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Typical video surveillance control rooms include a collection of monitors con-

nected to a large camera network, with many fewer operators than monitors. The

cameras are usually cycled through the monitors, with provisions for manual over-

ride to display a camera of interest. In addition, cameras are often provided with

pan, tilt and zoom capabilities to capture objects of interest. In this dissertation, we

develop novel ways to control the limited resources by focusing them into acquiring

and visualizing the critical information contained in the surveyed scenes.

First, we consider the problem of cropping surveillance videos. This process

chooses a trajectory that a small sub-window can take through the video, selecting

the most important parts of the video for display on a smaller monitor area. We

model the information content of the video simply, by whether the image changes

at each pixel. Then we show that we can find the globally optimal trajectory for a

cropping window by using a shortest path algorithm. In practice, we can speed up

this process without affecting the results, by stitching together trajectories computed



over short intervals. This also reduces system latency. We then show that we

can use a second shortest path formulation to find good cuts from one trajectory

to another, improving coverage of interesting events in the video. We describe

additional techniques to improve the quality and efficiency of the algorithm, and

show results on surveillance videos.

Second, we turn our attention to the problem of tracking multiple agents

moving amongst obstacles, using multiple cameras. Given an environment with

obstacles, and many people moving through it, we construct a separate narrow field

of view video for as many people as possible, by stitching together video segments

from multiple cameras over time. We employ a novel approach to assign cameras

to people as a function of time, with camera switches when needed. The problem is

modeled as a bipartite graph and the solution corresponds to a maximum matching.

As people move, the solution is efficiently updated by computing an augmenting

path rather than by solving for a new matching. This reduces computation time

by an order of magnitude. In addition, solving for the shortest augmenting path

minimizes the number of camera switches at each update. When not all people can

be covered by the available cameras, we cluster as many people as possible into small

groups, then assign cameras to groups using a minimum cost matching algorithm.

We test our method using numerous runs from different simulators.

Third, we relax the restriction of using fixed cameras in tracking agents. In

particular, we study the problem of maintaining a good view of an agent moving

amongst obstacles by a moving camera, possibly fixed to a pursuing robot. This

is known as a two-player pursuit evasion game. Using a mesh discretization of the



environment, we develop an algorithm that determines, given initial positions of

both pursuer and evader, if the evader can take any moving strategy to go out of

sight of the pursuer, and thus win the game. If it is decided that there is no winning

strategy for the evader, we also compute a pursuer’s trajectory that keeps the evader

within sight, for every trajectory that the evader can take. We study the effect of

varying the mesh size on both the efficiency and accuracy of our algorithm.

Finally, we show some earlier work that has been done in the domain of

anomaly detection. Based on modeling co-occurrence statistics of moving objects in

time and space, experiments are described on synthetic data, in which time intervals

and locations of unusual activity are identified.
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Chapter 1

Introduction

1.1 Motivation

The use of video surveillance systems has been rising over the past decade.

Most recently, the need to improve public safety and the concerns about terrorist

activity have contributed to a dramatic increase in the demand for surveillance sys-

tems. The presence of these systems is very common in airports, subways, metropoli-

tan areas, seaports, and in areas with large crowds. Modern video surveillance sys-

tems consist of networks of cameras connected to a control room that includes a

collection of monitors. Typical control rooms have a much smaller number of moni-

tors than cameras and far fewer operators than monitors. The monitors either cycle

automatically through the cameras, or operators can manually choose any camera

from the network and display it on a selected monitor.

The M25 London Orbital highway system consists of 5 traffic control centers,

each with 60 monitors connected to 324 cameras and distributed over 70 sites. The

London underground has a network of 25,000 cameras at 167 stations [1]. A recent

survey by the New York Civil Liberties Union found that in Lower Manhattan,

New York City, the number of surveillance cameras below 14th St grew from 769

in 1998 to 4176 in 2005. According to the same source, the New York City Police

Department announced in 2006 that it planned to create a “citywide system of
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Figure 1.1: Typical design of a control room

closed circuit televisions” operated from a single control center [2]. In the area of

crowd control, CNN News reported from inside the central surveillance control room

for this year’s Hajj ritual at Mecca, Saudi Arabia. Over 1400 cameras monitored

a crowd of around 3 million pilgrims, who can flow in some areas at rates of up to

250,000 per hour [3]. A typical design of a control room is illustrated in figure 1.1.

We suggest this work to be part of a larger project in the design of future

control rooms, that envisions an architecture consisting of a large display wall which

acts as a single entity, as opposed to matrices of independent monitors, or display

regions with pre-specified monitoring tasks, as in current state of the art control

rooms. The display wall assigns variable areas and locations to a subset of the

available videos from surveillance cameras. The problem of selecting the subset

of videos to display is addressed in this dissertation. Here, we do not only mean

2



the automatic selection of a camera footage to display at a specific time. We go

one step further by editing the individual videos in both time and space before

displaying them, possibly stitching together different video “pieces” coming from

different cameras. Our goal is to present the operators with a video that contains

the most critical scenes of the surveyed environment, thus focusing their attention on

important information content. The related problems of assigning the appropriate

area and selecting the location where the edited video is to be displayed is motivated

in this dissertation, but the details are rather left as an area of future research.

Intuitively, video segments that are more interesting to human operators shall be

assigned longer display times, larger areas and more prominent parts of the display

wall. Some “scoring” mechanism will be used to achieve this task. An overview of

the surveillance system’s architecture presented in this dissertation is illustrated in

figure 1.2.

1.2 Dissertation Organization

In this dissertation, we present four components that collaborate in building

our proposed surveillance system. First, we note that assigning a video to its display

area typically requires resizing it. If the assigned space is small, simply reducing

the resolution of the original video might render its contents to be illegible. In

this situation, cropping the video before resizing it results in videos that should be

easier for humans to interpret. This brings up the need to automatically edit the raw

footage coming from cameras. The design and implementation of this component,

3
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Figure 1.2: Diagram of the proposed future control room

along with results on real surveillance video is the topic of chapter 2.

Within the area of video editing, we also study the problem of creating a

video by combining together several different video segments. In chapter 3, we

create videos that focus on subjects during their presence in the surveyed scene,

using multiple fixed cameras. Rather than relating a video to its source (i.e. the

camera that produced it), we relate it to its content (i.e. the subject(s) that it

covers). Creating such multi-camera videos, one per subject, enables the operator to

focus on each subject’s behavior separately, rather than being distracted by different

activities that occur in each camera’s field of view.

Using fixed cameras can result in some subjects not being seen by any camera.

Within the theme of focusing operators’ attention on individual subjects, we suggest

the use of mobile cameras for that purpose. This naturally relates to the pursuer
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evader game. The first question that comes to mind is whether or not a pursuer

will be able to maintain the visibility of an evader at all times and for which initial

positions of the players. We devise an algorithm to solve that problem in chapter

4 and, if the answer to the question of maintaining the visibility of the evader is

affirmative, we also compute the motion strategy that realizes this.

Finally, chapter 5 presents our method to detect anomalous activity in video.

By identifying time intervals and locations of unusual activity, we present yet another

method of focusing the operator’s attention on interesting parts of surveillance video

that could require further human intervention.

1.3 Contributions

We have introduced several novel methods in analyzing surveillance video in

this dissertation. In the area of video editing, we defined and implemented a broader

video cropping technique that deals with raw camera footage versus retargeting pre-

edited video. We also introduced a new approach to solve the problem of tracking

people across multiple cameras. We applied our method to a new problem of auto-

matically creating a video for a subject from the footage of multiple cameras.

In the area of pursuer-evader games, we have developed a new computationally

feasible approach to solve the problem of determining the outcome of the game. Fi-

nally, our anomaly detection method uses co-occurrence statistics of moving objects

in time and space. Unlike earlier approaches that used co-occurrence statistics in

time only, our method is able to detect additionally events that need not be unusual
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if considered individually, but that become so when occurring simultaneously.
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Chapter 2

Automatic Video Editing

2.1 Introduction

In surveillance applications, video cropping helps to focus the attention of

operators on specific parts of the scene. Activity occurring in the background or at

corners of the display area might pass unnoticed by operators, due to other activity

in more prominent areas of the scene. Cropping is often needed as well to save

bandwidth in transferring the video or saving it for archiving purposes. The tradeoff

here is between the size of the cropped video and the information loss. In scenes

with several regions of simultaneous activity, allowing the cropping window to jump

occasionally between these regions supports coverage of multiple activities, while

keeping the resulting cropped video small. In addition, it is crucial in surveillance

applications to process video online −as it becomes available− and cannot require

the entire video to be available beforehand. These points are amplified in the body

of this chapter.

We define the video cropping problem to be the determination of a smooth

path of a cropping window that captures “salient” foreground throughout the video.

The window can have variable size, which introduces virtual zoom-in and zoom-out

effects. It is allowed occasional jumps through the video, similar to scene cuts in

filmmaking. We use motion energy as a measure of the “saliency” of a cropping
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window trajectory. Unlike previous approaches, we optimize the saliency globally

for the whole trajectory, rather than for individual frames or shots, as follows.

First, the video is modeled as a graph of windows, with its edge weights

reflecting saliency captured by windows, efficiently computed using integral images

[78]. Then, a shortest path algorithm finds the window trajectory that captures the

overall maximum motion energy. The resulting trajectory is smoothed to remove

jiggles and staircase-like appearance. This procedure is repeated several times on

the remaining parts of the video to capture the remaining saliency. This results in

obtaining a set of disjoint smooth paths of cropping windows that capture as much

saliency as possible. A secondary optimization procedure produces the final path

by alternately jumping between the paths computed earlier, selecting which one to

follow at which time, so as to maximize both captured saliency and covered regions of

the original video. Long videos are processed by breaking them into manageable sub-

videos, while allowing overlap between consecutive subvideos, to produce smooth

transitions. Our algorithm is applied to a collection of real surveillance videos.

Several experiments are performed to determine the optimal choices regarding issues

such as where to cut a video into sub-videos, the amount of overlap between them

and how long a segment should be displayed before jumping to another. Some

display configurations are compared, such as cropped video alone, side by side with

original video, or video-in-video (like commercially available picture-in-picture).

We are mainly interested in surveillance applications. Typically, much more

video than operators can observe is available. In addition, this video is unedited,

and more importantly, not focused on any agent in the scene. This has made our
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approach [21] different from earlier approaches that dealt with edited videos, such

as movies, news reports, or classroom video. In particular, our method offers the

following contributions:

• a variable size cropping window which results in a smooth zoom in/out effect,

• multiple cropping windows to cover more agents in the scene,

• only a relatively short video segment needs to be processed at a time −not

the complete video− which makes the algorithm an online algorithm, and

• we show empirically that by stitching together results from short segments of

a video, we get a result identical to the globally optimal one, given the entire

video.

The rest of this chapter is organized as follows: section 2.2 reviews related

work. Then, the video cropping problem is formally defined in section 2.3. In

section 2.4, we present our approach to solve the problem, while section 2.5 presents

the results. Finally, closing remarks and conclusions can be found in section 2.6.

2.2 Related Work

Research has been performed in the area of visual attention to detect salient

areas in images and video from low-level features. Itti et al. [41] use orientation

filters in addition to color and intensity to detect salient parts of images. Later,

Itti and Baldi extend this method to work with videos, using a statistical model

for time [40]. A probabilistic approach is used by Kadir and Brady as a measure
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of local saliency in images [42]. Their method is generalized by Hung and Gong by

including the time variable to quantify spatio-temporal saliency in videos [38].

Many methods for cropping still images automatically have been published.

For example, Suh et al. [68] use Itti’s saliency model, along with face detection, to

crop informative parts of images before reducing them to thumbnails. The same

model is also used by Chen et al. [12], with the addition of text detection, to find

regions of interest in images for adaptation to small displays. Xie et al. [83] study

the statistics of users’ interaction with images on small displays to determine regions

of maximum user interest.

Much less work has been done in the area of video cropping, or detecting in-

teresting space-time regions of a video. Fan et al. [24] determine areas of interest in

individual frames, then combine them smoothly. Wang et al. [79] split surveillance

video into interesting and non-interesting sequences using a threshold on their mo-

tion content. Non-interesting sequences are zoomed out and transmitted/displayed

at reduced frame rates, while interesting ones are displayed at full frame rate and

zoomed in to clusters of high motion energy. Both of these methods are optimized

locally and need not produce videos that are globally optimal, in terms of their

saliency content. More recently, Kang et al. used a space-time saliency measure to

cut out informative portions of a video and pack them into a video of smaller reso-

lution and shorter duration [43]. This approach models videos and processes them

as a whole, making them unsuitable for relatively longer videos, or for continuous

surveillance video.

Liu and Gleicher [52] edit videos using a fixed size cropping window. Since
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they focus mainly on editing feature films, the window moves are restricted to pans

and cuts whose parameters are optimized over individual shots. To keep the original

structure of the film, the authors introduce a set of heuristic penalties that limit

the motion of the cropping window. Although this approach works well with pro-

fessionally captured films, it may not generalize well to unedited raw surveillance

video, which generally have wider fields of view, are not focused on a main subject,

and consist of a single shot. Within the same area of cropping television and cinema

video content to fit a different screen size, Deselaers et al. [15] also scan the video

using a fixed size cropping window. They occasionally zoom-out, padding with black

borders, when the cropping window “is not able to capture all relevant parts of the

image”. Another recent example of automatic editing of specific types of videos is

that of classroom video editing. Heck et al. [32] find an optimal shot sequence, from

a set a virtual shots, that have been selected based on prior knowledge of the scene

and video content.

2.3 Problem definition

Given a video sequence, our goal is to determine a smooth trajectory for a

variable size window through the video, that maximizes the captured saliency over

all such trajectories and window sizes. Occasional jumps are allowed to include as

much saliency as possible. More formally, we consider the problem of optimizing a

single trajectory. Assume the input video segment has T frames. Each frame t can be

covered by a set of n variable size overlapping windows. These windows are labeled
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Wi,t, with i being the window number, selected from an index set I = {1, 2, . . . , n}.

