. Notice also that MRR results on

E-Enron is generally higher than E-NonEnron, which matches the difficulty measures re-

ported in Chapter 6. Moreover, E-Hard has been experimentally proved to be hard, as it

has the lowest reported MRR and S@1 values over all Elsayed’s collections.

To characterize the contribution of each individual context to the results, Figure 7.13

shows the MRR achieved with each context individually and the context-free resolution
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Figure 7.10: Results on E-Enron collection.
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Figure 7.11: Results on E-NonEnron collection.
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Figure 7.12: Results on E-Hard collection.

over all of the four collections. The figure indicates that the social context is clearly quite

useful, more so than any other single context, for every collection. This tends to support

the expectation that social networks can be as informative as content networks in email

collections. The topical context also seems to be useful on its own. The local context is

moderately useful on its own in the larger collections. The conversational context alone

is not very informative for the larger collections.

Table 7.8: Statistical significance of differences between context contributions.
Test Coll. LCST vs. S S vs. T

E-All significant (p < 0.001) not significant

E-Enron significant, (p < 0.001) significant, (p < 0.05)

E-NonEnron significant (p < 0.001) not significant

E-Hard not significant not significant

The principal motivation for combining different types of contexts is that different

sources may provide complementary evidence. To characterize that effect, Figure 7.13
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Figure 7.13: Context combination vs. individual contexts.

also illustrates the MRR curve of LCST (all contexts combined.) The figure shows a dif-

ference between LCST and social contributions, illustrated in Figure 7.14 as a percentage

MRR improvement. Table 7.8 shows the results of statistical significance test on those

differences. It shows that the differences are significant in all collections but E-Hard

(possibly because of the few queries.) The table also shows that the MRR differences

between social and topical contexts were insignificant in all collections but E-Enron.

7.3.4 Iterative Experiments

An experiment was conducted in which IdResolver ran for four iterations. Figures

7.15(a), 7.15(b), and 7.15(c) show the results on E-All, E-Enron, and E-NonEnron respec-

tively, using two individual contexts (social and topical) and three different combinations

(LCT, LCS, and LCST.) The MRR results show that resolution using topical context de-

cays consistently over subsequent iterations, while the resolution using social context is
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Figure 7.14: Percentage improvement over best context.

stable or improving at the second iteration, as shown in Figures 7.15(a) and 7.15(c). The

combinations of contexts naturally follow similar patterns.

Figures 7.16(a) and 7.16(b) show the difference in performance between the first

two iterations of the topical context resolution over E-Enron and E-NonEnron collections

respectively, sorted by the difference in Reciprocal Rank (RR). They also show the dif-

ference in the score (i.e., probability) assigned by the resolution algorithm to the actual

true referent of each query over the two iterations. Figures 7.17(a) and 7.17(b) illustrate

the same but for the social context resolution.

The figures indicate that:

• About 88% of the queries had a stable RR score over the two iterations, and thus

only 12% of them were affected.

• Generally, there are more queries where IdResolver got worse in the second itera-

tion (measured by RR) than queries where it got better.
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• As expected, there is a positive (but not too strong) correlation between the RR

score and the probability assigned by IdResolver to the true referent.

• The performance loss is higher in topical resolution than social resolution and over

E-Enron queries than E-NonEnron queries.

The last observation is also supported by Figure 7.18 which compares the average

difference in performance per query over the four different cases. It is interesting that the

MRR score of the social context resolution is getting a bit worse, although the average

difference of the probability assigned to the true referent is increased. This is due to the

score quantization levels of the MRR measure. The figure clearly shows that social con-

text resolution generally is benefitted (or at least less harmed) by the iterative approach.

Upon inspection of most of the adversely-affected queries in the four cases, it was

obvious that there are two main reasons of the performance decay:

1. There are many mistakenly recognized non-names (such as “may”) for which the

negative effect is growing as the number of iterations increases by creating noisy

resolution vectors – this means that a better name recognition system than the non-

context-sensitive one used in the experiments might be needed to get benefit of the

iterative resolution approach.

2. Those non-names often refer to (and thus vote for) identity models that are actu-

ally non-personal, such as mailing lists or faked addresses. One of these (which

is “40enron@enron.com”) dominates the resolution of many queries on the second

iteration simply because many common names are associated with it and their reso-

lution vectors get more biased over time. This kind of model should be filtered out

132



of the candidate list early on in the process.

As a side experiment, the context mixing parameters λl’s were tuned over the train-

ing collection and the tuned system was used with the same iterative experiment design.

The results were similar to the ones shown here for equally weighted contexts when those

tuned weights were used on E-All collection.

