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The aim of this work is to explore the connections between chaos and diffusion

by examining the properties of particle motion in non-chaotic systems. To this end,

particle transport and diffusion are studied for point particles moving in systems

with fixed polygonal scatterers of four types: (i) a periodic lattice containing many-

sided polygonal scatterers; (ii) a periodic lattice containing few-sided polygonal

scatterers; (iii) a periodic lattice containing randomly oriented polygonal scatterers;

and (iv) a periodic lattice containing polygonal scatterers with irrational angles. The

motion of a point particle in each of these system is non-chaotic, with Lyapunov

exponents strictly equal to zero.

For many-sided polygons, greater than 100 sides, we present the results of our

study that shows that the systems appear to be diffusive with a transport coefficient

nearly equal to that of a periodic Lorentz gas with circular scatterers at the same

density. The partial van Hove function for the polygonal system has, numerically,

a fractal dimension equal to that of the partial van Hove function for the periodic



Lorentz gas with circular scatterers. Further, we show that a non-zero average

Lyapunov exponent for the system can be defined, numerically, in spite of the fact

that the actual Lyapunov exponent is zero. It is also possible to verify a relationship,

valid for chaotic systems, between the diffusion coefficient, the average Lyapunov

exponent, and the fractal dimension of the partial van Hove function.

We also report results of a study of the transport properties and dynamical

properties of a system with few-sided polygons, of less than 100 sides. These systems

always appear to be super-diffusive, and non-chaotic, with a value of zero for the

Lyapunov exponent. The partial van Hove function has the same fractal dimension

as that for a periodic Lorentz gas with circular scatterers.

For randomly oriented scatterers and scatterers with irrational angles, we con-

struct a simple channel model that allows us to isolate individual features of the

polygonal Lorentz gases and study their effects on transport properties. The sys-

tems have a value of zero for their Lyapunov exponents, and, depending on the

orientation of the scatterers, the systems can appear to be either diffusive or super-

diffusive.

Although there does not seem to be a direct link between mathematical chaos

and ordinary diffusion in these models, the non-chaotic systems show that if any

such connection exists, it must be very subtle. Even a weak form of random walk

motion may result in ordinary diffusion.
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Chapter 1

Introduction

1.1 Macroscopic Diffusion

One of the fundamental problems of non-equilibrium statistical mechanics is

to obtain expressions the transport properties, such as diffusion coefficients, viscosi-

ties, and so on, for a fluid in terms of the microscopic properties of its constituent

particles [32, 81, 83, 84]. This problem has been the subject of study by physicists

for almost two hundred years. For very dilute gases, that is, gases composed of

particles whose mean free path is long compared to the size of a particle but small

compared to some characteristic size of the macroscopic system, this problem has

been solved in the context of the kinetic theory of gases and the Boltzmann trans-

port equation. For dense gases and liquids this problem is still the subject of many

studies. One of the main issues of interest to physicists is the question of how a

time-reversible microscopic description of a fluid system, via the laws of mechanics,

could give rise to a set of irreversible equations such as the Navier-Stokes equations

of fluid dynamics. Most derivations of the equations of fluid dynamics use a stochas-

tic assumption at some crucial point [81, 32]. This assumption typically takes the

form of an assumption about the random-walk character of some quantity charac-

terizing the transport. Examples include the assumption that a diffusing particle

undergoes a random walk in the fluid caused by its collisions with other particles
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in the fluid. These random walk assumptions lead to the linear laws of irreversible

thermodynamics, which assert a direct proportionality between the fluxes of matter,

momentum, or energy in a fluid and the gradients of mass density, momentum den-

sity, and energy density for the fluid. These linear laws are well known as Newton’s

law of friction, Fourier’s law of heat conduction, Fick’s law of diffusion, and so on.

A somewhat more subtle stochastic assumption is embodied in the hypothesis of

molecular chaos used in the derivation of the Boltzmann transport equation. Of

course, the linear laws are not a re-writing of the laws of mechanics, either classical

or quantum, since they are not time reversible [32].

1.2 Chaos

Over the past few decades it has become clear that dynamical systems theory

might be able to provide a better resolution of the problem of irreversibility, at

least for classical systems, by focusing on the chaotic nature of typical microscopic

processes in atomic and molecular systems [4, 13, 19, 20, 26, 34, 38, 40, 42, 44,

63, 65, 77, 88, 91, 94, 108, 109] . Chaotic systems have the property that a small

change in the initial conditions of the particles will lead to large changes in the state

of the system some time later, so that infinite precision is needed to predict the

trajectory of a chaotic, classical system with certainty [26, 32, 33, 42, 43, 45, 46, 47].

Chaotic systems can appear to behave stochastically and irreversibly even though

they are deterministic and time reversible. The source of the irreversibility in such

cases is to be found in the sensitivity to initial conditions leading to exponential
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separations of, initially infinitesimally close, phase space trajectories [31, 48, 76, 93].

In such cases one can predict the behavior of an ensemble average, which typically

shows an approach to thermodynamic equilibrium, even for an isolated system.

In such cases the time reversed motion also shows an approach to equilibrium,

due to the reversibility of the equations describing each member of the ensemble

[33, 34, 43, 44, 45, 82]. In such cases one needs to argue that the ensemble average

correctly describes the behavior of a typical system included in the average. This

can be hard to demonstrate for physically interesting systems, but this assumption

underlies much of statistical mechanics [40].

1.3 Moments of the Displacement of a Moving Particle

In order to understand the phenomenon of irreversibility and its application

to non-equilibrium statistical mechanics, workers have turned to simple, low dimen-

sional systems which exhibit transport and yet are analytically tractable. In this

introduction we will give a brief overview of such systems and a more detailed dis-

cussion will follow in the following chapters. Among such systems one can include

Lorentz gases of various types, both chaotic and non-chaotic [1, 8, 16, 28, 33, 35,

36, 37, 43, 45, 46, 47, 64, 65, 72, 79, 92, 98]. A Lorentz gas is a system of fixed

scatterers and a collection of moving point particles that interact with the fixed

scatterers but not with each other. Particularly useful models are those where the

dynamics takes place in a plane. If the scatterers are hard disks/infinite sided poly-

gons and the moving point particles make instantaneous, specular, elastic collisions
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with them, the dynamics is known to be chaotic [43, 45, 65, 79]. The Ehrenfest

wind-tree model is an example of a non-chaotic Lorentz gas [30, 38] . Here the

scatterers, “trees”, are oriented squares with diagonals along the x and y directions.

The moving particles, “wind”, have fixed speed and velocities along the ±x and ±y

directions. This situation is preserved under the collisions of the moving particles

with the scatterers, as illustrated in figures (1.1 and 1.2).

Figure 1.1: An Ehrenfest “wind” scatterer. The scatterers’ diagonals are oriented

along the x and y axes. The particles move in the ±x or the ±y directions and

change from one direction to the other upon collision with a scatterer [97].

When the collection moving of point particles are considered as an ensemble

one finds, for certain arrangements of scatterers, that the average motion of the

particles is diffusive [30, 38, 65, 81]. In other words, for long times, the mean
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Figure 1.2: An example of the Ehrenfest wind-tree gas. The particles are constrained

to move either in the ±x or the ±y directions and switch directions when colliding

with a scatterer [97].

square displacement < (x(t)− x(0))2 > goes as:

< (x(t)− x(0))2 >= 2Dt. (1.1)

Here x(t) denotes the x coordinate of the moving particle at time t, the angular

brackets denote an average over the ensemble of moving particles, and D is the

diffusion coefficient. We will have many occasions in this thesis to consider a more

general situation where, for long times, the mean square displacement takes the

form

< (x(t)− x(0))2 >= Atµ. (1.2)

Here µ is called a transport exponent, which for ordinary diffusion is equal to one.

In any case, in the absence of any external fields, the transport exponent, µ, must

be equal to or less than 2, since this value corresponds to free particle motion. The
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phenomenon called super-diffusion corresponds to a transport exponent greater than

1 and less than or equal to 2, and sub-diffusion corresponds to a transport exponent

with value between 0 and 1 [63, 88, 99, 103]. Such, anomolous diffusion has been

extensively studied in the field Nonextensive statistics, Tsallis statistics [94].

The chaotic and transport properties of a Lorentz gas with circular scatterers

placed at the vertices of a triangular lattice, have been studied in some detail.

Sinai and Bunimovich have shown that this system is always chaotic and is also

diffusive provided that the size of the scatterers is such that: (a) there are no closed

regions; (b) that the particles can travel through the lattice; and (c) there are no

infinite corridors where the particles can move without collisions for arbitrarily long

distances [65]. Due to the spatial symmetries of the triangular Lorentz gas system

the odd moments of the displacement are all zero [32, 12, 81]. However, the even

moments are non-zero, the first of which is the mean square displacement.

1.3.1 The Van Hove Intermediate Scattering Function

To generate all of the moments (odd and even) of the motion of a moving

particle we can use a generating function called the Van Hove intermediate scattering

function. This function is defined by:

F (k, t) = 〈eik·(r(t)−r(0))〉, (1.3)

where the angular brackets denote an equilibrium ensemble average. The importance

of this function can be seen by expressing the probability, P (r, t) of finding a tagged
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particle at point r at time t in a fluid which is otherwise in equilibrium, in the form:

P (r, t) =
1

V

∑

k

e−ik·rWkF (k, t), (1.4)

where V is the volume of the container, the summation is over all the allowed

values of the wave number in the Fourier expansion of functions defined inside the

container with specified boundary conditions, Wk is a Fourier component of the

initial probability distribution of the tagged particle,

Wk =

∫

V

dr1e
ik·r1P (r1, t = 0), (1.5)

and F (k, t) is the Van Hove function, also known as the Van Hove intermediate

scattering function, given above

The Van Hove intermediate scattering function is a “smooth” function of k due

to the equilibrium average [12, 33, 43, 45]. However, for a chaotic system the chaotic

motion causes a stretching and folding of functions defined in phase space. This

stretching and folding will cause functions in phase space to evolve into very complex

forms which typically are smooth is some directions in phase space and singular

in other directions. These singular structures may be non-differentiable functions

similar to Weierstrass functions, or may have zero derivatives almost everywhere

but may have variations on sets of measure zero [43, 45, 99]. This and similar types

of singular behavior characterize fractal functions.

1.3.2 The Incomplete Van Hove Function

For a chaotic Lorentz gas the microscopic displacement of a moving particle

is a wildly varying function of the particles’ initial position and velocity. This
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wild variation is suppressed in the Van Hove function when the equilibrium average

is carried out. However, it is useful to define a function that captures this wild

behavior. Gaspard and Takagi defined such a function they called the incomplete

Van Hove function in which partial averages are taken over some fraction of the

available phase space [44, 45]. The incomplete Van Hove function for a chaotic

Lorentz gas system turns out to be wildly varying and fractal, with a non-integer

Hausdorff dimension. This dimension is one measure of the wildness of the variations

of a fractal curve.

Gilbert, Gaspard, and Dorfman have shown that the incomplete Van Hove

function is a fractal for a simple chaotic and diffusive model Lorentz gas-like system,

called the multi-baker model [50, 51, 47]. Moreover they were able to derive a

formula that relates the Hausdorff dimension of this fractal to the positive Lyapunov

exponent and to the diffusion coefficient [52, 45]. The Lyapunov exponent is a

characteristic property of chaotic systems which determines the rate of exponential

separation of two infinitesimally close trajectories in phase space.

The Lyapunov exponent is defined by:

λ = lim
(δx(0)→0)

lim
t→∞

1

t
ln(

δx(t)

δx(0)
). (1.6)

Here δx(0) is the initial separation of two trajectories in phase space and δx(t) is

the separation of the two trajectories at time t later. The t → ∞ represents the

fact that the trajectories have to be watched for long times in order to actually

obtain a Lyapunov exponent. A positive Lyapunov exponent is a characteristic

feature of most chaotic systems. The Lyapunov exponent is zero whenever the rate
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of separation of nearby trajectories is algebraic [31, 48, 76, 93].

In the mid 1990’s Claus, Gaspard, Gilbert and Dorfman expanded the validity

of the dimension formula obtained for the multi-baker model by Gilbert et al. [45].

They derived the same relation for the incomplete Van Hove function for a diffusive,

chaotic, two dimensional Lorentz gas. As mentioned above, they showed that the

diffusion coefficient D any chaotic diffusive system can be related to the Lyapunov

exponent and fractal dimension of the partial Van Hove function, considered as a

function of the wave number k [43, 49, 50, 51]. This relation is:

DH = 1 +
D

λ
k2 + O(k4). (1.7)

A careful discussion of the incomplete Van Hove function and a derivation of the

dimension formula will be presented in the next chapter. Suffice it to say, the relation

gives a beautiful correspondence between the microscopic, chaotic properties and the

macroscopic, diffusive properties of the system. For these chaotic systems one can

derive information about transport from observations of the Lyapunov exponent and

the Hausdorff dimension of the partial Van Hove function [50, 51, 45, 13].

However, the formula also raises a number of interesting questions. A major

question arises when one considers non-chaotic systems that are at the same time,

diffusive. What does the partial Van Hove function look like for a non-chaotic,

diffusive system? Is the curve fractal, and if so, does there exist an analogous

dimension formula consistent with the zero Lyapunov exponents for non-chaotic

systems? One such system is the Ehrenfest wind tree model mentioned earlier.

This is an old model defined by P. and T. Ehrenfest to illustrate and explain some
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important features of the Boltzmann transport equation [1, 19, 30, 38, 55, 60, 96].

Its chaotic properties, or in fact, the lack of them, were studied within the past

decade by Van Beijeren, Dettmann and Cohen [29], and later in more detail by

Dettmann and Cohen [30]. They considered a number of different versions of the

model, differing by the rules for placing the scatterers in the plane. We will briefly

describe them now with a more detailed discussion to be presented in Chapter 3.

One model consists of scatterers placed in space according to some specified rules

with all diagonals oriented in the x or y-directions. Dettmann and Cohen found that

if the scatterers were placed on a periodic lattice, the motion of the particles became

super-diffusive. However if the scatterers were placed randomly in space, that is in

accordance with the original formulation of the Ehrenfest model, the system became

diffusive.

However, Dettmann and Cohen also considered versions of the model where

the diagonals of the scatterers can be rotated [30]. They found that if small groups

of scatterers were rotated randomly as well as randomly positioned in space, forming

a unit cell, and the unit cell is repeated periodically, then for certain periodicities

the motion of the moving particle is diffusive. For example they found that if they

used four scatterers per cell and randomized the scatterers within each cell and

periodically repeated this cell, the motion is diffusive. It is important to mention

here some differences between a Lorentz model with circular scatterers and the

wind tree models mentioned above [30, 38, 65]. The Lorentz gas with circular

scatterers is chaotic. A Lorentz gas of circular scatterers can be diffusive with any

configuration of scatterers, periodic or not, provided that there are no regions that
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confine the particles and no infinitely long corridors through which the particles can

travel without collisions. The same cannot be said of wind-tree models with square

scatterers. Since the sides of the trees are straight lines, the motion of the particles

is not chaotic. Nearby trajectories separate algebraically rather than exponentially

with time. It then appears that there are many possible behaviors, from sub through

super-diffusion. However, chaos is neither sufficient nor a neccessary condition for

diffusion. For example there exists a circular Lorentz gas which is not diffusive, the

infinite horizon model, which will discuss in chapter 2. Also as previously noticed

by Dettmann and Cohen, and as we will see again in this thesis, there are periodic

arrangements of non-chaotic scatterers, trees, that exhibit normal diffusion. Here

we shall endeavor to find some common features of the diffusive but non-chaotic

Lorentz gases [30].

Another class of non-chaotic models that exhibit diffusion are wind tree models

in which the squares are replaced by polygons. One may consider regular polygons

or irregular polygons with irrational angles [66]. An interesting feature of these

systems is that when all the angles are irrational the system is ergodic [89]. This is

the analog for Lorentz gases of the well known result that the motion of a particle

in a rectangle with non-commensurate sides is ergodic [56, 61, 87, 100, 96].

1.4 The Lorentz Channel

One system considered recently by Alonso and Ruiz is called a Lorentz chan-

nel [1, 2, 3, 47, 86]. A Lorentz channel is essentially a tube in two dimensions
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with scatterers placed along the tube, the space available to the moving particles is

unbounded in one direction and confined in another, as illustrated in figure (1.3).

Figure 1.3: An example of a Lorentz channel. Transport occurs only along the

horizontal, or x-direction[1].

Alonso et al as well as a number of other authors (Sanders, Prosen Casati, etc.)

[2, 3, 5, 6, 7, 8, 15, 16, 17, 18, 43, 57, 59, 86] considered motion of a particle in a

Lorentz channel with triangular scatterers figure (1.4 and 1.5). The scatterers placed

at the upper side of the channel were taken to be identical isosceles triangles, each

with two angles φ1, that are irrational fractions of π. The scatterers placed on the

lower side of the channel consisted of periodic repetitions of two isosceles triangles

with the two equal angles φ2 equal to a rational fraction of π. Depending on φ2

the transport properties range from sub- diffusive to diffusive to super-diffusive.

