
ABSTRACT

Title of dissertation: NON-LINEAR DEVELOPMENT OF
STREAMING INSTABILITIES
IN MAGNETIC RECONNECTION
WITH A STRONG GUIDE FIELD

Haihong Che, Doctor of Philosophy, 2009

Dissertation directed by: Professor James F. Drake
Department of Physics

Magnetic reconnection has been recognized as a dominant mechanism for con-

verting magnetic energy into the convective and thermal energy of particles, and

has been thought as the driver of explosive events in nature and laboratory, such as

solar and stellar flares, magnetic substorms and disruptions in fusion experiments.

Magnetic reconnection (Sweet-Parker and Petscheck model) is often modeled using

resistive magnetohydrodynamics, in which collisions play the key role in facilitat-

ing the release of energy in the explosive events. However, in space plasma the

collisional resistivity is far below the required resistivity to explain the observed

energy release rate. Turbulence is common in plasmas and the anomalous resis-

tivity induced by the turbulence has been proposed as a mechanism for breaking

the frozen-in condition in magnetic reconnection. Turbulence-driven resistivity has

remained a poorly understood, but widely invoked mechanism for nearly 50 years.

The goal of this project is to understand what role anomalous resistivity plays in

fast magnetic reconnection.



Turbulence has been observed in the intense current layers that develop dur-

ing magnetic reconnection in the Earth’s magnetosphere. Electron streaming is

believed to be the source of this turbulence. Using kinetic theory and 3D particle-

in-cell simulations, we study the nonlinear development of streaming instabilities

in 3D magnetic reconnection with a strong guide field. Early in time an intense

current sheet develops around the x-line and drives the Buneman instability. Elec-

tron holes, which are bipolar spatial localized electric field structures, form and then

self-destruct creating a region of strong turbulence around the x-line. At late time

turbulence with a characteristic frequency in the lower hybrid range also develops,

leading to a very complex mix of interactions. A major challenge is to investigate

what occurs after the saturation of Buneman instability and how the momentum

and energy are exchanged among the waves and particles by the turbulence.

The difficulty we face in this project is how to address a long-standing problem

in nonlinear kinetic theory: how to treat large amplitude perturbations and the as-

sociated strong wave-particle interactions. In my thesis, I address this long-standing

problem using particle-in-cell simulations and linear kinetic theory.

The kinetic process of 3D magnetic reconnection is complicated. To separate

problem of turbulent driven drag from reconnection, we carry out 3D simulations

in which we specify the initial streaming velocities of particles to mimic the config-

uration of the x-line during magnetic reconnection. The geometry is chosen so that

reconnection does not develop. Some important physics have been revealed.

1: At late time the lower hybrid instability (LHI) dominates the dynamics in

low β plasma in combination with either the electron-electron two-stream instability



(ETS) or the Buneman instability (BI), depending on the parallel phase speed of

the LHI. If its parallel phase speed is sufficiently large and leaves sufficient velocity

space for the ETS to grow, the ETS takes over the BI and interacts with the LHI

to slow the streaming electrons. If not, the BI acts with the LHI to slow the high

speed electrons.

2: An instability with a high phase speed is required to tap the energy of the

high velocity electrons. The BI with its low phase speed, can not do this. The ETS

and the LHI, both have high phase speed.

3: The condition for the formation of stable electron holes requires |vp− vg| <√
2e|φ|/me, where |φ| is the amplitude of the electric potential, and vp and vg are

the phase and group velocity of the relevant waves. Like the BI and ETS the LHI

can form electron holes.

4: The overlapping resonance in phase space is the dominant mechanism for

transporting the momentum and energy from high velocity electrons to low velocity

electrons, which then couple to the ions. These resonances also lead to the chaotic

motion of electrons in phase space and finally to the destruction of the electron

holes.
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Chapter 1

Anomalous Resistivity and Magnetic Reconnection

1.1 A Brief History of Magnetic Reconnection

On September 1st 1859, Carrington and Hodgson independently (Carrington

1859; Hodgson 1859) observed a giant spot on the Sun. Carrington saw strong

light arc lasted for five minutes in his projected picture of the Sun’s spot. Later

he compared his findings to the measurements at Kew observatory in London and

noticed that there was a one-hour interference in the magnetic field exactly at the

same time during which the giant spot was observed.

This is the first recorded solar flare. Solar flares occur when magnetic energy

built up in the solar atmosphere is suddenly released. They last for seconds to

hours. The rate of energy release during a flare is typically on the order of 1027

erg s−1 . A larger flare can emit up to 1032 erg s−1 of energy. Radiation is emitted

from radio waves at long wavelength, through optical emission to x-rays and gamma-

rays at short wavelength. Particles, including electrons, ions and heavy nuclei, are

accelerated and heated in the solar atmosphere to MeVs during flares.

The corona is the outmost layer of the atmosphere of the Sun, composed of

highly rarefied gas with temperature up to a few million degrees Kelvin. The corona

is not uniformly bright, Emissions is concentrated around active regions and bright

loops as shown in Fig. 1.1. Sunspots are located in these active regions and solar
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Figure 1.1: This image is the heating coronal loops imaged in extreme ultraviolet
light. This TRACE image shows that the strong heating occurs near the bases of
the loops emerging and returning to the solar surface. These loops span 30 or more
times the diameter of the Earth. (Credit: M. Aschwanden et al. (LMSAL), TRACE
and NASA.)

flares occur in active regions. The huge amount of energy releasing is logically related

to the magnetic field since the magnetic energy dominates that of the plasma.

The mechanism for the fast release of magnetic energy was mystery until R.

G. Giovanelli (Giovanelli 1946) and F. Hoyle (Hoyle 1949) suggested that magnetic

X-type null points may be the source for plasma heating and particle acceleration

in a solar flare. This is the origin of the magnetic reconnection concept. In 1953,

Dungey, a student of Hoyle was the first to propose that magnetic field lines can be

broken and reconnected. He considered self-consistent dynamics of both field and

particles at the null point and found that a small perturbation in the vicinity of

a null point leads to the formation of a current sheet (introduced in next section).

He considered the quiescent solar prominence to be in static equilibrium in which
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Figure 1.2: Configuration of magnetic field lines as a solution of self-consistent
dynamics of magnetic field, gravitational field and particles in static equilibrium
of solar atmosphere. The electromagnetic force balance the pressure gradient and
gravity force, which resemble a corona magnetic loops (From the paper written by
Dungey in 1953)

the electromagnetic force balances the pressure gradient and the force of gravity.

A family of solutions of the magnetohydrodynamic (MHD) equilibrium problem

in a conducting atmosphere in a gravitational field was obtained which resembles

a filament of magnetic field and its associated coronal arches as shown in Fig. 1.2

(Dungey 1953). Two adjacent coronal magnetic loops form a configuration necessary

for magnetic reconnection.

The first quantitative MHD model of magnetic reconnection after Dungey’s

pioneering work on the formation of current sheets was proposed by P. A. Sweet

(Sweet 1958) and E. N. Parker (Parker 1957). They develop a steady-state model

for reconnection which might work in a current sheet formed at a null point. Later

Parker built an advanced mechanism in which he modeled the internal structure
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Figure 1.3: Artist’s rendition of Earth magnetosphere. (Credit: Yoshi Canopus,
NASA).

Figure 1.4: Artist’s rendition of Earth magnetotail. (Credit: Aaron Kaase, NASA).

within the current sheet and included compressibility and fluid instability to enhance

reconnection(Parker 1963).

The magnetic field has been identified as an important energy source for many

explosive phenomena in nature such as substorms in the magnetosphere of the plan-

ets Mercury, Jupiter, Saturn, Uranus, Neptune, and Mars, and stellar flares in the

magnetosphere of celestial objects, e.g. pulsar magnetosphere.

Fig. 1.3 is an artist’s illustration of the magnetosphere of the Earth. The

structure of the magnetosphere of the Earth is determined by a combination of
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Figure 1.5: Illustration of Magnetic Reconnection

the Earth’s internal magnetic field, the solar wind plasma and the interplanetary

magnetic field. A magnetotail as shown in Fig. 1.4 is formed by pressure from

the solar wind and extends in the anti-sunward direction far away from the Earth.

Magnetic reconnection can occur in the plasma sheet and transfer energy from the

solar wind to the magnetosphere, the so-called substorm.

From the examples described above, we have seen that magnetic reconnection

is a crucial physical process that acts as a driver of explosions in nature. They can

also occur in fusion plasmas in which this process destroys the magnetic confinement

of the plasma.

Up to now, we have not discussed what magnetic reconnection is and how it

is related to the release of magnetic energy in a solar flare. Magnetic reconnection

is the process whereby magnetic field lines in opposite directions, separated by a

thin current sheet can cross-link with one another. The patterns of connection of

magnetic field lines are changed and a large amount of magnetic simultaneously

energy is released as shown in Fig. 1.5.

There are important physical processes involved in magnetic reconnection that
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must be identified to understand how the magnetic energy conversion takes place.

1) What is the mechanism to convert magnetic field energy into heat, and the

kinetic energy of particles?

2) What is the consequence of magnetic reconnection? A resulting current

sheet, large scale electric field and shock waves? How do these processes accelerate

particles?

3) How does the topological change of the magnetic field configuration affect

the dynamics of fast particles since these particles mainly move along field lines?

The understanding of these questions are the keys understanding magnetic

reconnection.

1.2 Mechanism of Fast Magnetic Reconnection

Magnetic reconnection involves the convection and dissipation of the magnetic

field. In the MHD model, this can be described by the equation:

∂B

∂t
= ∇× (v ×B)− c2η

4π
∇× (∇×B), (1.1)

where ηc2

4π
is the magnetic diffusion rate, η = (σ)−1 = ηe is the magnetic diffusivity,

and σ is the electrical conductivity. If η is uniform, then

∂B

∂t
= ∇× (v ×B) +

c2η

4π
∇2B. (1.2)

This equation determines the magnetic field evolution in MHD once v is known.

If V0 and L0 are typical plasma velocity and magnetic field spatial length

scale, the ratio of the first (convection) to second term (diffusion) on the right side
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of equation (1.2) defines the magnetic Reynolds number Rm = 4πL0V0/(ηc
2). If

Rm � 1, B is governed by the diffusion term and the induction equation is reduced

to

∂B

∂t
=
c2η

4π
∇2B; (1.3)

If Rm � 1, B is governed by the convection term and the induction equation

becomes

∂B

∂t
= ∇× (v ×B). (1.4)

In the solar corona above an active region, where T ∼ 106K, ηc2/4π ∼

1m2s−1,L0 ∼ 107m and V0 ∼ 104ms−1, we find Rm ∼ 1011. Thus the diffusion

term in the induction equation is completely negligible. Using Faraday’s equation

∇ × E = −1
c
∂B
∂t

, equation (1.4) reduces to E + v
c
× B = 0 which is a very good

approximation in almost all of the solar atmosphere, and plasma universe. This

approximation is called the MHD ideal frozen-in condition. However, η can be im-

portant in regions where the length-scale is extremely small, such as current sheets.

Here Rm . 1, so equation 1.3 can be used in current sheets. This result is consistent

with the requirement that a topology change of oppositely directed magnetic field

lines requires the breaking of the ideal MHD ohm’s law E + v
c
×B 6= 0 (also called

frozen-in condition), and the breaking of the frozen-in condition by electrical resis-

tivity is the most fundamental mechanism. Equation (1.3) implies that the varied

field B on a scale L0 diffuse away on a time scale of τd = 4πL2
0/(η c

2). For a sunspot

with ηc2/4π ∼ 1m2s−1 and L0 ∼ 105m, the diffusion time is 3× 102 year. This time

scale is too long to explain the disappearance of sunspot in a few weeks so that the
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process by which the sunspots decay can not be by diffusion.

If magnetic reconnection is responsible for the fast release of magnetic field

energy in solar flares and substorms in the magnetosphere, a serious problem that

remains to be understood is what mechanism drives fast magnetic reconnection if

the electrical resistivity (also called Spitzer resistivity) is small? This problem has

been investigated for half a century and yet has not been solved.

To understand this long-standing problem, we need to first answer two very

basic questions 1) what is the steady configuration during magnetic annihilation? 2)

how is the current sheet formed during magnetic reconnection? These two questions

will help us to understand models of magnetic reconnection in which the length and

width of current sheets play important roles.

1.2.1 Formation of a Current Sheet

In magnetic reconnection, though the magnetic field may annihilate by can-

cellation of inflowing oppositely directed magnetic fields, the plasma itself can not

vanish and needs to flow sideways. On the other hand, a current sheet diffuses away

and convert magnetic energy into joule heat. The magnetic field diffuses and spreads

out at velocity vd = L/τd = c2η/4πL from the induction equation (1.2). Therefore

a steady state might exist if the magnetic field and plasma come in at the same rate

as the magnetic field diffuses away.
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Figure 1.6: Stagnation-point flow and Creation of current sheet: the red color rep-
resent the current sheet, green lines are the streamlines and black lines are the
magnetic field lines.

There are a few exact steady solutions of the MHD equations:

ρ
dv

dt
= −∇p+

j

c
×B, (1.5)

∂ρ

∂t
+∇ · (ρv) = 0, (1.6)

E +
v

c
×B = ηj, (1.7)

and thermal relations, where p = ρT/m is the pressure in the isotropic plasma.

We first introduce the work on stagnation-point flow by Sonnerup and Priest

(Sonnerup & Priest 1975). They give a set of solutions for incompressible fluid

∇ · v = 0. A stagnation flow is

vx = −v0x/a, vy = v0y/a, (1.8)

where a and v0 are constant. The streamlines of plasma flow as shown in Fig. 1.6 by

green lines are the rectangular hyperbolae (xy = constant) and cross the straight

lines of magnetic field with B = B(x)ŷ (denoted by black lines).
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Figure 1.7: Collapse of X-Point and Creation of current sheet.

In Ohm’s law E + v
c
×B = ηj = cη

4π
∇×B, both v ×B and ∇×B are in the

z direction, thus E = E(x, y)ẑ. ∇× E = 0 implies that E = constant.

Then we have the equation of magnetic field :

E − v0xB/ac =
cη

4π
∂B/∂x. (1.9)

We can have two limits of B for x −→ ∞ and x −→ 0: B ≈ caE/v0x and B =

4πEx/cη, respectively. The magnetic field lines are frozen to the plasma and are

driven inwards at large x and diffuse through the plasma at small x. The half width

of the current sheet can be estimated by equating the two solutions of B to obtain

x =
√
aη/4v0. The plasma pressure can be determined from the conservation of

energy p + B2/8π + ρv2

2
= constant which is derived from the steady equation of

motion of incompressible fluid.
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Another way of forming a current sheet is through the collapse of an x-point.

In a cold plasma, the MHD equation of motion reduces to

ρ
dv

dt
=

j

c
×B, (1.10)

thus the simplest steady state is j × B = 0, where j × B = c
4π

(B · ∇)B − 5B2

2
).

