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How does a high-tech entrepreneur find the most qualified engineer for her startup? 

How does a scientific inventor acquire funding or recruit the best partner for his 

project? In chapter 1 I develop a discrete matching model with heterogeneous values 

and an undirected social network to address these questions. My model offers a 

framework to study how relative network positions affect payoffs and incentives. 

While an entrepreneur’s expected return increases with the size of her own network, 

the network externalities from competing entrepreneurs are more complex. There is a 

tradeoff between the size of an entrepreneur’s network and the competitive 

externality she exerts. When an entrepreneur’s network increases, her closest 

competitors are hurt, but her less similar competitors may actually have a better 

chance of finding a suitable partner. In a more connected network, fewer frictions 

interfere with compatible matches. Results are consistent with observable patterns in 

high-tech and biotechnology in Silicon Valley and Massachusetts, as well as the turn 



  

of the 20th century German synthetic dye manufacturing. Initiatives to promote social 

networks within innovative sectors are critical and deserve future research. 

In Chapter 2 I consider a two-period endogenous network search model in which 

entrepreneurs build relationships with specialists. The model includes a period of 

costly network search and applies results from my companion paper. In the presence 

of network externalities, entrepreneurs over-invest in networking. Networks in which 

is it not costly to build new relationships are the least efficient. While positive 

externalities reduce this problem some negative inefficiencies will likely prevail. 

Networks in which participation is cheap – such as online career networks LinkedIn 

or Monster.com – have limited information about individual specialists and are the 

most inefficient. A network that is costly to participate in, but is more effective at 

targeting entrepreneur’s search for qualified candidates results in a more compatible 

and, likely, efficient partnership. These networks might include alumni groups, trade 

associations or head-hunters. This chapter provides one explanation for the varied 

successes of government programs in fostering effective business networks. Efficient 

networks foster fewer, more specific relationships. 
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Chapter 1.  
Friends, Partners and Competitors:  

The Impact of Social Networks on Entrepreneurs 
 

1 Introduction 
 

How does an entrepreneur’s social network affect her profitability? How does her 

competitors network affect her chance of survival? Across scientific, technical and 

artistic fields, entrepreneurs seek out former colleagues, classmates and collaborators 

to gain access to necessary resources, including investment capital, technology and 

employees. (Gompers, Lerner and Scharfstein, 2005) Empirical evidence suggests 

that an entrepreneur's location within a social network is critical to her success and 

survival. Existing research, however, does not explicitly demonstrate the mechanism 

by which networks impact success. A central question is how does the individual 

network position and the interaction between agents in the network influence an 

entrepreneur’s likelihood of success. (Goyal, 2005; Podolny, 2001) This paper 

explores how network structure and individual network connectedness affects the 

incentives and payoffs for agents. In particular, I focus on how competing 

entrepreneurs’ social networks affect other entrepreneurs’ outcomes and expectations. 

I present a model in which each entrepreneur has a distinct innovative idea and 

must use her network connections to find a specialist partner. Once they match, an 

entrepreneur-specialist pair can together develop technology for startup. I show that 

an entrepreneur’s ability to find a compatible match varies with both the size of her 

own network, as well as her competing entrepreneurs’ networks. While her expected 

return increases with her own network, the externality from a competitor’s network is 
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more complex. There is a tradeoff between the size of an entrepreneur’s network and 

the competition she exerts in the market. An entrepreneur’s expected return decreases 

when her nearby competing entrepreneur’s network increases. This effect reverses for 

less similar competitors. When the network of a more distant competitor increases, 

the original entrepreneur often has a better chance of finding a compatible match. 

Think of each entrepreneur as a generalist with an idea for a new project and a set 

of preexisting relationships with industry specialists. The payoff to her project 

depends on partnering with a specialist capable of implementing her idea. I use a 

discrete matching model with heterogeneous values. A partnership between an 

entrepreneur and specialist constitutes a stable match. Each entrepreneur can only 

partner with a specialist with whom she has a preexisting relationship, whose type is 

thus known to her.1 Stable matches follow pairwise stability and individual rationality 

so that every agent partners with its closest, most compatible known, available agent. 

The equilibrium solution concept is a stable matching for each ex ante possible 

network structure. Ex ante, I characterize each entrepreneur’s social network by the 

probability she has a connection with each specialist. The probability of any network 

graph implies a probability of a match between each unique entrepreneur-specialist 

pair. Three forces determine the distribution of match probabilities: (i) the probability 

the entrepreneur knows the specialist, (ii) the probability the specialist is the 

                                                 
1 According to Fleming and Frenken (2007), engineers and other inventors are often 
reluctant to ask for help or reveal their research. They rely mostly on trusted friends 
and select colleagues. Business disclosures to strangers are perilous and may result in 
stolen ideas. It is also difficult to transmit useful information about skills in nascent 
industries where these is often poor public information, immature markets, limited 
human capital and few standards. (Sorenson and Stuart, 2001)  
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entrepreneur’s best option and (iii) the probability the specialist does not partner with 

a competitor.  

The model offers a general theory of how a change in network degree (i.e., the 

number of connections an agent has) impacts industry welfare and the individual 

payoffs. An entrepreneur’s expected profits are always higher with more connections. 

When an entrepreneur knows more people, she is more likely to obtain a compatible 

match and less likely to rely on a distant specialist. As an entrepreneur’s network 

increases, her nearby competitors are worse off, but her more distant competitors may 

actually receive a more compatible match. The network interaction between 

competing entrepreneurs depends on both agents’ network and their relative 

locations. 

I compare the individual effects and social benefits across the most common 

network structures. In a complete network, the match is unique, assortative and 

socially optimal. In a random, one-degree network (i.e., where each agent has a single 

connection) expected returns are low. These two networks are synonymous with 

conventional labor markets of complete and incomplete information, respectively. 

Finally, I analyze a uniform, homogeneous network in which each agent has equal 

degree. A uniform network of very low degree has lower welfare than a random 

match, but as a network becomes more connected it approaches the socially optimal 

case. Each entrepreneur experiences relatively less competition for her most 

compatible specialists.  

This approach to modeling network probabilities is in contrast to traditional 

discrete network graph analysis. It is difficult to develop results applicable to a broad 
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class of networks by analyzing specific, discrete graphs. Galeotti, Goyal, Jackson, 

Vega-Redondo and Yariv (2008) use an approach similar to mine to model an agents’ 

behavioral response to network externalities for a broad class of models. With this 

approach I develop general rules of how network structure relates to payoffs and 

incentives. 

I integrate a discrete heterogeneous matching framework in the spirit of Becker 

(1973) with elements of the labor search literature and network theory. Recently 

authors apply this matching framework to a number of questions. Casella and Rauch 

(2002) model international trade through immigration networks. Hoppe, Moldevanu 

and Sela (2005) model two-sided matching with signaling. In the employer search 

literature, Lee and Schwarz (2007) model heterogeneous employee-employer 

matching with search. 

The setup and results of this model are consistent with observed industry patterns, 

particularly in innovative sectors where the underlying technology is based on 

esoteric knowledge held by a small number of specialists and the risk of failure is 

high. Startups often lack resources, including customers, raw materials, technological 

expertise and employees. A well-connected entrepreneur uses her network of personal 

and professional relationships with former colleagues, fellow alumni and social 

contacts to access the resources she needs. (Castilla, Hwang, Granovetter and 

Granovetter, 2000; Gompers et al, 2005; Sorenson and Stuart, 2001)2  

                                                 
2 Castilla et al (2000) describe a densely interconnected, but diffuse, social network of 
engineers, entrepreneurs, financiers, professors and other business people in Silicon 
Valley, who are more loyal to the profession than a specific firm. This culture of 
mobility and innovation began when the first generation of entrepreneurs who left 
Fairchild Semiconductors to start their own firms. As more entrepreneurs left 



 

 5 
 

Consider the history of one leading chemical and pharmaceutical company of the 

20th century, Bayer Industries. In 1863 industrialist Freidrich Bayer partnered with 

colleague and dye chemist Friedrich Weskott to found Bayer Industries. The founders 

combined their respective business and scientific expertise to develop and market 

new synthetic dyes. It became one of the leading dye manufacturers. As Murmann 

(2003) describes, most of the successful early synthetic dye German entrepreneurs 

used an “informal network of ties that connected players in industry and academia” to 

partner with former colleagues with complementary expertise. 

In this paper I focus on a static, exogenous network of existing ties of complete 

information. I assume it is prohibitively costly to endogenously create ties that 

contain such detail. In a companion paper I consider an endogenous network search 

model in which agents choose to build relationships with additional agents. Strong 

ties with extensive information are the critical foundation of efficient collaboration 

networks. For example, Van der Leij and Goyal (2006) use a coauthorship network of 

publishing economists to show that the random removal of strong ties increases the 

average network path length more than the random removal of weak ties.3 Before 

exploring the impact of endogenous network search in this context, we must 

understand the impact of strong ties with complete information. 

                                                                                                                                           
Fairchild and its spinoffs, this first generation of entrepreneurs lead to generations of 
startups. Years later the IBM post-doctoral program began employing new scientists 
for two years with the explicit purpose of creating ties and then sending them to other 
firms after two years. This created a diffuse network of scientists who were loyal to 
IBM. (Fleming and Frenken, 2007) 
3 Building even loose relationships with targeted individuals requires existing strong 
relationships to access the necessary pathways. Agents connect with close friends of 
close friends to build new ties through the pathways of their first-degree network 
links. Agents use their strong ties to make new connections and create partnerships 
with detailed information. 
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The paper proceeds as follows. Section 2 presents an overview of the model. 

Section 3 discusses the general definition of the equilibria, while section 4 describes 

the ex ante solution concept and its implications. Section 5 looks at the individual 

comparative static results. Section 6 discusses outcomes for three benchmark cases. 

Section 7 presents specific applications. Finally, Section 8 concludes by considering 

three canonical applications and the policy implications of the above results. 

 

2 Model 

The economy consists of two finite sets of m risk neutral agents: a set of generalist 

entrepreneurs   E ! {e1,e2 ,...,em} and a set of specialist S ! {s1,s2 ,...,sm}. Agents in 

both sets are defined by specialized skills, positioned around a circle with 

circumference normalized to one.4 The ith entrepreneur is exogenously endowed with 

an idea for a project with specific skill requirements ei, such that ei "[0,1]  for i = 1, 2, 

…, m. The jth specialist is exogenously endowed with skills sj, such that 
  s j "[0,1]  for 

j = 1, 2, …, m. Each set of agents is ordered, equally spaced and equally located, 

  e1 # e2 # ...# em  and   s1 # s2 # ...# sm . The incremental distance between neighboring 

agents is
  
1
m

. Skills represent areas of specialization within a specific field.5 See 

Figure 1. 

                                                 
4 The model extends easily to a line in which agents are equally spaced between 0 and 
1. Results for this case are parallel and similar to the circle. 
5 These results continue to hold if the two sets are skewed (i.e., not equally located). 
In fact, when two sets of agents are not equally located, an entrepreneur has a unique 
distance to each specialist. The only problematic case is when the sets are located 
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An entrepreneur must partner with a specialist to startup. Otherwise she does not 

implement her idea and pursues her outside option. Consistent with Lazear’s (2005) 

interpretation, entrepreneurs are generalists who understand how to develop a good 

idea, recruit skilled employees, and oversee product development. Entrepreneurs, 

however, lack the specific human capital to build the underlying technology for their 

project and must partner with a specialist who can. Specialists, on the other hand, 

have highly developed technical expertise, but lack the general business skills to be 

an entrepreneur.  

Agents are connected by a preexisting, exogenous network of ties between 

entrepreneurs and specialists. Network ties simply represent a preexisting social or 

professional relationship between two agents. I denote the entire network as a 

bipartite graph, Gm$m , where gij=1 if agents ei and sj are connected; gij=0 otherwise. 

These ties are undirected so that if an entrepreneur knows a specialist, that specialist 

also knows the entrepreneur. An entrepreneur must have a network link to a specialist 

in order to partner with him. Agents have no way of revealing their types to a 

stranger.6  

The vector   gi ! (gi1,gi2 ,...,gim )  represents entrepreneur ei’s set of connections to 

specialists. Each entrepreneur’s set of network connections, or network degree, is 

observable and equal to 
  
ki ! gijj!1

m% . Ex ante, the skills of the specific specialists 

with whom ei is linked are not identifiable. Instead, the probability that ei has a 
                                                                                                                                           
such that each specialist is located equidistant between two entrepreneurs. In this 
case, the complete network will yield more than one unique optimal matching. 
6 This is consistent with real world applications in which it is either prohibitively 
costly to verify skills or revealing types leave agents susceptible to theft of ideas. See 
footnote 2. 
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connection to any sj is 
  & i (sj )"['()] . Unless otherwise specified, assume 

entrepreneurs have equal probability of knowing any specialist around the circle so 

that 
  
& i (s) !

ki

m
 for all s.  

This paper characterizes the network by probability of a connection for a few 

reasons. An entrepreneur may know the number of connections she has, but must 

decide if to pursue a project before she knows her friends’ exact types, or with whom 

her contacts are also connected to. Similarly, researchers often observe an agent’s 

network degree, but not the specifics of each link. Using these probable expectations, 

the researcher can better understand the observed, real-world empirical patterns. 

Finally, it provides insight into the value of network connections, rather than a 

specific graph, more generally. 

The pair-specific, heterogeneous return to a match between ei and sj is 

  * ij ! *+ei ,sj ) ! * (dij ) . Here dij is the minimum distance along the circle’s 

circumference between agents ei and sj, and represents the dissimilarity or 

incompatibility of a pair of agents. The return *ij of any pair-specific match is a 

decreasing one to one mapping from compatibility to payoff such that !* , � - � . 

For any entrepreneur ei, the closest match is her perfectly compatible specialist at 

distance is dij = 0.  

The entrepreneur and specialist split the return according to the Nash bargaining 

solution such that 
 
* ij ! uij . vij , entrepreneur ei receives ui and specialist sj receives vj. 

Each agent has respective outside option u  and v  where ui / u  and v j 0 v . The 
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outside option for any partnership must be * ! u . v . Any partnership such that 

 * ij # *  is not economically viable. I make one other restriction on the return. 

 

Condition 1: For any ei, ek, sj, sl such that dij < dkj ! dil  and gij = gkj = gil = 1 (i.e., ei 

and sj are closest to each other, but also connected to sl and ek, respectively) then 

 * ij . * / * il . * kj . 

 

Condition 1 implies a complementarity such that the expected marginal surplus of 

a match is increasing in compatibility. There is always a way to split the surplus from 

a closer match to benefit both agents. Condition 1 is sufficient, but not necessary, to 

ensure profit and compatibility maximizing matches in equilibrium.7  

Payoff functions that fit the restrictions of condition 1 also capture the observed 

patterns for high-skill entrepreneurial partnerships. William J. Baumol (2004) argues 

that more innovative technologies tend to have higher risks of failure since the 

technologies are not fully understood. According to Sorenson and Stuart (2001) 

small, private entrepreneurial ventures are inherently risky, plagued by liabilities of 

newness and unproven business models. The reward to a good partnership is also 

great, but the risks to a poor partnership are also very high. Additionally, condition 1 

is more likely to hold for relatively large outside options, or high values of * . Both 

entrepreneurs and specialists in innovative, high skill industries have relatively high 

                                                 
7 Heterogeneous matching models often rely on complementarity conditions. See 
Becker (1973) and Shimer and Smith (2000). 
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outside options, often working for large incumbent firms or scientific labs. Consider 

two possible functional forms: 

 

Example 1: Suppose 
  
*+dij ) ! R 11 dij+ 23  where R represents optimal revenue, and 3 

represents the importance of compatibility. For any 3 0 ), expected return is 

decreasing, convex in distance. The values of *  and 3  that satisfy condition 1 vary 

with m and R.  

 

Example 2: Suppose 
  *+dij ) ! (11 r(dij ))R  where R represents optimal revenue and 

  rij ! r(dij )  represents the pair’s probability of failing. The risk of failure is increasing 

and convex in distance, 
  r '(dij ) 0 0  and r "(dij ) # 0 , minimized for a perfectly 

compatible pair   r(0) ! r0  and greatest for the most distant matches 
  
r(

1
2

) 4 1. For 

instance, let 
  r(dij ;5) ! d5  where 5 0 1 represents the project’s failure rate.  

 

3 Equilibrium 

An entrepreneur partners with a specialist to maximize expected payoff. 

Following classic heterogeneous matching problems, equilibrium matching M is 

reduced form, one-to-one, individually rational and pairwise stable. Each pair consists 

of one specialist and one entrepreneur. Otherwise, an entrepreneur or specialist 

remains unmatched. Imposing condition 1 and pairwise stability ensures that agents 
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have strict preferences for more compatible matches, regardless of the division of 

surplus (Lemma 1).8 

 

Definition (pairwise stability). Consider some matching M with individual matched 

pairs ij and i’j’ such that 
  M (ei ) ! sj  yields surplus *+ei ,sj )  and M (ei ' ) ! sj '  yields 

surplus 
  * (ei ' ,sj ' ) . Then M is pairwise stable if there is no pair of unmatched agents 

ij’ or i’j whose surplus from matching, *+ei ' ,sj )  or *+ei ,sj ' ) , is greater than under 

M.  

 

Lemma 1. Under condition 1, a closer match is always surplus maximizing for both 

the entrepreneur and specialist. 

 

Equilibrium matches follow two basic rationality (IR) and stability (PWS) 

conditions: 

 (c1): * (ei ,sj ) / *  (IR) 

 (c2): 
* (ei ,sj ) / maxs"Fei

* (ei ,s)

* (ei ,sj ) / maxe"Fs j

* (e,s j )
 (PWS) 

where Fx represents the set of available matches for agent x.  
                                                 
8 Suppose matching proceeds as follows: The entrepreneur learns which specialists 
she has a connection to. She implicitly ranks her available specialists according to the 
pair-specific expected value or compatibility, and proceeds to make offers. She makes 
an offer to her most compatible match. If the specialist accepts, they partner. If the 
specialist rejects, she proceeds to her next best, and so on until she either gets a match 
or has no more available candidates. The specialist accepts his most compatible offer 
and rejects all others. This process continues until a stable matching exists for all 
agents. 
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Two agents ei and sj are available to partner if they have a preexisting relations 

and neither agent partners with a more compatible agent in her or his own respective 

subset of higher valued matches. When an agent has two available, equidistant 

candidates he or she has lexicographic preferences. The entrepreneur prefers the 

specialist who is clockwise to herself. A specialist accepts the entrepreneur who is 

counter clockwise to himself.9 

 

Definition (availability). The specialist sj is available to entrepreneur ei if (1) sj and 

ei are connected, gij = 1, and (2) sj does not have a higher valued available match 

with some entrepreneur ek. The entrepreneur ei is available to sj if (1) sj and ei are 

connected, gij = 1, and (2) ei does not have a higher valued, available match with 

some specialist sm.  

 

4 Ex Ante Solution Concept 

For any discreet network graph G there is an explicit, pairwise stable match M. For 

each entrepreneur this stable match is a function of her set of available specialists. 

Prior to the realization of a specific graph, the ex ante probability of any match M is 

driven by the probability of any network graph and the associated set of connections. 

The ex ante equilibrium concept is thus a set of probabilities P over all possible 

individually rational and pairwise stable matches M as determined by the expected 

probability of graphs G. Denote the ex ante probability of a match between 

                                                 
9 This is a simplifying assumption. Results hold if entrepreneurs and specialists 
choose between equidistant agents with probabilities 6 "7'()8  and  9 "[0,1] . 
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entrepreneur ei and specialist sj as pij ! p(ei ,sj ;& )  where pij "P  and  & i "&  for all i  

and j. With two sets of m agents, there are m2 match probabilities. 

Ex ante, the reduced form probability that {ij} is a pairwise stable match, pij, has 

three components. For an entrepreneur and specialist to partner (i) the entrepreneur 

must know the specialist, (ii) the specialist must be the entrepreneur’s closest 

available candidate, and, simultaneously, (iii) the entrepreneur must be most 

compatible for the specialist: 

!  

pij ! prob ei  connected to s j: ;
( i)

" #$$$$ %$$$$
* prob sj  is ei's best available match: ;

( ii)
" #$$$$$$ %$$$$$$

* prob sj  is available to ei: ;
( iii)

" #$$$$ %$$$$

 

Terms (i) and (ii) represent the effects of an agent’s own network and are driven by 

entrepreneur ei’s network connectedness,& i . Term (iii) reflects the probability that a 

competing entrepreneur wins the specialist sj. It captures the interaction between 

entrepreneurs.  

The probability over a match with any specialist is a function of her own network 

connectedness, &i, as well as the connectedness of nearby competitors, &k. The most 

compatible match that is simultaneously available for both agents is stable. For any 

pair {ij} such that  * ij / * , the probability of a pairwise stable match is: 

 
  
p(ei ,sj ;& ) < & i = 11 p(ei ,s;& )

s"N (ei ,dij )%>
?@

A
BC
= 11 p(e,sj ;& )

e"N (s j ,dij )%>
?@

A
BC

(1.1) 

Where subset 
  N (ei ,dij )  represents all specialists who are more compatible with, and 

thus preferred by, entrepreneur ei than specialist sj. This includes all specialists within 
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distance dij of ei and excludes sj. Similarly, subset N (s j ,dij )  contains all 

entrepreneurs who are more compatible with sj than ei. These entrepreneurs are 

located on the interval of distance dij from sj, excluding ei,. Each match probability 

  p(ei ,sj )  is decreasing and recursive in the probabilities over more compatible 

matches for ei and sj.10 The probability p(ei ,sj ) is a decreasing function of all match 

probabilities for more compatible matches for both ei and sj.. 