Both Alonso and Sanders provide some insights into these systems by showing that

transport properties are determined by the presence or absence of walking orbits

that exist whenever there are regions on both the top and bottom of the channel

that are free of scatterers, and parallel to each other. If such regions exist the

motion is super-diffusive. When the parallel sides are removed by an appropriate

placement of the scatterers, one decreases the number of and magnitude of the

contributions from walking orbits and the system becomes either diffusive or sub-

diffusive. Furthermore, the fact that one row of triangles has angles that are
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Figure 1.4: The channel system studied by Alonso and Sanders. The system is a

generalized Lorentz channel with triangular scatterers in place of circular scatterers.

Figure 1.5: Examples of the models studied by Alonso et al. and Sanders et al.

showing the “walking orbits” in the system, one reason for super-diffusion in such

systems [86].

irrational fractions of π appears to be responsible for the diffusive behavior of such

systems [2, 3, 86]. These systems will be discussed in greater detail in chapter 5.

1.5 Polygons

So far most of the research on Lorentz gases in two dimensions has used either

circular scatterers, which may be thought of as infinite sided, regular polygons, or
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3 and 4 sided polygons, triangles, squares and rhombi [66]. Although the motion

of particles in Lorentz gases is fairly complex, the dynamics is much simpler than

hard disks. Further, as one considers polygonal scatterers with increasing numbers

of sides, the dynamics becomes more and more complex. However, arbitrary n-gons

offer a way to connect the dynamics of a Lorentz gas with circular scatterers to that

with polygonal scatterers [23, 96]. The literature on arbitrary n-gons is noticeably

sparse. Here we give a brief overview of the recent literature on such Lorentz gases.

In 1993, J. Vega, J. Ford and T. Uzer considered the motion of particles in a

system of scatterers that are n-gons, with n a large number so as to approximate

circular scatterers [96]. As we discuss in the next chapter, Vega et al. showed

that the trajectories of particles moving in such a system of n-gon scatterers can be

characterized by an effective Lyapunov exponent. Therefore in some approximate

sense such systems appear to be chaotic. In a similar spirit, T. Cheon and T.

Cohen studied the quantum properties of a particle in a Richens-Berry billiard,

which consists of particles outside scatterers that are basically squares but with

small polygonal regions removed from one of the corners of the squares [23]. By

removing more and more small polygons, one can make the corner of the scatterer

approximate an arc of a circle, figure (1.6).

If this system were to be classically chaotic, the energy-level distribution would

follow one of the random matrix ensembles, and not be a Poisson distribution typi-

cal of the energy-level distribution for systems that classically are simple and non-

chaotic. Cheon and Cohen found that, for corners that have sufficiently large num-

bers of edges, the energy-level distributions were close to that of a Gaussian Or-
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Figure 1.6: The billiard model studied by Cheon and Cohen. The curved scatterer is

successively approximated by an n-gon [23].

thogonal Ensemble, time reveral invariant system with β = 1, generally indicative

of a classical counterpart which is chaotic, instead of that of Poisson distribution

which one would expect for a classical non-chaotic system. In fact as they added

more and more sides by removing more and more pieces of the square, the distribu-

tion approximated more and more closely that of a Gaussian Orthogonal ensemble.

Their results can be understood by considering the classical motion of a particle in a

system of such scatterers. If one takes two trajectories that initially are close to each

other, but not infinitesimally close, they can separate exponentially for an interval of

time, even though the system is not actually chaotic. This occurs whenever the two

trajectories encounter different sides of the same polygon. The angular separation

of the two trajectories then jumps discontinuously, similar to what happens when

the scatterers are circles. Since quantum systems are inherently coarse-grained at

the level of the de Broglie wavelength, the energy level distribution should look

something like the distribution for one of the Gaussian ensembles. The same mech-
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anism is also responsible for the existence of an effective Lyapunov exponent for the

systems studied by Vega, Uzer, and Ford.

A careful treatment of the transport properties for these systems has not been

made. Of particular interest here is the study not only of the diffusive properties but

also a study the partial Van Hove functions and a determination of their Hausdorff

dimensions.

1.6 Outline of This Thesis

In this thesis we will compare the transport properties of chaotic Lorentz gases

with those for purely non-chaotic, pseudo-chaotic systems. Here the term pseudo-

chaotic system will be used for classical, non chaotic systems with complex dynamics,

to be defined further on in this thesis. We will consider possible extensions of the

dimension formula for the partial Van Hove functions to non-chaotic systems. An

outline of this thesis is as follows:

In Chapter 2 we present a reasonably general discussion of the macroscopic

and microscopic descriptions of particle diffusion in a Lorentz gas. Central to the

macroscopic theory is the linear law of diffusion, known as Fick’s law. This law states

that the local flux of diffusing particles is directly proportional to the negative of

the local density gradient. Fick’s law, coupled with the macroscopic equation for

the conservation of particles in the system leads directly to the diffusion equation.

We then turn to a more microscopic picture, discuss the description of diffusion

for dilute gases based upon the Boltzmann equation, and then consider a more
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fundamental description, valid for all densities, that directly leads to the Van Hove

function discussed above. At this point we define the incomplete Van Hove function

and discuss its fractal properties for chaotic Lorentz gases as described by Gilbert

et al.

In Chapter 3 we turn our attention to a class of periodic, non-chaotic Lorentz

gases, where circular scatterers are replaced by regular, many-sided polygons with

100 or more sides. Our aim is to see if we can discover any indications that the

system is not chaotic. We should point out that these systems, while not chaotic, are

pseudo-chaotic. That is a system that has random dynamics with a zero Lyapunov

exponent. For example, in the wind-tree model the dynamics provide a “random

walk” behavior. However, the system has a zero Lyapunov exponent [102, 103, 104].

Thus, we would consider the system pseudo-chaotic. We will consider the dynamical

behavior of these systems, as well as the transport properties. We will show that

as one increases the number of sides of the system the transport properties of the

system approaches that with a Lorentz gas with circular scatterers. Lastly, we will

consider a coarse-grained dynamics of the system by adjusting the initial distances

between nearby trajectories to be on the order of the length of a side of an n-gon.

In this coarse grained regime we will look at the transport properties, define an

effective Lyapunov exponent and calculate a partial Van Hove function. We will

show that for many-sided n-gon scatterers, for sufficiently large n, the dimension

formula is still valid if one uses the effective Lyapunov exponent.

In Chapter 4 we consider periodic arrangements of scatterers with few-sides.

We will consider effective Lyapunov exponents and the transport properties of these
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systems. We show that the transport properties of these systems are functionally

related to the number of sides of the scatterers, and approach those for a diffusive

system as the number of sides goes to infinity. However the transport properties

approach those for ballistic motion as the number of sides goes to zero. In the latter

case, these transport properties are measures in terms in the exponent µ, as defined

in Eq. (1.2) Further we will discuss a set of conjectures made by Zaslavsky that

relate the various moments of the particles displacement to each other, for few-sided

scatterers. We find that Zaslavsky’s conjecture appears to be correct provided the

number of sides of the scatterers is not too large.

In Chapter 5 we consider disordered placement of polygonal scatterers, along

the lines of some of the work by Dettmann and Cohen. We attempt to estimate

the minimum amount of disorder required for diffusive transport to occur. In or-

der to shed some light on this question we construct a Lorentz channel model with

the property that disorder can be introduced in a very simple way, and easily con-

trolled. Finally, we consider another type of disorder produced by using periodic

arrangements of polygonal scatterers with two irrational angles.

The main results of the research described in this thesis are:

1. We calculate the transport exponents for polygons ranging in size from 4 sides

to over 100 sides.

2. We show that for many-sided polygons it is possible to coarse grain the dy-

namics, giving the system the appearance of diffusive system with a non-zero

Lyapunov exponent.

18



3. In this coarse grained system we show that the dimension formula derived by

Gilbert et al. for the Lorentz gas is valid.

4. We show that for few-sided polygons the first five even moments are related

by the expression:< x2n >=< x2 >n.

5. We provide a simple channel model that allows us to isolate individual features

of the polygonal Lorentz gases and study their effects on transport properties.
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Chapter 2

Diffusion and Chaotic Systems

2.1 Macroscopic Diffusion

This thesis is devoted to a study of diffusion of non-interacting particles in a

two dimensional periodic array of fixed scatterers. Although the particles do not

interact with each other, they are taken to make specular, elastic collisions with

the fixed scatterers. This model is a simple version of a model first introduced by

Lorentz in order to describe the conduction of electrons in metals [65].

If there are no sources or sinks of particles in the system, then on a macroscopic

scale, the density of moving particles, or the probability density for a single particle

at a point r at time t is governed by a conservation law, expressing the conservation

of moving particles in the system:

∂n(r, t)

∂t
+∇ · J(r, t) = 0, (2.1)

where J(r, t) is the current of moving particles at r at time t [81, 32]. This conserva-

tion law becomes useful when there is a constitutive relation connecting the current

to the particle density. If there are no external forces, and the system is placed in a

finite container, the density should approach a spatially uniform equilibrium state,

described by a zero particle current. Further we assume that we are close enough

to equilibrium that the density varies slowly over distances large compared to some
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microscopic length of the system. The fact that the current is zero if the density of

tagged particles is totally uniform suggests that the current and the density gradient

should be related in a simple manner, since both the current and the gradient of the

density are vectors. The simplest relation would be a direct proportionality of the

form:

J(r, t) = −D∇n(r, t). (2.2)

The negative sign indicates that particles diffuse from regions of high density to low

density. This is Fick’s law. For the Lorentz gas, one can derive Fick’s Law if the

scatterers are arranged in such a way that there are no infinite straight paths for the

moving particles. Here D is taken to be a constant, as yet undetermined although

possibly a slowly varying function of position, called the diffusion coefficient [81].

When these two relations are combined, one obtains an equation for the density

alone called the diffusion equation, given by

∂n(r, t)

∂t
= ∇ · [D∇n(r, t)] = D∇2n(r, t). (2.3)

In the second equality on the right hand side of Eq. (2.3) we have made the usual, but

not necessarily correct, assumption that D is a constant, independent of position.

An important result for the work in this thesis is the Einstein formula, provid-

ing the connection between the mean square displacement of the moving particles

and the diffusion coefficient. This follows immediately from the calculation of the

Green’s function for the diffusion equation [81, 32]. If we consider the mean square

displacement given by 〈∆r2〉, where ∆r = r(t)− r(0), we obtain the following:

〈∆r2〉 = 2Dtd (2.4)
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In this equation, the average is taken using the Green’s function for the diffusion

equation, considered as an equation for the probability density for finding at particle

at point r at time t. The Einstein relation is extremely important when discussing

diffusion since it relates the mean square displacement, a quantity easily calculated

via simulations, to the diffusion coefficient.

2.2 Fick’s Law

The purpose of this section is to provide a microscopic derivation of Fick’s Law

for some simple systems [81, 32]. As described above, Fick’s law leads directly to the

diffusion equation. We consider tagged particle diffusion in a Lorentz gas, although

much of this discussion will be applicable to more general fluid systems. To start,

consider one or more tagged particles moving among the scatterers. We assume the

number of moving particles is constant in time. The microscopic expression for the

number density of the tagged particle system is n(r, t), at point r at time t is given

by the following:

n(r, t) =
∑

i

δ(r− ri(t)), (2.5)

where r(t) is position of the particle at time t. and the index i in the summation

refers to one of the tagged particles, and all of them are included in the sum. It is

understood that motion of the tagged particles is governed by classical mechanics.

Since the number of tagged particles is conserved in the fluid, we can write a conser-

vation equation which states that the local change in the number density in a small

region of the fluid is caused only by a flow of particles into or out of the region as
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described by a current. By differentiating Eq. (2.5) with respect to time, we obtain

the microscopic conservation law [81, 32]:

∂n(r, t)

∂t
+∇ · j(r, t) = 0, (2.6)

where

j(r, t) =
∑

i

vi(t)δ(r− ri(t)). (2.7)

Here we have denoted the velocity of the tagged particles by vi(t) = ṙi(t). This

is as far as we can go without some further ingredients. In order to move from a

microscopic description to a macroscopic description of diffusion we will need to find

the average behavior of an ensemble of identical systems, and thus average these

expressions using an appropriate ensemble. Further, we need to find a useful way to

characterize the dynamical behavior of these systems and then to see if Fick’s Law

is a natural consequence of the dynamics and the chosen ensemble.

2.2.1 The Lorentz-Boltzmann Equation

Our first approach to the derivation of Fick’s Law is a traditional one that uses

the Lorentz-Boltzmann equation. The Lorentz-Boltzmann equation is a partial dif-

ferential integral equation for the moving-particle probability distribution function

f(r,v, t) for the moving particles, such that fdrdv is the probability of finding a

particle at point r with velocity v at time t [22, 32, 81]. We consider the scatterers

to be circles of radius a, placed at random in a plane at low density - the mean

separation of scatterers is large compared to the radius a. The Lorentz- Boltzmann

equation describes the time rate of change of the distribution f in this case, and is
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given by

∂f(r,v, t)

∂t
+ v · ∇f(r,v, t) =

= a

∫

v·σ̂>0

dσ̂|σ̂ · v| [f(r,v′, t)− f(r,v, t)] . (2.8)

Here the quantity v′ is given by

v′ = v − 2(σ̂ · v)σ̂. (2.9)

The time rate of change of the distribution function f is given as a sum of

three terms. The second term on the left hand side of Eq. (2.8) is simply the rate at

which particles flow out of a small region δrδv about the point r,v due to the free

motion of the particles. The first term on the right hand side represents the rate at

which particles acquire the velocity v due to collisions with scatterers. The velocity

v′ is the velocity a moving particle must have when colliding with a scatterer with

point of impact located by the unit vector σ̂, where σ̂ is a unit vector directed from

the center of a scatterer to the point of impact of the collision. Finally, the second

term on the right hand side of Eq. (2.8) represents the rate at which particles with

velocity v are lost due to their collisions with the scatterers. Using the Lorentz-

Boltzmann equation one can derive the diffusion equation for the moving particles

together with an expression for the diffusion coefficient. The precise calculations

can be found in the literature [81, 32]. Here we merely quote the results:

D =
3v2

8ν
, (2.10)
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2.3 The Van Hove Function

where ν is the viscosity of fluid. An important generalization of the Einstein

formula, applying to any system with diffusion of a tagged particle is provided by

the Van Hove formalism [12]. Using standard methods of statistical mechanics, one

can prove that the probability, P (r, t) of finding a tagged particle at point r at time

t in a fluid which is otherwise in equilibrium, is given by

P (r, t) =
1

V

∑

k

e−ik·rWkF (k, t), (2.11)

where V is the volume of the container, the summation is over all the allowed

values of the wave number in the Fourier expansion of functions defined inside the

container with specified boundary conditions, Wk is a Fourier component of the

initial probability distribution of the tagged particle [12],

Wk =

∫

V

dr1e
ik·r1P (r1, t = 0), (2.12)

and F (k, t) is the Van Hove function, also known as the Van Hove intermediate

scattering function, given by

F (k, t) = 〈eik·(r(t)−r(0))〉. (2.13)

If we now compare expression Eq. (2.11) with the corresponding expression obtained

by solving the macroscopic diffusion equation, we see that for normal diffusion the

Van Hove function should have the form, for large times, and for small enough wave

numbers,

F (k, t) = e−Dk2t. (2.14)
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Therefore we define a quantity sk(t), a hydrodynamic frequency, which measures

the decay rate of the Van Hove function by

sk(t) =
1

t
ln < eik·(r(t)−r(0)) > . (2.15)

The hydrodynamic frequency can be related to the moments of the displace-

ment of the tagged particle if we expand the exponential [12]. One has the following:

sk(t) =
1

t
ln〈1 + ik · (r(t)− r(0))− 1

2
(k · (r(t)− r(0)))2/2 + O(k3)〉. (2.16)

One can take the average term by term so as to obtain

sk(t) =
1

t
(ln〈1〉+ i〈k · (r(t)− r(0))〉 − 1

2
〈(k · (r(t)− r(0)))2〉+ O(k3)). (2.17)

We can further simplify the equation by considering a system that is spatially

isotropic. In this case the coefficients of the odd powers of k vanish, and the coeffi-

cient of the term of quadratic order in k is the mean square displacement. To this

order in wave number, the Van Hove function takes the form given by Eq. (2.14),

where the diffusion coefficient is related to the mean-square displacement via the

Einstein formula, Eq. (2.4). Now, by keeping terms of higher order in the wave

number, beyond quadratic, and using the relation give in equation Eq. (2.4) we

obtain an expression for the Van Hove function where the hydrodynamic frequency

is given as a cumulant expansion [12]:

Fs(k, t) = exp[−k2ρ1(t) + k4ρ2(t)− k6ρ3(t) + ...] (2.18)

26



where the ρi are the corresponding cumulants which are given by:

ρ1(t) = (1/2!) < r2(t) >, (2.19)

ρ2(t) = (1/4!)(< r4(t) > −3 < r2(t) >2), (2.20)

ρ3(t) = (1/6!)(< r6(t) > −10 < r4(t) >< r2(t) > +15 < r2(t) >3). (2.21)

Having worked out a formal expression for the Van Hove function, we can

now turn our attention to using the results in order to evaluate the various terms

appearing in this function, and to considering a generalization that is important for

a study of the chaotic and non-chaotic systems considered in this thesis.