Magnetic pressure force (5P = 5B2

2
) is balanced by magnetic tension (T = (B ·

∇)B/4π). An X-type null point configuration satisfies:

Bx = y, By = x, (1.11)

and electric current j = c(∂Bx/∂x − ∂By/∂y)/4π = 0, thus P = T everywhere as

shown in Fig. 1.7 (a).

However, we expect an inward force in the x direction if the force due to

magnetic pressure is larger than the magnetic tension (smaller curvature of magnetic

field lines) and outward force in the y-direction if the magnetic tension is larger

(larger curvature of field lines) as shown in Fig. 1.7 (b). Suppose the distorted

magnetic field is Bx = y and By = Ax, where A > 1. The corresponding field lines

satisfy the equation y2−Ax2 = constant as sketched in Fig. 1.7 (b) and the electric

current j = c(A− 1)/4π. The magnetic force is:

j×B = −c(A− 1)Ax

4π
x̂+

c(A− 1)y

4π
ŷ. (1.12)

which are denoted by the big arrows in Fig. 1.7 (b). The formation of a current

sheet causes the configuration to be unstable.

We have given two examples of the formation of a current sheet, but none

of them allow steady magnetic reconnection. Priest (Priest & Forbes 2000) proved

11



 

vi, Bi 

vo, Bo 

2L 

2δ  Diffusion region 

Figure 1.8: Sweet-Parker model

that 2D incompressible linear reconnection is impossible. This theorem implies that

reconnection requires the flow speed to be Alfvenic somewhere so that the process

become nonlinear as discussed in the next section.

1.2.2 MHD Model: From Sweet-Parker To Petschek Model

The crucial first step on fast magnetic reconnection was made by Sweet and

Parker (Sweet 1958; Parker 1957). They showed that the conversion of magnetic

energy could be much faster than the resistive decay rate because of the formation

of current sheets. It was realized that resistive processes would lead to a change

of topology of lines and that a change of topology can be produced by magnetic

reconnection in small region.

The Sweet-Parker model (Fig. 1.8) consists of a current sheet with length 2L

and width 2δ between oppositely directed fields. Suppose the input flow speed is

vi and magnetic field is Bi; the outflow speed is vo and magnetic field is Bo. What

are the relations between vi and vo, Bi and Bo? How fast does the plasma enter
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the diffusion region, i.e, what is vi? How large is the outflow speed vo? What is

the ratio of magnetic energy to the inflowing kinetic energy? How much magnetic

energy is converted into kinetic energy? How long is the reconnection time scale?

Conservation of the mass of the incompressible fluid implies that the rate at

which mass enters the current sheet must equal the rate at which the mass leaves

the reconnection region, thus we have

Lvi = δvo. (1.13)

Steady state reconnection requires that the plasma must carry the field line

into the diffusion region at the same speed at which plasma diffuses away. The

induction equation give us

vi = ηc2/4πδ. (1.14)

The electric current sheet j = c(∇×B)/4π ≈ cBi/(4πδ)ẑ and so the Lorentz

force along the sheet is | j
c
×B| ≈ jBo/cŷ = BiBo/(4πδ)ŷ. The force accelerates the

plasma from the rest at the neutral point to vo over a distance L. In steady state

equation(1.10) reduces to ρv ·∇vx = BiBo/(4πδ). Thus we have the scaling relation

ρ
v2
o

L
≈ BiBo/4πδ, (1.15)

From ∇ ·B = 0,

Bo/δ = Bi/L, (1.16)

then

v2
o = B2

i /4πρ ≡ c2
A, (1.17)
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where cA is the Alfven speed at the inflow. The magnetic force accelerates the

plasma to the Alfven speed.

We can also obtain vi = δcA/L =
√
ηc2cA/4πL. This result indicates that

vi � cA for δ � L and the width of current sheet is controlled by the resistivity δ =√
c2Lη
4πcA

. The inflowing electromagnetic energy wiem is the poynting flux cE×B/4π,

and E = viBi/c. Thus wiem = LEBi/4π = viLB
2
i /4π, and therefore the ratio of the

inflowing kinetic energy wik to magnetic energy is

wik
wiem

=
1
2
ρv2

i (viL)

viLB2
i /4π

=
v2
i

2c2
A

� 1. (1.18)

Most of the inflowing energy is magnetic.

The conservation of magnetic flux gives us voBo = viBi, so Bo = vi
cA
Bi � Bi.

Similarly the ratio of outflowing kinetic energy wok to inflowing magnetic energy is

wok
wiem

=
1
2
ρv2

o(δvo)

viLB2
i /4π

=
v2
o

2c2
A

=
1

2
. (1.19)

Thus half of the inflowing magnetic energy is converted into kinetic energy and the

other half is converted to Ohmic heat.

The time of reconnection is of the order τr ∼ L/vi = L
√
Rm/cA, where Rm =

4πLcA/c
2η is the magnetic Reynolds number. Compared to the resistive decay time

τd = LRm/cA, the reconnection rate is of
√
Rm times faster. However, compared to

the energy release time scale in nature, it is still too slow. Here is an example from

a solar flare (Kulsrud 2005, 2001): B = 300 G, ρ = 10−15 gm/cm 3, cA = 2.7× 109

cm/s, L = 109 cm, Rm = 2.7× 1014, dynamic time L/cA = 0.37 s, then the resistive

decay time τd = 1014 s = 3.2× 106 years and the Sweet-Parker reconnection time is

τr = 6.1× 106 s = 2.4 months. The typical solar flare duration is 15 min to 1 h.
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Figure 1.9: Left: Petschek model. The dark lines are shocks across which the plasma
is accelerated to vA in the x direction. Right: Magnetic field in the inflow region.

Petschek developed a model in which the reconnection rate only depends log-

arithmically on the resistivity η which significantly decreases the reconnection time

scale (Petschek 1964). The maximum reconnection inflow speed is vi = πcA
8lnRm

. For

our example above, the reconnection time scale is 20 s.

Petscheck observed that the heart of the Sweet-Parker model is the current

layer which is responsible for reconnecting field lines. The reconnection rate depends

on the ratio of the width and length of the current layer. He wondered if dissipation

could be restricted to a very small region of the layer L
′ � L and the plasma could

fan out to a cross section δ
′ � δ with flow speed cA (Fig. 1.9). Then the reconnection

inflow speed could be increased to vi = cAδ
′
/L
′

(from the mass conservation).

Petschek’s regime is ”almost uniform”. In the inflow region, the magnetic field

By is a small perturbation to the magnetic field B0 and the current is small. Most
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of the energy conversion takes place at the standing slow-mode shock. These shock

waves accelerate and heat the plasma.

Petschek estimated the maximum reconnection speed by assuming Bi = B0/2,

then

vi = πcA/8lnRm. (1.20)

Great efforts have been devoted to rigorously establish Petschek’s model for

fast reconnection (Priest & Forbes 1986; Yeh & Axford 1970; Sato & Hayashi 1979;

Uzdensky & Kulsrud 2000). However, the Petscheck solution is not obtained in sim-

ulations. Several numerical simulations (Cowley 1975; Biskamp 1986; Scholer 1989;

Biskamp 1994; Ugai 1995) have shown that simple, two dimensional systems will

reach the Sweet-Parker solution for low inflow rates. At higher rates, the simula-

tions find a transition to unsteady behavior, rather than a transition to the Petschek

mode. In addition, recent lab work which was configured explicitly to measure re-

connection physics seems to support the Sweet-Parker model (Ji et al. 1998; Kulsrud

1998, 2001).

1.2.3 Non-MHD Reconnection

MHD models have difficulty in explaining fast reconnection. The width of the

current layer δ is controlled by resistivity while the length of current layer is linked

to the macroscopic system scale length, independent of the dissipation processes.

However, it was discovered that the motion of the electrons and ions decouple at

small spatial scales, and that two distinct ion and electron diffusion regions develop
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Figure 1.10: Schematic of multiscale structure of the dissipation region during anti-
parallel reconnection. Electron (ion) dissipation region in white (gray) with scale
size c/ωpe (c/ωpi). Electron (ion) flows in long (short) dashed lines. In-plane current
marked with solid solid dark lines and associated out-of-plane magnetic quadrupole
field in gray. (From the paper by Drake & Shay (Birn & Priest 2007))

(Fig 1.10)(Sonnerup & Ledley 1979; Mandt et al. 1994; Horiuchi & Sato 1994).

This discovery provided a new insight into the magnetic reconnection mechanism

that requires non-MHD dynamics. In addition, the observations of large number

of energetic electrons during solar flares (Lin & Hudson 1971; Miller 1997) and

high-energy tails on the particle distributions observed in magnetotail (Øieroset

et al. 2002) indicate that kinetic dynamics is required to understand reconnection

because heating processes can only be treated with a kinetic model.
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The new dynamics is investigated by the electron equation of motion,

me
dve
dt

= −eE− eve
c
×B− 1

ne
∇ ·Pe −meνei(ve − v), (1.21)

where v is the bulk ion velocity, Pe is the electron pressure tensor. This equation

can be rewritten as an Ohm’s-law if ve is replaced with ve = v− j/ne and terms of

order me/mi are neglected,

me

nee2

[
∂j

∂t
+∇ · (jv + vj)

]
= E +

v

c
×B− j×B

nee
+

1

nee
∇ ·Pe − ηj. (1.22)

Equation (1.22) is called the generalized Ohm’s law. It contains three new

terms that are not present in the resistive MHD Ohm’s law, the electron inertia term

on the left of equation (1.22), the Hall term ( j
c
×B) and the electron pressure. The

Hall term brings in whistler waves and the electron pressure brings in kinetic Alfven

waves. The inertial term is associated with the electron skin length de ≡ c/ωpe.

Comparing the Hall term with v ×B, the Hall term dominates when

|v
c
×B| ∼ cAB <

|j×B|
cnee

∼ 1

4πnee

B2

δ
, (1.23)

or

δ < di ≡ c/ωpi. (1.24)

If δ < di, j/nee > v so that ve > v which means that electrons and ions

decouple and no longer move together. In the MHD regime, ve ∼ v and MHD

equation are scale invariant which means MHD equations do not define a specific

spatial scale. The isotropic pressure term brings in the effective ion Larmor scale

ρs =
√
Te/mi/Ωi based on the ion-sound speed, vs =

√
Te/mi for Te � Ti.
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The generalized Ohm’s law was investigated systematically by the GEM Recon-

nection Challenge collaborations (Birn et al. 2001). One important result was that

the rate of the late-time reconnection was insensitive to dissipation when whistler

and kinetic Alfven waves drive the outflow from the x-line (Shay & Drake 1998;

Hesse et al. 1999). The whistler wave plays an important role in anti-parallel re-

connection while the kinetic Alfven wave dominates in guide-field reconnection, in

which an initial magnetic field is perpendicular to the reconnection plane.

1.2.3.1 Anti-parallel Reconnection

Replacing the ideal MHD Ohm’s law E + v
c
× B = 0 by equation (1.22), the

generalized Ohm’s law, we can calculate the dispersion relation of waves propagating

perpendicularly to the reconnection magnetic field Bx(Wang et al. 2000; Rogers et al.

2001),

ω2 =
k2
yc

2
Ay

D
(1 +

k2
yd

2
i

2D
+

√
k2
yd

2
i

D
+
k4
yd

4
i

4D2
), (1.25)

where we have approximated the magnetic field B0 = By0ŷ in the outflow region.

D = 1 + k2
yd

2
e, cAy = By0/

√
4πmiρ0.

This dispersion relation is dispersive. For long wavelength kydi � 1, the equa-

tion reduces to ω2 = k2
yc

2
Ay, which is the Alfven wave. For intermediate wavelengths

kyde � 1 � kydi, the dispersion relation gives ω = k2
ycAydi, which is the whistler

wave. For very short wavelength kyde � 1, it reduces to the electron cyclotron

wave with frequency ω = eBy0/cme. Whistler wave causes the quadrupole struc-

ture of reconnection region as shown in Fig. 1.10. The electrons decouple from the
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magnetic field when they approach within de of the x-line and are accelerated in the

outflow direction. The peak outflow velocity of electrons reaches the electron Alfven

speed vAe = B/
√

4πmene and then drops quickly to match the ion outflow speed

cA. The current loops in the reconnection plane caused by the different trajectories

of the electrons and ions generate a self-consistent out-of-plane magnetic field Bz.

Bz is the signature of standing whistler wave that drives the electron out-flow from

the x-line. The width of electron diffusion region can be estimated by the electron

Larmor radius δe =
√

vte
Ω′ex

, based on the asymptotic magnetic field, where vte is the

electron thermal velocity and Ωex = eB0x/me is the electron cyclotron frequency

and Ω
′
ex = ∂Ωex/∂x (Laval et al. 1966). In the high temperature reconnection, the

width of the current sheet is δe > de, where de = c/ωpe, the electron skin length.

In the low temperature reconnection, vte ∼ vAex =
√

B2
x

4πnme
, and the width of the

current sheet is of the order δe ∼ de (Zeiler et al. 2002).

Compared to the MHD model, the reconnection rate of the kinetic model

is much larger and also is insensitive to the mechanism that breaks the frozen-

in condition. The results from the GEM project are shown in Fig. 1.11. The

reconnected flux versus time is shown for simulations with the MHD model, the

Hall model (generalized Ohm’s law), the hybrid model (massless fluid electrons and

particle ions) and a PIC model. Except for the MHD model, all others include the

dynamics of the whistler wave and were run with the same initial set-up. The slope

of the curve of reconnection flux is the reconnection rate. All models but MHD have

almost indistinguishable rates and greatly exceed the MHD rate.

20



 

Figure 1.11: Reconnection magnetic flux versus time for various simulation model
(From the paper by Birn et al. (Birn et al. 2001))

1.2.3.2 Guide Field Reconnection

The guide field is in the out-of-plane direction, along the direction of current.

The structure of diffusion region formed in guide field reconnection (Fig. 1.12) is

significantly different from the diffusion region formed in anti-parallel reconnection.

The diffusion region in guide field reconnection is controlled by the kinetic Alfven

wave (Aydemir 1992; Kleva et al. 1995; Cafaro et al. 1998). Unlike in anti-parallel

reconnection, waves with a guide field are compressible, the density fluctuation is

non-zero and the pressure becomes important. The generalized Ohm’s law yields a

dispersion relation ω2 =
k2
yc

2
Ay

D
(1+

k2
yρ

2
s

1+βD
), where vs is the sound speed, ρs = vs/Ωi and

β = v2
s/c

2
A � 1. Similar to anti-parallel reconnection, for long wavelength kyρs � 1,

the dispersion relation reduces to that of the Alfven wave with ω2 = k2
yc

2
Ay. For
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Figure 1.12: Schematic of structure of the dissipation region during reconnection
with a guide field. Compression of parallel electron flows on newly reconnected field
lines lead to a density asymmetry across the dissipation region in contrast to the
symmetric system with no guide field. Ion polarization drift across the magnetic
field to charge neutralize the electrons.(From the paper by Drake & Shay (Birn &
Priest 2007))
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intermediate wavelength kyde � 1� kyρs, it describes the kinetic Alfven wave with

ω = k2
ycAyρs, which is dispersive. For short wave kyde � 1, it reduces to the electron

cyclotron wave as in the non-MHD reconnection without guide field. In guide field

reconnection non-MHD effects become important at the length scale ρs.