 

Example m = 4. Consider the uniform network case when m = 4. Entrepreneur e1’s 

match probabilities are: 

  

p11 ! &)

p12 ! &) = (11 p11) = (11 p22 )
p13 ! &) = (11 p11 1 p12 1 p14 ) = (11 p23 1 p33 1 p43)
p14 ! &) = (11 p11 1 p12 ) = (11 p34 1 p44 )

 

The probability that entrepreneur e1 partners with specialist s2 is a function of 

  p11 ! &)  her own probability of a perfectly compatible match, as well as the 

probability   p22 ! & 2  that s2 receives a perfectly compatible match. Since she prefers a 

match with s2 over s4, the probability p14 that she matches with specialist s4 is 

conditional on her probability of matching with s1 or s2, 11 p11 1 p12+ 2, as well as s4’s 

probability of not matching with e3 and e4, 11 p44 1 p34+ 2. This continues on for all 

                                                 
10 For ease of notation I suppress & from the expression p(ei .sj ;& 2  throughout the 
paper. 
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feasible entrepreneur, specialist probabilities. There is a similar set of probabilities 

for each entrepreneur.11 See figure 1. 

 

The example illustrates that competition between entrepreneurs in the network 

occurs over specific specialists. When two entrepreneurs are linked to the same 

specialist, the stable match is with the most compatible and preferred (in the case of 

equidistance) entrepreneur. For any entrepreneur, the probability that a linked 

specialist is unavailable due to competition is the aggregate probability that he 

partners with a more compatible entrepreneur. If ei is available to specialist sj , the 

probability that sj partners with a more compatible entrepreneur ek "N (s j ,dij )  is 

equal to one minus the aggregate probability over all of sj’s closer 

matches,
  
11 p(e,s j ;& )

e"N (s j ,dij )% . For any pair of agents, competition is driven by the 

network connectedness of nearby entrepreneurs &k and the match distance dij. 

Proposition 1 follows directly from these interactions. 

 

Proposition 1. In the case of a strictly incomplete, conditional on finding a match, 

any entrepreneur ei is most likely to partner with her most compatible specialist. 

 

The only obstacle to a perfectly compatible match is a network connection. If a 

perfectly compatible entrepreneur and specialist have a preexisting relationship, they 

will partner. The match probability is equal to the probability of a network 

                                                 
11 See Appendix for the complete set of probabilities for m ! 3,4,5 . 
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connection, &i. If ei and sj are not a perfectly compatible match, dij 0 0  and the 

chance of either having a more compatible, available specialist, or receiving 

competition for sj from more compatible entrepreneurs are both higher. Both of these 

probabilities are increasing in dij. The probability of a pair of agents partnering 

diminishes with circumference distance for both the entrepreneur and specialist. 

Corollaries 1a and 1b capture this result. 

 

Corollary 1a. In the case of an incomplete network, for any entrepreneur ei, the 

probability she partners with any specialist is decreasing in distance. If  dij # dil  then 

  
11 p(ei ,s;& )

s"N (ei ,dij )%+ 20 11 p(ei ,s;& )
s"N (ei ,dil )%+ 2. 

 

Corollary 1b. In the case of an incomplete network, competition for any specialist sj 

is increasing in distance. If 
 
dij # dkj  then 

  
11 p(e,sj ;& )

e"N (s j ,dij )%+ 20 11 p(e,sj ;& )
e"N (s j ,dkj )%+ 2. 

 

Proposition 1 and its corollaries suggest one important consequences of a 

network. Conditional on finding a partner, an entrepreneur is most likely to find a 

perfectly compatible or very close match. A network partnership is often a good 

match, but this result varies with the density of an entrepreneur’s network. Consider 

the cases of a well-connected entrepreneur with network probability & , and a poorly-

connected entrepreneur with & . The well-connected entrepreneur has probability &  
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of knowing and partnering with her most compatible specialist. Her chance of 

partnering with a highly compatible specialist is less than & , but still relatively high. 

The poorly connected entrepreneur, on the other hand, has less chance &  of 

partnering with her most compatible specialists, and even lower chances of partnering 

with an alternative, highly compatible specialist. She will likely be competed out of 

matching with more distant competitors they do know. 

 

Example m = 4 continued.  

 

  

p11 ! &)

p12 ! &) = (11 p11) = (11 p22 )
p13 ! &) = (11 p11 1 p12 1 p14 ) = (11 p23 1 p33 1 p43)
p14 ! &) = (11 p11 1 p12 ) = (11 p34 1 p44 )

 

Entrepreneur ei ranks her matches from most compatible to least as 
  s1,s4 ,s2 ,s3: ;. The 

probability of matching with her perfectly compatible specialist is p11 ! &) . The set of 

more compatible matches is null. For pair {12}, the probability that e1 does not have 

a more compatible match is  11 &) ; the probability s2 does not have a more 

compatible match is  11 & 2 . Going one rank further, for matched pair {14} the 

probability that e1 does not have a better match is 11 &) 1 p12  and the probability s4 

does not have a higher valued available match is11 & 4 1 p34 . For matched pair {13} 

the probability that e1 does not have a better match is 11 &) 1 p12 1 p14 ; the 

probability s4 does not have a better available match is11 & 3 1 p23 1 p34 . 
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For each entrepreneur there is a critical tradeoff: the more specialists she knows 

the less likely she is to compete for these specialists. Each entrepreneur own network 

has two diverging effects on her likely match. First, the probability of having a 

network relationship is &i across the spectrum of specialists. Second, conditional on 

being available, the probability that sj is ei’s best candidate, 11 p(ei ,s;& )
s"N (ei ,dij )% , 

is decreasing in circumference distance. Herein is the tradeoff. When &i is high, 

entrepreneur ei is more likely to know each specialist, but less likely to compete when 

she likely already has a more compatible candidate. I explore this tradeoff in the next 

section. 

I use three measures to evaluate the network and understand its relationship to 

incentives and payoffs. First, the ex ante expected returns for every entrepreneur, 

  
* i < * ij pijj!1

m% , reflects each entrepreneur’s value of the network. Next, ex ante 

expected welfare, 
  W ! * ii!1

m% , is the summation across all entrepreneurs. Depending 

on the compatibility and the number of matches, welfare may be markedly different 

from the individual returns. Finally, entrepreneurship is the proportion of 

entrepreneurs that form a partnership, D !
1
m

pij
j!1

m

%
i!1

m

% . This measure illustrates why 

rates of entrepreneurship vary across regions with similar resources but different 

network structures12  

 

                                                 
12 For instance Silicon Valley and the Metro Boston Area have similar human capital, 
but Silicon Valley has both higher levels of entrepreneurship and a more connected 
social network of engineers, scientists and inventors. (Fleming and Frenken, 2007) 
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5 Comparative Statics 

This section examines how the entrepreneur’s expected return from the network 

changes as either she or her competitors become more connected. When entrepreneur 

ei knows h more agents, her connectedness increases by 
h
m

. Intuitively, a more 

connected entrepreneur is better off. An entrepreneur is more likely to receive a more 

compatible match and less likely to compete for a more distant specialist. Her own 

expected return increases while her nearby competitors’ expectations decrease. Her 

less compatible competitors—those who require a different type of specialist—may 

experience less competition from the more connected entrepreneur ei and have higher 

expectations. 

The recursive nature of match probabilities implies that, for any pair {ij}, the 

chance of a partnership is decreasing in the probabilities of more compatible matches. 

Consider sj’s more compatible entrepreneur ek. All else equal, if the probability that sj 

partners with ek decreases, the probability of partnership {ij} increases. The opposite 

is also true. If the probability of sj’s more compatible match p(ek ,sj )  increases, then 

the more distant 
  p(ei ,sj )  decreases. See Lemmas 2 and 3 in the Appendix for further 

discussion. 

Less compatible agents exert no externality on match probabilities. For any 

entrepreneur and specialist pair, the probability of their match is only conditional on 

the networks and match probabilities of more each agent’s more compatible 

counterparts. The more compatible a pair of networked agents are, the less 
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competition either one will face. A more localized match faces fewer competitive 

frictions. Consider the m = 4 example again. 

 

Example m = 4 continued. Solving the entire system of probabilities: 

  

p11 ! &)

p12 ! &) = 11 &)
>? AB = 11 & 2>? AB

p14 ! &) = (11 &)) = (11 &) = (11 & 2 ))>? AB = (11 & 4 ) = (11 &E = (11 &E ))>? AB
p13 ! &) = (11 &))(11 &)(11 & 2 )) = (11 &)(11 & 4 ) = (11 &E(11 &E )))>? AB

= (11 & 3)(11 & 2(11 & 2 )) = (11 &F(11 &F ) = (11 &F(11 &))))>? AB

 

The own network effect and competitive externality are demarcated in brackets. Each 

match probability is a function of the entrepreneur’s own connectedness, &1, and the 

connectedness of each competing entrepreneur who is closer to either the 

entrepreneur or the specialist. For each less compatible pair, there are more frictions 

to either agents’ availability. 

 

Increasing her own chance of a more nearby network connection ensures that she 

is strictly better off. Ex ante, an entrepreneur’s expected return is higher when she 

knows more specialists. Higher network connectedness has two countervailing 

effects. First, an entrepreneur who knows more specialists is more likely to know and 

thus partner with a more compatible specialist. By increasing her chance of a 

compatible network connection, she is less likely to seek a partnership with a less 

desirable candidate. This diminishes competition for more distant specialists.  
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Proposition 2. For any entrepreneur ei, an increase in her own network degree 

strictly increases her ex ante expected return of a partnership:  

if & i
' 0 & i  then * i(& ') 0 * i (& ) . 

 

With a higher probability of knowing any agent, the probability of a match with a 

better specialist is increasing in &i. For a perfectly compatible pair, the marginal 

change in match probability is equal to one (i.e., the shift in pij  is equal to the shift in 

&i). The likelihood of having a better match and having competition for the specialist 

erode this positive impact for less compatible. The impact is diminishing in 

dissimilarity. 

In fact, there exists a compatibility threshold such that for any entrepreneur ei the 

probabilities of a more compatible match is increasing in her network. The 

probability of a less compatible match decreases. Further, the more connected an 

entrepreneur is, the lower this threshold distance. In effect, as an entrepreneur ei’s 

network degree increases more compatible partnerships are more likely. The 

probability she will compete for less compatible matches diminishes. A higher &i 

hones the entrepreneur’s search, increasing the probability of a close match and 

decreasing the chance that she has to search a wider skill set to find a specialist. This 

importance of this effect is far more remarkable for the entrepreneur’s competitors. 

 

Example m = 4 continued. Suppose the network degree increases to  &1
' 0 &)  for 

entrepreneur e1. The probability of a match with specialist s1 is now   p(e1,s1) ! &1
' . 
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For her match with s2, the probability of a network connection increases to  &1
' , but 

the probability she does not already have a better match with s1 decreases to  11 &1
' . 

For each less preferred match, even as the probability of a network link increases&1
' , 

but the probability of having a better match is also higher. 

 

As an entrepreneur’s own match probabilities narrow around her more compatible 

agents, her effect on neighboring competitors may be positive or negative, depending 

on the distance between competitors and the connectedness of both the entrepreneur 

and competitor. From the perspective of a weakly connected competitor, a high 

network probability competitor may actually be very beneficial. Proposition 3 follows 

directly from this idea. 

 

Proposition 3. For any entrepreneur ei and competing entrepreneur ek, the effect of a 

shift in the competitor’s network probability is negative for compatible competitors, 

but positive for less compatible competitors (i.e., high dik).  

 

Proposition 3 suggests that more connected agents make direct competition more 

difficult, but, by relieving friction in the matching process, actually alleviates 

competition in other regions of the same industry. When a competitor’s network 

increases, the probability of a good match for a nearby competing entrepreneur 

actually decreases. An increase in &i strictly decreases the probability that any other 

entrepreneur will match with ei’s perfectly compatible specialist. The probability that 

ei’s compatible competitor at distance 1/m from herself matches with a good match 
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ten decreases. In turn this strictly decreases her neighbor’s expected return. As her & i  

increases she increases her probability of a compatible match. This negatively effects 

the match likelihood for entrepreneurs looking for similar specialists. 

 

Example m = 4 continued. Consider the effect of a change in nearby entrepreneur 

e2’s connectedness on entrepreneur e1. Suppose &2 increases to &2’ 

  

p11 ! &)

p12 ! &) = (11 p11) = (11 p22 )
p13 ! &) = (11 p11 1 p12 1 p14 ) = (11 p23 1 p33 1 p43)
p14 ! &) = (11 p11 1 p12 ) = (11 p34 1 p44 )

 

The probability of e1’s perfectly compatible match, p11 ! &) is unaffected. The match 

probability p12 strictly decreases. Since e2 is less compatible with s4 than e1, p14 is not 

affected by direct competition from e2 for s4. If p23 increases with &2’ then p13 is also 

decreasing. Note from the solution below, the shift in p13 depends on the magnitude of 

 & 2
' (11 & 2

' )  relative to  & 2 (11 & 2 ) . The solution illustrates the complete pass through. 

For instance, as p12 decreases, however, &2’ does indirectly change the likelihood 

that e1 is available for s4.  

  

p11 ! &)

p12 ! &) = 11 &)
>? AB = 11 & 2

'>? AB
p14 ! &) = (11 &))(11 &)(11 & 2

' ))>? AB = (11 & 4 ) = (11 &E = (11 &E ))>? AB

p13 ! &) = (11 &))(11 &)(11 & 2
' )) = (11 &)(11 & 4 ) = (11 &E(11 &E )))>? AB

= (11 & 3)(11 & 2
' (11 & 2

' )) = (11 &F(11 &F ) = (11 &F(11 &))))>? AB
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As the distance between competitors increases, the effect of decreased 

competition becomes stronger, the likelihood of a positive externality increases. From 

Proposition 2, as entrepreneur ei’s network probability increases the match probability 

she competes for less compatible matches decreases. An increase in her network 

connectedness increases the aggregate probability of a better match and decreases the 

probability she will compete for her less compatible specialists. As she is less likely 

to compete for more distant agents, her more distant competitor’s are more likely to 

obtain a match.  

 

Example m = 4 continued. Now consider the effect of a change in entrepreneur e3’s 

connectedness on entrepreneur e1. Suppose &3 increases to &3’:  

  

p11 ! &)

p12 ! &) = 11 &)
>? AB = 11 & 2>? AB

p13 ! &) = (11 &))(11 &)(11 & 2 )) = (11 &)(11 & 4 ) = (11 & 3
' (11 & 3

' )))>? AB
= (11 & 3

' )(11 & 2 (11 & 2 )) = (11 &F(11 &F ) = (11 &F(11 &))))>? AB
p14 ! &) = (11 &))(11 &)(11 & 2 ))>? AB = (11 & 4 ) = (11 & 3

' (11 & 3
' ))>? AB

 

Matches with both s1 and s2 are unaffected because they are more compatible. The 

probability of matching s3 and s4 are now dependent on the relative value of 

 & 3
' (11 & 3

' )  and & 3(11 & 3) . In fact, the probability of a match with s3 is now strictly 

lower, but s3 is a relatively low value match for e1. Depending on the value of 

 & 3
' (11 & 3

' ) , e1 may have a higher chance of matching with the more compatible s4. 
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This example provides insights on how these network effects change with the 

connectedness of both the impacted entrepreneur and the competitor, the size of the 

market and the distance between agents. First, if an entrepreneur’s connectedness 

increases, she is more likely to exert a positive influence on her competitors, and 

entrepreneurship generally, if she has a high &. The higher her probability of a very 

compatible match, the less competition she exerts on the market. Similarly, because 

this positive externality affects mid-distance matches, it is more likely to be beneficial 

for an entrepreneur who is not already likely to match with her perfectly compatible 

match.  

 

Corollary 3. A positive competitive externality is more likely to occur when the 

competing entrepreneur’s network probability &k is high. 

 

Proposition 3 and its corollary highlight some critical tradeoffs of the network. 

First, they imply that networks have both an upside and a strong downside, depending 

on an agent’s own location. If an entrepreneur’s direct competitors are better 

connected, she is less likely to find a partner and startup. This result implies that in a 

market with segments of highly connected entrepreneurs, relatively unconnected 

entrepreneurs are less likely to be able to enter than they could if their competitors 

were not as highly connected. On the other hand, connected competitors alleviate 

competition for more distant market segments. Less connected entrepreneurs are 

more likely to startup if competitors in other parts of the market are more connected. 

As section 6 discusses there is some empirical evidence in support of this result. 
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6 Specific Network Structures 

I consider three canonical network structures with a range of connectedness. In a 

complete network each entrepreneur knows every specialist, gij ! 1 for all {ij}. This 

is equivalent to a market of complete information. Each agent partners with her 

perfectly compatible counterpart. In a random, single degree network, each 

entrepreneur is arbitrarily linked to a unique specialist. This is equivalent to a random 

matching with low expected returns. The uniform, homogeneous network, in which 

every entrepreneur has equal degree k, illustrates how the welfare benefit of a basic 

social network varies between these boundary cases. A network is effective for an 

individual entrepreneur if it increases the expected compatibility of her partnership 

over the market option. A socially valuable network raises total welfare above this 

random case. More specifically, I show that as the network becomes more connected, 

there are fewer competitive frictions and all entrepreneurs are more likely to find a 

compatible match. 

a. Complete Network 

In the complete network all agents are linked such that gij = 1 for all ij pairs and 

  & i ! 1 for all i. There is a unique equilibrium match, M*, that is an assortative 

function between entrepreneurs and specialists such that dij ! 0  for all ij. Since each 

agent partners with her perfectly compatible counterpart, M* is socially optimal, 

because every entrepreneur receives her optimal expected return. Additionally, since 

every agent has complete information, this case is equivalent to a complete 

information market. Each startup receives ** ! *+'2  and total welfare is   W* ! M* *  
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Proposition 4. In a complete network, there exists a unique stable equilibrium match 

M*. M* is positively assortative (i.e., strictly monotonic in agent types) and socially 

optimal. 

 

b. Random, One-Degree Network 

In the next case, each entrepreneur’s network consists of a single link to a unique 

specialist (i.e., no two entrepreneurs are linked to the same specialist). The exogenous 

network is generated by random assignment without replacement.13 This case is 

equivalent to a market with no information and represents random pairing. 

 

Remark. Under a one-degree random network, for each entrepreneur ei the ex ante 

expected return is equal to the average payoff, 
*+ei ,sj )

mj!1

m% , and is strictly less than 

the return in the complete network equilibrium, **.  

 

It follows from the definition that the return to a complete network is greater than the 

return to a random, one-degree network. Ex ante, the entrepreneur’s expected return 

is at least as high as her outside option:  

*G /
* (ei ,sj )

mj!1

m% /*  

                                                 
13 For instance, generate G by randomly drawing one specialist from the set S and 
assign him a link to e1. Without replacement, select another specialist from S and 
assign him a link it to e2. Continue this process until each specialist and entrepreneur 
has one link. 
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These two cases offer benchmarks to measure the relative value of any network. 

The complete network is equal to the optimal case represents the value that a network 

must exceed to be an improvement over a basic market. If the welfare of a network is 

below random, one degree network expected return, the actually network actually 

hinders matching, rather than alleviate an information problem. 

 

c. Uniform, Homogeneous Network 

Under the homogeneous network all entrepreneurs know an equal number of 

people,  & i ! &  for all i. Ex ante each agent’s expected impact on her surrounding 

entrepreneurs is symmetric and equal. This case illustrates how the effectiveness of 

the network changes with connectedness. I focus on the incomplete network cases in 

which  k # m  and & #). A homogeneous network with connectedness  & '  is more 

complete than a homogeneous network with connectedness &  if & ' / & .
1
m

. 

 

Example m = 4 continued. Replacing each & i ! &  implies the match probabilities  

  

p11 ! &

p12 ! & = (11 & )2

p13 ! & = (11 & ) = (11 & (11 & )) = (11 & (11 & )(11 & (11 & )))+ 22

p14 ! & = (11 & )(11 & (11 & ))+ 22
 

These probabilities are equal by compatibility rank for each entrepreneur. 

 

Similar to the more general case, for every entrepreneur the probability of a 

perfectly compatible is highest, while the likelihoods of less compatible matches are 
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diminishing with the compatibility rank. The probability of a match decreases with 

circumference distance. The match probabilities are equal for each entrepreneur and 

strictly decreasing around the agent’s own type.  

When each entrepreneur’s network connectedness simultaneously increases there 

are two effects. First, the probability she knows and prefers a more compatible match 

increases, diminishing the likelihood she will try to rely on a less compatible 

candidate. Next, as each entrepreneur is more likely to know and match her most 

compatible specialist, it is less likely that less compatible specialist is available. 