Define the cross product set I = I × I × · · · × I = IT . Then, we want to solve the

problem:

arg max
Q

∑
t

S(Wi,t) (2.1)

where S(·) is a saliency measure, Q ∈ I is the window sequence that maximizes the

saliency, and i ∈ I. It is more desirable to minimize functions, thus, the saliency

function S(·) can be replaced by a cost function C(·) that decays with increasing

saliency. Model (2.1) doesn’t enforce spatial smoothness. To guarantee a smooth

path, windows in two consecutive frames are restricted to be close to one another

and with little area variation. The problem is thus formulated as:

arg min
Q

∑
t

C(Wi,t) (2.2)

such that: d(Wi′,t−1,Wi,t) < dmax

|A(Wi′,t−1)−A(Wi,t)| < Amax

where d(·, ·) is a distance measure and A(W ) is the area of window W .

Our main contribution [21] is that we optimize globally, over the whole video,

rather than locally for individual frames, that are later combined. This approach

maximizes the total captured saliency and provides smoother results.

2.4 Video Cropping Approach

Solving problem (2.2) by trying all possible paths is prohibitively expensive.

Instead, we employ a dynamic programming approach, using the following proce-

dure. First, motion energy is extracted through frame differences. Then, we build a
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Figure 2.1: Overview of our approach to crop a video segment.

weighted directed graph, with the cropping windows as its vertices, and edge weights

measuring the motion energy. A shortest path algorithm through the graph selects

the first optimal trajectory, which minimizes equation (2.2). This trajectory is then

smoothed, and the motion it contains is “wiped out” from the original frames. This

procedure is repeated to capture some of the remaining energy. A second graph is

built out of the resulting trajectories with shortest path run once again to deter-

mine the optimal combination of paths. In the final cropped video, one trajectory

is followed at a time, with occasional jumps between these trajectories. For long

videos, video segments are chosen to overlap with their immediately preceding ones,

and are processed similarly. This allows smooth transitions between the respective

trajectories in each segment. The whole process is summarized in figure 2.1. In the

remainder of this section, the above steps are presented in more detail.

2.4.1 Extracting motion energy

In our implementation, we use motion energy as a measure of saliency. Earlier

approaches [24, 52] used centered frame saliency maps, face and text detectors in

addition to motion contrast, to crop movies and news. These detectors are too

specific to be used with surveillance video.
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Motion energy is efficiently computed in real time, and captures important

activity in surveillance video. We compute frame differences and threshold them to

detect motion, then apply morphological operations to the resulting motion frames.

In particular, the opening operation is applied to remove detected small noisy areas,

then a closing operation connects nearby fragments. The motion energy is computed

to be the number of 1’s in the resulting binary images. The remainder of the

algorithm works on these preprocessed difference frames.

2.4.2 Building the graph

The video is modeled as a weighted directed graph as follows. Let G = (V,E)

be the graph. Each frame is sampled by n overlapping cropping windows of various

sizes. Then, each window is represented by a vertex v ∈ V. This makes the total

number of vertices in the graph |V| = nT for a video segment of T sample frames.

The restrictions in the problem formulation (2.2) are implemented by allowing a

window to move only to neighboring window positions, or to grow or shrink by no

more than one size step between two consecutive frames. This translates to adding

an edge to E only if it connects a pair of vertices that represents a pair of windows

between which a step is allowed. For a certain ordering of the vertices V, the

adjacency matrix of G is banded. This is a sparse matrix that can be efficiently

stored using an adjacency list graph representation, to store just the bands. With

b ¿ nT neighbors allowed per window, we have a graph of O(nT ) edges. An

additional “source” node and a “target” node are added to the beginning and end

14



dummy
source
node

dummy
target
node

w=0 w=0

w=0w=0

nodes
of first
frame

nodes
of last
frame

nodes
of frame i

Figure 2.2: Graph modeling the video.

Figure 2.3: Using window energy density as a measure of motion energy favors
smaller windows, cropping away small parts of objects, such as heads in humans
(left: original frame, showing the location of the cropping window; right: cropped
frame).

of the graph. A model graph is shown in figure 2.2.

To find a trajectory that maximizes the captured motion energy, we need

to define a window energy measure. Using the total energy enclosed in a window

always favors larger windows, which makes the cropping useless. On the other hand,

using the energy density as a measure favors smaller windows, which can be more

densely filled, with little empty space. This results in cropping away smaller parts

of objects, such as heads in humans, as is illustrated in figure 2.3. This is definitely

an undesirable result.
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Figure 2.4: Cropping window configuration, with surrounding belt area. The num-
bers represent the labels of the inner (cropping) window’s corners.

To balance both effects, we use an energy density measure, penalized by the

total energy in a thin surrounding belt. This is similar to center-surround repre-

sentations (e.g. Itti et al. [41]). It prevents the window from cropping away parts

of objects, making it large enough to fit a single “cluster” of objects, while leaving

distant ones for subsequent trajectories to capture. The multi-scale energy function

of a window W is defined as:

E(W ) =
Ein

Ain

− 1

K
Ebelt, (2.3)

where Ein is the motion energy (number of 1’s) in window W , Ain is the area of

window W in pixels (i.e., the number of pixels in W ), Ebelt is the motion energy in

the surrounding belt, and K is an empirically chosen constant, that determines how

much penalty to assign to cropped away parts. The diagram in figure 2.4 illustrates

these parameters.

Next, the energy measure (2.3) is put in a form that can be minimized, to

fit as a cost function C(·) in equation (2.2). In addition, to suit the shortest path

algorithm used, the edge weights must be normalized to a non-negative integer
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range. We choose this range to be from 0 to 100. If a transition is allowed from

vertex i to vertex j, an edge is added to the graph with weight w(i, j) computed as:

w(i, j) =

⌊
100− 100 max

(
Ej

Aj

− 1

K
Ebeltj , 0

)
+ 0.5

⌋
(2.4)

where Ej, Aj and Ebeltj are all related to the window represented by vertex j. The

function bx + 0.5c rounds x to the nearest integer. Ej and Ebeltj are computed by

summing the motion pixels (1’s) for each window in each pre-processed difference

frame. This is a time consuming operation if performed in a straightforward manner.

Instead, we use integral images in a manner similar to Viola and Jones in image

analysis [78] based on an idea by Crow for texture mapping [14]. Given an image

i(x, y), the integral image ii accumulates pixels to the top and left of each pixel, as

defined by:

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′).

The integral image is computed in one pass using the two recurrences:

s(x, y) = s(x, y − 1) + i(x, y) (row sum)

ii(x, y) = ii(x− 1, y) + s(x, y) (integral image)

s(x,−1) = 0 ; ii(−1, y) = 0

The integral image is computed once for every frame, then every window sum, Ej, is

computed using only 4 operations. Thus, we avoid computing the cumulative sum

for each window, which includes a lot of redundancy due to the overlap between

windows. Given a window with corners −→x1, −→x2, −→x3 and −→x4 in clockwise direction,

starting from the top left (see figure 2.4), the cumulative sum in that window can
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be computed as:

ii(−→x3)− ii(−→x2)− ii(−→x4) + ii(−→x1).

2.4.3 Shortest path

The shortest path from the source node to the target node is computed using

Dijkstra’s algorithm [17]. Benefiting from the special structure of this graph, some

modifications are introduced into the algorithm to improve performance. Early

termination can be achieved by halting the search prematurely when the first vertex

(window) in the last video frame is reached, rather than waiting until all the vertices

in the graph are labeled.

Dijkstra’s algorithm is mainly slowed down by the search for the closest vertex

to the source, in a list of temporary labeled nodes, at each iteration. With N vertices

in the graph, the asymptotic running time of the algorithm is O(N2) orO(N log(N))

depending on the data structure used to implement the list of temporary labeled

nodes. This running time has been reduced in our implementation in two ways. The

multiplying factor is directly affected by the size of the list of temporary labeled

nodes. In our runs, we note that the maximum number of nodes in that list, over

all iterations, is just around 1% of the total number of vertices in the graph.

The running time is also reduced an order of magnitude, from quadratic to

linear in the number of vertices, using Dial’s implementation [16]. In the original

algorithm, Dial stores temporarily labeled nodes in buckets, indexed by the nodes’

distances. This makes the search for the minimum distance node O(1). With
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C being the maximum edge weight (100 in our graph), Dial’s original algorithm

maintains NC + 1 buckets, which may be prohibitively large. A remark made

by Ahuja [7] reduces the space requirements to only C + 1 buckets. During each

iteration, the difference between the maximum and minimum finitely labeled nodes

cannot exceed C. Hence, temporarily labeled nodes can be hashed by their distance

labels into just C + 1 buckets.

2.4.4 Smoothing

The shortest path resulting from the previous stage has a noisy appearance,

which can be best compared to a jittery or shaking cameraman, from the point of

view of the cropped video. Two levels of smoothing are applied to the trajectory.

First, a moving average smoother is applied to the trajectory. With y(t) being the

original data (raw trajectory) at time t and ys(t) the smoothed one, the difference

equation is:

ys(i) =
1

2N + 1
(y(i + N) + y(i + N − 1) + · · ·+ y(i−N)) ,

where N is the “radius” of the span interval. This has the effect of a lowpass filter,

reducing the shaky appearance of the trajectory. Truncating the result completely

removes any such artifacts, but results in a staircase-like appearance. A second

level of smoothing is done by interpolating a piecewise cubic Hermite polynomial

to a sub-sampled version of the data. This polynomial interpolates the data points

and has a continuous first derivative. However, unlike cubic splines, the second

derivative need not be continuous. This property is more suitable for our staircase
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Figure 2.5: Piecewise cubic Hermite interpolation performs better than cubic spline
when the original data is staircase.

data, since it avoids excessive oscillations. Figure 2.5 illustrates our situation where

Hermite interpolation produce more stable results.

2.4.5 “Wiping out” captured motion

A single moving cropping window might not capture all motion energy in the

video. In situations where several activities occur simultaneously in separated re-

gions of the scene, panning back and forth between these regions produces a blurry

video that covers the mostly empty area between them. To solve this problem, we

compute several independent window trajectories, each covering a different activity

in the same video. Later, we show how to control jumps between these paths. The

window trajectories are determined by repeating the above procedure of modeling

the video using a graph, computing the shortest path and smoothing. Between two

consecutive computations of window trajectories, all captured objects that overlap

with the first are removed from the motion frames. This “wiping” procedure guar-
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Figure 2.6: Example of merging three windows trajectories. The horizontal axis
represents time; the thick lines are for the segments of the trajectories picked at
that time; and the dashed lines are for times where jumps occur.

antees that an ensuing window path will not cover parts of previously captured

objects, thus avoiding two similar trajectories.

2.4.6 Merging trajectories

Once enough window paths are computed, we merge them into a single path

that captures as much motion as possible, and covers as many regions of the original

video as possible. Figure 2.6 illustrates an example solution to this problem. After

following a segment of a path for some period of time, a jump to a segment of

another path results in covering another activity region, without panning through

the scene. This appears in the final cropped video as a cut.

To compute the final merged trajectory, we solve a second optimization that

uses a shortest path algorithm through the trajectories. A second graph G′ =

(V′,E′) is built, with the list of vertices V′ formed by concatenating nodes from

all computed trajectories. This list of nodes is duplicated k times, with the ith

copy of a node from path p representing that this path has been followed for i steps

(frames/nodes). The number of frames after which a switch between trajectories is

allowed without penalty is k. This allows us to keep track of how long (in frames)

21



a single trajectory has been followed.

There always exists an edge e ∈ E′ from every node to the next node in the

same path, and edges to next frame nodes in the other paths if a “cut” is allowed

at that time. The weight function w′ is the cost associated with the representative

window in the original graph G, computed as in (2.4), if the edge connects two

nodes in the same path. However, if a path switch occurs, a penalty function

is added to that weight. Intuitively, a higher penalty is associated with switches

to closer trajectories, to favor more coverage of the original video, and to avoid

“jumps”. Another penalty is added to the window cost, that decays with the time

that has been spent following a certain trajectory. This latter penalty inhibits

frequent successive cuts, which might distract the operator. These penalties are

fractions of the window cost, to make them comparable to the window cost penalty

(2.2) in the global optimization. They are determined empirically, based on runs

conducted on several videos. We also noticed that these penalties are consistent with

filmmakers’ heuristics, who might use frequent cuts purposely only when special

“pacing effects” are required. Similarly, filmmakers would avoid a cut to a nearby

location, which is known in cinematography as a “jump cut”. These rules have been

followed in feature film editing [52] when creating virtual cuts.

2.4.7 Processing long videos

Real-time surveillance applications require online processing of video. Ad-

ditionally, available processing resources constrain the longest video that can be
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processed as a whole. Our approach allows us to process long videos by breaking

them into segments, with some overlap. Each segment is processed separately, re-

sulting in consecutive overlapping trajectories. By piecing together corresponding

paths from each segment and removing the overlap, continuous smooth trajectories

result. This is further discussed in the section on results, where experiments are

performed to determine appropriate locations to break the video into segments and

the amount of overlap needed for smooth transitions.

2.4.8 Video display

Several display methods for the resulting cropped video are considered. The

most obvious is just displaying the cropped region. This is the most space efficient

but may result in seeing the cropped video out of its context. To keep both context

and content, we display both the original and cropped videos side by side, with

the original one shrunk to fit the display space. This display method is not space

efficient, though.

To display context, while keeping a reasonable video size, we suggest a video-

in-video display style. The familiar style is to display the “sub”-video (cropped

video here) in a corner of the “full” video. In our approach, we find the optimal

display location automatically while computing the shortest path. It is chosen to

be largest border window, that covers the minimum activity in the video. In terms

of our implementation, this is the largest window on the border that contains the

least motion energy. The video-in-video window is of fixed size and location, but
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Figure 2.7: Four typical frames from an airport surveillance video, with three tra-
jectories and fixed window size. In each frame, the original video frame, showing
the locations of the cropping windows, is to the left and the cropped frame is to the
right, resized to the original’s height.

can be allowed occasional changes over longer periods of time.

2.5 Experimental results

We have applied our approach to several surveillance videos. Typical cropped

frames from an airport surveillance video (three-window) and from a traffic inter-

section video (two-window) are shown for fixed size cropping, in figures 2.7 and 2.8

respectively. For now, the number of cropping windows is manually selected for

each video to cover all people who appear in the scene, occasionally jumping be-

tween them. The figures illustrate single frames in which only one cropping window

is displayed. Variable-size single-path windows, video-in-video and multi-camera

display are shown in figures 2.9, 2.10 and 2.11.

We have timed the performance of our system on the airport surveillance video.