A signature of the Alfven wave is the density asymmetry along the separatrices:

the depletion of the density along two of the separatrices and enhancements along

the remaining (Kleva et al. 1995; Tanaka 1996; Pritchett & Coroniti 2004; Drake

et al. 2005). The guide field suppresses the unmagnetized bounce motion of electrons

that controls the width of the electron current layer in anti-parallel reconnection.

The resulting current sheet narrows substantially with a width close to electron

Larmor radius (Hesse et al. 2002, 2004). The additional magnetic field also prevents

the electrons from escaping from the x-line and the inductive electric field parallel

to the magnetic field drives strong out-of-plane current because of the resulting

acceleration of electrons.

1.3 Importance of Anomalous Resistivity in Fast Magnetic Recon-

nection

Anomalous resistivity can be induced by turbulent dissipation. This was pro-

posed as a potential physical process to explain the sudden decrease of the conductiv-

ity observed in space plasma and fusion experiments when the electric currents pass

through the plasma with very low density (Davidson & Gladd 1975; Papadopoulos

& Palmadesso 1976; Galeev & Sagdeev 1984a). Anomalous resistivity is related to
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the kinetic process in which the collective interactions of waves and particles effec-

tively transfer the kinetic energy and electromagnetic energy into thermal energy.

For this reason, anomalous resistivity also was regarded as a mechanism to enhance

the rate of the reconnection. However, the establishment and the role of turbulence

in magnetic reconnection is not yet well understood because highly complicated

nonlinear microscopic physical processes are involved and its effect in experiments

and observations is difficult to quantify.

In recent years, in situ observations in space plasma reveal that magnetic

reconnection is associated with turbulence (Cattell et al. 1999; Farrell et al. 2002;

Matsumoto et al. 2003; Cattell et al. 2005; Retinò et al. 2007; Sundkvist et al. 2007;

Teste & Parks 2009) while experiments of magnetic reconnection also showed that

strong turbulence appears together with reconnection (Ji et al. 1998; Yamada et al.

2000; Carter et al. 2002; Ji et al. 2004; Fox et al. 2008). Fig. 1.13 is the small-scale

magnetic reconnection at the Earth’s magnetosphere seen by Cluster(Retinò et al.

2007). Reconnection observed in such a turbulent environment implies that both

turbulence and reconnection develop together.

The role of non-MHD waves in fast reconnection has been extensively inves-

tigated by simulations as introduced in the section 2. It is found that the rate of

fast magnetic reconnection is insensitive to the mechanism of dissipation. However,

the experiment MRX discovered a positive correlation between the magnitude of

the electromagnetic fluctuations and the enhancement of the reconnection rate in a

well-controlled laboratory plasma (Ji et al. 2004). These contradictory conclusions

have not been resolved.
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Figure 1.13: The quasi-parallel bow-shock crossing. a, Spacecraft orbit (red line). b,
Schematic diagram of the current-sheet formation between magnetic islands and of
magnetic reconnection in the current sheet. GSE: geocentric solar ecliptic coordinate
system. CLUSTER observation (Retinò et al. 2007).
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In space it is observed that energetic particles are produced during the mag-

netic reconnection (Øieroset et al. 2002; Imada et al. 2007; Retinò et al. 2007). The

acceleration of particles requires the efficient energy transformation among magnetic

energy, convective kinetic energy and thermal energy. Turbulence can enhance the

energy dissipation and diffusion but how turbulence impacts reconnection is not well

understood.

The study of turbulence in reconnection is a broad topic. It touches the

fundamental physics of both turbulence and reconnection. Microscopic instabilities

are common in space plasma and experiments and they can trigger turbulence. The

related wave-particle interactions play an important role in energy transport, particle

diffusion and particle acceleration. These problems have been studied extensively by

quasi-linear kinetic theory and achieved fruitful results (Galeev & Sagdeev 1984a,b).

The quasi-linear kinetic theory is based on the assumption that the wave frequency

ω is much larger than its growth rate γ and that trapping of the particles can

be neglected, which is valid if the wave perturbation is infinitely small and its

spectrum is sufficiently broad. However, in many cases of instabilities occurring in

space and experiments, these assumptions are not satisfied. In particular when the

instabilities approach their saturation, the trapped particles and waves often have a

strong interaction. In such situations, the quasi-linear theory becomes invalid and

the nonlinear theory has not been formulated that can describe large perturbations.

In my thesis, I will focus on the nonlinear development of streaming instabili-

ties, which are very common in space plasma and also are observed during reconnec-

tion in space (Cattell et al. 1999; Farrell et al. 2002; Matsumoto et al. 2003; Cattell
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et al. 2005; Teste & Parks 2009). I aim to combine both simulations and analytic

methods to investigate this complex nonlinear process in which amplitude of the

perturbation is large and the growth rate of instabilities can be faster than the wave

frequency. My thesis is organized as follows: Chapter II introduces the stream-

ing instabilities from both linear fluid and kinetic theory; Chapter III discusses the

Buneman instability in reconnection; Chapter IV focus on the nonlinear develop-

ment of streaming instabilities; Chapter V addresses the nonlinear development of

streaming instabilities in reconnection and Chapter VI presents the conclusions and

discussions.
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Chapter 2

Linear Kinetic Theory of Streaming Instabilities in

Magnetized Plasma

Streaming instabilities are common in space and experimental plasma. They

are driven by the relative drift between particles. The instabilities caused by the

drift between ions and electrons are called ion-electron two-stream instabilities. In

particular, if the electron temperature is close to that of the ions, and the electron

drift relative to ions is larger than the electron thermal velocity, the instability is

called Buneman instability. The ion acoustic instability, which can exist at low drift

speeds, is stable for typical heliospheric plasmas where Ti ≥ Te. The instability

caused by the relative drift between electrons is the electron-electron two stream

instability. The lower hybrid instability often accompanies the Buneman instability

in magnetized plasmas, which is nearly-perpendicular to the magnetic field. In this

chapter, these instabilities are approached from both the kinetic and cold plasma

limit.

In the kinetic approach, the particles are considered to interact and exchange

energy with waves. The amplitude of a wave with a particular phase speed decreases

when there are more particles interacting with the wave with velocity slower than

the wave phase speed. This resonance is called Landau-damping. The amplitude of

a wave with a particular phase speed increases when there are more particles inter-
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acting with waves with velocity faster than the wave phase speed. This collective

resonance between wave-particles is called inverse-Landau damping.

The plasma is called cold plasma when the plasma pressure can be neglected,

i.e in the homogenous plasma the electrons satisfy the condition:
√
kT/me � ω/k

so that the thermal velocity of electrons is much smaller than the phase speed of the

wave. In a cold plasma, all of the particles at a given position move with the same

velocity and can be treated as a fluid. The fluid velocity v is the mean velocity of

the particles: v =
∫

vfj(v, x, t)dv/
∫
fj(v, x, t)dv where j is the species of particles.

2.1 Cold Plasma Description of Streaming Instabilities in Unmagne-

tized Plasma

2.1.1 Buneman Instability

The Buneman instability has been studied for more than half of century since

it was first discovered by Oscar Buneman, a pioneer of plasma physics and plasma

simulation (Buneman 1958). He found that the mechanism of the Buneman instabil-

ity was the familiar electron-electron two-stream amplification which was discovered

earlier (Pierce & Hebenstrett 1949; Pierce 1949; Haeff 1949; Nergaard 1948). The

collective Coulomb interactions cause instabilities which grow so rapidly that the

relative motions of electrons and ions, i.e., current, are continuously damped down

by conversion of directed energy into fluctuation (random) energy. The dispersion

relation of this instability was derived from the two-fluid momentum equations in a
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homogenous non-magnetized plasma,

me(
∂ve
∂t

+ ve · ∇ve) = −eE, (2.1)

mi(
∂vi
∂t

+ vi · ∇vi) = eE, (2.2)

the equations of continuity and Poisson’s equation:

∂ne
∂t

+∇ · (neve) = 0, (2.3)

∂ni
∂t

+∇ · (nivi) = 0, (2.4)

∇ · E = 4eπ(ni − ne), (2.5)

where ne and ni are the electron and ion densities, and ve and vi are the electron

and ion fluid element velocities.

Assuming the zero-order electric field E0 = 0, initial density is homogenous

ne = ni = n0, initial ion drift vi0 = 0, initial electron drift ve = vde, and the first-

order quantities δE, δne,i and δve,i vary as ei(k·r−ωt), the linearized equations of the

cold fluid and continuity take the forms:

ime(k · vde − ω)δve = −eE, (2.6)

−imiωδvi = eE, (2.7)

(k · vde − ω)δne + n0k · δve = 0, (2.8)

−ωδni + n0k · δvi = 0, (2.9)

and Poisson’s equation takes the form,

ik · E = 4πe(δni − δne). (2.10)
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From these we obtain

ve =
ieδE

me(k · vde − ω)
, (2.11)

vi =
−ieδE
miω

, (2.12)

and

δne =
n0k · δve
ω − k · vde

, (2.13)

δni =
n0k · δvi

ω
. (2.14)

We substitute these relations of the first-order quantities into the linearized

Poisson’s equation and rearrange them in the form DE = 0, where D is the dielectric

permittivity tensor. Using | D |= 0, the necessary and sufficient condition for the

existence of real roots for this group of linear equations, we obtain the cold plasma

dispersion relation for Buneman instability in a non-magnetized plasma:

y ≡
ω2
pi

ω2
+

ω2
pe

(ω − k · vde)2
= 1, (2.15)

where ωpe =
√

4πn0e2/me, the electron plasma frequency and ωpi =
√

4πn0e2/mi,

the ion plasma frequency.

Defining y(x) (x = ω/ωpe ), we plot y(x) with different values of the parameters

βz = k · vde/ωpe and α = ω2
pi/ω

2
pe = me/mi in Fig. 2.1. We see that the black line

(y = 1) is tangent to the green line with βz = 1.13 at ω/ωpe ∼ 0.1 and intersects

with the green line at another two points with ω/ωpe > 1. The red line with βz = 0.8

intersects with the black line at two points while the blue line with βz = 4 intersects

with the black line at four points. There are four roots of equation (2.15). The

Fig. 2.1 indicates that x has one pair conjugate complex roots when βz > βc, where
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Figure 2.1: The red, green and blue lines correspond to the functions y = α/x2 +
1/(x − βz)

2 versus x = ω/ωpe for parameter βz = k · vde/ωpe = 0.8, 1.13, 4 and
α = me/mi = 1/1836. The black solid line is y = 1.

βc is the critical point at which the conjugate complex roots are equal. From Fig. 2.1,

βc is around 1.1. The likely range to have complex roots is about ω � ωpe. The

positive imaginary part of the roots Im(x) > 0 represents the growth of the unstable

modes.

Exploring unstable modes in the frequency range ωpi � ω � ωpe, we approx-

imate the equation (2.15) as :

βz − x = (1− α/x2)−1/2 ≈ 1 + α/2x2, (2.16)

Setting x = |x|eiφ for possible complex roots of the dispersion relation, and

equating the imaginary parts in the approximation of equation (2.15), we obtain

|x| = (αcosφ)1/3. The growth rate γ is the imaginary part of the frequency.

Im(x) = (αcosφ)1/3sinφ, and maximizes at φ ≈ π/3 where βz ≈ 1. Thus the

maximum growth rate is γmax =
√

3
2
ωpe(me/2mi)

1/3 ∼ 0.056ωpe and the correspond-

ing frequency is Re(ω) = ωpe
2

(me/2mi)
1/3 ≈ 0.032ωpe at k · vde = ωpe.

Fig. 2.2 shows the variation of the Buneman growth rate versus βz for k||vde.
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Figure 2.2: The Buneman growth rate γ/ωpe versus βz for α = me/mi = 1/1836
and k||vde.

The growth rate peaks at (βz, γ/ωpe) = (1.004, 0.054). The cutoff βc = 1.125.

This derivation suggests that the maximum growth rate is independent of vde.

However this is only true if k can vary freely. In reality k has a maximum value given

roughly be the distance traveled by the electrons during one electron-plasma period

1/ωpe, which is of the order of the Debye length λD = vth/ωpe ∼ 1/k = vde/ωpe.

Therefore, our arguments only hold when vde exceeds the electron thermal velocity.

This condition has been verified by many others (Papadopoulos & Palmadesso 1976;

Galeev & Sagdeev 1984b,a).

2.1.2 Electron-electron Two-Stream Instability

When an electron beam is injected into cold plasma, the beam and the elec-

trons in the cold plasma can lead to the electron-electron two-stream instability.

The density ratio of the electron beam and electron background is denoted as

α = nbe/ne � 1.
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Electron-electron two stream instability can be derived and analyzed in a sim-

ilar manner as the Buneman instability. The dispersion relation in the frame of the

background electrons is:

1

x2
+

α

(x− βz)2
= 1, (2.17)

where x and βz are the same as defined for the Buneman instability.

From a theorem on the roots of quartic equations, the degenerate conjugate

roots of equation (2.17) require (two real roots and two equal complex roots):

βc = (1 + α1/3)3/2. (2.18)

If βz > βc, there are no complex roots and the system is stable.

In some space plasma and lab experiments, the injected electron beam density

nbe is very low compared to the background plasma electron density ne. For α� 1,

and ω � ωpe, we require x ≈ βz so that the term α/(x− βz)2 in dispersion relation

(2.17) is not negligible or the dispersion relation has no complex roots.

Equation (2.17) can be written as :

x ≈ βz ±
√
α

(1− 1/β2
z )

1/2
. (2.19)

When βz > 1, x is real and the group velocity of the electrostatic wave is

vg = dω
dk

= dx
dβz
vde ≈ vde; When βz < 1, x is complex conjugate pair and the growth

rate of unstable modes is γ =
√
αωpe

(1/β2
z−1)1/2 .

When βz ≈ 1, 1/(1− 1/β2
z )

1/2 −→∞ and the above discussions are no longer

valid. We discuss this limit in a different way. Assuming x = 1+δx, and substituting

34



x into equation (2.17), we have the form:

α

δx2
− 2δx = 0, (2.20)

Multiplying δx2 to both sides of equation (2.17), and factoring the polynomial

as δx3−α/2 = (δx−(α/2)1/3)(δx2 +(α/2)1/3δx+(α/2)2/3), we have the three roots:

δx = (α/2)1/3,

δx =
−(α/2)1/3 ± i

√
3(α/2)1/3

2
,

thus the growth rate of unstable wave is γ =
√

3(α/24)1/3ωpe.

The instability with βz ≤ 1 is called the electron-electron two-stream instabil-

ity. Its group velocity is around vde and the faster growing mode is determined by

both α and βz.