 

Proposition 5. Under a homogeneous, incomplete network, ex ante welfare is less 

than the optimal matching. As the network becomes more complete, the expected 

welfare increases and approaches the socially optimal outcome. As 
  
& -

1
m

 the 

expected welfare is lower than the one-degree random network without replacement 

expected outcome. 

  

As the probability of the network degree increases, there are fewer competitive 

pressures between entrepreneurs and the network is increasingly efficient. Each 

entrepreneur is more likely to find a more compatible partner without searching broad 

skill ranges and being exposed to high levels of competition. A more complete 

network, with more links, has fewer competitive frictions. The likelihood of 

compatible partnerships increase and the probabilities of inefficiencies decrease. As I 

discuss in the next section this result is consistent with observed regional differences 

in entrepreneurship, even within the same industry. 
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7 Applications 

The model has three important results consistent with empirical research and the 

observed experiences of entrepreneurs across a range of industries, regions and eras. 

First, consistent with Proposition 2, more connected entrepreneurs are more likely to 

succeed, specifically obtain funding, and successfully develop and market an idea. 

Second, as Proposition 5 suggests, even within the same industry with similar 

resources, regions with denser entrepreneurial networks have both higher levels of 

entrepreneurship and more successful entrepreneurs than regions with less connected 

networks. Thirdly, evidence indicates that there are positive externalities similar to 

results of Proposition 3.  

The two critical challenges for empirical research on entrepreneurial network 

effects are measuring outcomes and network size. Since agents often form network 

connections with former colleagues, an entrepreneur’s career history is a frequent 

estimate of network size and location. Common measures of entrepreneurial success 

include the level and number of capital investments; the number of patents and the 

breadth of their classifications; the number and variety of products the firm markets; 

and whether the startups survives to go public. In addition, researchers often measure 

innovativeness by the variation between patents or products between a founder’s 

parent companies and her own entrepreneurial spin-offs. 

Entrepreneurs with a greater preexisting network are more likely to receive early 

funding, survive through more rounds of funding and successfully produce and 

market more innovative products. Gompers, Lerner and Scharfstein (2005) find 

indirect evidence that access to a network of resources positively affects the success 
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of venture-backed entrepreneurs who leave public companies to start a venture. 

Employees embedded in firms with a culture of entrepreneurship build strong 

relationships with a network coworkers, clients, and other partners who they rely on 

for their own startups. In the late 19th and early 20th centuries synthetic die industry, 

the most successful entrepreneurs in both Germany and England had central positions 

in the industry-university network. Murmann (2003).  

Burton, Sorensen and Beckman (2002) show that entrepreneurs with more 

prominent networks are more likely to found innovative start-ups and successfully 

receive early funding than entrepreneurs in a less prominent network position. This is 

true regardless of previous education, entrepreneurial experience or whether ideas 

emerged while working for a previous employer. Entrepreneurs whose networks were 

linked with well-connected, entrepreneurially prominent firms such as IBM, Intel, 

Apple, HP and Stanford University are most likely to spawn successful start-ups. 

Network effects exist, regardless of the entrepreneur’s previous education and 

career experience, or if the entrepreneur’s idea emerged from working for a previous 

employer. Agarwal et al (2002) use data on the Rigid Disk Industry between 1977 

and 1997.14 Even controlling for technological and marketing know-how, 

independent spin-outs are more likely to survive than de novo firms or those affiliated 

with their parent company. This is consistent with a network effect in which 

employees at cutting edge firms are more connected and, in turn, capable of 

connecting with the most compatible partners.  

                                                 
14 Spin-outs are entrepreneurial ventures, founded by incumbents of an existing firm. 
Spin-outs do not maintain a legal relationship with the original incumbent firm. 
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In the medical device industry, Chatterji (2007) finds that firms founded by 

entrepreneurs with preexisting relationships to the industry, who originally worked 

for a publicly traded medical device firm or have already created new startups, 

perform better and receive funding sooner. He finds little relationship between the 

patents of parents and the patents of entrepreneurs. This effect is not a function of 

knowledge pass through. 

Across two very different contexts, one important factor for industry success is 

the capacity to link agents in private industry with university scientists. Both Darby et 

al’s (1998) research on the biotechnology and gene sequencing industry, and 

Murmann’s (2003) research on early German synthetic dye chemists point to a critical 

links between entrepreneurs, and star university scientists conducting bench-level 

research. In both cases the working relationships develop from, and foster further 

growth of, a network between industry leaders and university professors. Scientists 

find the business resources to market their research. Entrepreneurs gain access to 

cutting-edge technology. 

According to Proposition 5 a more complete network is more likely to yield 

higher levels of entrepreneurship. A denser network is more efficient for its agents, 

more connected entrepreneurs are also better off. Specifically, Murmann (2003) 

attributes the informal ‘academic-industrial knowledge network’ with enabling higher 

rates of success and entrepreneurship in German synthetic dye industry over its 

British or U.S. counterparts to the dense university-industry network.  

A handful of studies on more recent entrepreneurial industries and regions suggest 

that areas with more dense networks, such as Silicon Valley CA or Boston MA, are 
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more successful. Gompers et al (2005) find that firms in Silicon Valley and the 

Boston area are more likely to spawn startups and these businesses are more likely to 

be unrelated to the original parent company. An entrepreneur who exploits 

technology less related to her previous employer is relying on her network to access 

resources, rather than the technical information from her former employers. Former 

employees benefit from a regional social network of easily accessible resources. 

Well-connected entrepreneurs are more capable of procuring critical resources, 

including compatible cofounders, for their startups. 

Authors find that this effect is strongest for Silicon Valley and exists, but to a 

lesser extent, in Boston. This observation is consistent with Flemming and Frenken 

(2007) finding that the network of inventors and engineers are more complete in 

Silicon Valley than Boston. Fleming and Frenken show that the higher levels of 

entrepreneurship and invention in Silicon Valley over the Boston metropolitan area 

was driven by a denser co-inventor network in Silicon Valley. 

Related research in these studies also suggest there may be positive externalities 

to some unconnected entrepreneurs within a strong network. Gompers et al (2005) 

show that, even for entrepreneurs who were likely less connected, were more likely to 

be successful than their counterparts in less connected regions. Even less connected 

entrepreneurs in Germany had a better chance of success than those in England. In 

addition, results from Burton et al (2002) suggest that entrepreneurs with less 

prominent positions in the entrepreneurial network are more successful in sectors, as 

measured by patent and product types, with fewer well-connected entrepreneurs. 
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8 Relevance to Policy 

Both the model and empirical applications indicate the importance of dense social 

networks for innovation. My model motivates and provides a framework with which 

to think about additional questions. First, what is the most efficient network structure? 

For instance, there are likely different implications to a uniform network with equally 

connected agents than a few highly connected ‘stars’. The synthetic dye and gene 

sequencing networks were focused around well-connected stars. Silicon Valley, on 

the other hand, is a more uniform, widely diffuse network. Next, does the impact of 

network interactions shift with the level of risk, uncertainty or heterogeneity of 

payoffs? Burton et al (2002) suggest that network effects are particularly important 

for entrepreneurs pursuing an innovative, more risky idea. 

It is also critical to consider the role of government and universities in fostering 

these networks. Evidence suggests that many of the most vibrant industries, 

characterized by successful, marketable, scientific innovations of the last century, had 

a strong inter-industry-university network. Cross university-industry networks are 

critical for high tech inventors particularly in Silicon Valley15 and the Boston area 

(Fleming and Frenken, 2007), biotechnology (Zucker, Darby and Brewer, 1998) and 

turn of the 20th century synthetic dye manufacturing (Murmann, 2003).  

                                                 
15 For instance, Stanford University’s initiatives have connected industry 
professionals with university researchers and have fostered a dense, interconnected 
network of experts who traversed between academia and industry. Three programs in 
particular fostered cross industry-university links. Two institutional programs started 
in ‘50s: University Honors Cooperative Program and the Stanford Industrial Park 
(Stanford Research Park) combined university research with nascent industry 
interests. Meanwhile, approx. 50 university research centers provided a forum for 
industry and university types to connect. (Castilla et al, 2002; Fleming and Frenken, 
2007) 
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Policies and initiatives that foster social networks within a research field or 

industry affect the success of entrepreneurs, as well as the network-wide, often 

regional, development. Other examples of policies that promote industry-university 

networks include the California University system and Cornell University programs 

to promote research in wine-making, viticulture and enology, the U.S. government 

programs for Nanotechnology research, and the Stanford University programs to 

promote research in high tech and communication with Silicon Valley firms. 

 

9 Conclusion 

Through pathways of information, a strong social network enables its members to 

find compatible partners. I present a discrete matching model with heterogeneous 

values and an undirected social network to understand how an entrepreneur uses her 

network of preexisting contacts to find the best partner for her project. The model 

offers a framework to study how relative network positions affect payoffs and 

incentives within a network. 

An entrepreneur’s expected return to the network is a function of her own 

connectedness as well as the connectedness of her competitors. A more connected 

entrepreneur has a higher probability of finding a compatible partner. The externality 

of a competing entrepreneur’s connectedness is more complex. When an 

entrepreneur’s network increases, her closest competitors are hurt, but less similar 

competitors may be more likely to receive a suitable partner. I compare the individual 

effects and social benefits across the most common network structures. In a more 

connected network, every agent is more likely to find a ore compatible partner. 
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Results from the model are consistent with empirical evidence on entrepreneurial 

networks and “spawning,” the process by which employees of a firm leave to become 

founders of a startup. First, more connected entrepreneurs are more likely to succeed. 

Second, while more networked entrepreneurs impede less connected, nearby 

competitors, they may make it easier for more distant competitors to find the best 

entrepreneurs. Third, regions with denser networks have both higher rates of 

entrepreneurship and higher rates of entrepreneurial success. 

In a related paper I consider the consequences of extending this model to consider 

the impact of allowing for an endogenous network of weak ties. The present research 

focuses on a static, exogenous network. This paper uses results from above to explore 

the tradeoffs between an existing exogenous network and the possibility of creating a 

more efficient, but costly network. 

Future research might also consider the impact of the above results on innovation 

and creativity. My results suggest that social networks promote connected insiders 

over newcomers. If creative, innovative ideas emerge from unconventional thinking, 

the above suggest that social networks that impede unconnected entrants might be 

harmful for innovation and creativity. These are concerns that are worth exploring 

through either a intertemporal dynamic model, or a model that considers the 

implications for learning, creativity or innovation.16 

                                                 
16 For literature on the network implications for innovation and creativity see Baumol 
(2004), Burt (2003), Uzzi (1996), Uzzi (2005), Uzzi & Spiro (2004), Schilling and 
Phelps (2004). 



 

 37 
 

10 Appendix 

Lemma 1. Under condition 1, each entrepreneur strictly prefers to match with a 

closer specialist, and each specialist prefers to match with a closer entrepreneur. 

Proof of Lemma 1. Let uij and vij represent the respective individual payoffs to 

entrepreneur ei and specialist sj for match {ij}, such that* ij ! uij . vij . Denote the 

respective outside options for any entrepreneur and any specialist as  u  and v , 

where * ! u . v . Consider any ei, ek "E and sj, sl "S such that gij = gkj = gil = 1 and dij 

< dkj ! dil (i.e., both entrepreneurs are linked to specialist sj and both specialists are 

linked to ei, and ei and sj are closest to each other). Finally, suppose that ek and sl have 

no other feasible, intra-network options. For instance, ek and sl are only linked to sj 

and ei respectively. See figure. 

Since ek and sl have no other partner options, ek prefers to match with sj if  ukj / u  

and sl prefers to match with ei if vil / v . In turn, if ukj / u  and vil / v , the match 

payoffs to ei and sj for matches {kj} and {il} are vkj 4 * kj 1 u  and uil 4 * il 1 v , 

respectively. 

For {ij} to be a pairwise stable match, the payoffs to ei and sj must be greater 

under {ij} than under the alternative matches {il} and {kj}. This implies that  uij / uil  

and vij / vkj . Substituting in  vkj 4 * kj 1 u  anduil 4 * il 1 v , then {ij} is stable if 

 uij 0 * il 1 v  and
 
vij 0 * kj 1 u . Combining these two conditions and recalling 

that 
* ij ! uij . vij : 

 * ij ! uij . vij / uil . vkj ! * il 1 v . * kj 1 u ! * il . * kj 1 * . 
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Match {ij} is stable as long as * ij 1 * kj / * il 1 *  or, rearranging 

terms, 
* ij . * / * il . * kj . 

It is sufficient to prove the above strongest case. If ek and/or sl have an alternative, 

feasible, intra-network option, then the competing agent’s rational payoff is strictly 

greater than the outside option: ukj 0 u and vil 0 v  and this condition will continue to 

hold.  

Q.E.D. 

 

Proposition 1. In the case of a strictly incomplete network of uniform network 

connectedness, conditional on finding a match, any entrepreneur ei is most likely to 

partner with her closest specialist. 

Proof of proposition 1. 

(1) For two perfectly compatible agents, the probability of a match is equal to the 

entrepreneur’s local network probability &i. 

Consider any entrepreneur ei and her perfectly compatible specialist sj. By definition 

 ei ! sj  and
  
dij ! 0 . Further, the subsets of preferred agents N (ei ,dij )  and 

  
N (sj ,dij )  

are empty. This implies that the probabilities of a better match are equal to zero for 

both ei and sj:   
p(ei ,s;& )

s"H% ! 0and p(e,sj ;& )
e"H% ! 0 . Following equation (1.1) 

the match probability is equal to the entrepreneur’s network probability: 

  
p(ei ,sj ;& ) ! & i = 11 p(ei ,s;& )

s"H%+ 2= 11 p(e,s j ;& )
e"H%+ 2! & i . 
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(2) For not perfectly compatible agents, the probability of a match is strictly less than 

&i. 

Consider any entrepreneur ei and specialist sl such that dil 0 0 . Then the subsets of 

preferred agents   N (ei ,dil )  and N (sl ,dil )  contain at least two agents (i.e., the perfectly 

compatible partner and the equidistant partner). This implies that the probabilities of a 

better match are positive and strictly greater than the network probability for both ei 

and sl: 
  

p(ei ,s;& )
s"N (ei ,dil )% / pi,i . pi,m where dim ! dil  and sl I sm , and 

  
p(e,sj ;& )

e"N (sl ,dil )% / pj , j . pk , j  where dkl ! dil  and ei I ek . Following equation 

(1.1) the match probability is less than the entrepreneur’s network probability: 

  
p(ei ,sj ;& ) ! & i = 11 p(ei ,s;& )

s"N (ei ,dil )%+ 2= 11 p(e,s j ;& )
e"N (sl ,dil )%+ 2# & i . 

From (1) and (2) the probability of a perfectly compatible match is higher than the 

probability for any non-perfectly compatible match: pij ! & i 0 pil if
  0 ! dij # dil . 

Conditional on finding a match, an entrepreneur is most likely to match with her 

perfectly compatible specialist. Q.E.D 

 

Corollary 1a. In the case of an incomplete network with uniform probabilities, for 

any entrepreneur ei, her preference over any match is decreasing in distance:  

  
11 p(ei ,s;& )

s"N (ei ,dij )%+ 20 11 p(ei ,s;& )
s"N (ei ,dil )%+ 2if dij # dil  
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Proof of Corollary 1a. Consider any entrepreneur ei and any two specialists sj and sl 

such that dij # dil . From (1.1), the probabilities of matches {ij} and {il} are: 

  
pij ! p(ei ,sj ;& ) ! & i = 11 p(ei ,s;& )

s"N (ei ,dij )%>
?@

A
BC
= 11 p(e,sj ;& )

e"N (s j ,dij )%>
?@

A
BC

 

  
pil ! p(ei ,sl ;& ) ! & i = 11 p(ei ,s;& )

s"N (ei ,dil )%>
?@

A
BC
= 11 p(e,sl ;& )

e"N (sl ,dij )%>
?@

A
BC

 

Recall that the ex ante probability that ei prefers sj to her other feasible options is 

  
11 p(ei ,s;& )

s"N (ei ,dij )%  where N (ej ,dij ) ! s | ei 1 dij 4 s 4 ei . dij
>? AB \ {sj}; the ex ante 

probability that ei prefers sl is 11 p(ei ,s;& )
s"N (ei ,dil )%  

where
  N (ei ,dil ) ! s | ei 1 dil 4 s 4 ei . dil>? AB \ {sl}.  

Assume that 
  
* (dij .

1
m

) / *  so that ei or sj would prefer a match of distance 

  
dij .

1
m

 over the outside option. Since the & #) for all entrepreneurs, the probability 

of a match for distance 
  
dij .

1
m

 is strictly positive: pi, jJ1 0 0 and piJ1, j 0 0 . This 

assumption ensures that matches beyond dij may occur with some probability. 

If  dij # dil  then 
  N (ei ,dij )K N (ei ,dil )  and 

  
p(ei ,s;&2N (ei ,dil )% ! p(ei ,s;&2N (ei ,dij )% . p(ei ,s;&2N (ei ,dil )1N (ei ,dij )% 0 p(ei ,s;&2N (ei ,dij )%

. Adding one to both sides and rearranging terms: 



 

 41 
 

  
11 p(ei ,s)

s"N (ei ,dij )%>
?@

A
BC
0 11 p(ei ,s)

s"N (ei ,dil )%>
?@

A
BC

 (1.2) 

By condition (1.2), for any ei, sj and sl such that dij # dil  the probability that ei prefers 

sj is greater than the probability that ei prefers sl. This implies that the probability that 

ei prefers to match with any specialist is decreasing in distance between the 

entrepreneur and specialist. Q.E.D. 

 

Corollary 1b. In the case of an incomplete network of uniform network probabilities, 

competition for any specialist sj is increasing in distance:  

if  dij # dkj  then
  
11 p(e,sj ;& )

e"N (s j ,dij )%+ 20 11 p(e,sj ;& )
e"N (s j ,dkj )%+ 2. 

Proof of Corollary 1b. Consider any two entrepreneurs ei and ek and specialist sj 

such that dij # dkj . From (1.1), the probabilities of matches {ij} and {kj} are: 

  
pij ! p(ei ,sj ;& ) ! & i = 11 p(ei ,s;& )

s"N (ei ,dij )%>
?@

A
BC
= 11 p(e,sj ;& )

e"N (s j ,dij )%>
?@

A
BC

 

  
pkj ! p(ek ,s j ;& ) ! & k = 11 p(ei ,s;& )

s"N (ei ,dkj )%>
?@

A
BC
= 11 p(e,sj ;& )

e"N (s j ,dkj )%>
?@

A
BC

 

Recall that the ex ante probability that sj is feasible for ei is 11 p(e,s j ;& )
e"N (s j ,dij )%  

and the ex ante probability that sj is feasible for ek is11 p(e,s j ;& )
e"N (s j ,dij )% .  
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Assume that 
  
* (dij .

1
m

) / *  so that ei or sj would prefer a match of distance 

  
dij .

1
m

 over the outside option. Since the & #) for all entrepreneurs, the probability 

of a match for distance 
  
dij .

1
m

 is strictly positive: pi, jJ1 0 0 and piJ1, j 0 0 . This 

assumption ensures that matches beyond dij may occur with some probability. 

If  dij # dkj  then 
  N (sj ,dij )L N (sj ,dkj )  and 

  
p(e,sj ;& )

e"N (s j ,dkj )% ! p(e,sj ;& )
e"N (s j ,dij )% . p(e,sj ;& )

e"N (s j ,dkj )1N (s j ,dij )% . Similar to 

Step 2, it follows that 
  
11 p(e,s j ;& )

e"N (s j ,dkj )% 0 11 p(e,sj ;& )
e"N (s j ,dij )% . This 

condition implies that, for any specialist sj, and two entrepreneurs ei and ek such that 

 dij # dkj , ek is less likely to be able to partner with specialist sj (i.e., experiences more 

competition) than ei. Q.E.D. 

 

Lemma 2. Consider any entrepreneur ei, and specialists sj and sh such that ei is more 

compatible with sh than sj,  dij 0 dih . The probability that ei is available to sj, 

  
& i 11 p(ei ,s)

s"N (ei ,dij )%+ 2, is decreasing in ei’s own probability of matching with her 

more compatible specialists: 

If 
  sh "N (ei ,dij )  then M

M& k

& i 11 p(ei ,s)
s"N (ei ,dij )%+ 2>

?@
A
BC
# 0  

If 
  sh NN (ei ,dij )  then M

M& k

& i 11 p(ei ,s)
s"N (ei ,dij )%+ 2>

?@
A
BC
! 0  
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Proof of Lemma 2. First, recall the probability of any match {ij} 

Consider any direct competitor to ei for sj, ek "N (s j ,dij ) , and the competitor’s 

probability of matching with sj, p(ek ,sj ) . For each ek "N (s j ,dij )  the total effect of a 

shift in 
  p(ek ,s j )  on 

  
p(ei ,sj )  is equal to the direct marginal effect, 

  
1& i = 11 p(ei ,s;& )

s"N (ei ,dij )%+ 2, plus the indirect effects of each shift in each of ei’s 

other competitors for sj who are also effected by a shift 

in
  p(ek ,s j ) ,

  

Mp(ei ,sj )
Mp(em ,s j )

=
Mp(em ,s j )
Mp(ek ,s j )

em "N (s j ,dij )% : 

 
  

dp(ei ,sj )
dp(ek ,s j )

!
Mp(ei ,sj )
Mp(ek ,sj )

.
Mp(ei ,sj )
Mp(em ,sj )

=
Mp(em ,sj )
Mp(ek ,sj )

em " N (s j ,dij )1N (s j ,dkj ): ;%  (1.3) 

A note on indirect effects (i.e., competitors of competitors) and the summation 

set
  

N (sj ,dij ) 1 N (sj ,dkj ): ;. For any unique specialist sj, if he prefers to a match with 

em over ei then
  em "N (sj ,dij ) . Further, if he prefers to match with ek over 

em,
  ek "N (s j ,dmj ) . It must also be that dmj # dij  and N (sj ,dmj )L N (sj ,dij ) . This 

implies that
  ek "N (s j ,dij ) . For entrepreneur ei and any specialist sj, if ek is a 

competitor of ei’s competitor em" she is also a direct competitor of ei: if   ek "N (sj ,dkj )  

and  dkj # dij  then
  ek "N (s j ,dij ) . In addition to the direct effect of pkj, the subset 

  
N (sj ,dij ) 1 N (sj ,dkj ): ; include the indirect effects of pkj, on ei’s other competitors, 
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preferred over ei but not preferred over ek. Equation (1.3) is the complete, direct and 

indirect, effect of a shift in 
  p(ek ,sj )  on p(ei ,sj ) . 