7.3.5 Efficiency

Table 7.9: Extracted mentions from CMU-Enron collection.
from Main body 999,291
from Subject 51,386
from Main Header 1,642,923
from Quoted Body 442,099
from Quoted Header 522,716

Email-addresses 1,746,636
Single-token Names 1,331,375
Multi-token Names 580,407

Table 7.9 shows number of extracted mentions from different message parts for the

whole CMU-Enron email collection. A total of about 3.65 million mentions (including

email addresses and multi-token names) were extracted; only about 1.3 million of them

are single-token names that required non-trivial resolution.

Table 7.10: Time used for major MapReduce processing stages (in minutes).
Packing 48 Social: Indexing 1.5 Topical: Indexing 1.5
Preprocessing 5 Social: Pairwise Sim. 5 Topical: Pairwise Sim. 5-13
Local: Total 9 Social: Resolution 13 Topical: Resolution 17-35
Conv.: Total 10 Social: Total 35 Topical: Total 45-75
Merging Scores 10

Table 7.10 reports average (over several different runs with different parameter set-
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Figure 7.15: Results of the iterative experiments.
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Figure 7.16: Difference between the first two iterations of topical context resolution over
mention-queries sorted by RR difference.
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Figure 7.17: Difference between the first two iterations of social context resolution over
mention-queries sorted by RR difference.
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tings) time durations in minutes spent in major processing steps. Notice that the Hadoop

cluster was shared among different users, and that the processing time might change based

on the available resources.

As the table indicates, the end-to-end runs, resolving about 1.3 million extracted

mentions, take roughly 2 to 3 hours on 200 processing nodes, including indexing, ex-

traction of all names in the collection, the pairwise similarity for both social and topical

contexts, name resolution on both context graphs, and the context combination process.

7.4 Chapter Summary

In this chapter, the resolution results on all of the available test collections (in-

cluding the largest collection, developed and described in Chapter 6, and its subsets) are

reported. The next chapter concludes the dissertation, discussing some limitations and

possible directions for future work.
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Chapter 8

Conclusion and Future Work

This dissertation has tackled the problem of resolving personal identity in the con-

text of large email collections. To “resolve identity,” solution of two problems were

needed: (1) modeling the identity of the participants, and (2) resolving mentions to these

identities. A simple computational model of identity, built on extracting unambiguous

references (e.g., full names from headers, or nicknames from free-text signatures) to peo-

ple from the whole collection, was presented. This model was then leveraged to resolve

mentions using a generative probabilistic approach that expands the context surrounding

a mention in four directions: the message where the mention was observed, the thread

that includes that message, topically-related messages, and messages sent or received by

the original communicating parties. The algorithm relies on less ambiguous references

(e.g., email addresses or full names) that are observed in some context of a given mention

to rank potential referents of that mention.

In order to jointly resolve all mentions in the collection, a parallel implementation

has been presented using the MapReduce distributed-programming framework. For scal-

able context expansion of all mentions, a parallel algorithm was proposed for efficiently

computing pairwise document similarity in large collections, a general solution that can

be used in other applications as well.

The resolution approach compares favorably with previously-reported techniques
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on the small test collections previously-reported in the literature. However, the mention-

queries in those collections, besides being relatively few in number, are limited in that

all refer to people for whom a substantial amount of evidence would be expected to be

available; thus omitting the “long tail” of the identity distribution for which less evidence

is available. This motivated the development of a new test collection that now is, to the

best of the author’s knowledge, the largest and best-balanced test collection available for

the task. To build this collection, a user study was conducted, which provided some

insight into the difficulty of the task, how time-consuming it is when humans perform it,

and the reliability of their task performance. The study revealed that at least 80% of the

470 annotated mentions were resolvable to people who had sent or received email within

the same collection.

The new test collection was used to experimentally evaluate the resolution system.

The results highlight the importance of the social context when resolving mentions in

email. Moreover, the results show that combining evidence from multiple types of con-

texts yields better resolution than what can be achieved using any individual context.

IdResolver one-best selection is correct 74% of the time when tested on the full set of

the mention-queries, and 51% of the time when tested on the mention-queries labeled as

“hard” by the annotators. Experiments run with iterative reformulation of the resolution

algorithm resulted in modest gains only for the second iteration in the social context ex-

pansion. Finally, IdResolver ’s MapReduce implementation resolves about 1.3 million

mentions on a 200-node Hadoop cluster in 2 to 3 hours.

This chapter discusses some limitations of the work done in this dissertation in Sec-

tion 8.1 and suggests possible directions for future work in Section 8.2 before it concludes
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by highlighting some implications of the work in Section 8.3.

8.1 Limitations

All experimental investigations are subject to the limitations of the experimental

setting. Among the most significant limitations of the setting are the following:

• The CMU version of the Enron collection, and subsets of it, was used in all of

the experiments because it was the biggest collection available at the time for re-

search. Therefore, the conclusions drawn are limited to that collection and can not

be generalized before testing the proposed technique on different collections.