2.2 Kinetic Description of Electrostatic Instability in Plasma

2.2.1 Dispersion Function of Electrostatic Instability for Magnetized

Particles

The thermal effect on the growth of unstable waves is neglected in the two-

fluid approach. They become important in a warm plasma. The investigation of

thermal effects on the instability requires that we analyze the Vlasov equation. In

this section, we will obtain the general dispersion relation from the Vlasov equation

in magnetized plasma in the linear approximation. By including a magnetic field we

also find additional instabilities, such as the lower hybrid instability which is nearly

perpendicular to the magnetic field.
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We assume the equlibrium electric field E = 0 and the magnetic field B = Bz ẑ

to be constant. The Vlasov equation for species j is:

∂fj
∂t

+ v · ∂fj
∂x

+
ej
mj

(
v

c
×B) · ∂fj

∂v
= 0 (2.21)

where fj(x,v, t) is the distribution function of species j.

In cylindrical polar coordinates, (r, φ, z), the system is symmetric about z.

The distribution function fj is only a function of v2
⊥ and vz, where v2

⊥ = v2
x + v2

y and

vz = vz.

For electrostatic perturbations, δB = 0, we assume E = δE and fj = fj + δfj,

where the equilibrium distribution fj = nj0fj0, fj0 is normalized by the ambient

density nj0: 2π
∫∞

0
dv⊥v⊥

∫∞
−∞ dvzfj0 = 1.

The linearized perturbation equation from the Vlasov equation (2.21) is

(
∂

∂t
+ v · ∂

∂r
+

ej
mj

(
v

c
×B) · ∂

∂v
)δfj = −nj0ej

mj

δE · ∂fj0
∂v

(2.22)

Using the full differential operator d
dt

to replace the operators within the

bracket in the left side of equation (2.22), we obtain the solution of δfj:

δfj = −nj0ej
mj

∫ t

−∞
dt′δE(r′, t′)

∂fj0(v′2⊥, v
′
z)

∂v′
(2.23)

where (r′,v′) satisfy the unperturbed orbit equations dr′

dt′
= v′ and dv′

dt′
=

ej
cmj

(v′×B),

and passes through the initial point (r,v) at t′ = t. It should be noted that equation

(2.23) is valid for any electrostatic field with non-uniform magnetic field. However,

assuming a uniform magnetic field allow further progress to be made.
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Figure 2.3: An illustration of contour C used in equation (2.24).

Let us assume δE and δfj are represented by Fourier-Laplace transforms

δE =

∫
d3keik·r

∫
C

dω

2iπ
e−iωtδ̂E,

δfj =

∫
d3keik·r

∫
C

dω

2iπ
e−iωtδ̂f j, (2.24)

where Im(ω) > 0 is assumed large enough that the Laplace transform integral

δ̂E(k, ω) =
∫∞

0
dteiωtδE(r, t) etc. converges. The contour C in equation (2.24) runs

from −∞+ si to ∞+ si as shown in Fig.2.3, Im(ω) > s.

In the (k, ω) space, equation (2.23) yields

δ̂fj =
−nj0ej
mj

∫ t

−∞
dt′eik·(r

′−r)−iω(t′−t)(
δ̂E⊥ · v′⊥

v⊥

∂fj0(v2
⊥, vz)

∂v⊥
+ δ̂Ez

∂fj0(v2
⊥, vz)

∂vz
)

(2.25)

where the explicit t′ dependence in 2.25 occurs in the item δ̂E⊥ ·v′⊥ and the index of

exponential function, and we have used the fact that v′⊥ and v′z are constant along

the unperturbed trajectory, i.e v⊥ = v′⊥ and v′z = vz.

Defining the perpendicular velocity phase φ at t = t′, we rewrite the velocity
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in terms of its Cartesian components v = (v⊥cosφ, v⊥sinφ, vz), then the solution to

the nonperturbed orbit equation yields:

v′x = v⊥cos(φ− Ωjτ), v′y = v⊥sin(φ− Ωjτ), v′z = vz. (2.26)

and

x′ = x− (v⊥/Ωj)[sin(φ− Ωiτ)− sinφ],

y′ = y + (v⊥/Ωj)[cos(φ− Ωiτ)− cosφ],

z′ = z + vzτ, (2.27)

where Ωj = ejB/cmj, the cyclotron frequency of species j, and τ = t′ − t.

Making use of the identity

eiasinx ≡
n=∞∑
n=−∞

Jn(a)einx, (2.28)

where Jn is a Bessel function of the first kind of order n.

The exponential factor in the orbit integral in equation (2.25) then can be

expressed as

eik·(r
′−r)−iωτ = e

ikzvz−iωτ+
ik⊥v⊥

Ωj
(sinφ−sin(φ−Ωit))

=
m=∞∑
m=−∞

n=∞∑
n=−∞

Jm(
k⊥v⊥

Ωj

)Jn(
k⊥v⊥

Ωj

)ei(m−n)φei(kzvz+nΩj−ω)τ ,(2.29)

where we have assumed that the wavevector lies in the x− z plane without loss of

the generality (Davidson 1972).
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With v⊥ = (v
′
x

2 + v
′
y

2)1/2, it is easy to show

∂fj0
∂v′x

= cos[φ− Ωjτ ]
∂fj0
∂v⊥

,

∂fj0
∂v′y

= sin[φ− Ωjτ ]
∂fj0
∂v⊥

,

∂fj0
∂v′z

=
∂fj0
∂vz

. (2.30)

In the electrostatic case, k×E = 0, thus E also lies in the x− z plane. Using

cos(φ−Ωjτ) = 1/2[ei(φ−Ωjτ) +e−i(φ−Ωjτ)], the identity Jn−1 +Jn+1 = (2nΩj/k⊥v⊥)Jn

and equation (2.30), equation (2.25) can be written as

δ̂fj = −nj0ej
mj

m=∞∑
m=−∞

n=∞∑
n=−∞

Jme
(m−n)φ

ω − nΩj − kzvz
[
nΩjJn
k⊥v⊥

∂fj0
∂v⊥

δ̂E⊥ + Jn
∂fj0
∂vz

δ̂Ez]. (2.31)

To obtain the dispersion relation for electrostatic perturbations, the perturbed

distribution function in equation (2.31) needs to be substituted into Poisson’s equa-

tion expressed in (k, ω) space, i.e k2ϕ̂ = 4πej
∫
d3vδ̂fj. The dispersion relation is

D = 1− 1/k2(4π
∫
d3vδ̂fj) = 0, where D is the dielectric function.

Integration over velocity space can be expressed as
∫
d3v =

∫
dφ
∫
v⊥dv⊥

∫
dvz.

Integrating δ̂fj over the angle φ, only the terms with m = n survive, and the

dispersion relation becomes

1 +
∑
j

χj = 0,

χj =
ω2
pj

k2

n=∞∑
n=−∞

∫
d3v

J2
n(k⊥v⊥

Ωj
)

ω − nΩj − kzvz
(kz

∂fj0
∂vz

+
nΩj

v⊥

∂fj0
∂v⊥

). (2.32)

where ωpj =
√

4πnje2
j/mj and χj is the plasma dielectric response of species j

(Davidson 1972).
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2.2.2 Dispersion Function of Electrostatic Instabilities For Unmag-

netized Particles

A particle is considered unmagnetized when its thermal Lamour radius rL =

vth/Ωj is much larger than the perpendicular wavelength | k⊥rL |� 1, and its

cyclotron frequency is much slower than the wave frequency, or | ω/Ωj |� 1.

In this limit, it is reasonable to assume that the unperturbed orbit of unmag-

netized particles (such as ions) is a straight line x′ = x+ vτ and v′ = v on the time

and length scales of interest. The equation of the perturbed distribution function

can be written as

(
∂

∂t
+ v · ∂

∂r
)δ̂fj = −inj0ej

mj

k · ∂fj0
∂v

δ̂ϕ, (2.33)

where we have replaced δ̂E by ikδ̂ϕ.

Using the same Fourier-Laplace transformation listed in the equation (2.24),

a direct calculation of the perturbed distribution function gives

δ̂fj = −nj0ej
mj

k · ∂fj0/∂v
ω − k · v

δ̂ϕ, (2.34)

then the corresponding dielectric response is

χj =
ω2
pj

k2

∫
d3v

k · ∂fj0/∂v
ω − k · v

, (2.35)

where k = k⊥êx + kzêz.
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2.3 Streaming Instabilities in Magnetized Plasma

2.3.1 Kinetic Description

In a magnetized plasma composed of ions and electrons, the electrons generally

are magnetized but the ions can be unmagnetized since the ratio of electron and ion

larmour radii rLe/rLi ∼ Ωi/Ωe ∼
√
me/mi � 1.

We have introduced the dispersion relations of electrostatic waves in magne-

tized and unmagnetized plasma in sections 2.2.1 and 2.2.2. From equations (2.32)

and (2.35), we have the dispersion relation for a plasma with magnetized electrons

and unmagnetized ions:

1 + χe + χi = 0,

χi =
ω2
pi

k2

∫
d3v

k · ∂fi0/∂v
ω − k · v

,

χe =
ω2
pe

k2

n=∞∑
n=−∞

∫
d3v

J2
n(k⊥v⊥

Ωe
)

ω − nΩe − kzvz
(kz

∂fe0
∂vz

+
Ωe

v⊥

∂fe0
∂v⊥

). (2.36)

It is reasonable to assume that the initial distribution functions of fe0 and fi0

are Maxwellians with drifts vde and vdi along the magnetic field B = Bz ẑ,

fi0(v2
⊥, vz) =

e
−v2
⊥

v2
ti

π3/2v3
ti

e
− (vz−vdi)

2

v2
ti ,

fe0(v2
⊥, vz) =

e
−v2
⊥

v2
⊥te

π3/2vztev2
⊥te

e
− (vz−vde)2

v2
zte , (2.37)

where v2
tj = 2Tj/mj, Tj is temperature, mj is the mass and j represents the species

of electron or ion.

Substituting equation (2.37) into equation (2.36), we obtain the dispersion
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relation for the ion-electron two stream instability:

1 + χi + χe = 0,

χi =
2ω2

pi

k2v2
ti

[1 + ηiZ(ηi)],

χe =
2ω2

pe

k2v2
te

[1 + I0(λ)e−ληeZ(ηe) + ηe
∑
n6=0

(e)−λIn(λ)Z(ξn)], (2.38)

where ηi = (ω − kzvdi)/kvti, ηe = (ω − kzvde)/kzvzte, λ = k2
⊥v

2
⊥te/2Ω2

e, and ξn =

(ω− kzvde − nΩe)/kzvte. Z is the plasma dispersion function and In is the modified

Bessel function of first kind of order n(Davidson 1972). These two functions are

defined as

Z(η) ≡ π−1/2

∫ ∞
−∞

dx
e−x

2

x− η
,∫ ∞

0

xJ2
n(sx)e−x

2

dx ≡ e−s
2

2
In(s2/2). (2.39)

The complexity of equation (2.38) makes it difficult to develop a physical

picture. As an example, we will discuss the cold plasma limit of equation (2.38).

2.3.2 Cold Plasma Limit: Buneman Instability and Lower Hybrid

Instability

The cold plasma limit can give us the main features of the dispersion relation

(2.38). There are three methods to obtain the plasma cold limit. One is to directly

derive the dispersion relation from the fluid equations as we have shown in the

first section. The second is to obtain the dispersion relation from equation (2.38)

by approximating the modified Bessel function I0(λ)e−λ −→ 1 for λ � 1 and the
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plasma dispersion function ζZ(ζ) −→ −1 − 1/2ζ2 for ζ � 1. The third is shown

below.

The velocity distribution functions in equation (4.3) become δ functions when

the temperature goes to zero (the corresponding thermal velocity goes to zero):

fe0 =
1

v⊥
δ(v⊥)δ(vz − vde),

fi0 =
1

v⊥
δ(v⊥)δ(vz), (2.40)

where for simplicity we set vdi = 0.

Substituting the δ functions in equation (2.40) into the dispersion relation

equation (2.38), we obtain the dispersion relation of Buneman instability in the

cold plasma limit:

1−
ω2
pi

ω2
−

sin2θω2
pe

(ω − kzvde)2 − Ω2
e

−
cos2θω2

pe

(ω − kzvde)2
= 0 (2.41)

where θ is the angle between the wave vector k and magnetic field, and kz = kcosθ.

Since coupling to the ions requires ω � ωpe, we assume Ωe � ω − kzvde, so

that equation (2.41) can be written as:

1/Θ2 − α/x2 − cos2θ/(x− βzz)2 = 0, (2.42)

where Θ2 = 1/(1 + sin2θω2
pe/Ω

2
e), x = ω/ωpe, βzz = kzvde/ωpe and α = ω2

pi/ω
2
pe.

As in the evaluation of the dispersion relation of the Buneman instability

(2.15), we can expand equation (2.42) to the lowest order:

βz − x = Θcosθ(1− αΘ2/x2)−1/2,

≈ Θcosθ(1 + αΘ2/2x2). (2.43)
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Figure 2.4: An illustration of function cos1/3θΘ versus θ.

The complex frequency with maximum positive imaginary part is:

ω = (αcosθ/2)1/3Θωpee
iπ/3, (2.44)

with kvde = Θωpe.

Equation (2.44) reduces to the Buneman instability ω =
√

3α1/3ωpe/2
4/3 with

small θ ∼ 0 and reduces to the nearly-perpendicular lower hybrid instability with

growth rate γ = Θωpi ∼ ωpi/2 with cosθ ∼
√
α =

√
me/mi. However, equation

(2.44) was obtained to lowest order in α. We need to go to higher order in α when

the frequency is close to the ion plasma frequency ωpi.

