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Applying statistical tools to help understand business processes and make

informed business decisions has attracted enormous amount of research interests in

recent years. In this dissertation, we develop and apply data mining techniques

to two sources of data, online bidding data for eBay and offline sales transaction

data from a grocery product distributor. We mine online auction data to develop

forecasting models and bidding strategies and mine offline sales transaction data to

investigate sales people’s price formation process.

We start with discussing bidders’ bidding strategies in online auctions. Con-

ventional bidding strategies do not help bidders select an auction to bid on. We

propose a automated and data-driven strategy which consists of a dynamic fore-

casting model for auction closing price and a bidding framework built around this

model to determine the best auction to bid on and the best bid amount.

One important component of our bidding strategy is a good forecasting model.

We investigate forecasting alternatives in three ways. Firstly, we develop model

selection strategies for online auctions (Chapter 3). Secondly, we propose a novel



functional K-nearest neighbor (KNN) forecaster for real time forecasting of online

auctions (Chapter 4). The forecaster uses information from other auctions and

weighs their contribution by their relevance in terms of auction features. It improves

the predictive performance compared to several competing models across various

levels of data heterogeneity. Thirdly, we develop a Beta model (Chapter 5) for

capturing auction price paths and find this model has advantageous forecasting

capability.

Apart from online transactions, we also employ data mining techniques to

understand offline transactions where sales representatives (salesreps) serve as media

to interact with customers and quote prices. We investigate the mental models for

salesreps’ decision making, and find that price recommendation makes salesreps

concentrate on cost related information.

In summary, the dissertation develops various data mining techniques for busi-

ness data. Our study is of great importance for understanding auction price for-

mation processes, forecasting auction outcomes, optimizing bidding strategies, and

identifying key factors in sales people’s decision making. Those techniques not only

advance our understanding of business processes, but also help design business in-

frastructure.
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Chapter 1

Introduction

Due to the availability of rich, high-quality data, employing data mining tools

to solve business problem and related research have gained great popularity in recent

years. Business data typically comes from two sources - online transactions, such as

the bidding history for eBay online auction, and offline transactions, such as sales

transaction data from a grocery product distributor. In this dissertation, we first

develop several forecasting models and bidding strategies for online auction data.

Then we investigate sales representatives’ price formation process, in particular, the

impact of price recommendation on such process, for sales transaction data.

1.1 Introduction to Online Auctions

1.1.1 Online Auctions

Online auction is a significant marketplace, which allows consumers and busi-

nesses to sell, buy, and bid on a variety of goods. People shop for consumer elec-

tronics on uBid (ubid.com), for consumer loans on Prosper.Com, and for almost

everything on eBay (ebay.com). eBay is one of the major online marketplaces and

currently the biggest consumer-to-consumer online auction site. Founded in 1995,

eBay Inc. has attracted over 200 million registered users and touts net revenue

of $8.37 billion for the year 2008 despite the ecomony recession. Dispersed across

1



twenty thousands of categories, several millions of items are listed on any given day.

In fact, [6] refers to online auctions as “one of the most successful forms of electronic

commerce”.

Typically in an online auction, the opening price is set by the seller or the

auction house, and bidders submit bids online. There are various auction formats:

Online auctions can be ascending (e.g., in eBay auctions) or descending (e.g., in

Dutch flower auctions where the price is bid down); first price or second price (i.e.

whether the final price is equal to the highest bid or second highest bid); with fixed

or soft closing time (i.e. where the auction duration extends with the arrival of new

bids); for single items or bundles. On eBay, most auctions are second-price ascending

auctions for single items, with a fixed duration. The seller sets the opening price,

and bidders place ascending bids until the auction end time is reached. At that

time, the winner is the highest bidder, and s/he pays the second highest bid (plus

an increment).

Online auctions differ from their offline counterparts in their longer duration

(typically several days), the anonymity of participants, the low barriers of entry,

their global reach, and around-the-clock availability. These conditions lead to a

highly dynamic environment, where bidders engage in competitive behavior that is

motivated by both psychological effects and economic reasoning. Auctions allow

bidders to adjust their behavior based on the previous progress of the auction of

interest and competing auctions, which in turn contributes to the dynamic changes

in auction progression and price.

2



1.1.2 eBay Data Structure

Empirical research of online auctions has been flourishing in recent years due to

the important role that these auctions play in the marketplace and the availability

of large amounts of high-quality bid data from eBay (as well as Yahoo!, OnSale,

uBid, etc). eBay makes public a vast amount of rich bidding data that include all

the bidding information as well as information about the bidders, the seller, and the

product being auctioned. A typical example of the bid data for a single auction is

shown in Figure 1.1. From the bid data, we can determine the price as shown on

eBay at any time during the ongoing auction1.

We use two eBay data sets about auction bidding history throughout the

research. One includes the complete bidding records for 380 auctions for new Palm

Pilot M515 handheld PDA’s that took place on eBay between March and May, 2003;

the other data set contains information on 4,965 laptop auctions that took place on

eBay between May and June, 2004. For details about the two data sets, please see

Appendix A.

1.1.3 Online Auction Literature

Statistical and data mining techniques have been extremely instrumental in

gaining insights into auction processes, and we describe some of the major contri-

butions to the online auction literature to date.

One important stream of research has focused on various auction features and

1On eBay, the price shown at any point in time is the second highest bid at that point rather
than the highest bid. Thus, the bid data might include bids that are lower than the highest bid.
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home | register | sign in | services | site map | help

 tips 

 Search titles and descriptions 

Searchgfedc
eBay.com Bid History for  
PALM M515 COLOR PDA LIKE NEW HANDHELD (Item # 3041545039) 

Currently $157.50 First bid $60.00
Quantity 1 # of bids 19
Time left Auction has ended. 
Started Aug-16-03 10:34:26 PDT
Ends Aug-21-03 10:34:26 PDT

Seller (Rating) daynathegreat ( 27 ) View page with email addresses (Accessible by Seller only)   Learn more. 

Bidding History (Highest bids first) 

User ID Bid Amount Date of Bid 

moonwolfdesigns ( 481 ) $157.50 Aug-21-03 10:33:20 PDT

rondaroo1 ( 65 ) $155.00 Aug-21-03 10:32:52 PDT

moonwolfdesigns ( 481 ) $151.99 Aug-21-03 10:19:00 PDT

rondaroo1 ( 65 ) $150.00 Aug-21-03 10:32:23 PDT

rondaroo1 ( 65 ) $145.00 Aug-21-03 10:32:11 PDT

rondaroo1 ( 65 ) $140.00 Aug-21-03 09:01:49 PDT

cpumpkinbatman ( 16 ) $125.95 Aug-21-03 10:03:09 PDT

cpumpkinbatman ( 16 ) $120.95 Aug-21-03 10:02:45 PDT

moonwolfdesigns ( 481 ) $115.95 Aug-21-03 08:31:09 PDT

quest3487 ( 68 ) $110.25 Aug-21-03 07:48:01 PDT

moonwolfdesigns ( 481 ) $108.35 Aug-21-03 08:28:58 PDT

moonwolfdesigns ( 481 ) $102.75 Aug-21-03 07:25:57 PDT

quest3487 ( 68 ) $100.25 Aug-21-03 07:19:48 PDT

moonwolfdesigns ( 481 ) $100.00 Aug-21-03 07:25:43 PDT

moonwolfdesigns ( 481 ) $95.00 Aug-21-03 07:25:30 PDT

moonwolfdesigns ( 481 ) $90.00 Aug-21-03 07:25:11 PDT

Page 1 of 2eBay.com Item Bid History

9/12/2003mhtml:file://C:\WINDOWS\Temporary%20Internet%20Files\Content.IE5\S12ZWP6F\eB...

Figure 1.1: Bidding data for an eBay Palm PDA auction.
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their impact on the closing prices. In fact, a seller’s reputation [6], an auction’s

duration [37], opening and reserve prices [74], or an item’s shipping costs [38], all

have been shown to affect the final price (see also [89]). Statistical tools used for

this type of research are mainly classical regression models, and the results from

such analyses help answer sellers’ questions about which auction setting or listing

enhancements are worth the extra fee and improve the design of the online market.

Besides auction features, there has been much interest in understanding the

dynamics of the price formation process recently, in an attempt to better capture,

understand, and forecast price in online auctions. Novel statistical approaches have

been developed in gaining deeper understanding about price dynamics. [52; 10] have

shown that price dynamics can be very heterogeneous, even for auctions of the same

product, using descriptive statistics. [51] have shown this for auction of new Palm

PDA handheld devices sold on eBay; [21] found similar behavior in auctions for

contemporary Indian art. [51] further segmented auctions based on price dynamics:

“steady auctions” are those with constant dynamics, “low-energy auctions” are those

with late dynamics, and “bazaar auctions” see mostly early activity. [86] developed a

three-stage non-homogeneous Poisson process for capturing bid timing, and showed

its flexibility in capturing the bid timing for various items and auction durations,

etc. [97] introduced a single class of functional differential equation models that

captures a wide range of auction price paths and dynamics. Finally, [96] developed

real-time forecasting models for ongoing auctions that use as input the price path

and its dynamics until the time of prediction. They show that the inclusion of the

dynamic information significantly improves predictive accuracy compared to models

5



that exclude such information.

Researchers also study the interplay between auction features and dynamics.

[84] illustrated the effect of auction features (such as the opening bid) on auction

dynamics, and found that higher opening bids result in lower price dynamics. [55]

developed model-based regression trees to relate differential equation models for

different auction dynamics to auction features.

Auction dynamics reflect unobservable dynamic behavior such as competition

between bidders within the auction and across auctions. The fact that millions of

auctions are taking place simultaneously and many of these auctions sell the same or

similar items introduces competition both to the sellers and the bidders of the prod-

ucts, which results in competition thus cross-dependencies among auctions and their

outcomes. Consequently, adequately capturing and modeling the price path can be

used for studying the effects of competition. [44] developed visualizations for the

price formation process and its dynamics to study the effect of concurrency among

online auctions. [21] have investigated the relationship between within-auction and

between-auction competition on price dynamics and have shown that price dynamics

are good proxies for the harder-to-measure competition.

Although the presence and importance of competition are broadly noticed by

many scholars, quantified study of its effect is rather limited. This is mainly due to

lack of measures for competition in the dynamic environment. In this dissertation,

we set out to quantify the competition between simultaneous auctions and use such

information in our forecasting of auction outcomes and designing bidding strategies

in this competition environment.
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There exist two very well documented (and researched) bidding strategies for

online auctions, early bidding and last-minute bidding. [8] have shown that early

bidders often discourage potential competitors from entering the same auction by

signaling their commitment early in the auction. In contrast, last-minute bidders

[83; 86] wait until the very last moment to avoid being out-bid. However, neither

strategy takes into account the effect of competition, thus provides no guide for

bidders to select the right auction from many simultaneous auctions to bid on.

We build a forecasting model which accounts for competition among simultaneous

auctions, and develop a bidding strategy around the model that can determine not

only the best auction to bid on but also the right bidding amount.

An alternative way to capture competition is to assign heavier weights to

auctions with high level of competition when estimating the model and making

forecasts. This is in contrast to conventional methods where information from each

auction is weighted equally in the process of model estimation. Examples for con-

ventional methods include [96] which used regression-based models to forecast an

auction’s final price in a dynamic fashion (see also [32; 59]) and [16] which employed

a classification and regression tree method for forecasting. In this dissertation, we

develop a method for computing weights for each auction based on auction similarity

(therefore competition level) and making weighted forecasts.
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1.2 Introduction to Pricing in B2B and B2C and Literature Review

Business transactions are normally divided into four groups: business-to-consumer

(B2C), business-to-business (B2B), business-to-public administration, and consumer-

to-public administration. We only discuss the first two types of transactions here

because the latter two depend heavily on government policies which is basically a

different research area.

A business can ensure profitability and longevity by utilizing appropriate pric-

ing strategy. [69] stated that improved pricing can yield 20%-35% reduction in waste

or unused inventory, 2%-4% increase in corporate revenues, and 1%-3% increase in

profit. However, with the increasing production size and customer population, set-

ting the right price has become an non-trivial task.

Pricing in B2C settings usually involves setting prices for hundreds even thou-

sands of products/services over hundreds of stores nationally and/or internationally

(e.g. retail stores, airlines, and hotels). Such complicated task is typically done by

decision support tool (DST). DST collects vast amounts of data and employ data

mining and optimization routines to uncover the holy grail of pricing - customer’s

willingness-to-pay (WTP) - based on which optimized price is computed. DST has

proven itself to be extremely helpful in enduring profitability in B2C business. For

instance, by the help of DSTs, Marriott’s annual profit increase for individual hotels

totaled $86 million after the rollout of their in-house developed pricing and revenue

management system in 2004 [76].

Customer WTP is often endogenously determined by many factors, some ob-
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servable and some not. The observable traits, such as customer’s purchase history

or price of the same products from competing companies [67], can be captured and

incorporated into DST. The non-observable part, however, cannot be quantified.

Such non-observable factors speak to how a customer perceives/ internalizes a price

quote and reacts to it. For instance, [65] introduce the concepts of fairness, and they

find it is unfair to exploit shifts in demand by raising prices. [64] discuss the notion

of anchoring and how customers make adjustments under uncertain market condi-

tions. [94] study the framing of the price quote, and find that customers respond

differently to price quotes framed different by salesreps. While both observable and

unobservable factors may exist and hence be useful in determining customer WTP

in B2C markets, the relatively small dollar spend of each customer coupled with

the large number of customers present in the market generally imply that DSTs can

make reasonable pricing decisions while ignoring the unobservable traits.

The situation changes as we turn to B2B markets where the characteristics of

each customers matter to pricing. In such settings, sale representatives (hereafter re-

ferred to as “salesreps”) are entrusted with determining the impact of the unobserv-

able customer traits on each customer’s WTP, and managing the (relatively) large

accounts of and relations with several business customers. For example, salesreps

must assess if a customer will find a price to be fair (whether or not it is a price that

is justified by current market conditions), how and on what the customer anchors

his willingness to pay (e.g., the past price paid or possibly a competitor’s current

price), the strength of the relationship between salesrep and customer and hence

whether a customer will trust a quoted price as being reasonable, how customer
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reacts to price increases, etc. To emphasize the human involvement, we hereafter

refer to B2B settings by H2H (Human-to-Human).

With such intangible pieces of information about customers, salesreps are often

considered experts for quoting appropriate prices. However, studies show that being

an “expert” does not always imply better decisions [93]. No matter how experienced

salesreps are, they are all human beings who are subject to their own decision biases

and judgment heuristics (e.g., memory bias, [93], satisficing behavior, [77], status

quo bias, [66]), which leaves space to improve pricing. For instance, salesresps

decision is generally affected by irrelevant information [40], thus providing them

with only most relevant info may lead to appropriate price quotes.

DST, on the other hand, can gather information across hundreds of salesreps,

and is able to make better aggregate predictions about WTP and demand. Hence,

DST price recommendation may provide a valuable reference point on which salesreps

can anchor their price decisions. However, it is not very clear whether price recom-

mendations to salesreps in H2H markets as they have in B2C business.

While there is a large amount of literature on pricing in economics, marketing,

or operations management for B2C markets (e.g. [94; 20; 101]), surprisingly little

research has been done on H2H pricing, and even less so on behavior of salesreps in

this context. With limited understanding of what salesreps anchor on when making

price quotes, it is difficult to improve pricing in B2B setting. We set out to study

how salesreps form prices and respond to price recommendations in H2H markets in

this lack of study. The results will aid designing of DSTs to counter salesrep biases

and improving profitability for companies.
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1.3 Contributions of the Dissertation

Applying statistical tools to help make informed business decisions has at-

tracted enormous amounts of research interest in recent years. Because of the huge

amounts of information available, distinguishing useful from noisy information and

drawing informed conclusions from data becomes a non-trivial task and requires

employment of novel statistical tools. In this dissertation, we develop/apply data

mining techniques to two sources of business data - online auction data and H2H

transaction data. We develop prediction models and bidding strategies in online

auction setting and investigate the impact of DST price recommendation on sales

representatives’ pricing decision. This dissertation has resulted in several papers

under review at Statistics and Business journals; and another paper is coming out

at the end of summer.

1.3.1 Data Driven Bidding Strategy

Bidders participating in online auction often face many complicated bidding

decisions. They have to decide whether to bid early or late, whether to place a single

bid or multiple updates, whether to bid high or low. Bidding is further complicated

by the existence of many auctions that offer the same, or similar item simultaneously.

All in all, a complete bidding strategy has to include decisions on which auction to

bid on and how much.

Many bidders rely on two conventional strategies, early bidding and last-minute

bidding. Although proven to effectively yield a high winning probability for a careful
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selected auction, neither strategy answers bidders’ question about which auction to

bid on given thousands of simultaneous auction.

The first contribution of this dissertation is to propose a novel automated

and data-driven bidding strategy which provides bidders with complete decision

guides. Our strategy consists of two main components. First, we develop a dynamic,

forward-looking forecasting model for price in competing auctions. Then, using the

idea of maximizing consumer surplus, we build a bidding framework around this

model that determines the best auction to bid on and the best bid-amount. We also

conduct a simulation study which shows that our strategy results in a much higher

surplus than two conventional bidding rules. This research, discussed in Chapter 2,

is currently under the second round review at the INFORMS Journal of Computing

[57].

1.3.2 Model Selection for Improved Forecasting

One important component of our bidding strategy is a good forecasting model

for auction closing prices. Knowing the auction’s closing price has several advantages

for auction participants. Bidders can use this information to make more informed

bidding decisions [57]. Sellers can use predictions to identify times when the market

is more favorable to sell their products and to better evaluate the value of their

inventory.

In this chapter, we investigate forecasting alternatives by developing model-

selection strategies for online auctions. Model selection in this setting is different

12



compared to classical time series analysis. In classical forecasting, one typically

wants to forecast a particular time point; while in the context of online auction, one

needs to forecast an entire time interval to satisfy bidders’ need of bidding on any

auction that is expected to close in that time window.

Our second contribution of this dissertation is to extend the classical model

selection criteria which are applicable only to a time point to the setting where

forecasting a time interval is required. we do so by computing an entire distribution

of a model selection criterion over the prediction interval. In this Chapter, we

investigate different ways to summarize the distribution and the impact of different

summaries on the prediction task. We find that the models selected by the volatility

of classical AIC or BIC’s distribution over the prediction window have extremely

poor prediction performance, while the models selected by minimum or maximum

predict very well. This research is discussed in Chapter 3 and has been submitted

to the Journal of Business and Economic Statistics for review [58].

1.3.3 Weighted Forecasting of Closing Prices

Besides studying model selection criteria for regression models, we also inves-

tigate forecasting alternatives by developing novel weighted forecasting methods.

For the closing price of an ongoing auction, the natural reference points are the

final prices of past auctions. Previous forecasting methods, including ones devel-

oped in Chapter 2 and 3, put equal weight on the information from all training

auctions when estimating model coefficients and making forecasts. Nevertheless, as-
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suming that more similar auctions contain more relevant information for forecasting,

a forecasting method that weighing the information from each auction differently,

depending on how similar that auction is to the auction of interest, is more ap-

propriate. For this purpose, we apply the popular weighted prediction method -

K-Nearest Neighbors (KNN) - for forecasting closing prices of an ongoing auction.

One key aspect to the success of KNN is the choice of distance metric based

on which the distances between samples (i.e. the reciprocal of sample weights) are

measured. This is especially challenging in the context of online auctions because

auctions vary on many conceptually different dimensions, such as static (e.g. auc-

tion starting prices), time-varying (e.g. number of bids) and functional dynamics

information (the dynamics/shapes of the auction price paths). Although there exist

standard measures for static or time-varying information, measuring the distance

between functional dynamic information (e.g., between two curves) is more involved

because of infinite dimensionality.

An important contribution of this research is to point out a new research area

- developing weighted forecasting models for better forecasts. In the study, we in-

troduce a parametric Beta model to capture auction price paths, which allows mea-

suring the distance between auctions’ dynamics in a very parsimonious way via the

Kullback-Leibler distance (KL distance). Furthermore, we define distance metrics

that integrates information of various types, including dynamics. Using the recip-

rocal of the distance as weights, we find that weighing information unequally yields

better forecasts compared to classical methods such as regression models or trees

and this result holds in auctions of varying levels of heterogeneity. This research, dis-
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cussed in Chapter 4, has been recommended for publishing in International Journal

of Forecasting [102].

1.3.4 A Flexible Model for Price Dynamics in Online Auctions

Besides allowing measuring distance between auctions’ dynamics via KL dis-

tance, the Beta model developed in Chapter 4 has many other useful properties in

online auction context. We explore those properties in details and compare it with

existing models for capturing auction price paths.

The fourth contribution of this dissertation is to study the characteristics of

the parsimonious parametric Beta model and show its advantages as a representa-

tion for auction price paths over existing methods. We show that the model can

accurately capture price paths and price dynamics of various types, summarize the

bid timing distribution, measure pairwise distances between price paths or price

dynamics curves, and is computational efficient. This work is discussed in Chapter

5 and currently under review at the Journal of the Royal Statistical Society (Series

C) [56].

1.3.5 Decision Making in H2H Transactions

Different from B2C settings where decision support tools (DST) have been

adopted and proven to be extremely valuable in aiding firms and improving their

profits, sales representatives have significant responsibility in pricing decisions in

B2B (H2H) transactions. Salesreps may rely on many observable and non-observable
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information, such as their personal expertise, knowledge of individual customers, and

price recommendations from DST, to make price quotes. Given those many pieces

of related information, especially DST price recommendation, it is not very clear

which are the important factors that take effect in salesreps’ mental model, by which

we refer to their price formation process.

One important contribution of this dissertation is to identify important fac-

tors that determine a salesrep’s mental decision model in a H2H setting. We study

how sales people adjust price quotes for different products and different customers

over time with special attention to the impact of DST price recommendation. We

use various model selection criteria to identify most influential factors, and we find

that salesreps anchor most on cost related information, including cost, sign and size

of cost change, and types of products (perish commodities or non-commodities).

Furthermore, we find that price recommendation from DST, whenever provided, in-

fluence salesreps’ decisions in a positive way. It serves as a price focal point, without

which, salesreps are influenced more by unobservable factors and thus make price

decisions difficult to explain and predict. This work is anticipated to be submitted

to a top business journal (such as Management Science) by the end of summer.

1.3.6 Summary of Dissertation Contributions

To summarize, the contributions of this dissertation are to:

• Propose a novel automated and data-driven bidding strategy which helps bidders

make bidding decision (Chapter 2).

16



• Investigate various model selection criteria for forecasting over a time interval in

online auction setting (Chapter 3).

• Propose a K-Nearest Neighbor forecaster for forecasting closing price of online

auctions; introduce a parsimonious model to capture auction price paths that al-

lows measuring distances between auctions’ dynamics; and propose a novel distance

metric for online auctions that takes into account both static and time-varying fea-

tures as well as the auction’s price dynamics information (Chapter 4).

• Study characteristics of the beta model and illustrate its advantages over existing

models as representations of auction price paths (Chapter 5).

• Identify the key factors influence saleresps’ pricing decisions and investigate the

impact of decision support tool on salesreps (Chapter 6).

17



Chapter 2

An Automated and Data-Driven Bidding Strategy for Online

Auctions

2.1 Introduction

The flexibility of time and location as well as the availability of many different

products make online auctions an important marketplace. However, bidders partic-

ipating in this marketplace often face many complicated bidding decisions. They

have to decide whether to bid early or late, whether to place a single bid or multiple

updates, whether to bid high or low. Bidding is further complicated by the existence

of many auctions that offer the same, or similar item simultaneously. In that case,

one’s bidding strategy has to be expanded to include decisions on which auction to

bid on, when to bid on that auction, and how much.

There exist two very well documented bidding strategies, early bidding and

last-minute bidding. By signaling their commitment early, early bidders [8] discour-

age competitors from entering the same auction. In contrast, last-minute bidders

[83; 86] wait until the very last moment as the chances of being out-bid decrease with

the time left in the auction. However, both bidding strategies suffer from limitations

since neither takes into account the effect of competition [39]. In other words, nei-

ther strategy considers the information from simultaneous auctions offering similar
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products. While there is emerging literature [100] that suggests that bidders should

shade their bids in the presence of sequential auctions, the precise amount of the

optimal shade on an auction-by-auction basis is not quite clear.

In this chapter, we propose a novel automated and data-driven bidding strat-

egy. Our strategy consists of two main components. First, we develop a dynamic,

forward-looking forecasting model for price in competing auctions. Then, using

the idea of maximizing consumer surplus, we build a bidding framework around

this model that determines several decisions: the best auction to bid on and the

best bid-amount. This work is currently under the second round review at Informs

Journal of Computing.

The first component of our automated bidding strategy is a dynamic forecast-

ing model for the price in competing auctions. There has been considerable amount

of work on predicting an auction’s closing price using static (or pre-auction) infor-

mation (see e.g. [6; 37; 38; 74]). One drawback to these approaches is that they

only consider information available before the start of the auction and thus ignore

the dynamic nature of the auction process.

Dynamics have only recently been found to affect the outcome of an online

auction [10]. [51] find that auctions selling identical products fall into one of three

segments of price dynamics, namely “steady auctions” which experience a constant

flow of dynamics, “low-energy auctions” with late dynamics and “bazaar auctions”

which see the largest jump of dynamics. [84] illustrate the effect of auction parame-

ters (such as the opening bid) on an auction’s dynamics and find that higher opening

bids result in lower price dynamics. [97] show that an auction’s price dynamics can

19



be characterized well using a single class of functional differential equation models

and [55] extend upon this idea and develop model based regression trees to relate

differential equation models to auction covariates. Moreover, [96] show that the

inclusion of price dynamics into forecasting models significantly improves the pre-

dictive capability of an auction (see also [7]). In this study, we build upon the ideas

developed in previous studies. However, one key difference is that, in contrast to

previous studies, we study dynamics in the context of competing auctions. That

is, we study the effect of dynamics generated in simultaneous auctions, selling the

same or similar product as the auction of interest. We incorporate the dynamic

nature of the auction process by employing a modern statistical approach called

functional data analysis (FDA). See [79] for a general introduction to FDA or [52]

for an illustration of FDA in the context of electronic commerce.