2.3.1 The Lorentz Gas

The random Lorentz gas has been described previously. Here we turn our

attention to a periodic Lorentz gas, shown figure (2.1), with hard disk scatterers in

two dimensions [16, 47, 64, 65, 74, 79]. We consider the case where the scatterers are

placed in a equilateral triangular array with a scatterer at each vertex of a triangle,

as illustrated in figure (2.1). Depending on the density of scatterers, one can see

super-diffusive behavior, ordinary diffusion or particles trapped in small regions of

space. If the reduced density of the scatterers, na2, is below 1
12

, then ordinary

diffusion does not take place and the mean square displacement grows more rapidly

than the first power of time, t [43]. This is a consequence of the existence of corridors

in the where particles can travel arbitrarily large distances without encountering a

scatterer. For densities in the range 1
12

< na2 < 1√
3

the particle diffuses through

the lattice, and at density 1√
3

the particles become trapped in the small triangular
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regions formed by three disks touching each other. In the infinite horizon case when

the density is below 1
12

there will exist regions wherein certain particles will travel

freely for all times. This causes the system to exhibit a super-diffusive behavior

[43, 74, 75]. In this thesis we will be using both the Lorentz channel and the two

dimensional Lorentz gas [1]. The dynamics for both are identical; moreover, the two

dimensional gas is easily obtain by tracking a winding number in along the y−axis.
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Figure 2.1: A section of a periodic Lorentz gas with circular scatterers. The scat-

terers are equidistant from one another and centered at the vertices of equilateral

triangles. The scatterers are also placed at high enough density so that no free,

infinite trajectories exist in the system.

One can computationally obtain the mean square displacement easily. To do

this we set up the lattice on the computer, then we start 106 particles around the

circumference of one of the scatters as shown in fig. (2.2). Then one runs the system
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for 105 collisions.

As mentioned earlier, the Lorentz gas is chaotic, that is to say, it has a positive

Lyapunov exponent [32, 65, 45]. The Lyapunov exponent measures the rate of

separation of initially infinitesimally close trajectories from one another. Take, for

example, two particles that start with infinitesimally close trajectories. Normally

one would use trajectories, but since the particles in this system do not interact,

two particles propagating simultaneously are equivalent to two trajectories. Suppose

now that the time dependent coordinate is denoted by x1(t) for particle one and x2(t)

for particle two. A measure of the distance between the two trajectories at a given

time is given by [76]:

‖δx(t)‖ = ‖x2(t)− x1(t)‖. (2.22)

Now if the particles separate at some exponential rate one now has:

δx(t) = δx(0)eλt, (2.23)

where λ is the Lyapunov exponent. Solving for λ one has:

λ = lim
δx(0)→0

lim
t→∞

1

t
ln(

δx(t)

δx(0)
), (2.24)

where we indicate the proper limits to be used when defining the Lyapunov exponent.

To see that the Lorentz gas is indeed chaotic consider two nearby trajecto-

ries. During specular collision with a scatterer particles momentums are reflected in

slightly different directions. This is due to the positive curvature of the scatterers,

as we illustrate in figure (2.2).

We will fix the energy by setting v = 1, m = 1. We will further fix the

radii of the scatterers to r0 = 1. This means at the lower limit of the density the
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Figure 2.2: An example of nearby particles with close initial conditions separating

with time. This time varying separation is exponential and is characterized by a

positive Lyapunov exponent.

inter scatter spacing is about 2.3 in term of radii of the scatterers, and in one time

step t = 1 the particles will traverse one radii. It can be shown numerically that

the trajectories separate at an exponential rate, with the Lyapunov exponent thus

becomes λ = 1.76, where is defined by [43, 44, 32, 45].

2.3.2 The Dimension Formula for Chaotic Systems

We have introduced the Van Hove function for a very specific reason. It

can be used to derive an interesting and important relation connecting the micro-

scopic dynamical quantities that characterize the chaotic dynamics of the system

and the macroscopic diffusion coefficient [45, 51]. This derivation relies on an impor-
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tant property of chaotic Hamiltonian systems, the existence of stable and unstable

manifolds in phase space. Since Hamiltonian systems are measure-preserving, the

exponential separation of trajectories mentioned above must be matched by an ex-

ponential approach of close trajectories as well. This structure of phase space for

such systems is clearly described in text books on chaotic dynamical systems and

we will not go into the details here. However, a consequence of this property is

that fractal structures are very common in the physics of chaotic systems [32, 81].

The averaging that takes place in the partial Van Hove function does not reveal the

fractal properties of the displacement function δr(t) [45, 93]. To exhibit the fractal

properties we were to carefully examine the quantity exp[ik · δr(t)] as a function

of the initial position in phase space of the trajectory of the moving particle. This

would be for large enough times t, a wildly oscillating function of the initial phase

space point, since the displacement of the moving particle will change drastically as

on changes the initial point in phase space [33, 45].

We can try to capture these wild oscillations by defining an incomplete Van

Hove function [43, 45, 51]. Instead of integrating over the entire phase space as

one does for the Van Hove function, one carries out only integrations over a part of

phase space to define the incomplete function. Here we consider a simple case. We

consider a set of initial points for the moving particle that are chosen in such a way

as to simplify the definition of the incomplete Van Hove function. We consider one

scatterer, and select the initial states of the moving particle whereby the particle

starts at a point on the circumference of the scatterer with a velocity that is directed

outward and normal to the disk. For such a choice, we define a cumulative function

31



by[45, 49, 50, 51]:

Fk(θ) ≡ lim
t→∞

∫ θ

0
dθ′ exp[(r(t, θ′)− r(0, θ′)) · ik]∫ 2π

0
dθ′ exp[(r(t, θ′)− r(0, θ′)) · ik]

, (2.25)

where the initial location on the circumference is a line parameterized by an angle

θ where θ ∈ [0, 2π]. We use the denominator to appropriately normalize the cumu-

lative function such that Fk(0) = 0 and Fk(2π) = 1. We next construct a curve by

plotting (Re(Fk), Im(Fk)). This curve is a fractal, for a chaotic system.

For small wave numbers, the Hausdorff dimension of this fractal curve has

been shown to satisfy the relation [45]:

DH = 1 +
D

λ
k2 + O(k4), (2.26)

where k2 goes a 1/length2, λ goes as 1/time and DH is dimension less. We can also

use Eq. (2.26) to obtain an expression for the diffusion coefficient in terms of the

other quantities. This is

D = λ lim
k→0

DH(k)− 1

k2
. (2.27)

These equations express a connection between the microscopic Lyapunov ex-

ponent, the macroscopic diffusion coefficient, the wave number, and the Hausdorff

dimension of the fractal curve constructed from the incomplete Van Hove function.

They have been checked for a number of simple models [43, 44]. In order to calculate

the fractals, we use a hexagonal cells shown fig. (2.3) [74].

Using the units previously discussed, we follow the system for about 15 time

steps, then we coarse grain the final positions to the cell positions, since for long

times the final position is roughly the cell position. We illustrate these ideas by
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Figure 2.3: A triangular Lorentz gas with circular scatterers. The figure also shows

a hexagon as the unit cell of the gas.

considering a periodic Lorentz gas with radius r of the scatters equal to 1 and inter-

disk distance d = 2.3. This places the system in a finite horizon regime, so that

there are no free trajectories exist. We can the expression Eq. (2.26) by plotting the

Hausdorff dimension versus k2. The Lyapunov exponent is found to be λ = 1.76.

The diffusion coefficient is obtained from the mean square displacement, and is

D = .25.

2.3.3 The Hurst Exponent

For the Hausdorff dimension of the fractal curve, we use the Hurst exponent

[93]. This equality holds for fractals that are compact and self similar. The Hurst

Exponent is the tendency of a series to either regress or cluster in a direction. The

Hurst exponent is defined by the scaling property of its structure:

Sq =<| g(x + ∆)x− g(x) |q>xF
∼ (∆x)qH(q), (2.28)

where xF >> δx. The Hurst exponent is directly related to the fractal dimension

by D = 2 − H. To test that the procedure returns the proper values we test the

method for smooth functions x2 and sin(x). The procedure returns a dimension of 1
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for these function. We also test the procedure for several known fractals, the partial

Van Hove for the multi-baker map discussed by Gilbert et al [49, 50, 51], and for the

partial Van Hove for the finite horizon Lorentz gas with circular scatterers discussed

by Gaspard et al [45]. Since the procedure returns the expected values in all the

cases, we verify the procedure is working

In order to actually calculate the cumulative function for the Lorentz gas

we follow 106 particles. for a long time, roughly 15 or so collisions. We then

plot the Re(F (k)) vs. Im(F (k)) to show the fractal nature of the function. The

representative graphs of the cumulative function are given in figure (2.4). Further it

is instructive to look at the physical location of each of the final positions (x(t), y(t))

for the particle which is shown in figure (2.5). The final postions show the particles

diffuse in all directions equally.

2.4 Infinite Horizon Lorentz Gas

At this point it is important to note that chaos is not necessary nor is it a

sufficient condition for diffusion. Take for example the infinite horizon Lorentz gas.

In our example the circular scatterers are placed on an equilateral triangular lattice,

as shown in figure (2.1). However, the scatterers are placed far enough apart that

there can exist trajectories that never hit a scatterer. As a result for long times it

takes on a D ∼ t ln(t) representation [11].

The system is chaotic by nature of the circular scatterers. Moreover one can

see that the Re vs. Im of partial Van Hove function is fractal. figure (2.6). The
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Figure 2.4: Re(F (k)) vs. Im(F (k)) a triangular Lorentz gas in the finite horizon

regime, for k=0.2,k=0.4,k=0.6,k=0.8,k=1.0. The functions appear to be fractal with

a non-integer Hausdorff dimension.

system has both a fractal partial Van Hove and a Lyapunov exponent; however, the

system is super-diffusive. The relations given by Gilbert, the dimension equation

2.26, are not applicable for super-diffusive systems. As a result other methods need

to be employed to relate the dynamics to the transport properties. We will discuss

some of these method at the end of Chapter 4.

In this chapter we have observed that for certain diffusive systems that ex-

hibit chaotic dynamics, there exists a simple relation between the dynamics and the

transport coefficient. However, it is unclear if such a relation exists for non-chaotic

systems. In the next chapter we will consider many-sided polygon scatterer and

observe that if we coarse grain the initial condition, we obtain a transport exponent
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Figure 2.5: The final position distribution for a triangular Lorentz gas with circular

scatterers. The distribution shows transport in the system is isotropic.

of 1 and an average Lyapunov exponent . Further, one can find a similar relation

between for the diffusion coefficient in terms of fractal dimension and the Lyapunov

exponent, if one uses an average Lyapunov exponent.
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Figure 2.6: Re(F (k)) vs. Im(F (k)) using k = 0.1. The scatterers have a radius

1 and the distance between adjacent scatterers is 2.1. The values were obtained by

running 106 trajectories for 30 collisions.
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Chapter 3

Transport in Many-Sided Polygonal Systems

3.1 Non-Chaotic Systems

In the preceding discussion we were able to relate the dynamical quantities

for particle motion in a Lorentz gas of circular scatterers, namely, the Lyapunov

exponent and the Hausdorff dimension, to the diffusion coefficient. However the

theory breaks down if we replace a chaotic system by a non-chaotic one, that is, if

we replace circular scatterers by squares, hexagons or, in general, polygonal scatters.

Since the sides of the polygons are flat, the Lyapunov exponent is zero for particle

trajectories, and the motion of the particle is no longer chaotic. As a result equa-

tions (2.26) and (2.27) make no sense since the diffusion coefficient would become

undefined. In fact for many polygonal systems the diffusion coefficient might be ei-

ther zero or infinite, since the particle’s motion may, under various circumstances be

sub- or super-diffusive, respectively [2, 3, 5, 6, 7, 38, 30, 57, 80, 23, 86, 87, 96, 100].

It is the goal of this section to consider the motion of a particle when the scatterers

are flat-sided n-gons and to consider the rate at which nearby trajectories separate

in such systems.
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3.2 Polygonal Scatterers

Polygonal scatterers do not lead to chaotic dynamics for the moving particle

because the flat sides of the polygons do not produce the defocusing needed for an

exponential separation of trajectories. Instead two infinitesimally close trajectories

will separate algebraically in time [30, 102, 103, 104, 105, 106]. Each scattering

event is identical to the scattering of light when reflected by a plane mirror. This is

shown in see Fig. (3.1). This is in contrast to reflection by a circular scatterer (or

mirror), where there is a discontinuous change in the separation of trajectories at

every collision with the scatterer. It is the discontinuous change which ultimately

leads to a positive Lyapunov exponent.

Figure 3.1: The effect of nearby trajectories hitting the same sides of a scatterer

when the scatterers are squares. The separation between nearby trajectories grows

algebraically with time rather than exponentially.
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To understand the central question arising when the scatterers are polygons,

we first consider in more detail computer simulations of motion with circular scat-

terers. Each circle is generated by sin and cos functions, which themselves are

typically generated by 264 straight lines. This means that in the simulations circles

are actually many-sided polygons, so the systems that we are simulating are actu-

ally non-chaotic, in the strict mathematical sense of taking the limit when the two

trajectories are infinitesimally close. This raises the question: Why do we obtain

positive Lyapunov exponents in numerical studies of trajectory separations? The

answer is quite simple: The Lyapunov exponents in the simulations are produced

by nearby trajectories hitting different faces of the same scatterer. This is always

the case in simulations since trajectories in the simulations are never close enough

to hit the same face of a polygon of 264 sides.

This observation led Ford, Vega, and Uzer, to try to define apparent Lyapunov

exponents for polygonal scatterers with fewer sides than those used to simulate cir-

cular scatterers [96]. To do this these authors followed sets of trajectories pairs

in a Bunimovich stadium. Whenever the trajectories hit the circular parts of the

stadium scatterer that portion of the circle was replaced by two short, intersect-

ing lines, i.e. a “corner”, that would produce the same changes in direction of the

trajectories. After n collisions this procedure would generate 2n sides of a polygon.

Moreover, for a given set of initial conditions, and up to the time of the last collision,

the dynamics of a particle in the polygonal system would match, exactly, that of a

particle pair moving in the stadium with the same initial conditions. For this reason

they concluded that one might be able to define an apparent Lyapunov exponent for
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motion of particles colliding with polygonal scatterers. In other words, as long as

the two trajectories hit the same sides of the scatterer, there will be no de-focusing,

but if the trajectories hit different sides, the two velocity directions will be rotated

by different amounts, which is equivalent to a collision with chaos-producing scat-

terers, as illustrated in figure (3.2). This will cause an exponential separation of the

trajectories as long as the two trajectories continue to hit different sides of the same

scatterer. It is this hitting of different sides or “vertex splitting” that causes what

appears to be chaotic behavior.

Figure 3.2: The effect of nearby trajectories hitting different sides of a scatterer when

the scatterers are squares. There is a jump in the separation of trajectories after

particles the hit adjacent sides of the same scatterers.

Ford et al. further noted that the mathematical definition of the Lyapunov
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exponent requires an infinite time and zero trajectory separation limit. Both of

these limits cannot strictly be achieved in a computer simulation. They suggested

that the definition of chaos should changed to reflect this circumstance. Strictly

speaking such polygonal systems are not chaotic, but motion among them may

show a great amount of complexity, and might be characterized by an “effective”

Lyapunov exponent, to be defined below.

Let us now return to our simulated circular scatterer and consider what is

actually happening. Due to the finite memory size of a computer, variables are

stored by different precisions. Two examples of these precisions are double precision

which use 264 bits and integer precision using 232. During the simulation a circular

scatterer is defined by two double precision functions, the sin and cos functions.

As mentioned above, simulated circular scatters are not really circular at all, they

are many-sided polygons. Now the number of initial conditions is necessarily finite.

We generally only use about 104 − 106 initial conditions. Therefore it is possible

that numerically speaking, at least, mathematically non-chaotic systems may appear

to be chaotic. This occurs whenever initial conditions are separated sufficiently far

apart that during every collision with a scatterer ’vertex splitting’ occurs. Further we

insure that the trajectories are hitting the same scatterers otherwise the exponential

behavior will be lost.

Now consider a situation for “simulated circles” where the number of initial

conditions is of the same order or greater then the number of sides of each of the

scatterer, 264. This is theoretically possible but is impractical since it would take

very long times to complete the simulations. However by doing this, we would
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prevent the ’vertex splitting’ of two trajectories. Now our system no longer appears

to be chaotic, but, for finite horizons at least, it still appears to be diffusive, at least

numerically. However in actuality the system may be sub or super-diffusive. This

problem will arise again later in the chapter during our discussion of many-sided

polygons.