Since the direct effect of a shift in any competitor is equal, 

  

Mp(ei ,s j )
Mp(e,sj )

! 1& i = 11 p(ei ,s;& )
s"N (ei ,dij )%+ 2for all e"N (s j ,dij ) , rewrite (1.3) as 

 
  

dp(ei ,sj )
dp(ek ,s j )

! 1& i = 11 p(ei ,s;& )
s"N (ei ,dij )%+ 21.

dp(em ,sj )
dp(ek ,sj )

em "N (s j ,dij )1N (s j ,dkj )%
O

P
Q

R

S
T (1.4) 

where each 

  

dp(em ,sj )
dp(ek ,sj )

! 1&m 11 p(ei ,s;& )
s"N (em ,dmj )%+ 2= 1.

dp(en ,s j )
dp(em ,sj )

en "N (s j ,dkj )1N (s j ,dmj )%
O

P
Q

R

S
T .  

To evaluate the value of (1.4), consider the term & i = 11 p(ei ,s;& )
s"N (ei ,dij )%+ 2 for 

any ei. For any 
  
dij 0 0 , 

  
p(ei ,s;& )

s"N (ei ,dij )% /& i . This implies that 

  
0 # & i 11 p(ei ,s;& )

s"N (ei ,dij )%+ 2# & i 11 & i+ 2. For any & i " 0,1+ 2, 

  
& i 11 & i+ 2" 0+ ,0.25AB . More specifically, & i 11 & i+ 2- 0.25 as & i - 0.5  from above 

or below. Then, since 
  
0 # & i 11 p(ei ,s;& )

s"N (ei ,dij )%+ 2# & i 11 & i+ 2" 0,0.25+ 2:  

  
1& i 11 p(ei ,s;& )

s"N (ei ,dij )%+ 2"1(0,0.25)  

Further, as dij  increases, the cumulative probability of a better match, 

  
p(ei ,s;& )

s"N (ei ,dij )% , increases and & i 11 p(ei ,s;& )
s"N (ei ,dij )%+ 2 decreases. A greater 



 

 45 
 

distance between agents implies a smaller competitive externality effect of a shift in 

competitor’s probability. 

With the recursive nature of the problem, this applies to both the direct effect as 

well as each of the indirect effects, but with off-setting signs. Referring back to (1.4), 

the second term, 
  

1.
dp(em ,s j )
dp(ek ,s j )

em "N (s j ,dij )1N (s j ,dkj )%
O

P
Q

R

S
T , is strictly between zero and 1. 

Each indirect effect, 
  

dp(en ,sj )
dp(em ,sj )

, is also strictly between zero and -0.25, and 

diminishing in distance. Further, the sum of these indirect effects offset the direct 

effect, but never exceeds -1: 
dp(em ,sj )
dp(ek ,sj )

em "N (s j ,dij )1N (s j ,dkj )% "1 0,1+ 2. Therefore, the 

direct effect of a shift in competitor’s probability is always strictly negative, between 

zero and -0.25, but is diminishing in distance. 

For any ei and competitor ek with match probabilities p(ei ,sj )  and   p(ek ,sl ) . If 

 s j I sl  or 
  ek NN (s j ,dij )  then a shift in the competitor’s probability   p(ek ,sl )  has no 

effect on the competitive externality of match p(ei ,sj ) . Q.E.D. 

 

Lemma 3. The competitive externality of a match between any entrepreneur ei 

matching with any specialist sj is only affected by competing entrepreneurs, eg, who 

are more compatible with sj:  

If 
  eg "N (sj ,dij )  then M

Mp(ei ,sh )
11 p(e,sj ;& )

e"N (s j ,dij )%+ 2# 0  
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If 
  
eg NN (sj ,dij )  then M

Mp(ei ,sh )
11 p(e,sj ;& )

e"N (s j ,dij )%+ 2! 0  

Proof of Lemma 3. First, recall the probability of any match {ij} 

  
p(ei ,sj ;& ) ! & i = 11 p(ei ,s;& )

s"N (ei ,dij )%>
?@

A
BC
= 11 p(e,sj ;& )

e"N (s j ,dij )%>
?@

A
BC

 

For any ei consider the effect of a shift in match probabilities p(ei ,sl )  on
  
p(ei ,sj ) . 

First, if ei prefers sj to sl then there is no effect: if s j NN (ei ,dil )  then 
 
dij 0 dil  and 

  

dp(ei ,sl )
dp(ei ,sj )

! 0 . Next, 
  

dp(ei ,sj )
dp(ei ,sj )

! 1. Finally, if sl "N (ei ,dij )  then 

 
  

dp(ei ,s j )
dp(ei ,sl )

!
Mp(ei ,sj )
Mp(ei ,sl )

.
Mp(ei ,sj )
Mp(ei ,sn )

=
Mp(ei ,sn )
Mp(ei ,sl )

sn " N (ei ,dij )1N (ei ,dil ): ;%  (1.4) 

where the first term, 
  

Mp(ei ,sj )
Mp(ei ,sl )

! 1& i = 11 p(e,s j ;& )
e"N (s j ,dij )%+ 2, represents the direct 

effect of a shift in probabilities p(ei ,sl )  on p(ei ,sj ) , and the second term represents 

the cumulative effect of all other shifts. Replacing the direct effect of a shift in any 

probability over a preferred, closer match is equal, 

  

Mp(ei ,sj )
Mp(ei ,s)

! 1& i = 11 p(e,s j ;& )
e"N (s j ,dij )%+ 2 for all s "N (ei ,dij ) : 

  

dp(ei ,sj )
dp(ei ,sl )

! 1& i = 11 p(e,sj ;& )
e"N (s j ,dij )%+ 21.

dp(ei ,sn )
dp(ei ,sl )

sn " N (ei ,dij )1N (ei ,dil ): ;%
O

PQ
R

ST
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Following the logic from Lemma 2, the sum of the indirect effects, 

  

dp(ei ,sn )
dp(ei ,sl )

sn " N (ei ,dij )1N (ei ,dil ): ;% , is never less than -1, so the total change must be 

negative. Q.E.D. 

 

Proposition 2. For any entrepreneur ei, an increase in her own network degree 

strictly increases her ex ante expected return of a partnership: if & i
' 0 & i  then 

  * i (& ') 0 * i (& ) . 

Proof of proposition 2. There are three steps to this proof. In step 1, I show that the 

aggregate probability of a match of any distance for ei is increasing in &i. Step 2 

analyzes shifts in marginal match probabilities with respect to a shift in &i. If a pair is 

perfectly compatible such that dij ! 0  then 
Mpij

M& i

! 1 . If a match is not perfectly 

compatible such that 
  dij 0 0  then 

Mpij

M& i

# 1. In fact, there exists a threshold distance d  

such that probabilities are increasing for closer matches, and probabilities of a match 

are decreasing for more distant matches: if dij # d  then 
Mpij

M& i

0 0 , and if  dij 0 d  then 

  

Mpij

M& i

# 0 . In step 3 it must be that the expected return must be increasing in &I.  

Step 1. For any entrepreneur ei, the aggregate probability of a match weakly 

preferred to a match of any distance dij is weakly increasing in &i over the subset 

  N (ei ,dij ) . 



 

 48 
 

Proof. For any entrepreneur ei, let the aggregate probability of a match with sj or 

higher rank is: 

  
PN (ei ,dij )
& ! p(ei ,s;& )

s"N (ei ,dij )% ! & i = 11 PN (ei ,dij )
&+ 2= 11 PN (s j ,dij )

&+ 2s"N (ei ,dij )%  

The marginal change in aggregate probability with respect to &i is: 

  

MPN (ei ,dij )
&

M& i

! 11 PN (ei ,dij )
&+ 2= 11 PN (s j ,dij )

&+ 21& i =
MPN (ei ,dij )

&

M& i

= 11 PN (s j ,dij )
&+ 21& i =

MPN (s j ,dij )
&

M&U

= 11 PN (ei ,dij )
&+ 2

V
W
X

YX

Z
[
X

\X
s"N (ei ,dij )%  

where the first term is the added benefit of knowing more people. The second term 

represents the shift in aggregate probabilities over all matches weakly preferred to 

{ij}. The benefit of knowing more people is offset by the extent to which aggregate 

probabilities have increased for better matches. Similarly, the third term includes any 

indirect shift in competitive externality over sj’s preferred matches due to a shift in &i. 

This third term is outweighed by the entrepreneur’s own shifts in preferences.  

Proof by contradiction. Suppose the aggregate probability of a better match is, in 

fact, decreasing in &i for some subset of the most preferred matches, so that 

  

MPN (ei ,dij )
&

M& i

# 0  for some ei, dij. Then it must be true that the aggregate shift in 

probability over better matches by both entrepreneur ei and specialist sj exceeds the 

added benefit of knowing more agents (i.e., the aggregate conditional feasibility over 

agents), 
  

11 PN (ei ,dij )
&+ 2= 11 PN (s j ,dij )

&+ 2s"N (ei ,dij )% :  

  

11 PN (ei ,dij )
&+ 2= 11 PN (s j ,dij )

&+ 2N (ei ,dij )% #& i =
MPN (ei ,dij )

&

M& i

= 11 PN (s j ,dij )
&+ 2. MPN (s j ,dij )

&

M&U

= 11 PN (ei ,dij )
&+ 2

O

P
Q
Q

R

S
T
TN (ei ,dij )%  
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For this to be true, however, the shift in aggregate probabilities over better 

matches increased by more than the added probability of knowing more agents. For 

this to be true, preference rankings over specialists must change with a shift in &i. 

That is, the aggregate probability that the match is feasible increases by more than the 

aggregate probability that entrepreneur match with an agent, but this is a 

contradiction.  

 

Step 2. The marginal probability of a perfectly compatible match is equal to one for 

  dij ! 0 . The marginal probability for more distant matches is always less than one 

(and may be negative). 

Proof. Recall that the match probability for a perfectly compatible match {ij} is 

  p(ei ,sj ;& 2 ! & i . (Proposition 1) This implies that 
M
M& i

p(ei ,sj ;& 2 ! 1 when  ei ! sj . 

Next, consider any entrepreneur ei and specialist sj such that dij 0 0 . By definition 

  
p(ei ,sj ;& ) ! & i = 11 p(ei ,s;& 2s"Nei

dij%O
PQ

R
ST
= 11 p(e,s j ;& 2e"Ns j

dij%O
PQ

R
ST

. The marginal 

change in match probability for pair {ij} with respect to a change in &i is: 

!  

Mp(ei ,s j ;& )
M& i

! 11 p(ei ,s;& 2s"Nei

dij%O
PQ

R
ST
= 11 p(e,s j ;& 2e"Ns j

dij%O
PQ

R
ST

( i)& '$$$$$$$$$ ($$$$$$$$$

1& i

Mp(ei ,s;& 2
M& i

s"Nei

dij% = 11 p(e,sj ;& 2e"Ns j

dij%O
PQ

R
ST

( ii)& '$$$$$$$$ ($$$$$$$$

1& i 11 p(ei ,s;& 2s"Nei

dij%O
PQ

R
ST
=

Mp(e,s j ;& 2
M& i

e"Ns j

dij%
( iii)

" #$$$$$$$$ %$$$$$$$$

 (1.5) 

Terms (i) and (ii) reflect the marginal change in entrepreneur ei’s local network 

effect. Term (i) is ei’s marginal benefit of being more likely to be linked to specialist 

sj. It is positive, strictly less than one, and equal to the probability that both ei prefers 
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sj, and sj prefers ei. According to Proposition 1, 11 p(ei ,s;& 2s"Nei

dij%O
PQ

R
ST

is decreasing 

in distance. Term (ii) reflects ei’s marginal change in aggregate match probability 

over all preferred matches. Since the change in aggregate match probability is non-

decreasing, the value of (i) and (ii) together is always less than one and less than the 

value of term (i): 

  

1# 11 p(ei , s;& 2s"Nei

dij%O
PQ

R
ST
= 11 p(e, sj ;& 2e"Ns j

dij%O
PQ

R
ST

# 11 p(ei , s;& 2s"Nei

dij%O
PQ

R
ST
= 11 p(e, sj ;& 2e"Ns j

dij%O
PQ

R
ST
1 & i

Mp(ei ,s;& 2
M& i

s"Nei

dij% = 11 p(e,sj ;& 2e"Ns j

dij%O
PQ

R
ST

! 11 p(ei ,s;& 2s"Nei

dij% 1& i

Mp(ei , s;& 2
M& i

s"Nei

dij%
O

PQ
R

ST
= 11 p(e,s j ;& 2e"Ns j

dij%O
PQ

R
ST

 

In fact, when 
  

11 p(ei ,s;& 2s"Nei

dij%O
PQ

R
ST
# & i

Mp(ei ,s;& 2
M& i

s"Nei

dij%
O

PQ
R

ST
 an increase in 

local network probability decreases the probability of a match between ei and sj. 

Intuitively, when the aggregate change in probability of a preferred match exceeds the 

probability that entrepreneur ei prefers a match with sj a positive shift in &i actually 

decreases the probability that ei prefers a match with sj. The left hand side is strictly 

decreasing in distance (proposition 1) and the right hand side is increasing in distance 

as long as 
  

11 p(ei ,s;& 2s"Nei

dij%O
PQ

R
ST
0 & i

Mp(ei ,s;& 2
M& i

s"Nei

dij%
O

PQ
R

ST
. This implies that, given 

the set of network probabilities &, for each entrepreneur ei and there exists a threshold 

distance,  d , within which and entrepreneur’s preference over matches is increasing 

and beyond which the probability is increasing. <Show that the threshold distance is 

greater for smaller values of &i.>0. 
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Term (iii) reflects the marginal change in entrepreneur ei’s competitive externality 

for specialist sj. According to Lemma 2, term (iii) is positive and never outweighs 

terms (i) and (ii). Since (ii) is strictly positive, is suffices that (iii) is strictly opposite 

in sign and smaller in absolute magnitude to show that 
Mp(ei ,s j ;& )

M& i

# 1. (Lemma 2) 

Step 3. The ex ante expected return is increasing in & i  such that if   & i
' 0 & i  then 

  * i (& i
' ,&1 i ) 0 * i (& i ,&1 i ) . 

Proof. Recall the ex ante expected return is the average expected return, where 

probabilities are weighted according to the equilibrium probabilities: 

  * i ! * (ei ,s) p(ei ,s;& )
s"S% . Consider any positive shift in & i  such that if   & i

' 0 & i . 

According to Step 1, 
  P(N (ei ,dij );& ) 0 P(N (ei ,dij );& ') .  

Next, suppose each individual match probability increased by a factor 6 0)  such 

that the sum of the aggregate match probabilities equals the updated aggregate match 

probability under  & i
' : 

  

P(N (ei ,dij );& ) ! p(ei ,s;&2s"N (ei ,dij )%
P(N (ei ,dij );& ') ! 6 p(ei ,s;& 2s"N (ei ,dij )%

 

Then the ex ante expected return also increases by a factor6 : 

  
* (ei ,s;& 2 = p(ei ,s;& 2s"N (ei ,dij )% #6 * (ei ,s;& 2 = p(ei ,s;& 2s"N (ei ,dij )% . 

Now consider the actual increase in individual match probabilities due to a shift 

in & i . For any match pair {ij} such that dij # d  then p(ei ,sj ;& ') 0 6 p(ei ,sj ;& ') , and 

for any pair such that  dij 0 d  then p(ei ,sj ;& ') # 6 p(ei ,sj ;& ') . Further, for perfectly 
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compatible pair
  p(ei ,sj ;& ') ! & i

' 0 & i ! p(ei ,sj ;& ') . Since the expected return to each 

match is decreasing in match distance this further implies that  

  
* (ei ,s2 = p(ei ,s;& '2

s"N (ei ,dij )% 06 * (ei ,s2 = p(ei ,s;& 2s"N (ei ,dij )% 0 * (ei ,s2 = p(ei ,s;& 2s"N (ei ,dij )%  

The ex ante expected return is increasing in& i . 

Q.E.D. 

 

Proposition 3. For any entrepreneur ei and competing entrepreneur ek, the effect of a 

shift in the competitor’s network probability is negative for compatible competitors, 

but positive for less compatible competitors (i.e., high dik). 

Proof of Proposition 3. 

Preliminarily, consider the effect on competing entrepreneur ek’s match probabilities 

of a shift in own network probability from & k  to & k
' . From Proposition 2, her 

probability of a perfectly compatible match with specialist sk ! ek , 
  pk ,k ! & k  shifts to 

  pk ,k
' ! & k

' . By Proposition 2 step 2, however, the change in pk ,k J l  (i.e., the probability 

of an   l .1 ranked match) depends on the value of & k , her competitors’  &1k  and the 

value of l. There is some distance beyond which the probability of a match for ek is 

decreasing in  & k  and the sign of 
Mpk ,k J l

M& k

 switches. 

Next, consider the effect on entrepreneur ei’s match probabilities of a shift in 

competitor ek’s network probability from & k  to& k
' . Assume ei I ek . There are two 

types of effects: (1) The competitive externality of a shift in competitor’s probability 
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and (2) the subsequent local effect of any shift in p(ei ,s)  on ei’s more distant 

matches. From Lemma 2, the offsetting cumulateive effect on ei’s more distant 

matches is strictly less than the initial shift effect on p(ei ,sj ) . It follows that we must 

only consider the direct effect of p(ek ,sj )  on p(ei ,sj ) . Two important implications 

emerge form Lemma 3. (i) A shift in p(ek ,s j )  only effects p(ei ,sj )  (i.e., 

  

dp(ei ,s j )
dp(ek ,sj )

I 0 ) if  dij / dkj  and ek "N (s j ,dij ) . (ii) If ek "N (s j ,dij )  then 
  p(ek ,sj )  has 

a negative effect on 
  p(ei ,sj ) : 

 
  

dp(ei ,sj )
dp(ek ,s j )

! 1& i = 11 p(ei ,s;& )
s"N (ei ,dij )%+ 21.

dp(em ,sj )
dp(ek ,sj )

em "N (s j ,dij )1N (s j ,dkj )%
O

P
Q

R

S
T # 0  

For entrepreneur ei and specialist sj there is a competitive externality at effect if 

  ek "N (s j ,dij ) , or if  dkj 4 dij . 

Turning to the relationship between and p(ek ,sj )  and a shift in& k . By 

Proposition 2, the value of 
  

Mp(ek ,sj )
M& k

 is positive for close matches, diminishing in 

distance but turns, and negative for matches beyond some threshold distance 

  d (ek ;& 2 .  

Next, consider the effect of a shift in & k on two types of entrepreneurs. First, 

suppose 
  
ek ! ei .

1
m

, so the entrepreneurs are neighboring competitors. When 

  
ek ! ei .

1
m

 an increase in  & k  has no effect on p(ei ,s | s ! ek ) , but always has a 
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negative effect on ei’s next highest valued match p(ei ,s | s ! ek ) . It follows that the 

subsequent indirect effects will not offset this initial shift in the second highest valued 

match. The expected surplus return is strictly lower for ei. 

Next suppose 
 
ek ! ei .

l
m

 for l > 1. Now an increase in & k  has no effect on 

  p(ei ,s | s ! ek )  or ei’s next highest valued match p(ei ,s | s ! ek ) . For entrepreneur ei, 

the closest effect of a shift in & k  is in competition over some specialist sj such that 

 s j I ek  but  dij / dkj . The impact of p(ek ,s j )  on p(ei ,sj )  is negative, but now the 

impact of  & k  on 
  p(ek ,sj )  is negative or positive depending on the value of  & k  and 

the distance dkj. For every pair (ek, sj) such that 
p(ek ,sj )
& k

# 0  the cumulative impact 

on 
  p(ei ,sj )  is positive. It follows that the expected return for ei may be increasing in 

 & k . Q.E.D 

 

Proposition 4. In a complete network, there exists a unique stable equilibrium match 

M* which is positively assortative (i.e., strictly monotonic in agent types) and socially 

optimal. 

Proof of proposition 4. 