We demonstrate the restriction of equation (2.44) for nearly-perpendicular

instability in Fig. 2.4 and Fig. 2.5. Fig. 2.4 is the evolution of the maximum growth

rate in equation (2.44) with the angle θ and Fig. 2.5 is the growth rate versus the

wavevector k with different angle θ from the numerical solution of the equation (2.42)

using mi/me = 100 and ωpe/Ωe = 0.4. From Fig. 2.4, we see that the maximum

growth rate of the unstable mode decreases smoothly with the angle θ. The lower
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Figure 2.5: Growth rate versus β = kvde/ωpe at different angles θ = 0.1π, 0.25π,
and 0.35π, denoted by blue, green and red lines.

hybrid instability is only a limit of the Buneman instability; but in Fig. 2.5, there

are two distinct unstable modes. The first mode peaks at β ∼ 1 and corresponds

to the Buneman instability with peaks that decrease with the angle. The peaks

of the second mode increase with the angle θ and the corresponding wavenumbers

increase. The second mode is the lower hybrid instability. So equation (2.44) is a

good approximation for the Buneman instability with small θ and the lower hybrid

instability is not the oblique limit of the Buneman instability.
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2.3.3 Electron-electron Two-stream Instability

Similarly to ion-electron two-stream instability, the dispersion relation is:

1 + ∆χe1 + (1−∆)χe2 = 0,

χe1 =
2ω2

pe

k2v2
te1

[1 + I0(λe1)e−λe1ηe1Z(ηe1) + ηe1
∑
n6=0

e−λe1In(λe1)Z(ξne1)],

χe2 =
2ω2

pe

k2v2
te2

[1 + I0(λe2)e−λe2ηe2Z(ηe2) + ηe2
∑
n 6=0

e−λe2In(λe2)Z(ξne2)], (2.45)

where ∆ is the weight of the first distribution function, ηej = (ω − kzvezj)/kvtej,

ηej = (ω − kzvdej)/kzvztej, λej = k2
⊥v

2
⊥tej/2Ω2

e, ξnej = (ω − kzvdej − nΩe)/kzvtej, and

j denotes electron stream 1 and 2. The distribution function has been assumed to

be:

fe0(v2
⊥, vz) =

e
−v2
⊥

v2
⊥te

π3/2v2
⊥te

(
1−∆

vzte1
e
− (vz−vde1)2

v2
zte1 +

∆

vzte2
e
− (vz−vde2)2

v2
zte2 ). (2.46)

The corresponding cold plasma limit is :

1−
(1−∆)sin2θω2

pe

(ω − kzvde1)2 − Ω2
e

−
(1−∆)cos2θω2

pe

(ω − kzvde1)2

−
∆sin2θω2

pe

(ω − kzvde2)2 − Ω2
e

−
∆cos2θω2

pe

(ω − kzvde2)2
= 0, (2.47)

Without losing generality, let us assume vde1 = 0 and Ωe > ωpe � ω so that

equation (2.47) takes the form:

1 +
sin2θω2

pe

Ω2
e

−
(1−∆)cos2θω2

pe

ω2
−

∆cos2θω2
pe

(ω − kzvde)2
= 0. (2.48)

If the density of the injected electron beam is much less than the density of

the cold plasma background, i.e. ∆ � 1, then the condition for the dispersion

relation having complex roots requires ω−kzvde ∼ 0. Under this condition the term
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∆cos2θω2
pe

(ω−kzvde)2 can be comparable to the term
(1−∆)cos2θω2

pe

ω2 . As in the discussion of 2.17,

we have

x = βz ±
√

∆cosθ

(Θ2 − cosθ2

β2
z

)1/2
, (2.49)

where Θ2 = 1 +
sinθω2

pe

Ω2
e

. For βz <
cosθ
Θ

, the roots are complex conjugates. For

βz >
cosθ
Θ

, the roots are real.

For βz ≈ cosθ
Θ

,
√

∆cosθ

(Θ2− cosθ2
β2
z

)1/2
−→ ∞, the above discussion becomes invalid. We

will discuss this case in the small angle and large angle limits. For θ ∼ 0, βz ∼ 1, and

we have the electron-electron two stream instability discussed in the first section.

For θ ∼ π/2, βz ∼ cosθ and x ∼ cosθ, i.e ω ∼ cosθωpe, and equation (2.48) becomes

∆ +
sin2θω2

pe

Ω2
e

−
∆cos2θω2

pe

(ω − kzvde)2
= 0. (2.50)

There are no complex roots to equation (2.50). Therefore, the electron-electron two-

stream analogue has no perpendicular instability and the growth rate has a cut-off

with angle θ.
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Chapter 3

Buneman Instability in Guide-Field Magnetic Reconnection

Magnetic reconnection in collisionless plasma drives strong currents near the

x-line and separatrices. Satellite observations in the Earth’s magnetosphere indicate

that these current layers are turbulent. Electron holes, which are localized, positive-

potential structures, have been linked to magnetic reconnection in the magnetotail

(Farrell et al. 2002; Cattell et al. 2005) and the magnetopause(Matsumoto et al.

2003). Lower-hybrid waves and plasma waves appear in conjunction with electron

holes in the magnetotail event. The dissipation associated with these turbulent

wavefields may facilitate the breaking of magnetic field lines during collisionless

magnetic reconnection (Galeev & Sagdeev 1984a).

During reconnection with a guide magnetic field perpendicular to the plane

of reconnection, the widths of the electron current layers are of the order of the

electron Larmor radius ρe = vte/Ωe, where vte is the electron thermal velocity and

Ωe is the cyclotron frequency of electrons (Hesse et al. 2004; Rogers et al. 2007).

The resulting streaming velocity vd is given by vd/vte ∝ 4B/(Bβe), where 4B is

the amplitude of the reconnection magnetic field and βe = 8πnTe/B
2 is the ratio

of the electron and magnetic field pressure. The Buneman instability is driven

unstable by electron-ion streaming when vd/vte > 1 (Buneman 1958; Papadopoulos

& Palmadesso 1976; Drake et al. 2003). If the instability is strong enough, the wave
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potential forms intense localized electric field structures called electron holes. The

evolution of streaming instabilities has been previously investigated analytically and

numerically (Boris et al. 1970; Davidson & Gladd 1975; Oppenheim et al. 2001; Singh

et al. 2001b,a; Drake et al. 2003; Omura et al. 2003; McMillan & Cairns 2006, 2007;

Goldman et al. 2008). In simulations lower hybrid turbulence is found to emerge

after saturation of the parallel Buneman instability (Drake et al. 2003; McMillan

& Cairns 2006, 2007). Whether the lower hybrid turbulence is a linearly unstable

mode or nonlinearly driven by electron holes is unclear (McMillan & Cairns 2006,

2007). An important question is how the Buneman instability, which has a very low

phase speed, can stop the runaway of high velocity electrons. The resolution of this

puzzle is essential to understand how the streaming kinetic energy of electrons is

transformed into electron thermal energy, what mechanism sustains electron holes

after saturation of the Buneman instability, and ultimately what role turbulence

plays in magnetic reconnection.

In this chapter, I will show evidence of the Buneman instability in magnetic re-

connection simulations and the resulting turbulent heating which causes the anoma-

lous resistivity. I also outline the problems we discussed above.

3.1 Buneman Instability in Magnetic Reconnection with a Guide

Field

Our simulations are performed with a massively parallel Particle-In-Cell (PIC)

p3d code (Zeiler et al. 2002), carried out on IBM and CRAY multiprocessor com-
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puter systems. The relativistic motion of particles is described by the Lorentz

equation. Faraday’s law and Ampere’s law are treated with a trapezoidal leapfrog

scheme, and the positions and velocities of particles are stepped by the well-known

Boris algorithm. The computational discretization error could accumulate and cause

a secular violation of Gauss’s law (an unreal electric field is produced). This numer-

ical error is corrected by solving a Poisson’s equation for a convection electric field

in real space by a multigrid algorithm. All of the units used in the code are normal-

ized: Magnetic field is measured by B0, the asymptotic field strength outside of the

current layer of the reconnecting magnetic field Bx; the electric field is measured by

cB0/cA, cA = B0/
√

4πn0mi is the Alfven speed and n0 is the asymptotic density of

the plasma; mass= m/mi and distance = L/di, di = c/ωpi is the ion inertia length,

ωpi is the plasma frequency of ions; time= Ωit, where Ωi = eB0/mic is the ion

cyclotron frequency; velocity= v/cA; and temperature = kT/mic
2
A.

The code uses Euclidean Cartesian Coordinates. The computational domain

for our 3D simulations is Lx = 4di, Ly = 2di and Lz = 4di, and periodic boundary

conditions are adopted. The initial equilibrium is a double current layer superim-

posed on an ambient population of uniform density. The reconnection magnetic field

component Bx is a function of the spatial coordinate y, the direction perpendicular

to the current sheet:

Bx

B0

= tanh
y − Ly/4

w0

− tanh
y − 3Ly/4

w0

− 1 (3.1)

where the coordinates x and y are parallel to the outflow and inflow for the x-line

and w0 = 0.25di, the current layer thickness. The total field B2 = B2
x +B2

z = 26B2
0
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is constant, which implies the guide field varies spatially. Asymptotically, Bz =

5B0 while at the x-line, Bz =
√

26B0. The initial plasma density is constant and

ne = ni = n0. The temperatures of the ions and electrons are constant too and

Te = Ti = 0.04mic
2
A. The mass ratio of ions and electrons is 100 and the speed of

light c = 20cA. We define the electromagnetic field on a grid of 512×256×512 with

an average of 20 particles per cell. The total number of particles is up to 1.3× 109.

The electron Debye length λde = vth,e/ωpe = 0.01di is comparable to the grid scale,

a requirement to avoid spurious electron heating.

The initial set-up of our simulation favors the occurrence of the Buneman

instability rather than the ion acoustic instability, since the ion acoustic instability

requires Te � Ti. The current density is fully determined by the initial magnetic

field ∇×B = j, which produces an initial electron drift vde = 4cA. The initial ion

drift is zero. The width of the current sheet is restricted by the small computational

box used in 3D, which in turn is restricted by current computational limitations. A

thin current sheet requires a strong current density which can be understood from

the jump condition of the magnetic field at the neutral line: 4Bx/4e,y =
4π

c
jez.

The larmor radius of ions is much larger than the scale of the electron dif-

fusion region, hence within the electron diffusion region their dynamics can be ne-

glected. Magnetic reconnection drives an intense magnetic-field-aligned electron

beam around the x-line in 3D simulations. In the top panel of Fig.3.1 we can see

that the drift velocity of electrons reached vde = 9cA at t = 3Ω−1
i , much larger than

the initial drift of 4cA. The strongly accelerated electron beams along the z direction

at the x-line greatly exceed the Buneman instability threshold vde � 2vth,e ≈ 4cA
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Figure 3.1: These two images are from the 3D reconnection simulation for initial
temperature Te = 0.04. The top one is the electron beam velocity vez around x-line
at t = 3Ω−1

i ; The bottom one is the covariance of electric field Ez, 〈δE2
z 〉 when the

Buneman instability starts to grow at t = 3Ω−1
i .

(Davidson 1984) and stimulates resonant interactions between fast electrons and

the electrostatic perturbation δEz (Fig.3.3), that leads to the growth of pertur-

bations around the x-line (The bottom panel of Fig.3.1). The strength of 〈δE2
z 〉

is around 0.5. The perturbation strength relative to the electron thermal energy

〈δE2〉/(8πnkTe) ∼ 6 � 1, an indication that the perturbations have an strong

impact on the electron movement (Galeev & Sagdeev 1984a).

We show the distribution functions of electrons and ions at the x-line in Fig. 3.2

and Fig. 3.3. Compared to f(vez), the distribution functions of vx and vy show only

a very small deviation from a Maxwellian distribution, implying that the Buneman

instability propagates along the magnetic field at the x-line. From the linearized

Vlasov equation, the fastest growing mode is kgf = ωpe/vde with the frequency ωgf =

1
2
(1 + i

√
3)( me

2mi
)1/3ωpe(Akhiezer et al. 1967; Davidson 1984). The corresponding
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Figure 3.2: The electron and ion distribution functions of f(vx) and f(vy) around
the x-line at t = 4Ω−1

i . The ion distribution functions are reduced by 10 times.

phase velocity of perturbed wave is Ures = Re(ωgf )/kgf = 1
2
( me

2mi
)1/3vde. At t = 3Ω−1

i

and t = 4Ω−1
i , the electron beam has reached vde = 9vA and 14vA (Fig.3.3), and

the corresponding phase velocities of the Buneman instability are Ures ∼ 0.8vA and

1.2vA respectively. The phase speeds fall in a ‘plateau’ extending from the velocities

of the beam particles to the Maxwellian tail of the thermal particles (shown in

green).

At t = 3Ω−1
i , the electrostatic perturbations δEz have grown strong enough

to form localized structures as displayed in Fig.3.4 which have been called electron

holes(Berk & Roberts 1967). The electron holes move at a speed vhole ≈ 3cA which

corresponds to the group velocity of the waves. In Fig. 3.4, the holes formed

around the x-line (x ∼ 1). One of the holes forms at z = 2di and self-destruct

around z = 0. The total distance this hole has traveled is 4Lz ∼ 2di, and thus

the hole’s lifetime is ∼ 4Lz/vhole ∼ 0.6Ω−1
i . The lifetime of the electron holes is
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Figure 3.3: Distribution functions of electrons and ions around the x-line at t = 3Ω−1
i

(upper panel) and at t = 4Ω−1
i (lower panel) in the 3D reconnection simulation with

initial temperature Te = 0.04. The normalization of the ion distribution functions
in the upper and lower panels have been reduced by 70% and 90% respectively.The
green color is the indicator of the resonance position of Buneman instability.

much longer than the crossing time of the electrons trapped in the potential well,

τcross ≈
√
meλ/

√
2eδEz ∼ 0.02Ω−1

i (λ is the width of holes). Thus the electron holes

are stable for a period time larger than the crossing time and can be described as

BGK solutions (Sagdeev & Galeev 1969). However, because the electrons at the

x-line are continuously accelerated by the reconnection electric field Ez, there exists

no stationary BGK solution. New electron holes are continuously formed. The

kinetic energy of the electron beam is channelled into the electron holes and then

rechannelled into the electrons’ thermal motion (Dupree 1983; Omura et al. 2003).

To further understand when turbulence develops and its role in 3D simulations,

we also carried out two other simulations: (1) a 2D simulation in x− y plane with

identical parameters to those we used in the 3D simulation described above, but
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Figure 3.4: Electron holes formed around x-line at t = 3Ω−1
i . The top panel shows

the image of Ez in x − z plane; the bottom panel shows the distribution function
of electrons in the phase space z − vz in the same region as in the top panel. The
electrons move from right to left. The holes shown in the phase space (electron
holes) correspond to the localized intense electric field. The holes forms at the right
end of z and are destroyed as they move to the left end of of the graph.

with grids of 2048 × 1024, 100 particles per cell, and up to a total of 2 × 108

particles; and (2) a 3D simulation with higher temperature than that described

above, Te = Ti = 0.16 (normalized to mic
2
A). Compared to the above 3D simulations,

no turbulence appear in either the 2D or the high temperature 3D simulations,

though strong electron beams also form around the x-line. In the 2D simulations,

the growth of current driven perturbations is not allowed since k · vde = 0. In

the high temperature simulations, the beam velocity around the x-line reaches a

maximum value vde = 10cA at the end of the simulation t = 4Ω−1
i . This is 2.5 times

ve,th, close to the threshold of Buneman instability (Papadopoulos 1977). Therefore

no instabilities developed within the duration of the simulation.

The major difference between the non-turbulent and turbulent magnetic re-
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Figure 3.5: The electron current density jez (normalized to cB0/4πdi, averaged over
z) in x− y plane at t = 4Ω−1

i . The white lines are the magnetic field lines (averaged
over z). The top is from the 3D simulations with Te = Ti = 0.04. This image is
averaged over 100 time steps, about 0.05Ω−1

i . The blue square is the broadened
electron current sheet at the x-line. The bottom is from the 3D simulations with
Te = Ti = 0.16. This image is averaged over 200 time steps, about 0.1Ω−1

i .
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connection is that the x-line in the turbulent magnetic reconnection is much broader

than in non-turbulent reconnection, In Fig. 3.5, the blue square in the upper panel

shows the maximum area of the current sheet around the x-line when the length of

the square is fixed (the x-point is the center of the square). The blue square in the

lower panel is with the same length as the blue square in the upper panel, but the

width is very small because the current sheet is very thin in the high temperature

reconnection.

At late time, two different spatial structures of electric field form in the x− z

plane: the intense round holes and oblique strips compared to the early elongated

features shown. Fig. 3.6 shows the spatial structure of the electric field Ex and

Ez in the x − z plane in the middle of the current sheet at t = 3Ω−1
i . The intense

round holes appear in both the electric field Ex and Ez while oblique strips are more

significant in the image of Ex. The left half of the x− z plane is around the x-line

and the right half is around the island. Our study is focused on the x-line where

the physics determines the reconnection rate.