To explore this situation in greater detail, we consider polygonal scatterers

where the number of sides, n is on the order of 100 sides or more. We consider

periodic arrangements of scatterers as with the Lorentz gas illustrated in Figs. (2.1,

3.2, and 3.1). For such arrangements of scatterers we do not expect that a moving

particle will undergo normal diffusion in the absence of chaotic motion. That is, if

the dynamics is not chaotic, then there is no source of the randomness needed for

diffusive motion, chaos provides a dynamical randomness that for periodic systems

is necessary for normal diffusion. This is an issue which can be verified by means of

numerical studies as discussed below.

First we consider the incomplete Van Hove function for a periodic system of

non-chaotic scatterers. Here the scatterers will have a large number of sides and

will approach circles as we allow the number of sides to approach infinity. Again

we start all the trajectories at the surface of a scatterer with velocities normal to

the surface. The initial conditions shall again be parameterized with the angle θ.

Further we shall use a very large set of initial conditions, 106 particles or more.

As for the Lorentz gas there are 4 degrees of freedom, two momentum components

and two position coordinates. Because of energy conservation, there are only 3

degrees of freedom. However unlike the circular scatterers, there are no unstable
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and stable directions in phase space for polygonal scatterers. Nevertheless, because

of the vertex splitting of certain pairs of trajectories, there is some kind of instability

in this system. As previously mentioned polygonal systems maybe sub-diffusive or

super-diffsive. This is defined by a generalized transport exponent given by:

〈(r(t)− r0)
2〉 = Ktµ, (3.1)

where the mean square displacement now is proportional to some arbitrary power

of t. This power µ is be called the transport exponent, and it satisfies the condition

that 0 ≤ µ ≤ 2. The case where µ = 1 corresponds to normal diffusion, the range

1 < µ ≤ 2 is called super-diffusive motion, and 0 ≤ µ < 1 is called sub-diffusive

motion.

The systems we are discussing in this chapter are periodic systems containing

polygonal scatterers. We know that in the circular scatterer limit, and for scatterers’

densities in the finite horizon range, the systems are both diffusive and chaotic.

Further we know that for four- and six- sided polygon systems, the motion is super-

diffusive and non-chaotic [87, 100, 104, 106]. The transport exponent for the four-

sided system is greater than that for the corresponding six-sided system. This

appears to indicate that the transport exponent may asymptotically approach 1 as

one increases the numbers of sides. One expects that for a finite arbitrary number of

sides that a periodic, polygonal system should be super-diffusive. The flat, parallel

sides should allow the existence of “walking orbits” that lead to super-diffusion. If

the orientation is randomized, the motion should look to be more diffusive. In the

non-chaotic models mentioned in chapter 1 which were diffusive, there was some
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instability or randomization inserted into the system that made the system diffusive

[2, 3, 30, 86]. For example in the four sided scatterer systems studied by Dettmann

and Cohen, the scatterers were randomized in both position and the orientation.

In the triangular lattice systems studied by Alonso, the irrational angle for certain

configurations appears to act to destabilize the dynamics enough to induce diffusion.

We will discuss these systems in greater length in chapter 4.

3.3 Lyapunov Exponents and Transport in Lorentz Gases with Many-

Sided Scatterers

For periodic systems with many-sided polygonal scatterers, we expect the sys-

tem to be slightly super-diffusive. Moreover since the spacing between nearby initial

trajectories is much smaller then the vertex separation, we expect a zero Lyapunov

exponent. We can check both “effective” Lyapunov exponents and transport ex-

ponents for these systems by running the simulation as described above for several

different n-gon scatters. In the table (3.1) we present results for the transport ex-

ponents and the Lyapunov exponents for periodic, polygonal systems with a range

of sides.

The Lyapunov exponents are equal to zero within error bars for all the systems.

The transport exponent however has an error is on the order of ±0.01, thus the

systems are super-diffusive. As mentioned earlier we expect this type of behavior

since our system is a periodic billiard (gas). However there are polygonal systems

which are diffusive, which we will discuss in the following chapters. These systems
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Table 3.1: This table shows the variation in the transport exponents for different

polygonal Lorentz gases. Each system uses n-gons as scatterers, for 100 ≤ n ≤ 264.

The table also shows that within the errors of the simulations, the Lyapunov exponent

is zero for each of the systems.

number of sides µ λ

100 1.15 0.00179

112 1.14 0

120 1.12 -0.0142

132 1.09 0.021

140 1.12 0.00717

156 1.10 0

168 1.08 0.0107

180 1.080 -0.0036

192 1.079 0.0153

208 1.067 .001064

220 1.066 .01544

236 1.058 0.00537

248 1.052 0.01108

264 1.053 0.02337

use other methods to create the diffusive behavior and are typically not periodic.

Since we are dealing with periodic arrangements of polygonal scatterers, we expect

that the transport exponent as a function of number of sides should asymptotically
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approach 1. A plot of the transport exponent vs. the number of sides, for 4 to 264

sides is shown figure (3.3) as well as a plot of the effective Lyapunov exponent as

a function of the number of sides shown in figures (3.4-3.5).
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Figure 3.3: Transport exponent vs. the number of sides, n, of a periodic billiard with

n-gon as scatterers. The plot shows that the transport exponent, µ, appears to be a

decreasing function of the number of sides.

It is clear that the Lyapunov exponents are extremely close to zero for all

number of sides, with very small deviations about zero. In a rigorous mathematical

sense this is what one expects. However from a physical point of view it seems a bit

odd, since we know in the large n limit our polygons become circles. Figure (3.6)

and the table (3.2) show that the Lyapunov exponent as a function of sides is a

step function, equal to zero everywhere except at infinity. Now as one increases the

number of sides, we expect larger and larger numbers of trajectory pairs to be split
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Figure 3.4: Lyapunov exponent vs. the number of sides of a periodic billiard with

n-gon as scatterers. The plot shows that the Lyapunov exponent is zero for each

system, within errors.

apart by these vertex splitting events. Our data show that the transport exponent

seems to vary as the number of sides is increased, but the Lyapunov exponent

remains zero over the range of sides used. However, from the work of Vega et al.

there should exist a regime with a non-zero effective Lyapunov exponent. There

exists a Lyapunov exponent in the limit as the number of sides goes to 264, and

therefore one might expect that there is some number of sides, perhaps accessible to

computer simulations where one might find non-zero Lyapunov exponents. Below

we show the results obtained with polygons of 103 sides, figure (3.6). We still see

evidence of diffusive behavior over the time scales studied.

The explanation of these results is that on these time scales the motion is
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Figure 3.5: An enlargment of figure (3.4), showing Lyapunov exponent vs. the num-

ber of sides of a periodic billiard with n-gon as scatterers. The Lyapunov exponents

are zero to within the errors of the simulations.

still not sufficiently chaotic-like. Many trajectory pairs separate algebraically with

time unlike those for circular scatterers. Moreover, when we calculate the mean

square displacement we are averaging over two types of trajectories, those close to

“chaotic” trajectories, which shadow a similar trajectory that would be obtained for

circular scatterers, and “non-chaotic” trajectories. These “non-chaotic” trajectories

are responsible for the system being super-diffusive. If one considers our Lorentz gas

made of 264-sided polygonal scatterers, we notice that the initial conditions parame-

terized in such a manner that all trajectory pairs will undergo vertex splitting. This

is due to the fact that our initial conditions vary on a much coarser scale then the

scale for the number of sides. So in effect these initial conditions have removed the
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Figure 3.6: ln(δx2) vs. ln(t) of a periodic billiard with 1000 sided scatterers. The

results show that the system appears to be slightly super-diffusive within errors. The

best fit line is also shown as a gray line represented by the equation 1.00809 ln(t) +

0.00919

“non-chaotic” trajectories from the averaging for both the Lyapunov exponent and

the mean square displacement. In this system we see both a Lyapunov exponent

and a transport exponent of 1. More over the system satisfies the relation of Claus,

Gilbert, Gaspard and Dorfman [50, 51, 45]. This is in spite of the fact the system,

in the strict mathematical sense, is not chaotic.

Now we can test to see if these non-chaotic trajectory pairs are indeed causing

the super-diffusive behavior. To do this we will now consider a regime where our

initial conditions are parameterized on a coarser scale then the number of sides.
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Moreover to reduce any systematic effects we will choose them in a random fashion.

This may seem objectionable at first since one will be disregarding large number

of points, but one can justify it by considering the preceding arguments about the

simulated Lorentz gas. Further we will restrict ourselves to fairly large numbers

n ≥ 500 of sides, in this manner we can insure that one can always take an adequate

average. Below is a table of Lyapunov, table (3.2), exponents for a given separation

distance, we have included polygons that are well below the 500 side limit to show

that there is a Lyapunov exponent for separation distances on the order of 1/100

the vertex separation.

Table 3.2: The table shows values of effective Lyapunov

exponents for a Lorentz gas containing n-gons as scatter-

ers, for 102 ≤ n ≤ 104. As one increases the initial sep-

aration distance between neighboring trajectories, these

systems appear to have positive Lyapunov exponents.

number of sides separation distance λ

100 0.0125 2.03

100 0.000628 1.29

200 0.0125 1.84

200 0.000628 1.41

300 0.0125 1.91

Continued on next page
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Table 3.2 – continued from previous page

number of sides separation distance λ

300 0.000628 1.38

400 0.0125 1.83

400 0.000628 1.64

500 0.0125 1.78

500 0.000625 1.50

600 0.0125 1.93

600 0.000628 1.63

700 0.0125 1.88

700 0.000628 1.33

800 0.0125 1.82

800 0.000628 1.68

900 0.0125 1.96

900 0.000628 1.46

1000 0.0125 1.88

1000 0.00628 1.59

2000 0.0125 1.86

2000 0.00628 1.52

3000 0.0125 1.93

3000 0.00628 1.63

Continued on next page
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Table 3.2 – continued from previous page

number of sides separation distance λ

4000 0.0125 1.93

4000 0.00628 1.63

5000 0.0125 1.95

5000 0.000628 1.56

6000 0.0125 1.89

6000 0.000628 1.61

7000 0.0125 1.99

7000 0.000628 1.69

8000 0.0125 1.89

8000 0.000628 1.77

9000 0.0125 1.95

9000 0.000628 1.77

10000 0.0125 1.95

10000 000628 1.80

The Lyapunov exponents in this case are non-zero and are on the order of that

of our Lorentz gas. What one actually finds is the Lyapunov exponent varies with

the initial separation distance of our initial conditions.. For very small separation,

we find Lyapunov exponents close to zero. As one increases the separation distance
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the Lyapunov exponent asymptotically approaches some fixed value which is ap-

proximately equal to the Lyapunov exponent of a circular scatterer. This Lyapunov

exponent vs. separation distance is shown in figure (3.7).
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Figure 3.7: Lyapunov Exponent vs. separation distance of a periodic billiard with

1000-sided scatterers. The plot show how the effective Lyapunov exponent varies

with the separation distance between initial trajectories.

The Lyapunov exponent for the poygonal system do not exactly equal the

Lyapunov exponent for Lorentz gas. Moreover, the Lyapunov exponent varies de-

pending on the separation distance as shown in table (3.2). However, these can be

accounted for by error. The associated error increases for decreasing numbers of

sides and increasing separartion distance.

If our system now appears chaotic this would imply that the system would be

diffusive as well. We check this as described earlier, by parameterizing the initial
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conditions on a coarser scale then the number of sides, and further by randomizing

the conditions to insure that results are less likely a result of the initial conditions

and are a result of the system dynamics. We find that for this regime the system is

indeed diffusive for a 10000 sided polygon as shown in table (3.3).

Table 3.3: This table shows the effective transport exponent and the effective diffusion

coefficient, for n-gon Lorentz gas systems. Both values are, within errors, equivalent

to that of a triangular Lorentz gas with circular scatterers.

number of point average µ diffusion coefficient

1000 .9826 .28

2000 1.0023 0.21

4000 1.01 0.23

6000 1.002 0.24

This seems to indicate that the trajectories which are removed when a larger

separation distance is used, have a large impact on the transport properties of the

system. It maybe that these trajectories tend to be “walking” orbits that have a

super-diffusive behavior similar to that of a particle traveling down a pipe. Since

the sides of the polygons are flat, these walking orbits are stable.

Due to the stability of these walking trajectories, there may be dense sets of

them. Each of these orbits contributes to the mean square displacement giving the

system it super-diffusive behavior. By coarse graining our trajectories we remove

these dense sets, and the final result is a diffusive looking system, with chaotic

trajectory pairs. We will return to this concept in the next chapter when we discuss
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few-sided polygons

3.4 Partial Van Hove Functions for Lorentz Gases with Many-Sided

Polygonal Scatterers

We shall now return to the dimension formula of Gilbert, Gaspard, and Dorf-

man. So far we have considered coarse graining a non-chaotic system to give the

system the appearance of a chaotic diffusive system. We now consider the Hausdorff

dimension for the partial Van Hove functions for the coarse grained trajectories. We

expect that this Van Hove scattering function should be a fractal with a dimension

proportional to k2. This is easily verified. We plot the Im(F (k)) vs. Re(F (k)) for

the coarse grained motion of a particle in a Lorentz channel with polygonal scat-

terers, and compare that with the corresponding curve for circular scatterers. An

example of the partial Van Hove for a 104 polygon is shown in figure (3.8).

By fitting the data for 104 sided polygons to the relation DH = mk2 + b we

can verify that the dimension for k = 0 is unity and that the diffusion coefficient

satisfies D = limk→0
DH(k)−1

k2λ
, where λ is the apparent Lyapunov exponent for the

coarse grained trajectories. This raises the question of what does one find if one

does not coarse grain the trajectories. It is not clear to us a priori what might

be expected. Remarkably we find that for many-sided polygonal systems that the

dimension as a function of k still goes as mk2 + b. The m value is the same for the

systems. The b value for many-sided polygons is same as that for circular scatterers.

We also find that as the number of sides decreases, the curve appears to be a fractal
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Figure 3.8: An example of a plot of Im(F (k)) vs. Re(F (k)) of the partial Van Hove

function for a triangular Lorentz gas with scatterers having 104 sides.

over smaller ranges of k values. In other words for a 4 sided polygon the partial Van

Hove function is fractal for 0 < k < 0.1 while for 104 sided polygons the Van Hove

function is a fractal for 0 < k < 1.

We find that the k2 behavior of the Hausdorff dimension of these fractals

is quite general, even without coarse graining. The “functionality” of the fractal

seems however seems linked the dynamics of the system. For each imaginary value

the partial Van Hove takes on multiple real values. As a result any self similar

behavior is lost for large k values. We will see this more clearly when we consider

few-sided n-gon systems in the next chapter.

The last question we address about the partial Van Hove functions for polygo-

nal system is whether these Van Hove functions are truly fractal, or only apparently
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so on some scale. Consider the corresponding partial Van Hove function for a 4-

sided polygon shown figure (3.10) and that of a circular Van Hove function shown

in figure (3.9).
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Figure 3.9: A plot of Im(F (k)) vs. Re(F (k)) for the partial Van Hove function for

a triangular Lorentz gas with circular scatterers. When compared with the Im(F (k))

vs. Re(F (k)) of a partial Van Hove function for a billiard with scatterers having 104

sides there appears to be very little difference between the two curves.

One sees that the circular system Van Hove function appears much more frac-

tal. In fact the 4-sided polygon appears to be smooth except for a small region of

k. Perhaps the partial Van Hove functions for 4 sided systems are not truly fractal.

However, the behavior of the function may be sufficiently complex that the com-

puter cannot distinguish the difference between this curve and a genuinely fractal

curve. If one were to have infinite precision, the computer should eventually be able
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Figure 3.10: Re(F (k)) vs. Im(F (k)) of the partial Van Hove Function for a system

of point particles moving on equilateral triangular lattice consisting of polygonal

scatterers having 4 sides. The fractal dimension for this curve is the same as that

for a Lorentz gas composed of circles obtained by circumscribing the squares.

to tell the difference for these curves, but as before with the many-sided polygons

and the circles the computer cannot “see” the difference.

Our result shows, in agreement with the results of Ford, Vega, Uzer, [96],

that in a “physical” setting, the rigorous mathematical limits required to define

chaos are not always useful [53, 54]. We have shown that if one considers a coarse-

grained system that one cannot effectively distinguish between chaotic and non-

chaotic systems. We find that coarse grained systems can appear to be chaotic

and diffusive, and that for them the dimension formula is satisfied. For gases with

polygonal scatterers that at for regular polygons with 500 sides or more the formula

holds.