Any match such that at least one pair of agents closest to each other are not 

matched is unstable since there is at least one efficient deviation. Consider some 

match M’ where at least one match {ij’} is not assortative, dij’> 0. Then ei optimally 

deviates to match with si = ei instead of sj’. Similarly, there is some entrepreneur ei’ = 
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sj’ such that sj’ prefers to match with ei’. In this case, there is some mutually 

preferred, feasible matching. When she knows each specialist, the revenue-

maximizing entrepreneur prefers the specialist whose skill is perfectly compatible. 

In the complete network gij ! 1 for all pairs {ij}. Every entrepreneur has a link to 

every specialist. By Lemma 1, each entrepreneur most prefers a match with her 

perfectly compatible specialist, dij ! 0 . Similarly, each specialist most prefers a 

match with his closest entrepreneur. * ij ! * G  for all ij. There is no agent who 

chooses to deviate from this distance minimizing matching. The assortative, strictly 

monotonic matching M* is pairwise stable and individually rational. Further, since 

  
* ij 0 max * i ' j ,* ij ' ,*0+ 2 it is socially optimal. 

Next, consider any other match M ' I M . There must be at least one match {ij’} 

such that 
  dij ' 0 0  and 

  * (dij ) # * * . Then ei wishes to deviate by matching with 

 s j ! ei . Under matching M’, specialist sj is either unmatched or matched with some 

entrepreneur ei’ such that di’j > 0 with associated payoff * (dij ) # * G . Specialist s also 

prefers to deviate and match with ei. Then any matching M’ is unstable. There is no 

other pairwise stable match. Q.E.D. 

 

Lemma A1. Under a uniform, homogeneous network in equilibrium, the probabilities 

for every feasible match of a distance d are equal. Further, these match probabilities 

are decreasing in distance: for any {ij} such that dij ! d  then pij ! p(d)  where 

  
d ! 0,

1
m

,
2
m

,... , and for any   d ' 0 d  then p(d ') # p(d) . 
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Proof of Lemma A1. There are three steps to this proof. Step 1 shows the existence 

of a symmetric equilibrium in which every match probability of a given distance is 

equal. This is the only stable, rational equilibrium. Under this equilibrium, the 

probabilities of a match are decreasing in match distance.  

In a uniform, homogeneous network of m entrepreneurs and m specialists with 

uniform network degree  & ! & i  for all i, there are m2 possible equilibrium match 

probabilities, defined as follows: 

]  pij ! & for all {ij} such that ei ! s j  and dij ! 0  

] 
!  
pij ! & = )1 pi,i 1 pi,i)1+ 2= 11 p j , j 1 pjJ1, j+ 2for all {ij} such that 

  
s j ! ei J

1
m

 and 

  
dij !

1
m

 

] 
!  
pij ! & = )1 pi,i 1 pi,i)1 1 pi,i)1 1 pi,i)2+ 2= 11 pj , j 1 p jJ1, j 1 pj)1, j 1 pjJ2, j+ 2for all 

{ij} 
  
s j ! ei J

2
m

 and 
  
dij !

2
m

 

] … 

 

Suppose all match probabilities for each unique distance d0 be equal and represented 

as   p(d0 )  for 
  
d0 ! 0,

1
m

,
2
m

,... . Replacing these values into the system of equations 

defined above: 

]   p(0) ! &  
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] 
  
p(

1
m

) ! & = )1 & 1 p(
1
m

)
O
PQ

R
ST
= )1 & 1 p(

1
m

)
O
PQ

R
ST

 

] 
  
p(

2
m

) ! & = )1 & 1 2 p(
1
m

) 1 p(
2
m

)
O
PQ

R
ST
= )1 & 1 2 p(

1
m

) 1 p(
2
m

)
O
PQ

R
ST

 

] … 

] 
  
p 1

2
O
PQ

R
ST
! & = )1 p(0) 1 2 p(

1
m

) 1 2 p(
2
m

) 1 ...1 2 p m 1 2
2

O
PQ

R
ST

O

PQ
R

ST

2

if value of m is 

even, or  

  
p (m 11) 2

m
O
PQ

R
ST
! & = )1 p(0) 1 2 p(

1
m

) 1 2 p(
2
m

) 1 ...1 2 p (m 1 3) 2
m

O
PQ

R
ST
1 p (m 11) 2

m
O
PQ

R
ST

O

PQ
R

ST

2

 if value of m is odd. 

Since   p(d) 4 1 , starting with p(0) ! & , there is a unique solution to the system of 

simultaneous equations in which each probability is a function of &: 

Suppose there exists an equilibrium such that the match probabilities for some 

distance d0 are not equal. For this to be true there must be some entrepreneur who 

strictly prefers one specialist at distance d0 over her the other specialist at distance d0. 

This is a contradiction.  

Q.E.D. 

 

Proposition A1. In the case of homogeneous, uniform network probabilities, an 

entrepreneur’s preference over a match is decreasing in distance, while her 

competition for any match is increasing. 

Proof of proposition A1. Propositions 1a and 1b show that the preferences over 

matches is decreasing in distance. We must further show that, in the case of uniform, 
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homogeneous network probabilities, competition is weakly decreasing in distance for 

each entrepreneur.  

For entrepreneur ei, the probability of loosing a match with specialist sj to a 

competitor is  

  
p(e,sj ;& )

e"N (s j ,dij )%  where N (sj ,dij ) ! e | sj 1 dij 4 e 4 sj . dij
>? AB \ {s j} 

Similarly, the probability of loosing a match with specialist sl to a competitor is 

  
p(e,sj ;& )

e"N (s j ,dil )%  where N (sl ,dil ) ! e | sl 1 dil 4 e 4 sl . dil>? AB \ {sl}  

From Proposition AI, the match probabilities of every feasible match at distance d 

are equal for any 
  
d ! 0,

1
m

,
2
m

,...
V
W
Y

Z
[
\

. Then, ei’s competition for specialist sj is:  

 
  

p(e,s j ;& )
e"Ns j

dij% ! p(dij ) . p(dij 1
1
m

) . .... p(
1
m

) . p(0) . p(
1
m

) . .... p(dij 1
1
m

)

 (1.6) 

and her competition for specialist sl is: 

 
  

p(e,sl ;& )
e"Nsl

dil% ! p(dil ) . p(dil 1
1
m

) . .... p(
1
m

) . p(0) . p(
1
m

) . .... p(dil 1
1
m

)

 (1.7) 

Then, for any 
  ei ,  sj  and sl  such that dij # dil , p(e,sl ;& )

e"Nsl

dil% 0 p(e,sj ;& )
e"Ns j

dij%  

and the competition entrepreneur ei faces at specialist sl is greater than the 

competition she faces at sj. Q.E.D. 

Proof of Proposition 5. 
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Under Proposition 4, the optimal social welfare is W ! m*+0) , where each 

entrepreneur partners with her perfectly compatible specialist with probability one, 

  
p(ei ,sj ) ! 1| ei ! sj+ 2. In the case of an incomplete, homogeneous network of network 

connectedness & < 1 each entrepreneur partners with her perfectly compatible 

specialist with probability &, p(ei ,s j ) ! & | ei ! s j+ 2. Since the expected return to a 

perfectly compatible partnership is strictly higher than any other partnership, it 

follows that the expected return to an incomplete network is less than optimal for 

each entrepreneur and the social welfare is strictly less than the optimal. 

Suppose the network connectedness increases from & to &’. Then the probability 

of a perfectly compatible match increases from p(ei ,sj ) ! & | ei ! sj+ 2 to 

  
p(ei ,sj ) ! & ' | ei ! sj+ 2, and the probabilities over less compatible matches shift 

accordingly. It follows that the expected social welfare also increases. 

When 
 
& !

)
m

, there always exists some probability that two agents are connected 

to the same entrepreneur, so the probability of a match is actually less than 
  
1
m

. It 

follows that expected social welfare is less than the random network without 

replacement. Q.E.D.
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Example (m = 3). When m = 3, the match probability matrix P is: 

  

P !

&) & 2 (11 p22 1 p23 )(11 p11 1 p31) &E(11 p33 )(11 p11)
&)(11 p11)(11 p22 ) & 2 &E(11 p33 1 p13 )(11 p22 1 p12 )

&)(11 p11 1 p12 )(11 p33 1 p23 ) & 2 (11 p22 )(11 p33) & 3

>

?

@
@
@

A

B

C
C
C
 

The probability matrix implies a system of 9 equations and 9 unknowns: 

  

p11 ! &)

p12 ! &) = (11 p11) = (11 p22 )
p13 ! &) = (11 p11 1 p12 ) = (11 p23 1 p33)

 
p21 ! & 2 = (11 p22 1 p23) = (11 p11 1 p31)
p22 ! &^

p23 ! & 2 = (11 p22 ) = (11 p33)
 

  

p31 ! &E = (11 p33) = (11 p1))
p32 ! &E = (11 p33 1 p31) = (11 p12 1 p22 )
p33 ! &E
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Example (m = 4). When m = 4, the match probability matrix P is: 

  

&) & 2 = (11 p2 jj!2,3% ) = (11 pi1i!1,4% ) &E = (11 p3 jj!2,3,4% ) = (11 pi1i!1,2,4% ) &F = (11 p44 ) = (11 p11 )

&) = (11 p11 ) = (11 p22 ) &^ &E = (11 p3 jj!3,4% ) = (11 pi2i!1,2% ) &F = (11 p4 jj!1,3,4% ) = (11 pi2i!1,2,3% )

&) = (11 p1 jj!1,2,4% ) = (11 pi3i!2,3,4% ) & 2 = (11 p22 ) = (11 p33 ) &E &F = (11 p4 jj!1,4% ) = (11 pi3i!2,3% )

&) = (11 p1 jj!1,2% ) = (11 pi4i!3,4% ) &^ = (11 p2 jj!1,2,3% ) = (11 pi4i!1,3,4% ) &E = (11 p33 ) = (11 p44 ) &F

>

?

@
@
@
@
@
@

A

B

C
C
C
C
C
C

 

The probability matrix implies a system of 16 equations and 16 unknowns: 

  

p11 ! &)

p12 ! &) = (11 p11) = (11 p22 )
p13 ! &) = (11 p11 1 p12 1 p14 ) = (11 p23 1 p33 1 p43 )
p14 ! &) = (11 p11 1 p12 ) = (11 p34 1 p44 )

p21 ! & 2 = (11 p22 1 p23 ) = (11 p11 1 p41)
p22 ! &^

p23 ! & 2 = (11 p22 ) = (11 p33)
p24 ! &^ = (11 p21 1 p22 1 p23) = (11 p34 1 p44 1 p14 )

 

  

p31 ! &E = (11 p32 1 p33 1 p34 ) = (11 p1) 1 p21 1 p41)
p32 ! &E = (11 p33 1 p34 ) = (11 p12 1 p22 )
p33 ! &E

p34 ! &E = (11 p33) = (11 p4F )

p41 ! &F = (11 p44 ) = (11 p11)
p42 ! &F = (11 p41 1 p43 1 p44 ) = (11 p12 1 p22 1 p32 )
p43 ! &F = (11 p41 1 p44 ) = (11 p23 1 p33)
p44 ! &F
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Example (  m ! 5 ). When m = 5, the match probability matrix P is: 

  

&) & 2 (11 p2 jj! 2,3% ) = (11 pi2i!1,5% ) &E(11 p3 jj!2,3,4,5% ) = (11 pi1i!1,2,4,5% ) &F (11 p4 jj!3,4,5% ) = (11 pi1i!1,2,5% ) & 5(11 p55 ) = (11 p11)

&)(11 p11) = (11 p22 ) &^ &E(11 p3 jj!3,4% ) = (11 pi2i!1,2% ) &F (11 p4 jj!1,3,4,5% ) = (11 pi2i!1,2,3,5% ) &_ (11 p5 jj!1,4,5% ) = (11 pi2i!1,2,3% )

&)(11 p1 jj!1,2,5% ) = (11 pi3i!2,3,4% ) & 2 (11 p22 ) = (11 p33 ) &E &F (11 p4 jj! 4,5% ) = (11 pi3i! 2,3% ) & 5(11 p5 jj!1,2,3,4% ) = (11 pi5i!1,2,4,5% )

&)(11 p1 jj!1,2,3,5% ) = (11 pi4i!2,3,4,5% ) &^ (11 p2 jj!1,2,3% ) = (11 pi4i!3,4,5% ) &E(11 p33 ) = (11 p44 ) &F &_ (11 p5 jj!1,5% ) = (11 pi4i!3,4% )

&)(11 p1 jj!1,2% ) = (11 pi5i! 4,5% ) &^ (11 p2 jj!1,2,3,4% ) = (11 pi5i!1,3,4,5% ) &E(11 p3 jj!2,3,4% ) = (11 pi5i!2,4,5% ) &F (11 p44 ) = (11 pi5i!3,4% ) &_

>

?

@
@
@
@
@
@
@
@

A

B

C
C
C
C
C
C
C
C

 

The probability matrix implies a system of 25 equations and 25 unknowns: 

  

p11 ! &)

p12 ! &)(11 p11) =(11 p22 )
p13 ! &)(11 p11 1 p12 1 p15 ) = (11 p23 1 p33 1 p43)
p14 ! &)(11 p11 1 p12 1 p15 1 p13) = (11 p24 1 p34 1 p44 1 p54 )
p15 ! &)(11 p11 1 p12 ) = (11 p45 1 p55 )

p21 ! & 2 (11 p22 1 p23) = (11 p11 1 p31)
p22 ! &^

p23 ! & 2 (11 p22 ) = (11 p33)
p24 ! &^ (11 p21 1 p22 1 p23) =(11 p34 1 p44 1 p54 )
p25 ! &^ (11 p21 1 p22 1 p23 1 p24 ) = (11 p35 1 p45 1 p55 1 p15 )

p31 ! &E(11 p32 1 p33 1 p34 1 p35 ) =(11 p11 1 p21 1 p41 1 p51)
p32 ! &E(11 p33 1 p34 ) = (11 p12 1 p22 )
p33 ! &E

p34 ! &E(11 p33) =(11 p44 )
p35 ! &E(11 p32 1 p33 1 p34 ) = (11 p55 1 p45 1 p15 )

p41 ! &F (11 p43 1 p44 1 p45 ) =(11 p11 1 p21 1 p51)
p42 ! &F (11 p43 1 p44 1 p45 1 p15 ) = (11 p12 1 p22 1 p32 1 p52 )
p43 ! &F (11 p44 1 p45 ) =(11 p23 1 p33)
p44 ! &F

p45 ! &F (11 p44 ) =(11 p55 )

p51 ! &_ (11 p55 ) =(11 p11)
p52 ! &_ (11 p54 1 p55 1 p51) =(11 p12 1 p22 1 p32 )
p53 ! &_ (11 p54 1 p55 1 p51 1 p52 ) =(11 p13 1 p23 1 p33 1 p43)
p54 ! &_ (11 p55 1 p51) = (11 p34 1 p44 )
p55 ! &_
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Figure 1. Example with m = 4 
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Chapter 2 
The Value of Networking: 

Searching Endogenous Social Networks  
 
1 Introduction 
 

When is networking efficient? More specifically, when should an entrepreneur 

invest in building new relationships rather than rely on a qualified individual she 

already knows? With the rise of online social networks and low-cost communication 

tools, there is increasing focus on the process of networking to obtain useful, career 

related information and foster relationships with potential business partners. 

Networking is especially critical for entrepreneurs who use their network connections 

to raise capital, gain access to existing resources, and connect with cofounders or 

employees with complimentary business or technical skills. This paper focuses on 

three fundamental questions about an entrepreneur’s networking incentives. First, 

given that networks have positive effects for the individual entrepreneur, as well as 

significant externalities on her competitors, when should an entrepreneur invest in 

networking to expand her contacts? Second, given the negative externalities 

competitors exert on each other through this network, is the level of networking 

chosen by an entrepreneur socially optimal? Finally, given these incentives, what 

types of policies improve the efficiencies of networks? 

In Chapter 1, I develop a discrete matching model with heterogeneous values to 

analyze how an entrepreneur’s and her competitors’ network positions effect stable 

partnerships in a network. The model, however, is intractable for understanding the 

incentives for building network connections. In this paper, I integrate a reduced form 
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version of this original model into a dynamic model to analyze networking incentives. 

Results from this paper explain why efforts to create general, regional business 

networks for entrepreneurs have been less successful than highly specialized 

networks, such as university-industry business networks, in which participation is 

costly. Targeted networks that are more costly to search and build connections within 

minimize inefficiencies and increase payoffs. 

Results from the discreetly distributed model of stable entrepreneurial 

partnerships in a network setting suggest an entrepreneur is better off with a denser 

network. An entrepreneur, therefore, should have strong incentives to expand the 

number of people she knows, particularly those with whom she is most compatible. 

By fostering new relationships with friends of friends, attending alumni events of 

former employers or schools, or even becoming a member of social or business group 

or association, the entrepreneur increases her chances of finding a business partner or 

capital investor. But these activities are also costly and exert externalities on other 

entrepreneurs in the market. The critical question is when is social networking 

privately efficient or socially optimal? 

Using a setup similar to the discreet model, I introduce a two-period game of 

incomplete information. Both sets of agents are distributed continuously around a 

circle. Entrepreneurs and specialists are initially linked through a set of undirected, 

first-degree network connections.17 In the first period, each entrepreneur may choose 

to expand her network through costly investment. Examples of networking include 

                                                 
17 Undirected ties simply represent some preexisting social or professional 
relationship between agents. Since such relationships emerge over time and often by 
chance, they are exogenous for the purpose of this model. 
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meeting new individuals through existing contacts, or attending social events for 

alumni groups and trade associations. She cannot choose which specific specialists 

she will meet. In the second period, the market of entrepreneurs and specialists 

undergo a stable matching process. Each entrepreneur partners with an available, 

complementary specialist in her updated network. In the presence of a negative 

network externality, I show there is both a unique symmetric Nash equilibrium and 

social planner’s solution. 

In order to estimate the ex ante probability of stable matches in the first period, I 

use the results from the discreet, pairwise stable match probabilities in Chapter 1. 

Based on these previous results, the probability of a stable match between any 

entrepreneur and specialist is dependent on the entrepreneur’s own network densities, 

the network density of similar, competing entrepreneurs and the compatibility 

between the entrepreneur and specialist. While the pairwise stable match probabilities 

from the discreetly distributed model are more accurate, they are also intractable for 

investigating the incentives for networking. In the present paper, to determine the 

optimal network investment in the first period, agents estimate the likely outcomes of 

the second period stable matching. 

The functional form for these pairwise stable match probabilities reflect the 

results from the pairwise stable matching in the discreetly distributed model. 

According to Chapter 1, the entrepreneur’s likelihood of a compatible match is 

increasing in her own network density, while the externalities from her nearby 

competitors decreases her probability of a match. The externality for less compatible 

competitors is more complex. In the Appendix of this paper, I discuss two functional 
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forms for the second period pairwise stable matching that capture the most interesting 

components of the matching process in detail. For the purposes of tractability, I focus 

on a functional form with an entirely negative externality. 

Under strictly negative externalities, in comparison to the optimal network 

investment, the non-cooperative entrepreneurs over-invest in networking. 

Entrepreneurs build more network connections than under the cooperative solution. 

Intuitively, if each entrepreneur networks less, there are fewer connections and less 

competition for each specialist. Each partnership is likely to be less compatible. The 

added compatibility of the noncooperative outcome, however, does not make up for 

the marginal investment cost or its negative impact on other entrepreneurs. The effect 

is akin to a networking ‘rat race.’ Faced with a denser network and more connected 

competitors, entrepreneurs invest more in their own network just to find any 

compatible partner. Unless a partnership is highly compatible, the specialist will 

likely partner with a more well-suited entrepreneur. 

Seeing that the most efficient networks are costly and less connected, there are 

two circumstances that may improve the optimality of noncooperative networks. 

First, the presence of positive externalities between less compatible agents diminishes 

the negative effects of networking. This more indirect positive impact likely will not 

outweigh the entire negative effect of more direct competition. Alternatively, a 

network search that is targeted to find the most compatible candidates is more 

efficient and may result in more compatible matches. This is consistent with 

observations that programs to encourage more general business networks in a region 
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are not particularly successful, whereas policies to developed specialized networks 

for a specific industry appear very effective. 

The context of this paper is an industry with significant entrepreneurial entry and 

a preexisting network of ties among entrepreneurs and specialist experts. For 

instance, Chatterji (2007) discusses the biomedical device industry in which 

physician entrepreneurs have an idea for a new biomedical device, but need a 

biomedical engineer with the expertise to develop the product. The physician 

networks to find an expert with complimentary skills.18 Similarly, a university 

scientist with a technology for the private market must decide whether to partner with 

a business colleague he already knows or search for someone whose expertise is 

closer to his needs. 