This is a high quality 720×480, 30 fps video. Excluding background subtraction and
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Figure 2.8: Two typical frames from a traffic intersection surveillance video, with
two trajectories and fixed window size. In each frame, the original video frame,
showing the locations of the cropping windows, is to the left and the cropped frame
is to the right, resized to the original’s height.

Figure 2.9: Variable size single trajectory results. Compared to the fixed size results,
less empty area is retained around small cropped objects.

Figure 2.10: Video-in-video results: the cropped video location is selected automat-
ically in the boundary region of overall least activity.
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Figure 2.11: Multi-camera display issues should be addressed in later work. Original
video to the left; cropped video to the right.

disk operations, which are done at independent stages, we were able to process a

66 second video segment (2000 frames), as a single segment, in about 400 seconds,

for a fixed-size, single-trajectory window. This is equivalent to processing about 5

frames per second. Lower resolution videos (320×240) can be processed at almost

real-time rates. Experiments are done on a 2.8 GHz dual processor CPU with 1 GB

of memory. Using a variable size window with 6 size steps multiplies the size of the

problem by a factor of 6, thus dramatically reducing the processing speed to about

0.88 fps. Computing more trajectories reduces the processing speed even further.

A key contribution of our system over previous approaches is that it is able

to process segments of video sequentially, eventually allowing for processing flows of

26



input video online. This makes our system able to process surveillance video online,

without the need to have the whole video available completely before processing.

This feature, along with the processing rates for the basic fixed-size window low-

resolution video cropper, makes it useful for real-time surveillance systems. We hope

that more efficient implementations and faster hardware will allow the full feature

variable-size multi-window cropper to work in real-time in the future.

When splitting a long video into segments, we compare the solution, i.e. crop-

ping window path, to that obtained if the complete video is processed as a single

block. Experiments carried out on several videos show that window paths obtained

by processing a sequence of subvideos are identical to those obtained by processing

the longest video that could fit in memory as a whole.

Processing video segments individually results in small jumps when piecing the

resulting cropping window paths together. To obtain smooth transitions between

consecutive segments, the locations to split the video should be carefully selected.

In addition, some amount of overlap is required between segments, to obtain a

transition at the closest point between window paths. Two sets of experiments are

described in the following subsections. The first one determines the best locations

to split a video into segments, and the second one determines the amount of overlap

required between segments to obtain smooth transitions.
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2.5.1 Splitting a long video into segments

The first problem to be solved is to find where to split the video into segments.

The rule of thumb here is to avoid splitting the video at a point where little or no

activity occurs. This might result in a large discontinuity of the window path at the

split point. Regardless of the overlap between the consecutive segments (see next

section), choosing the split point inappropriately might still cause discontinuities.

Our experiments for fixed-size cropping windows show that a split at any time

where significant motion is detected will result in smooth transitions. Figure 2.12

illustrates a situation where a video is split into two segments during a period of

very little motion energy. This results in a large jump at the split location, despite

the long overlap region between the two segments. The x-coordinate of the center

of the cropping window is shown on the vertical axis, along with the motion energy

content, normalized to a scale of 300, for visualization. The solid line represents the

result of processing a one-minute-video segment as a whole, and the dashed lines

are for the results of splitting in two sub-segments.

2.5.2 Overlap in video segments

Once the locations at which to split the video are chosen, the amount of over-

lap between these segments has to be determined. A compromise has to be made

between smoothness, requiring longer overlap, and efficiency, requiring shorter over-

lap. Many experiments were conducted to determine average and shortest overlaps

for which smooth transitions can still be obtained. We first start with the fixed
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Figure 2.12: Effect of splitting a video at a time of little activity (frames 6800-7000).
The vertical axis represents the x-coordinate of the center of the cropping window
[0..320], along with the window energy function that has been normalized to an
integer range of [0..300] to display properly on the plot.

size window case. For all the videos considered, a maximum of 20 overlap frames

was required. By tracing the shortest path algorithm, we record for each node the

last frame (largest time index) that was processed to determine the node’s distance

from the source node (depth in graph). In Dijkstra’s shortest path algorithm, once a

node’s distance is permanent, a shortest path passing through it is not changed any

further (although the path itself is not determined until the backward pass). This

property indicates how much video needs to be processed ahead to compute the final

trajectory. We found that no more than the nodes of 18 frames ahead are needed to

compute the vertices’ permanent distances, hence, the shortest path. Experiments

carried out for the variable window size case show that longer overlaps are required.
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In some situations, we were able to obtain smooth transitions for 50 frame overlaps,

but more experiments still need to be done to determine requirements for a smooth

result.

To further illustrate the point of segment overlap, figure 2.13 shows a fixed-

size-window shortest path computed for a 1000 frame video (solid), plotted against

shortest paths for sub-videos (dotted), starting at the same frame (source node) but

ending much before the original video. The discrepancies are found in the range of

8-12 frames. Figure 2.14 shows a 1000 frame video that serves as ground truth. It is

split into five 200-frame-segments with 40 frame overlap on each side. The cropping

window trajectories obtained using each method are plotted against each other.

Again, differences between the two trajectories are found not to exceed 20 frames

around split points. Elsewhere, the two solutions are identical. This shows that our

method tends to compute trajectories that are globally optimal, even though we are

processing video segments individually.

2.6 Conclusions

Modern surveillance systems contain so many high resolution videos that it is

not possible for operators to view them all. Automatic systems that select the most

relevant portions of the video will make it possible to display important parts of the

video at higher resolution. To do this, we have created a system that crops videos

to retain the regions of greatest interest, while also cutting from one region of the

video to another, to provide coverage of all activities of interest.
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At the core of our system is the use of a shortest path algorithm to find the

optimal trajectory of a sub-window through a video, to capture its most interesting

portions. This relies on a measure of interestingness using a center-surround opera-

tor on the video’s motion energy. By normalizing this operator for scale, we produce

trajectories that alter the zoom of the sub-window, allowing us to smoothly track

objects as their apparent size changes. These methods allow us to find a globally

optimal trajectory, given access to the entire video. In practice, we show that we

can process the video a few seconds at a time and obtain results identical to the

globally optimal solution, but with much less processing time and latency. In addi-

tion, we smooth the trajectory of the cropping video, to reduce unpleasant artifacts.

We also show that we can compute a number of independent trajectories, and use

a shortest path algorithm to find the best way of cutting between these. This pro-

duces a cropped video in which we pan across the original video, following objects

of interest, with occasional cuts to display different objects.

We plan additional work to improve upon these results in the future. First, in

this chapter we have focused on finding algorithms that can maximize the amount

of information extracted from videos by cropping and cutting. We plan to perform

user studies to determine the extent to which this can assist an operator in per-

forming a real surveillance task (some relevant user studies of related systems can

be found in [24, 26, 79]). User studies will also allow us to assess the importance of

parameters that affect video quality, such as the frequency of cuts or the smoothness

of trajectories. We also plan to explore the use of temporal cutting, in which we

eliminate frames in which not much is happening (see figure 2.15). This will be
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Figure 2.15: A cropped frame resulting from panning across a largely empty scene
(left: original frame, showing the location of the cropping window; right: cropped
frame).

particularly important in large scale systems that cycle through many videos.

Our work is based on an overall vision for control rooms of the future, in

which a system determines which portions of which videos are most relevant to a

surveillance task, and maps these to large displays. Such a system will combine

automatic processing and user input to help operators focus on the most relevant

visual nuggets from a huge sea of visual information. This work contributes to that

vision by showing how to use tools from optimization to find the most important

portions of a video.
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Chapter 3

Multi-Camera Management in Surveillance Applications

3.1 Introduction

Surveillance systems are becoming common in modern facilities. The increas-

ing need to provide safety has resulted in more demand for these systems. They

typically consist of a network of cameras, monitored from a control room. The large

number of cameras available and the rising cost of human resources make it pro-

hibitively expensive to manually operate all of them. Recently, there has been a lot

of interest in automating camera management in surveillance systems, to direct the

operators’ attention to “interesting” scenes.

3.1.1 Related Work

To cover large areas, cooperation schemes need to be developed amongst cam-

eras. To maintain the visibility of as large an area as possible, several aspects of the

problem have been addressed in the literature:

1. assigning camera locations;

2. controlling camera parameters, such as pan, tilt and zoom, and possibly posi-

tion as well (for moving cameras) to track agents; and

3. switching tasks between cameras.
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In scenes of known layout, such as lecture rooms [64], camera positions can be

selected to focus on the lecturer and the audience, whose locations are known. In

typical configurations, a wide-angle static camera is used to control the pan and tilt

of an active camera that operates in high zoom mode. In surveillance applications,

agents’ activities are usually non-predictable. Wren et al. [80] control the pan, tilt

and zoom of fixed high capability cameras using a network of low-cost sensors that

measure activity.

Goradia et al. [30] present solutions to the problems of optimally deploying

cameras and switching between them. They use dynamic programming to optimize

the switching of multiple fixed cameras, tracking a single moving agent. Fiore et al.

[25] present a system that reorganizes camera placement with scene changes, while

Zhao and Cheung [85], in addition to other contributions, develop a method to

determine both the optimal number and positions of cameras that achieve a desired

level of visibility.

In the area of tracking agents across multiple cameras, Takemura and Miura

[69] plan the panning and tilting of multiple fixed cameras to track as many moving

agents as possible, in a room without obstacles. They use a motion model to predict

people’s future states. Collins et al. [13] associate cost functions with cameras to

track a single moving object across multiple fixed cameras in an outdoor scene.

Switching of cameras can occur to “hand-off” to another camera when an agent has

moved to within its field of regard. It may occur between a wide-angle view camera

and a highly zoomed-in one, to provide a better view of an agent. When gaps

exist between cameras, Makris et al. [53] suggest a method to correspond the tracks
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of moving agents transiting through the “blind” regions of the camera network.

An indoors surveillance system with multiple non-overlapping field-of-view cameras

is presented in [63]. In this work, Porikli and Divakaran match objects between

cameras to generate a key-frame-based video summary for each object during its

presence within the system.

Another way to cover a large area with surveillance cameras is to use mobile

cameras. Bandyopadhyay et al. [9] present a strategy to track a single target, moving

amongst obstacles, using a single moving camera fixed on a robot. Tang and Özgüner

[71] add several restrictions to that problem such as a limited number of robots with

restricted fields of view, versus a larger number of moving targets. In this case,

the problem becomes that of minimizing the average duration each target is not

observed.

The problem of optimal sensor layout for visibility is classically known as

the art gallery problem [61]. There are also a number of related problems that

have drawn a lot of attention. For example, recently, Kloder et al. [44] solve the

problem of minimizing the probability of undetected intrusion, in environments with

obstacles. Kolling and Carpin [47] present an algorithm to find the minimum number

of robots needed to detect possible intrusions, in indoor environments with many

rooms connected by multiple doors. When the intruding targets are “clever”, the

problem becomes that of the pursuit-evasion game. Some passive results are to

determine bounds on the numbers of targets hiding behind obstacles, based on

observations by moving cameras [84]. The harder active problem is to calculate a

pursuer path that keeps the evader in sight [59]. Interestingly, the inverse problem
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has also been attempted. Marinakis et al. [55] infer the relative positions of a set of

sensors by observing the motions of objects between their non-overlapping fields of

view.

3.1.2 Contributions

We consider an environment with multiple fixed cameras and multiple agents

moving amongst fixed obstacles. We assume that people can be tracked using, for

example, a wide field of view camera fixed to the ceiling. The cameras are controlled

to acquire high resolution video of individual people or small groups. We assume that

the cameras can pan and tilt fast enough so that latencies due to camera movement

can be ignored. This is a fairly reasonable assumption with state-of-the-art pan

speeds reaching up to 300 ◦ per second [72]. The problem is thus to assign cameras

to people (or small groups) and select where to point each camera to produce the

individual videos. Using our knowledge of people’s positions, we employ bipartite

matching to assign cameras to people over time to create a zoomed-in video, with

as few camera switches as possible.

The contributions of the research presented in this chapter [22] are as follows:

1. We assign a “surveillance monitor” per subject (or small group), versus a

monitor per camera. We solve the camera assignment problem in scenes with

multiple subjects and multiple cameras with overlapping fields of regard.

2. We combine results from computer vision, computational geometry and algo-

rithms to compute a continuously updated camera assignment that maximizes
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the total time subjects are imaged.

It is not always possible to assign a camera to every individual person; for

example, there can be more people than cameras in the surveyed scene. Even if this

is not the case, people might cluster in the field of regard of a single camera. We

resolve this issue by controlling the focal length of the camera to capture a group

of neighboring people with a single camera, while still having a close-up view of

each person in the group. This is implemented by grouping people, then assigning

cameras to groups using weighted bipartite matching. We show in our results the

effect of this approach on the number of covered people.

The rest of the chapter proceeds as follows: Section 3.2 defines the problem in

more detail. Our approach to solving the problem is detailed in the ensuing three

sections. Section 3.3 presents our modeling of the one person per camera problem

as a bipartite graph matching algorithm, and section 3.4 discusses the approach for

the many people per camera situation. Section 3.5 tests and evaluates the method

with multiple runs using two different simulators. Finally, we conclude in section

3.6.

3.2 Problem Definition

The first problem we solve is the following. A surveillance camera network with

nc cameras is set up in an environment containing obstacles. A group of np people

walk freely in the room. Our goal is to construct a video for each person, generally

using multiple cameras over time, that captures each person for as long as possible
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during their presence in the environment. This results in one (multi-camera) video

per person rather than one video per camera being displayed to security operators,

or further analyzed using computer vision methods.

The cameras are fixed but can pan, tilt and zoom (PTZ cameras). We call the

volume of the environment that a camera can capture, for a specific PTZ setting,

the field of view (FOV) of that camera. We define the field of regard (FOR) of a

camera as the union of its FOV’s for all possible PTZ settings reachable in negligible

time. We assume that cameras have a large field of regard, but that a small field of

view is generally required to image a person at the required spatial resolution.

When there are fewer cameras than people, the objective becomes covering as

many people as possible. We accomplish this by assigning a camera simultaneously

to several people, with the constraint of having a zoomed-in video that shows the

covered people with high resolution.

Each camera is represented by its visibility polygon, the portion of the floor

of the environment that lies inside its FOR. This enables us to solve the camera

assignment problem in the two-dimensional space as shown in figure 3.1. By the

earlier definition of a FOR, any person inside a specific camera’s visibility polygon

is viewable by that camera in a negligible time, using pan, tilt and zoom operations.