Our work on many-sided polygons leaves many questions unanswered. For
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example, why do the curves appear to be fractal even for the fine grained trajecto-

ries? Why is the fractal dimension proportional to k2? What is the meaning of the

coefficient of this term for a non-chaotic system? In next chapter we study few-sided

n-gons where additional questions arise.
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Chapter 4

Few-Sided Polygonal Systems

4.1 Transport in Few-Sided Polygonal Systems

In the previous chapter we saw that as one increases the number of sides of

regular polygonal scatterers, the scattering of point particles by polygons approaches

that by circular scatterers and the motion of the point particles approach a chaotic

limit. Moreover, for a periodic system of polygonal scatterers with finite horizon, the

motion of the point particles becomes diffusive in the circular limit, as one would

expect. We also showed that if the number of sides is sufficiently large, a non-

chaotic system with polygonal scatterers can be made to appear chaotic on a coarse

grained scale. However, if the scatterers have only a few sides one can not make

the system appear to be chaotic even on a coarse grained scale. Nevertheless, the

trajectories are still extremely complex, so complex that these system are referred

to as pseudo-chaotic systems. In this Chapter we shall examine the transport and

related properties of some pseudo-chaotic systems.

We begin by considering the polygonal Lorentz gas described in the last chapter

as show in figure (4.1). In this chapter we shall consider periodic arrangements of

polygonal scatterers with small numbers of sides, less than 102.

We expect these systems to be super-diffusive or, equivalently, the transport

exponent will satisfy µ > 1. However, we expect that if we were to increase the
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Figure 4.1: A section of a polygonal periodic Lorentz gas, containing squares. The

scatterers are equidistant from one another so that they form the vertices of equilat-

eral triangles. The scatterers are also placed so that the system has a finite horizon.

As a result no free trajectories exist in the system.

number of sides, the motion of the particles would become more diffusive and the

exponent µ would approach unity.

The difficulty with coarse graining these systems becomes apparent if one tries

to define a coarse grained Lyapunov exponent for few-sided polygons as we did in

the previous chapter for many-sided polygons. We find that the coarse grained

scale one needs to use in order to see an effective Lyapunov exponent varies wildly

depending on the initial conditions. Further, as expected, the actual Lyapunov

exponent is zero for these systems. One still sees an exponential separation of
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certain trajectory pairs. However for the system as a whole we can neither obtain

a non-zero Lyapunov exponent nor define a coarse grained Lyapunov exponent.

Trajectory pairs typically separate algebraically, generally linearly, with time. The

vertex splitting of trajectories does not produce an overall exponential separation as

can be seen in the chart below. Given the error bars of the simulations, the average

Lyapunov exponent is zero as shown in table (4.1)..

Table 4.1: The table shows the effective/average Lyapunov exponent for few-sided

polygons with the associated error. As the number of sides decreases the associated

error becomes on the order magnitude of the value of Lyapunov exponent

Number of Sides Average Lyapnouv exponent Error

200 1.9 ±0.27

150 2.00 ±0.31

100 1.98 ±0.58

80 2.07 ±0.42

50 2.09 ±1.06

For our systems of scatterers with very few sides, trajectory pairs begin to

hit different scatterers even after the very first vertex splitting collision. This can

be seen in a simple four‘sided polygonal array shown in figures (4.1),(4.2), and

(4.3). The discontinuity or jump between the nearby trajectories can be observed

in figure (4.4).

The collision of a particle with a scatterer results in a rotation of the particle’s

momentum direction by π/2. So, in effect, two initially close trajectories lead to
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Figure 4.2: An example of a pair of trajectories in a Lorentz gas with square scat-

terers. The trajectories split whenever each one collides with a different side of a

scatterer.

motion in opposite directions and the particles following these trajectories must hit

different scatters, unless the dynamics is taking place on a torus. The striking of

different sides causes a spike in the separation distance as shown for a four sided

billiard with the initial separation at π
10

a where a is the length of a side.

Since the Lyapunov exponent vanishes, and the motion of the particles is super-

diffusive, we obviously do not expect the relation between the Lyapunov exponent,

Hausdorff dimension and the diffusion coefficient, that characterizes the Van Hove

function for a chaotic system, to apply to this case.
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Figure 4.3: Another example of a pair of trajectories in a system of periodically

placed square scatterers. The trajectories split when they each collide with different

sides of a scatterer.

4.2 Super-Diffusive Motion in the Polygonal Lorentz Gas

We shall now consider transport in these systems. To start we shall consider a

system composed of four-sided polygons. We know from the work of Dettmann and

Cohen that transport is dependent on the lattice chosen. For example Dettmann and

Cohen showed that the motion is super-diffusive for systems with periodic boundary

conditions, but if the scatterers are randomly placed throughout space or randomly

oriented the systems become diffusive [30]. Neither the randomly placed nor the

randomly oriented systems are chaotic, but both appear to be diffusive. While it

is not entirely clear what makes these systems diffusive, it may be linked to the

absence of a type of motion called walking orbits [86]. Walking orbits are those
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Figure 4.4: Jump in separation caused by scattering from different sides of the same

scatterer. The scatterer size is fixed so that the center to vertex distance is 1 and the

length of each side is 1.701. The particles have an initial speed of 1 and are initially

separated by a distance of 0.036, in these units. The last collision shows a very large

change in the separation distance from about 0.05 to about 2.5. In the next collision

(not shown) the particles hit different scatterers.

sets of orbits that appear to be nearly free trajectories. Since these trajectories are

nearly free we expect their square displacement to go as t2. To see how this affects a

system we shall return periodic lattice gas with four sided scatterers. First consider

the dynamics of the lattice gas done on a torus or in a channel, figure (4.5).

The “walking orbits” are those orbits that appear because of the matching

boundary conditions. For example if one were to form a torus by matching the

boundary conditions of the cell there appears to be sets of trajectories which are
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Figure 4.5: Examples of walking orbits seen in studies of Lorentz channels by Sanders

et al., for triangular scatterers placed along the upper and lower walls of the chan-

nel. These walking trajectories generally cause the motion of particles to be super-

diffusive.

periodic orbits. It is these orbits that are walking orbits on the full lattice. In a

periodic gas these would travel very quickly through the system, effectively unham-

pered by the scatterers. One can see this by looking at the final distribution of

points for a 4 (figure (4.6)), 12, (figure (4.7)), 20, (figure (4.8)), and 36 (figure (4.9))

sided polygons compared to that of circles figure (4.10).

The distributions of points for the four-sided systems appear to be very similar

to that for circular scatterers except in four regions where the particle displacements

are much greater than those for the rest of the distribution. These channel regions

are similar to jets. It appears the trajectories in this region are traveling in a ballistic

fashion. These are caused by sets of trajectories that bounce or walk between the

sides of polygons without being substantially reflected as shown in figure (4.11).

The walking trajectories occur because sides of different scatterers may be parallel,

and because the system is periodic. The sides of the polygons act like the walls of a
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Figure 4.6: Final distribution of positions for 104 trajectories, after a time 105

time units, for a system containing 4-sided scatterers. The scatterers are placed

on an equilateral triangular lattice. The scatterer sizes and particle speed are as

described in fig. (4.4). The inter-scatterer distance is of 3.64. The particles are

started radially outward from a scatterer located at (1.15, 1.15
√

3) so that the angular

separation between neighboring pairs of particles is π
5000

. The “jets” are noticeable

in the distribution.

channel, or pipe, allowing the particles to travel ballistically. When we increase the

number of sides of the polygonal scatterers we see that the “jets” for very long times

as shown previously by Schmiedeberg for hexagons placed on honeycomb lattice [87].

As the number of sides increases the number of possible walking orbits in the

system decreases. The decrease appears to be due to the fact that the walking

orbits become less stable due to the additional number of vertices which cause
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Figure 4.7: Final distribution of positions for 104 trajectories. after a time 105

time units, for a system containing 12-sided scatterers. The scatterers are placed on

an equilateral triangular lattice. The system parameters and angular separation of

trajectories is as described in fig. (4.6).

more trajectories to deviate from the walking orbits. As we introduce more sides

more ballistic paths are blocked, until, in the limit of circular scatterers, where all

trajectories are unstable and the ballistic trajectories occupy a set of measure zero

in the space of all trajectories.

The reduction/blocking of walking trajectories would explain why certain non-

chaotic systems exhibit diffusive behavior. In the instance of the randomly placed

scatterers, the random placement of the scatterers blocks paths that lead to ballistic

motion. In the case of the randomly oriented polygons the reduction of the number

of parallel sides prevents trajectories from traveling in a ballistic fashion. In both
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Figure 4.8: Final distribution of positions for 104 trajectories. after a time 105 time

units, for a system containing 20-sided scatterers. The scatterers are placed on an

equilateral triangular lattice. The other parameters are as described in fig. (4.6).

cases the systems appear diffusive on sufficiently long time scales [86].

Schmiedeberg and Stark find similar behavior for a honeycomb billiard [87],

consisting of hexagonal scatterers shown in figure (4.12). Their results are shown in

figure (4.13)

4.3 Transport Exponents

Let us once again look at our polygonal systems. If walking orbits do in

fact affect transport, the transport exponent should change as the number of side

changes. This is shown in fig. (4.14):

Here we consider the motion of a moving particle in a periodic system of polyg-
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Figure 4.9: Final distribution of positions for 104 trajectories. after a time 105 time

units, for a system containing 36-sided scatterers. The scatterers are placed on an

equilateral triangular lattice. The parameters are as described in fig. (4.6).

onal scatterers. We recall that if the polygons were replaced by circles, the motion

would be diffusive, while for the polygons it is super-diffusive with a transport ex-

ponent µ > 1. Our numerical studies show that there appears to be a functional

relationship between the number of sides and the transport exponent: We might try

a functional relation of the form µ = 1/(ny + 1) + 1, since the transport exponent

should asymptotically approach 1 as the number of sides goes to infinity. A possible

functional relationship of this type is

µ(n) =
C

(n + x)y
+ 1. (4.1)

By fitting our numerical results to this form of µ(n) = C
(n+x)y + 1 we find

that C = 331.8, x = 48.7728, y = 1.532. The best fit with error bars is shown in
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Figure 4.10: Final Distribution represented for circular scatterers, with radius 1, on

an equilateral triangular lattice. The inter-scatter distance, the initial conditions,

and the final time are the same as those in fig. (4.1). For circular scatterers there

do not appear to be any “jets.”

figure (4.15).

Of course this is only one of many possible forms and until a theoretical foun-

dation is available, there is no way to decide among them.

4.4 Topology of Polygonal Billiards

In our previous discussions we have focused our attention on periodic, lattice

systems in which point particles interact by colliding with polygonal scatterers. This

type of system is known as an external billiard since all the interactions take place

on the outside of the scatterer. Another type of billiard is called an internal billiard,
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Figure 4.11: A sample trajectory of a particle taken from the system shown in

fig. (4.1).

Figure 4.12: The honeycomb billiard described in Schmiedeberg and Stark [87]. The

system consists of hexagonal scatterers on an equilateral triangular lattice. Also

shown are three examples of “walking orbits.”

where the particle motion takes place inside polygons or other shaped figures such

as a Bunimovich stadium [89]. Since the dynamics of internal billiards for simple
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Figure 4.13: Final Distribution of positions for a honeycomb billiard shown in

fig. (4.12) [87]. The system consists hexagons with a radius (center to vertex dis-

tance) equal to 1 and the parallel sides of two adjacent scatterers forming corridors.

The width of the corridors have a size 0.1 in terms of the radius. The systems is

run with 104 particles with velocity 1 are run for 105 time units.

polygons have been widely studied, it is useful to look at these systems to see if they

can help us understand the dynamics of our external billiard systems.

The complexity of motion in an internal billiard drastically increases as one

goes from motion inside simple polygons to motion in more complex arrangements

[56, 89]. An example of an internal billiard widely studied is a rational, internal

billiard which is a closed billiard table with internal angles that are rational fractions

of π. The topological structure of the table in configuration space can be found by

“tiling the plane” by using periodic reflection of cell [80, 89, 96]. An example of this

tiling is a square billiard which yields a torus. This is the second simplest topological
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Figure 4.14: Transport exponents as a function of the number of sides, for a system

n-gon scatterers on an equilateral triangular lattice.

genus with the first being a sphere[80, 56, 89]. If we put a scatterer inside the square,

the topology changes. If we put a bar in the square [109, 57] the topology becomes

that of two connected tori [101, 103, 104, 106]. If we replace the bar by a small

square, the billiard is topologically equivalent to a five handled “pretzel” [80, 6].

Thus as we increase the number of scatterering surfaces the topology becomes more

and more complex as show in figure (4.16 and 4.17). there also exist other more

complex configurations as shown below:

As pointed out by Richens et al. Vega et al., Gutkin, and Vivaldi et al.

[80, 96, 56, 95], for genus larger than one there may exist isolated saddles which

act like hyperbolic fixed points providing a “chaotic” type behavior. These would
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Figure 4.15: Transport exponents as a function of the number of sides, for a system

n-gon scatterers on an equilateral triangular lattice. Plot also shows the best fit for

C = 331.8, x = 48.7728, y = 1.532 with error bars.

correspond to the vertex splitting a polygonal billiard. These structures produce

something like chaotic behavior for larger numbers of sides. This observation can

be extended to include our external billiard system, where, as we have seen the

vertex splitting provides a mechanism for the separation of trajectories. Thus even

some trajectory pairs for systems of few-sided scatterers exhibit an effective non-zero

Lyapunov exponent [96] as discussed in the previous chapter. Our models, which

typically have algebraic separations of trajectories, are often said to display weak

chaos [102, 39, 94, 7].
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Figure 4.16: Examples of simple internal billiards and their associated topologies.

Motion of a point particle inside square cell, with specular collisions, is topologically

equivalent to a torus. The addition a bar to the center of the cell yields two connected

tori. Replacing the bar with square, one obtains a five handled pretzel as shown.

Figure 4.17: Four examples of motion of a point particle inside boxes with bar scat-

terers and square scatterers.

4.5 The Partial Van Hove Function

We next consider the partial Van Hove function for a periodic Lorentz gas

with few-sided scatterers. When calculating the partial Van Hove functions we use
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only small wave-numbers, k, since as k grows the partial Van Hove function ceases

to be a function and instead has the relevant curve shows self-intersections. That

is, for every Re(Fk(r, t) there can exist several values of Imk(r, t). In the last

chapter we observed that the partial Van Hove function for large numbers of sides

is stable. In other words, after 15 collisions the fractal appears the same and has

the same dimension as an identical system run for 102 collisions, or 103 collisions or

even 5× 103 collisions. Therefore, it does not appear that these fractals change on

time scales we can observe. We observe that for polygonal scatterers with a small

number of sides, the partial Van Hove function changes its form over time, but for

short times, on the order of tens of collisions, the curves still appear to be fractal.

For longer times the curves develop self-intersections. Here we illustrate some of

these curves for scatterers with different numbers of sides, starting with circular

scatterers. For circular scatterers and for small k values, the fractal dimension goes

as k2. As we decrease the number of sides from circles to polygons with 104 sides

fig. (4.18), to 500 fig. (4.19), to 100 fig. (4.20), to 60 fig. (4.21), to 20 fig. (4.22),

and finally to squares fig. (4.23 4.24),and 4.25 and for k = 0.1, the partial Van Hove

functions appear to be fractal, at least for short times.

It should be noted that at least for square scatterer the partial Van Hove ap-

pear relatively smooth. However, using the Hurst Exponent discussed in Chapter 2

we find the partial Van Hove function is fractal. I maybe a result of the computer

not being able to distinguish the difference between a relatively rapidly varying func-

tion and a actual fractal. This would be computational limitations, and cannot be

verified easily. Since, the Hurst exponent procedure returns the proper dimensions
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Figure 4.18: Im(F (k)) vs. Re(F (k)) of the partial Van Hove Function for a system

of point particles moving in a triangular Lorentz gas consisting of polygonal scatterers

having 104 sides.

for smooth curves and known fractals, we shall say that the partial Van Hove for

periodic Lorentz gas with square scatterers appears fractal.

The function changes appearance but for low k and short times, the function

appears to be a fractal. However, if we increase the time, the fractal ceases to exist.

For example, one can see this for 4 sides as one increases the time to 40 collisions

the graph develops self intersections as shown in figure (4.26). Likewise if one runs

the trajectories for 200 collisions in a system of 40 sided polygons the partial Van

Hove function develops self intersections as shown in figure 4.27). The range of

k values and time over which the partial Van Hove functions seem to be fractal

depends on the number of sides of the polygons. For example for a square scatterer
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Figure 4.19: Im(F (k)) vs. Re(F (k)) of the partial Van Hove Function for a system

of point particles moving in a triangular Lorentz gas consisting of polygonal scatterers

having 500 sides. The fractal dimension for this curve is the same as that for circles

approximated by the many-sided polygons.

system the range of k values is 0 < k < 0.1 and the upper limit of the time is less

than 15 collisions. However, a 102 sided scatterer system the range k value is about

0 < k < 0.5 and the time interval is about 50 collisions. These results indicate that

these functions are not stable fractals, and one may not consider them fractals at

all. The fractal structure exists only for short times. However for longer times the

system loses its fractal structure and ceases to be a function as previously discussed.

This perhaps gives one another test to check how “chaotic” a system is. One can

consider the partial Van Hove function over time. The longer the partial Van Hove

function exhibits fractal behavior the closer the system is to being a chaotic system.
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Figure 4.20: Im(F (k)) vs. Re(F (k)) of the partial Van Hove Function for a particle

moving in a triangular Lorentz gas consisting of polygons having 100 sides.