The model also applies to entrepreneurs more broadly. For instance, a manager of 

an existing business with a new project must consider whether to rely on existing 

employees or conduct an outside search for a specialist with additional skills. If he 

chooses to search outside, he must either rely on those he knows or search more 

broadly. Other applications extend well beyond science and technology into artistic 

skilled fields, including Broadway production teams or designers starting a new 

fashion house.19 

This paper draws from elements of strains of literature. The modeling and topic 

are close in spirit to Lee and Schwartz (2009). These authors analyze interviewing 

choices in two-sided markets, but are more concerned with the impact of interview 

                                                 
18 For more information, Chatterji and Fabrizio (2008) explore the role of physician-
entreprenurs in the medical device industry. 
19 For more information on networks of Broadway musical producers, see Uzzi and 
Spiro (2005) 
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overlap than efficiency of search choices. In addition, the present paper addresses 

questions to the employer search literature, for instance Atakan (2006). Both chapters 

consider questions similar to those found in the endogenous network search literature 

surveyed extensively in Jackson (2005). The present modeling borrows elements 

from literature related to matching with costly signaling, particularly Hoppe, 

Molduvanu and Sela (2005). Results are related to previous literature on over entry 

and investment including inefficient signaling (Akerlof, 1976), over-entry in a market 

setting (Mankiw and Whinston, 1986) and auctions with entry (Levin and Smith, 

1994). 

The paper proceeds as follows. Section 2 presents an overview of the model. 

Section 3 compares the equilibrium and social planner’s solutions. Section 4 

considers the efficiency of extensions such as positive externalities and targeted 

search. Section 5 concludes by considering future research. The appendix has an 

extensive discussion of the functional forms and equilibrium under more general 

forms and circumstances. 

 

2 Model 

a. Agents 

Consider two equal sets of risk neutral entrepreneurs and specialists. Agents in 

each set are located around a circle with circumference normalized to one and 

distributed uniformly. The set of entrepreneurs are denoted E ! {e1,e2 ,.e3,...}. Each 
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entrepreneur has an exogenous idea for a new project.20 The value of any individual 

entrepreneur   ei "[0,1]  denotes the skill requirements of her project and represents her 

location around the circle. In order to enter the market and create a startup, the 

entrepreneur must find a complementary specialist partner to develop the 

technology.21 

The set of specialist partners is S ! {s1,s2 ,s3,...} where each element 
   s j "[0,1]  

represents the skills of the jth specialist for j = 1, 2, 3, …, m. Both sets of agents are 

ordered numerically around the circle such that e1 # e2 # e3 # ...# em  and 

  s1 # s2 # s3 # ...# sm . Since both sets of agents are located around a circle, any interval 

represents a continuum of agents whose skills are most similar to each other. 

The minimum circumference distance dij ! min ei 1 sj ,11 ei 1 s j
>
?

A
B  between any 

entrepreneur ei and specialist sj represents the pair’s skill compatibility or 

dissimilarity. With a circle or circumference equal to one, the maximum dissimilarity 

is one half and 
  
dij ! d(ei ,s j ) 4

1
2

 for all ij pairs. The narrower the circumference 

between complementary agents, the more the specialist’s skills meet the 

entrepreneur’s requirement. For any pair of agents ei and sj, the subset 
  E(sj ,dij )  

denotes the interval of entrepreneurs who are more compatible with specialist sj than 

                                                 
20 The model applies to cases in which the entrepreneur has an existing firm and is 
looking to implement a new project. 
21 This interpretation of entrepreneurs and specialists is consistent with Lazear 
(2005). A successful entrepreneur is a generalist with some understanding of the 
industry, who is capable of identifying a good idea, hiring the experts and managing 
project development. For the purposes of this paper, each entrepreneur defines her 
project by the type of specialist who is most compatible to complete the task and 
develop the technology. 
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is ei. This subset includes all entrepreneurs located on the interval of distance dij in 

either direction of sj. Throughout this paper, I refer to these agents who are similarly 

located as compatible. Two entrepreneurs who are trying to partner with the same 

specialist are competitors. 

 

Definition. For entrepreneur ei, matching with specialist sj, the entrepreneur ek is a 

nearby competitor of ei for sj if and only if dij dkj . 

 

b. Network and Networking Costs 

Entrepreneurs most often use their network of preexisting relationships to obtain 

information about available specialists. A network of undirected ties represents the 

preexisting social or professional relationships between entrepreneurs and specialists. 

Since these links typically emerge over time, they are exogenous at   t ! 0 . At t = 1, 

any entrepreneur may expand her network through a costly search for weak ties. In 

either period, when   t ! 0,1 , the element gij
t ! 1 if agents ei and sj are connected and 

  gij
t ! 0  if they are otherwise unconnected. The vector gi

t ! (gi1
t , gi2

t , gi3
t ,...)  represents 

entrepreneur ei’s set of local network connections. The matrix Gt represents the entire 

graph of all gij values.  

Similar to Chapter 1, this paper also focuses on the network density, or proportion 

of specialists with which each entrepreneur is connected. Entrepreneur ei’s local 

network vector gi
t  implies an exogenous local network density. This paper will focus 

primarily on the impact of uniform networks in which all entrepreneurs are equally 
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connected. As in the previous chapter, & i  represents original, exogenous network 

density in period zero. This initial & i  only effects the total and marginal costs of 

search. In the first period each entrepreneur ei chooses whether to expand her network 

density to `i.22 

The total cost of networking is c(` i ;& i ) ! ` i 1 & i+ 2c(& i )  where   c(& i )  is the 

constant marginal cost of networking and ` i 0 & i . Total search cost is dependent on 

the density of the original exogenous network and the endogenous updated network. 

Each entrepreneur enters the networking phase with some connections with which to 

build new contacts. She may talk to people in her initial network, attend alumni 

events, and consult trade associations. Since forming a relationship with any 

specialist requires one period, each entrepreneur can only use her preexisting ties to 

make additional connections. The marginal cost of networking is dependent on her 

initial network, rather than the target density. Marginal cost is decreasing in density 

  c '(& i ) # 0  since the fewer people she knows, the harder it is to meet new people. 

There is no cost to not networking. 

 

c. Timing and Information 

Information is revealed through costly networking over two periods. Initially (i.e., 

  t ! 0 ), agents realize their own types and local network densities. Each entrepreneur 

learns her project requirementei " 0,1>? AB  and her exogenously endowed initial 

                                                 
22 If an entrepreneur’s network density varies by location, assume the probability of a 
connection is dependent on the specialist type, & i+sj ) . Networking expands the local 

network proportionally to 
  ` i+sj ). 



 

 73 
 

network degree   & i "[0,1] . Each specialist knows his skill type s j " 0,1>? AB . The 

distribution of types and the vector of network densities & ! &),&^ ,& 3,...+ 2 are 

common knowledge. 

At t = 1, each entrepreneur ei chooses if she will invest in costly networking to 

extend her network density to ` i 0 & i . Each entrepreneur ei may increase her network 

density to 
  ` i " & i ,1+ AB . By the end of the first period, networking results in network 

graph G1 with a vector of densities ` ! `1,`^ ,`E ,...+ 2. This vector of densities is 

common knowledge. Based on the entrepreneur’s own network density, and the 

network densities of all other entrepreneurs, in t = 1 each entrepreneur ei expects a 

pairwise stable match with specialist sj with probability p(ei ,sj ;` i (`1 i 2 . 

At t = 2, entrepreneurs and specialists match according to network G1 and the 

individually rational and pairwise stable matching mechanism, a : E - S . Each 

partnership {ij} receives   * (ei ,a+ei );G
1)  where sj ! a(ei ) . Partners split the payoff 

according to Nash bargaining, subject to the outside options.  

 

d. Payoffs and Assumptions 

Let 
  * ij ! *+ei ,s j ) ! * (dij )  denote the pair-specific expected return to a partnership 

between any ei and sj. In addition to increasing in compatibility, payoffs follow three 

basic assumptions. 
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Assumption 1 (Supermodular Expected Returns). Given any two entrepreneurs ei 

and ek, and any two specialists sh and sj such that dij ! mind dij ,dih ,dkj ,dkh: ; and 

  
dkh ! maxd dij ,dih ,dkj ,dkh: ; then it must be that: 

  *+ei ,sj ) . *+ek ,sh ) / *+ei ,sh ) . *+ek ,s j ) . 

 

This supermodularity condition is sufficient, but not necessary, to ensure the 

existence of a pairwise stable match in which each agent partners with the closest 

available complementary counterpart. Under supermodular payoffs, the expected 

surplus to a more compatible partnership increases in compatibility. Supermodularity 

is a fairly standard assumption. Matching models with heterogeneous match values, 

including Becker (1973), often rely on supermodularity or complementarity to ensure 

assortative matching.23 Supermodularity applies nicely to entrepreneurial 

applications. For startups in high skill industries, the risks to a poor partnership are 

high, but the payoffs to a highly compatible match increase dramatically.24 

The following three assumptions restrict analysis to relevant cases. A positive 

outside option for the entrepreneur ensures that she can make a costly investment in 

her network, and that each agent matches with the most compatible available 

counterpart. The third assumption requires partners to have a network connection. 

The final cost assumption ensures that any entrepreneur can always afford to invest in 

                                                 
23 For a complete discussion of supermodularity and complementarity assumptions, 
see Amir (2003). 
24 Consider the payoff function *+ei ,sj ) ! R 11 dij+ 23 , where R > 0 is the optimal 

revenue under perfect compatibility and 3 0 ) reflects the uncertainty of a poor 
match. 
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networking. Total investment cost must be less than the entrepreneur’s outside option: 

  C(` i ,& i ) 4 u . Since the marginal cost is highest for an entrepreneur with no 

preexisting network   c ! c(0) , the maximum total cost is C(1('2 ! c . 

 

Assumption 2 (Positive Outside Option). The outside option for any partnership is 

 * ! u . w , where   u 0 0  and w 0 0  are the outside options for entrepreneur’s and 

specialist’s respectively. 

 

Assumption 3 (Network Connection). If gij ! 1 then * ij ! *+ei ,sj ) ! * (dij ) . Without 

this assumption, there is an infinitely negative return to an unconnected set of agents 

such that if 
  gij ! 0   then 

  * (ei ,sj ) ! 1b . 

 

Assumption 4 (Affordable Investment). The maximum marginal cost must be less 

than the entrepreneur’s outside option: c 4 u 4 * . 
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3 Solution Concept  

Prior to the second period stable partnering, each entrepreneur ei "E  chooses 

whether to expand her network density to ` i " & i ,1+ AB  in order optimize the ex ante 

expected value function in the next period. The solution choice is, therefore, the 

vector of optimal network densities ` ! `1 ,`2 ,.̀ 3 ,...: ; for each entrepreneur. 

 

a. Second Period Pairwise Stable Matching 

I model the second period stable partnerships as a reduced form, one-to-one, 

pairwise stable and individually rational matching mechanism a , E - S  between 

entrepreneurs and specialists. Each partnership must be mutual. If ei partners with sj 

then 
  a+ei ) ! sj  and the inverse a11(sj ) ! ei  must also be a function. If ei remains 

unmatched then   a+ei ) ! ei . According to Lemma 1, under supermodularity, these 

stability and rationality constraints imply every agent partners with his or her most 

compatible and available counterpart. This match is by definition efficient. 

 

Definition (Pairwise Stability). A matching a is pairwise stable if there is no pair of 

unmatched agents ij’ or i’j who simultaneously benefit from blocking a for some 

alternate matching a’. For any pairwise stable match a with matched pairs ij and i’j’ 

such that   a+ei ) ! s j  and 
  a(ei ' ) ! sj ' , then a11(sj ) ! ei  and a11(s j ' ) ! ei ' . 
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Definition (Efficiency). Given a specific network G1 the matching a is efficient in 

  t ! 2  if there exists no alternate, feasible matching a’ such that: 

  *+e,a '+e);G1)
e"E% / *+e,a(e);G1)

e"E%  

 

Lemma 1 (Pairwise Stability). Under pairwise stability and supermodular payoffs, 

any entrepreneur ei and specialist sj matches with the closest available agent. This is 

a pairwise stable, t = 2 efficient match. 

 

b. Ex Ante Expected Matching Payoffs at t = 1 

By the second period matching, each entrepreneur’s first period expected return is  

   vi (` i ,`1 i;& i ) ! * i (` i ,`1 i ) 1 c(` i ;& i )  (1) 

where   * i (` i ,`1 i )  represents the ex ante expected payoff to a project 

 
  
* i (` i ,`1 i ) ! * i (s) p(ei ,s;` i ,`1 i ) f (s)ds

s"Sc  (2) 

The first period probability of a match between entrepreneur ei and any specialist sj is 

 
  p(ei ,sj ;` i (`1 i 2 ! ` i =m(ei ,sj ;` i 2 =q(ei ,s j ;`1 i 2  (3) 

Before networking results in a specific network graph, this ex ante match probability 

depends on the entrepreneur’s own network density ̀ i and her competitors’ network 

densities `-i. Function (3) corresponds to the specific match probabilities in Chapter 1. 

Using a discreetly distributed model, Chapter 1 calculates the specific match 

probability for each entrepreneur-specialist pair. The ex ante probability of a 

partnership between entrepreneur ei and specialist sj is a function of the vector of 
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network densities for the entrepreneur and her nearby competitors, 
  
` i ,`e"E (s j ,dij )+ 2. In 

other words, this probability is a function of three factors: 

 

!  

pij ! prob ei  connected to s j: ;
( i)

" #$$$$ %$$$$
* prob sj  is ei's best available match: ;

( ii)
" #$$$$$$ %$$$$$$

* prob sj  is available to ei: ;
( iii)

" #$$$$ %$$$$

 

The terms of equation (3) correspond to these three factors. The network density 

`i is the probability that the pair has a connection. Then mi (�)  represents ei’s 

probability of being available to specialist sj. Similarly, qj (�)  represents specialist sj’s 

network externality and probability of not partnering with a more compatible 

entrepreneur. 

For example, when m = 4 in Chapter 1, the match probabilities for entrepreneur e1 

are 

 

  

p11 ! &)

p12 ! &) = 11 &)
>? AB = 11 & 2>? AB

p13 ! &) = (11 &))(11 &)(11 & 2 )) = (11 &)(11 & 4 ) = (11 & 3
' (11 & 3

' )))>? AB
= (11 & 3

' )(11 & 2 (11 & 2 )) = (11 &F(11 &F ) = (11 &F(11 &))))>? AB
p14 ! &) = (11 &))(11 &)(11 & 2 ))>? AB = (11 & 4 ) = (11 & 3

' (11 & 3
' ))>? AB

 

where  & i  is the exogenous network density for each entrepreneur ei. The first term of 

each expression represents e1’s network connectedness. The following first bracket is 

the probability that e1 is available. The second bracket is the probability the specialist 

is available. There is a complex interdependence between entrepreneurs that depends 

on their relative compatibility. 
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For analyzing networking incentives, however, these interdependencies and 

externalities between entrepreneurs become computationally intractable and must be 

simplified. The current paper resolves this problem by incorporating the key 

properties of the true match function into a simplified function in the general form of 

expression (3). Consider the following functional form for the match probability 

between ei and sj: 

 
  
p(ei ,sj ;` i (`1 i ) ! ` i = 11 ` i+ 22dij = 11 `d(s j ,dij )+ 22dij

 (4) 

where 
  
`E(s j ,dij )  is the mean network density for the subset of all nearby competing 

entrepreneurs 
  e1 i "E(sj ,dij ) . Equation (4) behaves similar to the actual match 

probabilities in Chapter 1. 

The expression   ̀ i (11 ` i )
2dij  represents the total impact of an entrepreneur’s own 

network density. According to the original discretely distributed model, for 

entrepreneur ei the probability of not matching with a more compatible agent is 

decreasing and concave in network density. Further, the probability she is available is 

strictly decreasing in dissimilarity (i.e., increasing in compatibility) with any 

specialist. Accordingly, expression (4) is decreasing and concave in network density 

    
di Œ 0,1( ), as well as decreasing in dissimilarity dij or increasing in compatibility. 

Since the circumference between the entrepreneur and specialist equals the proportion 

of specialists in the market who are more compatible with ei. than sj., 2dij represents 

the proportion of agents who are more compatible with ei-and sj than they are to each 

other.  
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Also similar to Chapter 1, there is a tradeoff between the likelihood of a network 

connection and the probability of a partnership. There is a threshold compatibility d  

such that as an entrepreneur becomes more connected, the probability of a match that 

is more compatible than  d  increases, while the probability of less compatible 

matches decreases. Further, this threshold distance d  is decreasing in the 

entrepreneur’s connectedness. 

The reduced expression for network externality is q(ei ,sj ;`1 i ) ! 11 `E (s j ,dij )+ 22dij

.25 

Similar to the original function, this expression is a function of all nearby competitors 

  E(sj ,dij ) , and it is also a decreasing, concave function of all competing 

entrepreneurs’ local networks. It implies the probability any specialist is available is 

also decreasing in compatibility. This expression, however, includes a strictly 

negative network externalities and does not incorporate the non-monotonic nature of 

original network externalities. See the appendix for an extensive discussion of 

expression (4). 

 

4 Results 

A solution to the model is a vector of network investment choices in the first period 

that optimize the second period value function. Under a uniform network there exists 

both a non-cooperative symmetric Nash equilibrium (SNE) and socially optimal 

                                                 
25 Where 

  
`E (s j ,dij ) ! `+e)e+e,sj )e"E (s j ,dij )%  such that 1! e+e,sj )e"E(s j ,dij )% . The 

weights for 
  
`E(s j ,dij ) ,   e+ei ,s j )  are nondecreasing in compatibility so that the most 

compatible competitors have the greatest impact. 
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social planner’s solution. By definition, a uniform network implies each 

entrepreneur’s exogenous network density is equal, & i ! &  for all ei. In turn each 

entrepreneur has equal marginal cost to networking. Comparing these two solutions 

reveals that non-cooperative entrepreneurs overinvestment in networking. 

 

a. Nash Equilibrium 

In the first period, each entrepreneur ei simultaneously chooses her own network 

connectedness `i to optimize her second period expected net return: 

 
  
vi

*(` i ,`1 i ) ! max`i
* i (s) pi (s;` i ,`1 i ) f (s)ds

s"Sc 1 ci (` i;& i )>
?

A
B  (5) 

where the probability of a match between entrepreneur ei and any specialist sj is (4).  

 

Proposition (Entrepreneur’s Solution). Under a uniform network with 

supermodular payoffs and match probability 

 
  
p(ei ,sj ;` i (`1 i ) ! ` i = 11 ` i+ 22dij = 11 `d(s j ,dij )+ 22dij

, for any marginal cost c there exists a 

symmetric Nash equilibrium in which each entrepreneur invests to achieve network 

density ` if ` 0 & . She receives expected net return 

 
  
v ! * 1 c̀ ! 2

` 2

11 `
* (s) = d(e,s)(11 ` 24d (e,s)

s"S
c f (s)ds   

 

Intuitively, each entrepreneur expands her network until her marginal benefit of 

networking is equal to the marginal cost, c. She does not account for the impact she 

has on her competitors because she is only concerned with her own expected payoff. 



 

 82 
 

Since every entrepreneur’s original network density is equal, each entrepreneur’s 

symmetric best response is also equal and ` ! ` i (` 2  for all i. The first order 

equilibrium condition 

 
  
c ! * i (s) = (11` 24d (e,s) 11 2d(e,s)

`
11 `

O

PQ
R

STs"S
c f (s)ds  (6) 

holds for each entrepreneur ei. Three key observations prove for any marginal cost c 

there is a unique ` !`+̀ 2  that solves the equilibrium condition. The marginal payoff 

is positive and greater than c as `  approaches zero and the network is unconnected. 

This marginal payoff is also strictly decreasing in `  until the marginal payoff is zero 

as `   approaches one and the network is fully connected. For any marginal cost, 

therefore, there is a unique equilibrium value of ` . If the initial network density is 

already greater than the equilibrium investment, it is not beneficial to invest in 

networking.  

The network investment `  is decreasing in marginal cost c. If marginal cost is 

low, entrepreneurs invest in a highly-connected network in which d > 1
2

. In this 

case, networking narrows entrepreneurs’ search. There exists some threshold distance 

    
2dij =

1- di

di

 such that the probability of more a compatible match is increasing and 

the probability of a less compatible match is decreasing. When the marginal cost of 

networking is high, the network investment results in an unconnected network in 

which 
 
` #

1
2

. Each entrepreneur networks to increase her probability of any match. 
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b. Social Planner’s Solution 

In the first period, the Social Planner’s symmetric problem is to choose the 

network investment for each entrepreneur, `* ! `1
*,`2

* ,`3
* ,...: ;. In the following period, 

the socially optimal match optimizes the sum of all net expected returns. The social 

planner’s choice problem is 

  
  
V (` *2 ! max

` ! `1 ,`^ ,`E ,...>? AB
* i (` i ,`1 i ) 1 ci (` i;& i )+ 2i!1,2,3,...%  (7) 

The social planner simultaneously chooses the optimal vector of network densities for 

all entrepreneurs 
    
d* = d1

*, d2
*, ..., di

*, ...{ }. In contrast to the self-interested entrepreneur, 

the social planner’s solution accounts for the externalities each entrepreneur exerts. 