The visibility computation algorithm we employ works for convex polygonal obsta-

cles on the ground plane. Any non-convex obstacle is thus first decomposed into

convex parts.
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Figure 3.1: Problem setup in 2D. People’s trajectories are dotted and visibility
polygons are in blended colors. The obstacles are shaded in black.

3.3 Bipartite Matching

3.3.1 Visibility Polygons

We first determine which areas fall within the field of regard of each camera.

Using the terminology in [61], this is achieved by computing the point visibility

polygon V (c) for each camera c. The environment with obstacles is modeled as a

polygon P with holes. The visibility polygon V (c) is defined as the portion of P

visible from c. We assume cameras can “see” as far as the boundaries of the room.

The angular plane sweep algorithm, presented by O’Rourke [61], is used here.

Each camera ci is identified by its two-dimensional position (xci
, yci

), its field

of regard (FOR) angle φi, and the orientation θi of its FOR angle bisector. First, we
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compute the vertices of V (ci), by forming a set of rays from the center of projection

of the camera to the vertices of obstacles and the room. We only consider those rays

whose angles are in the range {α : θi−φi/2 < α < θi +φi/2}, in addition to the two

rays corresponding to the endpoints of the interval. We assume the cameras cannot

see through obstacles, thus we only consider those vertices that are not occluded by

other obstacles. As shown in figure 3.2, we have two different cases for the rays: they

either intersect an obstacle/environment boundary, or are tangent to an obstacle.

In the first case, the intersection point is added to the list of vertices of V (ci). In the

latter case, the ray is extended until the next closest intersection with an obstacle

or environment boundary to form an additional vertex. We do not consider the case

where two or more vertices are collinear with the center of projection of a camera.

This is a rare situation which can avoided by infinitesimally moving such a camera.

Once the visibility polygon vertices are determined, its edges are formed by

joining the vertices in counterclockwise direction. First, we sort the rays that connect

the vertices to the camera’s center in increasing angular order. Then, we resolve

ties by rearranging the vertices that belong to the same obstacle/environment next

to each other. Computing the visibility polygon for each camera can be achieved in

O(n log n), where n is the total number of vertices of obstacles and the environment.

The log n factor is due to the cost of sorting the vertices. The whole process is

conducted in a preprocessing stage.
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Figure 3.2: Computing the visibility polygon: rays r2 and r4 are tangent to obstacles,
while r3 and r5 intersect them.

3.3.2 Graph Modeling

We assume the locations of people (xi(t), yi(t)), 1 ≤ i ≤ np are found, for

example, using a wide field of view camera fixed to the ceiling. At each time instant

t, we use the point-in-polygon test to determine the visibility polygons in which

each person is located; in other words, the cameras that can view each person. This

process is linear in the number of edges of all polygons. It is shown in [61] that

the number of edges of a visibility polygon is linearly proportional to the number

of edges of obstacles (polygon holes), i.e. O(n). This means that the process of

determining the cameras that can view a person at any instant can be conducted

in O(n · nc) time. This process is done online, hence must be performed efficiently.
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When the number of people np and the number of cameras nc are small, this can

be computed in O(n · nc · np) for all people, at each time instant. As np grows, a

more efficient approach is to divide the plane into cells that directly index visibility

polygons, and build a two-dimensional data structure that efficiently assigns people

to cells. An offline preprocessing stage will determine which cameras can view each

cell.

We also suggest a 2D model for the occlusion of people by one another with

respect to each camera. To compute the occlusion, we sort the subjects within each

visibility polygon w.r.t. the angles they make with their respective cameras. Then,

for each subject, we find its neighbors that are located farther from the camera, and

mark them as occluded. Given a camera, a subject S1 occludes a subject S2 if S1

is closer to that camera than S2, and S2 falls within the “shade” of S1. The shade

angle of a subject i is computed using the equation: αi = tan−1 k√
d2

i−k2
as shown in

figure 3.3.

Finally, we model the camera assignment problem as matching in a bipartite

graph G = ((V, U), E) as shown in figure 3.4. The vertices V represent the people

and U the set of cameras. An edge eij ∈ E, between vi and uj, exists if camera

cj can view person pi, that is pi falls inside the visibility polygon of cj and is not

43



occluded by another person. The problem is to match as many vertices as possible

from V (people) to vertices in U (cameras), with the constraint that each camera

is matched to at most one person. This is the classical bipartite matching problem

[20].

3.3.3 Initial Matching

Once the bipartite graph is constructed, we compute an initial matching. Fig-

ure 3.4 shows an example of a perfect matching, where all vertices are matched.

This is not always possible, and hence, we seek a maximum cardinality matching,

in which we try to match as many vertices as possible. Specifically, we are inter-

ested in matching as many vertices of V (people) as possible. This proceeds by

visiting each unmatched v-node, then using a modified breadth-first-search (BFS)

algorithm to reach the closest unmatched u-node, and finally matching both. The

BFS algorithm is modified so as to restrict visited edges to be sequences alternating

between matched and non-matched edges. These sequences are known as alternating

paths. When no more alternating paths can be found in the graph G, a maximum

matching is found. It is proved (see [62] for example) that a standard matching al-

gorithm (Edmonds’ [20]) correctly solves the matching problem for a bipartite graph

in O(min(|V |, |U |) · |E|). In practice, nc ≤ np, so the initial matching complexity is

O(n2
c · np).
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Figure 3.4: An example of the problem model with a perfect matching.

3.3.4 Matching Update

As people move through the room, their positions within the fields of regard of

cameras are updated. In the event that a person enters a visibility polygon, exits it,

becomes occluded or becomes visible, the change results in updating the bipartite

graph accordingly, and possibly recomputing the matching. There are four cases

here, depending on the type of graph update that has occurred:

• If no edges included in the matching, called matched edges, are removed, noth-

ing has to be done.

• If one or more matched edges are removed, we attempt to augment the match-

ing.

• If one or more edges are added to an incomplete matching, we attempt to

augment it.

• If one or more edges are added to a complete matching, nothing has to be

done.
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The matching algorithm is incremental by nature. The cost of each stage is O(|E|) '

O(np ·nc). This property reduces significantly the running time of subsequent match-

ing computations, since practically, very few people change visibility regions at any

time, as will be shown in the results section. Depending on the type of graph update

that occurs, the search for an alternative matching proceeds as follows:

1. Determine a non-matched vertex v ∈ V (person).

2. Span a tree rooted at v using modified BFS.

3. If non-matched leaf nodes in U (cameras) are reached, choose the closest one

(u) to the tree root. The alternating path from v to u, forms the new aug-

mented matching.

4. If no leaf nodes exist which are non-matched vertices in U , we conclude that

v cannot be matched.

At each time, we only need to run this procedure for unmatched vertices. This

represents an order of magnitude time savings over solving the matching problem

for the entire graph at each update. In addition, matching the tree root to the

shallowest non-matched leaf guarantees that we obtain the minimum number of

re-assignments at each step. Figure 3.5 illustrates the two matching update cases

that involve edge removal, and figure 3.6 shows how an incomplete matching is

augmented when an edge is added.
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Figure 3.5: A bipartite graph update that involves the two cases with edge removal.
Matched edges are thickened. In the first update, a non-matched edge v1u1 is
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Figure 3.6: A bipartite graph update that involves the addition of an edge to an
incomplete matching. Matched edges are thickened. Initially, the maximum possible
matching is incomplete. Later, an edge v4u1 is added. This permits completing the
matching using the alternating path v4u1v3u2

3.4 Minimum Cost Bipartite Matching

The previously described approach works efficiently when the number of people

np and the number of cameras nc are comparable. However, a non-uniform distribu-

tion of people over cameras can result in many people being uncovered while several

cameras are unassigned. This can also happen when np À nc. In the following, we

update our algorithm to deal with these cases.
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3.4.1 People Grouping and Graph Modeling

The first step is to cover as many people as possible with a small number of

groups, where each group is represented by a disk on the ground plane that covers

the group. We constrain the groups (i.e. disks) to be of a small fixed size, since

covering a large group would generally require a significant zoom-out, which would

result in a video of low resolution. Such clustering problems are known to be NP-

hard, see, for example, [6]. Several variants of the problem we address have been

previously studied. In particular, Gonzalez [28] and Agarwal [6] suggest an O(n
√

k)-

algorithm for the very similar problem of covering n points with fixed size squares,

where k is the number of required clusters. This is impractical in most situations,

such as ours. The authors also develop an approximate (not optimal) algorithm,

that runs in O(n log k).

We employ a greedy approximate algorithm, that starts with the group (disk)

that covers the maximum number of people, then the group with the next highest

cardinality, and so on. This is done as follows (see figure 3.7):

1. Center a disk over each person. This represents the locus of centers of disks

(groups) that can cover that person.

2. The plane is discretized using a grid, with its cells’ values incremented by one

for each disk that overlaps them.

3. Considering the disks in arbitrary order, if the next disk overlaps a previ-

ous one, the cardinalities of the grid cells forming the intersection region are

incremented and the cells are inserted into a priority queue.
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Figure 3.7: The approach used to cluster people. The cardinalities of the intersec-
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4. Dequeue a grid cell; it has maximum cardinality, say K.

5. Delete the K nearest subjects, assign them to a group, then remove the cor-

responding disks, decrementing the values of the involved grid cells.

6. Repeat 4) and 5) until only the grid cells with cardinalities 1 remain.

With np people and k clusters, this method requires O(np) insertions in the priority

queue, hence a complexity of O(np log k).

Once the clusters are formed, we model the problem as previously using a

bipartite graph G = ((V, U), E), with V here representing groups of people Ai

(possibly consisting of a single person) and U still representing the set of cameras.

An edge eij ∈ E, between vi and uj, exists if camera cj can view the group Ai.

A special case exists when a group falls on the edge of a camera’s visibility

region or when some of its people are occluded by others. In that case, no sin-

gle camera can view all the people of that group, which defeats the purpose that

grouping was originally developed for. We identify when this happens, then, using

a variant of the grouping algorithm, the formed groups are split, into the largest
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subgroup that can be viewed entirely by a single camera, then the next largest,

and so on. Our experiments show that slight improvements in the coverage rate of

the algorithm is only achieved when the number of subjects is close to the number

of cameras. In what follows, we do not use the splitting variant of the grouping

algorithm.

3.4.2 Edge Weight Function

In order to view as many people as possible, priority is given to larger groups.

This is achieved by adding weights to the graph edges. The weighted bipartite

matching problem is that of finding a matching of G with the largest possible sum

of edge weights [62], or the minimum sum of costs. The problem was initially solved

by Kuhn [49] in O((|V | + |U |)3) time. Recently, an approximate algorithm that is

an order of magnitude faster has been suggested by Schwartz for edge weights that

satisfy certain properties [65].

To favor larger groups, we choose a cost function that assigns lower costs to

edges associated with larger groups and find a match with minimal cost. A typical

edge cost function is: cij = WMAX−wij, where wij is the number of people in group

i visible to camera j and WMAX is larger than any wij. We implement a variant

of Kuhn’s algorithm that is proven to find the optimal solution. The algorithm

proceeds by creating an auxiliary non-weighted graph which contains the minimum

cost edges incident on each node. Then, a maximum cardinality (non-weighted)

matching, similar to figure 3.4, is computed. If it is not complete, the next unused
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minimum cost edge is added and an augmented matching, similar to figure 3.6,

is constructed. The process is repeated until all vertices of V (people) have been

matched, or no more edges remain. This method works only with complete graphs

that have |V | = |U |. This is achieved by completing the missing edges with ones

with costs WMAX , so they are not chosen during the optimization.

The use of a cost function that favors large groups of people results in small

groups and individual people to be unmatched to any camera for extended periods

of time. To balance the amounts of time each subject is covered, we add a time

penalty to the edge cost function. The updated cost function is:

cij = WMAX − wij − f(Ti) (3.1)

where, for each person, a variable Ti accumulates the amount of time that person

has not been assigned to any camera. For groups, we find the minimum positive

Ti of its members. Our experiments have shown that using the maximum Ti in

groups increases camera switches which produces a non-smooth video. At given

time thresholds, the cost of an edge changes due to the time penalty, and the cam-

eras are forced to switch. As a camera assignment changes, the variables Ti also

change, which might reverse a previous assignment immediately, causing an infi-

nite oscillation of cameras between two subjects. The function f(·) in equation

(3.1) above is just used to prevent this from occurring, keeping the camera switches

smooth. Similarly, other factors can also be included into the cost function, such as

the orientation of a person w.r.t. camera, where a person facing a camera will have

preference (lower cost) over a person facing away from it.

51



3.4.3 Matching Update

The changes occurring in groups, as people move through the environment, are

more involved than in the one-to-one case presented earlier. We present below how

these changes affect the graph topology, and how we efficiently update the solution.

3.4.3.1 Change in weights only, same graph topology

If a matching edge cost increases or a non-matching edge cost decreases, aug-

menting the solution is attempted. First, the match of the incident node is removed.

Then, a tree rooted at this node is spanned using the modified BFS as previously.

The branches of this tree are the potential alternating pathes. Along each path,

the cost of an undone matching edge is subtracted, while the cost of a newly added

matching edge is added. If a negative path is found, it means that we can find

a smaller cost matching. The smallest cost branch is then used to augment the

solution. If no negative paths are found, no better solution can be obtained.

If a matching edge cost decreases, nothing needs to be done. The intuition here

is that the cost was already minimal using that edge. Now, it’s even less. Similarly,

if a non-matching edge cost increases, no new solution needs to be searched for.

The current minimum cost solution did not use that edge and so obviously a new

solution won’t, when its cost has increased.
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3.4.3.2 Change in graph topology

If an edge is added, this is equivalent to a cost decrease (from ∞ to c) of a

non-matching edge. If an edge is removed, this is equivalent to an edge cost increase

(from c to ∞): if it were a non-matching edge nothing has to be done, while if it

were matching, an augmented solution is constructed. Finally, adding/removing a

node to/from the graph (e.g., group split/merge) amounts to adding/removing at

most nc edges.

3.4.3.3 Time requirements

Since the solution is augmented here also using a modified BFS, the time

complexity of each update is similarly O(|E|) ' O(np·nc). When we have many more

people than cameras (np À nc), nc can be considered a constant, and the update

process is linear in the number of people np. By adding up the complexities of all the

components of our algorithm, we can see that the bottleneck is in grouping people

O(np log k). This represents the overall asymptotic complexity of the algorithm, if

grouping is required. If not required, the overall complexity is linear in np.