Besides incorporating dynamics, our model also explicitly accounts for the

information from competing auctions. Competition between auctions has come to

the spotlight only recently (e.g. [39; 37; 3; 17]). One problem with competition

is the precise quantification of its effect. [53] propose a spatio-temporal model

to measure similarity among concurrent auctions. [44] take a functional approach

to visualize concurrent auctions and their dynamics. (See also [50] for additional

visualizations of concurrent auctions.) In this chapter, we propose several innovative

measures for auction competition using the concept of functional data analysis. Our

measures can be grouped into three conceptually different classes: measures that

capture competition from static (or pre-auction) information; from time-varying

information; and from dynamics. We perform variable selection to identify the most
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predictive set of competition measures.

Our proposed forecasting model incorporates measures of dynamics and com-

petition as predictors. In contrast to [96], our model also takes into account compe-

tition; in contrast to [53], we measure competition in ways that are easily scalable

and do not rely on spatial methodology. We compare our model’s predictive ca-

pability to several alternate approaches, and find that our model can predict an

auction’s price with higher accuracy.

In the second component, we build a comprehensive bidding strategy around

our forecasting model. The idea is based on maximizing consumer surplus, which

refers to the difference between the bidders’ willingness to pay (WTP) and the price

actually paid. We formulate an automated algorithm for selecting the best auction to

bid on, and for determining the best bid-amount. The best auction provides bidders

with the highest surplus, and the best bid-amount equals the predicted closing price.

We conduct a simulation study where we compare our automated, data-driven

bidding strategy with early bidding and last-minute bidding. We compare all bidding

strategies on two different dimensions: the probability of winning an auction, and

the surplus extracted. We find that although snipers have the highest probability

of winning, our strategy results in a much higher surplus. We also investigate the

impact of the prediction window on the resulting surplus. The prediction window is

equivalent to the given time frame within which a bidders wants to win an auction.

Shorter time frames correspond to bidders that want to win more quickly; longer

time frames correspond to bidders that allow more time for search and selection.

We find that, as the width of the prediction window is increasing, surplus goes up
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while the probability of winning goes down.

The chapter unfolds as follows: In Section 2.2, we describe the data; in Section

2.3, we derive our forecasting model. Results of model estimation are discussed in

Section 2.4. In Section 2.5, we present the framework for our automated bidding

strategy and the results of our simulation study. We conclude with further research

directions in Section 2.6.

2.2 Data Description

The data used in this study are the complete bidding records for new Palm

M515 handheld devices, auctioned between March 14, 2003 and May 25, 2003. The

market price at the time of data collecting was $230 (based on Amazon.com). Each

bidding record includes the auction number, starting- and closing-time and -prices,

bids with associated time stamps, and other information, such as auction duration,

shipping fee, seller’s feedback score, whether the seller is a power seller, whether the

product is from an eBay store, and whether auction’s description includes pictures.

A summary of this information can be found in Table A.1.

Figure 2.1 illustrates the information-overload that bidders face. In particular,

we see, for each individual auction, the live price curve, that is, the price that bidders

see at any given time during the ongoing auction. We can see that the information

can be quite overwhelming: the amount of concurrent auctions, the variation in

prices and the fact that some auctions are only in the early stages, while others

are about to end, all cause challenges for properly processing the given information.
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Figure 2.1: Snapshot of the live price curves during eBay auctions.

Moreover, we see that prices increase unevenly throughout most auctions. They

increase fast in some auctions, but much slower in others. We refer to this as price

dynamics, which will be an important factor in our modeling approach.

2.3 A Model for Forecasting Competing Auctions

Our forecasting model has several features: We model the real-time price

process of ongoing auctions using functional data analysis (FDA), which allows us

to incorporate information about the dynamics of price. We also propose several

innovative ways of incorporating competition across concurrent auctions, and then

we suggest an innovative way to perform model selection1 and model updating. We

describe these features in detail next.

1A more complete study about the model selection can be found in next chapter.
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2.3.1 Functional Data Analysis and Price Dynamics

The price process of online auctions is characterized by an extremely dynamic

environment. One aspect of this environment is the changing bid density, where

the number of bids per time unit changes constantly. The resulting unequally-

spaced time-series of bids deem traditional models (which assume evenly spaced

measurements) inadequate. Furthermore, the changing bidding patterns also result

in varying price dynamics. By price dynamics we mean the change in price and

the rate at which this change occurs. Traditional forecasting models, which do

not account for such instantaneous change, fail to accurately predict auction prices

[96]. To incorporate this dynamic environment, we take a functional data modeling

approach.

Functional data analysis [79] uses smoothing methods2 to recover (or estimate)

the underlying price curve from observed bidding data. From the price curve, we

then obtain estimates of the price dynamics via its first and second derivatives.

Figure 2.2 illustrates the process of generating smooth price curves from observed

data (left panel) and estimating the corresponding price velocities (right panel). We

see that the smooth curves capture the trend of the price increase due to the discrete

bids; the velocity captures the instant change of price increase. For more details on

FDA in the context of online auctions, refer to [84] or [52]; and for more details on

the smoothing process, see Section 5.2.1 in Chapter 5.

2In particular, we use polynomial smoothing methods (p-splines) in this study.
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Figure 2.2: Smooth price curves (left panel) and corresponding velocities (right
panel) for two sample auctions. The dots in the left panel denote the observed bids.

2.3.2 Capturing Competition

One major component of our model is competition. That is, we want to

capture the effect of what happens in other, simultaneous auctions. To that end,

we must first define meaningful measures for competition. There are many different

ways of defining competition measures and we explore several alternatives below.

All measures are driven by the same general principle which is illustrated in Figure

2.3. We define a focal auction (indicated by the solid line in Figure 2.3) as the

auction for which a bidder wants to decide whether or not to bid on. At time T

of decision-making, there are several other auctions that take place simultaneously

(indicated by the dotted lines). One meaningful measure of competition is the level

of price in other auctions. In our example, there are four different prices levels at

time T , varying from high (p1) to low (p4). The price level in the focal auction at

that time is p3. Thus, a possible measure for the price competition is given by the
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average price in concurrent auctions (which we denote by c.avg.price), that is, by

the average of p1, p2 and p4. In similar fashion, the average price velocity (c.avg.vel)

in concurrent auctions would be defined as the average of the corresponding price

velocities, and so on.
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Figure 2.3: Illustrating competition: The sold black line denotes the focal auction;
the dashed lines denote competing auctions; T denotes the time of decision-making.

In this chapter, we investigate several different competition features and their

impact on the price of the focal auction. Table 2.1 categorizes these features by the

information that they carry: Static competition features are known at the outset

of the auction and do not change during the auction process; examples include

the opening price of concurrent auctions (a high opening price in other auctions

could discourage bidders and make them participate in the focal auction) or the

duration of concurrent auctions (if competing auctions have a shorter duration,

then bidders with an immediate desire may be attracted to those auctions); Time-

varying competition features change during the auction process, such as the current
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price of concurrent auctions (if the price is low in other auctions, bidders may leave

the focal auction) or the number of bidders of concurrent auctions (bidders may

feel that their chances of winning are higher in auctions with lower competition);

and price dynamic competition features capture the effect of changing dynamics in

competing auctions (if the price dynamics increase in competing auctions, e.g., due

increased bidding activity in those auctions, then the price speed in the focal auction

is likely to slow down).

In Figure 2.4, we explore the relationships between some of the competition

features from Table 2.1 and the future price in the focal auction. We can see that

some features (e.g., the average price and its velocity in competing auctions) have

a strong relationship with price, while others (e.g., the average opening bids or the

shipping fee in simultaneous auctions) have a rather weak relationship. Pairwise

correlation analysis (not reproduced here) also shows that, unsurprisingly, many of

the features in Table 2.1 are multicollinear. Thus, a good modeling strategy will

start with a suitable variable selection procedure. We will use the initial observations

from Figure 2.4 for guidance when selecting the most relevant set of competition

features in the next section.

2.3.3 Variable Selection

Many different pieces of information can affect price in online auctions. We

differentiate between two main components, information from within the focal auc-

tion vs. information from other, competing auctions that take place simultaneously.
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Table 2.1: Candidate Competition Features

Name Description

Static Features

c.openbid.avg Average opening price of concurrent auctions

c.dura.avg Average duration of concurrent auctions

c.ship.avg Average shipping fee of concurrent auctions

c.feedback.avg Average sellers’ feedback of concurrent auctions

c.power.avg Average number of power seller in concurrent auctions

c.store.avg Average number of eBay stores in concurrent auctions

c.pic.avg Average number of pictures in concurrent auctions

Time-varying Features

c.price.avg Current average price in concurrent auctions

c.price.vol Current price volatility (stdev) in concurrent auctions

c.price.disc Price discount (difference) between focal auction and
highest concurrent price

c.t.left.avg Average time left in concurrent auctions

c.t.left.vol Volatility (stdev) of time left in concurrent auctions

c.nbids.avg Average number of bids in concurrent auctions

c.nbids.vol Volatility (stdev) of number of bids in concurrent auctions

c.nbidders.avg Average number of bidders common to focal and concurrent auctions

c.nbidders.vol Volatility (stdev) of number of bidders common to focal
and concurrent auctions

Price dynamic Features
c.vel.avg Average price velocity in concurrent auctions

c.vel.vol Volatility (stdev) of price velocity in concurrent auctions

c.acc.avg Average price acceleration in concurrent auctions

c.acc.vol Volatility (stdev) of price acceleration in concurrent auctions
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Figure 2.4: Pairwise relationships between some of the competition features from
Table 2.1 (measured at time T ) and the price (measured at T + 1) in the focal
auction.

Within each component, information can be further segmented into static, time-

varying and price dynamic information, similar to Table 2.1. Table 2.2 lists all the

different pieces of information that are candidates for our forecasting model.

Table 2.2 shows that there are over 30 different variables that are candidates

for our forecasting model. Thus, an important first step in our modeling efforts is the

selection of a parsimonious subset of relevant predictors. Variable selection has been

researched in the statistics literature for a while [13] and it is receiving increasing

attention today with the availability of more and more data sets featuring larger

and larger number of variables [30]. A complicating factor in our situation is the

time-varying nature of our model. Our goal is to find a model that predicts well at

time T +1, universally across all time periods T = 1, 2, 3, . . . , NT . Classical variable
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selection procedures focus on cross-sectional data, that is, on data corresponding to

a single time period only. Since our data varies over time, it is quite plausible that

there exists one model that best predicts at time T + 1, while another (different)

model best predicts at a different time T ′ + 1. Our goal is to find a model that is

not geared to a single time period only, but applies rather universally to the eBay

market over a longer time window. To that end, we choose a model which has good

average performance3, averaged over all time periods T of interest. We describe this

approach next.

Table 2.2: Candidate information for the forecasting model

Information from within the focal auction

Static information opening bid, auction duration, shipping fee,
seller’s feedback, power seller, eBay store,
picture

Time-varying information current price, time left, current number of
bids, current number of bidders

Price dynamic information price velocity, price acceleration

Information from competing auctions

Static information c.openbid.avg, c.dura.avg, c.ship.avg,
c.feedback.avg, c.power.avg, c.store.avg, c.pic.avg

Time-varying information c.price.avg, c.price.vol, c.price.disc, c.t.left.avg,
c.t.left.vol, c.nbids.avg, c.nbids.vol, c.nbidders.avg,
c.nbidders.vol

Price dynamic information c.vel.avg, c.vel.vol, c.acc.avg, c.acc.vol

3Note that our decision to use the criterion that has the best “average” performance is rather
intuitive. We conduct a more complete study on different criteria in the next chapter.
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Our model has the general form

yT+1 = β′TxT (2.1)

where yT+1 denotes the auction prices at T + 1, xT = (xT1, . . . , xTp)
′ is a vector

of predictors, and βT = (βT1, . . . , βTp)
′ is a vector of coefficients to be estimated

from the data. The goal is to select only those predictors that are important for

predicting the price yT+1, across all time periods T = 1, 2, 3, . . . , NT .

We accomplish this in several steps. In the first step, we run simple regressions

(i.e. p = 1) between each individual predictor from Table 2.2 and the response yT+1

at each time period T, T = 1, 2, 3, . . . , NT . We then calculate the percentage of

time points a predictor is significant (at the 5% significance level). That is, for each

predictor xk = (x1k, . . . , xNT k)
′, k = 1, . . . , p, we compute the average4

p.sigk :=
1

NT

∑
T

1{xTk significant at 5% level}. (2.2)

Table 2.3 shows the results for a fine grid of hourly forecasts (i.e. (T +1)−T =

1 hour) which results in NT = 1, 754 different time periods. We can see that the pre-

dictors that individually have a strong effect on yT+1 (consistently across all time pe-

riods T ) are the current price, price velocity and acceleration, time left and the num-

ber of bids (from within the focal auctions) and c.price.avg, c.price.vol, c.price.disc,

c.t.left.avg, c.t.left.vol, c.nbids.avg, c.nbids.vol, c.vel.avg, c.vel.vol, c.acc.avg and

4While we use an un-weighted average, a possible alternative would be to weight each time
point according to its distance from the close of the auction.
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Table 2.3: Percentage of significant time points. The two leftmost columns refer
to predictors from within the focal auction; the two rightmost columns refer to
predictors from competing auctions.

Focal auction p.sig Competing auctions p.sig

openbid .199 c.openbid.avg .193
duration .032 c.dura.avg .032
shipping .039 c.ship.avg .046
sellerfeed .055 c.feedback.avg .044

powerseller .061 c.power.avg .076
store .092 c.store.avg .104

picture .028 c.pic.avg .028
currenprice 1.00 c.price.avg 1.00

c.price.vol .886
c.price.disc 1.00

timeleft .775 c.t.left.avg .771
c.t.left.vol .758

numbids .780 c.nbids.avg .777
c.nbids.vol .509

numbidders .197 c.nbidders.avg .188
c.nbidders.vol .086

price velocity .762 c.vel.avg .762
c.vel.vol .624

price acceleration .308 c.acc.avg .309
c.acc.vol .306
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c.acc.vol (from competing auctions). It is interesting that most of these variables

relate to price (or price movement) from the focal auction relative to competing

auctions. This suggests that information about price and its dynamics effectively

captures much of the relevant auction information such as information about the

product, the auction format, the seller and competition between bidders. However,

also note that the results so far are based only on simple regressions (p = 1) and thus

may not fully reflect the joint effect of a predictor in the presence of other predictor

variables. To that end, we investigate pairwise correlations (again, averaged across

all time periods, T = 1, . . . , NT ; correlation-table not reported here) and find high

collinearity between ten pairs: the current price and c.price.avg, the current price

and c.price.vol, the current price and c.price.disc, the current price and time left,

the current price and c.t.left.avg, the current price and number of bids, the current

price and c.nbids.avg, price velocity and c.vel.avg, price velocity and c.vel.vol, and

price acceleration and c.acc.avg. This high collinearity is not surprising since many

of these predictors carry similar information, only coded in a slightly different way.

We eliminate all highly collinear predictors; next we derive our final model using

the Bayesian Information Criterion (BIC).

In similar fashion to equ.(2.2), one can compute the average BIC across all time

periods. That is, let avg.BIC := meanT (BIC(T )), where BIC(T ), T = 1, 2, 3, . . . , NT ,

denotes the Bayesian Information Criterion (e.g. [30]) of a model computed at time

period T 5. By comparing all possible subsets of non-collinear predictors, we arrive

5Note that we calculate the average of BIC across only the time points where BIC is applicable.
That is, time points where BIC is not available due to non-sufficient data for modeling is ignored
in this definition.
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at our final forecasting model as

yT+1 = αT + β1T current priceT + β2T velocityT + β3T accelerationT − β4T c.acc.volT .

(2.3)

Table 2.4 shows the avg.BIC of our final forecasting model (2.3) compared to

several competitor models. We can see that our model results in the lowest avg.BIC.

It is also interesting to see that models with only information from competing auc-

tions perform almost as well as models with the corresponding information only

from within the focal auction. This is yet another piece of evidence for the tight

connectivity of the auction marketplace.

Table 2.4: Average BIC computed across all time periods T . The first row shows the
value of avg.BIC for our model in (2.3); the remaining rows show the corresponding
values of several competing models.

Model avg.BIC

Our model from eq. (2.3) -381.59

Full model (all 33 predictors from Table 2.2) -147.08

All 13 predictors from the focal auction (Table 2.2) -319.82
Only 2 focal auction dynamics 37.77
Only 4 focal auction time-varying predictors -83.87

All 20 predictors from competing auctions (Table 2.2) -313.52
Only 4 competing auction dynamics 37.58
Only 9 competing auction time-varying predictors -84.29

A few comments about our final model in (2.3) are in order. It is interesting

to see that the model relies only price related information. In particular, it is

interesting to see that many variables that have been found significant in previous

studies have dropped out of our model. For instance, [74] find, among other things,
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a significant effect of the seller’s rating. One key difference between previous studies

and our study is that while they take a static look at online auctions, our model

captures the dynamic nature of the auction process. In other words, previous studies

typically only look at the static, pre-auction information that is available before the

start of the auction (such as the auction length, the opening bid or a seller’s rating).

In such a static view, the effect of the seller’s rating is highly significant (since the

seller’s reputation and trustworthiness will impact the final price). However, our

model is dynamic in the sense that all previous price considerations and bidding

decisions have already been factored into the current price and its current dynamics

(current priceT , velocityT , accelerationT ). In that sense, price dynamics reflect the

expectations of all bidders about the product, the seller and the bidding competition

up to this time point. It is thus not too surprising that all static variables drop from

our final model. The effect that captures concurrency is more intriguing. Note

that the information from concurrent auctions is captured in a single variable, the

volatility of dynamics from competing auctions (c.acc.volT ). As there has not been

much prior research on the effect of concurrent auctions, it is hard to formulate

an expectation about c.acc.volT . However, the negative sign indicates that higher

variance in the price movements of competing auctions will result in smaller price

advances of the focal auction. In other words, more price activity in different parts

of the market will lead to price stalling of the focal auction. We will conduct a more

complete study regarding the model selection in Chapter 3.
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2.3.4 Model Updating

The goal of our model is to predict price at a future time T + 1 using only

information from the present (i.e. time T ) and the past (T − 1, T − 2, etc.). We

accomplish this by estimating the functional relationship between T − 1 and T and

then applying this relationship to predict T + 1 from T . Figure 2.5 illustrates this

updating scheme.
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Figure 2.5: The illustration of the update scheme in the forecasting model

At time T (present), we wish to make a prediction about the future price at

time T + 1. Per our model, yT+1 is given by β′TxT , where xT contains information

observed in the present (or past). Note that we cannot estimate βT directly since

the response (yT+1) is yet unobserved. We therefore estimate the relationship from

the past: We estimate βT−1 for the price at T (yT ) and then estimate βT via β̂T :=

βT−1. In that sense, we “roll” the relationship from the past one time period forward.
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We also investigated alternate updating approaches (such as estimating βT via a

moving average (MA) of prior relationships, β̂T := MA{βT−1, βT−2, βT−3, . . . }) but

did not find significant improvements in model performance.

2.4 Estimation and Prediction Results

In this section we discuss estimation and prediction of our forecasting model in

(2.3). We also compare its predictive capabilities to alternate forecasting approaches.

To that end, we divide our data set into a training set (80% of the data),

and a validation set (remaining 20% of the data). Since our data varies over time

(and since we are primarily interested in making accurate predictions of the future),

our training set consists of all auctions that complete during the first 80% of our

data’s time span (i.e. between March 14 and May 10); the validation set contains

all remaining auctions (i.e. between May 11 and May 25). In that sense, we first

estimate our model on the training set; results of model estimation and -fit are

discussed below. We then apply the estimated model to the validation set to gauge

its predictive capabilities; this is discussed in the second half of this section.

2.4.1 Model Estimation

Figure 2.6 shows the estimated coefficients for the parameters of our forecast-

ing model (2.3). Recall that we estimate the model at every time point T, T =

1, 2, 3, . . . , NT in the training set. In our application, we consider time intervals

of one hour over the time period between March 14 and May 10, hence the coeffi-
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cients also vary over that time period. Figure 2.6 shows the resulting trend of the

coefficients together with 95% confidence bounds.
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Figure 2.6: Estimated coefficients of model parameters, together with 95% confi-
dence bounds. The x-axis denotes calendar time; the y-axis denotes the magnitude
of the coefficient. The panels show (from top left to bottom right) current price,
price velocity, price acceleration and the acceleration volatility of competing auctions
(c.acc.vol).

We can see that information from within the focal auction (current price, price

velocity and acceleration) has a positive relationship with the future price yT+1; in

contrast, information from competing auctions (c.acc.vol) has a negative relation-

ship. In other words, both the current level of price and its dynamics are positive

indicators of future price. On the other hand, the volatility of price acceleration

in competing auctions is a negative indicator. Price acceleration in competing auc-

tions will be high if many bidders bid in auctions different from the focal auction.
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A high volatility in price acceleration may suggest high uncertainty in the market-

place, with some auctions experiencing large price jumps and others experiencing

no price movements at all. This high uncertainty results in depressed prices of the

focal auction.

2.4.2 Model Fit and Varying Time Intervals

Figure 2.6 shows the estimated model coefficients for one hour time intervals;

that is, for (T + 1) − T = 1 hour. Alternatively, one could also consider models

with a larger time intervals; that is, models that forecast further into the future.

Intuitively, since forecasting further into the future is harder, such models should

not perform as well. Figure 2.7 (left panel) shows the model fit for the time intervals

(T + 1)− T = 1, 2, 3, . . . , 14 hours. We measure model fit by the average R2 value,

avg.R2 := (1/NT )
∑

T R2(T ), where R2(T ), T = 1, 2, 3, . . . , NT , denotes the R2 of

a model computed at time period T . We can see that, as expected, the model fit

decreases as the time intervals get larger. Notice though that even for the largest

time interval (14 hours), the value of avg.R2 is still larger than 99%.

2.4.3 Prediction Performance

As pointed out above, we estimate the model on the training set; then we gauge

its predictive performance on the validation set. We measure predictive performance

of a model in terms of its mean absolute percentage error (MAPE). For each time
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Figure 2.7: Model fit and prediction accuracy for different time intervals. The x
axis represents the time interval (in hours; ranging from 1 hr to 14 hrs); the y axis
represents the value of avg.R2 (left panel) and the value of avg.MAPE (right panel).

period T, T = 1, 2, 3, . . . , NT , in the validation set, we compute

MAPE(T ) =
1

mT+1

∑
i=1

|yT+1,i − ŷT+1,i|
|yT+1,i| (2.4)

where yT+1,i and ŷT+1,i denote the true and predicted values of auction i at time

T + 1, respectively, and mT+1 denotes the number of auctions available at time

T + 1. We compute the average MAPE across all time periods as avg.MAPE :=

(1/NT )
∑

T MAPE(T ). In similar fashion to Section 2.4.2, we investigate avg.MAPE

for different time intervals, (T + 1) − T = 1, 2, 3, . . . , 14 hours. The right panel in

Figure 2.7 shows the results.

Unsurprisingly, we see that as we predict further into the future (i.e. as time in-

terval gets larger), the predictive performance decreases (i.e. avg.MAPE increases).

It is interesting to see that for predictions up to 4 hours into the future, the predic-

tion error is less than 0.1%. For time intervals larger than 4 hours, the prediction
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error increases at a faster rate. However, even for predictions as far as 14 hours

into the future, the error is still less than 1%. This predictive accuracy is quite

remarkable as we will see in the next subsection where we benchmark our approach

against several competing approaches. We also want to note that while we can-

not claim generalizability to all eBay auctions, there has been prior evidence that

real-time forecasting models can provide superior predictive accuracy, especially for

books and electronics (see [96]).

2.4.4 Comparison with Alternative Models

We benchmark our model against five alternative models, the generalized ad-

ditive model (GAM), classification and regression trees (CART), Neural Networks

and two simper linear models: a purely static and an time-varying linear model.
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Figure 2.8: Prediction accuracy for competing models. The x axis represents the
time interval (in hours); the y axis represents the value of avg.MAPE.
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GAMs relax the restrictive linear model assumption between the response and

predictors by a more flexible nonparametric form [41]. CARTs [15] provide a data-

driven way to partition the variable-space and are thus often viewed as alternatives

to formal variable selection. Neural Networks also provide a technique that can

approximate non-linear functional relationships. In addition, we consider two linear

models that use a subset of the variables from Table 2.2: one model that uses

only static information from the focal auction and another one that uses static

and time-varying information from the focal auction; we refer to these two models

as “STATIC” and “TIME-VARYING,” respectively. The static model corresponds

to the information of many prior eBay studies (e.g.[74]) in that it only considers

pre-auction information. The time-varying model accounts for changes due to the

process of bidding, but it does not account for price dynamics or competition.

Figure 2.8 shows avg.MAPE (similar to Figure 2.7) for time intervals (T +

1) − T = 1, 2, 3, . . . , 14 hours, for all 6 different models. We refer to our model

(2.3) as “DYN&COMP,” since it incudes dynamics and competition features. We

can see that STATIC and CART have the worst prediction performance, with an

error uniformly larger than 10%. While our model performs the best, GAM, TIME-

VARYING and Neural Nets are competitive, at least for smaller time intervals. In

other words, for predicting less than 4 hours into the future, both GAM and TIME-

VARYING pose alternatives with prediction errors not too much larger compared to

DYN&COMP. However, their predictive performance breaks down for larger time

intervals. In fact, the error of GAM is as large as 10% for predicting 14 hours

into the future, which is 10 times larger than the corresponding prediction error
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of DYN&COMP. While the performance of TIME-VARYING is somewhat better,

its prediction error is 4 time as large as DYN&COMP for 14 hours time intervals

(similar for the Neural Network). In the next section, we use the excellent forecasting

performance of our model and build an automated bidding strategy around it.

2.5 An Automated Data-Driven Bidding Decision Rule

We now discuss the second component of our bidding strategy, building an

automated and data-driven decision rule around our forecasting model. The decision

rule provides answers to three basic bidding questions: which auction to bid on, when

to bid on it and how much.

2.5.1 Decision Framework

Our decision framework is built upon the principles of maximizing consumer

surplus (e.g.[11]). Consumer surplus is the difference between the actual price paid

and the consumer’s willingness to pay for an item, CS = WTP - Price, where CS

denotes consumer surplus, and WTP denotes willingness to pay. Therefore, the

lower the price, the higher is a bidder’s surplus.