 

Proposition (Social Planner’s Solution). Under a uniform network with 

supermodular payoffs and match probability 

  
p(ei ,sj ;` i (`1 i ) ! ` i = 11 ` i+ 22dij = 11 `d(s j ,dij )+ 22dij

, for any marginal cost c there is a 

unique, symmetric Social Planner solution in which each entrepreneur invests to 

reach `*and receives expected value: 

 
  
v* ! * 1 c̀ * ! 4

` *2

11 ` * d* (d)(11 ` *24d g(d)dd
d !0

1
2c  

 

Each entrepreneur networks up to the density `G  at which marginal cost is equal 

to the marginal welfare impact of each entrepreneur’s network. The proof is similar to 

the symmetric Nash equilibrium. The first order condition requires that `G  satisfy: 
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c ! * i (s)(11` *24d (ei ,s) 11 4d(ei ,s)

` *

11 ` *

O

PQ
R

ST
f (s)ds

s"Sc  (8) 

This condition is similar to (6), but the marginal value of networking now includes 

the entrepreneur’s negative externality. Similar to the Nash equilibrium condition, the 

right hand side of this expression is greater than c for values of `G close to zero. 

When the right hand side of condition (8) is positive, it is also strictly decreasing in 

`G  and approaching zero as the value of `G  approaches one. 

 

c. Comparing Results 

When a social planner chooses all networks simultaneously, he takes into account 

the externality each entrepreneur’s network has on her nearby competitors. The social 

planner’s marginal social return to each entrepreneur’s investment includes the 

entrepreneur’s marginal payoff, as well as the externality she exerts over competitors. 

The entrepreneur, on the other hand, invests until only her marginal ex ante expected 

return is equal to cost. The individual entrepreneur invests more because she fails to 

account for her effect on other entrepreneurs and in turn experiences a higher 

marginal return to her network. 

 

Proposition (Compare First Best and Entrepreneur’s Reaction). Under a uniform 

network with supermodular payoffs and negative externalities each entrepreneur 

over-invests in her network so that ` 0 `G . 
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For both the social planner and the entrepreneur, the marginal return from the 

network investment equals marginal cost. By condition (6) the individual 

entrepreneur networks until the marginal expected payoff to her startup is equal to the 

marginal cost: 

 
  
c ! * i (s) = (11` 24d (e,s) 11 2d(e,s)

`
11 `

O

PQ
R

STs"S
c f (s)ds  

A social planner also accounts for the entrepreneur’s externality in condition (8): 

 
  
c ! * i (s)(11` *24d (ei ,s) 11 4d(ei ,s)

` *

11 ` *

O

PQ
R

ST
f (s)ds

s"Sc  

Since it includes the negative externality, the right hand side of (8) decreases in `  

faster than the right hand side of (6). For the two expressions to both be equal to c, it 

must be that ` 0 `G , or when the competitive networking is higher than the socially 

optimal networking. When this occurs, there is overinvestment. 

Overinvestment is greatest when low costs motivate extensive networking. When 

` is low, the difference between 4d(ei ,s)
` *

11 ` *

O

PQ
R

ST
 and 2d(ei ,s)

`
11 `

O

PQ
R

ST
 is relatively 

minimal. As ` increases, both the externality and the disparity between the optimal 

networking choice increases. This suggest networks in which the cost of building new 

relationships is low, such as Facebook or Linkedin, are the most inefficient for high-

skill labor searches. By limiting the incentives for intensive search, networks in which 

it is costly to build new relationships encourage more efficient network investment 

levels. 

A second implication of this overinvestment is that it is more efficient for 

entrepreneurs to rely on less compatible partnerships with a lower expected return 
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than search for a perfect partner. Under a more intensive search the expected gross 

return to is higher, but the added cost of networking exceeds this benefit. While 

greater network density increases an entrepreneur’s chance of a more compatible 

match, this benefit does not outweigh the costs. 

 

5 Extensions 

The previous results prompt a critical question. If networks are more efficient when 

they are most costly to use, how can policies improve either the efficiency or 

expected return to using a business network? Two possibilities come to mind. First, if 

a network actually exhibits positive externalities to increasing network densities, then 

there is less disparity between the socially optimal and competitive solutions. Second, 

networks in which it is more costly to build relationships may be more informative. 

An effective network may limit inefficiencies and motivate more compatible 

partnerships by targeting searches. 

 

a. Targeted Networking 

One possibility is the objective of social policies and valuable networking 

institutions is to help target search so that an entrepreneur only networks with her 

most compatible candidates. Such targeted networking may occur through exclusive 

association memberships, alumni clubs for business schools or other graduate 

programs, or headhunters. There is a tradeoff. Participation in a network that allows 

for more a more informative search is also generally more costly. Participating in an 
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alumni network requires both attending the school and often annual donations. 

Exclusive associations often require significant annual dues. Headhunters charge fees. 

Suppose each entrepreneur only meets specialists within her 
1
r

 most compatible 

specialists. In other words, the entrepreneur only networks with 
1
r

 proportion of the 

circle. Each entrepreneur chooses to increase her network density to  r` i  of the subset 

of specialists, 
  
s "S ei ,

1
r

>

?
@

A

B
C , within circumference distance d !

1
2r

 of herself. The 

probability that she partners with any of these most compatible specialists is 

  
p(ei ,sj ;` i (`1 i ) ! r` i = 11 r` i+ 22dij = 11 r`d(s j ,dij )+ 22dij

.  

The entrepreneur’s network is now denser for the 
1
r

 most compatible specialists 

who also yield the highest ex ante expected return and are least susceptible to being 

competed away. The updated condition for the symmetric Nash equilibrium is 

 

  

c ! r * i (s) = (11 r` 24d (e,s) 11 2d(e,s)
r`

11 r`
O

PQ
R

ST
s"S (ei , 1

2r
)

c f (s)ds  (6a) 

The cooperative social planner’s solution is now 

 

  

c ! r * i (s) = (11 r` *24d (e,s) 11 4d(e,s)
r` *

11 r` *

O

PQ
R

ST
s"S (ei ,

1
2r

)

c f (s)ds  (6b) 

Limiting the maximum distance to 
1
2r

 eliminates the least compatible matches for 

which the discrepancy between 2d(e,s)
r`

11 r`
 and 4d(e,s)

r` *

11 r` *  is greatest. 
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Targeted networks reduce frictions between less compatible competitors because any 

two entrepreneurs no longer compete for the same subset of specialists. It also 

increases the expected compatibility of a match and expected return. 

 

Proposition. Under a uniform network with targeting, supermodular payoffs and 

negative externalities, as network targeting becomes more specific ex ante expected 

partnerships are more compatible. 

 

For the same marginal cost, entrepreneurs search at least as intensively in the 

most compatible regions under targeted search. The total network-wide density and 

total cost, however, may be lower. This implies the probability of a most compatible 

match is greater, but the total cost may be lower. Participation in more targeted 

networks are often costly and, there are fewer negative externalities from excessive 

networking. This will also increase the likely efficiency of a match. 

 

Proposition (Compare General to Targeted Cases). Under a uniform network with 

supermodular, negative network externalities and constant marginal cost, the 

network density in the search region is greater under a targeted search when   r 0 1, 

than under a general search when r ! 1 : ` # r`  and ` * # r` . 

 

b. Positive Externalities 

What is particularly interesting about the discreetly distributed case in Chapter 1 

is, while there is a coordination problem at close range, such density actually 
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alleviates competition for less compatible entrepreneurs. By introducing a nonlinear 

externality that is negative for compatible competitors and positive at a longer range, 

the present optimization problem becomes considerably less tractable. Nevertheless, 

this positive externality may counteract some of the inefficiencies of the competitive 

equilibrium. It is, however, likely these positive effects will not make up for the entire 

discrepancy. 

Referring to the discreet solutions from Chapter 1, the likely positive network 

densities occur between the least compatible agents and, therefore, have less impact. 

Consistent with this intuition, the functional form 

 
  
pij (` i ,`1 i ) ! ` i = 11 ` i+ 22dij = 11 ` k (11 ` k )2dij+ 2

k"E (s j ,dij )
f  

incorporates the negative externality that is similar to Chapter 1. Conducting a similar 

analysis to the above using this form does not appear to have a significant positive 

externality. See Appendix for the extended discussion of this form. 

In the symmetric Nash equilibrium, the short-range negative impact of 

competition is paramount. Suppose ei’s increased network density has a positive 

effect on her less compatible competitor, ek. In the symmetric case, ek will also be 

impacted by the stronger negative effects of her closer competitors increasing their 

network density. The negative externality is still stronger. In addition, since the less 

compatible partnerships become irrelevant in the targeted network case, the positive 

effects are also diminished. 

6 Discussion and Conclusion 

Generalized networking creates a “rat race” in which entrepreneurs must create a 

dense network to find a highly compatible specialist, even if a specialist whom they 
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are already know is a sufficient partner. Despite the total welfare loss to the network 

and the individual entrepreneurs, specialists gain under the network equilibrium when 

the cost of search is born entirely by entrepreneurs. The gross return from the non-

cooperative solution is higher, so both partners receive a higher payoff. For the 

entrepreneur, however, this added payoff is diminished by the cost of investment. 

Fiercer competition creates better opportunities for specialists in successful startups 

with no investment. 

The consequences of excessive networking are similar to those of business 

stealing. Additional networking decreases the expected return to close competitors by 

diminishing their likelihood of a compatible partnership. In response, the competitors 

must also increase their network to ensure they can also find a compatible specialist 

who will be available. While there is a welfare gain to a more compatible specialist, 

the gain is more than offset by the investment cost. This is a coordination problem. 

Each entrepreneur may know an acceptable specialist, but this specialist will probably 

not be available. In turn, the entrepreneur must network to meet the most compatible 

specialists.  

In real world applications, this manifests itself as a dense social network in which 

individual agents have many connections, but few successfully find a partner. This is 

consistent with a conversation with Auren Hoffman, an entrepreneur and the highly 

connected president of Rapleaf in San Francisco, CA. Despite his dense network of 

contacts throughout the industry and politics, it is nearly impossible to find a skilled 

computer engineer. If one of his friends knows of a good engineer, he would likely 
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already hire him. Even when a network is dense with links, it may still be difficult to 

compete when competitors have the same network connections. 

The most efficient networks are those in which participation is costly, but that 

disseminate more specialized information. Entrepreneurs are forced to compete at 

high costs to get even better partners. This is consistent with the real-world 

observations about successful university-industry research networks I discuss in more 

detail in Chapter 1. To foster more effective, efficient business networks policies 

should create networks in which participation is costly, but that are also informative 

and successful in building relationships between the most compatible individuals. 

There are a number of interesting research extensions to consider. Given the 

implications for these coordination problems, future extensions include analyzing the 

impact of cooperation between entrepreneurs who agree to share contacts and not 

compete. How does the equilibrium change when the distribution of agents is not 

equal? Is this problem dissipated when there is an overabundance of specialists? What 

if entrepreneurs choose more than one specialist?  

Future research should also focus on how this overinvestment impacts agents in a 

heterogeneous network where individuals are not initially equally connected. More 

focus on how individuals respond depending on their own connectedness is 

illuminating. Such research may also explain how an existing network may hinder or 

help newcomers in an industry. These questions are, in turn, particularly pertinent to 

innovation and new ideas within an industry.  
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7 Appendix 

a. Match Probabilities and Functional Form 

From Chapter 1, the probability of a match between any entrepreneur ei and 

specialist sj is the product of three factors: 

 

  

p(ei ,sj ) ! prob network connection: ;= prob ei  most prefers s j  from available partners: ;
=prob sj  most prefers ei  from available partners: ;

 

First, the agents must have a network connection. Otherwise the cost of a partnership 

is infinitely high and the match does not satisfy individual rationality. Next, the 

agents must be available to each other. Any entrepreneur or specialist is available if 

she or he does not already partner with a more compatible agent. From her subset of 

available specialists, the entrepreneur partners with specialist sj if he is her most 

compatible option. Similarly, specialist sj partners with his most compatible 

entrepreneur in his available subset. 

A functional form that approximates this probability must account for these local 

network effects and the network externalities from nearby entrepreneurs as follows: 

 
  
pij (` i ,`1 i ) ! ` i =mij ` i+ 2=qij `E (s j ,dij )+ 2 (9) 

where 
  
`E (s j ,dij )  is the subset of network densities for all nearby, competing 

entrepreneurs 
  e1 i "E(sj ,dij )  who are more compatible with specialist sj than 

entrepreneur ei. Here !  mi (�)  represents ei’s probability of not partnering with a more 

compatible specialist. The probability specialist sj partners with a more compatible 
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entrepreneur, 
!  q j (�) , is a function of the entrepreneur’s nearby competitors’ network 

densities. Two possible forms are:  

 Example 1. 
  
pij (` i ,`1 i ) ! ` i = 11 ` i+ 22dij = 11 `d(s j ,dij )+ 22dij

 

 Example 2. 
  
pij (` i ,`1 i ) ! ` i = 11 ` i+ 22dij = 11 ` k (11 ` k )2dij+ 2

k"E (s j ,dij )
f  

i. Impact of local network 

Consider the function  

 m(ei ,s j ;` i ) ! (11` i )
2d (ei ,s j )  (7) 

for the conditional probability that ei is available to match with sj if the pair have a 

network connection. From Chapter 1, the probability of not matching with a more 

compatible agent is decreasing and concave in network density. Further, ei is strictly 

less likely to be available for a less compatible match. The probability that ei is 

available is decreasing in the circumference distance to a partner. Accordingly, 

function (7) is indeed decreasing in d " 0,
1
2

>

?
@

A

B
C , and decreasing concave for any 

values of 
    
di Œ 0,1( ).26 

                                                 
26 The first and second derivatives of (7) are:  

  

Mm(ei ,sj ;` i )
M` i

! 12d(ei ,sj )(11` i )
2d (ei ,s j )11 # 0  and 

  

M2m(ei ,s j ;` i )

M` i
2 ! 12d(ei ,sj ) 11 2d(ei ,sj )+ 2(11` i )

2d (ei ,s j )12 # 0  for all values of 

  
d " 0,

1
2

>

?
@

A

B
C .  
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The form of (7) follows the spirit of the entrepreneur’s own local network effect 

in Chapter 1. Consider the special case of the discreet model when entrepreneur ei has 

network density 
  ` i " 0,1+ 2 and all other entrepreneurs are unconnected,   ̀ 1 i ! 0 . In 

this case, ei experiences no competition or network externality. The entrepreneur’s 

outcome is dependent only on her own network and the probabilities over network 

connections are  

 

  

pi(1) ! ` i

pi(2) ! ` i = (11 pi,i ) ! ` i = (11 ` i )

pi(3) ! ` i = (11 pi,i 1 pi,i.1) ! ` i = (11 ` i 1 ` i = (11` i )) ! ` i = (11 ` i )
2

pi(4) ! ` i = (11 pi,i 1 pi,i.1 1 pi,i11) ! ` i = (11 ` i 1` i = (11 ` i ) 1 ` i = (11` i )
2 ) ! ` i = (11 ` i )

3

...
pi(n) ! ` i = (11` i )

n

 

Here n represents ei’s incompatibility ranking of specialists (i.e., 1 is the most 

compatible), which s a function of circumference distance. 

Along a continuous distribution, the circumference distance between the 

entrepreneur and specialist equals the proportion of specialists in the market who are 

more compatible with ei. For any entrepreneur-specialist pair, ei and sj, 2dij of the 

agents are more compatible. Independent of competition, the probability that ei is 

linked and available for partnership {ij} is pij (` i ,0) ! ` i (11 ` i )
2dij . In turn, 

  
mij (` i 2 !

pij

`U
! (11 ` i )

2dij  is the conditional probability ei is available to a specialist dij. 

The expression   ̀ i (11 ` i )
2dij  behaves similarly to the discreet model. In Chapter 1 

there is a tradeoff between the likelihood of a network connection and the probability 
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of a partnership. There is an incompatibility or distance threshold, d . As an 

entrepreneur becomes more connected, the probability of a match that is more 

compatible than  d  increases, while the probability of less compatible matches 

decreases. Further, this threshold distance is dependent on the entrepreneur’s 

connectedness. 

This same threshold exists here. The probability of being connected and available 

is increasing for any match {ij} such that 2dij #
11 ` i

` i

 and decreasing otherwise.27 

When an entrepreneur increases her network, the probability she knows any 

specialist,  ̀ i , is higher, but the probability she is available mij (` i )  might, in turn be 

lower.  

There is a key difference in the experience of connected and unconnected agents. 

For any unconnected entrepreneur whose di £ 1
2

, increasing the network increases the 

probability of a match at every distance. An unconnected entrepreneur broadens her 

search possibilities and becomes more likely to achieve any partnership as her 

network increases. A well-connected entrepreneur, whose network is 
    
di > 1

2
, 

effectively narrows her search by building new relationships. She is more likely to 

partner with a more compatible specialist, while her probability of a less compatible 

specialist falls. 
                                                 

27 The derivative 
  

d
d` i

` i (11 ` i )
2dij+ 2! (11` i )

dij 11 2dij

` i

11 ` i

O

PQ
R

ST
 is positive whenever 

  
2dij #

11 ` i

` i

. Further, if 
  
` i 4

1
2

 then 
11 ` i

` i

# 1  and 2dij #
11 ` i

` i

 for all dij. 
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ii. Network externality 

The function !  qi (�)  is the conditional probability that sj is available to match with 

ei. It represents the network externality that entrepreneur ei’s competitors exert on her 

likelihood of a match. I consider two possible functional forms for the externality that 

incorporate the following properties found in Chapter 1. First, the probability that a 

match is available is a function of all nearby, more compatible entrepreneurs 

  ek "E(sj ,d(ei ,s j )) . Second, the externality that any entrepreneur exerts is increasing 

in her compatibility with sj. Consider two equally connected entrepreneurs, ek and em. 

If  dkj # dmj  entrepreneur ek exerts a greater impact on the probability that sj is 

available. Third, the probability any specialist is available to some entrepreneur is 

decreasing and concave in incompatibility. Finally, Example 2 also incorporates the 

nonmonotonicity of the externality. 

When ek extends her network it only affects ei’s chances over the half of agents 

who are closer to ek than ei. In other words, 
Mqij (`1 i"E[s,d (ek ,s) )

M`k

I 0  if and only if 

  ek "E(sj ,dij ) . When ei and ek are searching for similar specialist types (i.e., dik is 

low), ek exerts an externality on ei’s probability over her partnering with some of her 

most compatible specialists. As the compatibility between competitors approaches ½, 

the change effects the probabilities over ei’s least compatible specialists. Lemma 2 

summarizes this result. 
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Lemma 2. For any ei and ek there exists some s ,s>? AB  around ei such that if 

  s j " s ,s>? AB  then  dij # dkj  and 
Mqij (`1 i )
M`k

! 0 . If s j N s ,s>? AB  then 
Mqij (`1 i )
M`k

I 0 . The 

circumference of this interval is ½ the interval of the circle. 

 

Proof. Consider any two entrepreneurs ei and ek located on a circle. Let the minimum 

circumference distance between entrepreneurs ei and ek be 

  
dij

min ! min ei 1 ek ,11 ei 1 ek
>? AB , let the counter maximum distance be 

  
dij

max ! max ei 1 ek ,11 ei 1 ek
>? AB  and note that dij

max ! 11 dij
min . For the purposes of 

this proof, suppose ei is located dij
min  clockwise to ek. The same logic holds for all 

cases. 

Along the narrow interval between ei and ek (i.e., the interval with circumference 

  dij
min ), a specialist sj is more compatible with ei if dij # dkj  or s j " ei ,ei .

1
2

dij
min>

?
@

A

B
C . 

Similarly, along the wide interval a specialist s is more compatible with ei if 

  
s " ei 1

1
2

dij
max ,ei

>

?
@

A

B
C . Then the interval of all specialists more compatible with ei is 

  
s " ei 1

1
2

dik
max ,ei .

1
2

dij
min>

?
@

A

B
C . Define s ! ei 1

1
2

dik
max  and s ! ei .

1
2

dij
min  such that 

  
s " s ,s>? AB . The circumference of this subset of specialists is 

  
1
2

dik
max .

1
2

dij
min !

1
2

11 dik
min . dij

min+ 2! 1
2

. Q.E.D. 
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Competitive Externality Example 1. Consider q(ei ,s j ;` i ) ! 11 `+ 22dij  where 

   
dE (s j ,dij )  is the weighted average connectedness of the nearby entrepreneurs who are 

more compatible with sj. 28 Similar to m(ei ,sj ;` i ) , the exponent 2dij represents the 

proportion of entrepreneurs who are more compatible with sj than ei. This network 

externality function is a decreasing, concave function of the average network density 

of all competing entrepreneurs. The first and second order effects are decreasing for 

all 
  k,m"E(s j ,dij ) .29 Otherwise, by Lemma 2 there is no competitive externality 

from the other half of specialists. 

Similar to the discreet model of Chapter 1, the ex ante expected return to 

entrepreneur ei is decreasing in the network density of any other entrepreneur ek 

where   ek š ei . Further, the value of this impact is a function of the supermodularity of 

payoffs, entrepreneur ei’s own local network density and the network density of 

nearby competing entrepreneurs. The marginal impact on the entrepreneur’s ex ante 

expected return is strictly negative:  

                                                 
28 For instance, let the vector e reflects the weights for each less compatible 
entrepreneur with respect to sj: `E (s j ,dij ) ! `+e)e+e,sj )e"E (s j ,dij )%  such that 

  
1! e+e,sj )e"E (s j ,dij )% . More compatible entrepreneurs have a greater impact relative 

to their density when the 
  e+ei ,sj )  is increasing in compatibility. 