• In order to focus the dissertation work on the resolution framework, the detection of

unresolvable mentions was not considered. That required the resolution algorithm

to make an assumption that all mentions are resolvable and to actually attempt to

resolve every mention that could be automatically recognized. The evaluation re-

sults focused only on resolvable mentions, but incorrect resolution of unresolvable

mentions may adversely affect the iterative solution.

• IdResolver uses dictionaries of names, nicknames, and non-names for mapping

nicknames to first names and for automatically recognizing personal names in the

whole collection. However, the system does not make use of additional resources

that are more closely related to the collection itself, such as the list of employees

and their job positions. Moreover, the use of those dictionaries and the nickname

detection approach that benefits from specific regularities of the user behavior might
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also make it harder to generalize the proposed technique to other languages and

cultures.

• In building the new test collection, the recruited human annotators were all univer-

sity students who had no prior experience with the people involved nor with the

topics discussed in the collection. This might have limited the accuracy of the an-

notations to some extent. The timing guidelines provided to them might also have

been a limiting factor for decisions regarding unresolvable mentions.

8.2 Future Work

The results of this dissertation open several important directions for future work.

Opportunities can be envisioned to improve the resolution approach, to use other email

collections, to apply similar techniques in other applications, and to leverage the ideas

presented to solve related problems. This section discusses those opportunities.

8.2.1 Improving The Resolution Algorithm

• An intuitive generative probabilistic solution, that was experimentally shown to

be effective, was proposed to solve the problem. Alternative approaches could be

designed (e.g., a discriminative model) that can possibly leverage a larger number

of features from the context of a mention (e.g., other mentions and people sending

or receiving emails in that context.) Moreover, the parameters of the Bayesian

network of the identity model were estimated using maximum likelihood estimates,

but alternatively, the context-free estimates could be used as priors to update the
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estimated values of these parameters using Bayesian updating model.

• In the iterative resolution approach, the resolution of all mentions are attempted

simultaneously. A different approach could take advantage of the fact that not all

mentions are equally ambiguous, so it might be better to focus on the least ambigu-

ous mentions before the more ambiguous ones. The level of ambiguity may not

be easy to determine, but the number of candidates could be a possible clue. An-

other possibility is to divide the mention graph into sub-graphs, separately resolve

each sub-graph, and then propagate resolutions among them. Sub-graphs might, for

example, be partitioned by time periods.

• The study described in Chapter 6 indicates that about 20% of mentions that were

manually extracted and then randomly selected were unresolvable. Ultimately,

there is a need to automatically recognize when not to attempt a resolution for a

name-mention. There are many features one can think of for a binary classification

problem (e.g., the strength of evidence that supports the most probable referent.)

8.2.2 Using Other Email Collections

• A new version of the Enron collection is expected to be released soon by NIST as

a test collection for the Legal Track of the Text REtrieval Conference (TREC) [66].

That collection will be interesting from this work’s perspective in two ways:

– It is expected to be a superset of the CMU collection (i.e., larger than the ver-

sion used in this dissertation) so it can be used to test the effectiveness and
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efficiency of the proposed techniques using additional evidence from previ-

ously unseen messages.

– It will include attachments (that were stripped out before releasing the CMU

version of Enron collection.) Two versions of the attachments will be avail-

able: native format (e.g., a Microsoft Excel sheet) and a version that includes

any text that could be automatically extracted. The availability of easily-

processed attachments raises the question of how to use them in the context ex-

pansion framework to better resolve mentions (e.g., by treating co-attachments

as a fifth type of context.)

• Another email collection that could be used is Shneiderman’s collection. That col-

lection includes about 45,000 emails that were intentionally retained between 1984

and 1998 by Professor Ben Shneiderman at University of Maryland [74]. Some

advantages of using that collection could be:

– It is a personal collection, where one communicating entity is common in all

emails (i.e., a snapshot of one mailbox.)

– It spans a longer period of time.

– It is expect that it would be relatively easy to obtain accurate name annotations

with the help of Professor Shneiderman.

One potential disadvantage of using that collection is that the collection may not

be as widely available for other research teams. Another is that the size of the

collection is considerably smaller than even the CMU-Enron collection.
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8.2.3 Content Resolution

• A user might also need to resolve unfamiliar terms other than names. Figure 8.1

shows an example email from the Enron email collection.
 

 

“Herman” “Blue Dog” 

Date: Tue Apr 24 11:45:00 EDT 2001 
From: Kay Mann <kay.mann@enron.com> 
To: Ben Jacoby <ben.jacoby@enron.com> 
Subject: Blue Dog 
 
Ben, 
 
In speaking with Herman, he suggested that you look at the earnings on Blue 
Dog on the hot list. It is showing a total $10.5 (4 East, 4 West in q2, 2.5  
in q3 (East). 
 
ckm  

??