For each individual auction, our forecasting model (2.3) provides bidders with

that auction’s estimated future price; combining this with a bidder’s WTP leads to

an auction’s estimated surplus. For a set of competing auctions, a plausible decision

rule is to bid on that auction with the highest estimated surplus. Moreover, in order

to avoid a negative surplus, a bidder should only bid on an auction if the predicted
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price is lower than his WTP.

Note that our forecasting model depends on the length of the time interval

(T + 1)− T (which we also refer to as the prediction window). Our model can only

predict the final price of an auction that ends at or before time (T + 1). Therefore,

longer prediction windows will result in a larger number of candidate auctions, that

is, in a larger supply of potential auctions to bid on. On the other hand, we have

also seen in Section 2.4.3 that a larger time interval leads to an increased prediction

error. Therefore, our decision rule faces a trade-off between supply of candidate

auctions and prediction accuracy for each individual auction. We will investigate

this trade-off in detail below.

Our decision rule picks that auction with the highest estimated surplus, as

long as the surplus is positive. After picking an auction, the next two questions are

with respect to the time and amount of the bid. Since our forecasting model is based

on a fixed time interval, nothing is gained by waiting. So we suggest placing the

bid as soon as an auction is picked. Moreover, since our model predicts an auction’s

closing price at ŷT+1, we would expect to lose for bids lower than ŷT+1. Similarly,

bids higher than ŷT+1 are expected to overpay. Therefore, we suggest to bid exactly

the expected (or predicted) closing price ŷT+1. In summary, our decision rule picks

the auction with the highest predicted surplus, it bids the predicted price, and it

places the bid immediately.
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2.5.2 Experimental Set-Up

We conduct a simulation study to compare our automated bidding strategy to

two alternate (and popular) bidding approaches: early bidding [8] and last-minute

bidding [83]. Early bidding is often viewed as a bidder’s strong commitment and

intends to deter others from entering the auction. Last-minute bidding is popular

because it does not allow much time for other bidders to react. In our simulation,

we assume that a bidder’s willingness-to-pay (WTP) is drawn from a uniform distri-

bution [2] distributed symmetrically around the market value ($230 at the time of

data-collection). That is, we assume WTP ∼ Uniform($220, $240). Our experiment

then proceeds as follows. We randomly draw a WTP from that distribution. We

also draw an auction from the validation set (i.e. we compare the bidding strategies

on the same real-world data that we compare the forecasting models). The bidder

then makes a bidding decision (whether or not to bid, and how much to bid) with

each of the three bidding strategies outlined below. We repeat this experiment for

all auctions in the validation set and for 20 different random draws from a bidder’s

WTP distribution.

2.5.2.1 Early Bidding Strategy

We assume that early bidders bid at the end of the first auction day [8]. In

fact, we find that slightly earlier or later bid times barely affect the outcome of the

experiment. The process of early bidding is illustrated in the left panel of Figure

2.9. A bidder compares his WTP with the auction’s current price at the end of
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Figure 2.9: Illustration of bidding strategies. The left panel illustrates early and
last-minute bidding; the right panel illustrates our automated bidding strategy.

the first day (pearly); if his WTP is higher, then he places a bid; otherwise, he does

not place a bid and moves on to another auction. If he does place a bid, then the

bid amount equals the WTP. Note though that due to eBay’s proxy bidding system

which incrementally bids up to the WTP on behalf of the bidder, the final price may

be lower than the WTP. As a consequence, the bidder only pays the amount of the

second-highest bid plus a pre-specified bid-increment (which ranges between $2.5

and $5 in our case). We also investigate alternate bidding heuristics in Appendix

B. However, none of these heuristics beat last-minute bidding or our automated

bidding strategy.

2.5.2.2 Last-Minute Bidding Strategy

We assume that last-minute bidders place their bid one minute before the auc-

tion closes [83]. Last-minute bidding carries the danger that the bid does not go
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through due to network congestion, but we will not explicitly consider this disad-

vantage in our simulations. The process of last-minute bidding is again illustrated

in the left panel of Figure 2.9. A bidder compares his WTP with the auction’s

current price one minute before closing (plate). Similar to early bidding, if his WTP

is higher, then he places a bid; otherwise, he does not place a bid and moves on to

another auction. If he does place a bid, then the bid-amount is only incrementally

higher than the current price, since the chances of being outbid within the last 60

seconds are small. In our simulations, we bid an increment of 2% over the current

price plate. We also study the robustness to different increments in Appendix B and

find that bid-increments of 1%, 2% or $2 yield comparable results.

2.5.2.3 Our Automated Data-Driven Bidding Strategy

Our automated bidding strategy is conceptually different from early and last-

minute bidding. Instead of making a bidding decision for each auction individually,

our strategy requires a bidding decision for each time interval. Consider the right

panel of Figure 2.9. At time T of decision making, there are four competing auctions,

denoted by Auc1-Auc4, which all close before time T +1. The solid lines correspond

to the observed part of the auction history; the dotted lines denote the future

(and yet unobserved) price path. Since all auctions close before T + 1, our model

yields predictions of their final prices (denoted by the solid black circles). Note

that Auc4 has the highest predicted price; moreover, its predicted price is higher

than the bidder’s WTP; hence the bidder will never consider this auction. Auc3
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has the smallest predicted price; since the predicted price is also smaller than the

bidder’s WTP, he places a bid on this auction. He bids the predicted price and he

bids immediately, i.e. at time T . If he wins, then the bidder’s surplus will be the

difference between his WTP and the actual closing price.

2.5.3 Simulation Results

Similar to [8], we compare all bidding strategies on two dimensions: the prob-

ability of winning the auction and the average surplus accrued. We compute the

probability of winning (p.win) as the number of auctions won divided by the total

number of auctions that the bidder placed a bid on. We compute the average surplus

(avg.sur) as the corresponding difference between the WTP and actual price paid

for an auctions. The results are shown in Table 2.5.

Table 2.5: Comparison of different bidding strategies. The first row corresponds
to last-minute bidding; the second row corresponds to early bidding; and the last
row corresponds to out automated bidding strategy. We report the mean estimates
(with standard errors in parentheses).

p.win avg.sur

Last-moment bidding 95% (.5%) $17.97 ($0.35)

Early bidding 53% (2%) $18.85 ($0.57)

Automated bidding 61% (1%) $32.33 ($1.95)

We see that last-minute bidders have the highest probability of winning (95%,

compared to 61% for our automated bidding strategy). This is not surprising, since

last-minute bidding is geared to out-witting the competition in the last moment.

However, we also see that last-minute bidding accrue a significantly lower surplus
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compared to our automated bidding strategy ($18 vs. $32). Another way of com-

paring the two bidding strategies is via their expected surplus, i.e. the product

(p.win × avg.sur). We find that last-minute bidding yields an expected surplus of

$17.11 6 while that of our automated bidding strategy is higher: $19.72. Moreover

while early bidders have a probability of 53% of winning the auction, their expected

surplus is significantly lower: $9.99 (=53% × $18.85).

2.5.3.1 Effect of the Prediction Window

We have pointed out earlier that the length of the prediction window (i.e.

the length of the time interval (T + 1) − T ) has an effect on the outcome of our

automated bidding strategy in that longer windows result in a larger supply of

candidate auctions, but at the same time reduce the prediction accuracy of each

individual auction. The results from the previous section (Table 2.5) are based

on a prediction window of 12 hours and we have seen that it yields an expected

surplus of $19.72 for our automated bidding strategy. Longer prediction windows

yield a larger number of candidate auctions and as such a larger probability of

including an auction with a lower price (and hence a higher surplus). On the other

hand, longer prediction windows also lead to less accurate predictions. Less accurate

predictions can either lead to overpayment (if the predicted price, and hence our

bid, are higher than the actual price); overpayment leads to a lower surplus. Less

accurate predictions can also lead to a reduced probability of winning the auction

(if the predicted price, and hence our bid, are lower than the actual price). Thus,

6For the expected surplus corresponding to other bid-increments, please refer to Appendix B.
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a change in the prediction windows affects both the probability of winning as well

as the average accrued surplus and it is not quite clear how it affects the overall

expected surplus. To that end, we repeat the simulation study from Table 2.5 for

prediction windows of different lengths. Table 2.6 shows the results.

Table 2.6: Tradeoff between the width of the prediction window and expected sur-
plus. The first column denotes the width of the window; the second column denotes
the probability of winning; the third column denotes the average accrued surplus;
and the last column denotes the expected surplus, i.e. exp.sur = (p.win× avg.sur).

prediction window p.win avg.sur exp.sur

14hrs 59.01% $35.29 $20.82

12hrs 61.44% $32.33 $19.80

9hrs 67.82% $30.99 $21.02

6hrs 69.43% $29.60 $20.55

3hrs 75.77% $27.21 $20.62

We can see that larger prediction windows result in a larger average surplus

which suggests that the effect of having a larger pool of candidate auctions out-

weighs the effect of overpayment. But we also see that larger windows result in a

smaller probability of winning since the less accurate predictions more frequently

yield bids below the auction’s actual closing price and hence an unsuccessful auc-

tion. Interestingly, the expected surplus is maximized for a prediction window of 9

hours. While our results do not prove optimality, they suggest a very interesting

global optimization problem for future research.
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Figure 2.10: Process of automated bidding and alternatives.

2.5.4 Practical Considerations

It is important to understand that our automated bidding approach relies on a

number of key ingredients. In this study, we assume that appropriate bidding records

are available and we only focus on deriving a model from these bidding records and

subsequently designing a bidding strategy around that model. Before deploying our

automated bidding approach, one also needs to put in place methods for searching

and selecting the right bidding records (see Figure 2.10). Finding suitable bidding

records can be accomplished in several ways, e.g., using automated agents such as

web crawlers (e.g. [9]) or by directly purchasing bidding data (from data vendors

such as Data Unison). Having a pool of bidding records, the next challenge is to

select, from this pool, the right set of most relevant bidding records. One could

find this set via, e.g., a vector of desired product features (e.g., “iPod Nano, 8GB,

yellow”) and then selecting only those bidding records that are most similar to the

feature vector. Deriving a suitable similarity metric can be done using, for example,

the spatial feature model proposed in [53], or the comprehensive metric proposed
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in Chapter 4. Isolating product features from bidding records is made possible via

eBay’s effort of standardizing certain product descriptions (e.g., product descriptions

for MP3 players require fields such as brand, product line, storage capacity, color or

condition); additional information is often contained in the unstructured descriptive

text which may take more effort to mine.

Related to the issue of search and selection is the issue of incorporating in-

dividual user preferences or risk tolerance into the bidding process. While some

bidders may consider all relevant auctions as potential candidates, others may be

more selective and wish to eliminate auctions based on certain constraints (e.g.,

eliminate auctions with seller ratings lower than a certain threshold, eliminate red

iPods, etc.). This can again be accomplished in the selection step (see again Fig-

ure 2.10). In fact, when applying our method only to high-reputation sellers, the

expected surplus increases to $20.05.

We also want to point out that in practice one would apply our method re-

peatedly until a consumer’s demand is satisfied. We assume here that a consumer

has demand for only a single unit (for more discussion on multiple units see the next

section) and that s/he does not have any time constraints. Then, our automated

strategy would place a bid while continuously monitoring the remaining market –

which could be done at no extra cost for the bidder using automated agents. Once

the outcome of the first bid is known, the strategy would then decide whether and

(if the previous bid was unsuccessful) where to place the next bid, and so on. While

a bidder could also decide to place more than one bid simultaneously, this runs the

risk of winning two auctions which is undesirable in the case a single unit demand.
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It is also important to note that the method proposed in this manuscript

is modular in the sense that individual modules can be exchanged. For instance,

one can replace the dynamic forecasting model by alternatives (such as regression

models with different sets of variables, GAM, CART, or our K-Nearest Neighbor

forecaster proposed in Chapter 4); similarly, one can replace the bidding decisions

by an alternate set of rules. All in all, in order for the approach to be deployed, one

will ultimately have to rely on agent-based technologies, similar to those currently

in place for bid-sniping (e.g. Cniper.com). With such technology in place, our

automated bidding strategy will not only yield real monetary benefits in terms of a

higher expected surplus, but also less tangible benefits such as more convenience in

terms of a truly automated bidding process.

2.6 Conclusions

The increasing popularity of online auctions puts more and more pressure on

bidders to make informed bidding decisions in the face of competition. While classic

bidding strategies such as early bidding or last-minute bidding are well-understood

in the academic literature, they do not account for competition originating from

simultaneous auctions selling same or similar items. Moreover, while it is unlikely

that every bidder uses early or last-minute bidding in exactly the same way, to

date they can only augment and adapt these strategies with gut-feeling, intuition or

experience. We propose a novel automated and data-driven approach that provides

bidders with valuable objective information about an auction’s projected price in
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the face of competition.

Our approach consists of two main components. In the first component, we

derive a novel dynamic forecasting model for price in competing auctions. We show

that our model outperforms several competitor models. In the second component,

we build a comprehensive bidding strategy around our forecasting model, using ideas

from maximizing consumer surplus. We find that our strategy outperforms classical

bidding strategies such as early bidding or last-minute bidding in terms of expected

surplus accrued.

One important issue is the potential effect of a forecasting model on the market

as a whole. If every bidder had access to the same model and bid on the same auction

(with the lowest forecasted price), then forecasts, and as a consequence bidding

decisions, would become unstable. This is very similar to the stock market where

investment houses deploy complex math models to guide investment decisions. In

such a scenario there is a risk that, if all investors base their decisions on the same

model, the model – and not the investments’ performance – could eventually drive

the market. In this research, we are much less ambitious. While, at least in theory,

one single model could eventually drive all bidding decisions on eBay, it is unlikely

that it ever will. Rather, we view our automated bidding strategy, if ever deployed,

as a decision tool that would be made available only to a few, select bidders and

thus not destabilize the market.

There are several ways in which this research can be expanded. We have al-

ready pointed to the problem of selecting the optimal prediction window in Section

2.5.3.1. Another way to expand this research is via allowing for closing and contin-
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uing auctions. Recall that our current approach only consider auctions that close

within the given prediction window. The reason is that our forecasting model is

geared to the fixed time interval (T + 1)− T so we can only predict the final price

of auctions that end within that interval. Of course, one can roll the model one

additional time period forward to make predictions at T +2, based on the predicted

values at T+1; however, predictions two time periods into the future (i.e. T → T+2)

are more uncertain than predictions only one step forward (i.e. T → T + 1). It is

not quite clear how to discount the additional prediction uncertainty in our decision

framework. Another way to expand this research is via allowing for variable and

adaptive WTP distributions. In our simulations, we assume that both early and

last-minute bidders have the same WTP distribution. It may be possible that bid-

ders with different strategies also have different product valuations. Moreover, we

assume that the WTP distribution remains constant over our prediction window.

While this may be realistic for short windows over only several hours, a bidder that

wants an item immediately may have a different valuation compared to a bidder

that is willing to wait several weeks. All-in-all, there are many opportunities for

future research and we hope to inspire some of it with this study.
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Chapter 3

Model Selection for Improved Forecasting

3.1 Introduction

People participate in online bidding day and night and from all over the world

in a competitive fashion which sometimes results in price advantages for the con-

sumer. However, given a choice between several hundred or thousand identical (or

similar) options, all closing at different times, how can a consumer decide – in an

efficient manner – which option results in the lowest possible price?

We accomplish this goal by developing a forecasting model for auction closing

prices. Such models could alleviate the bidder’s decision process by, e.g., ranking all

available auctions by their lowest predicted price (see Chapter 2 for details). The

bidder could then focus his or her bidding efforts only on those, say, K auctions with

the lowest K predicted prices which greatly reduces the number of irrelevant choices

and improves the efficiency of the search task.

One such model was developed in Chapter 2. To build that model, we first

create many features, including static, time varying, and price-dynamics features for

focal and competing auctions, to capture the many different pieces of information

from the market that can affect the outcome of an auction, then conduct model

selection to find our final model. However, the criterion based on which we selected

the final model is rather intuitive.
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Model selection is quite challenging in this setting because the forecasting goal

is different compared to classical time series analysis. In classical time series analysis,

one typically wants to forecast one particular time point of one particular series, such

as sales at the end of the fourth quarter or the gasoline prices at the beginning of

January 2009. This is different in the context of online auctions. In the auction

context, one needs to forecast an entire time window of a stream of simultaneous

auction processes. For example, a bidder discovers the need for a product, such

as a Palm hand-held device on 4/14, and that s/he decides to purchase this item

within the next 12 hours. There are many qualifying auctions available in this online

market; some may close within the next hour, while others remain open for another

9 or 10 hours. Thus, the bidder needs to predict the outcome of each auction that

closes within the next 12 hours. In other words, we need a forecasting model that

not only predicts well at the beginning of the 12 hour time window or at its end,

but during its entire 12 hour duration. Classical model selection criteria such as

AIC or BIC optimize the model performance for only one time point, and are thus

not directly applicable to our situation.

In this study, we investigate different approaches to overcome these challenges.

We address the problem of model selection for a continuous time interval by com-

puting an entire distribution of a model selection criterion rather than only a point

value. In Chapter 2, we intuitively use the average BIC score over the time interval

as the selection rule. We now investigate different ways to summarize this distribu-

tion for decision making and the impact of different distribution summaries on the

prediction task. We find while the volatility of AIC or BIC’s distribution over the
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prediction window results in extremely poor performance, their extremes work very

well. We also find that both price dynamics and competition features play a crucial

component in forecasting an online auction. This work is currently under review at

the Journal of Business and Economic Statistics.

This chapter is organized as follows. In the next section, we briefly restate

how to capture all potentially relevant information, both from within an auction as

well as from simultaneously competing auctions as we did in Chapter 2. Section 3.3

proposes an idea to perform model selection with the goal of making good forecasts

across a continuous time interval rather than only a single time point. We conduct

empirical studies using the Palm data set (see Appendix A for data description) to

compare the different approaches, both in terms of the different models they select

as well as in terms of their actual predictive capabilities in Section 3.4. We conclude

with further remarks in Section 3.5.

3.2 Create Features to Capture Important Information

Many different pieces of information potentially matter for the outcome of an

ongoing auction. For example, we have discussed ways to capture dynamics and

competition information for forecasting in Chapter 2. We now summarize features

that are created to capture related information in order to forecast the outcome of

an auction.

The outcome of an auction may be affected by what happens within that

auction. We therefore create a set of features to capture the information from within
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the focal auction, including static information (such as condition of the product or

the rating of the seller), time varying information (such as the number of bidders

and time left), and price-dynamics (e.g. price-velocity and acceleration).

Besides what happens within an auction, the outcome of an auction may also

be affected by what happens outside, that is, in simultaneous auctions that all sell

the same (or similar) product and thus compete for the same bidders. For instance,

the seller ratings, the current prices or the number of bidders in those simultaneous

auctions could all affect the outcome of the focal auction. Therefore, we create

another set of features to capture the information from competing auctions. To

the end, we use the average of the features in concurrent auctions to capture the

average market condition and use the standard deviation to capture the volatility

of the market. For example, the price competition is given by the average and

standard deviation of prices in concurrent auctions, and the average price-velocity

in concurrent auctions would be defined as the average of the corresponding price-

velocities, and so on.

A complete list of created features can be found in Table 2.2 in Chapter 2,

and a more detailed description of creation of all features is described in section

2.3.1 - 2.3.2 in Chapter 2. It is clearly seen that the competition features can be

categorized into static competition features, time varying competition features, and

price-dynamic competition features by the information that they carry. Moreover,

our created features incorporate both price dynamics and competition information

which is necessary for accurately forecasting the extremely dynamic and competitive

environment.
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Table 2.2 in Chapter 2 shows that over 30 different variables are candidates

for our forecasting model. Thus, an important first step in our modeling efforts will

be the selection of a parsimonious subset of relevant variables.

3.3 Model Selection for Auctions Markets
P

ri
c
e

Time

Decision Window

Auction

Start

Auction

End

T T+1 hour T+3 hours T+8 hours

Figure 3.1: Illustration of the modeling task.

Our task is to find a model for the auction market. As pointed out earlier, the

market consists of all auctions that sell the same (or similar) item (during a certain

period of time). Take Figure 3.1 for illustration. In that market, we have 3 auctions

selling the same item. What complicates the modeling task is that all auctions start

(and hence end) at different times: one auction ends in the next hour, another one

ends in 3 hours and the third auction ends in a little more than 8 hours. At time T ,

the bidder wants to make a decision on which of the three auctions to bid on. Since
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the bidder’s decision window extends 8 hours into the future, the market model must

consider all time points inside that window. The implication for model selection is

that we need a model that works well not only at a single time point, but across the

entire time window. Thus, our goal is to find a model that best describes price in

this market, taking into account the effect of competition between auctions as well

as differences in price dynamics across auctions.

Forecasting an entire time window is challenging since all statistical models

are geared towards a single time point only. Take for illustration the (intentionally

simple) time series model

yT+1 = yT + εT . (3.1)

(The same argument would apply for more complex models also.) Model (3.1)

implies that, given information up to time point T, we can forecast the response

at time (T+1). However, model (3.1) also implies that we can only forecast the

response at (T+1), and not at (T + 1
2
) or at (T + 2

3
). Thus, the best model selected

(e.g. using model selection criteria such as AIC or BIC) is optimal only for time

steps of length δ := (T + 1) − T , and not for any time steps that are shorter (or

longer). As we’ve argued above, such a model is not very meaningful for the eBay

bidder!

We propose to investigate new model selection criteria that can overcome this

challenge. Model selection has been researched in the statistics literature for a

while [13] and it is receiving increasing attention today with the availability of more

and more data sets featuring larger and larger number of variables [30]. Our goal
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is to find a model that, given a desired time T of decision making, predicts well

universally across an entire time window, say, T + ∆, where ∆ could be as small as

a few hours or as long as a few days, depending on the time frame within which the

bidder wants to place a bid. We describe our idea next.

3.3.1 Model Selection for Time Windows

Classical model selection criteria, such as AIC or BIC, are geared towards

models such as in equation (3.1) and thus only produce pointwise optimal results.

We propose to generalize this idea to apply to entire time windows and thus to

produce a distribution of model selection results.

AIC( )

T+ i T+ kT Time

Decision Window: 

Figure 3.2: Distribution of model selection criterion.

The basic idea is illustrated in Figure 3.2. Suppose we have a model of the
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form

yT+δ = f(yT , XT ) + εT , δ ∈ [0, ∆], (3.2)

where T denotes the time of decision making, and δ denotes the time increment

which we would like to predict. (While f() could denote any functional relationship

between response and predictors, we consider linear models in our application.) Note

that we let this time increment vary in the interval [0, ∆], where ∆ corresponds to

the length of our decision window.

For each time increment δ, we can compute a corresponding model selection

criterion. Let us assume (for the moment) that we choose Akaike’s information

criterion (AIC) for decision making. (Later, we will also consider alternate model

selection criteria such as the Bayesian Information criterion, BIC.) Then, for each

δ ∈ [0, ∆], we compute AIC(δ) and thus obtain a distribution of model selection

values. This distribution is indicated by the solid black line in Figure 3.2. Note that

we can only compute AIC(δ) for a training set, that is, for a set of data for which

we know all values at T as well as at T + δ. Later, we will apply the model to a

holdout set, that is, a set of data for which we only know values at T and we wish

to predict future values T + δ.

Our objective is to select, among a set of candidate models, a model that

performs well across all time increments δ ∈ [0, ∆]. In practice, there are two chal-

lenges associated with this objective. First, AIC(δ) is measured over the continuous

interval [0, ∆]. Since we cannot evaluate AIC(δ) over a continuous interval, we first

select a fine grid 0 ≤ δ1 < δ2 < · · · < δn ≤ ∆ and then compute AIC(δi) for all
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i ∈ {1, 2, . . . , n}. The second challenge is that requiring a model to perform uni-

formly better than all other models does not lead to any results in our application.

In other words, let Mk, k = 1, . . . , K, denote a set of candidate models and let

AICMk(δi) denote the kth model’s AIC value at time increment δi. Then, in our

application, we may not find any model, say M∗, for which

AICM∗(δi) ≤ AICMk(δi), ∀i = 1, . . . , n.

Thus, we resort to an approach where we do not require uniformly better per-

formance, but rather performance that is better as measured by an appropriate

summary statistic of AIC(δ).

We consider several different summary statistics, such as the average, the

extremes as well as the variance, to elicit a model that performs well across the

entire interval [0, ∆]. More specifically, we compute, for i ∈ {1, 2, . . . , n},

AICavg := (1/Ni)
∑
Ni

{AIC(δi)} (3.3)

AICmed := Mediani{AIC(δi)}

AICmin := Mini{AIC(δi)}

AICmax := Maxi{AIC(δi)}

AICsd := Standard Deviationi{AIC(δi)}

AICmean+sd := AICavg + AICsd

The rationale for investigating these 6 different summary model selection cri-
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teria is as follows. Both AICavg
1and AICmed consider a model’s central performance

and are as such natural candidate selection criteria. However, a model that is per-

forming well on average may not be the best model for decision making. To that

end, AICmin and AICmax consider a model’s extreme performance. While AICmin

points out a model’s best performance, AICmax gauges the worst performance. In

that sense, choosing AICmax for model selection finds the model that minimizes the

worst loss – very similar in spirit to a minimax criterion. On the other hand, AICmin

is the most optimistic selection criterion which identifies the time increment δ and

associated model with the best performance. The next model selection criterion,

AICsd, gauges the volatility of a model’s predictive performance over the interval

[0, ∆]. The rationale is that models with less volatility will, in general, lead to

more stable decision making. The last criterion, AICmean+sd, combines the effect of

good average performance (i.e. small AICavg) and little volatility (i.e. small AICsd).

Since we have no a-priori knowledge on which of these 6 model selection criteria will

perform best, we will let the data speak.

3.3.2 Variable Pre-Selection and Multicollinearity

As we saw in Table 2.2, we have 33 different candidate variables for our fore-

casting model. Our goal is to select the subset of these 33 variables that results in

the best-possible model. There are 8,589,934,591 different ways of selecting a subset

of m, 1 ≤ m ≤ 33, variables, too many to enumerate manually. Moreover, in order

1Notice that compare with the definition for AICavg in Chapter 2, all time points, including
those where AIC (or BIC) is not available due to non-sufficient data for modeling, is now counted
in this definition of AICavg.
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to gauge a model selection criterion’s entire distribution as in Figure 3.2, we need

to evaluate each candidate model on a fine grid 0 ≤ δ1 < δ2 < · · · < δn ≤ ∆ which

becomes computationally infeasible as n becomes larger. Our goal here is not to

derive a computationally efficient algorithm for this task (which would indeed be an

interesting challenge for future research), but rather to illustrate the performance

of the different model selection summary criteria in Equation 3.3. Therefore, we

first preselect a subset of more realistic candidate variables from the total of 33, and

then perform exhaustive search on the remaining variables. We select this subset

of more realistic candidate variables considering potential multicollinearity among

predictors.