29  
  

Mq(ei ,sj ;`1 i )
M`k

! 1ek 2d(ei ,sj ) 11`E (s j ,dij )+ 22d (ei ,s j )11

# 0   

 
Mq2 (ei ,sj ;`1 i )

M`k
2 ! 1ek

2 2dij (11 2dij ) 11 `E (s j ,dij )+ 22dij 12

# 0

 
  

Mq2 (ei ,sj ;`1 i )
M`kM`m

! 1ekem 2dij (11 2dij ) 11`E (s j ,dij )+ 22dij 12

# 0  
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M* i

M` k

! 1ek 2d(ei ,s j )(11 ` i )
2d (ei ,s j ) 11 `E (s j ,dij )+ 22d (ei ,s j )11

* i (s) f (s)ds
s" S |d (ek ,s)#d (ei ,s)>? AB
c 4 0  

where the subset of specialists only includes the half that are closer to ek than ei. 

Competitive Externality Example 2. The functional form 

  
q(ei ,s j ;`1 i ) ! 11 ` k (11 ` k )2dkj+ 2

ek "E (s j ,dij )
f  is more complex, but integrates the 

nonmonotonicity property in network externalities. The probability that any 

entrepreneur ek is available to sj is `k (11 `k )2dkj . The counter probability that ek is not 

linked or available to sj  is   11 `k (11 `k )2dkj . Finally, the probability that sj is available 

to ei because every more compatible entrepreneur is not connected or available to sj is 

  
11 ` k (11 ` k )2dkj+ 2

ek "E (s j ,dij )
f . 

When a competitor increases her network, she exerts a negative impact on her 

most compatible competitors’ match probability, but may increase the match 

probability for others. If 
  
2dkj #

11 ` k

` k

 then ek has a negative impact on less 

compatible entrepreneurs’ ability to partner with sj. .Otherwise, ek extends her 

network, she has a positive effect on other competitors’ probabilities of partnering 

with sj. Taking the partial derivative: 

  

Mq(ei ,s j ;`1 i )
M`k

! 1(11 `k )2dkj 11 2dkj

`k

(11 `k )
>

?
@

A

B
C 11 `m(11 `m )2dmj+ 2

em "E s j ,dij+ 2\{ek }
f
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The externality is negative if 2dkj 4
11 ` k

` k

. An unconnected entrepreneur always 

exerts a negative externality. The externality is positive if 2dkj 0
11 ` k

` k

. Well 

connected entrepreneurs have a positive effect on some competitors. This effect is 

increasing in her network density.  
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b. Proofs 

Lemma 1. Under pairwise stability and supermodular payoffs, any entrepreneur ei or 

specialist sj match with the closet available agent. 

Proof of Lemma 1. Consider any two entrepreneurs ei ,ek>? AB "E  and any two 

specialists 
  

sh ,sj
>? AB "S  such that dij ! mind dij ,dih ,dkj ,dkh: ; and 

  
dkh ! maxd dij ,dih ,dkj ,dkh: ;, and each agent has a network link to both opposing 

agents, 
  gij ! gih ! gkj ! gkh ! 1. These assumptions imply that agents ei and sj are 

closest, or most compatible, to each other. Similarly, agents ek  and specialists sh are 

least compatible. Let the entrepreneur’s outside option be u / c . Note that the 

network investment is always affordable. Let w 0 0 be the specialists outside option 

such that  * ! u . w . Let  
  u(ei ,sj ) ! uij  represent ei’s payoff to {ij}, and 

  wij ! w(ei ,s j )  

represent specialist sj’s payoff to {ij}, such that * ij ! uij . wij .  

Suppose a  represents the pairwise stable match. If the stable match is always 

distance minimizing, then 
  a+ei ) ! sj  and a+ek ) ! sh . For this matching to hold, 

entrepreneur ei must prefer a match with sj, to a match with sh. In addition,  uij 0 uih . 

Given the outside option, it must be true that wij / w  for any network G1. Replacing u 

with the definition,  uij ! * ij 1 wij  and uih ! * ih 1 wih : 

 * ij 1 wij / * ij 1 w / * ih 1 wih  

Following the same logic, if sj prefers a match with ei to a match with ek,  wij 0 wjk  

then: 
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 * ij 1 uij / * ij 1 u / * kj 1 wkj  

Combining the above two conditions and solving,  

 * ij 1 wij . * ij 1 uij / * ih 1 w . * kj 1 u  

 * ij / * ih . * kj 1 *  

 * ij . * / * ih . * kj  

Finally, given  * 4 * kj  then  * ij . * kh 0 * ih . * kj . Supermodularity holds when the 

pairwise stable match is distance minimizing. 

Now suppose a  is not distance minimizing. Then it must be true that 
!  
{ij}*ei

{ih}  

and 
!  
{kh}+ sh

{ih}, or 
!  
{kj}*s j

{ij} and {kj}*ek
{kh}. For the first case to hold, then 

 uij # uih  and wkh # wih . By definition and substitutions, this implies 

 * ij 1 wij 4 * ij 1 w 4 * ih 1 wih  and * kh 1 ukh 4 * kh 1 u 4 * ih 1 uih . Combining these 

conditions and solving,  * ih . * kj / * ih . * / * kh . * ij . This contradicts the 

supermodular payoff assumption! Similar logic holds for the second case. Q.E.D. 

 

Proposition (Entrepreneur’s Solution). Under a uniform network with 

supermodular payoffs and match probability 

 
  
p(ei ,sj ;` i (`1 i ) ! ` i = 11 ` i+ 22dij = 11 `d(s j ,dij )+ 22dij

, for any marginal cost c there exists a 

symmetric Nash equilibrium in which each entrepreneur invests to achieve network 

density ` if ` 0 & . She receives expected net return 
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v ! * 1 c̀ ! 2

` 2

11 `
* (s) = d(e,s)(11 ` 24d (e,s)

s"S
c f (s)ds   

Proof. Under a uniform, symmetric network, the entrepreneur’s problem (5) reduces 

to choosing a best response  ̀ (` 2  to all other entrepreneurs’ symmetric choice, ` : 

 
  
` i (` ) ! argmax` * i (s) =` (11 `2^d (e,s) (11 ` )2d (e,s)

s"S
c f (s)ds 1 c(` )

 

 

If a best response   ̀ i (` 2  exists then it must satisfy the first order condition: 

 
  

M
M`

v ! * i (s) = (11 ` (` )2^d (e,s) 11 2d(e,s)
` (` )

11`+` 2
O

PQ
R

ST
(11` )2d (e,s)

s"S
c f (s)ds 1 c ! 0 (10) 

where by the affordable investment assumption, marginal cost is 0 # c # u .  

A Nash equilibrium is a vector of best responses ` i (` 2  for all i. Given that second 

order condition strictly less than zero, a unique best response function does exist: 

 
  

M2

M` 2 v ! 1 2 .
` (` )

11 ` (` )
O

PQ
R

ST
* i (s) =2d(e,s)(11 ` (` )2^d (e,s) (11 ` )2d (e,s)

s"S
c f (s)ds # 0  (11) 

Recall that in the uniform network case, each entrepreneur has the same 

exogenous network density at t = 0 and therefore faces a symmetric problem. If there 

exists a symmetric Nash equilibrium, each entrepreneur’s best response is   ̀ ! ` i (` 2  

for all i. Substituting   ̀ ! ` i (` 2  into (10) the condition for a symmetric Nash 

equilibrium is: 

  
  
c ! * i (s) = (11` 24d (e,s) 11 2d(e,s)

`
11 `

O

PQ
R

STs"S
c f (s)ds   (12) 

The SNE exists for marginal cost 0 # c # u  (by assumption) and if there is a unique 

 
` " 0,1+ 2 such that (12) holds. Three key points proves this existence: 



 

 104 
 

0. Preliminarily, the right hand side of (12) is equal to the marginal expected payoff 

  

M* i (` (` 2
M` i

! * i (s) = (11` 24d (e,s) 11 2d(e,s)
`

11`
O

PQ
R

STs"S
c f (s)ds  (13) 

1. There exist some values for ` " 0,1+ 2 such that (13) is positive.  

If 
  

11 2d(e,s)
`

11 `
O

PQ
R

ST
0 0  for all 2d(e,s) 4 1 then (13) must be positive. If 

 
` 4

1
2

 

then 
  
11 `
`

/ 1/ 2d  for all possible d " 0,
1
2

>

?
@

A

B
C , and if 

11 `
`

/ 2d  then 

(rearranging) 
  

11 2d
`

11 `
O
PQ

R
ST
0 0 . Therefore for any ` 4

1
2

, (13) must be positive. 

2. For any unique value of 
 
` " 0,1+ 2, (13) decreasing in `  and, therefore, there is a 

unique value of (13). The derivative of expression (13) with respect to `  is 

  

M
M`

M* i (` (` 2
M` i

O

P
Q

R

S
T ! 1 * i (s) =2d(e,s)(11 ` 24d (e,s)11 2d(e,s) .

11 ` 4d 2 (e,s)
11 `

O

PQ
R

STs"S
c f (s)ds  

(14)For all 
  
d " 0,

1
2

>

?
@

A

B
C  then 4d 2 (e,s) 4 1 and 

11 ` 4d 2(e,s)
11`

/ 1. Therefore, (14) is 

strictly less than 0 for all 0 # ` # 1  

3. There exists some interval of values ` " 0,1+ 2 such that for any `  there is a 

unique value of 
  

M* i (` (` 2
M` i

" 0,
* i (` (` 2

`

>

?
@
@

A

B
C
C

. By definition, the average payoff is 

  

* i (` (` 2
`

! * i (s) = (11 ` 24d (e,s)

s"S
c f (s)ds . Substituting into (13), the marginal 

payoff is equal to the average payoff, less the marginal change in availability: 



 

 105 
 

  

M* i (` (` 2
M` i

!
* i (` (` 2

`
1

`
11`

* i (s) =2d(e,s)(11 ` 24d (e,s)

s"S
c f (s)ds . Given 

  

`
11 `

* i (s) =2d(e,s)(11 ` 24d (e,s)

s"S
c 0 0  then 

M* i (` (` 2
M` i

#
* i (` (` 2

`
. Further, if 

` - '  then 
  

`
11 `

* i (s) =2d(e,s)(11 ` 24d (e,s)

s"S
c - 0  and 

M* i (` (` 2
M` i

-
* i (` (` 2

`
. 

From points 1 through 3, for any marginal cost c " 0,u+ 2 there is a unique value `  

that satisfies expression (12). Given that 
M* i (` (` 2
M` i

 is decreasing in `  and 

  
0 # u 4

* i (` (` 2
`

 then there exists some interval of values `  such that for any 

  c " 0,u+ 2 
  

M* i (` (` 2
M` i

! c . 

Rearranging (10) the value to each entrepreneur is: 

 
  
vi ! * i 1 c̀ !

` 2

11 `
* i (s) =2d(e,s)(11 ` 24d (e,s)

s"S
c f (s)ds  

This is, by definition, the ex ante expected value to the network investment ` . 

QED 

 

Proposition (Social Planner’s Solution). Under a uniform network with 

supermodular payoffs and match probability 

  
p(ei ,sj ;` i (`1 i ) ! ` i = 11 ` i+ 22dij = 11 `d(s j ,dij )+ 22dij

, for any marginal cost c there is a 
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unique, symmetric Social Planner solution in which each entrepreneur invests to 

reach `*and receives expected value: 

 
  
v* ! * 1 c̀ * ! 4

` *2

11 ` * d* (d)(11 ` *24d g(d)dd
d !0

1
2c  

Proof. Under a uniform, symmetric network, the social planner’s problem in (7) 

reduces to choosing a target network density `* for all entrepreneurs.  

 
  
`G ! argmax` M * (s)` (11`24d (e,s)

s"S
c f (s)ds 1 c(` 2

>

?
@

A

B
C  

When all agents are uniform, each entrepreneur’s ex ante payoff is symmetric and can 

be rewritten as a function of distance, where gi(d)  is the uniform distribution of 

distances to each specialist from ei and Gi (
1
2

) ! 1 for all i. 

 
  
` * ! arg max` M * (d )` (11 `24d g(d )dd

d !0

1
2c 1 c(` 2

>

?
@
@

A

B
C
C

 

 

A symmetric Social Planner’s solution for ` * must satisfy the first order condition: 

 
  

M
M`

V ! * (d)(11 ` *24d 11 4d ` *

11` *

>

?
@

A

B
C g(d)dd

d !0

1
2c 1 c ! 0  

Similar to the SNE, the Social Planner’s symmetric solution implies that at the 

optimal solution, marginal cost must equal the marginal ex ante payoff to the 

network: 

 
  

M* (` *)
M`

! * (d)(11` *24d 11 4d ` *

11` *

>

?
@

A

B
C g(d)dd

d !0

1
2c ! c  (15) 

Three points prove that for any c " 0,u+ 2 there exists a unique ` * " 0,1+ 2 satisfying 

(15): 
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1. There exist values of  0 # `
G # 1 such that (15) is positive. If 11 4d

`
11 `

>

?
@

A

B
C 0 0 , or 

  
4d #

11 `
`

, then 
  

* (d)` (11 `24d 1
`
1

4d
(11 `2

>

?
@

A

B
C g(d)dd

d !0

1
2c 0 0 . Given 

  
d 4

1
2

, if 

  
11 `
`

/ 4d  or ` 4
)
E

 then (15) is positive. 

2. For any c, the value of `G  is unique. For any `G  such that (15) is positive then 

expression (15) is strictly decreasing and the second order condition is strictly 

negative: 

 
  

M2

M` 2 V ! 1 * (d)4d(11` *24d 11 2 1` *(1. 4d)
11` *

>

?
@

A

B
C g(d)dd

d !0

1
2c # 0  

The above expression is less than 0 if 
11`
`

/ 4d . For any feasible value of `G , 

  
* (d)` (11 `24d 1

`
1

4d
(11 `2

>

?
@

A

B
C g(d)dd

d !0

1
2c  is decreasing in ` G . 

3. For any value of  0 # `
* # ) , 

M* (` *)
M`

#
* (` *)
` * . First, on the left hand side of (11), 

the marginal expected welfare return is equal to the average payoff, 

  
* (d)(11 ` *24d g(d)dd

d !0

1
2c !

* (` *)
` * . Substituting into (15), 

  

M* (` *)
M`

!
* (` *)
` * 1

2`G

)1 `G
* (d)2d(11` *24d g(d)dd

d !0

1
2c . Given 
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2`G

)1 `G
* (d)2d(11` *24d g(d)dd

d !0

1
2c 0 0  then 

M* (` *)
M`

#
* (` *)
` * . Further, as ` - '  

then 
  

2`G

)1 `G
* (d)2d(11 ` *24d g(d)dd

d !0

1
2c - 0  and 

M* (` *)
M`

-
* (` *)
` * . 

From points 1 through 3, there is some interval of values for `G  such that 

 

M* (` *)
M`

" 0,
* (` *)
`G

O

PQ
R

ST
. Further, since 

M* (` *)
M`

 is decreasing in `G  there is some more 

narrow interval of `G  values such that 
M* (` *)
M`

" 0,*+ 2 where * #
*
`G

#
* (`G)
`G

. 

Finally, since 
 

M* (` *)
M`

 is strictly decreasing in `G , the second order condition holds 

and this solution is unique. 

Rearranging (15) the socially optimal payoff is equal to: 

 
  
v* ! * 1 c̀ ! 4` 2 d* (d )(11 `24d 11 g(d )dd

d !0

1
2c 0 0 .  

Q.E.D. 

 

Proposition (Compare First Best and Entrepreneur’s Reaction). Under a uniform 

network with supermodular payoffs and negative externalities each entrepreneur 

over-invests in her network so that ` 0 `G . 

Proof. For any fixed marginal cost c, the two first order conditions from the previous 

two proofs are equal: 

 
  

* (d)(11 `24d 11
4d`

(11 `2
>

?
@

A

B
C g(d)dd

d !0

1
2c ! * i (d) = (11 ` 24d 11

2d`
11 `

O

PQ
R

STd !0

1
2c g(d)dd

 
By contradiction, suppose that investment is equal so that ` ! ` * . Then  
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* (d)(11 `24d 11
4d`

(11 `2
>

?
@

A

B
C g(d)dd

d !0

1
2c ! * i (d) = (11 ` 24d 11

2d`
11 `

O

PQ
R

STd !0

1
2c g(d)dd  

 

  
4

`
11 `

d* (d)g(d )dd
d !0

1
2c ! 2

`
11 `

d* i (d)g(d )dd
d !0

1
2c

 but this is clearly a contradiction, so ` I ` * . 

Next suppose there is underinvestment so that ` # ` * . Then (11 ` *)4d # (11 ` )4d  

and 

 

`G

11`G
0

`
11`

g

4d`G

11`G
0

2d`
11`

g

11
4d`G

11`G
# 11

2d`
11 `

 

Combining these expressions (11 ` *)4d 11
4d`G

11 `G

O

PQ
R

ST
# (11 ` )4d 11

2d`
11 `

O

PQ
R

ST
 and  

 
  

* (d )(11 `24d 11
4d`

(11 `2
>

?
@

A

B
C g(d)dd

d !0

1
2c # * i (d ) = (11` 24d 11

2d`
11 `

O

PQ
R

STd !0

1
2c g(d)dd  

 but this is a contradiction to the initial condition. 

This leaves the case of entrepreneurial overinvestment, ` 0 ` * , in which 

  (11 `
*)4d 0 (11 ` )4d  and 

 

`G

11 `G
#

`
11 `

. This implies that the relationship between 

  

4d`G

11 `G
 and 

2d`
11 `

 is ambiguous. Then it is feasible that ` 0 ` *  and  

 
  

* (d )(11 `24d 11
4d`

(11`2
>

?
@

A

B
C g(d)dd

d !0

1
2c ! * i (d ) = (11 ` 24d 11

2d`
11`

O

PQ
R

STd !0

1
2c g(d)dd  
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Since this is the only feasible case it follows that ` 0 ` *  and there is entrepreneurial 

overinvestment in the network. Q.E.D. 

 

Proposition. Under a uniform network with targeting, supermodular payoffs and 

negative externalities, as network targeting becomes more specific ex ante expected 

partnerships are more compatible. 

Proof. Following the same logic as the original entrepreneur’s SNE and social 

planner’s problem, the updated respective first order conditions are: 

 

  

c ! r * i (s) = (11 r` 24d (e,s) 11 2d(e,s)
r`

11 r`
O

PQ
R

ST
s"S (ei ,

1
2r

)

c f (s)ds  (SNE) 

 

  

c ! r * i (s) = (11 r` *24d (e,s) 11 4d(e,s)
r` *

11 r` *

O

PQ
R

ST
s"S (ei ,

1
2r

)

c f (s)ds  (SPS) 

Following the immediately preceding proof, the relevant expression to compare the 

entrepreneur’s choice `  with the social planner’s efficient solution `G  is:  

 

  

* i (s) = (11 r` 24d (e,s) 11 2d(e,s)
r`

11 r`
O

PQ
R

ST
s"S (ei ,

1
2r

)

c f (s)ds

! * i (s) = (11 r` *24d (e,s) 11 4d(e,s)
r` *

11 r` *

O

PQ
R

ST
s"S (ei ,

1
2r

)

c f (s)ds
 

In the case of targeted search, the maximum skill incompatibility distance is 

  
d !

1
2r

. As r increases, the maximum distance decreases. As the maximum distance 

decreases, the externality to the entrepreneur, 2d(e,s)
r`

11 r`
, and social planner, 
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4d(e,s)

r` *

11 r` * , diminish. The difference between the `  and `G  that solve these 

expression must be decrease as r increases and d !
1
2r

 decreases. In turn, the 

efficiency of the entrepreneur’s solution increases.  

Given  ̀ # r`  and   ̀
* # r` , the probability of a more compatible partnership is at 

least at factor r higher. The probability of any partnership is at least as great and the 

probability of a more compatible partnership is increasing in r. The expected return 

is, therefore increasing. 

Q.E.D. 

 

Proposition (Compare General to Targeted Cases). Under a uniform network with 

supermodular, negative network externalities and constant marginal cost, the 

network density in the search region is greater under a targeted search when   r 0 1, 

than under a general search when r ! 1 : ` # r`  and ` * # r` . 

Proof of Proposition (Compare General to Targeted Cases). The proof follows the 

same logic as the previous comparison. For the SNE entrepreneur’s equilibrium:  

 

  

r * i (s) = (11 r` 24d (e,s) 11 2d(e,s)
r`

11 r`
O

PQ
R

ST
s"S (ei , 1

2r
)

c f (s)ds

! * i (s) = (11 ` 24d (e,s) 11 2d(e,s)
`

11`
O

PQ
R

ST
s"S (ei , 1

2r
)

c f (s)ds
 

For the social planner’s solution: 
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r * i (s) = (11 r` *24d (e,s) 11 4d(e,s)
r` *

11 r` *

O

PQ
R

ST
s"S (ei , 1

2r
)

c f (s)ds

! * i (s) = (11 ` *24d (e,s) 11 4d(e,s)
` *

11 ` *

O

PQ
R

ST
s"S (ei , 1

2r
)

c f (s)ds
 

Following a proof by contradiction in either case, it follows that ` # r`  and 

  ̀
* 0 r`Gh . Q.E.D. 
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