Figure 8.1: Two key aspects in email conversations: content and people.

In that example, the user may be interested not only in determining who “Herman”

is, but also in determining the meaning of “Blue Dog”. These two problems, iden-

tity and content resolution, share some common characteristics, and the techniques

used to resolve the identities might also be useful for resolving term meaning.
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Document expansion techniques presented in [85] and [17] might be worth explor-

ing as a solution for the content resolution problem, guided by the context expan-

sion approach followed in identity resolution in this work.

• Identity resolution can affect content resolution and vice versa. There is some po-

tential that resolution of term meaning might be helpful for resolving the identities

(e.g., a clue about“Herman” may shed some light on an explanation for “Blue Dog”

and vice versa.) This suggests either a joint solution, or that two separate solutions

may be complementary to each other.

8.2.4 Applications

• The general interest of this work is in resolving identity in conversational text, al-

though to date the proposed techniques were applied only to email. Applying the

solution framework to other genres (e.g., chat room conversations) is an obvious

next step. Moreover, it might be worthwhile to try to apply the proposed techniques

on multiple genres simultaneously. For example, some transcribed phone calls are

available among some participants in the Enron collection.

• The results of the resolution system could be extrinsically evaluated by using the

system as a preprocessing step in some more complex task (e.g., social network

analysis, email retrieval, or an email exploration tool) for which an insightful eval-

uation measure could be crafted.

• The proposed algorithm for computing pairwise document similarity could be lever-

aged for other tasks such as a distributed document clustering using MapReduce,
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where the similarity matrix could be used as a basis for merging or splitting clusters.

8.3 Implications

A number of implications of this work can be envisioned. The work provides some

insights into some of the major problems in handling conversational text in general, and

email in particular. It has given a structure and a solution to the problem that both can

be adopted in other similar genres. IdResolver can help users better understand (or make

sense of) large collections of emails when they are non-participants. It also illustrates the

need to design scalable solutions to problems that can practically arise due to the growing

scale of available data. Finally, it suggests several directions for future work.
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Appendix A

System Specification

The system built in the work of this dissertation has two main components:

1. IdModeler : the component responsible of building the models of identity using

the “unambiguous” observable attributes from the the whole set of emails in the

collection.

2. IdResolver : the component responsible of resolving mentions in emails using the

context expansion approach and the probabilistic generative model.

A.1 IdModeler

IdModeler is written completely in Java 1.5 and uses Lucene 2.3 to index the emails

using both header fields (e.g., “FromName” and “ToAddress”) and body fields (e.g.,

“mainBody” and “quotedBody”.) The code is object-oriented with separate classes for

collections, emails (with header and body components), and identity models (including

all statistics of observed attributes). Utility classes include indexer, searcher, email read-

ers (one per collection that parses the email format), attribute and association detector,

thread links’ detector, identity extractor (which is the core service that calls the other

components to produce the final set of identity models.)

IdModeler runs sequentially, performing a few passes over the whole set of emails.

The implementation details are discussed in Chapter 3, Section 3.3. The major blocks and

147



data flow are specifically illustrated in Figure 3.3.

A.2 IdResolver

IdResolver is written completely in Java 1.5 and uses Hadoop 0.17.2 for a scalable

implementation of the resolution algorithm. All the components of IdResolver have been

designed to fit the MapReduce model, as detailed in Chapter 5 Figure 5.2. Each block in

the figure indicates one (or more) MapReduce job(s). The final output is a ranked list of

candidates of every mention in every email. The code ideally runs on a Hadoop cluster

(i.e., a set of commodity machines running Hadoop Distributed File System (HDFS)) but

can also run in a stand-alone mode.

A.3 System and Data Usage

Some parts of the system and the data produced have been already used by other

researchers. Multiple versions of the search system, used as an assistant tool in anno-

tating name mentions (as shown in Chapter 6), were used by Prof. Ben Shneiderman at

Computer Science Department and several researchers at Joint Institute for Knowledge

Discovery (JIKD) at the University of Maryland. The code that implements the efficient

computation of pairwise document similarity was used in the coreference resolution task

in the 2008 Automatic Content Extraction evaluation (ACE) [67] by a joint team of the

University of Maryland and Johns Hopkins University. Multiple versions of the topical

similarity matrices (with different parameters) produced by the topical expansion have

been used by Prof. Carey Prebe and his colleagues at Department of Applied Mathemat-
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ics at Johns Hopkins University.

It is also planned to release that implements the efficient computation of pairwise

document similarity as a part of a new open source information retrieval engine called

“Ivory” in a joint work of the University of Maryland and Yahoo. The source code of the

two major system components IdModeler and IdResolver are also planned to be released

along with the final resolution data for the CMU Enron collection.
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