3.2 Turbulence Effects in Guide-Field Magnetic Reconnection

The turbulence induced-dissipation acts as a drag on streaming electrons. In

this section, I will focus on showing the impacts of the turbulence on the electron

diffusion region as Buneman instabilities develop in reconnection simulations.

Because of the limited number of particles, the simulations contain significant

computational noise which could contaminate the fluctuations from turbulence. For-
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Figure 3.6: Spatial structures of electric field Ex and Ez in the mid-plane of current
sheets at time t = 3Ω−1

i . The x-line is around x/di = 1.

tunately, the fluctuations generated by turbulence are intrinsically correlated while

the computational noise is random with most of the power at high frequency. These

random signals can be eliminated by averaging over time. For these reasons, we av-

erage important quantities such as the reconnection electric field, density, pressure

and current density over z, and over a large number of time steps.

3.2.1 High Temperature Reconnection Simulation

First, we examine the results of the 3D high temperature simulation (Te =

Ti = 0.16). As noted in previous section, no turbulence develops. The reconnec-

tion geometry is independent of z and we can use a z-average to approximate an

ensemble-average. The z-averaged z-component of the generalized Ohm’s Law in
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equation (1.21) is:

neEz ' −mene
∂U ez

∂t
− (

∂Pexz
∂x

+
∂Peyz
∂y

)

−mene(U ex
∂U ez

∂x
+ U ey

∂U ez

∂y
) +

1

c
(jex ×By − jey ×Bx), (3.2)

where Pexz and Peyz are generally called the non-gyrotropic pressure because at the

x-line the coordinate z is aligned with the local magnetic field. If the pressure is

projected onto the magnetic field line, the parts of parallel and perpendicular to

the magnetic field are called gyrotropic pressure, the reminder is called the non-

gyrotropic pressure.

Using the data averaged over 200 time-steps, every term of equation 3.2 is

calculated as a function of y averaged over a small region around the x-line (20

grids). The results are displayed in Fig. 3.7 at two different times. At t = 4Ω−1
i , the

non-gyrotropic pressure term (pink line) makes the primary contribution to balance

the reconnection electric field at the x-line. The Ohm’s law at late time can be

approximated by

neEz ∼ −
∂Pexz
∂x

− ∂Peyz
∂y

. (3.3)

The convective portion of the inertia (green line) which peaks at both sides of the

peak of the pink line is caused by the inflow of cold electrons (Swisdak et al. 2005;

Ricci et al. 2002). The inertia (blue line) is close to zero.

However, at t = 2Ω−1
i , the inertia dominates (blue line) while the non-gyrotropic

pressure and convection are negligible. Thus, the Ohm’s law at early time can be

approximated by

neEz ∼ −mene
∂U ez

∂t
. (3.4)

59



Figure 3.7: High temperature non-turbulent 3D simulation (averaged over 200 time

steps): cuts through the x-line showing various terms balancing the electric force in

equation (3.2). The top figure is at t = 4Ω−1
i . The electric force (black solid line) is

balanced by the divergence of the non-gyrotropic pressure (pink line) at the x-line.

The bottom is at t = 2Ω−1
i , the electric force is balanced by the inertia (blue line)

at the x-line. The green line denotes the convective inertia, and the black dashed

line denotes the z component of je ×B.
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Initially, the homogenous density and temperature cause the divergence of the

non-gyrotropic pressure to be zero. The simulation clearly shows the evolution of

the non-gyrotropic pressure and convective inertia. The evolution of the convective

inertia term is caused by the increase of the inflow of electrons to the x-line. The

cause for the rise of the non-gyrotropic pressure has been discussed by Hesse et al

(Hesse et al. 2004).

3.2.2 Low Temperature Reconnection Simulation

To demonstrate the effects of turbulence, we approximate the Ohm’s law for

low temperature reconnection as follows:

neEz ∼ −mene
∂U ez

∂t
− (

∂Pexz
∂x

+
∂Peyz
∂y

)

−mene(U ex
∂U ez

∂x
+ U ey

∂U ez

∂y
) + δnδEz +

1

c
(jexBy − jeyBx), (3.5)

where δnδEz comes from the z-average term neEz ≈ neEz + δneδEz. This is the

turbulence drag force, which reflects the interactions between waves and particles,

and is the most important electrostatic turbulent effect.

To evaluate Ohm’s law, the simulation data is averaged over 100 time-steps

and over 20 gridpoints in the x-direction around the x-line. The time steps cover a

total time interval of 0.05Ω−1
i . This time scale is small compare to the instability

growth time and the evolution time of the overall reconnection pattern.

Fig. 3.8 shows the terms in equation (3.5) as a function of y, the inflow di-

rection. The top three panels show the results of the 3D simulations at t = 4,3.5,2

Ω−1
i . They indicate that the inertial term becomes less and less important with time
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Figure 3.8: Low temperature turbulent 3D simulations (averaged over 100 time

steps): cuts through the x-line showing various terms balancing the electric force in

equation (3.5). The top three are from 3D simulations at time t = 4, 3.5, 2Ω−1
i , and

the bottom is from a 2D simulation at t = 4Ω−1
i . neEz is shown by the solid black

lines. The blue, red, green and pink lines denote the inertia, drag force, convective

inertia term and the divergence of non-gyrotopic pressure. The dashed lines denote

the (je ×B)z term. The black squares in the top two panels denote the total of all

of the colored lines.
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while the turbulence becomes more and more important. At t = 2Ω−1
i , prior to the

onset of the Buneman instability, the resemblance to the 3D high temperature simu-

lation is clearly seen: inertia supports the reconnection field and the other terms are

almost zero. At t = 3.5Ω−1
i , the instability has reached its peak and the turbulence

effects appear: the drag force, convective inertia term and the divergence of non-

gyrotropic pressure grow strong enough to compete with the inertia (mene
∂Uez
∂t

). As

the bulk energy of electrons at the x-line is being dissipated into heat by the strong

exchange of energy between the resonant electrons and waves, the acceleration of

electrons decreases and as a result the inertia (mene
∂Uez
∂t

) decreases. The growth

of waves increases the drag force. The turbulent heating along the magnetic field

(close to z direction) raises the z component of the temperature and also raises the

contribution from the pressure. The strong turbulence induces strong diffusion of

particles around the x-line which broadens and blurs the x-line. This causes the

peaks of the convective inertial and divergence of the pressure tensor around x-line

to broaden. At t = 4Ω−1
i , the turbulence effects dominate and inertia goes down

to zero. Compared to the high temperature (Te = 0.16) simulation, the drag force

varies around the x-line, indicating that strong spatial correlations among parti-

cles have built up, and the x-line becomes very blurred and asymmetric (Fig.3.5).

The variation of the non-gyrotropic pressure around the x-line becomes smoother

than the corresponding non-gyrotropic pressure in the high temperature reconnec-

tion simulation. Similarly, the two peaks of convection term become much broader,

indicating very intense thermal energy and momentum transport are taking place

around x-line. Away from the x-line, the je × B term balances the electric field.
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For comparison, we also show the results from the low temperature 2D simulation

at t = 4Ω−1
i in the bottom panel of figure 3.8. In this case, the inertia dominates

equation (3.5) and the equation reduces to Eez ' −me
∂U ez

∂t
at x-line.

We further illustrate the evolution of the turbulence by showing in Fig. 3.9

the time evolution of each term in equation (3.5) around the x-point. The data are

averaged over the blue box shown in Fig 3.5. In the 3D low temperature simulation

(the top panel), it is clear that the drag force and the convection term go up together

around t = 3Ω−1
i when the Buneman instability occurs, reach their peaks around

t = 3.3Ω−1
i , and then decay. The pressure divergence also increases after the onset

of the instability. The deceleration of the electron bulk motion caused by turbulence

heating can be seen in the decrease of the inertia term at late time. The contribution

from the je × B term is ∼ 0, the small deviation is caused by the magnetic field

inside the blue box not being exactly zero. On the other hand, in 2D low temperature

simulations, the acceleration of electrons goes up with time and the inertial term

balances the electric field (figure 3.9, lower panel).

To depict the turbulence effects on the non-gyrotropic pressure, the vector

fields of Pexz and Peyz around the x-line in the low temperature simulations are

displayed in Fig. 3.10. At t = 2Ω−1
ci , the non-gyrotropic pressure field appear very

random in the 2D simulation, but already show vortices in the 3D simulation. At

t = 4Ω−1
ci , structures in the vector fields in both 2D and 3D simulations can be

identified. In the 2D simulation, the vector fields are parallel, and the divergence

of the non-gyrotropic pressure around the x-line ((x, y) ∼ (1.05, 1.49)) is close to

zero. In the 3D simulations, the vectors are bent by turbulence around the x-line
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Figure 3.9: Low temperature simulations (averaged over 100 time steps): time evo-

lutions of various term in equation (3.5). The top from 3D and the bottom from 2D

for reference. In 3D, the black solid line denotes the electric force. The red, green,

pink lines denote the drag force, the convective inertia term and the divergence

of the non-gyrotropic pressure. The inertia is shown by the blue line. The black

dashed line is for the term (je×B)z. The total of all of the terms supporting electric

force in equation (3.5) is shown by the yellow line. In 2D Ohm’s law at the x-line is

reduced to me
∂U ez

∂t
= −Ez. The solid black line is electric field and the blue line is

the inertia.
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Figure 3.10: The vector fields of Pexz and Peyz around the x-line. The top two

panels are from 2D low temperature simulations and the bottom two from the 3D

low temperature simulations.
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((x, y) ∼ (1.05, 1.49)). At Ωit = 2, the vectors entering the x-line and the vectors

going out of the x-line seem to balance so the divergence of Pexz and Peyz is close to

zero. At Ωit = 4, the vectors entering the x-line from the upper left are larger than

the vectors leaving from the lower right. Thus the total flux enters the x-line, and

the divergence of non-gyrotropic pressure is negative, which is the sign required to

balance the reconnection electric field.

3.3 Problems in Turbulent Guide-Field Reconnection

In turbulent reconnection, the drag force is an important indicator of the

role of turbulence. However, it is unclear what causes the evolution of the non-

gyrotropic pressure in both high and low temperature 3D simulations. In the case

of low temperature 2D reconnection with a strong guide field the non-gyrotropic

pressure is negligible. It is also unclear why turbulence broadens the dissipation

region.

To answer these questions, we must address the nature of the instabilities that

develop during reconnection and how they impact the electron dynamics near the

x-line. The linear theory of the Buneman instability can not explain the nonlinear

evolution.

In Fig. 3.3, the green part of the electron distribution function of f(vz) shows

the location where electrons resonate with the waves driven by the Buneman in-

stability. However, beyond the green part, the electrons also have strong resonant

interactions with waves at much higher velocity, from vz ∼ −5 to −15cA and cause
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the distortion of f(vz) from that which is expected from a Maxwellian accelerated

by a parallel electric field. The kinetic energy of high velocity electrons is channelled

into heat and the energetic electrons are dragged toward lower velocity. It is unclear

what instabilities are responsible for this behavior. From Fig. 3.6, we see the strip-

like structures. Are these structures caused by the oblique Buneman instability or

by some other instability? We observe that electron holes have different velocities,

why? What instabilities continuously produce new electron holes?

Linear kinetic theory can help us interpret time local simulation behavior

if we know the particle velocity distribution functions at that time. Particle-in-

cell simulations provide us the evolved distribution functions so that it is possible

for us to combine the simulations and linear theory to investigate the turbulence.

Understanding the development of these instabilities is the key to making progress

on turbulence heating and energy transport. In next chapter, I will explore in great

detail the nature of the instabilities that develop.
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Chapter 4

Nonlinear Development

of Streaming Instabilities in Low β Plasma

In Chapter II, the linear theory of streaming instabilities was introduced. In

Chapter III, PIC simulations of magnetic reconnection with strong guide field were

presented. The Buneman instability occurs around the x-line at early time in the 3D

low temperature magnetic reconnection simulations. At late time, the streaming in-

stabilities have deviated from the linear Buneman instability whose low phase speed

can’t produce a wave-electron resonance at high velocity. The nonlinear evolution

after the saturation of the Buneman instability will be discussed in this chapter

using kinetic theory and PIC simulations.

In magnetic reconnection, the inductive electric field accelerates the particles

around the x-line, and the E×B and the thermal streaming velocities drive the par-

ticles away from the x-line. This complex behavior makes it difficult to understand

the development of streaming instabilities. To separate the effects of reconnection

from the development of streaming instabilities, we carry out new 3D PIC simu-

lations of streaming instabilities driven in a current sheet similar to that around

the x-line in magnetic reconnection. The development of streaming instabilities are

studied for two cases ωpe/Ωe < 1 and ωpe/Ωe > 1.

To investigate the nonlinear development of instabilities and to trace the evo-
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lution of instability, we construct a double Maxwellian model to fit the distribution

functions measured at different times in the simulations, and then substitute the

modeled distribution function into the dispersion relation to obtain the unstable

modes. In the case of ωpe/Ωe < 1, two distinct phases of the dynamics are dis-

covered. In the first the parallel Buneman instability grows and traps the lower

velocity streaming electrons. In the second the high velocity electrons drive two

distinct forms of turbulence: the parallel electron-electron two-stream instability

and the lower hybrid instability. The high parallel phase speed of these waves al-

lows them to resonate with high energy electrons and transfer momentum to the

ions and low velocity electrons. The electron two-stream instabilities continuously

sustain the electron holes while the lower hybrid instability causes the perpendic-

ular interactions between ions and waves which lead to transverse heating of the

ions. In the case of ωpe/Ωe > 1, the evolution time scale is shorter than that in

the case of ωpe/Ωe < 1 since the growth rate of the various instabilities scale with

ωpe. Three evolution stages are revealed. In the first stage the Buneman instability

grows and decays sharply. In the second stage, the medium velocity electrons drive

the lower hybrid instability and electron-electron two-stream instability. The lower

hybrid instability dominates during this stage. In the third stage, the high veloc-

ity electrons drive the lower hybrid instability, which prevents the growth of the

electron two-stream instability. Instead, the Buneman instability reappears. The

overlapping of resonance velocity of the lower hybrid instability and the Buneman

instability enables momentum to be transferred from the high velocity electrons to

low velocity electrons. This stochastic process in phase space sustains the growth
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of the Buneman instability and weakens the lower hybrid instability.

4.1 Double-Drifting Maxwellian Model

Collective wave-particle interactions lead to a peak on the velocity distribution

which can be approximated by a Maxwellian distribution function. This indicates

that the multiple-Maxwellian function should fit the evolving velocity distribution

which is distorted by the turbulence thermalization. A double-drifting Maxwellian

is a simple model, but is found to be quite accurate.