So a system of 102 sided scatterers would be more “chaotic” than a system of square

scatterers. Recalling from the chapters 2 and 3 one observed the dimension of the

partial Van Hove function want as k2 [50, 51, 45]. We observe that for few-sided

polygons, for short times, and for small k, the dimension of the partial Van Hove

function goes a k2. However, unlike the circular diffusive system the coefficient does

not appear to have any significance because the system does not appear diffusive on

any scale.

The existence of non-chaotic but diffusive models shows that chaos is not

required for diffusion. As we saw in the previous section the generalized periodic

Lorentz gas with few-sided polygonal scatterers are super-diffusive. One can change

the system such that the system once again is diffusive. Thus, one can have few-sided
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Figure 4.21: Im(F (k)) vs. Re(F (k)) of the partial Van Hove Function for a system

of point particles moving in a triangular Lorentz gas consisting of polygonal scat-

terers having 60 sides. The fractal dimension for this curve is the same as that for

circumscribed circles as scatterers.

(non-chaotic systems) which exhibit diffusion. Two such models were studied by

Dettmann and Cohen [30]. The first is the standard Wind-tree model of Ehrenfest

where the scatterers are placed randomly, and at low density. This system is diffusive

[30, 38]. Dettmann and Cohen also considered cells containing randomly oriented

scatterers (position and rotation) with 4 of scatterers per cell. The cells are put in

a periodic array. This system was also found to be diffusive.

Dettmann and Cohen chose the size of squares to be
√

2 to keep their area

equal to the area of the circles in a Lorentz gas, with a radius of
√

2/π. The number

of scatterers N per cell of length L was set to be N = L2/4. The velocity and the
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Figure 4.22: Im(F (k)) vs. Ew(F (k)) of the partial Van Hove Function for a system

of point particles moving in a triangular Lorentz gas polygonal scatterers having 20

sides. The fractal dimension for this curve is the same as that for circumscribed

circles as scatterers.

mass are set equal 1 . The diffusion constants for each of the system are listed in

table (4.2).

Dettmann and Cohen considered 5 models that were diffusive. In this section

we will consider three models that consist of scatterers placed in an effectively infinite

plane. We also will look at the relationship found by Dettmann and Cohen between

the diffusion coefficient and the number and types of periodic orbits [75]. The first

infinite model Dettmann and Cohen considered was a system containing randomly

placed squares/trees, a randomly placed wind-tree model. As previously described

the sides of the trees to have a length of
√

2. The length of the cell was chosen to
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Figure 4.23: Im(F (k)) vs. Re(F (k)) of the partial Van Hove Function for a system

of point particles moving in a triangular Lorentz gas with square scatterers. The

fractal dimension for this curve is the same as that for circumscribed circles as

scatterers.

be L = 3500 in units of scatterer’s length. The number of scatterers was chosen to

be N = L2/4. These scatterers were randomly placed through out the cell, but they

were not randomly oriented. The velocity and mass of the particles were set to be

1. The system was run for tf = 106 time units which was sufficiently short that the

particles never reached the edge of the cell. As a result the cell can be thought to

have a length of L = ∞. They found the diffusion coefficient for this system to be

D = 0.44, fig. (4.28).

The second infinite model they considered was a random Lorentz gas with

circular scatterers. The radius of the scatterers was chosen to be R =
√

2/π.
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Figure 4.24: A magnification of the partial Van Hove Function shown in Fig. (4.23),

showing some of the fractal-like structure.
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Figure 4.25: A further magnification of the partial Van Hove Function shown in Fig.

(4.24), showing some of the fractal-like structure.
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Figure 4.26: Re(F (k)) vs. Im(F (k)) for the partial Van Hove Function for a system

with equilateral triangular lattice with square scatterers. The system is run for 40

collision times as opposed to 15 collisions used to obtain fig. (4.23).

The length of the cell and the number of scatterers were identical to the randomly

placed wind-tree model. The scatterers were also randomly placed through out the

cell. The velocity and mass of the particles were chosen to be 1. The system was

run forthe same number of time steps, which was short enough that the particles

never reached the edge of the cell. As with the randomly placed wind-tree model

the system can be thought to have a length of L = ∞. They found the diffusion

coefficient for this system to be D = 0.27, figure (4.29).

The last model was the randomly oriented wind-tree model. They chose the

length of the sides of the trees so that their area would be the same as the circles

mentioned above. The number and density of the scatterers were chosen to be the
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Figure 4.27: Re(F (k)) vs. Im(F (k)) for the partial Van Hove Function for a particle

in a triangular Lorentz gas with 40 sided scatters scatterers. The system is run for

200 collision times.

same as the two models mentioned above, but they were rotated by some randomly

chosen angle. Dettmann and Cohen found the diffusion coefficient for this system

to be D = 0.14, figure (4.30).

Dettmann and Cohen argue that the differences in values of the diffusion

coefficient were related to the number and type of periodic orbits. For the randomly

placed wind-tree model, there exist no periodic orbits in the randomly placed model

except for very rare special orientations of groups of scatterers. This follows from

a result of Aarnes [30]. For the Lorentz gas with circular scatterers, there are an

infinite number of unstable periodic orbits in the system. Lastly for the randomly

oriented model, Dettmann and Cohen showed that a period 3 orbit can always be
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Table 4.2: Systems which were found to be diffusive by Dettmann and Cohen [30]

with the associated diffusion coefficients.

System D

Randomly oriented and placed squares 0.14

Randomly placed circles 0.27

Randomly placed squares 0.41

found if the scatterers’ sides outline an acute triangle as shown in fig. (4.31). The

probability of these types of configurations in a randomly oriented wind-tree is non-

zero. Further one can show that these orbits are quite stable. A sample of such a

system is provided in fig. (4.31). As a result of these considerations Dettmann and

Cohen argued that the comparatively high value of the diffusion coefficient for the

randomly placed wind-tree model was a result of the lack of periodic orbits. Particles

cannot get trapped for extended periods of times and diffuse quickly through the

system. In the case of the circular Lorentz gas, trajectories close a periodic orbit,

shadow the orbit for a short time then diverge from it. Thus the diffusion coefficient

for the circular Lorentz gas has a diffusion coefficient comparatively smaller than

the randomly placed wind-tree model. Lastly for the randomly oriented wind-tree

model with stable periodic orbits, shadowing trajectories remain near the periodic

orbit for extended period of time. As a result the randomly oriented wind-tree model

had a comparatively smaller diffusion coefficient, suc a gas is shown in figures (4.28,

4.29, 4.30).

Other polygonal systems have been found to be diffusive as well. One such
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Figure 4.28: A Lorentz gas with square scatterers, randomly placed. This model is

found to be diffusive, and there are no periodic orbits [30].

Figure 4.29: A segment of a gas with randomly placed circular scatterers. This

system is diffusive, and there are an infinite number of unstable periodic orbits [30].
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system is composed of rhombi with irrational angles [2, 3, 66]. In the next chapter

we will discuss work of Alonso et al. who constructed models with the entire range

of behavior - sub-diffusive, diffusive, to super-diffusive. We explore similar systems

in the next chapter, where we consider polygonal scatterers with irrational angles,

as opposed to the polygons with rational angles considered so far, and see how this

change in angles affects the diffusive properties of the systems studied.

Figure 4.30: A segment of a Lorentz gas with randomly placed and randomly oriented

square scatterers. This system is found to be diffusive, and has a relatively low

diffusion coefficient when compared to the other models illustrated in figs. (4.28)

and (4.29). Dettmann and Cohen argue that this low value is due to stable periodic

orbits in this system [30].
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Figure 4.31: Stable periodic orbits for an arrangement of square scatterers. These

orbits appear to cause the diffusion coefficient to be smaller than those for other

models studied by Dettmann and Cohen [30].
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4.6 Fractional Diffusion

4.6.1 Fractional Calculus

The remaining portion of this chapter will be devoted to the use of fractional

diffusion equations for studying the properties of particle motion in pseudo-chaotic

systems - non chaotic systems with complex dynamics. Pseudo-chaotic systems are

systems with zero Lyapunov exponents, and with weakly mixing dynamics [39, 107].

Weak mixing is defined in terms of the time correlation function of two functions of

the mechanical variables, Rk, given by:

Rk(f, g) =< f(T kx)g(x) > − < f(x) >< g(x) > (4.2)

where T nx shifts x to a new time t0 + nT . The weak mixing property is that

lim
n→∞

1

n

n−1∑

k=0

Rk(f, g) = 0 (4.3)

For example, the complex dynamics in wind-tree models provide a “random walk”

behavior although these systems have zero Lyapunov exponents [102, 103, 104]. It

is well known that a description of the properties of pseudo-chaotic systems requires

a very sophisticated mathematical treatment [89, 106]. For example, we have

already noted the fact that the motion of a particle in a periodic array of polygonal

scatterers is equivalent to motion on a surface with holes specified by the genus

number of the surface, determined by the number of sides of the polygons. For those

systems that are super- or sub- diffusive, one would like to have a generalization

of the diffusion equation with a corresponding Green’s function that leads to the

appropriate transport exponent, either greater or less than unity, in the same way
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that the normal diffusion leads to the linear growth of the mean square displacement.

Zaslavsky and co-workers have pioneered the use of the so-called fractional calculus

to construct such generalized diffusion equations. For a detailed discussion of the

fractional calculus see [99, 104, 106].

So far we have considered the rate of growth of nearby trajectories, the box

counting dimension of the partial Van Hove function and the transport properties

of pseudo-chaotic systems. We now describe how the methods of fractional calculus

may be used to refine our understanding of the flow of particles in these systems. To

do this we present here a brief overview of fractional dynamics and the predictions

it makes for these polygonal billiard systems.

Most familiar physical phenomena are described mathematically by differential

equations with integral powers of the various differential operators. For example,

the equation relating force and momentum is one such equation, namely [99]:

F =
dp

dt
. (4.4)

In this case the first time derivative of the momentum of a particle is the force on it.

Normal Brownian motion is described by differential equations of first order in time

and second order in space. However, there are a large number of physical systems

that cannot be described easily by integral-order differential equations. These in-

clude the pseudo-chaotic systems discussed here when the mean square displacement

grows as at non-integer power of time. Therefore it may be useful to find equations

that describe these phenomena. Fractional calculus enables one to define any real

power of a differential operator, and show that the definition has an integer form
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that corresponds with the ordinary powers of these operators.

To develop the fractional calculus [99] we first consider an integral operator

acting on some function, f(t),

(Jf)(x) =

∫ x

0

f(t)dt. (4.5)

If we repeat the integration we obtain:

(J2f)(x) =

∫ x

0

(Jf)(t)dt =

∫ x

0

(

∫ t

0

f(s)ds)dt. (4.6)

By doing this an arbitrary number of times, we obtain the Cauchy formula:

(Jnf)(n) =
1

(n− 1)!

∫ x

0

(x− t)n−1f(t)dt. (4.7)

The fundamental observation needed for the development of fractional calculus is

that one can extend the Cauchy formula to non-integer values of n by replacing the

integer n by a real number, α, and replacing the factorial by a Gamma function.

We note that

n! = Γ(n + 1). (4.8)

A fractional integral of the function f(t) may now be defined for arbitrary α as:

(Jαf)(x) =
1

Γ(α)

∫ t

0

(x− t)α−1f(t)dt. (4.9)

We extend this line of reasoning to define fractional derivatives. Consider the

power series expansion of a function and examine the repeated derivative acting on

one term of this expansion, xk, say:

da

dxa
(xk) =

k!

(k − a)!
xk−a. (4.10)
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Now by replacing the factorials with Gamma functions we can define the fractional

derivative of any power of x and by extension, the fractional derivative of any

function that can be represented by a power series. Thus

da

dxa
(xk) =

Γ(k + 1)

Γ(k − a + 1)
xk−a. (4.11)

That is, to get the fractional derivative of a function one simply takes the fractional

derivative of all terms in its power expansion [99].

4.6.2 The Fractional Diffusion Equation

Now, with the general ideas of fractional calculus we will once again consider

a billiard trajectory where the scatterers are squares or a slit pattern as shown

fig. (4.32), shown below:

We see that though the system is not chaotic, there is some indication that

many of the trajectories may be self-similar. We can test this assumption using

our data by means of the fractional calculus using an argument of Zaslavsky. The

Zaslavsky form of the fractional diffusion equation for the probability P (y, t) of

finding the moving particle at a distance |y| from the origin at time t is [104, 106]:

∂βP (y, t)

∂tβ
= Df

∂αP (y, t)

∂|y|α . (4.12)

Here Df is a constant that plays the role of the diffusion coefficient in the fractional

diffusion equation. It is left unspecified here.

One can relate the exponents α and β in Eq. (4.12) to the transport exponent

µ by constructing solutions to this equation. In this way one finds

µ = 2
β

α
. (4.13)
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Note that for β = 1 and α = 2 one obtains both the ordinary diffusion equation as

well as the usual form of the transport exponent, µ = 1! One possible solution of

this equation satisfies the scaling relation

P (|y|, t) ∼ t−µ/2P0(
|y|
tµ/2

), (4.14)

where µ = 2β/α. The fact that the solution satisfies a scaling relation implies

that there may be a renormalization group treatment of the motion of the moving

particle in much the same way as ordinary Brownian motion can be analyzed using

renormalization group methods [27]. This is discussed in detail by Zaslavsky and

co-workers [10, 104, 106]. We wish to use our simulations to check the scaling law,

Eq. (4.14).

Assuming that Eq. (4.14) applies to out system, we can easily show that the

moments of the displacement can be written in the following form:

〈|y|2m〉 = const ∗ tmµ. (4.15)

We can use our data to check this expression in two separate ways.

1. We can fix the number of sides of a polygon and vary the values of m in the

scaling equations for the moments, Eq. (4.15), and

2. We can repeat this procedure by varying the number of sides of the polygons.

If the trajectories appear to have a self-similar structure - namely that they look

roughly the same if we change the scale of observation - then we can expect that

the scaling law should be satisfied to some degree. Below we present some sample
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trajectories for a systems containing 4 sided scatterers in fig. (4.33) and 36 sided

scatterers in fig. (4.34).

Figure 4.32: Particle trajectories in Lorentz gases with four-sided or with bar scat-

terers.

If we consider other nonzero moments of the system < x2m > for 2m =

4, 6, 8, 10.. we find that the transport exponent scales as given in Eq. (4.16),

〈|y|2m〉 = d(n,m)tmµ(n) (4.16)

where n denotes the number of sides of the polygons, d(n, m) is a constant that

depends upon the number of sides and the moment of the displacement, and µ(n)
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Figure 4.33: An example of a particle trajectory in a system containing square scat-

terers.
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Figure 4.34: An example of a particle trajectory in a system containing 36 sided

scatterers.
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is the transport exponent for the mean square displacement in an arrangement of

n-sided polygons. Our numerical results verify the scaling relations for a wide range

of sides and values of the moments. Moreover we find that there is a scaling relation

for the coefficients d(n, m)

d(n,m) = (d(n, 2))m. (4.17)

For polygons with few numbers of sides as shown in table (4.3). For simplicity we

will write

a(n,m) = ln d(n,m). (4.18)

Table 4.3: Values of the mth transport exponent and the mth transport coefficient

for a system consisting n = 4, 8, 12, 16, 20, 24, 44, 48 and 52 sided polygons on a

triangular lattice. According to the scaling formula, µ(n, 2m) = mµ(n, 2), and

a(n, 2m) = ma(n, 2).

n µ(n, 2) a(n, 2) µ(n, 4) a(n, 4) µ(n, 6) a(n, 6) µ(n, 8) a(n, 8)

4 1.71 -1.148 3.566 -2.385 5.482 -3.586 7.423 -4.769

8 1.73 -1.32 3.56 -2.79 5.48 -4.20 7.43 -5.59

12 1.60 -1.860 3.39 -3.773 5.21 -5.148 6.94 -5.31

16 1.592 -1.550 3.4712 -3.801 5.736 -7.280 7.884 -9.457

20 1.522 -1.274 3.254 -2.812 5.096 -3.977 7.086 -5.509

24 1.44 -1.023 3.168 -2.578 5.089 -4.071 7.028 -4.946

44 1.327 -0.917 3.059 -3.081 4.954 -4.580 6.746 -4.613

48 1.285 -1.072 2.868 -2.594 4.941 -5.566 7.020 -7.702

52 1.27 -0.855 2.946 -3.103 4.880 -5.271 7.210 -8.494
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We will plot and fit the moments to a linear represented by the equation

µ(m) = a ∗m to check the validity of Zaslavsky relation in figs. (4.35), (4.36), and

(4.37) for the n=8, 20 and 48. We also check the coefficients in Figs. (4.38)-(4.40).

 0

 2

 4

 6

 8

 10

 12

 0  1  2  3  4  5  6

m
th

 T
ra

ns
po

rt
 e

xp
on

en
t

m
Figure 4.35: The transport exponent for m=1,2,3,4, and 5 for a system containing 8

sided polygons. The best fit line shows a linear relationship as predicted by Zaslavsky.