5 10 15 20 25 30

5
10

15
20

25
30

−0.5

0.0

0.5

1.0

Figure 3.3: Pairwise mean correlation among the 33 variables. The x- and y-axes
denote the variable index (between 1 and 33); the color corresponds to the strength
(between -1 and 1) of the pairwise correlation.

To that end, we investigate the pairwise correlations of all 33 variables. Note

that this correlation may change, depending on the density at which a variable is
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measured. Therefore, in similar fashion to above, we first evaluate each variable

at different densities, T + δi, 0 ≤ δi ≤ ∆, and then compute pairwise correlations

between pairs of variables at each density level. After that, we summarize the

correlations in the same way as in Equation 3.3. Figures 3.3 and 3.4 show image

plots of the corresponding pairwise mean correlations, minimum correlations and

maximum correlations, respectively.
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Figure 3.4: Pairwise minimum (left panel) and maximum (right panel) correlation
among the 33 variables. The x- and y-axes denote the variable index (between 1
and 33); the color corresponds to the strength (between -1 and 1) of the pairwise
correlation.

We can see that many of the variables are highly correlated. For instance, we

find high collinearity between the current price and c.price.avg, the current price

and c.price.vol, the current price and c.price.disc, the current price and time left,

the current price and c.t.left.avg, the current price and number of bids, the current

price and c.nbids.avg, price-velocity and c.vel.avg, price-velocity and c.vel.vol, and

price-acceleration and c.acc.avg. This high collinearity is not surprising since many
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of these predictors carry similar information, only coded in a slightly different way.

We eliminate all highly collinear predictors. In particular, for each pair of collinear

predictors, we keep the variable that measures price or price-dynamics of the focal

auction (i.e. current price, price-velocity or price-acceleration). While we could also

keep alternate variables, this approach results in the most parsimonious model. In

that fashion, we retain 6 variables for further analysis; these 6 variables are listed

in Table 3.1.

3.4 Results

3.4.1 Model Selection

Table 3.1 lists the 6 candidate variables that we retain for further analysis

including both information from within (price, price-velocity and -acceleration) and

outside (volatility of acceleration, time left and number of bids of competing auc-

tions). For ease of notation, we refer to each variable by a number. For instance,

variable #1 refers to the price, variable #2 refers to the price velocity, and so on.

We now enumerate all possible models based on these 6 variables; that is, we

evaluate a total of 63 different models. For each model, we evaluate the 6 different

summary model selection criteria in equation (3.3), using ∆ = 12 hours and a grid

of 0 ≤ δ1 < δ2 < · · · < δn ≤ ∆ of n = 12 different time increments. We use a

grid-density of δi − δi−1 = 1 hour since, for our data, on average 1 bid arrives every

hour (during the last 12 hours of the auction). We do this for both AIC and BIC

model selection criteria. Tables C.1-C.9 (Appendix C) list all the results.
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Table 3.1: Variable Index

Var Number Var Name

1 price

2 price-velocity

3 price-acceleration

4 c.acc.vol

5 c.tleft.vol

6 c.nbids.vol

Table 3.2: Best models according to BIC (top half) and AIC (bottom half). The
number of model parameters is denoted by p. The bold cells correspond to the best
model within each column.

p BICavg BICsd BICmed BICmin BICmax BICmean+sd

1 1 2 1 1 1 1

2 1,2 2,3 1,2 1,2 1,2 1,2

3 1,2,3 2,5,6 1,2,3 1,2,3 1,2,3 1,2,3

4 1,2,3,5 2,3,5,6 1,2,3,5 1,2,3,6 1,2,3,5 1,2,3,5

5 1-5 2-6 1-5 1-4,6 1-3,5,6 1-5

6 1-6 1-6 1-6 1-6 1-6 1-6

p AICavg AICsd AICmed AICmin AICmax AICmean+sd

1 1 2 1 1 1 1

2 1,2 2,3 1,2 1,2 1,2 1,2

3 1,2,3 2,5,6 1,2,3 1,2,3 1,2,3 1,2,3

4 1,2,3,5 2,3,5,6 1,2,3,5 1,2,3,6 1,2,3,5 1,2,3,5

5 1-5 2-6 1-5 1-4,6 1-3,5,6 1-5

6 1-6 1-6 1-6 1-6 1-6 1-6
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Table 3.2 summarizes the results from Appendix C. In each cell, the table lists

the best model for a corresponding combination of (selection criterion)× (number

of model parameters (p)). For instance, the cell corresponding to p = 1 and BICavg

says that the best 1-parameter model picked by BICavg is a model with only the

price (see again Table 3.1 for the index of all variables). The highlighted cell within

each column corresponds to the best model across all values of p (for a specific

selection criterion). For instance, the highlighted cell ({1-5}) in the first column of

the top half says that BICavg picks a model with all variables (except c.nbids.vol)

as the best model across all values of p.

We can make several observations in Table 3.2. First, we note that the cells

in the top half are identical to the cells in the bottom half; this means that both

AIC and BIC pick the same model (given a certain selection criterion and fixed

value of p). However, we also note that the highlighted cells in the top and bottom

tables are not identical; this implies that while for a given p, AIC and BIC result

in the same model, they select different models across p. For instance, while BICavg

picks a 5-parameter model, AICavg picks a 6-parameter model. (Similar for BICmed

and BICmean+sd.) Only BICsd and BICmax select the same models as their AIC

counterparts.

Looking across rows, it is interesting to note that, for a given p, almost all

selection criteria pick the same model – the main exception being BICsd and AICsd.

That is, while BICavg, BICmed, BICmin, BICmax and BICmean+sd almost always agree

on the same model (and similar for their AIC counterparts), BICsd consistently

disagrees. This seems to suggest that using the volatility of the model selection
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distribution measures a very different aspect of model performance compared to its

center or its extremes.

In conclusion, we find that different selection criteria can result in different

models, with the volatility of the model selection distribution showing the strongest

deviations. However, we also want to point out that we have not yet determined

the overall winner. The reason is that we have not yet determined which of the

selected models actually results in the best forecasts. To that end, we investigate

each model’s predictive performance on a holdout set. We discuss this next.

3.4.2 Prediction Accuracy

We measure each model’s predictive capabilities on a holdout set. To that

end, we divide our data into a training set (80% of the data), and a validation

set (remaining 20% of the data). Since our data varies over time (and since we

are primarily interested in making accurate predictions of the future), our training

set consists of all auctions that complete during the first 80% of our data’s time

span (i.e. between March 14 and May 10); the validation set contains all remaining

auctions (i.e. between May 11 and May 25).

We measure predictive performance of a model in terms of its mean absolute

percentage error (MAPE). For each T + δi, 0 ≤ δi ≤ ∆, we compute

MAPEi =
1

m

∑
j=1

|yi,j − ŷi,j|
|yi,j| (3.4)

where yi,j and ŷi,j denote the true and predicted values of auction j at time increment

71



δi, respectively, and m denotes the number of auctions available. Figures 3.5 and

3.6 show the results.
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Figure 3.5: Prediction accuracy of the 6 top models. The left panel shows the
prediction accuracy for all 6 models; the right panel shows a zoom-in on the 5 best
models (leaving out the worst model of the right panel). The x-axis corresponds to
the time increment δi, 0 ≤ δi ≤ 12, at which we make a prediction.

The left panel in Figure 3.5 shows the performance of the 6 best models. We

can see that one model (with variables {2-6}) performs extremely poorly relative to

the remaining 5 models. For that model, the prediction error is 8% for forecasting

only one hour into the future; it increases to almost 32% for forecasting 12 hours

into the future. Clearly, that model is not a candidate for the best predictive model;

in order to get a better understanding of the remaining 5 models, we zoom-in (right

panel of Figure 3.5). We can see that, of these 5 models, 2 (with variables {1,2,3,5}

and {1,2,3}) have almost identical performance. We can further distinguish the

performance of these 2 models in Figure 3.6. We can see that model {1,2,3,5}

(slightly) outperforms model {1,2,3} for most time increments (especially for small,
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Figure 3.6: Prediction accuracy of the 5 best models from Figure 3.5. The left panel
shows a zoom-in on the first 4 hours, the right panel shows a zoom-in on the last 3
hours.

e.g. 1 hour, and large, e.g. 12 hour, time increments). We comments further on the

difference of these two models below.

3.4.3 The Winner

Let’s recap: Section 3.4.1 illustrated the performance of each individual sum-

mary model selection criterion and we learned that while different model summarizes

can point to different models, some select the same model. Section 3.4.2 investi-

gated the performance of the top 6 models and we learned that while there is one

clear loser, the two top models perform almost equally well. Now, we connect the

analysis from Sections 3.4.1 and 3.4.2 and we reveal which summary model selection

criterion leads to the best predictive model.

Table 3.3 shows the results. The fist column denotes the name of each model

selection criterion and the second column denotes the best model it selects. (Note
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that since some selection criteria select the same model, we list more than one name

in the first column). This information is taken from the model-selection analysis in

Section 3.4.1. The remaining 3 columns refer to the prediction-based ranking of each

model. Since the goal is to develop a model that predicts well in the short-term (i.e.

for small time increments) as well as in for medium to longer time increments, we

present 3 different rankings: one for predicting the next hour, one for predicting 6

hours into the future and one for predicting 12 hours into the future. The rankings

are taken from the prediction-accuracy discussed in Section 3.4.2.

We can see that BICmax and AICmax dominate: both criteria find the (same)

model (with variables {1,2,3,5}) that predicts best for short (1 hour) as well as long

(12 hours) time increments. These two criteria are only outdone for the medium

time increment (6 hours) for which BICmin selects the best model (one which drops

variable #5). It is interesting to see that while the maximum as a distribution sum-

mary performs equally well under both AIC and BIC, AICmin performs significantly

worse than BICmin (and similar for the average, medium and medium + sd). Using

the volatility as selection criterion (i.e. BICsd or AICsd) performs uniformly worst.

We can learn from Table 3.3 that the extremes as summaries of the model

selection distribution result in the best performance. Both BICmax and AICmax

select the best model; we pointed out earlier that choosing the maximum – just

like a minimax criterion – protects against the worst loss, so this performance may

not come too much as a surprise. It is more surprising though that BICmin fares

almost equally well; the minimum selects the most optimistic model across all time

increments which seems to suggest that there is not too much heterogeneity across
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Table 3.3: Selected Models and Prediction Accuracy

Selection Selected Prediction Rank
Criteria Model 1 hour 6 hours 12 hours

BICmax, AICmax 1,2,3,5 1 2 1

BICmin 1,2,3 2 1 2

AICmin 1,2,3,6 3 3 4

BICavg,BICmed,BICmean+sd 1-5 4 5 3

AICavg,AICmed,AICmean+sd 1-6 5 4 5

BICsd,AICsd 2-6 6 6 6

different time increments (at least for our data). The performance of the central

statistics (mean, median) is most surprising since, at least intuitively, one would

expect good performance from a model that is selected according to average model

quality. The poor performance of the volatility as a summary measure indicates

that controlling the variability of a model’s quality (around its mean) does not gain

much in terms of predictive accuracy.

3.5 Conclusion

In this chapter we consider model selection when the goal is to find a fore-

casting model that works well across an entire range of time increments, producing

an entire distribution of model selection criteria. We investigate different ways of

decision-making based on that distribution find that the extremes lead to the most

accurate forecasting models.

There are several avenues for future research. As pointed out earlier, efficient
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algorithms are necessary to perform model selection. While classical model selection

can already be very computationally intensive, searching for models that work well

over an entire distribution of time increments multiplies the computational burden.

Moreover, it would be interesting to see if different ways for summarizing the dis-

tribution of a model selection criterion leads to better models, or if summaries can

be combined in a more efficient way.
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Chapter 4

Real-Time Forecasting of Online Auctions via Functional K-Nearest

Neighbors

4.1 Introduction

Online auctions, such as those on eBay.com, have received a surge of popularity

in recent years. This is in part due to their wide accessibility, their low participation

barriers, and also due to the auction mechanism which engages its participants in

stimulating competitive behavior. The popularity of online auctions has lead to a

growth in related research and particularly in the desire to predict the outcome of an

auction before its close. Knowing the auction’s closing price has several advantages

for auction participants. Bidders can use this information to make more informed

(and perhaps even automated) bidding decisions [57]. Sellers can use predictions to

identify times when the market is more favorable to sell their products and to better

evaluate the value of their inventory.

Different approaches have been proposed to predict the price of an ongoing

auction. We used regression-based models to forecast an auction’s final price in a

dynamic fashion in Chapter 2 and 3 (see also [32; 59; 96]). Common across these

models is that they use information from a set of past auctions to predict an ongoing

auction of interest. Moreover, for the purpose of model estimation, they weigh the
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information from each past auction equally. For instance, if the goal is to predict the

price of a laptop auction based on a sample of historical auctions, then estimating a

regression-type model will put equal weight on the information from a Dell laptop

and from an IBM laptop – which may be inappropriate if the goal is to predict

an auction for a Sony laptop. While some of the brand and product differences

can be controlled using appropriate predictor variables, there might still be intrinsic

differences that are hard to measure. An alternative to regression-based models

which was proposed by [16] is a classification and regression tree. However, the

authors point out that the prediction can be poor if prices in each final tree-node

vary significantly. Moreover, while trees, unlike regression, manage to partition the

data in a very flexible way, their predictions, like those of regression, are also based

on the un-weighted information in each final node. In this chapter, we propose a

novel and flexible approach for forecasting online auction prices based on the ideas

of K-Nearest Neighbors (KNN). This work has been recommended for publication

at International Journal of Forecasting with minor revision.

KNN is a forecasting approach that weighs the information from each record

differently, depending on how similar that record is to the record of interest. For

instance, if our goal is to predict the price of an auction for a Sony laptop, then

it will put more weight on information from other Sony laptops and it will down-

weight the information from, say, Dell or IBM laptops. More specifically, KNN

predicts a record based on the weighted average of the K nearest neighbors of that

record, where the weight is proportional to the proximity of the neighbor to the

predicted record. KNN has been proven to converge to the true value for arbitrarily
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distributed samples [91; 23; 63], but studies show that its effectiveness is greatly

affected by the choice of the number of neighbors (K) and the choice of distance

metric [19; 34; 87; 62].

In the context of online auctions, the choice of the distance metric is challeng-

ing because auctions vary on many conceptually different dimensions. In particular,

online auctions vary in terms of three types of information: static, time-varying

and dynamic information. Static information comprises of information that does

not change throughout the auction. This includes product characteristics (e.g.,

brand, product condition), or auction and seller characteristics (e.g., auction length,

whether there is a secret reserve price, or whether the seller is a powerseller). Time-

varying information updates itself during the auction (e.g., the number of bids or

bidders). Both static and time-varying information have been shown to be im-

portant for forecasting the auction price because differences in product or bidding

characteristics all influence bidders’ decisions and hence the final price. Finally,

auctions also vary in terms of their dynamic information. Dynamic information

refers to the price path and its dynamics. These include the price-speed and the

rate at which this speed changes throughout the auction. Auction dynamics are

important for forecasting the final price because an auction that experiences fast

price movements in the earlier stage will likely see a slow-down in price in later

stages; conversely, auctions whose price travels very slowly at the beginning often

see price-accelerations towards the end (e.g. [96; 54; 85]).

Auction price dynamics can be captured via functional objects such as curves.

This means that bids are viewed as a discrete realization of an underlying smooth
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price path. Using smoothing methods (see [88]), this price path is recovered from

the discrete observations and the smoothness of the resulting object allows gauging

of dynamics via taking derivatives. In this chapter, we propose a novel functional

KNN forecaster (fKNN), which combines functional and non-functional data, for

forecasting price in online auctions.

One challenge with functional methods is the choice of smoother. Typical

smoothers include penalized splines (p-splines) or monotone splines (see Section

5.2 in Chapter 5 for more details). However, while p-splines cannot guarantee the

monotonic nature of the auction price growth, monotone splines can be computa-

tionally burdensome. An alternative is to use a flexible parametric approach that

can capture different types of price growth patterns. [45] proposed a set of four

parametric growth models for capturing price paths of online auctions (For details,

see Section 5.2 in Chapter 5). In Section 4.3, we propose a parsimonious parametric

form that generalizes these four growth models. Our parametric model has many ap-

pealing features such as monotonicity and computational efficiency. It is particularly

important within the context of fKNN since it allows us to measure the distance

between auctions’ dynamics in a very parsimonious way via the Kullback-Leibler

distance [12].

Our fKNN forecaster, which integrates information of various types, uses dif-

ferent distance metrics for each data-type. In Section 4.4 we discuss the different

distance measures and how they are combined into a single distance metric.

We also discuss another important aspect of KNN forecasters, which is the

choice of K. While choosing K too small eliminates important information, choosing
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K too large results in noise that deteriorates forecast accuracy. The goal is to find

a value that best balances signal to noise. [91] found that K can depend on the

distribution of the data and that the optimal K often grows with the sample size. In

this study, we investigate the optimal value of K as a function of different distance

metrics as well as of data size and heterogeneity.

The chapter is organized as follows. In Section 4.2, we introduce the two

sets of eBay data used in this study and discuss their level of heterogeneity. In

Section 4.3, we discuss a flexible parametric model for capturing the price path in

online auctions. Section 4.4 investigates the choice of the distance metric (combining

distance metrics for static, time-varying and dynamic data) and the optimal choice

of K. In Section 4.5, we describe the results of applying the f-KNN forecaster to

the two datasets, and compare it to some competing approaches. We conclude and

discuss possible extensions in Section 4.6.

4.2 Data

We use two datasets from the popular marketplace eBay. The datasets vary

in terms of heterogeneity. The first dataset contains auctions that sell an identical

product - Palm Pilot M515 PDA, while the second dataset contains auctions for

various laptops. Each dataset is described briefly next and in further detail in

Appendix A.
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4.2.1 Palm PDA Auctions

Our first dataset includes the complete bidding records for 380 auctions that

transacted on eBay between March and May, 2003. Each auction sold the same

product, namely, a new Palm M515 handheld device. At the time of data collection,

the market price of the product was about USD $230 (based on Amazon.com). Each

bidding record includes the auction ID, the starting and closing times and prices, all

bids with associated time stamps, and other information such as auction duration,

shipping fee, seller’s feedback score, whether the seller is a power seller, whether

the product is from an eBay store, and whether the auction descriptions include a

picture. All these variables contain information that can affect the final price of the

auction. The complete summary statistics for these variables is presented in Table

A.1 in Appendix A.

We now briefly describe what aspect of the auction process the individual

variables measure and how they are related to the final price. The opening price

is set by the seller and is known to influence the number of bidders the auction

attracts. As for the final price, eBay uses second-price auctions where the winner is

the highest bidder and s/he pays the second highest bid (plus an increment). Hence

the final price is equal to the second highest bid plus an increment. Auctions can

vary in their duration (between 3 and 10 days, in our data), with 7-day auctions

being the default. In terms of auction competition, the average number of bids is

17.45 and the average number of bidders is almost 9. The average shipping fee, set

by the seller, is $15.44. This fee is often perceived as a “hidden cost”. Another

82



piece of relevant information is the seller’s feedback score, which is approximately

the number of transactions that the seller completed on eBay. A seller’s feedback

score often proxies for his/her credibility. In our data the highest seller rating is

27,652.

We can also learn from Table A.1 that over 87% of all auctions featured a

picture. Pictures carry visual information about products, thus enhance bidders’

confidence in the quality of the item. Power sellers are sellers with consistently

high volumes of monthly sales, over 98% positive ratings, and PayPal accounts in

good financial standing. We can see that 30% of sellers are power sellers. And

lastly, sellers with feedback scores of 20 or higher, verified ID, and PayPal accounts

in good financial standing are permitted to open “stores” on eBay. Stores provide

easy management of accounts and improved brand boosting when the sellers have

multiple items listed. In our data approximately 30% of all auctions are associated

with an eBay store.

4.2.2 Laptop Auctions

While the Palm PDA dataset is very homogenous in terms of the product sold,

the second dataset consists of auctions for a collection of laptops, featuring products

of many different makes and models.

The data contain information on 4,965 laptop auctions that took place on

eBay between May and June, 2004. Table A.2 in Appendix A summarizes the data.

We can see that while some auction variables are similar to those of the Palm PDA
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data, others are different. For instance, Buy-It-Now auctions are listings that have

the option of a fixed-price transaction and thus forego the auction mechanism. Over

20% of the laptop auctions included that feature. Moreover, a secret reserve price is

a floor price below which the seller is not required to sell. This feature is particularly

popular for high-value auctions. We can see that roughly 30% of all laptop auctions

make use of the secret reserve price feature.

The main difference between the Palm PDA data and the laptop data is that

the latter include products of a wide variety of makes and models. Table A.2 show

that the data include over 7 different brands, and for each brand laptops differ

further in terms of their memory size, screen size, processor speed, whether they are

a new or used product, and whether or not they include an Intel chip or a DVD

player. All-in-all, the products sold in these auctions are of a wide variety which is

reflected in the wide range of closing prices (between $445 and $1,000).

4.3 A Functional Model for Capturing Price Growth Patterns

Our fKNN forecaster includes both functional and non-functional data. By

functional data we mean a collection of continuous objects such as curves, shapes or

images. Examples include measurements of individuals’ behavior over time, digitized

2- or 3-dimensional images of the brain, or recordings of 3- or even 4-dimensional

movements of objects traveling through space and time. In our context, we con-

sider the price path of an online auction. Such data, although often recorded in

discrete fashion, can be thought of as continuous objects represented by functional
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relationships. This gives rise to the field of functional data analysis [79].

Functional data consist of a collection of continuous objects. Despite their

continuous nature, limitations to human perception and measurement capabilities

allow us to observe these objects at discrete time points only. Thus, the first step

in functional data analysis is to recover, from the observed data, the underlying

continuous functional object. This is usually done with the help of data smoothing.

Typical data smoothers include penalized splines or monotone splines [88]. In this

chapter, we suggest a novel approach to recover the functional objects via a Beta

model. The main advantage of the Beta model is that it allows us to measure dis-

tances between two functional objects via the Kullback-Leibler distance. In contrast

to penalized splines, it guarantees monotonicity of the resulting functional object,

which is important for modeling monotonic price growth behavior in auctions. Com-

pared to monotone splines (which also result in monotonic representations), the Beta

model is computationally much more efficient1. Recently, [45] proposed a family of

four growth models for representing auction price paths. Our approach via the Beta

model generalizes this idea and includes the four growth models as special cases.

4.3.1 The Beta Model

We model an auction’s price path using the Beta cumulative distribution func-

tion (CDF). The Beta distribution is a continuous probability distribution defined

on the interval [0, 1] with two shape parameters, α and β, that fully determine the

1We use the popular R function smooth.monotone in the fda package. An alternative is to
use the pcls function (and accompanying functions gam, smoothCon, and mono.con) in the mgcv
package, which is computationally more efficient, but from our experience it produces inferior fits.
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distribution. Its CDF can be written as

F(x, α, β) =

∫ x

0
uα−1(1− u)β−1du

B(α, β)
(4.1)

where B(α, β) is the beta function2 ([1]), a normalization constant in the CDF to

ensure that F (1, α, β) equals to unity.

We model auction price paths with the Beta CDF in the following way. Let p

denote the sequence of observed prices with associated time-stamps t. Since auctions

can be of varying durations, we normalize the time sequence by tn = t/Duration,

which yields time-stamps between 0 and 1. Similarly, auctions close at different

prices, so we normalize the observed prices by pn = p/ClosingPrice which yields

values of pn between 0 and 1. The goal is then to find the values of α and β that

satisfy pn =
∫ tn

0
uα−1(1− u)β−1du/B(α, β) for every element of pn and tn.

In the context of real-time forecasting, we only observe price paths up to some

time T (with associated price P ). We therefore estimate α and β by normalizing the

time and price scales to [0, T ] and [0, P ], respectively (i.e. tn = t/T and pn = p/P ).

Estimation is done by error minimization (The algorithm for efficiently fitting the

Beta model to auction data is described in detail in Section 5.3.1 in Chapter 5).

Figure 4.1 shows typical paths produced by the Beta model for different values

of α and β. The solid black line represents the case of rapid price growth at the

beginning and at the end, but only little growth during the middle; this case would

be representative of auctions with intense early and last-moment bidding, but only

2B(α, β) =
∫ 1

0
uα−1(1− u)β−1du
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Figure 4.1: Typical price paths based on the Beta CDF with varying shape para-
meters (α, β)

little bidding activity in between – a case that is pretty common on eBay. The solid

gray represents auctions that experience little bidding activity during most of the

auction with bidding picking up only towards the end. In contrast, the dotted black

line corresponds to auctions with high early activity which levels off as the auction

progresses. And lastly, the dashed gray line corresponds to auctions where most of

the bidding occurs during the middle part (and not at the beginning or the end), a

case that, while rather uncommon, occurs from time to time on eBay.

One important consequence of the Beta model is its closed form of represen-

tation of price dynamics and acceleration by the first and second order derivatives

of the price∼time model. Besides this, there are other nice properties of the beta

model which make it advantageous over existing models. We will explore those

properties in Chapter 5.
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4.3.2 Model Estimation

We estimate the Beta model for our auction data in a way that optimizes fit

in both the x and y directions. In the auction context, the x direction corresponds

to time and a good fit in that direction is necessary in order to accurately capture

points of different bidding activity (e.g., early or last-minute bidding). We also

require our model to fit well in the y-direction, which corresponds to price. A good

fit in y-direction will guarantee accurate forecasts of an auction’s final price which

is the main goal of this study.

Since we fit the model in both x and y directions, we measure goodness of fit

by examining the residual error in both directions. For the ith auction with n bids,

we define the residual as

Residi =
1

n

n∑

k=1

[
0.5(yk − ŷk)

2 + 0.5(xk − x̂k)
2
]
,

which is the average of the sum of squared errors in both x and y directions. Note

that the smaller the residual error, the better our model represents the auction

price-path.