3.5 Implementation and Results

To evaluate our method under different conditions, we constructed a simula-

tor and, in addition, used the simulator developed by van den Berg et al. [73]. In

our simulator, obstacles’ locations and people’s trajectories and velocities are man-

ually traced. This enables more realistic agents’ trajectories. We have simulated
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Figure 3.8: Two example setups used in testing our method. Left: inside a bank,
generated using our simulator (overlapping field-of-regard cameras); Right: a grid
of obstacles, generated using van den Berg’s simulator. The linear segments are
people’s trajectories.

two indoor surveillance scenarios: overlapping and non-overlapping fields-of-regard

cameras. The scenarios correspond, loosely, to an idealized bank and an office inte-

rior, respectively, with about 25 people surveyed by up to 8 cameras. On the other

hand, van den Berg’s simulator easily generates larger numbers of “more artificial”

trajectories. Using it, we generated up to 60 people with 40 surveillance cameras,

moving among several setups of obstacles. This results in graphs with over 2000

edges. An example setup from each simulator is shown in figure 3.8.

Under each of the tested scenarios, we perform multiple runs, varying the

number of cameras and people. For each subject, we compute its coverage, i.e. the

ratio of the frames where it was assigned to a camera to the frames for the entire

duration of its presence in the scene. Then, for each run, we compute the mean and

variance of the coverages of the subjects present during that run. The mean and
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variance are weighted by the subjects’ trajectory lengths.

Figure 3.9 shows the mean of the coverage for the two setups of figure 3.8, under

different grouping strategies, as the number of people and cameras vary. Group

diameters are measured in units of people’s average sizes. In the bank environment

(top), increasing the group size has a significant effect on coverage. The large amount

of open space enables this to happen. However, in the obstacles grid environment

(bottom), coverage increases with group size at a slower rate, because the narrow

“hallways” that exist between obstacles do not allow the formation of large groups.

Adding a time penalty to the edge cost function, as mentioned in equation

(3.1), distributes the coverage more evenly amongst the people who haven’t been

tracked in a while. We have experimented with different group sizes, in multiple

environments and with different problem sizes (number of people, cameras). As ex-

pected, adding the time penalty to the cost function reduces the standard deviation

of the coverage, due to a more even distribution. The standard deviation is further

reduced when there is a much greater number of people than cameras. This is be-

cause in these situations, and in the absence of a time penalty, the cameras tend

to remain assigned to the same subset of people to reduce camera switches, rather

than rotating to different people. Sample results for the two example setups are

shown in figure 3.10. We must note however that the matching algorithm already

produces the optimal result with respect to the mean of coverage. Thus, adding a

penalty term to obtain a more even distribution of coverage also results in a less

than optimal mean. We choose our penalty term carefully to balance between the

desired reduction in standard deviation and the undesired reduction in mean. In
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Figure 3.9: Mean coverage as the group size (diameter) varies. Top: bank scenario
from our simulator. Bottom: regular grid of obstacles from van den Berg’s simulator.

our results, when adding the selected penalty term, a slight reduction in the mean

is noticeable only for people to camera ratios of 3 and up.

We implemented the algorithms in C, on a Pentium D 2.8GHz processor with

1GB of memory. Computing the bipartite matching for multiple graph sizes is done

in real time, the timings of which are shown in figure 3.11. These are much lower

than the asymptotic bounds developed in sections 2.3 and 2.4. It shows that in

practice, people stay for some time before changing visibility regions, which reduces

the number of graph/matching updates.
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Figure 3.10: Effect of adding a time penalty on the standard deviation (=
√

var) of
the coverage. Top: bank scenario (our simulator) with a group size equal to 5 people.
Bottom: regular grid of obstacles (van den Berg’s simulator) without grouping.

3.6 Conclusion

We have presented a novel approach to the problem of assigning multiple

people moving amongst obstacles to multiple cameras, using the bipartite matching

algorithm [22]. We show how our method benefits from the incremental nature of

the algorithm to update the matching of cameras to people online in linear time.

When the number of cameras is comparable to the number of people in the surveyed

scene, we have applied our method to construct individual zoomed-in videos for each

person, as shown in figure 3.12. When we have many more people than cameras,

we cluster people and attempt to cover as many as possible, without compromising
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Figure 3.11: Matching times for various graph sizes (van den Berg’s simulator).

Figure 3.12: Snapshot of our simulator: 2D top view with visibility regions along
with 3D zoomed-in videos for the first 3 subjects.

their close-up view. Simulation results enable us to validate our method.
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Chapter 4

A Two-Player Pursuit-Evasion Game

4.1 Introduction

Finding subjects in environments with obstacles and keeping them under watch

is a problem that has many interesting surveillance and safety applications. In the

area of providing care for the elderly and disabled, tracking subjects is a prereq-

uisite to recognizing human activities, thus providing a safer home for the aged

(for example [19]). Intent recognition based on following an agent and knowing the

environment obstacles’ geometry has been the subject of study in [57].

4.1.1 Related Work

In the area of surveillance and security, in which we are more interested, the

moving subject can either be an intruder [45], [47], [44] an evader [84], [59], [9],

or simply a moving target that is to be put under watch. We also note that the

term target tracking is commonly used in the robotics literature (for example [36])

to mean maintaining the visibility of that target. We will stick to that terminology

in the rest of this thesis. The broad class of surveillance applications span several

interesting problems:

• Preventive art gallery problems, where the task is to find the optimal sensor

layout that prevents intrusions into the surveyed scene. The sensors can either
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be fixed [61] or moving (mounted on robots) [44].

• Graph clearing problems that try to solve for the optimal number of robots

needed to verify that an environment with obstacles is free from intruders

(decontaminated) and that it will not get recontaminated [45], [47], [46], [48].

• Searching environments for initially invisible intruders/evaders. The passive

problem [84] estimates the approximate hiding locations of intruders and their

numbers, while the active problem decides how to move the robots to search

the environment [50].

• Tracking initially visible evaders, maintaining their visibility at all times, if

possible [10], [11], or maximizing the time they are visible, otherwise [9].

We elaborate here on the fourth application above, the pursuit evasion game,

since it is the most closely related one to our work. In two-player games, when the

layout of the environment’s obstacles is unknown [29], [9], the pursuer collects mea-

surements to determine the locations of the local obstacles. Based on the visibility

from its current position, the pursuer then determines the instantaneous next step

to take in order to increase the evader’s escape time. The algorithm proceeds in a

greedy manner to maximize the total time the evader is seen by the pursuer. Most

of the work in the area of maintaining the visibility of evaders has been done in 2D

although some attempts have been made in 3D as well [8].

When the number of players increases, the game becomes more complex.

Vieira et al. [76] solve the problem of finding the optimal time for multiple pur-

suers to capture multiple evaders. The complexity is exponential in the number of
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players. They also present a partition of the game into multi-pursuer single-evader

games for a faster but near-optimal solution [77]. Another variation of the game is

to combine it with the intruder search problem into one model, as suggested in [36].

A large amount of literature has been devoted to two-player pursuit evasion

games, where one pursuer maintains the visibility of one evader, in an environment

with obstacles with known layout. Bhattacharya et al. address that problem, with

the additional condition that the pursuer loses the game immediately if it loses

sight of the evader at any time. As in [9], the authors also assume here that the

pursuer has complete information about the instantaneous position and velocity

of the evader. Under these conditions, the authors solve the decidability problem

around one corner [10]. The problem is said to be decidable if the outcome of the

game can be known for any initial positions of the pursuer and evader. However,

solving around one corner (i.e. two infinite edges meeting at a point) is restrictive;

there is no geometry “behind” which the evader can hide. The authors then extend

their work in [11] to deal with more general environments with convex obstacles.

However, in those environments, they are only able to provide a partial solution

to the decidability problem. They provide a sufficient condition for escape of the

evader. In other words, they find a region of initial positions, such that if the pursuer

lies outside it, the evader escapes for sure. However, if the pursuer lies inside that

region, the result of the game is undecidable. Their algorithm splits the environment

into regions that depend on the geometry of the obstacles.

Under the same earlier setup, Murrieta-Cid et al. [60] develop a tracking strat-

egy also by creating a partitioning of the environment that depends on the geome-
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try of obstacles. Later, they present a more simple convex partitioning [59] that is

modeled as a mutual visibility graph. Their algorithm alternates between an evader

assumed to take the shortest step to escape, countered by a pursuer that computes a

prevention-from-escape step. The assumption of the evader taking the shortest step

to an escape region is a reasonable one, since if the pursuer is able to counter it, then

it will be able to counter any longer steps. However, this strategy is only locally

optimal. The authors thus find all possible permutations of escape sequences along

with corresponding prevention-from-escape steps. The global solution concatenates

adjacent “partial local paths”. This leads to an interesting result: To decide which

player wins, every feasible ordering of local paths has to be checked. The authors

reduce the traveling salesman problem to the current problem, concluding it is NP-

complete.

4.1.2 Contributions

Motivated by the work in [10], [11] and [59], we propose a novel algorithm to

determine the outcome of the tracking problem. Our approach relies on partitioning

the surveyed environment into a uniform grid that is independent of the geometry

of the obstacles. At each time instant, players can move one or more grid cells away,

according to their speeds. Given any initial pair of positions for the pursuer and

the evader, we provide a complete solution to the problem of deciding which player

wins in a computationally feasible time. In addition, if it is decided that the pursuer

wins, i.e. it is able to maintain visibility of the evader at all times, we also find its
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optimal trajectory that always keeps the evader as far as possible from positions

from which it can escape. We are currently exploring the effect of varying the grid

cells’ size on the accuracy of the results and the efficiency of computing them.

In the rest of this chapter, we proceed with a more detailed definition of

the problem in section 4.2, followed by a couple of examples that illustrate the

construction of our algorithm in section 4.3. Then, we detail our approach more

formally in section 4.4. Finally, we suggest future work on this problem in section

4.5.

4.2 Problem Definition

Several variants of the pursuit evasion problem have been attempted. In this

work, we are interested in a setup similar to that in [11] and [59]. In what follows,

we present in detail the environment setup and the conditions on the players.

4.2.1 Environment Layout and Rules of the Game

We will deal here with indoors environments that contain obstacles that ob-

struct the view of the players. In the 2D domain which we are solving, the obstacles

are represented as polygons with known geometries and locations. This is a two-

player game, with one pursuer and one evader represented as points. Each player

knows exactly both the position and velocity of the other player. Both players move

at bounded speeds and can maneuver to avoid obstacles. They are equipped with

sensors that can “see” in all directions (ommnidirectional) and as far as the envi-
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ronment boundaries or obstacles, whichever is closer. We will see later than we can

restrict this property with a simple variation in our algorithm.

The pursuit evasion game proceeds as follows. Initially, the pursuer and the

evader are at positions from which they can see each other. As in [11], we define

two players to be visible to one another if the line segment that joins them does

not intersect any obstacle. The goal of the game is for the pursuer to maintain the

visibility of the evader at all times. The game ends immediately, if at any time, the

pursuer loses sight of the evader. In that case, we say that the pursuer loses and

the evader wins.

4.2.2 Space Discretization

The key idea in our algorithm is our space partitioning method. Unlike earlier

work ([11], [59]), our partitioning does not depend on the geometry of the envi-

ronment and obstacles. Instead, it depends on the motion of the players. Using a

time-discretization similar to [9], we consider the positions of each player at time

intervals of ∆t units. If the velocity of a player at a certain time interval is v, the

distance traveled during the discrete time step will be ∆d = v∆t. We recall that

the players’ velocities are bounded and, by the same token, can also be discretized

as 0, vmin, . . . , vmax. We thus choose to partition the space into a uniform grid with

cell edge length:

l = vmin∆t. (4.1)
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Figure 4.1: A simplified layout that shows polygonal obstacles, players (points) and
the environment partition with a grid.

Figure 4.1 shows the suggested grid discretization superimposed on an example

environment.

We call the set of grid cells that are reachable by a player at any time step,

the neighborhood of that player. A player can move zero or more cells at a time

based on its current velocity. This enables us to model different velocities. Different

choices of norms can be used in computing the neighborhoods. Using L2-norms

(Euclidean distances) (figure 4.2) takes slightly longer to compute neighborhoods,

but gives more “natural” results, while L1-norms (Manhattan distances) (figure 4.3)

are faster and easier to compute, but yield a zigzag-like player path.

4.3 Motivating Examples

Before describing our algorithm in detail, we present here the intuition behind

it, illustrated by two simple examples. As mentioned earlier, we assume the evader
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Figure 4.2: A Euclidean-distance neigh-
borhood of radius 2 centered around the
black square.

Figure 4.3: A Manhattan-distance
neighborhood of radius 2 centered
around the black square.

is initially within the line of sight of the pursuer. If it is not, the game ends trivially

with the pursuer losing instantaneously. Let us move then to the more interesting

case. Without loss of generality, we will illustrate the algorithm at this point for

the case of players with equal speeds, that move in Manhattan or “city-block”

trajectories. Generalization to other cases have been discussed above.

Given an initial position of the pursuer, let the evader be initially visible but

able to escape in one step, i.e. by moving to a neighboring cell. We will call

such evader location Bad(1) with respect to the initial pursuer position (i.e. the

pursuer/evader pair is Bad(1)). However, during the same time step, the pursuer

may take a similar step to any one of the neighboring cells. This in turn, may result

in the evader being now two steps away from “safety” (hiding position). Thus,

we consider an evader position to be Bad(1) with respect to a pursuer position, if

the evader can reach a hiding cell by moving one step inside its neighborhood for
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whichever neighboring cell the pursuer is able to move to. Inductively, we call a

location Bad(2) if it satisfies the same above conditions but with respect to Bad(1)

locations. We have shown the intuition here for a single initial position. We note,

however, that we cannot begin labeling any Bad(2) cell until we have computed all

the Bad(1) maps for every initial position of the evader. This guarantees that all

the possible pursuer-evader location pairs are considered. We stop the search when

either of these two conditions is met:

1. All the environment cells are labeled Bad(x) for some finite value of x. This

means that there is no winning strategy for the pursuer starting from its initial

position.

2. We reach a state where Bad(i + 1) = Bad(i) for all labeled cells, with some

cells non-labeled. This means that if the evader is initially located outside of

these cells, it will never be able to go out of sight of the pursuer.