The results shown in figs. (4.38), (4.39), and (4.40) are certainly consistent

with the scaling formula

〈|y|2m〉 = d(n,m)tmµ(n), (4.19)

for few-sided polygons. The results of Zaslavsky provide us with a useful tool for

analyzing motion in periodic, polygonal systems. We find that the moments of the

displacement satisfy scaling relations and are self similar. These results add further

support to the idea that the super-diffusive motion in these systems is due to walking
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Figure 4.36: The transport exponent for m=1,2,3,4, and 5 for a system containing 20

sided polygons. The best fit line is shown showing a linear relationship as predicted

by Zaslavsky.

orbits that travel across the system in a systematic, rather than random, way. The

motion of a Brownian particle also satisfies a scaling property but one must look at

the trajectories on a very coarse scale to see self similar properties, otherwise the

motion looks very random [27].
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Figure 4.37: The transport exponent for m=1,2,3,4, and 5 for a system containing 48

sided polygons. The best fit line shows a linear relationship as predicted by Zaslavsky.
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Figure 4.38: The coefficients a(n,m) = ln d(n,m) for m=1,2,3,4,5 for a system

containing 8-sided polygons. The best fit line is consistent with the scaling relation,

a(n, 2m) = ma(n, 2).
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Figure 4.39: The a(n, m) for m=1,2,3,4,5 for a system containing m = 20 sided

polygons. The results are consistent with the scaling relation, a(n, 2m) = ma(n, 2).
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Figure 4.40: The a(n,m) and the best fit line for m=1,2,3,4,5 for a system containing

m = 48 sided polygons.
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Chapter 5

Random Systems and Irrational Scatterers

5.1 Particle Transport in Randomized Polygonal Billiards

In the preceding chapters we considered circular, chapter 2, and polygonal,

chapters 3-4, Lorentz gases, as in figures (5.1).
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Figure 5.1: A section of a polygonal periodic Lorentz gas, containing squares. The

scatterers are equidistant from one another and placed at the vertices of equilateral

triangles. The scatterers are also placed so that there are no unbounded trajectories

exist in the system.
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We observed that for certain polygonal systems, with large numbers of sides,

one can coarse grain the initial starting conditions so transport behavior of the

system appears diffusive, although the system is probably slightly super-diffusive.

We have also observed that periodic, polygonal Lorentz gases, with polygons of

fewer than 100 sides are certainly not diffusive. Moreover the system cannot be

coarse grained to have appearance of a diffusive system. However, we know from

Dettmann and Cohen’s work that certain randomized systems of square scatterers

as well as some periodic arrangements of scatterers, are diffusive [30]. The systems

considered by Dettmann and Cohen are shown in figs. (5.2)-(5.5).

However, from Dettmann and Cohen’s studies it is unclear what makes certain

systems diffusive and other systems super-diffusive. Further Dettmann and Cohen

limited their research to square scatterers. In this section we construct a simple

diffusive model with as few randomized scatterers as possible. We will first start

by examining periodic systems, non-random systems, and consider the dynamics of

these systems which might cause them to be super-diffusive behavior. We will then

consider how one might randomize such systems to make them diffusive. Lastly

we will consider a periodic pseudo-one dimensional channel systems with randomly

oriented scatterers [2, 3, 16, 18, 37, 67, 69, 70, 73, 78, 86]. We will see that

such systems have wide variety of transport behaviors, including normal diffusion;

moreover, we will see that the orientation of the scatterers affects the transport

behavior.

We recall that a polygonal gas with scatterers with few sides placed on a peri-

odic lattice was found to be super-diffusive. When simulating a periodic system, one
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Figure 5.2: One unit cell in a periodic version of the Ehrenfest wind-tree model.

The scatterers are squares (trees) with diagonals oriented along the x and y axes.

The trees are randomly placed within the unit cell and the entire cell is then repeated

periodically covering the infinite plane. Particle transport in this system is super-

diffusive [30].

places a unit cell on a torus. When a trajectory crosses one the specified “boundary

lines” on the cell, we increase or decrease a corresponding winding number by one

unit. Then due the symmetry of the system, we consider the particle to be in the

next unit cell and we continue to follow its motion.

On a torus or in a channel such as that illustrated in fig. (5.6), but with periodic

boundary conditions, there appear to be sets of trajectories which are periodic orbits,

but correspond to walking orbits on the full lattice.

These types of trajectories would add a ballistic component to the mean square
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Figure 5.3: A periodic system similar to that illustrated in fig. (5.2). Here the

scatterers are both randomly placed and randomly oriented. Dettmann and Cohen

found that this system is diffusive [30].

displacement. Moreover, due to the flat sides of the polygons the orbits are stable.

As a result there exists a set of sub-trajectories about the trajectory that also

follow a similar path as the main trajectory. Systems containing large numbers of

these quickly-moving trajectories tend to be super-diffusive [86]. If there are no

infinite corridors allowing for arbitrarily long free motions, parallel sides of nearby

scatterers are responsible for these ballistic-like motions. One can see this clearly

in simulations, both those presented here as well as those described by Zaslavsky

[104]. Examples are given in figs. (5.6)-(5.7) which show trajectories for a particle

moving in an array of triangles

One can see that parallel sides of different scatterers are responsible for the
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Figure 5.4: The Lorentz gas with circular disk scatterers, placed at random in the

plane. This system is diffusive [30].

particle traveling nearly unhindered through system.

One way to destroy these periodic orbits is to place all the scatterers at random

in the plane and, in the case of the original Ehrenfest model, to restrict the number

of velocity directions. Hauge and Cohen were able to show that even the Ehrenfest

model has some surprising properties. In this case, arrangements of scatterers can

form mirrors that reflect trajectories back on themselves. If one allows the scatterers

to overlap, the contribution of mirror scattering becomes large enough to make the

system sub-diffusive [58]. In general, random placement of scatterers and the absence

of overlapping configurations lead to normal diffusion even for few-sided scatterers.

However, the infinite randomness is a burden computationally since simulating such

systems potentially requires large amounts of memory. Thus, one would prefer to
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Figure 5.5: The Ehrenfest wind-tree model where scatterers are randomly placed in

the infinite plane. The system is diffusive, providing that the trees do not overlap

[30, 58].

Figure 5.6: Examples of walking orbits seen in studies of Lorentz channels by Sanders

et al., for triangular scatterers placed along the upper and lower walls of the chan-

nel. These walking trajectories generally cause the motion of particles to be super-

diffusive.
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Figure 5.7: An example of a walking trajectory of a particle in a periodic polygonal

Lorentz gas with square scatterers. The axes are given in the same units as those

shown in figure (5.1), but cover many cells. Each cell contains two scatterers and

is repeated periodically in the infinite plane. Here the particle “walks” for long

intervals, and the transport in this system is super-diffusive.

have a system where the scatterers are placed on a lattice, and the overall system

has a periodic nature. Then one can use a fundamental cell to describe the dynamics

of the system. Dettmann and Cohen also studied such systems, one such system as

previously shown, was a system containing a few randomly oriented and randomly

placed scatterers in a unit cell and then the cell is repeated periodically on the

plane. Dettmann and Cohen used unit cells that contain four randomly placed and

randomly oriented scatterers, subsequently repeating these cells to tile the plane.
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This system is diffusive. However this system contains many stable periodic orbits

that confine, or localize, particles, leading to a smaller diffusion coefficient than that

for a fully random system at the same scatterer density.

We wish to construct a simple system which would allow us to isolate and

then determine the effects of different features of polygonal Lorentz gases upon the

motion of particles in the system. The goal is to determine, as fully as we can, which

features of such systems are responsible for normal diffusion and which features are

not so crucial. We construct a pseudo-one-dimensional billiard system with one

“free” scatterer in each unit cell that can be rotated or even moved within the cell.

With such systems one can study a wide range of systems, from fully periodic to

fully random by varying the orientation and position of the free scatterer. We wish

to observe the minimum number of randomly oriented scatterers that are necessary

in order to provide a diffusive system. To do this we first start with a periodic gas

with square scatterers of Chapter 4 as shown in fig. (5.7).

The unit cell contains 5 scatterers - one at each corner and one in the center,

which will be the free scatterer. We repeat this cell to form the channel. If all of

the free scatterers have the same orientation, we find that the transport exponent

is 1.72, as to be expected for a periodic system.

Next consider two neighboring cells and select random orientations for each

of the two free scatterers. Then merge these two cells into a unit cell containing 8

scatterers as shown in fig. (5.9 and 5.10). Then we repeat this configuration along

the line of the channel.

We find that this system is also super-diffusive with a transport exponent that
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Figure 5.8: Two unit cells of the Lorentz channel with square central scatterers, with

diagonals aligned with the axes of the channel. One can vary the orientation, the

location, and the type of scatterer in each cell.

varies depending on the orientation. In all cases the transport exponent is super-

diffusive with µ > 1.1 with the largest value being 1.76, which is the same as that for

the non-random case shown in fig. (5.1). Considering that the errors in determining

these exponents are on the order ±0.01, we conclude that for two random cells the

system is super-diffusive.

However, if we add a third cell to our merged cell and randomize its center

scatterer we find a very interesting behavior. Sometimes the system appears to

diffusive and sometimes super-diffusive depending on the angle of rotation of the

scatterers. Moreover it is unclear which is more common the diffusive or the super-
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Figure 5.9: A Lorentz channel with two randomly oriented scatterers in a unit cell.

The cell is repeated periodically along the channel. In this system the center scatter-

ers of the cell are each rotated about an axis perpendicular to the plane by a random

angle between [0, 2π).

diffusive orientations.

If we add a fourth cell to our merged cell the same behavior is found as with

the 3 cell system. Sometimes the system is diffusive and sometimes the system

is super-diffusive depending one the exact orientation angles of the center scatters.

However we also find that the diffusive orientations appear to be more frequent then

the super-diffusive orientations.

Now if we add a fifth random center scatterer the frequency of the diffusive

orientation becomes even more frequent and by the sixth random center scatterer
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Figure 5.10: Another example of a billiard containing 2 randomly oriented scatterer.

The system is the same as that shown in fig. (5.9) but the scatterers are oriented by

different angles.

the system appears diffusive for any orientation except for the trivial orientations

where the scatterers are all oriented in the same direction.

Further if we also considered the stability of the four random scatterer system

by varying the orientation of center scatterer of the first cell by up to 0.1 radians we

found that these variations have no affect on the transport properties of the system.

Thus it appears the configuration is fairly stable.

A list of orientations that were found to be diffusive is found in Appendix A

of the thesis.

It is not clear if there exist certain orientations that are super-diffusive in each

case where we find only diffusive behavior. The surprising fact is that the particular

orientations matter at all when the systems exhibit different behaviors. It is unclear

why certain orientations are diffusive and others are diffusive. None of the diffusive
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orientation contain irrational ratios of π, and all the orientations appear to be fairly

stable. The super-diffusive systems also have a short time period in which they

appear diffusive as shown in figs. (5.11) and (5.12).
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Figure 5.11: The mean square displacement for a particle moving in the system

containing two randomized center scatterers, as illustrated in fig. (5.9). This curve

shows a long-time super-diffusive behavior, but for short times the system appears

to have a diffusive regime, similar the irrational rhombi system of Lepri et al. [66].

The dotted line indicates diffusive behavior. The equation for the best fit line is given

by 1.06 ln(t) + 0.39

These results raise the question as to whether we are actually seeing diffusion

in these periodic systems. One possibility reason is that these periodic systems

eventually become super-diffusive, but we have not run the system for long enough
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Figure 5.12: The mean square displacement for a particle in a periodic system with

a unit cell consisting of 3 center scatterers, rotated by random angles. As is the

case with the system with two randomized scatterers in a unit cell, this system shows

a long-time super-diffusive region and a short-time diffusive regime, similar to that

illustrated in fig. (5.9). The dotted line indicates diffusive behavior given by 0.98192∗

ln(t)− 0.35

times. To check this possibility, we have lengthened the time of the simulations by

factors of 10 and 100, and the behavior still persists. Therefore, at least for times

studied here, the systems are diffusive. Another possibility is that some randomness

creeps into the systems by means of computer round-off error. This possibility

might be checked by following trajectories over the length of a run to see if they

begin to deviate from the strictly mechanical predictions over the course of the
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run. Since the motion is not chaotic, there is no exponentially rapid growth rate of

errors, and we have found no evidence for round-off error influencing the motion of

the point particles. Further it should be noted that all the trajectories are double

precision values in conjunction with an integer value (winding number) to store the

cell number. Therefore it is nearly impossible to increase the precision of the actual

trajectories. We can verify that the trajectory is behaving as expected by looking

at a portion of it, as illustrated in fig. (5.13).
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Figure 5.13: An example of a trajectory of a particle in a Lorentz channel with

square scatterers. The particles are reflected at the boundaries of the scatterers. The

boundary of a scatterer becomes visible if the particle collides with it a sufficiently

large number of times.

In fig. (5.13) we illustrate a typical trajectory, and in figs. (5.14)-(5.15) we
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show the mean square displacement as a function of time for two different period 4

systems. We find similar results for longer times.

 0

 2

 4

 6

 8

 10

 12

 0  2  4  6  8  10  12

ln
(<

x^
2>

)

ln(t)

0.989*ln(t)-0.601

Figure 5.14: The mean square displacement for a particle moving in a periodic

system with a unit cell consisting of four randomized center scatterers. This system

appears to be diffusive, within the error bars of the computations with a best fit given

by 0.989 ln(t)− 0.601

We point out that for diffusive systems the mean square displacement shows a

stable, linear growth after about 10 collisions and does not deviate from that behav-

ior over the course of a run. However, super-diffusive systems take a much longer

time, on the order of several hundred collisions, to exhibit a stable time dependence

of the mean square displacement. There is also a large difference between the values

of the transport exponents for the two types of systems. The super-diffusive trans-
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Figure 5.15: The mean square displacement for a particle moving in another periodic

system with unit cell consisting of four randomized center scatterers. In contrast to

the results illustrated in figure (5.14), this orientation of scatterers leads to a long-

time super-diffusive behavior. However, for short time periods the system appears

to be diffusive.

port exponents are about 1.72 while those for diffusive systems are in a range of

about 1.02− 0.98. In each case the errors are about ±0.02. Thus one would expect

if round-off errors were strongly influencing the trajectories, all systems would even-

tually either be super-diffusive or diffusive. We do not see this behavior. Instead

we see for both short times and long times, diffusive systems are diffusive. Super-

diffusive are diffusive for a short time period and become super-diffusive after 400

collisions. Our runs typically last for about 104 collisions.
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We conclude this section with the observation that the source of the random-

ness in the periodic but diffusive systems is subtle and elusive. That one expects

to find randomness in some form is a consequence of identifying a linear growth

of the mean square displacement as the result of some form of random walk. One

might suspect that the sharp corners on the scatterers may be responsible for this

linear growth, through a weak form of chaotic-like motion that we identified as re-

sulting from vertex splitting in previous chapters. This possibility was studied by

Lepri et al. [66] who looked at diffusion in arrays of rhombi with smoothed corners.

These authors found that for short periods of time billiard consisting of rhombi with

irrational internal angles would exhibit a diffusive behavior.

5.2 Particle Transport in Systems with Irrational Angles

The systems described above are not the only models with simple polygonal

scatterers that have been found to be diffusive. Many authors have described dif-

fusion in arrays of polygonal scatterers, particularly triangles, with internal angles

that are irrational fractions of π. Such systems have the interesting property that

no sequence of collisions can restore the velocity direction of a moving particle to

any previous direction. This follows from the observation that each collision of the

particle with a scatterer rotates the velocity direction by an irrational fraction of π.

This property is not shared by systems with scatterers that are regular polygons,

which all have interior angles that are rational fractions of π. Casati et al. [18]

first showed that a channel consisting of triangles with irrational internal angles will
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exhibit diffusive behavior [95].

Alonso, Ruiz, Vega and Sanders [2, 3, 86] constructed Lorentz channels with

scatterers with irrational angles that was able to exhibit a wide range of behavior.

Their systems are illustrated in fig. (5.16). Their systems are defined by two angles

Figure 5.16: The Lorentz channel system studied by Alonso et al., which consists of

three triangular scatterers in a unit cell. The largest triangle contains at least two

irrational internal angles.

φ1 and φ2. The angle φ1 is chosen to be a fraction of the golden ratio times π or

more specifically 51/2−1
4

∗ π. The value of φ2 is allowed to vary over several rational

values of π.

In this case the system takes on several different transport exponents depend-

ing on the angles of the system. Depending on the value of φ2 the system can be

sub-diffusive, diffusive, and super-diffusive. Table (5.1) show a list of the angles φ2

and the corresponding transport exponents µ for the system.

Sanders et al. studied systems similar to those of Alonso and co-workers.

Sanders et al. proposed that the super-diffusive behavior seen by Alonso et al. is

caused by the existence of parallel sides of scatterers in these systems. Sanders et al.
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Table 5.1: This table shows that by varying φ2 in fig. (5.16) we find systems exhibiting

sub-diffusive, or diffusive, or super-diffusive motion.