Figure 4.2 illustrates the model fit for the Palm PDA data. The left panel

shows the distribution of residuals for the Beta model; the other two panels show

the corresponding distributions for the growth models [45] and penalized splines,

respectively. We can see that the Beta model results in the best model fit, i.e. in

the smallest residual error3. The results are very similar for the laptop auctions.

3We conduct a more complete comparison of all smoothing models in Chapter 5.
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Figure 4.2: Residual comparison for fitting three models: Beta model (left), growth
model (middle), and p-splines (right).

4.3.3 Kullback-Leibler Distance

Since the fKNN forecaster uses both functional and non-functional data, we

must define distance measures for both data types. While there exist standard

measures for the distance between non-functional data (e.g., Euclidian distance),

measuring the distance between functional data (e.g., between two curves) is more

involved because of infinite dimensionality. One of the main advantages of the Beta

model is that it allows us to measure the distance between two auction price paths

in a very parsimonious way via the Kullback-Leibler (KL) distance.

The KL distance [68] is a non-commutative measure of the difference between

two probability distributions. For two distributions X and Y , it measures how Y

differs from X. The KL distance is widely used in the field of pattern recognition

for feature selection (e.g. [12]) or in physics for determining the states of atoms or

other particles (e.g. [75]). In our case, X and Y both refer to the Beta distribution

with parameters α, β, and α′, β′, respectively. The KL distance between X and Y
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is then given by a very simple function of the Beta parameters [81]:

DKL(X,Y ) = ln
B(α′, β′)
B(α, β)

− (α′−α)ψ(α)− (β′−β)ψ(β)+(α′−α+β′−β)ψ(α+β),

(4.2)

where B and ψ denote the Beta and Digamma function, respectively ([1]).

Returning to the four auctions in Figure 4.1, consider the solid black line

(Beta(0.5, 0.5)) as the focal auction that we want to forecast. Using equation (4.2),

the KL distance to the focal auction is 9.69 from the solid gray line (Beta(5, 1)), 6.40

from the dotted black line (Beta(1, 3)), and 7.10 from the dashed gray line(Beta(2, 2)).

While the dashed gray line may, at least visually, not appear very distant from the

focal auction, its distribution is in fact very different, as captured by the KL dis-

tance.

4.4 Functional K-Nearest Neighbors (fKNN)

In this section we discuss the components of our functional KNN forecaster.

We start by explaining the basic forecasting idea and then discuss the two main

elements of our fKNN implementation: the choice of a suitable distance metric and

the choice of K.

4.4.1 Overview

Our goal is to predict the final price of an ongoing auction. Consider Figure

4.3. The solid line corresponds to the price-process of an auction that is observed
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Figure 4.3: Illustration of the forecasting idea.

until time T . The dotted line corresponds to the (future) price path until the

close of the auction. Our goal is to predict the closing price. As the closing price

is determined by the current price plus the price-increment 4f , our forecasting

problem is equivalent to predicting 4f . We will therefore use fKNN to estimate 4f

based on a training set of completed auctions.

In order to estimate4f , we look for the K most similar auctions in the training

set. Consider Figure 4.4 for illustration. In that scenario, we have a training set

with 6 auctions, 41 – 46. We also have associated distances, D1–D6, between the

focal auction and each of the auctions in the training set. If K equals 3, then we

will estimate 4f by the weighted average of the 3 nearest auctions, in this case by
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the weighted average of 41 – 43. More generally, we estimate 4f as

4f =

∑K
i=14i/Di∑K
i=1 1/Di

. (4.3)

As we can see in equation (4.3), the two main elements of this approach are

the choice of K and the choice of a distance metric D. We discuss these next.

4.4.2 Choice of Distance Metric

As pointed out earlier, online auction data comprise of three types of infor-

mation: Static information captures information that does not change during the

course of the auction, time-varying information that changes during the auction, and

auction dynamics, which are captured and represented by functional data. Table
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4.1 summarizes the three types and the specific variables for each data type. We

now discuss distance metrics for both data-types.

Table 4.1: Summary of information sources characterizing online auctions

Data Type Measurement
Scale

Example

Interval opening price, screen size, process
speed

Non-
functional

Static Binary buy-it-now, reserve price, condi-
tion

Categorical brand

Time-Varying Interval number of bids, current price

Functional Functional price-velocity, -acceleration

4.4.2.1 Static and Time-Varying Data

Static and time-varying information includes data measured on different scales

(interval, binary and categorical). Following [53], we use separate metrics for each

individual scale, and then combine the individual metrics into an overall distance

metric for non-functional data.

For binary data xB and x′B (e.g., an auction with the buy-it-now option vs. an

auction without that feature), we define the distance as

dB = 1(xB 6= x′B), (4.4)

where 1 denotes the indicator function and thus dB equals 1 if and only if xB 6= x′B;

otherwise it is 0.
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We adopt a similar measure for categorical data. For instance, the categorical

variable “brand” can assume 8 different levels (Dell, Fujitsu, Gateway, etc) which

can be coded as a vector of 7 different binary variables. Thus, each categorical

variable can be represented as a set of binary variables. Let xC and x′C denote

two vectors representing categorical data, then we define their distance, similar to

equation (4.4), as

dC = 1(xC 6= x′C), (4.5)

which takes the value of 1 if and only if xC 6= x′C , and 0 otherwise.

For interval-scaled data xI and x′I (e.g. two auctions with different opening

prices), we use a scaled version of the Minkowski metric [47]:

dI =
|x̃I − x̃′I |

R̃I

, (4.6)

where x̃ denotes the standardized value of x, and R̃ denotes the range of x̃. The

advantage of the Minkowski metric is that it renders interval-scaled data onto the

interval [0, 1]. Note that the maximum and minimum values of dI are 1 and 0

respectively, which are also the values taken by the binary and categorical distance

metrics in equations (4.4) and (4.5). Having metrics in comparable magnitudes

makes it easier to combine individual distance metrics.

We combine individual distance metrics in the following way. Let x = {x1, x2, ..., xp}

be a vector of p non-functional features, including binary, categorical and interval
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data. We compute the overall distance between x and x′ as

d(x,x′) =
1

p

p∑
i=1

d∗, (4.7)

where d∗ denotes the appropriate individual distance metric from equations (4.4)-

(4.6).

As an example, let x and x′ be two three-feature vectors. Specifically, x ={w/

buy-it-now, dell, 1G memory} and x′ ={w/o buy-it-now, IBM, 1G memory}. The

first, second and third features are binary, categorical, and interval scaled, respec-

tively. Using equation (4.7), d(x, x′) = 1/3(d1 + d2 + d3), where d1 = 1 based on

equation (4.4), d2 = 1 based on equation (4.5), and d3 = 0 based on equation (4.6).

The overall distance between x and x′ is therefore 2/3.

Note that the definition of d in (4.7) is flexible in the sense that one can use

only subsets of the available information. For instance, dStatic would refer to the

distance metric using only static information, while dTime−V arying would refer to the

metric with only time-varying information. One problem with distance metrics of

this type is that they may over-weigh different sources of information, depending on

how elaborately each source is recorded. For instance, a data set with 100 different

static features and only 10 time-varying features puts 10-times more weight on the

information from static features. In order to overcome this potential bias, we follow

the ideas of [14] and first scale each individual distance metric by its mean root

square (MRS). MRS is a statistical measure of the magnitude of a vector. For a

vector x = {x1, ..., xp}, MRS is defined as
√

1
p

∑p
i=1 x2

i [70]. We apply the same
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scaling to each individual distance metric and obtain

dStatic
s = dStatic/MRS(dStatic) (4.8)

dTime−V arying
s = dTime−V arying/MRS(dTime−V arying) (4.9)

dStatic&Time−V arying
s = dStatic

s + dTime−V arying
s . (4.10)

Note that the combined metric dStatic&Time−V arying
s now puts equal weight on both

static and time-varying information.

4.4.2.2 Dynamics (Functional Data)

As shown in Section 4.3.3, we can measure the distance between two func-

tional observations using the KL distance. Let (α, β) and (α′, β′) denote the Beta

parameters for two different auction price paths, then their distance (when x is the

focal auction) is defined as

dF = |DKL(x, x′)| , (4.11)

where DKL(x, x′) is defined in equation (4.2).

Note that dF ranges within [0, +∞) as the KL distance assumes values on

the real line. In order to make dF comparable with the non-functional distance

measures, we again scale it using the MRS transformation. Thus we obtain

dDynamics
s = dF /MRS(dF ). (4.12)
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4.4.2.3 Optimal Distance Metric

To determine which combination of individual distance metrics leads to the

best forecasting model, we investigate a series of different distance metrics. In par-

ticular, we investigate performance using five different metrics: dStatic
s , dTime−V arying

s ,

dDynamics
s , dStatic&Time−V arying

s or dAll
s , where dAll

s = dStatic&Time−V arying
s + dDynamics

s .

We first determine the optimal metric based on a validation set and then investigate

the predictive accuracy of the resulting fKNN forecaster on a test set.

4.4.3 Choice of K

The second important component of fKNN is the choice of K, the number of

neighbors from which the forecasting is calculated. Too small a value will filter out

relevant neighbors; too big a value will introduce noise and weaken the prediction.

[91] finds that the optimal value of K is data-dependent, and it usually grows

with the sample size. In additional, K may also vary as different distance metrics

are used. Therefore, we select the optimal value of K separately for each distance

metric and each data set. To do so, we again select the best value of K based on a

validation set; we then apply the resulting model to the test set.

4.4.4 Forecasting Scheme

Our complete forecasting process includes determining the optimal distance

metric and the optimal value of K. We determine both based on a validation set.

Then, using the optimal metric and K, we estimate the fKNN model based on
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the records in the training set. We investigate the performance of that model by

predicting a new focal auction using auctions from a test set.

4.4.5 Comparison With Alternate Methods

We benchmark our fKNN forecaster against two other very popular predic-

tion methods: parametric regression models, and nonparametric regression trees

(CART).

In a linear regression model, the closing price is modeled as a linear function

of the observed predictor information. This information can include some or all of

the three types of data from Table (4.1). Note that in such models, all auctions

from the training set are weighed equally when estimating the model coefficients.

CART forecasting takes a hierarchical approach. It recursively partitions the

data into smaller sub-groups; the focal auction is then forecasted based on the

average of the most relevant sub-group. While CART, like KNN, uses neighboring

information from similar auctions, it weighs each auction equally, which is one major

aspect in which it differs from KNN.

We discuss differences in prediction performance next.

4.5 Results

We now discuss the predictive performance of our functional KNN forecaster

when applied to the two datasets of eBay auctions, and compare it with competing

approaches. We also investigate the optimal distance metric and the optimal value
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of K. The two datasets, Palm PDAs and laptops, are different in their level of

heterogeneity. While the Palm PDA dataset is very homogeneous, the laptop data

are very heterogeneous. We also investigate different time horizons, that is, we

investigate forecasting different distances into the future.

We split each of the two datasets into a training set (50% of the auctions),

a validation set (25%) and a test set (25%). We split the data according to the

temporal nature of our prediction task. That is, auctions in the training set transact

prior to those in the validation set; and auctions in the test set transact after those

in the validation set. Therefore, our experiments mimic the prediction task that

real bidders face.

For the competing models (regression and CART), we train the models on the

combined training and validation set, and then test their predictive performance on

the test set.

We evaluate all models using the mean absolute percentage error (MAPE)

MAPE :=
1

N

N∑
i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣ , (4.13)

where yi and ŷi denote the true and estimated final price in auction i, respectively.

4.5.1 Selecting the Optimal K and the Optimal Distance Metric

We select the optimal value of K in the following way. Recall that we have

5 candidate metrics, D ∈ {dStatic
s , dTime−V arying

s , dDynamics
s , dStatic&Time−V arying

s , dAll
s }.

For each metric, we select a value of K from the set K ∈ {1, 2, . . . , 100}. For each
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combination of (D ×K), we estimate the corresponding fKNN model on the training

set, then measure its predictive accuracy (in terms of MAPE) on the validation set.

Figure 4.5 shows the results. The left panel shows the results for the laptop auctions;

the right panel shows the corresponding Palm PDA results. The top panel shows

an overview, the bottom panel zooms-in on the most relevant part.

From the left panel in Figure 4.5 (laptop auctions) we can see that dDynamics
s

results in the worst model performance, regardless of the value of K. In other words,

using only the dynamic information of the price path is not sufficient for achieving

good prediction accuracy. We also see that, of the remaining 4 distance metrics, dAll
s

yields the uniformly lowest prediction error. This suggests that for laptop auctions,

due to their diversity in makes and models, every single piece of auction information

is necessary to achieve good prediction accuracy. Moreover, we note that for dAll
s , the

lowest prediction error is achieved at K = 41. We conclude that D = dAll
s together

with K = 41 results in the best predictions. The story is somewhat different for

the Palm PDA data (right panel in Figure 4.5). For those data, D = dTime−V arying
s

results in the uniformly lowest error (across all distances). Moreover, choosing K=2

optimizes that distance.

It is interesting that the two different data sets result in very different choices

for K and D. While for the laptop data, we need all auction information (using

the distance metric dAll
s ) and a very large neighborhood (via K=41), the Palm PDA

auctions require only the time-varying information of the auction process (using D =

dTime−V arying
s ) and a very small neighborhood (via K=2). One possible explanation

lies in the difference in heterogeneity between the two data sets. In the homogeneous
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Figure 4.5: Optimal values of K and D. The left panel shows the results for the
laptop auctions; the right panel shows the corresponding Palm PDA results. The
top panel gives an overview, the bottom panel zooms-in on the most relevant part.
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data (Palm PDA), all products are the same and differences in auction outcome will

be mostly due to differences in the current price and the level of competition for

that product. The competition level is reflected in the number of bids and bidders,

which, together with the price level, are captured in dTime−V arying
s . Moreover, since

products are very homogeneous, we only need a very small neighborhood, thus

K=2. This is different for the laptop auctions. In that data set, products are

very heterogeneous, thus the forecaster needs all available information (in dAll
s ) to

distinguish between more relevant samples. Since the products are very different,

the method also requires a larger neighborhood which leads to a larger value of K.

This suggests that, as expected, forecasting more heterogeneous auctions is a more

difficult task.

4.5.2 Robustness of Optimal D and K to the Time Horizon

In the previous section, we investigated the interplay of K and D for a fixed

time horizon of 1 minute. That is, we assumed that we observe the auction until 1

minute before its close. We now investigate the robustness of this choice for different

time horizons. Specifically, we investigate the robustness of K and D for different

time horizons (δT ) in the set δT ∈ { 2h, 1h, 30 min, 15 min, 5 min, 1 min}.

4.5.2.1 Robustness of Optimal K

Figure 4.6 investigates the robustness of K to the choice of δT . For a given

value of K (K ∈ {20, 40, 60, 80, 100} for the laptop data and K ∈ {2, 5, 10, 50, 100}
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for the Palm PDA data), we investigate the prediction accuracy for different values

of δT . We hold D fixed at D = dAll
s for the laptop data and D = dTime−V arying

s

for the Palm data. Figure 4.6 shows the relative prediction error Rel.MAPEK :=

MAPEK/MAPEK∗ , relative to a benchmark value (K∗ = 40 for the laptop data,

K∗ = 5 for the Palm PDA data).

We see that for the laptop data (top panel in Figure 4.6), lower values of K

(K=20) lead to poor performance. We also see that while K=40 generally leads to

good forecasting accuracy, it is outperformed by higher K-values when forecasting

time horizons of 30 or 15 minutes. This suggests that the value of K is not very

robust to the time horizon. It is even less robust for the Palm PDA data (bottom

panel in Figure 4.6), where K=5 leads to good forecasting performance only for

very long time horizons (δT = 2h); in contrast, choosing K=2 leads to the best

performance for very short horizons (δT = 1 min). This suggests that the choice

of K should be a function of δT . Table 4.2 lists the optimal value of K for each

combination of δT and D.

4.5.2.2 Robustness of Optimal D

We now investigate the impact of the time horizon δT on the choice of the

distance metric D. Figure 4.7 shows the prediction accuracy as a function of the

time horizon δT for different choices of D. Note that for each combination of D and

δT , we use the optimal values of K from Table 4.2.

The left panel in Figure 4.7 corresponds to the laptop data; the right panel is
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Table 4.2: Optimal choice of K for different distance metrics D and different time
horizons δT . The top panel corresponds to the laptop data; the bottom panel is for
the Palm PDA data.

Laptop Data
Time Horizon 2h 1h 30min 15min 5min 1min

static 95 94 99 99 81 14

time-varying 31 27 97 100 91 89

dynamics 100 100 100 100 100 100

static&time-varying 40 79 100 96 47 44

all 33 77 98 100 44 41

Palm PDA Data
Time Horizon 2h 1h 30min 15min 5min 1min

static 52 69 63 63 61 37

time-varying 3 10 4 1 1 2

dynamics 94 95 95 29 29 68

static&time-varying 7 18 32 52 12 8

all 6 40 30 61 11 2
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for the Palm PDA data. Each line corresponds to a distance metric D ∈ {dStatic
s ,

dTime−V arying
s , dDynamics

s , dStatic&Time−V arying
s , dAll

s }. We can see that, for each data

set, a single distance metric yields the consistently best result across all values of

the time horizon. That is, dAll
s results in the best prediction accuracy for the laptop

data, regardless of the value of δT ; similarly, dTime−V arying
s yields the best results for

all values of δT in the Palm PDA data. This suggests that the choice of the distance

metric is very robust to the forecasting horizon, at least for a given data set. We also

note that while dTime−V arying
s significantly outperforms all other distance metrics for

the Palm PDA data, for the laptop data most choices of D (except for dDynamics
s )

yield very comparable results, at least for short time horizons (δT ≤ 30 min).

4.5.3 Comparison With Alternate Prediction Methods

We evaluate the performance of functional KNN by comparing its predictive

accuracy to more classical approaches – linear regression models and tree (CART)4.

We study the performance of all methods on the test set. Recall that we

partitioned our data into a training set (50%), validation set (25%) and test set

(25%). While we estimated the fKNN forecaster on the training set and optimized

its parameters K and D on the validation set, we now compare its performance

(using the optimal parameter values) on the test set. That is, for each time horizon

δT , we use the optimal combination of K and D from the previous section. In

order to make fair comparisons, we apply regression and CART using the same

4We used the software defaults for pruning in CART; that is, we used the defaults in the R
package rpart.
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information as for functional KNN.

Figure 4.8 shows the results. We display the relative prediction error between

fKNN and the regression model (dotted line) and between fKNN and the tree model

(dashed line). We can see that fKNN generally outperforms its two competitors.

In particular, for the laptop data (left panel), fKNN outperforms the tree model

by as much as 40%. While the gap between the regression model and fKNN is

smaller, fKNN leads to improvements that range between 5% and 10%. The picture

is similar for the Palm PDA data (right panel). While for this data set fKNN also

leads to general improvements, it is curious to see that only for the longest time

horizon (δT = 2h), both alternate approaches are competitive.
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Figure 4.8: Comparison of different forecasting methods. The left panel corresponds
to laptop auctions; the right panel is for the Palm PDA auctions.

It is revealing to compare performance on each of the two data sets. While

for the laptop data, both fKNN and regression significantly outperform CART, the
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Figure 4.9: Optimal values of K for the Palm PDA data at δT = 15 min. The left
panel corresponds to the validation set; the right panel corresponds to the test set.

gap is not as large in the Palm PDA data; in fact, for the Palm PDA data, CART

and regression are comparable for almost all time horizons. The poor performance

of CART on the laptop data illustrates the general problem of the method with

prediction: while it often fits the training set well, it has a tendency to over-fit

and thus perform poorly on the test set, especially in situations like the laptop

data where the underlying population is very heterogeneous. On the other hand,

functional KNN can handle heterogeneous populations well by selecting only those

neighbors that are most relevant for the focal auction; in particular, compared to

regression, it performs especially well for forecasting longer time horizons (one hour,

two hours), which is very relevant in practical situations.

Functional KNN also leads to improvements for less heterogeneous data sets

such as the Palm PDA data. While the right panel in Figure 4.8 suggests that
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fKNN outperforms both competitors for every time horizon, there is a sharp drop

for the competitors at δT ≤ 15 min. At this point, both regression and the tree

model perform almost as well as fKNN. A closer investigation of this phenomenon

reveals that for this time horizon, the optimal value of K (based on the validation

set) equals one (see left panel in Figure 4.9); however, that value leads to very poor

performance on the test set (right panel in Figure 4.9). This suggests that finding

the right value of K is especially difficult for homogeneous data sets (such as the

Palm PDA data). While the data-homogeneity suggests very small values of K,

slight perturbation of the homogeneity can lead to weaker results. This was already

implied by the lack of robustness seen in Section 4.5.2.1.

4.6 Conclusions

In this chapter, we propose a novel functional KNN forecaster for forecasting

the final price of an ongoing online auction. Assuming that more similar auctions

contain more relevant information for incorporation into forecasting models, we

propose a novel dissimilarity measure that takes into account both static and time-

varying features as well as the auction’s price dynamics information. The latter is

obtained via a functional representation of the auction’s price path. We select both

the optimal distance metric as well as the optimal number of neighbors based on a

validation set. We find that weighting information unequally yields better forecasts

compared to classical methods such as regression models or trees, and this result

holds in auctions of varying levels of heterogeneity. Moreover, the proposed Beta
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model has many nice properties as a representation of auction price path besides

providing distance measures for functional price curves. We explore those properties

in further detail in the next Chapter.

Although we observe improvement of the KNN forecaster over regression and

CART for auctions of varying levels of heterogeneity, our study shows that the

improvement is bigger for heterogeneous data. This means that selecting the most

useful information and making use of only most relevant neighbors is especially

crucial for prediction accuracy in situations where objects are heterogeneous and

information is noisy. This fact is true not only for forecasting online auctions but

also in many other forecasting situations (e.g., weather forecasting). Another finding

worth noticing is the robustness of the optimal distance to the time horizon. The

fact that the same distance metric is optimal regardless of the time horizon implies

that the most important information for making price prediction is time-invariant.

This insight simplifies the process of decision making. To compute forecasts, we

only need to find the optimal distance once, and this distance can then be re-used

as the forecasting process proceeds.

There are several ways to extend this study. While we scale distance metrics

for different information sources to achieve equal weighing across all metrics, one

could alternatively assign individual weights to individual metrics and then optimize

the weights. There are also alternative ways to define distances for different data

types. For example, for categorical data we can define several levels of category

“similarity”, such as “US brand”. Then, the distance between items can be set to

0.5 for “similar categories” (e.g., US brand) or 1 for categories more different.
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Another way to complement this study is by investigating alternates to clas-

sical linear regression and trees, e.g. via weighted regression or tree models, which

might lead to forecasting advantages especially for heterogeneous data.
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Chapter 5

A Flexible Model for Price Dynamics in Online Auctions

5.1 Introduction

One stream of online auction research has focused on the dynamics of the

auction price paths which leads to deeper understanding of price formation process.

Descriptive studies have shown that price dynamics can be very heterogeneous, even

for auctions of the same product (e.g. [51; 82]). Furthermore, statistical approaches,

such as functional data analysis, has been developed and employed in providing

insight into price dynamics [52; 10; 86].

Price dynamics have also been shown instrumental for price forecasting. [96]

pioneered real-time forecasting models for ongoing auctions where price dynamics

serve as important predictors. [57] recently expanded upon this idea. Both stud-

ies show that the inclusion of the dynamic information adds additional predictive

power to the forecasting model compared to models that do not make use of such

information.

In summary, the price path and the price dynamics are of special interest in

online auctions, and therefore developing models that can capture them effectively

are both important and useful. In Chapter 4, we have briefly introduced a Beta

model for capturing the price path and its dynamics; and it is employed to help

measure distances between auction price paths. The Beta model is parsimonious,
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flexible, and computationally efficient. In this Chapter we further explore the prop-

erties of the beta model, compare our model to alternative existing models and show

its advantages both in terms of fit as well as forecast accuracy. This work has been

submitted to the Journal of the Royal Statistical Society C for review.

The remainder of the paper is organized as follows: Section 5.2 presents ex-

isting models for capturing price path and dynamics in online auctions. In section

5.3, we introduce our Beta model and describes its properties, estimation, and ad-

vantages over alternate approaches. We then compare the Beta model to several

competitors empirically in Section 5.4, in terms of fit as well as forecast accuracy.

We conclude in Section 5.5.

5.2 Models for Auction Price Paths

Dynamics (e.g. velocity or acceleration) are typically computed as the first

or second derivative of an underlying smooth function. However, observed bids

create a non-decreasing step function with jumps at the times of bids (see e.g.

Figure 2.1). Thus, in order to gauge an auction’s price dynamics, one needs some

smooth representation of the price path. There have been two general approaches

to obtaining smooth auction price paths from observed bid data: non-parametric

and parametric. Using a functional data analytic (FDA) approach, [54] employed

penalized smoothing splines (p-splines) to generate smooth curves. An alternative to

p-splines are monotone splines [78] which guarantee the monotonicity of the resulting

curves. Finally, [45] proposed a parametric family of four distributions that capture
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an auction’s most typical price path shapes. Each of these three approaches yield

smooth price curves, and then price dynamics are computed by taking derivatives of

the smooth curves. The first derivative captures price velocity (i.e. how fast the price

is moving at any point in time); the second derivative captures price acceleration,

and so forth.

In the following we describe each of these three approaches and discuss their

strengths and weaknesses.

5.2.1 Smoothing Splines

Penalized smoothing splines (p-splines) [88] fit a polynomial of order p. In

order to control the smoothness of the fitted curve, a penalty is imposed on the

estimating function. Let τ1, τ2, . . . , τL be a set of knots, then a polynomial spline of

order p is given by

f(t) = β0 + β1t + β2t
2 + . . . + βpt

P +
L∑

l=1

βpl(t− τl)
p
+ (5.1)

where u+ = uI(u ≥ 0) is the positive part of the function u. Many functions of

this type tend to fit the data too closely (and thus model noise in addition to the

signal); therefore, a roughness penalty approach is often employed which takes into

account the trade off between data-fit (i.e., minimizing f(t) =
∑

j(yj − f(tj))
2) and

function smoothness. A popular measure of roughness, which measures degree of
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departure from a straight line, is of the form

PENm(t) =

∫
[Dmf(t)]2dt (5.2)

where Dmf, m = 1, 2, 3, . . . denotes the mth derivative of the function f . A highly

variable function will yield a high value of PENm(x). If the highest derivative of

interest is m, then using m + 2 as the polynomial order will assure m continuous

derivatives. The penalized smoothing spline f minimizes the penalized squared error

PENSSEλ,m =

∫
(y(t)− f(t))2 + λPENm(t). (5.3)

When the roughness parameter is set to λ = 0, the penalized squared error drops

out, and the function fits the data perfectly. Larger values of λ penalize the function

for being curvy, and as λ →∞, the fitted curves approach a linear regression.