4.1.1 Double-drifting Distribution Function and Dispersion Relation

The general dispersion relation of electrostatic waves in magnetized plasma

can be written as (see Chapter 2):

1 +
∑
j

χj = 0,

χj =
ω2
pj

k2

n=∞∑
n=−∞

∫
d3v

J2
n(k⊥v⊥

Ωj
)

ω − nΩj − kzvz
(kz

∂fj0
∂vz

+
nΩj

v⊥

∂fj0
∂v⊥

). (4.1)

where fj0 is the distribution function of species j and normalized by the ambient

density and χj is the dielectric response of species j. Im(ω) > 0 is assumed. The

parallel direction is along the constant magnetic field B = Bẑ, k2 = k2
z + k2

⊥,

v2 = v2
z + v2

⊥, and Ωj = ejB/cmj. Jn is the Bessel function of the first kind with

order n.

A species is considered unmagnetized when perturbations are considered with

perpendicular wavelength much shorter than the characteristic thermal Larmor ra-
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dius of the species (rLj = vtj/Ωj) and frequency much larger than the cyclotron

frequency of the species, i.e. k⊥v⊥/Ωj � 1 and ω/Ωj � 1. Then the corresponding

dielectric response can be approximated by (see Chapter 2):

χj =
ω2
pi

k2

∫
d3v

k · ∂fj0/∂v
ω − k · v

(4.2)

To analyze our simulations, we need simplify the dispersion relation (4.1) for

species of ions and electrons. The first important step is to construct reasonable

distribution functions for the ions and electrons. In our simulations electron distri-

bution functions are more strongly distorted than those of the ions, since the bounce

frequency of electrons in resonant waves is much higher than that of ions. Therefore,

a double-drifting Maxwellian is chosen for electrons and single-drifting Maxwellian

is chosen for ions:

fi =
e
−v2
⊥

v2
ti

π3/2v3
ti

e
− (vz−vdi)

2

v2
ti

,

fe =
e
−v2
⊥

v2
⊥te

π3/2v⊥te

[
1− δ
v2
zte1

e
− (vz−vde1)2

v2
zte1 +

δ

v2
zte2

e
− (vz−vde2)2

v2
zte2

]
. (4.3)

where δ is ratio of the weight of the two drifting Maxwellian of electrons, v2
⊥te =

2T⊥e/me, v
2
zte1 = 2Tze1/me, and v2

zte2 = 2Tze2/me, vde1 and vde2 are electron drifts.

v2
ti

= 2Ti
mi

and vdi is the ion drift.

We replace fi0 and fe0 in equation (4.1) by the ion and electron drifting

Maxwellian distribution functions in equation (4.3). Assuming the ions are unmag-

netized and the electrons are magnetized, using k ·v/(ω−k ·v) = 1−ω/(ω−k ·v)
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for both ions and electrons, and integrating, we obtain

1 + χi + χe1 + χe2 = 0,

χi =
2ω2

pi

k2v2
ti

[1 + ηiZ(ηi)],

χe1 =
2(1− δ)ω2

pe

k2v2
te1

[1 + I0(λ)e−λζ1Z(ζ1) + ζ1

∑
n6=0

(e)−λIn(λ)Z(ξ1)],

χe2 =
2δω2

pe

k2v2
te2

[1 + I0(λ)e−λζ2Z(ζ2) + ζ2

∑
n6=0

(e)−λIn(λ)Z(ξ2)]. (4.4)

where ηi = (ω − kzviz)/kvti, ζ1 = (ω − kzvz1)/kzvzte1, ζ2 = (ω − kzvz2)/kzvzte2,

λ = k2
⊥v

2
⊥te/2Ω2

e, Ωe is the local electron cyclotron frequency, and ξ1 = (ω− kzvz1 −

nΩe)/kzvte1, ξ2 = (ω − kzvz2 − nΩe)/kzvte2. Z is the plasma dispersion function

and In is the modified first kind Bessel function of order n. These two function are

defined as

Z(η) ≡ π−1/2

∫ ∞
−∞

dx
e−x

2

x− η∫ ∞
0

xJ2
n(sx)e−x

2

dx ≡ e−s
2

2
In(s2/2) (4.5)

where In is the modified Bessel function of order n.

In equation (4.4), no approximation has been made. We now assume that

the electrons are strongly magnetized so that the perpendicular wavelength is long

comparing to the thermal electron Larmor radius rLe = v⊥te/Ωe, i.e. λ =
k2
⊥r

2
Le

2
� 1.

With this assumption, the summation of Bessel functions of non-zero order in χe1

and χe2 can be neglected. The dispersion relation simplifies to

1 +
2ω2

pi

k2v2
ti

[1 + ηiZ(ηi)]

+
2(1− δ)ω2

pe

k2v2
te1

[1 + I0(λ)e−λζ1Z(ζ1)] +
2δω2

pe

k2v2
te2

[1 + I0(λ)e−λζ2Z(ζ2)] = 0 (4.6)
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Equation (4.6) reduces to the dispersion relation of the two-fluid plasma model

(cold plasma limit) when the temperature is sufficiently low so that ω − kzvde �

kzvzte and the electrons are sufficiently strongly magnetized with ω − kzvde � Ωe.

Furthermore the modified Bessel function I0e
−λ reduces to 1 − λ for λ � 1 and

the plasma dispersion function ζZ(ζ) to −1 − 1/2ζ2 for ζ � 1. The cold plasma

dispersion relation is then obtained (let δ = 0):

1−
ω2
pi

ω2
+
sin2θω2

pe

Ω2
e

−
cos2θω2

pe

(ω − kzvde)2
= 0 (4.7)

There are two distinct cases for the roots of the cold plasma dispersion relation.

One is for parallel propagation and the other is nearly perpendicular propagation. In

the limit of θ ∼ 0, the Buneman instability (Galeev & Sagdeev 1984b) peaks around

kfgvde ∼ ωpe, with a frequency Re(ω) =
kfg
2

(ω2
pi/2ω

2
pe)

1
3 |vde| and a maximum growth

rate γ =
√

3ωpe(ω
2
pi/2ω

2
pe)

1
3 , where the subscript fg denote the fast-growing mode.

The other maximum mode is the lower hybrid instability. It is nearly perpendicularly

propagating with cosθ ∼
√
me/mi, where ω = ωpi/(1 + ω2

pe/Ω
2
e)

1/2.

4.1.2 Group Velocity of Perturbations and Turbulent Field Angle

The group velocity of waves is the velocity with which the variations in the

envelopes of wave amplitude propagate through space. It is defined as vg ≡ ∇kω(k),

where ∇k is the gradient in k space and ω(k) is the dispersion relation (Stix 1962).

To calculate the group velocity from the dispersion relation (4.6), we assume without

loss of generality that the k vector lies in the x−z plane, and express k = (kx, 0, kz).

The group velocity can be computed from equation (4.6) using vg = êz
∂ω
∂kz

+ êx
∂ω
∂kx

.
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Some useful relations and equations are used during the derivation:

∂I0(λ)/∂λ = I1(λ),

∂Z(η)/∂η = −2(1 + ηZ(η)), (4.8)

and

5k
1

k
= −kx

k3
êx −

kz
k3

êz,

5k
1

k2
= −2kx

k4
êx −

2kz
k4

êz,

5kω = vgxêx + vgzêz,

5kkx = êx,5kkz = êz,

5kηi = (
vgx
kvti
− ωkx
k3vti

)êx + (
vgz
kvti
− ωkz
k3vti

)êz,

5kζ1 =
vgx
kvzte1

êx +
1

kzvzte1
(vgz −

ω

kz
)êz,

5kζ2 =
vgx
kvzte2

êx +
1

kzvzte2
(vgz −

ω

kz
)êz,

5kλ =
v2
texkx
Ω2
e

êx. (4.9)

The resulting expression for the group velocity is

vgx = vde1

αxωsinθ

α3
i

A+ 2αβsinθ

α2
i

B+2βsinθC+sinθβe−λ(2I0−
α2
exβ

2ω2
pe

Ω2
e

(I1−I0))D

αβ

α3
i

A+
βI0e

−λ
cosθ

E
,

vgz = vde1

αxωcosθ

α3
i

A+ 2αβcosθ

α2
i

B+2βcosθC+2cosθβI0e−λD+
xωωpe

Ωecos2θ
I0e−λE

αβ

α3
i

A+
βI0e

−λ
cosθ

E
. (4.10)
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where

A = Z(ηi) + ηiZ
′(ηi),

B = 1 + ηiZ(ηi),

C =
1− δ
α2
ez1

+
δ

α2
ez2

,

D =
ζ1Z(ζ1)(1− δ)

α2
ez1

+
ζ2Z(ζ2)δ

α2
ez2

,

E = (Z(ζ1) + ζ1Z
′(ζ1))(1− δ)/α3

ez1 + (Z(ζ2) + ζ2Z
′(ζ2))δ/α3

ez2,

(4.11)

and

xω = ω/ωpe, β = kvde1/ωpe, α = ω2
pi/ω

2
pe,

αi = vti/vde1, αez1 = vte1/vde1, αez2 = vte2/vde1. (4.12)

The angle ψ between the group velocity of the propagating waves and the

magnetic field is given by

tanψ = Re(vgx)/Re(vgz) (4.13)

4.2 Nonlinear Development of Streaming Instabilities

In Low β Plasma with Ωe/ωpe > 1

4.2.1 Two Distinct Phases of Nonlinear Evolution

We carry out 3D PIC simulations with strong electron drift in an inhomogenous

plasma with a strong guide field. The initial state mimics the current sheet near an
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Figure 4.1: The current sheets in magnetic reconnection with a strong magnetic
field at Ωit = 3. In 2D simulations no turbulence develops while in 3D simulations
strong turbulence develops around the x-line.

x-line at late time in 2D simulations of reconnection (Drake et al. 2003) as shown

in Fig. 4.1.

Since we apply no external perturbations to initiate reconnection and the time

scale for reconnection to occur naturally in the simulation is much longer than the

growing time scale of other instabilities, reconnection does not develop. The initial

conditions for our simulation are based on (Drake et al. 2003). We specify the

reconnecting magnetic field to be Bx/B0 = tanh[(y − Ly/2)/w0], where B0 is the

asymptotic amplitude of Bx outside of the current layer, and w0 and Ly are the half-

width of the initial current sheet and the box size in the y direction, respectively.

The guide field B2
z = B2 − B2

x is chosen so that the total field B is constant. In

our simulation, B is taken as 261/2B0. Thus, we are in the limit of a strong guide

field such that Ωe = 2.5ωpe, where ωpe is the electron plasma frequency. The initial

temperature is Te = Ti = 0.04mic
2
A, the ion to electron mass ratio is 100, the speed of

light c is 20cA, and cA = B0/(4πn0mi)
1/2 is the Alfvén speed. The simulation domain
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Figure 4.2: The time evolution of 〈E2
x〉 (dashed line) and 〈E2

z 〉 (solid line) averaged
over the midplane of the current sheet.

has dimensions Lx = Ly = di = c/ωpi, and Lz = 8di, where ωpi is the ion plasma

frequency. The initial electron drift along ẑ is 10cA, close to that of the current

layer around the x-line of 2D reconnection simulations reported earlier (Drake et al.

2003). The initial ion drift is −0.9cA. The drift speed in these simulations is around

three times the electron thermal speed vte ∼ 3cA, above the threshold to trigger the

Buneman instability.

Within an ion cyclotron period the intense electron stream drives a strong

Buneman instability in our simulation. In Fig. 4.2, we show the time development

of 〈E2
x〉 and 〈E2

z 〉, where 〈〉 denotes an average over the midplane of the current

sheet. As the instability develops, the Buneman waves clump to form localized

electron holes (Fig. 4.3). At the same time, the electric field also becomes stretched

and forms elongated oblique stripes in the x− z plane. This behavior is reflected in

the delayed growth of 〈E2
x〉 in Fig. 4.2.

In Fig. 4.3, we show snapshots of the components Ex and Ez of the electric field

at the midplane of the current layer at Ωit = 0.4, 1.2. At Ωit = 0.4, some intense
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Figure 4.3: the spatial structure of the parallel electric field Ez and the transverse
electric field Ex at Ωit = 0.4, 1.2
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long and thin layers of electric field Ex and Ez form along the x direction in the

x−z plane and move parallel to the magnetic field, approximately in the z direction.

Some thin layers moving faster than others and overtake the ones before them, and at

the same time break up into shorter layers along x and reform new spatial structures

wider in z direction. We call these localized intense structures electron holes. The

parallel speed of some electron holes reaches 8− 10cA. This process continues until

two distinct spatial structures finally appear at late time Ωit = 1.2: the strongly

localized structure (electron holes) and long oblique structures as seen in earlier

magnetic reconnection simulations (Drake et al. 2003). Comparing the structures of

Ex and Ez at Ωit = 0.4 and Ωit = 1.2, the differences are significant. At Ωit = 0.4,

the spatial structures of Ex and Ez are quite similar to each other though the Ex

structures are not as localized in z. The wavelength in the x direction is very long

which implies kx ∼ 0. At Ωit = 1.2, the spatial structure of EZ is dominated by the

electron holes and Ex is dominated by the long oblique stripes whose k vectors are

oriented about 800 relative to the magnetic field.

The power spectra (a) and (b) of Ex and Ez in Fig. 4.4 reveal that at Ωit = 0.4

the power spectra of both Ex and Ez are peaked around (kxdi, kzdi) ∼ (0, 20) which

corresponds to the electric field parallel layers in Fig. 4.3. In spectrum (d) of Fig 4.4,

the wavenumber kz of the nearly parallel mode deceases to kzdi ∼ 10 and is broadly

centered with a width ∆kxdi ∼ 10 . This corresponds to the round electron holes at

Ωit = 1.2 in Fig. 4.3. At Ωit = 0.4, a weak peak appear in the spectrum of Ex (in

(a)) does not appearing in the spectrum of Ez (in (b)) around (kxdi, kzdi) ∼ (10, 5).

This peak becomes stronger at Ωit = 1.2 in the spectra of both Ex and Ez, but
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Figure 4.4: The 2D power spectra |Ex(kx, kz)|2 and |Ez(kx, kz)|2 of the parallel
electric field Ez and the transverse electric field Ex at Ωit = 0.4 in (a),(b) and 1.2
in (c), (d) shown on logarithmic scale.
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Figure 4.5: Distribution functions f(vz) of ions and electrons from the PIC simu-
lation at Ωit = 0.4, 0.8, 1.2, 1.6 are shown by the blue lines, with the ion distribu-
tion function reduced by a factor of 4; the theoretical fitting with double drifting
Maxwellians is shown by the dashed red lines.

is less well defined in Ez ((c) and (d) in Fig. 4.4). This mode corresponds to the

appearance of long oblique stripes in Fig. 4.3 at late time. The spectra suggest that

two modes have developed at late time, which we will examine in further detail.