4.3.1 A “Level-0” Game

We illustrate our method first with the example shown in figure 4.4. We

consider a simple partition where a grid cell is as big as an obstacle. We defer to a

later point the analysis of how different grid cell sizes can affect the solution. In this

model, we define two cells to be visible to one another if the line segment from their

centers does not intersect an obstacle. If the line segment is tangent to an obstacle,

we still consider the cells to be visible to one other. Other visibility models can be

substituted as desired. Given equal and constant speeds for both players, it is clear
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Figure 4.4: Initial winning positions for
a level-0 game.

Figure 4.5: Initial losing positions for a
level-0 game.

from the shown setup that if the players are initially within sight of each other, they

will remain so whatever path the evader takes. If the initial positions are such that

they are not within line of sight (figure 4.5), the game ends spontaneously. We call

the game which outcome is as described a level-0 game.

We trace our algorithm for the initial position of the pursuer shown in fig-

ure 4.4. We emphasize again that we cannot proceed to the following iteration in

the algorithm until all possible initial pursuer positions have been considered. For

simplicity, we illustrate only one initial position, since the analysis from the other

positions is similar, due to symmetry. Let p = (xp, yp) be the pursuer’s location and

e = (xe, ye) the evader’s. We define a function Bad(·, ·, ·)

Bad(p, e, i) : R2 × R2 × N −→ {0, 1} (4.2)

that evaluates to 1 if an evader at e can escape in i steps or less a pursuer at p. It

evaluates to zero otherwise, i.e. when the outcome of the game is that the pursuer
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Figure 4.6: Computing the labeling function Bad(N(p), e, 0) for the neighborhood
of a pursuer located at position p, where p′ and p′′ are the only possible neighbors
for p due to the obstacle.

wins. Our goal is to compute Bad(p, e, i) for all p and e.

When i = 0, Bad(p, e, 0) = 1 for all pairs of cells (p, e) mutually non-visible.

As elaborated earlier, given an initial (p, e) pair, we only consider the cells non-

visible from all of the positions neighboring the pursuer’s initial position. This is

denoted as Bad(N(p), e, 0) where N(p) is the neighborhood of p. It is computed

as the disjunction of the values Bad(p′, e, 0) for all p′ in the neighborhood of p.

Figure 4.6 illustrates this step. The notation in the figure might be confusing at

first. To make the notation easier and illustrate the tracing of the algorithm at each

iteration i, we choose a single pursuer position p, then label i all the cells for which

Bad(p, e, i) = 1. The other cells for which Bad(p, e, i) = 0 are just left blank.

The next step is to find all the positions that can reach, in at most one time

step, a cell of Bad(N(p), e, 0). An evader in any such position is able to win in

no more than one step. Using our definition (equation 4.2), these positions are

denoted Bad(p, e, 1) and labeled by 1’s in figure 4.7. At that point, we notice

that Bad(p, e, 1) = Bad(p, e, 0). That means that after one time step, and for

all possible pairs of moves that either player can make, the set of cells that were
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Figure 4.7: Extending Bad(N(p), e, 0) into Bad(p, e, 1). Steady state is reached at
that point.

initially non-visible to the pursuer (escape cells) cannot be modified. This indicates

that the outcome of the game cannot be modified in favor of either player. When

we reach that state, we conclude that an evader in any labeled cell wins (in this case

instantaneously), and loses if in any other cell. We call this a steady state.

More formally, Bad(p, e, 1) can be expressed in terms of Bad(p, e, 0) using the

following recursive equation:

Bad(p, e, 1) = 1 ∀(p, e) : ∃e′ ∈ N(e)

s.t. Bad(p′, e′, 0) = 1 ∀p′ ∈ N(p).

(4.3)

Since N(e) and N(p) contain both e and p, Bad(p, e, 1) = 1 for all the pairs (p, e)

for which Bad(p, e, 0) = 1.

4.3.2 A “Level-1” Game

We now show an example of a game that reaches steady state after two

“rounds” or iterations, namely a level-1 game. The setup used in this game is

the one shown in figure 4.8. In this setup, it can be easily identified that if the

evader is 1 or 2 cells ahead of the pursuer, it can never escape. Otherwise (3 or

more cells ahead), the evader can break the line of sight and win.
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Figure 4.8: An example of a level-1 game where the pursuer loses in 2 steps.

Figure 4.9: Computing the labeling function Bad(N(p), e, 0) for the neighborhood
of a pursuer located at position p, where p′ and p′′ are the only possible neighbors
for p due to the obstacle.

We trace the algorithm here to show why two iterations are needed to decide

the outcome of the game. We consider the case where the initial position of the

pursuer is as shown in the leftmost diagram of figure 4.9. Other initial positions

are similarly handled. We start by computing the cells non-visible from any of the

positions that are neighboring to the pursuer’s initial position, Bad(N(p), e, 0). This

is the intersection of the Bad(p′, e, 0) maps for p′ ∈ N(p).

The positions from which a pursuer can reach a cell in Bad(N(p), e, 0) in at

most one step are shown in figure 4.10. Unlike the previous example, we have not

reached a steady state here since Bad(p, e, 1) 6= Bad(p, e, 0). In that case, we need

to compute Bad(p′, e, 1) maps for p′ ∈ N(p), each of which requires computing the
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Figure 4.10: Extending Bad(N(p), e, 0) into Bad(p, e, 1).

Figure 4.11: Computing the labeling function Bad(N(p), e, 1) out of the maps
Bad(pi, e, 1) for neighbors of position p.

corresponding Bad(pi, e, 0) maps. Recall that Bad(N(p), e, 1) is the disjunction of

the values Bad(p′, e, 1) for all p′ in the neighborhood of p. The process is shown in

figure 4.11.

We start the third iteration by finding all the positions that can reach a cell

in Bad(p, e, 1) in at most one step, namely Bad(p, e, 2) (figure 4.12). Here, we have

Bad(p, e, 2) = Bad(p, e, 1), meaning that two time steps after the initial start time

do not make more “escape” cells available to the evader than one time step. We

thus break the iteration at that point and conclude we reached steady state. Any

evader initially in a labeled cell has some way of escaping. We also see in figure 4.12

that “bad” cells are indeed three or more cells away of the pursuer’s initial position,

as intuitively guessed. At this point, we generalize the recursive equation 4.3 for
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Figure 4.12: Extending Bad(N(p), e, 1) into Bad(p, e, 2). Steady state is reached at
that point.

any iteration.

Bad(p, e, i + 1) = 1 ∀(p, e) : ∃e′ ∈ N(e)

s.t. Bad(p′, e′, i) = 1 ∀p′ ∈ N(p).

(4.4)

Once the cells are classified as either “bad” or “non-bad”, for every initial

position that the pursuer can be in, we have a complete answer to the question of

deciding which player wins. However, we can use the information we have already

computed to determine the optimal tracking strategy that the pursuer should follow.

By labeling every non-bad cell with its distance to the closest bad cell (i.e. shortest

escape path), the goal of the pursuer is to choose its next step so that the associated

map has the evader in a non-bad cell with largest label.

4.4 Game Result and Tracking Strategy

We present here the formal algorithm for determining the existence of a win-

ning strategy for the pursuer. Along the way, we construct visibility maps that

determine partial solutions. Once the algorithm terminates, we show how we can

use the final visibility map to construct the actual winning strategy, if one exists.

We prove the correctness of our algorithm and provide bounds for its space and time
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complexity.

4.4.1 Algorithm

Algorithm 1 computes the visibility map of an environment that determines,

for every pair of cells, whether or not a winning strategy exists. In this algorithm,

neighboring cells are computing based on the distance norm that is used. In addition,

a cell is not considered part of a neighborhood if it is occupied by an obstacle.

Algorithm 1. Determine if a winning strategy exists.

Input: Environment with obstacles coordinates.
Output: A matrix that determines for every pair of locations whether a winning
strategy exists.
Data Structure: Two N ×N matrices M and M’.

1. Partition the environment into a uniform grid of N cells.
2. Initialize M and M’ to 0 matrices.
3. for (0 ≤ p, e < N) Set M(p, e)=1 if cell e visible to cell p.
4. finish=FALSE.
repeat

5. for(0 ≤ p, e < N) M’(p, e) = ∩q M(q, e) ∀q ∈ Neighb(p).
6. for(0 ≤ p, e < N) M’(q, e)=1 ∀q ∈ Neighb(p) s.t. M’(p, e)=1 ∧M’(q, e)=0.
7. if (M’=M) thenfinish=TRUE else M=M’.

until finish=TRUE.

At the conclusion of the algorithm, if M(p, e)=1, the initial player positions

p and e are such there exists a strategy by which the evader can escape and the

pursuer loses. If M(p, e)=0, the evader can never escape and the pursuer wins.

To determine the tracking strategy in the latter case, we add this extension to the

previous algorithm.
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i = 1.
while (∃M(p, e) = 0)

Set M’(q, e) = i + 1 ∀q ∈ Neighb(p) s.t. M’(p, e) = i and M’(q, e)=0.
i = i + 1.

end

4.4.2 Proof of Correctness

We first note that our algorithm always terminates. This happens either when

the visibility matrix does not get modified (M’=M) or when all the N cells are

labeled 1. Next, we prove the correctness of the algorithm by induction. At iteration

0 (step 3 of the algorithm), M does indeed contain the decision of the game, since

by definition, if M(p, e)=0, the pursuer cannot see the evader and the game ends,

and vice versa. Now, let the matrix M contain the outcome of the game at iteration

i. If M’ 6= M, it means that there exists a step that the evader can take to reach a

cell from which it can escape in i steps, i.e. an escape path of length i + 1. All such

steps are recorded in M’ which becomes the new decision matrix. However, if M’

= M, no additional step can improve the situation of the evader. It is useless to go

beyond, and we stop at that point.

4.4.3 Space and Time Complexity

Algorithm 1 requires two N × N matrices to store the temporary visibility

maps. This is O(N2) space requirements, where N is the number of cells in the

discretizing grid. With regards to time complexity, steps 3, 5, 6 and 7 are each

O(N2). We are interested in the three steps that occur inside the loop. The worst

case is to have all cells labeled. We argue here that this case will require O(N)
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iterations, since each iteration labels one “layer” of O(N) cells around the current

labeled block, thus labeling the entire environment in O(N) iterations. This makes

the total time complexity O(N3).

4.5 Additional Work

We have presented the algorithm, verified its correctness and derived its poly-

nomial complexity. At this point, we need more extensive experiments with larger

environments. The simulators used in chapter 2 can also be used here for that pur-

pose. The main point that needs to be analyzed is to determine how the grid size

affects the results. We have just shown that the complexity of the problem depends

on the number of cells in the grid. It is thus desirable to reduce that number as

long as it does not affect the accuracy of the results. Consider a large cell size or

equivalently small number of cells. If the cell size is larger than some obstacles, the

accuracy of the visibility matrix is questionable.

We would like also to consider coalescing neighboring cells that share the same

visibility property. The cells will not physically disappear, since they represent the

step each player takes within a time unit. However, this can significantly reduce

redundant computations. We are motivated here by the work of [59] and the way

they partition the environment. Finally, some minor variations can also be consid-

ered when comparing the performance of the algorithm under different conditions.

We have already seen that the shape and size of the neighborhood model different

distance norms and players’ velocities respectively. We can also restrict players vis-
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ibility, for example not “seeing” beyond a certain distance, by reducing the number

of labeled cells in the initial visibility matrix.
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Chapter 5

Detecting Unusual Activity in Surveillance Video

5.1 Introduction

In this chapter, we present some older work that was done in the area of

anomaly detection. The research presented in this chapter is meant to fit within the

framework of the future control room introduced in chapter 2 (see figure 1.2). We

suggest a technique that can be used to “score” surveillance videos according to their

level of interest to human operators. Given the huge amount of available surveillance

video, it is necessary to filter video where little of interest occurs [34]. For this

purpose, we develop a video scoring technique based on modeling co-occurrence

statistics of moving objects. In particular, we identify unusual events as those rare

or non-frequent, according to a learned model.

Unlike previous work, special attention is given here to situations where each

agent’s behavior might not be independently unusual, but it is the joint occur-

rence that creates an unusual situation. This problem is solved by computing co-

occurrence statistics in both time and space, rather than just in time. To illustrate

the idea further, consider the example of two cars crossing simultaneously while

their trajectories intersect (figure 5.1). Each car’s trajectory would be considered

usual, had they crossed independently. Experiments are performed on synthetic

data, where time intervals and locations of unusual activities are reported. The less
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Figure 5.1: Introductory example that shows the type of anomalies we are interested
in. The first two events are usual, but the third is not. Although it consists of a
combination of exactly the two left event, it is their simultaneous occurrence that
make it unusual

frequent an event is, the more unusual it becomes, and the higher the score assigned

to the involved video segment. Within the context of the display wall discussed in

chapter 1, the scores assigned to the videos are used, along with other constraints,

to control the mapping of videos to the display space. Higher score videos will be

assigned a larger area of the display wall, and a location that attracts more attention

of the operator.

The rest of this chapter is organized as follows: section 5.2 reviews in some

detail earlier work that has been done in the area of anomaly detection in video.

In section 5.3, we formally define the problem then present our approach to solving

it in section 5.4. We show results in section 5.5 then suggest future extensions in

section 5.6.
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5.2 Literature review

5.2.1 Definition of “unusual events”

Much effort has been devoted to the area of activity recognition. However,

the problem of detecting generically interesting activity is still very much an open

problem [82]. Depending on the type of application and the approach employed,

interesting activity has been interchangeably called “abnormal activity” [19, 51,

75, 81, 82], “unusual activity” [39, 86], “atypical behavior” [54, 58], “inexplicable

behavior” [33, 34], and “anomalous activity” [31, 56]. We choose the term unusual

events to refer to non-frequent or rare ones.

To solve the problem of detecting unusual events, we must first give a definition

of that term. Human operators monitoring surveillance cameras might differ greatly

in their definition. They can be influenced more by people’s appearance than by

their behavior [34]. To avoid this bias, authors have based their definitions on the

model they choose to represent activity. Stauffer et al. [67] define unusual events

as those which have rarely or never occurred. Hung et al. [39] detect the least

frequent occurrences corresponding to peaks of salient motion. Vaswami et al. [75]

define abnormal activity (or suspicious behavior) as a slow or drastic change in a

model, whose parameters are unknown. Morris et al. [58] assume that low speed and

low distance to objects at trajectory landmarks are considered unusual. Dee et al.