φ2 in radians µ

π/3 1.3

π/4 0.86

π/5 1.03

π/6 1.04

π/7 1.06

π/8 1.01

π/9 1.01

use a system shown in fig. (5.17). They showed systems that contain parallel sides

allow particles to travel down the channel in a nearly ballistic fashion as shown in

fig. (5.18) [86]:

Figure 5.17: A fundamental cell for a periodic system with triangular scatterers,

with irrational angles.
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Figure 5.18: Examples of ballistic-like motion of a particle in a Lorentz channel

with unit cell illustrated in fig. (5.17). The parallel sides of the scatterers allow the

particles to move quickly through the system. These “walking orbits” appear to lead

to a super-diffusive behavior [86].

Sanders et al. studied systems where there were no parallel sides, and thus

eliminated the resulting ballistic trajectories. These systems will be diffusive, pro-

vided that:

1. The system is in a finite horizon regime.

2. All the angles within the cell are irrational fractions of π.

3. There are no parallel sides within the cell.

These models allow us to identify the source of randomness needed for diffusion

with the irrational angles of the scatterers [2, 3, 86].

5.2.1 Studies of Polygonal Scatterers with Irrational Internal Angles

This work suggests that we should find diffusive behavior in any system where

the scatterers have irrational internal angles and no parallel sides . We checked this
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idea using the channel model similar to that shown in fig. (5.1) described in this

chapter and in chapter 4. We will use two different irrational angles. One irrational

angle for the edge polygons, and a different irrational angle for the center scatterer.

All the edge polygons in the cell are constructed having 3 irrational internal angles

having a value of:
√

2

8
∗ π (5.1)

2π − 3

√
2

8
∗ π (5.2)

For the center scatterer 3 of the angles are

3−√5

4
∗ π (5.3)

and one internal angle of

2π − 3
3−√5

4
∗ π (5.4)

A system with a four sided, “irrational” polygon is illustrated in fig. (5.19).

The transport exponent for this system is µ = 1.02 indicating that, within the

error bars of this computation, the system is diffusive. To ensure that we remove

any possibility of walking orbits taking place in these systems, we will further rotate

the center polygon by π/4:

Eliminating the possibility of walking orbits results in a diffusive system with

a transport exponent of µ = 1.00. Lastly we considered a four sided system where

all the scatterers had the same arrangement and values of irrational angles, and are

symmetrically placed, as illustrated in figs. (5.20 and 5.21)

We form the polygons as shown in fig. (5.19) but we rotate the center polygon

by 0.7 ∗π. Calculating the transport exponent for this system we find the transport
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Figure 5.19: An example of an irrational set of scatterers. The location of the

scatterers is identical to that in figure (5.1). The edge polygons have three internal

angles equal to
√

2
8
∗ π, and the center scatterer having three irrational angles of

3−√5
4

∗ π.

exponent is 1.00. We conclude this chapter by noting that we have constructed

a Lorentz channel model that allows us to test various ideas about the origin of

diffusion in pseudo-chaotic systems by examining each of the possible sources in

isolation from the others. Nevertheless riddles still remain. Diffusion is a very

subtle phenomenon!
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Figure 5.20: Another example of an irrational set of scatterers. The scatterers are

identical to those in fig. (5.19), except for the middle scatterer being rotated by .7π
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Figure 5.21: The mean square displacement for a particle moving in the system

containing irrational angled scatterers, as illustrated in fig. (5.20). The dotted line

indicates diffusive behavior. The equation for the best fit line is given by the dotted

line.
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Chapter 6

Conclusion

6.1 Transport

In this dissertation we considered particle transport in each of four different

types of pseudo-chaotic systems, all of which are Lorentz gases with convex, polygo-

nal scatterers. Our goal was to discover the differences between transport in chaotic

systems and in pseudo-chaotic systems. We focused our attention on the contrast

between particle transport in pseudo-chaotic systems with polygonal scatterers and

that in chaotic systems where the scatterers are hard disks in a plane with no infinite

horizons. In the chaotic system, transport is diffusive, with, among other properties,

a mean square displacement of the moving particles that grows linearly with time.

In the non-chaotic systems, one finds a range of behaviors for the mean square dis-

placement including all the possibilities - sub-diffusive, diffusive, and super-diffusive

behaviors. The four types of systems we studied are:

1. Periodic Lorentz gases with scatterers that are regular polygons with many

sides. These systems were studied in Chapter 3.

2. Periodic Lorentz gases with scatterers that are regular polygons with few sides.

These systems were studied in Chapter 4.
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3. Lorentz gases with polygonal scatterers that are placed in some random way

on the lattice. These systems were studied in Chapter 5

4. Periodic Lorenz gases with polygonal scatterers with at least two irrational,

central angles. These systems were also studied in Chapter 5

We studied Lorentz gases with many-sided scatterers in order to gain a better

understanding of the transition of properties of a non-chaotic system to those a

chaotic one. It is clear from the work described in Chapter 3 that, as the number of

sides of the polygons increases without bound and the polygons approach circles, the

properties of these systems smoothly approach those of Lorentz gases with circular

scatterers. Many sided polygons may be said to have effective Lyapunov exponents,

whenever nearby trajectories separated by distances on the order of the length of

the side of a polygon, but not infinitesimally close, collide with different faces of the

same polygons for a number of collisions and thereby mimic the mechanism that

produces exponential separation of trajectories for chaotic systems. This exponen-

tial separation obtains as long as the two trajectories encounter exactly the same

sequence of scatterers, but encounter different faces of these scatterers. In this case

the two adjacent trajectories are reflected at different angles from the same scat-

terer. As long as the polygons are convex, this is a perfectly adequate de-focusing

mechanism for generating exponential separations of trajectories. In this connection

it is worth pointing out that this is exactly the mechanism that produces exponen-

tial separations of trajectories for circular scatterers in any computational study

like those carried out here. On a computer circles are actually polygons, but with
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number of sides on the order of 1024. Since the polygons considered in Chapter 3

have on the order of 102 to 104 sides it is not difficult to consider nearby trajectories

that are much closer than the length of the side of a polygon. Since the sides are

straight lines, one must say that in principle the de-focusing mechanism needed for

the divergence of infinitesimally close trajectories is absent when the trajectories are

very close and, as a result, the Lyapunov exponents are strictly zero

Something very similar happens when we turn our attention to the transport

properties of these periodic polygonal systems. If we sample a large number of

trajectories we find that the transport exponent for the mean square displacement

is greater than unity. In other words, the motion of the moving particle is, to the

best of our ability to measure it, super-diffusive. However if we reduce the number

of trajectories in the sample by restricting the initial distance between any two

trajectories to be on the order of the length of a side of the scatterers, we find

diffusive motion! Not only is the motion diffusive, the diffusion coefficient is nearly

equal to that of that for diffusion of a particle 0.24 ± 0.04 vs. 0.24, respectively

as obtained by replacing each polygon in the system by a circle. Since diffusion is

a property of trajectories considered singly, and not a property of trajectory pairs,

we must conclude that taking a coarse grained sample of initial points eliminates

a sufficient number of ballistic-like trajectories to affect the sample average of the

square displacement. Figure (4.6) in Chapter 4 showing the formation of trajectory

“jets” is good evidence to support this conclusion [87].
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6.2 Partial Van Hove function

We next considered the partial Van Hove function for systems with periodic

arrangements of scatterers. The object was to see what remains of the fractal

properties of this function when the diffusion process is not based upon chaotic

dynamics. It is important to mention again that the derivation of the formula for

the Hausdorff dimension depends heavily of the chaotic nature of the underlying

dynamics. As an indication of the role of the chaotic dynamics, the Lyapunov

exponent appears in the dimension formula. For chaotic systems, such as the Lorentz

gas with circular scatterers, one can generate a fractal structure by plotting the

imaginary part vs. Re the real part of the partial Van Hove function. Remarkably

we found the same kind of structure for the partial Van Hove function for the case

where the scatterers are many sided polygons. This function has nearly identical

fractal properties as a circular scatterer/hard disk system. This was observed in

both the infinitesimal scale and the coarse grained scale. The fractal further appears

stable over time for these many-sided polygons just as in a hard disk system. We

observed that the Hausdorff dimension for this fractal satisfies the dimension formula

if one uses the effective Lyapunov exponent and the diffusion coefficient. However,

it remains unclear whether one can rigorously justify this relation mathematically.

In fact there is probably no valid dimension formula for few-sided polygons because

of the zero Lyapunov exponent and the self-intersection partial Van Hove function.

We do not know if the validity of the formula is due to the mechanism whereby

trajectory pairs hit different sides of the same scatterers for a number of successive
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collisions or to a different mechanism that is due to the splitting of trajectory pairs

due to the sharp corners of the polygons. One might also gain insight into this

issue by studying the fractal properties as a function of the number of sides of the

scatterers. Another option is considering the fractal properties over different lengths

of time. If polygons less than 500 sides are any indication at some point, very long

times, the partial Van Hove function should cease being a fractal much like the

partial Van Hove function for square scatterers. However, one would need to be

able to run the system for extremely long times and for long times round-off errors

will become an issue. In each case, however, the effects are subtle and our results

are inconclusive.

6.3 Dynamics

This issue was studied previously by Uzer, Ford, and Mantica, who concluded

[96], for reasons discussed several times in this dissertation, that there is very little

practical difference between chaotic and non-chaotic billiards. The problem with

their approach in our context is that we do know rigorously that polygonal scatterers

are not chaotic. Furthermore, our most careful numerical studies indicate that the

motion of a particle in a periodic array of many-sided polygons is super-diffusive, not

diffusive. All that we can conclude at the moment is that the properties of diffusion

in the polygonal systems studied here are quite subtle and we are far from a complete

understanding of them. However, from our observations of diffusion in systems of

many sided polygons we conclude that under certain circumstances one should make

132



a distinction between mathematical chaos/Lyapunov chaos and physical chaos. At

the moment we have only some intuitions about the precise circumstances for which

this distinction is relevant.

Our studies of many-sided polygons led us naturally to a consideration of few-

sided polygons. As we decrease the number of sides of the polygons, we observe that

there appears to exist a lower limit on the number of sides of polygons for which

one can get any useful information by coarse graining the trajectories used in the

simulations to form averages. In Chapter 4 we considered polygons with fewer sides

than this lower limit of about 500 sides. We studied Lyapunov exponents, fractal

dimensions of the Van Hove functions, transport properties, and the properties

of diffusion using fractional kinetics. We observed the Lyapunov exponent was

zero for these systems, we saw that lattice properties prevented one from defining

an effective/coarse grained Lyapunov exponents for these systems. This is a due

to the fact as one increases the exterior angle the separation angle between two

nearby trajectories increases. For example for square scatterers, two trajectories

where particles hit adjacent sides travel, after collision, at almost 180 degrees to

one another: It is physically impossible for the trajectories to hit the same scatterer

during the next collision. In order to define an effective Lyapunov exponent one

needs about 15 consecutive collisions with same scatterers. This appears to occur

first when the polygons have about 500 sides. Further we considered the partial

Van Hove function for particle motion in periodic, few-sided polygonal systems.

This function appeared to have fractal properties for short times with a dimension

proportional to k2. However we discovered that the partial Van Hove function was

133



not stable for longer times and exhibited loops, etc, which means that it could not be

considered to be a function. We observed that these systems are super-diffusive and

that for the few sided polygons normal diffusion was not observed in these lattice

periodic systems. However we were able to construct diffusive models with periodic

properties, based upon some models considered by Dettmann and Cohen[30]. We

discuss these models below.

We also considered transport properties in periodic systems with few-sided

scatterers, in terms fractional kinetics, as discussed by Zaslavsky and co-workers.

We were able to check Zaslavsky’s result that shows that the even moments of

the displacement of the moving particles in these systems satisfy a simple scaling

formula, of the form < ∆r2n >=< ∆rn >2 for all n that we studied. Zaslavsky’s

work using fractional kinetics appears to be able to provide a useful method for

studying diffusion in systems few-sided polygonal scatterers [101, 102, 104, 105, 106].

It would be beneficial and constructive to be able extend Zaslavsky approach to

polygons with an arbitrary number of sides. This would enable one to decide if it

is possible to derive a functional relationship between the number of sides and the

transport exponent.

Since we could not find a regime in which the motion of a particle in a periodic

array of few-sided polygons appears to be diffusive, we next considered, disordering

the polygonal systems. We constructed a one dimensional array of scatterers with

finite horizon, known in the literature as a Lorentz channel. The array was nearly

periodic, but we allowed one scatterer to be placed in a random orientation with

respect to the other scatterers. In fact, we could make a wide variety of structures
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in order to test some ideas about diffusion in these systems. We found that if the

orientation of the central scatterer is randomized and then fixed, but all the cells

in the channel are identical to it, the motion is purely super-diffusive, and if one

randomizes the central scatterers in all of the cells, the motion is purely diffusive. We

also constructed some arrangements based upon ideas of Dettmann and Cohen [30]

where we allowed three or four consecutive cells to have randomly oriented central

scatterers, but then repeated the three or four cell structure throughout the channel.

Under these circumstances, we would sometimes observe diffusive behavior, and

other times super-diffusive behavior depending on the orientation of the scatterers.

It further appears that each of these orientations is stable in the sense that their

transport properties do not change when the central scatterers are rotated by an

angle of 0.1 radians. This diffusive behavior did not disappear for longer runs or a

narrower graining. This behavior is surprising and appears to indicate that certain

orientations favor diffusive behavior and certain orientation favor super-diffusive

behavior. This raises several, so far unanswered, questions about which orientations

actually provide a diffusive behavior and exactly how stable the transport properties

are for these orientations. It would also be informative to extend this process to two

dimensional systems. Further, it would informative to study these systems using the

fractional kinetics of Zaslavsky . Lastly it would informative to study these systems

for longer times and for finer scales to see if there are an long time effects for these

systems.

The last system considered was that of polygonal scatterers with some vertex

angles that are irrational fractions of π. We considered several models including

135



systems where all the angles are irrational, where all the angles are irrational and the

center scatterer rotated and finally an irrational rhombus scatterer. As suggested

by Alonso and Sanders [2, 3, 86], we also find that as long the arrangements of

scatterers have only finite horizon, and, at the same time, the scatterers have at

least two irrational vertex angles, and no two scatterers in a unit cell have parallel

sides, the systems appears to exhibit diffusive transport. This appears to always

occur; however, there may be exceptions to this rule. It would be useful to learn

what if any relation exists between these systems and the randomly rotated systems

discussed earlier. Does the irrational angle or the angle of rotation cause the system

to be at least weakly mixing. If so, is there is a connection between mixing and

diffusive transport? This too requires further study.

While these systems are not the only non-chaotic models to be studied [15,

17, 85], the systems we studied provide us with a great number of intriguing and

challenging problems, some insights into the transition from non-chaotic systems

and their transport behavior to that for chaotic systems.

In conclusion, polygonal systems appear to be of great interest for understand-

ing the transport properties of a system, based on the simplicity of the dynamics.

However this simplicity is very deceptive, and diffusion in these systems is very

subtle. It appears much research remains to be done on these systems. We hope

that future research will provide answers to some of the questions raised here about

mechanisms for diffusion.
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Appendix A

Appendix

In chapter 5 we found that the transport properties of the system depended

on the angular orientation of the center scatterers of the system. In this Appendix

we list the periodicity and the orientation of the angles as well as their tranport

properties.
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Angles of center scatterers in radians

Four randomized center scatterers

0.7439802024609051

3.66132852282568

1.746487930582959

1.6702164997593452

Adding 0.1 radians to the first scatterer listed above

0.8439802024609051

3.66132852282568

1.746487930582959

1.6702164997593452

4.318064961112611

1.6359643359670528

3.958172999685392

3.105918190350991

4.823396344491143
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Angles of center scatterers in radians

Five randomized center scatterers

4.318064961112611

1.6359643359670528

3.958172999685392

3.105918190350991

4.823396344491143

139



Angles of center scatterers in radians

Six randomized center scatterers

0.8122743913930374

0.25621825942551457

0.8206779395349731

5.103670521398973

1.6098668030535206

5.15647157161256

0.2969766186664319

0.0732792087064511

0.286708470248064

1.8659591269807996

0.46042684746612

1.8014424477065714

0.30854948592645726

0.8185071436039721

0.07967608042851371

1.9386735965109307

5.142832058514009

0.5006195778820963
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Angles of center scatterers in radians

Eight Randomized scatterers

0.9137995543828611

0.11688704548072448

0.5748582812706159

0.40887318912752646

5.741571933805646

0.7344229667641201

3.6119411065900437

2.5690260144257344

0.12838137269649363

0.6659421800273666

0.10102593145429717

0.4827129590362429

0.8066439546421553

4.184238120979093

0.634764648157772

3.032974971801703

For the four randomize center scatterer system the following are found to be super-

diffusive
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Angles provided in radians

3.7062643243482913

1.7343357243656132

4.316475010758053

3.9282764045589835

2.9409244385912787

2.976821091426946

1.7308677179415064

1.9817522042131828
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