Smoothing splines are widely used in functional data analysis. They are ad-

vantageous in terms of their flexibility which results in good data-fits, in terms of

their ease of obtaining derivatives (i.e. dynamics) and in terms of their compu-

tational efficiency. However, there are several challenges when applying penalized

smoothing splines to the online auction context. Firstly, although bidding data are

non-decreasing over time, smoothing splines do not necessarily result in monotoni-

cally non-decreasing curves. Hence, they may not truly reflect the monotonic nature

of the auction price process. Second, the fitted curves are often very variable, espe-

cially at their ends, even with a heavy smoothness penalty. This is problematic in
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the auction context, where the opening and closing prices are of special importance.

Moreover, in a forecasting context it is crucial to obtain precise estimates at the final

stages of the auction (see Chapter 2 and [96]). Finally, smoothing splines require

the specification of many nuisance parameters (such as the smoothing parameter,

the number and position of knots, and the polynomial order) which are often deter-

mined in an ad-hoc fashion. While one can estimate some of these parameters from

the data (e.g., using cross-validation), their optimal choice is not always guaranteed.

5.2.2 Monotone Splines

Monotone splines [78] are a natural alternative to smoothing splines in the

online auction context, since they guarantee a monotone path of the resulting price

process. The idea behind monotone smoothing is that monotonously increasing

functions have a positive first derivative. The exponential function has this property

and can be described by the differential equation f ′(t) = w(t)f(t). This means that

the rate of change of the function is proportional to its size. Consider the linear

differential equation

D2f(t) = w(t)Df(t). (5.4)

Here, w(t) = D2f(t)
Df(t)

, which is the ratio between acceleration and velocity. The

differential equation has the following solution:

f(t) = β0 + β1

∫ t

t0

exp

(∫ v

t0

w(v)dv

)
du (5.5)
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where t0 is the lower bound over which we are smoothing. After some substitutions

(see [79]), we can write

f(t) = β0 + β1e
wt. (5.6)

and estimate β0, β1, and w(t) from the data. Since w(t) has no constraints it may be

defined as a linear combination of K known basis functions (i.e., w(t) =
∑

k ckφk(t)).

The penalized least squares criterion is thus

PENSSEλ =
∑

i

[yi − f(t)]2 + λ

∫ T

0

[w2(t)]2dt. (5.7)

For capturing online auction price paths and dynamics, monotone smooth-

ing indeed solves the excess variability of penalized smoothing splines and their

non-monotonicity problems. The resulting curves are better representations of a

continuous non-decreasing price path, and dynamics can be computed via curve

derivatives. However, some challenges remain and new ones arise. First, monotone

smoothing is computationally intensive, as it relies on an iterative fitting process

where several passes have to be made through the data. Therefore, fitting a dataset

of even tens or hundreds of auctions can take a long time. Second, like smooth-

ing splines, there are many nuisance parameters to be determined (the number and

location of knots and the smoothing parameter). Hence, while, at least conceptu-

ally, monotone splines are preferable over smoothing splines, they can be slow to

implement even with medium-sized datasets.
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5.2.3 Parametric Growth Models

To overcome the disadvantages of smoothing splines and monotone splines,

[44] proposed a family of four growth models for representing the price process.

They find that the shape of auction price paths can be categorized into four main

types: exponential growth, logarithmic growth, logistic growth, and reflected-logistic

growth. These four models not only provide parametric fit of monotone data, but

they also have appealing interpretations, and are easy to estimate. We describe each

of the four models next.

5.2.3.1 The Exponential Model

Exponential growth has been used for describing a variety of natural phe-

nomena including the dissemination of information, the spread of disease, and the

multiplication of cells in a petrie dish. In exponential growth the rate of growth is

proportional to a function’s current magnitude; that is, growth follows the differen-

tial equation

Y ′(t) = rY (t), (5.8)

or the equivalent equation

Y (t) = Aert, (5.9)

where t denotes time, and r > 0 is the growth constant. Equivalently, exponential

decay, when r < 0, can model phenomena such as the half-life of an organic event. In

an online auction context, exponential growth describes a price process with gradual
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price increases until mid-to-late auction, and a heavy price jump towards the end.

5.2.3.2 The Logarithmic Model

Logarithmic growth is technically the inverse of the exponential function,

Y (t) =
1

r
ln(

t

A
), (5.10)

The resulting curves are reflections of exponential growth over the line x = y.

In the online auction context, such behavior occurs when early bidding quickly in-

creases the price during the opening stages of the auction, but because of market

constraints (e.g. a market value or budget constraints), price flattens out for the re-

mainder of the auction. This type of price behavior tends to be rare, as most bidders

do not wish to reveal their valuations early in the auction. However, inexperienced

bidders who may not completely understand eBay’s proxy bidding mechanism, may

place high early bids.

5.2.3.3 The Logistic Model

Logistic growth is useful for describing processes which reach a limit or a “car-

rying capacity”. In the context of auction prices, in many cases there are competing

online and brick-and-mortar markets for the auctioned item, thereby creating a

“market value” for the item.
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The logistic model is given by

Y (t) =
L

1 + Cert
, (5.11)

and the differential equation is

Y ′(t) = rY (t)(
Y (t)

L
− 1), (5.12)

where L is the carrying capacity, t is time, r is the growth rate, and C is a constant.

Logistic growth can also be explained in the auction context as a stretched-out “S”-

shaped curve, where the price increases slowly early, jumps up during mid-auction,

and levels off towards the end of the auction. The resulting closing price is analogous

to the carrying capacity L in the logistic growth function.

5.2.3.4 The Reflected-Logistic Model

Another common price process in online auctions is a reflected “S” shaped

curve. Such behavior can be captured by the inverse of logistic growth, or reflected-

logistic growth, given by the function

Y (t) =
ln(L

t
− 1)− ln(C)

r
. (5.13)

In the online auction context, this type of growth occurs when there is some early

bidding that results in a price increase, followed by little to no bidding in the middle
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of the auction, and then another price increase as the auction approaches its close.

In particular, price spikes near the end may be caused by sniping.

5.2.3.5 The 4-member growth model family

The set of four growth models is used to approximate price paths as follows:

For a dataset of auctions, each of the four models is fitted to each auction. Then,

for each auction, the four estimated models are compared in terms of fit, and the

best fitting model is chosen (for more on the fitting process, see [45]). Hence, the

fitting process is a two-stage process.

Since the family is entirely parametric, no nuisance parameters require deter-

mination. Moreover, since the family is monotonic, it is well-suited for capturing

auction price processes. Moreover, the 4-member family of growth models is com-

putationally efficient compared to monotone splines, and ordinary least squares

functions can be used for estimation.

The main disadvantage of the four-model family is it is limited to only four

basic shapes – exponential, logarithmic, logistic, and reflected-logistic – which may

be overly simplistic for some auction scenarios. Moreover, because the four models

are not nested within a single model, comparing fit (for choosing the best model)

is nontrivial. Finally, when fitting the exponential and logistic models via least

squares, the models minimize error in the bid amount space. In contrast, when

fitting the two reflected models (logarithmic and reflected-logistic growth) using

least squares, the error minimization is done in the bid time space. A comparison
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is therefore more complicated.

5.2.4 Comparison

To illustrate the difference between penalized splines, monotone splines and

the 4-member family of growth models, consider Figure 5.1, which displays the fit

of the three methods to two sample auction price paths. The solid lines represent p-

splines, the dashed lines represent monotone splines, and the dotted lines represent

the best fit of the 4-member growth model family. We see that while p-splines can fit

the data very well, they are very variable and do not capture the monotonic nature

of the price path. While the 4-member growth family results in a monotonous price

path, it does not fit the data well. Monotone splines appear to provide the best

fit in this example; however, it takes on average almost 7 seconds to fit a single

monotone spline (compared to 0.02 seconds for one p-spline and and 0.04 seconds

for one 4-member growth model).

5.3 A New Model for Auction Price Paths: The Beta Model

In light of the shortcomings of existing models for online auction price paths

and dynamics, we introduce a single parametric model that is flexible yet parsimo-

nious for approximating price paths and their dynamics. We have briefly introduced

the model in Chapter 4 based on which Kullback-Leibler distance is used to measure

the distance between two auction price paths. We now discuss model estimation and

its properties in detail.
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Figure 5.1: Illustration of the three existing smoothing methods. The solid lines
represent p-splines, dashed lines are for monotone splines, and the dotted lines are
for growth models.

Our proposed model is based on the Beta cumulative distribution function

(CDF). The Beta distribution is a continuous probability distribution defined on

the interval [0, 1] with two shape parameters (α and β) that fully determine the

distribution. Its CDF can be written as

F(x, α, β) =

∫ x

0
uα−1(1− u)β−1du

B(α, β)
, (5.14)

where B(α, β) is the beta function1, which serves as a normalization constant in the

CDF to ensure that F (1, α, β) = 1.

We use the Beta model to capture auction price paths in the following way.

Let p denote the sequence of observed bids with associated time-stamps t. Since

auctions can be of varying durations, we thus normalize the time sequence to a 0-1

1B(α, β) =
∫ 1

0
uα−1(1− u)β−1du
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scale by using the transformation tn = t/Duration. tn are time-stamps between

0 and 1. Similarly, because auctions close at different prices, we normalize the

observed bids to a 0-1 scale by using the transformation pn = p/ClosingPrice. pn

are bid values between 0 and 1. The goal is then to find the values of α and β

that satisfy pn =
∫ tn

0
uα−1(1− u)β−1du/B(α, β) for every element of pn and tn. An

algorithm for achieving this goal efficiently is described in Section 5.3.1.

The Beta model is very flexible in the types of curves that it can produce. It

includes as special cases the four shapes of the 4-member growth model family of

[45]. The top panel in Figure 5.2 shows the Beta model curves for different values of

α and β. The solid line represents the case where price grows rapidly at the auction

beginning and at the end, but not in the middle, corresponding to logit growth.

The long-dashed line represents the situation where rapid growth only occurs at

the end, corresponding to exponential growth. The short-dashed line shows early

rapid growth, corresponding to logarithmic growth. And finally, the dotted-dashed

line captures a rapid increase in price somewhere in the middle of the auction,

corresponding to the reverse-logit growth pattern.

5.3.1 Fitting the Beta Model

Fitting the Beta model to bid data can be done in a way that results in curves

that fit well in two dimensions: bid time and bid amount. In the auction context

both dimensions are important. In particular, a good fit in terms of the bid timing

is necessary in order to accurately capture points of different bidding activities.
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Figure 5.2: Beta CDF (top panel) and corresponding PDF (bottom panel) with
different shape parameters (α, β)
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Periods of vastly different biding activity, e.g. early or last-minute bidding, have

been documented well in the auction literature (e.g. [86]), and they are important to

capture adequately. In terms of bid amounts, a model that adequately captures the

bid amounts (i.e., the price at that point of the auction), is necessary for generating

accurate forecasts of an auction’s final price. Auction price forecasting is of practical

interest and different forecasting models have been suggested in the literature [32;

33; 96; 57; 53; 21].

The only inputs required for fitting the Beta CDF are the observed bid amounts

and their associated time stamps. The resulting price path representation is char-

acterized by only two parameters. The simplicity and parsimony of the Beta model

distinguish it from alternative approaches. Our algorithm for fitting the Beta CDF

minimizes residuals in both bid amount and bid time dimensions simultaneously.

5.3.1.1 Beta-Fitting Algorithm

For a given auction, we estimate α and β from the observed bids as follows:

Step 1: Standardize bid amounts and bid times

Since the range (y) as well as the domain (x) of the Beta CDF is [0, 1], we first

standardize the bid amounts and bid times by the following two transforma-

tions.

y ← bid−min(bid)

max(bid)−min(bid)

and

x ← time−min(time)

max(time)−min(time)
.
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x and y are now bid times and bid amounts standardized within [0, 1].

Step 2: Compute α0 and β0, the initial values of α̂ and β̂

Since we treat x as a Beta-distributed random variable, it is reasonable to

assume that the empirical average and variance of x are close to their theoret-

ical mean and variance. That is, mean(x) ' α
α+β

and var(x) ' αβ
(α+β)2(α+β+1)

.

Therefore, the initial values of α and β are found by solving the minimization

problem:

(α0, β0) =
{
(α∗, β∗)|DISTA(α∗, β∗) = min(DISTA(α, β))

}
,

where DISTA(α, β) =
(
mean(x)− α

α+β

)2

+
(
var(x)− αβ

(α+β)2(α+β+1)

)2

.

Step 3: Compute α̂ and β̂

In order to capture both the bid levels as well as the bid times, our model

minimizes error both in y and x directions simultaneously. Specifically, we

choose to minimize the sum of the squared residuals in y and x directions.

With the initial values α0 and β0 from Step 2, we solve for α̂ and β̂ through

the following minimization problem:

(α̂, β̂) =
{
(α∗, β∗)|DISTB(α∗, β∗) = min(DISTB(α, β))

}

where DISTB(α, β) =
∑

(y − pbeta(x, α, β))2 +
∑

(x − qbeta(y, α, β))2; and

pbeta and qbeta represent the cumulative distribution function and the inverse

of the cumulative distribution function of the beta distribution respectively.
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The above algorithm is computationally very efficient. It takes, on average,

0.0489 seconds to fit the Beta model to one auction (using the above algorithm),

which compares favorably to the 4-member growth family (0.0362 seconds). Unsur-

prisingly, penalized splines fare better (0.0190 seconds) since they do not encounter

any iterations. Conversely, fitting monotone splines, which do require iterative

passes through the data, result in 150 times larger computing times (on average

of 6.9726 seconds per auction).

5.3.2 Properties of the Beta Model

The Beta model shares the main properties of competing methods (p-splines,

monotone splines and the 4-family growth model), but it also has several additional

properties that set it apart. Like all competing methods, the derivatives of the

continuous Beta curves can be used to capture price dynamics. The Beta model

produces monotonically non-decreasing curves, yet it is computationally fast (using

the algorithm from Section 5.3.1). Unlike non-parametric approaches, fitting the

Beta model does not involve any nuisance parameters.

Like the 4-member parametric growth model, the two-parameter Beta model

can be used to characterize auction types (e.g. exponential, logarithmic, logistic or

reflected logistic) in terms of price dynamics.

The Beta model has two additional unique properties, which make it especially

advantageous in the online auction context: (1) Because both of its dimensions (bid

time and bind amount) are derived from a probability function, the Beta summary
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statistics can be used to learn about the bid timing distribution, and (2) there is an

easy and straightforward way to measure pairwise distances between price paths.

The latter is especially useful in the context of pairwise comparisons and dynamic

forecasting as shown in Chapter 4. We discuss those model properties in detail next.

5.3.2.1 Representing Price Dynamics

The Beta CDF representation of the price paths means that price velocity,

which is the first derivative of the price curve, is given by the Beta probability

density function (PDF). In particular, at any given time T , the price velocity of an

auction with shape parameters α and β can be computed as:

V el(t, α, β) =
tα−1(1− t)β−1

B(α, β)
, (5.15)

where t is the normalized T on a scale of [0, 1] (t = T
duration

) and B(α, β) is the beta

function.

The bottom panel in Figure 5.2 plots the price velocities corresponding to the

price paths in the top panel. The solid black line shows rapid dynamics at the

beginning and end, but not much price activity during the middle; in contrast, the

dashed gray line signals heightened price dynamics during mid-auction. Similarly,

the solid gray line captures increased price-velocity towards the end while the dotted

dashed line captures early price spurts.

Higher order price dynamics can also be readily obtained by taking higher
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order derivatives. For example, price acceleration can be computed as

Acc(t, α, β) =
tα−1(1− t)β−1

B(α, β)

(
α− 1

t
− β − 1

1− t

)

Price dynamics carry important information about the auction process [10].

Therefore accurate approximations of price dynamics are beneficial across multiple

applications. In section 5.4 we show that the price dynamics generated via the Beta

model lead to more accurate price forecasts compared to competing approaches.

5.3.2.2 Characterizing Growth Patterns

Similar to the 4-member growth family of [45], the Beta model provides a tool

for characterizing price process types. In fact, there is a one-to-one mapping between

the Beta model and the four growth models via the shape parameters α and β. For

example, if both α and β are smaller than 1, then the price curve is similar to the

reflected-logistic model. Table 5.1 lists the relationship between the Beta model and

the 4-member growth family. The implication of this relationship is that it allows

us to easily characterize auctions in terms of their type of price dynamics, without

the need of more specialized techniques such as functional clustering (e.g. [54]) or

via laborus visual examination (e.g. [44]).

5.3.2.3 Characterizing Bid Timing

The estimated Beta parameters α and β can be used to compute summary

statistics which capture bid timing information. Table 5.2 gives the formulas for the
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Table 5.1: Correspondence between the Beta model and the four growth models

Growth Models Beta Model

Exponential α = 1 β < 1
α > 1 β ≤ 1

Logarithmic α < 1 β ≥ 1
α = 1 β > 1

Logistic α > 1 β > 1

Reflected-logistic α < 1 β < 1

variance, mode, and skewness. The variance gives information about the dispersion

of the bid arrivals; the mode, which is the peak of the price velocity curve, tells us

about the time during the auction when the price moved fastest. Finally, skewness

measures the level of asymmetry in the bid timings. Online auctions tend to see

either high bidding activity at the start and/or at the end.

Table 5.2: Beta distribution summary statistics and their auction meaning

Formula Explanation

Variance αβ
(α+β)2(α+β+1)

Dispersion of the bid arrivals

Mode α−1
α+β−2

The peak of the velocity curve;
price increases fastest at this
point.

Skewness 2(β−α)
√

α+β+1

(α+β+2)
√

αβ
Asymmetry of the bid arrivals.
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5.4 Empirical Comparison

In this section we compare the proposed Beta model with competing methods

for fitting auction price paths. In particular, we compare it to p-splines, monotone

splines and the 4-member growth model family. Comparisons are made on two

different dimensions: In terms of fit, we compare the different models’ ability to

generate accurate price representations of observed auction data; and in terms of

prediction, we compare the forecast accuracy of the four methods in predicting the

final price of a set of ongoing auctions. We will see that in the forecasting context, it

is especially important not only to have an adequate approximation of the auction’s

price path, but also of its price dynamics. The data we use is the Palm PDA data

set (Appendix A).

5.4.1 Model-fit Comparison

To evaluate goodness of fit of a model, we examine the residual error both

in terms of bid amount (y) and bid time (x), because it is important to accurately

capture not only the times when bids are placed but also the resulting price. For

this purpose, we define the residual error for the ith auction with n bids as

residi =
1

n

n∑

k=1

[0.5(yk − ŷk)
2 + 0.5(xk − x̂k)

2],

where (xk, yk) and (x̂k, ŷk) are the observed and fitted values, respectively. Note

that since both p-splines and monotone splines only minimize errors in terms of bid
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amount (y), we set xk = x̂k, which may result in an overly optimistic view of these

two methods.

We apply all four methods to the Palm PDA auction data set. That is, for

each auction we estimate a p-spline, a monotone spline, the best of the 4-member

growth model family, and our Beta model. For each auction, we first normalize

the observed bids p and associated times t into a [0,1] scale via the transformations

pn = p/ClosingPrice and tn = t/Duration. We then fit each of the models2 to

the normalized data (tn, pn). Normalization results in an equal weighing of the

residuals in both bid time and bid amount dimensions, since they are measured on

equal scales. We repeat the process for all 380 auctions in our data set.

The distributions of the absolute residuals are shown in Figure 5.3. We can see

that the Beta model (top left panel) results in the second-best fit (average error =

0.0125), surpassed only slightly by the fit of monotone splines (bottom right panel;

average error = 0.0112). Both, p-splines and the 4-family growth models, result

in a much worse representation of the data (average error of 0.0326 and 0.0434,

respectively). But also recall the much longer estimation time for monotone splines:

it takes a total of 2,650 seconds (or 44 minutes) to fit the 380 auctions; this compares

to only 19 seconds for the Beta model!

2For p-splines and monotone splines, the smoothing parameters are determined using leave-
one-out cross-validation; for the 4-member growth family, we fit each of the 4 growth models via
least squares and then select the model with the best fit [45]; fitting Beta models is summarized
in Section 5.3.1.1.
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Figure 5.3: Residuals for the four models: Beta model (top left), 4-member growth
models (top right), p-splines (bottom left) and monotone splines (bottom right).
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5.4.2 Forecasting Accuracy Comparison

We now compare the four methods in terms of their capability of producing

accurate forecasts of an auction’s final price. Information of the final price ahead of

time has advantages for all auction participants. Bidders can use this information

to make more informed bidding decisions (see Chapter 2 or [57]). Sellers can use

predictions to identify times when the market is more favorable to sell their products

(e.g., higher demand, lower supply). We pay particular attention to the role of price

dynamics: how different smoothing methods result in different dynamics and the

subsequent effect on predictions.

The following model incorporates the price path and price dynamics in a lin-

ear fashion for predicting the final price. Although one can use a wide range of

model-formulations, such as complicated regression models (see Chapter 2 and 3)

or tree models (Chapter 4), we choose the simple linear model for simplicity. Lin-

ear regression models have also been the main tool for investigating price in online

auctions. More formally, to forecast the final price at time T during the ongoing

auction, we use the model:

FinalPrice = β′1X + β′2PriceT + β′3V elocityT , (5.16)

where PriceT and V elocityT correspond to the price and its velocity (i.e. first

derivative) at time T , estimated using one of the four methods, and X includes

control variables that describe the seller, the product, and the auction features.

Such variables include the opening price, auction duration, shipping fee, seller’s

135



feedback score, whether or not the auction features a picture, whether the seller

is an eBay store, whether the seller is a powerseller, and the number of bids, and

average bidders rating (measured at time T ). The inclusion of the control variables

accounts for wide variability in price that results from different product features,

seller credentials, and auction setting. Since this information is observable, we

include it in our forecasting model.

Our goal is to compare the impact of different methods for approximating

price and price dynamics (i.e. PriceT and V elocityT ) on the forecast accuracy. We

therefore estimate model (5.16) four times, each time only exchanging the price path

estimation method, but leaving everything else the same3.

To compare the forecasting performance, we use a holdout set. In particular,

we split the auctions into a training and a holdout set, each consisting of 50% of

the auctions. Model parameters are estimated using the training set, and then

predictive accuracy is measured by the Mean Absolute Percentage Error (MAPE)

of the auctions in the holdout set which is defined to be MAPE = 1
N

∑N
i=1

∣∣∣yi−byi

yi

∣∣∣,

where yi and ŷi denote the true and estimated final price in auction i, respectively.

We also study the robustness of our results to different forecasting windows by

changing T .

Figure 5.4 shows the results. We see that the Beta model and monotone splines

produce the most accurate forecasts. Their accuracy also improves fastest as the

time horizon shortens (i.e. as T becomes smaller and smaller, closer to the auction-

3Recall that the Beta model operates on normalized bid times and amounts. Thus, in order to
estimate PriceT and V elocityT , we first normalize the bid amounts and bid timings to [0, 1] scale,
fit the Beta model, and then obtain the predictions via reverse-transformation.
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end). While both the Beta model and monotone splines produce forecasts of similar

quality, recall the extra computational burden necessary for monotone splines (44

minutes vs. 19 seconds).

Both p-splines and the 4-member growth model family result in poorer fore-

casting performance. One explanation is that both methods result in poorer model-

fit (as outlined in Section 5.4.1), and as a consequence, the predictors for the fore-

casting model do not accurately reflect the true price and dynamics at time T.
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Figure 5.4: Comparison of forecasting accuracy for different time horizons.

5.5 Conclusion

We have introduced a two-parameter model for approximating price paths in

online auctions. The Beta model combines the strengths of p-splines or monotone
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splines models, such as monotonicity and computational efficiency, with additional

properties that make it especially useful in the online auction context. It adequately

captures the price path and its dynamics and measures pairwise distances between

price paths or price dynamics curves in a straightforward manner as shown in Chap-

ter 4. Moreover, the Beta model can be used to characterize auctions in terms of

price growth and to summarize the bid timing distribution.

The Beta model is parsimonious, yet very flexible for capturing a wide range

of price paths. It is computationally cheap to estimate, and provides good fit both

in terms of the bid amount and the bid timing. Our empirical comparison with

competing models shows the advantages of the Beta models for model fitting as well

as for accurately forecasting the final price of ongoing auctions.

The Beta model can be used for several practical purposes. We have discussed

and illustrated the power of the Beta model for forecasting ongoing auctions. We

show in Chapter 2 that accurate and efficient forecasting models can be used for

making automated bidding decisions. The Beta model has the potential to increase

the accuracy of forecasting models significantly due to its ability to measure sim-

ilarity between price paths. For instance, Chapter 4 show that using similarities

between auction price paths can lead to much improved forecasts using a K-nearest

neighbor context. But the Beta model can also lead to innovations beyond forecast-

ing. [21] provide evidence that price dynamics can proxy for competition between

bidders across auctions. We are curious to learn about additional applications of

the Beta model in the near future.
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Chapter 6

Pricing and Sales Person Decision Making: An Exploratory Analysis

6.1 Introduction

As the rapid development in company which accompanies increasing produc-

tion size and customer population, setting an appropriate price which guarantees

customer satisfaction yet yields acceptable profit margin has been a difficult task

for many business. AMR Research (2004) stated that improved pricing can yield

20%-35% reduction in waste or unused inventory, 2%-4% increase in corporate rev-

enues, and 1%-3% increase in profit. Data mining tools are been employed in this

offline business setting for help understand business problems and make informed

decisions. One example is the employment of decision support tools (DST).