[33, 34] consider those trajectories that do not proceed towards a goal as unusual.

Xiang et al. [81] define abnormality as behavior patterns that are not represented

by sufficient samples in a training dataset. Micheloni et al. [56] focus on the time
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spent by an object in the observed scene, where “too long” or “too short” a time

needed to perform a specific activity would point to an anomalous event. Duong et

al. [19] also focus on state duration and not on state order for the model they use

for activity. Zhong et al. consider events (video segments) to be unusual if there are

no similar events. Liao et al. [18, 51] detect abnormal behaviors by noting when an

agent departs from a familiar routine by matching to a learned model. Hamid et

al. [31] assert that anomalous activity is rare and dissimilar from learned models of

regular activities.

5.2.2 Detecting unusual activity

Several approaches have been attempted to detect unusual activity in video.

Zhong et al. [86] used document clustering techniques with video segments as doc-

uments and prototype features as keywords. The clusters with small inter-cluster

similarity are considered unusual events, according to a developed similarity mea-

sure. This approach doesn’t model interactions between spatially separated objects.

It fits under the topic of anomaly detection, where the training data is clustered,

and “distant” objects identified as outliers [70].

Morris and Hogg present a simple statistical approach in [58]. They test their

approach on a scene with pedestrians interacting with cars parked in a parking lot.

With this scenario, they assume that low speed and low distance of pedestrians to

landmark points (parked cars, etc. . . ) are considered unusual. They form a model by

accumulating probabilities of speed and distance and test it on sample trajectories.
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This model might be too restrictive to the specific application presented. Dee and

Hogg develop a measure of intentionality to filter surveillance data. Agents’ behavior

(humans) is modeled using a state transition diagram, with high costs on transitions

that lead to inexplicable goals. Low cost footage is removed, leaving only video that

is potentially interesting. It’s not clear how transition diagrams can be developed

to model different scenarios, but this work is actively pursued in [33, 34, 35].

Hamid et al. [31] use natural language processing techniques to detect and

explain anomalous activity in video. Activity is represented as histograms of event

n-grams. With a value of n chosen to be 3, this is equivalent to breaking the video

into overlapping chunks of 3 time units. Micheloni et al. [56] train an active event

database with observed simple events. Composite events are formed by arranging

simple events in a finite automaton. Finally, activities are timed and classified

unusual if their duration is too short or too long. Again, both of these methods

classify isolated events.

Co-occurrence statistics have been used differently in the literature. Stauffer

et al. [67] accumulate joint co-occurrences of codebook symbols to classify video

sequences. Co-occurrences are computed between pairs of symbols in the same

sequence; thus multiple-object interactions are not modeled. In addition, for large

codebooks, the method becomes inefficient with large co-occurrence matrices. More

recently, Ermis et al. [23] also use co-occurrence statistics, but after “subtracting”

normal motion patterns first. Hung and Gong overcome both these problems in [39].

First, salient features are extracted and their local spatio-temporal co-occurrences

are computed for each frame. Then, higher level spatial co-occurrences are computed
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for the rate of change of the first ones. Finally, the least frequent occurrences define

the salient events, which correspond to unusual activity. It is not mentioned how

the choice of the time interval for local temporal correlations affects the results. The

authors have chosen a local temporal neighborhood of 3 frames and just noted that

it affects self correlations. It is also questionable how saliency of intensity affects

false alarms. For example, usual events of “opening the door” are detected as salient

due to the change in intensity.

Activity modeling and recognition has often been presented in the literature

in connection with Hidden Markov Models (HMM). In a nutshell, a dynamic model

is created for the usual activity. Later on, as new activity is presented to the

surveillance system, that activity which do not “fit” the model is considered unusual.

Unfortunately, such methods tend to behave poorly in scenes with complex activity,

when the number of usual activities is too high to model. A brief discussion is

presented in [19] and [86]. This has led to the development of many variants to the

basic HMM.

Makris and Ellis [54] present the basic HMM approach. For the method to

work properly, the scene is limited to pedestrian trajectories near the entrance of

a university building. Tracking is assumed perfect with trajectories represented as

sequences of nodes. Despite this “ideal” situation, the authors perform a slight

update by training their model for each time of the day, to accommodate variations

of pedestrian behavior. The trained model is presented with trajectories for which

it computes the likelihood of belonging to a trained model, and detects the node on

the path which departs from that model. Hu et al. [37] build a statistical model for
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trajectory clusters which they call motion patterns. The distribution parameters for

each motion pattern are evaluated using maximum likelihood. Then, a probability

of anomaly occurrence is computed for partial and complete trajectories. In their

results, the authors show current abnormality probabilities beside tracked moving

objects.

Xiang and Gong [81] use an HMM variant, the Multi-Observation HMM, to

model behavior pattern. Then, an affinity matrix is formed for spectral clustering

of the data. Abnormal behavior has a low probability of belonging to any cluster.

The authors develop this approach further in [82] by noting that patterns initially

considered to be abnormal might later fit in the model as it is updated live. Duong et

al. introduce the Switching Hidden Semi-Markov Model (S-HSMM) in [19]. Since

they address the problem of learning human activities of daily living, they limit

abnormality detection to state duration rather than state order. Liao et al. address

the same problem also. In [51], the approach is based on modeling agents locations

(obtained through GPS sensor measurements) using a hierarchical Markov model.

All these applications are focused on single object trajectory modeling rather than

object interaction.

Vaswami et al. represent observed objects as configurations of point-object

locations known as shapes [75]. The problem thus becomes that of modeling the

shape motion and deformation using a continuous-state HMM, that the authors call

“shape activity”. Two measures are developed for drastic change and slow change

in the system model, which are chosen to signal abnormal activity. This includes

object interactions as well as time modeling. The authors present two methods to
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solve the problem of varying the number of point-objects in shapes over time. It’s

not clear, however, how the system would perform in scenes where this is a frequent

situation. A simple example is that of a traffic intersection, where the observed

window is constantly having objects appearing and others leaving the scene. Such

situation would consume most of the system’s time in “resampling” shapes.

5.3 Problem definition

Our goal is to develop a method to detect unusual events in video, that can

adapt easily and quickly to various scenes. Our main contribution is in modeling

activity, which involves the interaction between multiple objects. In particular, we

are interested in situations where individual objects activities might be usual, while

their simultaneous occurrence is unusual.

Most earlier work has avoided co-occurrence statistics methods due to their

high complexity. Instead, researchers attempted to detect abnormality by building

and training models for the observed activity, such as HMM and variants. However,

these approaches have been limited to specific applications or scenes (e.g. ADL

[19, 51]). In some cases, human made rules for defining goals and intentions had to

be injected in the model [33].

We propose a representation of video data that reduces the expensive compu-

tations inherent in the co-occurrences approach. As in [82], we propose to update

the statistics online. In this case, an event that was initially classified as unusual due

to the lack of training data, might eventually prove to be usual as similar patterns
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Figure 5.2: The small (yellow) filled circles represent humans. A single person using
the trash bin (a) or two people meeting in the building’s lobby (b) are considered
usual situations. On the other hand, people meeting next to the trash bin (c) is an
unusual situation.

frequently appear later in video. In situations including significantly different activ-

ity patterns over extended periods of time, we might train each period with similar

activity independently. In [54], this is performed using a supervised approach. We’ll

attempt to detect changes in patterns of activity automatically.

We propose to identify unusual activities that correspond to rare co-occurrences

in space and/or time, and that can involve as few as one object. Spatial and tempo-

ral behavior have also been modeled in [75] and [39]. Figure 5.2 is a simple example

of the type of problems we try to solve here. The illustrated unusual event results

from two people pausing next to a trash bin. While a single person might pause

there (to use it), or several people might meet in the building’s lobby (to chat), it

could be unusual that people would meet at a trash bin. Here, not only the co-

occurrence (of people) is considered unusual; it is the location of the co-occurrence

that matters.
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5.4 Our Approach

Given a sufficient observation time to train the system, we detect infrequent

co-occurrences of events, and attempt as accurately as possible to identify the times

and locations of such events.

5.4.1 Feature selection

We represent moving objects as point objects, where the point is chosen as

the center of the bounding box. Our feature vector is quite similar to [67] and [81].

Currently, each object is represented by its position (x, y) and velocity (speed and

direction) (dx, dy). We plan to include a ‘size’ or ‘object-type’ feature s at a later

stage.

The position is discretized using a spatial grid as shown later. Speed is quan-

tized as a binary value (move, stop), and direction is quantized to the cardinal

(“compass”) directions. A different event value exists for each possible pair of ac-

tivities. For example “car i making a right concurrently with ped j moving forwards”

is considered a possible event v.

5.4.2 Spatial tessellation

The image is subdivided into a grid, with the objects distributed into their

respective bins. At this point, only the event count is required for every pair of bins,

while the pairs of objects that were involved are discarded, saving space and time.

Determining the appropriate bin size is a challenging issue. A larger bin size (coarser
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grid) tends to smooth fluctuations but is more immune to noise involved in tracking.

On the other hand, a smaller bin size, corresponding to a finer grid, tends to detect

events in crowded scenes more accurately, at the expense of increased computation

time and greater influence by noise.

To obtain a more flexible system, we implement the space decomposition us-

ing a quadtree, with bins as its leaves. This has the advantage of a quick access to

children nodes (fine grid) from the parent nodes (coarse grid). A pointer-less im-

plementation is used for the problem at hand. The ability to travel quickly up and

down the quadtree allows for real-time zooming into the scene, using a finer grid.

Situations where this may be needed include a crowded bin, or an object following

another too closely.

5.4.3 Co-occurrence matrix

A co-occurrence matrix Ci,j,v stores, for every pair of bins (i, j), the distribution

of events at that pair. At every time instant during training, the value v for the

event value is computed to index the co-occurrence matrix entry Ci,j. For each

pair of objects in bins (i, j), the distribution function at v is incremented by one:

Ci,j,v = Ci,j,v + 1. When the training process is complete, each distribution function

Ci,j is normalized:

Ci,j,v =
Ci,j,v∑
v Ci,j,v

for non-zero denominators, Ci,j,v = 0 otherwise.

Since the locations at which the events occur matter, the normalization is performed

“locally” at the bin level for every Ci,j. Some rare events, such as noise occurring in
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a certain bin, might get magnified in this normalization process. A global normal-

ization, where elements of C are normalized by the sum of all its elements might

be considered. Experimental results show that such a matrix normalization is not

sufficiently discriminative.

First order events are naturally reported as unusual with respect to every

other object in the scene. These are further processed to detect the single offending

object. The required training time is decided when the distributions Ci,j tend to

reach a steady state. This is detected by measuring the change in the histograms of

probabilities.

Training is performed at a finest level of the tessellation. Coarse level trained

entries, if needed, are computed by agglomerating the corresponding fine level ones.

Given two large bins x and y at the coarser level, the co-occurrence Cxy is computed

as follows. The sets of children of x and y, Sx and Sy, are computed; then, the

corresponding distributions are added as in the following equation:

Cxy =
∑

i,j cij, ∀i ∈ Sx,∀j ∈ Sy,

where c is the co-occurrence matrix at the finer level. The appropriate matrix is

then used to test at the required level.

5.4.4 Detecting unusual events

As mentioned earlier, we define unusual events as non-frequent or rare events.

During the training period, probabilities of first and second order events are com-

puted for every bin or pair of bins, respectively. If, during the test phase, an event
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is detected as a “low probability event”, it is reported as unusual. Defining low

probability events is quite challenging. A study of the histogram of probabilities is

useful in determining a range of low probabilities. The threshold probability pth,

below which an event is considered unusual, can then be chosen to coincide with a

given cumulative percentage of events.

Diagonal elements of the co-occurrence matrix are used to detect unusual first

order events, i.e. those involving a single object. Once such an event is detected,

its co-occurrences with further objects are ignored.

5.5 Results

5.5.1 Dataset

We built a traffic simulator to generate a “cheap” but rich environment for

agent interactions. We simulate a four-way stop sign, which obeys the rules of traffic

in the US. Figure 5.3 illustrates a typical snapshot of the simulator, with the arrows

indicating driving directions.

The simulator has two built-in sets of rules. The first set generates the usual

behavior that would be expected at a stop sign. It includes different arrival rates

for each lane. According to these rates, vehicles arrive randomly at each lane, flow

towards the stopping line, where they pause until the way is clear. Based on the

order in which they arrived, vehicles are allowed to cross the intersection either

forwards, by making a right turn, or by making a left turn. Usual rules of traffic are

obeyed by not having any two intersecting trajectories.
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Figure 5.3: Typical snapshot of our 4-way stop sign simulator. Arrows indicate the
driving directions and squares represent vehicles. Cars are not strictly aligned due
to the simulated noise.

The second set of rules generates unusual behavior, that is inconsistent with

traffic rules at a stop sign. The generated unusual behavior include both first order

and second order events. First order events allow vehicles to make a U-turn at the

intersection, while second order events would allow intersecting trajectories. Having

such trajectories might result in vehicles “hitting” each other, coming very close to

one another, or just nothing. However, the event is known to violate traffic rules,

as drivers are supposed not to initiate their movement until the way is clear.

Both sets of rules are mixed in different proportions. Throughout the training

phase, the subset of rules that allows for unusual events to occur is applied about

3% of the time, while the other set for usual events is enforced during the rest of the

time. Noting that the former subset only allows abnormality but does not enforce

it, the actual frequency of occurrence of unusual events drops to less than 1.5%.
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The simulator might simply “elect” not to generate an intersecting path, even when

it has the opportunity to do so. During the testing phase, a larger set of unusual

events is allowed to occur for a longer period of time, for experimental results only.

A real tracking module is often susceptible to noise. The simulator adds ran-

dom noise to the position of vehicles, resulting in less artificial trajectories.

5.5.2 System training

Timing results are based on experiments performed on a Pentium-M machine

with a processor running at 1.8 GHz with 1 GB RAM.

We train our system on two different simulations, one including noise and

one without. Each training session has a duration of about 10 hours. First and

second order unusual events occur with a rate of about 1.5-2% during the training

period. For the purpose of testing, the simulated data contains unusual events for

approximately 30% of the time in average. We generate over 100 short segments to

obtain the shown results. Each segment runs for up to 7 minutes and contains a

balance of usual versus unusual events for the test. Training is performed for two

levels of spatial subdivision: a coarse grid with 16 bins and a fine grid with 64 bins.