Retail chains (such as apparel retailers The Gap), airlines and hotels often face

an extremely difficult task when selecting prices for hundreds of products/services

over hundreds of stores nationally and/or internationally. In such complex Business-

to-Consumer (B2C) pricing environments, DSTs have proven themselves to be ex-

tremely valuable in aiding firms and improving their profits. For instance, Marriott

International Hotels uses information technology (IT) and DSTs in demand fore-

casting and scientific pricing optimization to determine the price of every bed in

each of their properties; [76] mentions Marriott’s annual profit increase for individ-

ual hotels totaled $86 million after the rollout of their in-house developed pricing
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and revenue management system in 2004.

The computation power used to collect vast amounts of data and run in real

time large statistical analysis and optimization routines is all being done to help

uncover the holy grail of pricing: a customer’s maximum willingness-to-pay (WTP).

Customer WTP is often endogenously determined - part of the process of deter-

mining it relies on observable traits (e.g., price of comparable products, customer’s

purchase history including past transaction prices and purchase quantities, market

indicators such as seasonal effects), which can be captured and modeled in a de-

cision tool. Other parts of the WTP formation process depends on unobservable

traits that speak to how a customer perceives/ internalizes a price quote and reacts

to it (e.g., concepts of fairness, [65], anchoring and adjustment, [64], framing of the

price quote, [94]). While both observable and unobservable factors may exist and

hence be useful in determining customer WTP in B2C markets, the relatively small

dollar spend of each customer coupled with the large number of customers present

in the market generally imply that firms can ignore the unobservable traits and still

make reasonable pricing decisions that are implementable. The same cannot be said

for B2B markets; and it is on these markets that our research is focused.

Pricing in B2B settings typically is done by sales people (henceforth ‘salesreps’),

who are in charge of managing the (relatively) large accounts of and relations with

several business customers. Hence, in contrast to B2C settings, the typical B2B pric-

ing environment relies more heavily on personal relations and human interactions,

whereby the salesrep is entrusted with determining the impact of the unobservable

customer traits on the customer’s WTP. To emphasize the human involvement, we
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hereby refer to B2B settings by H2H (Human-to-Human) hereafter. For example,

the salesrep must assess if a customer will find a price to be fair (whether or not it is

a price that is justified by current market conditions), how and on what the customer

anchors his willingness to pay (e.g., the past price paid or possibly a competitor’s

current price), the strength of the relationship between salesrep and customer and

hence whether a customer will trust a quoted price as being reasonable, how cus-

tomer reacts to price increases, etc. These intangible pieces of information are only

known to the salesrep and as such are very hard to incorporate into a DST. Thus,

while a DST can gather information across hundreds of sales people, products and

markets, and is able to make better aggregate predictions about demand, an expe-

rienced sales person may have a better “sense” for individual customers and hence

may rightfully reject DST price recommendations as inappropriate for a particular

customer.

If we were able to view salesreps rejection of/deviation from price recommen-

dations as only improving our knowledge of customer WTP, it is possible to adjust

the demand forecast and pricing algorithms in DSTs to properly incorporate the

salesrep’s better informed action. However, it is well documented that being an

“expert” does not always imply better decisions [93]. Salesreps themselves are hu-

man, and hence are subject to their own decision biases and judgment heuristics

(e.g., memory bias, [93], satisficing behavior, [77], status quo bias, [66]). A salesreps

tacit knowledge of the customer (demand), coupled with his own decision heuristics

can be significantly different than those that of a scientific price formation process.

As a consequence, it is not clear whether pricing recommendations to salesreps in
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H2H markets as they have in B2C e-commerce.

Academic literature on pricing features surprisingly little research on H2H

pricing, and even less so on behavior of sales people in this context. While there

is a large literature on pricing in economics, marketing, or operations management

for B2C markets [94; 20; 101], the human element as a final decision maker and its

influence on future customer demand is often neglected. We set out to study what

salesreps are considering when determining sales price with a particular customer

in this lack of study. In particular, we are curious if salesreps will incorporate a

price recommendation when it is presented to them; in other words, are these price

recommendations having an impact?

Consider a sales person in charge of selling a single product to a specific cus-

tomer. The pricing process of the sales person can be expressed as a “mental model”,

by which we mean the entire thought process that the sales person uses to arrive

at the price decision. This thought process may be driven in part by factual data

such as the unit cost of the product at the time of transaction, the the price recom-

mended to the sales person for this customer. The thought process, and thus the

mental model, may also involve other factors, some observable and some unobserv-

able, such as customer’s purchase history, a sales person’s attitude towards risk in

closing a deal (vs. losing the sales), information obtained from the customer during

a sales transaction, a target sales quota self-selected by the sales person, tendency

of the customer to negotiate, and so on. We aim at identifying important factors

that determine a sales person’s price and thus salesreps’ mental decision model in

a H2H setting. This study helps us understand the pricing process, in general, and

142



outcome of a sales transaction, in particular.

This paper is organized as follows. In Section 6.2, we introduce the data

used in this study and discuss the necessity of data reduction procedure prior to

the analysis. In Section 6.3, we discuss factors that are potentially important for

salesreps’ mental models and select the mental model that best mimics salesrep’

price decisions. We emphasize the significance of the recommendation from DST in

Section 6.4. In Section 6.5, we summarize our findings and discuss future research

directions.

6.2 Data Processing

6.2.1 Data Description

The data used in this study is the authentic transaction records of one of

the leading grocery product distributors during a 20 month period (January 2007 to

August 2008). Each transaction record contains information about the involved sales

division ID, salesrep, customer, and product ID, product category, commodity flag,

quantity ordered, invoice date, cost, transacted price, and for many transactions,

the recommended price. We explain each piece of information in detail.

The grocery product distributor consists of 17 sales (geographic) divisions

across the country. Each division is assigned a unique sales division ID, has its own

bonus system and provides training to salesreps regarding making price decisions

and using DST.

Within each division, each salerep is assigned a unique salesrep ID. Salesreps
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have direct interactions (e.g. phone calls or personal visits) with customers (e.g.

hotels, restaurants, etc.) each of whom is assigned a unique customer ID, responding

to inquiries for certain products and making final price decision for each transaction.

All salesreps and customers are referred to by IDs; no personal information about

them is available to us.

Each transaction record includes a product ID, the category and commodity

flag for the transacted product, and the quantity ordered. Customers may order

several products during one interaction with salesreps, each of which will generate a

separate transaction record in the data set. Product category is a higher hierarchy

of products, examples for some product categories include fruit or frozen cheese.

Commodity flag is a binary flag used in the system to distinguish perishable products

(commodity) from non-perishable products (non-commodity).

We also know the unit cost and transacted price for each transaction. Cost

is the unit production cost for each product plus a certain margin. The transacted

price determined by the salesrep is and should always be at least as high as the cost,

which guarantees a positive profit margin.

The information above is available for all transactions. In addition, for some

transactions (approximately 50% of all transactions in the data set), price recom-

mendation is available to the salesreps and recorded in the data set. This recom-

mendation is generated by DST as the result of a complicated dynamic optimization

process and made specifically for the salesrep-customer-product triplet (hereafter re-

ferred to as triplet) under the specific market condition. Every weekend, DST makes

price recommendations for triplets who are expected to experience new transactions
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in the following week. Transactions occurred in the following week involving those

triplets are then provided with such price recommendation; yet salesreps can ig-

nore/overwrite the recommendation. For all other transactions, price recommenda-

tion is absent.

6.2.2 Data Reduction

Not all the transactions in the data set contribute to our analysis. For reasons

explained below, we perform significant data reduction procedure and focus our

analysis on the remaining part.

In the complete data set, each triplet has made 25 transactions in average

in the 18 months period. Nevertheless, the number varies greatly across triplets,

ranging from 1 to 446. For triplets with too few transactions, a mature mental

model might have not been established in the salesrep’s mind. Due to this concern,

we only keep triplets with more than 10 transactions in the analysis.

The remaining transactions involves 132 product categories which generate

total profits of $20,107,234. Based on ABC analysis [95], we find that the top 88

product categories take up 99% of the total profit as well as 99% of the transactions.

To focus on profitable products, we exclude transactions for the other 44 categeries

from the analysis.

The goal of our study is to understand the salesreps’ mental model for making

price decisions. The mental model is influenced by the magnitude of cost change.

Previous studies [72] show that in case of small or no change in the cost, little
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price adjustment should be made. This conclusion is also supported by our data.

We find that salesreps usually make no price adjustment when the cost change is

between -2% and 3%1in two consecutive transactions for a customer regarding a

certain product. In other words, salesreps’ mental model is simple in case of small

or no cost change; that is Price = the Last Transacted Price. On the contrary,

when the cost change is outside the range of [-2%, 3%], salesreps tend to make price

adjustments in response. In this study, we focus on salesreps’ mental model when

facing cost changes in non-negligible scale, and thus exclude transactions with cost

change between -2% and 3% from the analysis.

Finally, we exclude the first two transactions for each triplet from the analy-

sis. The first two transactions for each triplet correspond to transactions with new

customers or existing customers but new products for which salesreps may have dif-

ferent mental models in order to win the business [18]. Excluding these transactions

removes the impact of the complication.

As a result of the data reduction procedure, we end up with 962,650 trans-

actions which includes 1,167 salesreps, 13,863 customers, 36,538 products from 88

product categories. We further divide the data set into two: one consists of transac-

tions with recommended price, and the other one consists of those without. The first

data set takes up 41.34% transactions and includes 180,244 triplets while 123,065

triplets are there in the other data set. We make use of the first data set to investi-

gate how sales people make pricing decisions in existence of price recommendation in

H2H business (Section 6.3). And we use the second data set for comparison analysis

1This means the cost increase is less than 2% or the cost decrease is less than 3%.
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based on which we try to understand how salesreps make price decisions differently

with and without price recommendation (Section 6.4). Details about the two data

sets can be found in Table A.3 in Appendix A.

6.3 Mining Mental Models

6.3.1 Building Mental Models

We aim at identifying important factors that determine salesreps’ price, i.e.

their mental models. In other words, our research questions is: what factors might

influence the current price Pt a salesrep offers given that the last price he charged

(to the same customer and product) was Pt−1. As we can see, our basic research

object is each triplet .

As there is no existing research on the topic, we use a combination of eco-

nomic theory (to develop candidate variables) and data mining (to elicit the most

reasonable model). Salesreps’ decisions on price decisions are influenced by many

conceptually important factors, some observable to us from the data and some not.

For example, we observe whether the cost of the product has changed; how frequently

a customer has purchased the product from a salesrep; and what is the total value

of the goods the customer is buying. At the same time, there are unobservable

factors (unobservable from the data available to us) such as how the customer has

reacted to price increases; or whether the salesreps trust the recommended price. In

the following, we create a variety of features to account for these observable factors

and then build a sequence of regression models that digs deeper and deeper into the
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sales persons mind. In particular, we build a sequence of mental models to explain

the observed price adjustment salesreps make in two consecutive transactions, i.e.

Pt−Pt−1, for a triplet by adding in potential predictors sequentially. The change in

models’ explanatory and prediction capability reflects the importance of associated

predictor to the mental model.

The first predictor for our mental model is the cost change in two consecutive

transactions for the triplet. Economic theories state that cost change is the funda-

mental drive for and explains most part of price change. We use this model as the

baseline model, referred as model (1).

Model (2) includes commodityflag in addition to cost change. This predictor

takes the value of 1 for commodity and 0 for non-commodity. Commodities are

perishable products, for which Salesreps are expected to make appropriate price

adjustments for timely sells. For instance, they might keep price stable in case of

cost increases to make a sell.

Salesreps behave differently for upwards or downwards cost change. Salesreps

are motivated to charge high prices (or margins) since the revenue (or profit) they

generated has an impact on their salary (or bonus). We are informed by some

salesreps that smaller price decrease is usually made for a certain level of cost de-

creases while larger price increase is often associated with the cost increases of the

same amount. Model (3) in the sequence therefore includes the predictor - the sign

of cost change which takes the value of 1 in case of cost increase and 0 otherwise -

in addition to predictors in (2).

Besides the sign of cost change, size of cost change can also have an impact on
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salesreps’ price decisions. Salesreps might not make price adjustments when facing

a 5% cost increase, but they are much more likely to respond to a cost increase of

50%. From our data, we find 10% is an appropriate cutoff for cost change, above

which (in either direction) salesreps have great chance to make corresponding price

adjustments. We therefore refer to cost increase or decrease bigger than 10% as

big cost change, and cost change less than that as medium cost change. Note

that Transactions with cost changes that are between -2% and 3% have already

been excluded in the data reduction step. The size of cost change is the additional

predictor for model (4).

Salesreps should look beyond the two consecutive transactions when making

price decisions. If the cost has been rising continuously and the salesreps have made

price increase accordingly, customers might be scared away in fear of future higher

prices. Experienced salesrep therefore are expected to take this into consideration.

We define cost trend to be the existing of cost change in the same direction in two

consecutive periods (three consecutive transactions) for a triple. For example, if the

cost goes down continuously in three consecutive transactions for a triplet, the last

two transactions are on a downward cost trend. Model (5) includes cost trend which

takes the value of 1 if there exists cost trend in either direction and 0 otherwise as

an additional predictor to capture the effect.

Salesreps might consider giving a long time customer lower price to compen-

sate his/her loyalty or higher price since they’re not as afraid of losing him as for

new customers. We use repeated purchase for a triplet, which is measured by the

cumulative number of transaction, to capture the length of relationship, and include
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it as a predictor in model (6).

Besides loyal customers, incentives are possibly also offered to bundles of large

value. By bundles, we mean the transactions that occur during one interaction

(phone call or personal visits) between a salesrep and a customer. Since transac-

tions for different products are recorded separately even if the customers ordered

them altogether, it makes sense to treat them as a bundle whose total value or

quantities might influence salesrep’s price decision. To capture this effect, we in-

clude total dollar value (in log scale) of the bundle that each transaction belongs to

as a predictor in model (7).

We have proposed a sequence of 7 models. Each model include one additional

predictor comparing to the previous model. Moreover, in each model, we include

all one-way interaction among its predictors. The inclusion of the interaction terms

helps capture the interplay of two factors.

6.3.1.1 Effect of Price Recommendation

Besides influential factors discussed above, price recommendations are also

available to salesreps for transactions in our first data set (see Section 6.2 for de-

tailed explanation). On one hand, as the output from DST which gathers infor-

mation across hundreds of sales people, price recommendation is a theoretically

optimized price. On the other hand, however, experienced salesreps possibly have a

better “sense” for individual customers and hence may rightfully reject price recom-

mendations from DST and make more appropriately personalized price decisions.
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Therefore, it is not very clear if salesreps will and should incorporate a price rec-

ommendation when it is presented to them; and if the recommendations do have an

impact, how big it is.

Because price recommendation is available in this data set, we can investigate

the impact of price recommendation on salesreps’ mental models in the following

way. We define recommended price adjustments to be the difference between the

current price recommendation and the last transacted price, i.e. Recomt − Pt−1.

For each model we propose, we build a paired model which includes, in addition

to previous predictors, the recommended price adjustment as well as one way in-

teraction between it and all other predictors. Then we compare each model to its

counterpart. This comparison answers the questions that whether the recommended

price adjustment has an impact on salesreps’ mental models and if so, how much

the impact is. We refer to the model without recommendations as model 1(a)-7(a),

and their counterparts as model 1(b)-7(b).

So far, we have build 14 models (7 pairs). We summarize the models in Table

6.12 . To find the true mental models of salesreps and the factors that salesreps truly

anchor on, we compare models’ explanatory (explaining the observed behaviors of

salesreps’ price adjustments) and prediction (predicting price adjustments for future

transactions) capability. We discuss model comparison and selection in detail in the

next subsection.

2We have also investigated models by adding in predictors in different orders, all of the alter-
native analysis gives identical conclusion as our current analysis.
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Table 6.1: Summary of All Models

Model a b

1 cost change
2 + commodityflag
3 + sign of cost change
4 + size of cost change (a) + recommended price adjustment
5 + cost trend
6 + repeated purchase
7 + values of bundle

6.3.2 Model Selection

In order to identify factors that are included in salesreps’ mental model, we

compare above models in terms of their explanatory and predictive capability. High

R2 and low Bayesian Information Criterion (BIC) values infer that the model fits

the data well and predictors in the model well explains observed price changes.

However, good model-fit can possibly be the result of overfitting which weakens

the generalizability of the model onto new data. Therefore, we also study models’

capability of predicting salesreps’ price adjustments on “future” transactions.

To that end, we divide our data set into a training set (70% of the transac-

tions), and a holdout set (remaining 30% of the transactions). we first estimate our

models on the training set using ordinary least square method; results of model-fit

measured by R2 and BIC are discussed below. We then apply the estimated mod-

els to the holdout set to gauge their predictive capabilities measured by RMSE

which is defined as RMSE =:

√
avg(|PCi − P̂Ci|2) where PCi and P̂Ci repre-

sent observed and predicted price adjustment for the ith transaction respectively.
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A model’s RMSE value measures the average difference in dollars between the

predicted and observed price adjustment. Moreover, the changes in R2, BIC and

RMSE between any pair of models measure the additional explanatory and pre-

diction power brought by the inclusion of recommended price adjustments on the

salesreps’ mental models when the recommendation is given.

6.3.2.1 Model Fit Comparison

We compare the explanatory capability in terms of R2 and BIC on the training

set. The top panel in Figure 6.1 plots the R2 for all models and the bottom panel

plots model BICs. The blue lines represent models without price recommendation,

i.e. model 1(a)-7(a); and the red lines represent model with recommended price

adjustments, i.e. model 1(b)-7(b).

We can see that the predictor cost change itself explains 77.5% of salesreps’

price adjustments, which justifies our intuition that cost change is the most funda-

mental factor influencing the mental model. Moreover, as more predictors added

into the model, the value of R2 increases and BIC goes down in either blue or red

line, both indicate a better model-fit. R2 increases and BIC decreases at a steady

speed as we add in commodityflag, sign and size of cost change sequentially, imply-

ing the first four predictors matter. After that, any additional predictor (cost trend,

repeated purchase, and values of bundle) has only marginal effect on the model-fit.

We also see that the red line lies above the blue lines for any model in sequence,

which clearly indicates that recommended price adjustment is a valuable predictor
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for the mental model.

6.3.2.2 Prediction Capability Comparison

In addition to models’ explanatory capability, we also compare models’ capa-

bility to predict salesrep’s price adjustments on the holdout set. We can see from

Figure 6.2 that model 4 which includes cost change, commodityflag, sign and size of

cost change can best predict salesreps’ price decisions. The increasing in prediction

accuracy brought by other predictors is negligible.

Comparing the red with the blue lines, we also see that the inclusion of recom-

mended price adjustments makes us 8 cents (from $1.65 to $1.57 in model 4) closer

to the observed price adjustments. This implies that the salesreps are taking into

consideration of the price recommendation when it is presented to them.

6.3.3 Model Interpretation

From the discussion above, we can see that model 4(b) from Table 6.1 has the

best explanatory and predictive capability, thus best mimics salereps’ mental model.

Moreover, DST price recommendation has an impact on salesreps’ price decisions

when presented to them. Specifically, our analysis indicates that:

• Cost change is the most important determinant of price adjustments.

• Sales people behave differently when making price adjustments for different prod-

uct types (commodities vs. non-commodities, which correspond to items with very

short vs. longer shelf lives).
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Figure 6.1: Comparison of R2 and BIC. The blue line represents model 1(a)-7(a)
and the red line represents model 1(b)-7(b).
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Figure 6.2: Comparison of RMSE. The blue line represents model 1(a)-7(a) and the
red line represents model 1(b)-7(b).

• Salesreps’ price adjustments are different facing cost increases from facing cost

decreases. Furthermore, they also differ for cost change in different sizes (big vs.

medium).

• In the presence of cost changes and commodity flag, the impacts of repeat pur-

chases, markets trends in cost, and the value of the purchase bundle are very small.

• Salesreps anchor on price recommendations from DST. Incorporating recom-

mended price adjustments into models helps explaining observed salesreps’ price

decision and predicting future prices. In particular, when present, recommended

price adjustment helps us better predict future price adjustments in the amount of

8 cents per transaction.
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6.4 Effects of Existence of Price Recommendation

Every weekend, DST updates the price recommendation for triplets that are

expected to experience new transactions in the following week. For other triplets,

the price recommendation is left blank.

From our analysis in the last section, we can see that salesreps anchor on rec-

ommended price adjustments if presented when they make price decisions. However,

the fact that price recommendations have an impact on salesreps’ mental models

does not necessarily imply the existence of price recommendation leads to better

price decision. The reason is as follows. No matter how experienced salesreps are,

they are all human beings who are subject to cognitive bias3.It has been found that

people’s decision or judgement is generally affected by irrelevant information [40].

Consequently, it is possible that price recommendation is irrelevant information for

making appropriate price decisions, and salesreps mistakenly takes that into consid-

eration.

To investigate whether or not price recommendation leads to better mental

models, we conduct the following comparison study. First, we study salesreps’ men-

tal model for the setting where price recommendation is absent. Then we compare

the results with settings where price recommendation exists.

We have two data sets. The first one consists of transactions with price recom-

mendation and has been used for previous analysis. The second data set includes

transactions without price recommendation (see Section 6.2 for detailed explana-

3A cognitive bias is a person’s tendency to make errors in judgment based on cognitive factors.
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tion). The two data sets take up 41.33% and 58.67% of combined transactions

respectively, whose sizes are somewhat comparable. Moreover, there are 88,441

common triplets in the two data sets, which are 50% and 72% of all triplets in

them respectively. The large portion of common triplets guarantees the fairness of

our comparison. Any difference in the results should not be caused by the intrinsic

difference in the objects involved in the transactions but due to heterogeneity in

salesreps’ mental models.

For transactions in the second data set, salesreps make price decisions in ab-

sence of DST price recommendation. We feed the data into model 1(a)-7(a) from

Table 6.1, and compare models’ R2 and RMSE to find the best model, i.e. salesreps’

mental model, in this setting. The green line in Figure 6.3 plots R2 (top panel) and

RMSE (bottom panel) for the seven models. We can clearly see that model 4(a)

is the best model in terms of both model’s explanatory and predictive capability.

Remember we have found previously that salesreps’ mental model given price rec-

ommendation is model 4(b). Therefore, we claim that the existence of the price

recommendation does not change salesreps’ mental model but adding in one addi-

tional anchoring factor which is recommended price adjustments. In other words,

except for price recommendation, salesreps anchor on the same factors when mak-

ing price decision no matter whether DST provides them with recommended price

information or not. The other important factors that salesreps anchor on are cost

change, commodityflag, sign and size of cost change.

To make a clear comparison, we plot R2 and RMSE for model 1(b)-7(b) for

transactions from the first data set (where price recommendation is given) using
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Figure 6.3: Model comparison for transactions with or without price recommenda-
tion. The red line plots model 1(b)-7(b), and represents transactions from the first
data set which includes price recommendation information. The green line plots
model 1(a)-7(a), and represents transactions from the second data set where price
recommendation is not given.
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red lines on the same graph. Compare R2 (top panel) and RMSE (bottom panel)

for the red line with that for the green line, we can see that the inclusion of the

price recommendation improves both model-fit/explanatory and predictive capabil-

ity. The R2 for model 4 in the red line is slightly higher (0.007) than that in the

green line; and our prediction for salesreps’ price adjustments are on average $0.45

($2− $1.55 for model 4) closer to the truth in the red line which corresponds to the

case with DST price recommendation. The higher RMSE in the green line implies

that it is more difficult to describe how Salesreps make decisions in the absence of

price recommendation. This is because the existence of recommended price tunes

down the roles played by unobservable factors in salesreps’ decision making process.

In the absence of recommendation, unobservable factors, such as customers’ reac-

tion to price increase or competitors’ price adjustments, weigh more heavily in their

price decision process.

6.5 Conclusions

Different from B2C settings where DST has been adopted and proven to be ex-

tremely valuable in aiding firms and improving their profits, pricing in H2H settings

relies more heavily on personal relations and human interactions. In such settings,

salesreps are entrusted with taking charge of managing the large accounts of and

relations with business customers and making final price decisions. Although DST

has been adopted to provide price recommendations in such setting in practice by

a small number of companies, it is not very clear whether salesreps are under the
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influence of such recommendation and if so, whether it helps salesreps make better

price decisions.

Salesreps are influenced by many conceptually different factors when making

price decisions, some observable and some not. In this study, we build a sequence

of mental models that dig deeper and deeper into salesreps’ mind, and use model

selection procedure to identify key (observable) factors that influence their pricing

decisions. We find that salesreps anchor on cost change, commodity flag, sign and

size of cost change, and price recommendation if presented, when making price

decisions. We also find that price recommendation weakens the influence played by

unobservable factors. Without recommendation, salesreps are influenced more by

unobservable factors, which makes their price decisions more difficult to explain and

predict. All these findings suggest there is a future for pricing tools in these H2H

settings!
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Chapter 7

Future Research

In the following sections, we describe future research directions for the studies

presented in this dissertation.

7.1 Data Driven Bidding Strategy

In Chapter 2, we propose an automated and data-driven bidding strategy

that provides bidders with complete decision guides. Our current approach only

consider auctions that close within the given prediction window [T ,(T + 1)], and

we only predict the final price of auctions that end within that interval. To relax

the restriction, one can roll the model one additional time period forward to make

predictions at T + 2, based on the predicted values at T + 1; so that bidding on

auctions that close later is allowed. However, predictions two time periods into the

future (i.e. T → T + 2) are more uncertain than predictions only one step forward

(i.e. T → T + 1). It is not quite clear how to discount the additional prediction

uncertainty in our decision framework.

We consider only single unit auctions in this research, one could expand the

scope of our bidding strategy to multi unit auctions. Let us assume that a seller sells

n items (of identical product specification and quality) in the same auction; then

the bidders with the top n bids each win one item. In order to apply our bidding

162



strategy to this scenario, bidders need to know the lowest transacting bid; that is,

they need to predict the price at which the nth item sells. Given a set of relevant

bidding records, one solution would be to apply our model to the price of the nth

item; that is, we would train our model to predict the lowest transacting bid.

A related issue is the purchasing of more than one unit at a time. If a bidder

has demand for more than one unit, then the current bidding strategy could still be

employed if the the bidder has no time constraints and decides to bid sequentially

and if the bidder’s WTP is the same for all units (assuming that there is unlimited

supply which is realistic for many of the items sold on eBay). However, if the

bidder needs to purchase n units within a short period of time and places m bids

simultaneously, then each bid should be discounted relative to the size of m; on the

other hand, bids may be inflated with decreasing time periods to assure that all

units are available on time. This calculation may change further for varying WTP

distributions. All-in-all, there are many opportunities for future research and we

hope to inspire some of it with this study.