Only the co-occurrence matrix for the fine grid tessellation need to be trained since

the matrix for the coarse grid is computed by coalescing the appropriate adjacent

cells in the former one.

At a simulated resolution of 10 frames per second, using a 64-bin grid, the

time required to train the co-occurrence matrix represents less than 20% of the
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frame time, allowing real time training. At the completion of the training phase,

distribution functions of events are obtained for every pair of bins. Typical distri-

bution functions for a 16-bin grid are shown in figure 5.4. Non-zero entries in the

coarse grid co-occurrence matrix represent around 7.6% of the total matrix entries.

This number falls down to about 3.1% in the fine grid matrix.

Figure 5.4: Typical distribution functions for a 16-bin grid. The pair of bins with
the shown distribution in (a) observe relatively high joint activity, while (b) is for a
pair of bins between which only one type of activity is present. Both plots are for
the probability versus the event value index.

5.5.3 Unusual event detection

The testing procedure is performed with the help of a volunteer human ob-

server, who drives in the US. To make the job easier, the simulated unusual events

represent traffic violations. Thus, the observer is reminded about the rules of traffic

at a stop sign, and instructed to watch for moving violations occurring in the scene.

Unusual events are reported by highlighting the bin(s) where the event occurred, at

the time instance of occurrence. Figure 5.5 illustrates examples of correctly detected
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second order unusual events. First order abnormalities are also detected as shown

in figure 5.6.

(a) (b)

Figure 5.5: Example of detected unusual events. The bin(s) where the event oc-
curred is highlighted. In (a), the left and the right vehicles are each attempting to
make a left turn simultaneously and are about to collide. In (b), the upper vehicle
is making a left coinciding with the lower vehicle making a right. This will result in
the two vehicles driving very close to one another.

The accuracy of our method is measured through its correct detection and false

alarm rates. These are captured in receiver operating characteristic (ROC) curves.

Judging whether an event is usual or not is determined by the human observer. For

each observed segment, the observer returns the count of three types of events:

tp: True positives - unusual events correctly identified.

fp: False positives - usual events incorrectly identified as unusual.

fd: False dismissals - unusual events incorrectly undetected.

A vehicle’s crossing of the intersection is counted as a single event. If, during

the crossing, the vehicle interacts with more than one other vehicle, every interaction
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(a) (b)

Figure 5.6: First order anomaly example: a U-turn. Regardless of its interaction
with other cars, a U-turn is not allowed (unusual) at a stop sign. Without noting this
fact (a), it is reported as unusual w.r.t. most other populated bins. The algorithm
has been updated to filter out first order events from further processing with other
bins (b).

is counted as a separate event. An unusual event is considered correctly detected,

i.e. a true positive, if the bin containing it or a neighboring one is identified and

if it is reported at the right time, tolerating a delay of one or two frames. Having

recorded the three counts above, we define the correct detection rate cr and false

alarm rate fr as follows:

cr = tp / (tp + fd)

fr = fp / (tp + fp)

ROC curves are plotted for cr versus fr while varying the threshold probability

pth. The values on the plots represent the means of several experiments. The

behavior of our method using different grid sizes and its robustness as noise is

introduced, are tested. Using a coarse grid with 16 bins (figure 5.7a), it is noticed
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that the noise effect on the false alarm and correct detection rates can be tolerated

with some choices of pth. Intuitively, larger bins tend to “absorb” noise in tracked

objects, resulting in a smoother plot. This incurs the penalty of missing some

unusual events, such as a car closely following another. The fine grid example, using

64 bins is shown in figure 5.7b. Clearly, the small bin size makes it very sensitive

to noise. In the absence of noise, the fine and coarse grid models are compared in

figure 5.8. Given the same threshold probability pth, the fine grid often performs

slightly better than the coarse one.
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Figure 5.7: Unusual event detection using a coarse grid with 16 bins (a) and a fine
one in (b). The mean correct detection rate is plotted versus the mean false alarm
rate. For the coarse grid (a), the introduction of noise slightly deteriorates the
detection rate, but for appropriate choices of pth the method proves to be immune
to noise. The fine grid (b) is very sensitive to noise. In this case, adapting between
coarse and fine grids can be the best alternative.

We report the running time for the anomaly detector. In the 10 fps simulated

data, the running time for the coarse grid event detector represents less than 50% of

the frame time. This allows for real time detection at up to 20 fps. Zooming in to

the fine level grid, however, dramatically affects the running speed. An average of
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Figure 5.8: Unusual event detection: coarse and fine grids compared in the absence
of noise. Slightly better performance using the fine grid for many values of pth.

only 1.4 fps can be analyzed. This detection rate can be improved by implementing

techniques for sparse matrices.

We conclude this section by noting that to achieve significantly better perfor-

mance using this model, the coarse grid should be used most of the time, zooming

in to the finer grid only when needed.

5.6 Proposed Extensions

We present in this section several areas that can be improved, and how they

can be addressed. We also propose how the current work can be used for the video

scoring problem. But we start first by showing some limitations of our method when

dealing with real video as opposed to the simulated data used for our results.
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5.6.1 Issues with real video

Several issues rise when dealing with real video. We use tracking results for a

traffic intersection video and study points where our algorithm needs to be improved.

Objects are tracked using a blob tracker and classified using aspect ratio features.

We visualize tracking results on the frames and analyze typical ones to develop our

unusual event detector accordingly.

The tracker computes the bounding box and returns the type for vehicles and

pedestrians as visualized in figure 5.9. When two blobs merge, they’re returned

as a third type of “object”. Trackers generally suffer several errors that might

pedestrian

merging
blobs 

vehicle 

Figure 5.9: Typical video snapshot showing the 3 types of detected objects

affect the results obtained from the simulator. Examples of apparent tracking errors

include incorrect classification, missed objects and false detections. These are shown

in figure 5.10. Occasionally, some tracks might be lost, as in the case after a blob

merge where object IDs might get assigned to incorrect objects.

Not all these errors affect our solution of the unusual event detection problem.

Some errors might require adapting our algorithm to them, while others might
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3 peds 

(a)

missed 

(b)

false de−
tections 

(c)

Figure 5.10: Three examples of tracking errors: (a) three adjacent pedestrians clas-
sified as a vehicle. (b) Missed pedestrian. (c) Moving tree branches and empty
parking spot detected as moving objects.

require more work with the tracker. We discuss these issues and other areas that

can be improved in the rest of this section.

1. Instantaneous time shots: We use pairs of consecutive frames to compute

velocities. This makes the problem an image (frames) classification problem.

Stauffer et al. [67] have computed co-occurrences between frames for the same

object (which they called a sequence). This is at the expense of inter-object

correlations. We seek a compromise where inter-object correlations will be

modeled for “reasonable” periods of time to span granular events (e.g. street

crossing event, or building exiting event, etc). For example, a vehicle passing

by a stop-sign without stopping is only detected if we model the period of time

starting before the car reaches the stopping line and ending after it departs it.

This is achieved by adding a third dimension to the co-occurrences. Time and

space limitations need also to be observed. For example, events distant in time

are unlikely to affect each other, thus correlations need not be computed.

2. Space tessellation: Up to now, the space has been subdivided into a fixed
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grid for the whole scene. We have used more than one bin size, but that size

has been fixed for the whole scene. Some bins are crowded while others are

almost empty. Results are affected by the displacement of the grid on the

ground.

We suggest several improvements here. Computing co-occurrences need only

be performed between “neighboring” bins. Computing the neighborhood size

is a problem itself. There might be a situation where two nearby locations

don’t interact at all (e.g. separated by a wall). A natural extension of the

fixed grid for real video is a “perspective grid” in the image plane. We need

results to be invariant with respect to the model chosen. A challenging prob-

lem is that of automatically computing an adaptive space tessellation. The

position of the grid will be determined based on trajectories clusters and the

size of bins (variable), based on traffic density.

We also recall that in our results, only about 7.6% of the upper triangular

co-occurrence matrix was non-zero. This is typical of this approach, as in the

results in [39]. Storing using sparse matrix techniques, and avoiding compu-

tations involving zero elements save considerable space and time. Non-zero

elements represent mutual activity. In other words, avoiding zero elements

means that we skip regions without activity.

3. Tracking errors: The simulator has assumed a perfect tracker except for the

generated random noise added to the vehicles locations. This assumption is far

from realistic. To deal with this problem, there are three possible approaches
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(or a combination thereof).

• Manually correct tracking errors. This approach has been used in [33] and

[35] for example. This approach has the benefit of focusing all effort on

the abnormality detection work, hoping that one day, tracking methods

will be developed enough.

• Enhance the tracker in aspects that benefit the abnormality detector.

One example can be that of learning locations of human and vehicle

trajectories, thus easily considering a car driving up the wall of a building

as a tracker error rather than an unusual event. (We assume of course

that cars cannot drive in general up walls).

• Adjust the abnormality detector to the errors of the tracker. This means

that we admit that any tracker will always have errors that can’t be

fixed in the foreseeable future. An example of this can be to ignore short

“disappearances” of moving objects.

4. Optical flow: Tracking “ensemble” movements or flows rather than individ-

uals tracking is more appealing for crowded scenes and traffic monitoring. We

are more interested in detecting anomalies rather than in tracking individuals.

This approach will involve estimating the distribution of flows in different re-

gions of the surveyed scene, and reporting events that do not fit the estimated

model as unusual.

5. Video scoring: Video segments with unusual activity receive high scores for
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further manual analysis. Several issues need to be addressed here:

• Splitting the video into segments to be scored

• Choosing a suitable cost function to assign appropriate scores based on

how much the analyzed segment varies from the model estimated for the

video.
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Appendix A

Image Cropping Through Learning

We have also investigated cropping images through learning as a motivation

to the video cropping problem presented in this proposal. This work was jointly

done with Haibin Ling.

A.1 Problem definition

The image cropping framework can be summarized in two steps: feature ex-

traction and cropping rectangle detection. Following are some formulations in this

framework.

Input image I : [1..128]× [1..128] → R3

Feature extraction F : x = F(I) ∈ Rd

Rectangle set R : R = {r = (rx, ry, rw, rh)
> ∈ [0, 1]4}

Rectangle detection function f : Rd →R

r = f(x) ∀x ∈ Rd

Cropping C : Ir = C(I, r) : Dr → R3

where Dr = [[128(rx − rw/2)] .. [128(rx + rw/2)]]×

[[128(ry − rh/2)] .. [128(ry + rh/2)]]

⊆ [1..128]× [1..128]

and Ir(x, y) = I(x, y), ∀(x, y) ∈ Dr
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In the above formulation, F is the feature extraction step. In [68], the saliency

map [41] is adapted for this task. The rectangle detection function f corresponds

to the cropping step. A heuristic algorithm is used in [68] that balances the amount

of saliency within a rectangle and its size. We study the use of machine learning

techniques for the cropping problem. That is, we want to learn the cropping function

f . Specifically, it is modeled as a regression problem given hand-cropped samples.

The approach that we employ is the support vector based regression (SVR) [74].

A.2 Learning through SVR

Suppose we have n example image set {Ii}n
i=1, the corresponding feature vec-

tors X = {xi = F(Ii)}n
i=1, and hand-cropped rectangles R = {ri}n

i=1. The task is to

find a rectangle detection function f through X and R.

Note that a rectangle is determined by four parameters, while current SVR

algorithms all deal with one output value. For this reason, when using SVR for

our task, we actually decompose the function f as four functions for each rectangle

parameters separately. In the following, without loss of generality, we just study

one such function and assume f is single-valued.

The ε-SVR was introduced by Vapnik [74] that uses the so called ε-loss function

|ξ|ε

|ξ|ε =





0 if |ξ| ≤ ε

|ξ| − ε otherwise

(A.1)
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In the linear case, f can be written as

f(x) =< w, x > +b (A.2)

The minimization of the ε-SVR has the following formulation [66]

minimize 1
2
‖w‖+ C

∑n
i=1(ξi + ξ∗i )

subject to





ri− < w, xi > −b ≤ ε + ξi

< w, xi > +b− ri ≤ ε + ξ∗i

ξi, ξ
∗
i ≥ 0

(A.3)

A.3 Experiments

The performance of the classifier is evaluated by computing the mean and

standard deviation of overlap rates between manually and automatically cropped

rectangles in an image set. The overlap rate between two rectangles r1 and r2 is

defined as:

overlapping-rate(r1, r2) =
area(r1

⋂
r2)

area(r1

⋃
r2)

(A.4)

We have tested on the animal subset of the NOVA photographs [4], which

contains 4509 images, roughly 640×480. The results are included in figure A.1.

The statistics square to the left represents the density of cropping rectangles in

different regions of the normalized image area. Histograms are for the parameters of

the rectangles, each independently. The overlap rates are for hand cropped images

versus automatically cropped ones, using different algorithms. The ‘mean’ cropper,

simply crops a fixed rectangle that is the mean of all hand crops. The ‘uist03’

cropper is the heuristic algorithm used in [68]. The ‘svr+sali’ algorithm uses SVR
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to learn crops based on saliency feature maps of images, developed in [41]. Finally,

the ‘svr+var’ cropper uses variance feature maps of images [5] to learn the crops

based on SVR.

Surprisingly, all methods perform quite similarly, even similarly to the ‘mean’

cropper, with less than 60% average overlap rate. We investigate the problem fur-

ther by analyzing the images statistics. Figure A.2 compares two manual crops,

parameter by parameter, then rectangle by rectangle. The average overlap rate

jumps to over 70%. We generate the scatter plot for the area of manually selected

cropping rectangles versus their saliency content. Figure A.3 shows that there is

little to learn.

Noting that professionally taken photographs usually have their main subject

centered in the image, we give our algorithm a last try on a set of images where the

main subject is purposely placed in corners of the image. The set was photographed

by Dr Evan Golub [27]. The statistics of hand croppings for that set are shown in

figure A.4. The rectangle count map shows a clear ‘+’ sign, that separates the 4

corners where the subjects of the images are located. The overlap ratio dramatically

drops to 16%.

The ‘uist03’ cropper [68] is also tested on that set. Although the algorithm

succeeds in capturing the main subject in most cases, it retains on the average 55%

of the original image areas. This is more than 8 times the area of the manually

cropped images on average. The result is that the mean overlap ratio for that set is

only 23%. We stopped further investigation in this direction.
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Figure A.1: Overlapping-rates on the Nova Animal Set (4509 images) using different
algorithms.
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