7.2 Model Selection for Improved Forecasting

For bidders, making informed bidding decision requires forecasting models that

works well across an entire range of time-increments. In Chapter 2, we investigate

model selection criteria to find such a forecasting model. We make use of various

summary statistics of conventional model selection criteria, AIC and BIC, over

a time window to select models, and comparing models’ prediction capability of
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models selected under different criteria.

Our study is conducted in the context of online auctions, which are charac-

terized by events that arrive at very irregularly-spaced time intervals: since sellers

determine the end of an auction, bidders have to make decisions about events that

are sometimes very dense (i.e. several auctions closing within only seconds of each

other) and other times very sparse (e.g. at night when only very few auctions close).

It is this irregular spacing that calls for forecasting models that perform well in the

short-term as well as in the long-run; in fact, as we have pointed out, it calls for

models that perform well over a continuous distribution of time-increments.

While we derive the market-model within the context of eBay auctions, there

are other examples where similar models are called for. In fact, similar models could

be useful for markets that have similar characteristics (i.e. competition between

individual market occurrences that are unevenly spaced and that exhibit different

dynamics). Examples include other C2C auctions (e.g. uBid, Prosper, Overstock),

auctions for fine art [82], B2B auctions such as govdeals.com or liquidation.com.

Similar characteristics can also be found on traditional stock markets (in particular,

derivatives markets) or virtual markets (e.g. [90]), and Yahoo! Movies or CNET.com

where user ratings or blog postings are often marked by time periods of little activity,

followed by times of very dense information arrival. It would be interesting to

compare the performance of different model selection criteria, and to see whether

our conclusion, which states that the extreme of AIC or BIC selects the best model,

holds for those settings.

We can also extend our study to model selection criteria other than AIC and
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BIC. Traditional statistical theories have developed many model selection criteria,

such as R2, Mallows’ Cp, and Deviance information criterion. A more complete

investigation over those criteria may help find better forecasting models. Besides the

list of model selection criteria, an extension can also be made to ways of summarizing

those criteria over an interval. In this study, we summarize via summary statistics

including mean, median, standard deviation, minimum and maximum. One can

also use other statistics, such as quartiles or interquartile range, to summarize the

distribution of criteria over a given interval.

7.3 Weighted Forecasting of Closing Prices

Chapter 4 proposes a novel functional KNN forecaster for forecasting the final

price of an ongoing online auction. To accomplish this, we first introduce a functional

representation of the auction’s price path which allows measuring distances between

two paths via KL distance. Then, we define different distance metrics for other data-

types and combine them and KL distance into a single distance metric. Finally, we

apply K-Nearest Neighbor algorithm with carefully selected distance metric and

number of neighbors for making forecasts. There are many ways to expand upon

this area of research.

One extension is to search for alternative ways of defining distance metrics.

Currently, we scale distance metrics for different information sources to achieve

equal weighing across all metrics, one could alternatively assign individual weights

to individual metrics and then optimize the weights; Or we can construct the overall
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distance metric by applying principle component analysis to all individual distance

metrics. There are also alternative ways to define distances for different data types.

For example, for categorical data we can define several levels of category “similarity”,

such as “US brand”. Then, the distance between items can be set to 0.5 for “similar

categories” (e.g., laptops of a US brand) or 1 for categories that are more different.

We can also investigate alternate ways for making weighted forecasts. One

possibility is to expand upon classical linear regression and regression trees, i.e. to

develop weighted regression or weighted tree models, which might lead to forecasting

advantages especially for heterogeneous data. This extension, however, requires

defining weights for each sample, thus should be combined with the other extensions

suggested above.

7.4 A Flexible Model for Price Dynamics in Online Auctions

Section 5 explores various properties of a parsimonious parametric Beta model

as a representation of auction price paths. We develop an algorithm to estimate the

model by minimizing residual errors in both bid time and bid amount dimensions

simultaneously. In our current definition of a residual, we weigh the x and y direc-

tions equally (the weight is 0.5) because we have no particular reason to prioritize

either direction. Alternatively, one could overweigh the x or y direction if the bid-

ding time or price level, correspondingly, is of special interest. Comparing price

paths resulting from different weights in residuals can help gain insights about roles

played by bidding time and bidding amounts in determining price paths.
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While we show that the beta model has overall better model-fit compared

to p-splines, monotone splines, and 4-member growth models, the others might be

better for individual auction. One future research direction could be to investigate

which kind of auctions can be best described by which model. One possible way to

get this done is to run all models for every auction, categorize them based on the

model that fits them the best, find the common characteristics of auctions in each

group, and link that to the properties of corresponding model.

7.5 Pricing and Sales Person Decision Making

Pricing in B2B settings is typically done by salesreps, thus we refer to such

setting by H2H. Salesreps rely on their expertise, knowledge of individual customers,

many observable and non-observable information, and possibly price recommenda-

tions from DST, to make price quotes. In Chapter 6, we investigate factors in-

fluential to salesreps’ price formation process with special attention to the impact

of DST price recommendations. We find that cost related information, including

cost, sign and size of cost change, and types of products (perish commodities or

non-commodities), are the most important predictors for salesresps’ price decision.

Moreover, price recommendation, whenever provided, influence salesreps’ decisions

in a positive way.

There are many unanswered question, thus research opportunities, for H2H

pricing. In a H2H setting, sales people are the ones that interact with the customers

and quote them prices. By providing a first look into how salesreps form prices and
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respond to price recommendations in H2H markets, we do not only show the value

of DST, but also open the door to research about designers of DSTs. For instance,

one may turn to questions of how we can incorporate our findings into design of

DSTs and pricing processes to counter salesrep biases (similar to as is done in [31]).

Another extension to this study is to study the heterogeneity of the salesreps.

Our results in this study apply to the general case, or an average salesrep; and we

should expect very different price formation process for different salesreps. One way

to investigate salesreps’ heterogeneity is to repeat the analysis on a subset of data

which only includes a certain type of salesreps. For example, we can investigate

the mental model of salesreps in some sales division. Because each sales division

provides its own training regarding DST and has its own bonus system, we expect

to see that salesreps’ attitudes towards DST price recommendation and anchoring

factors are different across divisions.
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Appendix A

Data Sets Used in the Study

A.1 eBay Bids Level Data

A.1.1 Palm Pilot M515 PDA data

This dataset includes the complete bidding records for 380 auctions for new

Palm Pilot M515 handheld PDA that transacted on eBay between March and May,

2003. Each bidding record includes the auction ID, the starting and closing times

and prices, all bids with associated time stamps, and other information such as

auction duration, shipping fee, seller’s feedback score, whether the seller is a power

seller, whether the product is from an eBay store, and whether the auction descrip-

tions include a picture. Table A.1 presents summary statistics for these variables.

A.1.2 Laptop Data

The data set contains information on 4,965 laptop auctions that took place on

eBay between May and June, 2004. Table A.2 summarizes the data which include

products of a wide variety of makes and models. We can see that the data include

over 7 different brands, and for each brand laptops differ further in terms of their

memory size, screen size, processor speed, whether they are a new or used product,

and whether or not they include an Intel chip or a DVD player.

169



Table A.1: Description of the Palm auctions. The top panel reports statistics for all
continuous variables; the bottom panel reports statistics for all discrete variables.

Variable Mean (Stdev) Median Min Max

OpeningPrice $76.67 (92.45) $9.99 $0.01 $265
ClosingPrice $229.45 (22.00) $232.50 $172.50 $290
AuctionLength 5.74 (1.79) 7 3 10
NumberOfBids 17.45 (11.23) 17.50 1 54
NumberOfBidders 8.92 (5.13) 9 1 23
ShippingFee $15.44 (5.51) $15 $0 $50
SellerFeedback 545.73 (1787.47) 44 0 27652

Variable Yes No

PowerSeller 121(31.84%) 231(60.79%)
eBayStore 117(30.79%) 235(61.84%)
Picture 332(87.37%) 20(5.26%)

The data set also contains information regards auction setting. For instance,

Buy-It-Now auctions are listings that have the option of a fixed-price transaction

and thus forego the auction mechanism. Over 20% of the laptop auctions included

that feature. Moreover, a secret reserve price is a floor price below which the seller

is not required to sell. This feature is particularly popular for high-value auctions.

Roughly 30% of all laptop auctions make use of the secret reserve price feature.

We can see that auctions in this dataset are of a wide variety in terms of

product features and auction setting. This is also reflected in the wide range of

number of bids (between 6 and 115), bidders (6 and 30), and closing prices (between

$445 and $1,000).
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Table A.2: Summary statistics of the laptop auctions. The top two panels report
statistics for auction features. The bottom three panels report summary statistics
on the product characteristics.

Variable Mean(Stdev) Median Min Max

OpeningPrice 93.31(159.54) 9.99 0.01 900
ClosingPrice 499.22(210.26) 445 200 999.99

AuctionLength 5.00(1.81) 5 3 7
NumberOfBids 21.13(11.05) 19 6 115

NumberOfBidders 9.94(4.20) 9 1 30

Variable Yes No

BuyItNow 1027(20.68%) 3938(79.32%)
ReservePrice 1529(30.80%) 3436(69.20%)

Variable Category

Dell(1622); Fujitsu(15); Gateway(165);
Brand(count) HP(1347); IBM(705); Sony(307);

Toshiba(535); Other(229)

Variable Mean(Stdev) Median Min Max

MemorySize 269.12(157.78) 256 64 2000
ScreenSize 14.03(0.92) 14 12 21

ProcessSpeed 1125.05(728.83) 850 133 3200

Variable Yes No

NewProduct 628(12.65%) 4337(87.35%)
IntelChip 4863(97.95%) 102(2.05%)
DvdPlayer 2992(60.26%) 1973(39.74%)
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A.2 Transactions Data from A Grocery Products Distributor

We use the transaction data from one of the leading grocery products distrib-

utors during in our study. The data set includes all transactions that took place

during January 2007 to August 2008. Each transaction record contains information

about the involved sales division ID, sales representative (referred to as “salesrep”)

ID, customer ID, product ID, product category, commodityflag (perishable com-

modities or non-commodity), quantity ordered, invoice date, cost, transacted price,

and for many transactions, the recommended price.

We divide the remaining transactions after performing series of data reduction

procedures into two data sets (see Section 6.2.2 for details). The first one (referred

to as Set.1) includes transactions with DST price recommendations, and the other

data set (referred to Set.2) has no price recommendation information provided for

corresponding transactions. We provide summary statistics for both data sets below.
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Table A.3: Descriptive statistics of important variables.

Variable Set.1 Set.2

Num.Transactions 397,939 564,711

Num.Triplet 123,065 180,244

Num.Salesreps 1,138 1,146

Num.Customers 12,461 13,252

Num.Products 14,694 19,834

Num.Categories 88 88

Num.SalesDivisions 17 17

Tot.Revenue $17,849,496 $25,793,360

Tot.Profit $1,710,092 $3,037,315

Percentage.Com-
-modity.Transactions 66.54% 47.90%

Percentage.Com-
-modity.Products 32.98% 27.11%

Percentage.Com-
-modity.Categories 19.32% 19.32%

Variable Set.1 Set.2

Quantity/transaction 1.93(2.82) 1.78(3.42)

Cost/transaction 21.15(18.62) 22.99(18.42)

price/transaction 23.69(20.14) 26.52(20.34)

RecommendedPrice/transaction 25.03(20.95) 26.49(19.73)

Revenue/transaction $44.85($89.24) $45.68($117.05)

Profit/transaction $4.30($9.06) $5.38($12.91)

Num.transactions/triplet 3.23(3.78) 3.13(3.60)

Revenue/triplet $145.04($396.33) $143.10($561.76)

Profit/triplet $13.90($36.88) $16.85($57.43)
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Appendix B

Simulation Results for Alternate Bidding Schemes

B.1 Alternate Bidding Heuristics

In this section we investigate alternative bidding heuristics to those discussed

in Sections 2.5.2.1 (early bidding) and 2.5.2.2 (last minute bidding). These heuristics

are based either on price trends that bidders observe in auctions that closed recently,

or on strategies to shade bids below what one believes a good is worth. Table B.1

shows the results.

The top panel in Table B.1 shows the results of using recent price trends for

making bidding decisions. Assume that a bidder wants to place a bid and that

s/he has monitored prices of the n auctions that closed most recently (we choose

n=10 here but the results do not change much for different values of n). The bidder

then bids the minimum (we also investigate the mean or the maximum) of the n

closing prices (as long as the minimum is smaller than his/her WTP). The bidder

can place the bid any time before the auction closes. We can see from the table

that this heuristic performs worse than early or last minute bidding. It is curious

that bidding the mean results in the highest expected surplus (as it increases the

chances of winning).

The bottom panel shows the result of early bidding (i.e. bidding on day one),

but shading one’s bid below what one really thinks the item is worth. In other
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words, rather than bidding one’s WTP, one only bids a fraction, e.g. 90% or 80%.

The results show that while shading increases the average surplus, it reduces the

expected surplus as the probability of winning decreases. In fact, shading at 70% or

below (not shown here) results in zero expected surplus.

Table B.1: Alternative bidding heuristics.

RECENT PRICE TRENDS
Heuristic p.win avg.sur exp.sur

mean 44% (2%) $8.86 ($0.28) $3.90

min 11% (0.2%) $35.11 ($0.22) $3.86

max 57% (40%) $2.75 ($2.35) $1.57

BID SHADING
Heuristic p.win avg.sur exp.sur

100%WTP 53% (2%) $18.85 ($0.57) $9.90

90%WTP 20% (1%) $19.20 ($0.50) $3.80

80%WTP 3.5% (0.4%) $19.13 ($0.58) $0.67

B.2 Robustness of Last-Minute Bidding

Last-minute bidders place an incremental bid over the current high-bid and we

assume in Section 2.5.2.2 that this increment equals 2%. In practice, this increment

could be larger or smaller; it could also be that some last-minute bidders increment

not by a percentage of the current price but rather by a fixed amount. Table B.2

investigate that robustness of last-minute bidding to different increment strategies.

We can see that the expected surplus is rather unaffected by the increment strat-

egy. Moreover, regardless of the actual strategy chosen, the expected surplus is
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significantly lower than that of our automated bidding strategy in Table 2.6.

Table B.2: Robustness of last-minute bidding to different increments.

Increment p.win avg.sur exp.sur

$0.50 86.26% $18.73 $16.16

$1 89.38% $18.61 $16.63

$2 92.50% $18.44 $17.06

$5 96.43% $17.39 $16.77

0.5% 89.82% $18.58 $16.69

1% 92.34% $18.47 $17.06

2% 95.19% $17.97 $17.11

5% 98.03% $15.97 $15.65
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Appendix C

Model Selection Results for Palm Data Set from eBay

In the following we list the complete model selection results for Chapter 3. We

refer to each variable according to its index from Table 3.1. We arrange the results

by the total number of variables in the model. We start with models containing only

one parameter (Table C.1) followed by 2-parameter models (Table C.2 and C.3) and

so on. The first column either refers to the variables entering the model (“Var-In”)

or to the variables leaving the model (“Var-Out”). For instance, Var-In=1 means

that the model contains only one variable, variable #1, i.e. Price; on the other hand

Var-Out={1,6} means that all variables but #1 and #6 enter the model. We report

result for both AIC and BIC. The highlighted number refers to the best model in

each column.
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Table C.1: 1-Parameter Models

BIC

Var-In BICavg BICsd BICmed BICmin BICmax BICmean+sd

1 -25.776 25.551 -18.542 -85.033 2.344 -0.225

2 76.872 7.207 76.907 63.877 86.821 84.079

3 75.497 7.426 75.649 61.191 85.605 82.923

4 77.419 7.341 77.445 63.896 87.132 84.761

5 76.316 8.178 76.137 62.176 87.097 84.494

6 63.389 9.109 64.236 46.861 75.340 72.498

AIC

Var-In AICavg AICsd AICmed AICmin AICmax AICmean+sd

1 -27.690 25.708 -20.259 -87.215 0.564 -1.982

2 74.958 6.999 74.967 62.332 84.639 81.958

3 73.584 7.219 73.753 59.646 83.423 80.803

4 75.506 7.134 75.556 62.351 84.950 82.640

5 74.402 7.971 74.204 60.631 84.915 82.373

6 61.475 8.914 62.347 45.316 73.158 70.390
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Table C.2: 2-Parameter Models

BIC

Var-In BICavg BICsd BICmed BICmin BICmax BICmean+sd

1,2 -114.085 57.220 -93.854 -239.185 -49.978 -56.865

1,3 -24.199 24.837 -16.351 -82.753 0.632 0.638

1,4 -26.161 27.113 -18.200 -92.598 3.717 0.952

1,5 -30.775 25.800 -25.350 -88.866 -3.988 -4.975

1,6 -29.101 25.695 -22.984 -87.808 -0.685 -3.406

2,3 77.037 7.158 77.618 63.960 86.975 84.195

2,4 79.770 7.286 79.843 66.646 89.812 87.056

2,5 78.050 7.849 79.038 62.783 87.630 85.899

2,6 62.095 7.572 61.824 48.378 73.069 69.667

3,4 78.014 7.554 78.307 63.956 88.499 85.569

3,5 76.641 8.712 77.027 62.426 88.427 85.353

3,6 64.874 9.077 66.068 47.237 76.699 73.951

4,5 79.075 8.232 79.092 64.633 89.766 87.308

4,6 65.688 8.650 67.086 49.282 76.466 74.338

5,6 64.892 9.820 64.682 48.410 78.348 74.712
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Table C.3: 2-Parameter Models (Continued)

AIC

Var-In AICavg AICsd AICmed AICmin AICmax AICmean+sd

1,2 -116.956 57.478 -96.688 -242.458 -52.295 -59.478

1,3 -27.069 25.074 -18.926 -86.026 -2.039 -1.995

1,4 -29.032 27.338 -20.776 -95.871 1.046 -1.694

1,5 -33.646 26.041 -28.184 -92.139 -6.975 -7.605

1,6 -31.971 25.935 -25.895 -91.081 -3.356 -6.036

2,3 74.166 6.845 74.707 61.642 83.702 81.012

2,4 76.900 6.974 76.933 64.328 86.539 83.874

2,5 75.179 7.539 76.147 60.465 84.357 82.718

2,6 59.225 7.273 59.072 46.061 69.796 66.497

3,4 75.144 7.243 75.397 61.638 85.226 82.387

3,5 73.770 8.402 74.116 60.108 85.154 82.173

3,6 62.003 8.788 63.235 44.919 73.426 70.791

4,5 76.205 7.921 76.202 62.315 86.492 84.125

4,6 62.817 8.360 64.253 46.964 73.193 71.177

5,6 62.021 9.520 61.849 46.092 75.075 71.541
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Table C.4: 3-Parameter Models

BIC

Var-In BICavg BICsd BICmed BICmin BICmax BICmean+sd

1,2,3 -208.007 87.681 -181.948 -408.558 -112.873 -120.326

1,2,4 -113.451 56.865 -92.923 -238.490 -48.223 -56.586

1,2,5 -111.473 57.089 -91.846 -236.673 -47.215 -54.384

1,2,6 -112.476 57.021 -92.295 -237.843 -49.259 -55.455

1,3,4 -24.159 27.511 -15.797 -92.154 3.368 3.352

1,3,5 -28.341 25.398 -22.487 -85.895 -4.015 -2.942

1,3,6 -28.030 25.109 -21.658 -86.657 -2.782 -2.922

1,4,5 -32.652 29.324 -23.882 -102.382 -5.608 -3.328

1,4,6 -28.732 26.553 -21.165 -92.875 0.533 -2.178

1,5,6 -33.836 26.719 -29.757 -92.583 -5.850 -7.117

2,3,4 79.712 7.398 80.456 66.714 90.001 87.110

2,3,5 78.373 7.843 79.864 64.719 88.678 86.216

2,3,6 61.821 7.383 61.630 48.368 71.884 69.204

2,4,5 80.921 7.926 82.007 65.501 90.502 88.847

2,4,6 64.915 7.610 64.528 51.142 75.998 72.525

2,5,6 63.645 6.939 64.148 50.369 72.967 70.585

3,4,5 79.198 8.845 79.581 65.182 91.357 88.043

3,4,6 66.870 9.061 68.611 49.299 78.472 75.931

3,5,6 65.736 10.052 65.628 48.849 79.785 75.788

4,5,6 67.182 9.321 67.475 50.786 79.550 76.503
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Table C.5: 3-Parameter Models (Continued)

AIC

Var-In AICavg AICsd AICmed AICmin AICmax AICmean+sd

1,2,3 -211.835 88.028 -185.726 -412.922 -115.963 -123.807

1,2,4 -117.279 57.211 -96.701 -242.854 -51.313 -60.068

1,2,5 -115.300 57.432 -95.623 -241.038 -50.305 -57.868

1,2,6 -116.304 57.365 -96.072 -242.207 -52.349 -58.939

1,3,4 -27.987 27.810 -19.231 -96.519 -0.194 -0.176

1,3,5 -32.168 25.722 -26.265 -90.259 -7.998 -6.446

1,3,6 -31.858 25.432 -25.435 -91.021 -6.343 -6.426

1,4,5 -36.479 29.637 -27.659 -106.746 -9.169 -6.843

1,4,6 -32.559 26.863 -24.942 -97.239 -3.028 -5.696

1,5,6 -37.664 27.045 -33.534 -96.947 -9.833 -10.618

2,3,4 75.884 6.983 76.575 63.624 85.637 82.868

2,3,5 74.545 7.429 75.984 61.628 84.313 81.975

2,3,6 57.993 6.982 57.852 45.278 67.520 64.975

2,4,5 77.094 7.513 78.127 62.411 86.138 84.607

2,4,6 61.088 7.210 60.859 48.052 71.634 68.298

2,5,6 59.818 6.539 60.268 47.279 68.603 66.357

3,4,5 75.370 8.434 75.701 62.092 86.993 83.804

3,4,6 63.042 8.676 64.833 46.209 74.108 71.718

3,5,6 61.909 9.648 61.850 45.759 75.421 71.556

4,5,6 63.354 8.920 63.697 47.696 75.185 72.274
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Table C.6: 4-Parameter Models

BIC

Var-Out BICavg BICsd BICmed BICmin BICmax BICmean+sd

1,2 67.729 9.895 67.866 50.852 81.559 77.625

1,3 66.448 6.995 67.066 53.088 75.785 73.443

1,4 63.532 6.833 64.522 50.471 72.770 70.365

1,5 64.586 7.548 64.471 51.048 74.975 72.135

1,6 80.839 7.899 82.326 67.264 91.005 88.738

2,3 -34.928 29.551 -28.119 -103.651 -6.496 -5.376

2,4 -31.774 26.342 -26.982 -90.227 -6.580 -5.431

2,5 -27.139 27.215 -18.980 -93.707 -0.039 0.075

2,6 -30.190 29.613 -21.378 -100.547 -3.206 -0.576

3,4 -109.798 56.842 -90.000 -235.007 -46.523 -52.956

3,5 -111.785 56.642 -91.335 -237.113 -47.604 -55.142

3,6 -110.999 56.643 -91.755 -235.400 -45.450 -54.356

4,5 -207.081 87.945 -181.266 -407.868 -111.583 -119.136

4,6 -210.277 85.124 -191.714 -405.526 -115.430 -125.153

5,6 -208.289 87.163 -184.485 -405.962 -110.488 -121.126
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Table C.7: 4-Parameter Models (Continued)

AIC

Var-Out AICavg AICsd AICmed AICmin AICmax AICmean+sd

1,2 62.945 9.392 63.144 46.989 76.104 72.337

1,3 61.663 6.493 62.216 49.225 70.329 68.156

1,4 58.747 6.327 59.800 46.608 67.315 65.074

1,5 59.802 7.045 59.749 47.185 69.520 66.847

1,6 76.055 7.385 77.476 63.401 85.549 83.439

2,3 -39.712 29.953 -32.842 -109.106 -10.948 -9.759

2,4 -36.558 26.756 -31.704 -95.682 -10.443 -9.802

2,5 -31.924 27.603 -23.702 -99.162 -4.490 -4.321

2,6 -34.974 30.005 -26.100 -106.002 -7.658 -4.969

3,4 -114.583 57.271 -94.723 -240.462 -50.386 -57.311

3,5 -116.569 57.075 -96.058 -242.568 -51.467 -59.495

3,6 -115.783 57.076 -96.477 -240.855 -49.313 -58.707

4,5 -211.865 88.378 -185.988 -413.323 -115.446 -123.487

4,6 -215.061 85.559 -196.436 -410.981 -119.293 -129.502

5,6 -213.073 87.601 -189.207 -411.417 -114.351 -125.472
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Table C.8: 5-Parameter Models

BIC

Var-Out BICavg BICsd BICmed BICmin BICmax BICmean+sd

1 66.099 6.793 67.370 53.059 74.726 72.891

2 -32.716 30.131 -25.356 -102.939 -4.412 -2.585

3 -109.312 56.516 -89.763 -234.093 -44.836 -52.797

4 -209.338 85.305 -190.885 -405.091 -114.107 -124.033

5 -207.639 87.338 -184.281 -405.246 -109.120 -120.302

6 -210.303 84.335 -193.161 -402.879 -112.897 -125.968

AIC

Var-Out AICavg AICsd AICmed AICmin AICmax AICmean+sd

1 60.357 6.185 61.703 48.423 68.180 66.543

2 -38.457 30.614 -31.022 -109.486 -9.754 -7.843

3 -115.054 57.035 -95.430 -240.639 -49.471 -58.019

4 -215.080 85.827 -196.551 -411.637 -118.743 -129.252

5 -213.381 87.864 -189.947 -411.792 -113.755 -125.517

6 -216.044 84.864 -198.827 -409.426 -117.532 -131.180

Table C.9: 6-Parameter Models

BIC

Var-Out BICavg BICsd BICmed BICmin BICmax BICmean+sd

None -209.820 84.406 -192.966 -402.228 -111.517 -125.415

AIC

Var-Out AICavg AICsd AICmed AICmin AICmax AICmean+sd

None -216.519 85.023 -199.577 -409.865 -116.925 -131.495
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