In the cold plasma limit, the phase velocity of the Buneman instability is

(me/(2mi))
1/3|vez|/2 − vdi ∼ −0.25cA (Galeev & Sagdeev 1984b). The electrons

with velocity around this phase velocity can be trapped. Evidence for trapping can

be seen from the change in the electron distribution functions between Ωit = 0.4

and 0.8 in Fig. 4.5. The distribution function at Ωit = 0.8 has a broad peak

centered around the expected Buneman phase speed. Some of the high velocity

electrons actually increase their velocity vz early in the simulation because they are

accelerated locally by the induced electric field Ez that maintains the net current in

the layer. At time Ωit = 1.2 and 1.6, the electrons at higher velocity are dragged
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to lower velocity, which can’t be explained by the wave-particle interactions with

the Buneman instability. In our simulation, the average drift velocity of electrons

decreases by a factor of two from the initial value ∼ 10cA to ∼ 5cA at Ωit = 1.6.

To understand the late time behavior of the electrons, we investigate the phase

speed of Ez by stacking cuts of Ez(z) at time intervals Ωit = 0.02. The image shown

in Fig. 4.6 (a) traces the motion of the peaks and valleys of the waves. The slopes

of the curves formed by the peaks or valleys show the evolution of the phase speed

in the z direction. The slopes of these curves increase with time, indicating that the

parallel phase speed vpz of the waves increases. The vpz increases from a very small

value at Ωit = 0.4 when the instability onsets to 6cA at Ωit = 0.8, and near 10cA at

the end of the simulation. The phase speed of Ex along z behaves similarly to Ez,

but is faster at late time (the slopes of Ex are steeper). Thus, we suggest that the

increasing phase speed of the turbulence at late time allows the electrons with high

velocity to be dragged to lower velocity through wave-particle interactions. The

early trapping of electrons by the instability saturates Buneman and allows new

instabilities to grow.

An interesting feature of the waves in our simulation is the growth of two

distinct classes of modes parallel and nearly-perpendicular to the magnetic field. We

explore the nature of the late-time instabilities by investigating the unstable wave

spectra with particle distributions that match those measured in the simulations.

We choose double drifting Maxwellians for electrons, and a single drifting

Maxwellian for ions. The dispersion relation obtained in equation (4.6) is for waves

with Ωi � ω � Ωe. Assuming the wavevector k lies in the plane x − z, i.e.
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Figure 4.6: In (a) cuts of Ex and Ez versus z and time from the simulation. The
slope of the curves is the phase speed vpz in the simulation rest frame. In (b) and
(c) solutions of the dispersion relation using the fittings of distribution functions
shown in Fig. 4.5 at Ωit = 0.4, 0.8, 1.2, 1.6. In (b) is the parallel phase speed versus
the angle θ between the wavevector k and the magnetic field at the four times. In
(c) are the corresponding maximum growth rates γmax versus θ.

k = (kx, 0, kz), the dispersion relation takes the form:

1 +
2ω2

pi

k2v2
ti

[1 + ζiZ(ζi)] +
2δω2

pe

k2v2
te1

[1 + I0(λ)e−λζe1Z(ζe1)]

+
2(1− δ)ω2

pe

k2v2
te2

[1 + I0(λ)e−λζe2Z(ζe2)] = 0,

where ζi = (ω − kzvdi)/kvti, ζe1 = (ω − kzvde1)/kzvzte1, ζe2 = (ω − kzvde2)/kzvzte2,

λ = k2
xv

2
xte/2Ω2

e, δ is the weight of high velocity drifting Maxwellian, Z is the plasma

dispersion function and I0 is the modified Bessel function of the first kind with order

zero. The thermal velocity of species j is defined by v2
tj = 2Ttj/mj and drift speed

by vdj, which is parallel to the magnetic field (z direction). The ion temperature is

taken to be isotropic.

It should be noted that our simulation is highly non-linear while our model

is based on linear theory. This approach is reasonable, however, because we can fit

the real time distribution functions from the simulation for input into the dispersion
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Figure 4.7: The 2D theoretical spectrum from kinetic theory using the fittings of
distribution functions of electrons and ions shown in Fig. 4.5. In (a) is the spectrum
at Ωit = 0.4 when the electron distribution is still a single drifting Maxwellian.
In (b), (c) and (d) are the spectra at Ωit = 0.8, 1.2 and 1.6 using the fittings of
distribution functions of both electrons and ions. In (e), (f) and (g) are the spectra
again at Ωit = 0.8, 1.2, 1.6 but neglecting the ions.
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Table 4.1: Parameters of Model Dist. Funs.

vzte1 vzte2 vde1 vde2 vti vdi δ

Ωit=0.4 3.3 9 0.38 -0.9 0

Ωit=0.8 5.5 6.6 11 -1 0.45 -0.9 0.6

Ωit=1.2 4.6 7 11.5 0.7 0.45 -0.9 0.49

Ωit=1.6 5.2 6.6 12.1 1 0.48 -0.9 0.41

relation in Eq. (4.6) to obtain the wave modes. In Fig. 4.5, we show that the real

time distribution functions of electrons (blue line) can be very well fit with a double

drifting Maxwellian (dashed red line). The parameters of the fittings are listed in

Table 4.1. From the table we see the weight of high velocity electrons decreases with

time which indicates electrons are dragged from high velocity to low velocity as the

system evolves. Solving Eq. (4.6) numerically, we show the growth rate of unstable

modes in the (kx, kz) plane at Ωit = 0.4, 0.8, 1.2, 1.6 in Fig. 4.7 (a,b,c,d).

From Fig. 4.5 (a), we see at Ωit = 0.4, around the onset of the Buneman in-

stability, the electron distribution function is well approximated by a single drifting

Maxwellian. The unstable modes shown in the spectrum in Fig. 4.7 (a) are charac-

teristic of the Buneman instability. The dominant mode is parallel with kz ∼ 20 and

with a large growth rate γ ∼ 15Ωi. At Ωit = 0.8, the low velocity band of the elec-

tron distribution rises up, and interestingly, a new mode emerges at kxdi ∼ 20 and

kzdi ∼ 5 in the spectrum in Fig. 4.7 (b). The stronger mode is peaked at kxdi ∼ 0

and kzdi ∼ 10. At Ωit = 1.2, the electron distribution function in Fig. 4.5 (c) has a
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Figure 4.8: The frequency of fast growing mode at time Ωit = 0.4, 0.8, 1.2, 1.6 versus
the angle θ. The circles are the frequency neglecting the contribution from the ions.

double-peak. Two distinct modes appear in Fig. 4.7 (c). These unstable spectra are

consistent with the spectra of Ez and Ex we show in Fig. 4.4. At late time Ωit = 1.6,

both modes become weaker as shown in Fig. 4.7 (d).

Do these two modes belong to the general class of Buneman instabilities or do

they represent the emergence of a new class of instabilities? We have shown that

the electrons can be modeled with double drifting Maxwellians suggesting that an

electron-electron two-stream instability might develop. To investigate this possibil-

ity, we solve the dispersion relation in Eq. (4.6) by removing the contribution from

the ions. The unstable modes for the two-stream instability at Ωit = 0.8, 1.2, 1.6 are

shown in Fig. 4.4 (e), (f) and (g). Indeed, the growth rates of the two-stream instabil-

ity correspond exactly to the stronger mode shown in Fig. 4.4 (b), (c) and (d), respec-

tively. The corresponding frequency at Ωit = 0.4, 0.8, 1.2, 1.6 is shown in Fig. 4.8.
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The frequencies of electron-electron two-stream instability at Ωit = 0.8, 1.2, 1.6 ob-

taining by just considering the electrons are shown by circles. The frequencies shown

by the solid lines are obtained with including the contributions of all the electrons

and ions. The circles are in coincidence with the solid lines at small θ and diverge

from the solid lines at larger θ. The frequency of the two-stream mode increases

with time and is about 0.35ωpe in the ion rest frame at Ωit = 1.6.

The weaker mode is not present in Fig. 4.4 (e), (f) and (g) and must involve

the ions. Its wavevector is nearly perpendicular to the direction of the magnetic

field. The corresponding frequency for this mode can be obtained from the solid

line at large θ in Fig. 4.8. All the solid lines reach a similar frequency around ∼ 16Ωi

with θ ∼ 900, which is close to the lower-hybrid frequency in the cold plasma limit,

ωlh = ωpi/(1 + ω2
pe/Ω

2
e)

1/2 + kzvdi ∼ 15Ωi. We thus conclude that the weaker mode

is in fact a current driven lower hybrid instability, which was discussed earlier by

McMillan and Cairns (McMillan & Cairns 2006, 2007). The Buneman instability in

our simulation has evolved into a dual state of electron two-stream and lower hybrid

instabilities. The stripes appearing at late time are caused by the lower hybrid

instability. The angle between the strips of the Ex and magnetic field is determined

by the group velocity 900 − atan(Re(vgx)

Re(vgz)
) ∼ 800.

The drag on high velocity electrons requires wave-particle interactions with

waves of high phase speed. We show the phase speed of electrostatic waves in Fig. 4.6

(b) using the dispersion relation in Eq. (4.6) and the model distribution function

functions shown by the red-dashed line in Fig. 4.5. At a given angle θ between the

wavevector k and magnetic field B, the maximum growth rate is calculated with

88



respect to the magnitude of k and is shown in Fig. 4.6 (c). The resulting parallel

phase speed vpz versus θ is shown in Fig. 4.6 (b). The four lines are the phase

speed calculated at times Ωit = 0.4, 0.8, 1.2, 1.6 (black dash-dotted, red dotted,

green solid and blue dashed, respectively). The phase speed increases with time,

especially at small values of θ, transitioning from the Buneman to the electron

two-stream instability. The phase speeds at small θ are around 0, 6, 9 and 10cA,

consistent with the simulation data in Fig. 4.6 (a). The phase speeds at large θ

are much larger than at small θ even at Ωit = 0.4, but as shown in Fig. 4.6 (c)

the corresponding maximum growth rate at this early time is small compared with

the Buneman instability. The growth rates at large angle become comparable to

the rates at small angle at late time, which is consistent with the development of

transverse modes in the simulations at late time.

4.2.2 Electron-electron Two-Stream Instability and the Coherent For-

mation of Electron Holes

The electron-electron two-stream instability takes over from the Buneman in-

stability at late time and continuously sustains the formation of electron holes. The

increasing parallel phase speed enables the wave to resonate with electrons at high

velocity. The simulations show that the electron holes moving faster overtake the

slower electron holes, which then causes the electron holes to break up.

Fig. 4.9 shows the evolution of the electron holes in the midplane of the current

sheet (x− z plane). At Ωit = 0.4, the perturbed electric field Ez propagates parallel

89



Figure 4.9: The spatial structures of the electric field Ez in the midplane of the
current sheet (x− z plane) at times Ωit = 0.4, 0.8, 1.2, 1.6 from the top of the panel
to the bottom, respectively.
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to the magnetic field, and forms many strong intense localized structures. At Ωit =

0.8, these localized structures have coalesced. At Ωit = 1.6, most of the electron

holes have disappeared. The extended structures of the electric field Ez at Ωit = 0.4

have a lifetime of around 0.06Ω−1
i while the round holes at Ωit = 0.8 remain for

0.3Ω−1
i . The bounce time τb = 1/ωb =

√
me

2ek2
z |φ|

where ωb is the bounce frequency

and |φ| is the amplitude of the electric potential. At Ωit = 0.4, Ez ∼ kzφ ∼ 4cAB0/c

and kz ∼ 20/di. Thus τb ∼ 0.01Ω−1
i while the life time of the holes is 0.06Ω−1

i and

the lifetime is of the same order. Thus the electron holes are not very stable though

the electric field is strong. At Ωit = 0.8, Ez ∼ 5cAB0/c and kz ∼ 10/di. Thus

τb ∼ 0.01Ω−1
i , compared to the life time of the holes of 0.3Ω−1

i . The electron holes

are very stable and can be represented by the Bernstein-Greene-Kruskul (BGK)

solutions (Bernstein et al. 1957).

The BGK electron holes are self-sustained electrostatic structures. The grow-

ing electric field traps the electrons resonating with the waves. They satisfy the 1D

stationary Vlasov equation:

v
∂f

∂x
+

e

me

∂φ

∂x

∂f

∂v
= 0, (4.14)

where φ is the electrostatic potential, and f is the electron distribution.

The BGK equation is written in the rest wave frame in which the velocity of

an electron hole vh, the group velocity vg and phase velocity vp of the wave packet

are equal, i.e vh = vg = vp. vh is defined as:

vh =

∫ ∞
−∞

dvdxvf(v, x). (4.15)

vh is the average movement of the the trapped electrons. These trapped electrons
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co-move with the electrostatic wave packet, thus vh equal vg, however, vg does not

equal vp since in general electron holes are not BGK modes and dispersive.

The difference between the phase velocity vpk and group velocity vgk of the

waves produces a key condition on the existence of electron holes. An electron

trapped by an electrostatic wave with (ω, k) propagating with vpk in a wave packet

satisfies

me

2
(v − vpk)2 − e|φk| ≤ 0, (4.16)

and therefore

v ≤ vpk ±

√
2e|φk|
me

, (4.17)

where |φk| is the amplitude of the electric potential. The time τb required for an

electron to be trapped is given by τb = 2π/ωb with ωb = kb

√
2e|φk|
me

where kb is the

wave number of the electron hole. In order for trapping to occur, and therefore for

the electron hole to form, the trapping must take place before the difference between

the group and phase velocities causes the wave amplitude at the particle position

to become small, that is |vgk − vpk|τb < 2π/kb.

Therefore we obtain

|vg − vp| ≤

√
2e|φ|
me

= wb/kb, (4.18)

where the subscript k is dropped.

Both equation (4.17) and (4.18) are the required conditions for the formation

of stable electron holes. It means that the phase speed should be close to the group

velocity or the electric field can’t effectively trap the particles and fails to form an

electron hole. vg ∼ vp is the coherent condition for the formation of BGK holes.
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We have seen that the electron holes continue to form through the entire

duration of our simulations. The parallel electron-electron two-stream instability

dominates the Buneman instability at late time and sustains the electron holes.

The phase speed of the two-stream instability is much larger than the Buneman in-

stability which indicates that inverse Landau-damping occurs at high velocity. How

does the increase of phase speed affect the trapping of electrons and the formation

of electron holes?

Fig. 4.10 shows the theoretical parallel group velocity vgz and parallel phase

speed vpz of the fast growing mode versus the angle θ between the wave vector and

the magnetic field at times Ωit = 0.4, 0.8, 1.2, 1.6, denoted by black dash-dotted, red

dotted, green solid and blue dashed lines. Similar to the parallel phase speed vpz,

the group velocity vgz increases in a similar pace. The parallel group velocity is 2cA

at Ωit = 0.4 and is about 5.5cA at Ωit = 0.8 The group velocity is consistent with

the velocities of the electron holes in our simulations.

The formation of electron holes requires |vpz − vgz| ≤
√

2e|φ|
me

(equation (4.18))

where |φ| ∼ Ez/kz. At Ωit = 0.4, from Fig. 4.9, the upper limit of the formation

condition is
√

2e|φ|
me

= 6cA and from Fig. 4.10 |vpz − vgz| ∼ 2cA so the ratio of√
2e|φ|
me

and vpz−vgz is 0.3, which satisfies the formation condition for electron holes.

At Ωit = 0.8, the upper limit of the formation condition is
√

2e|φ|
me

= 10cA and

|vpz − vgz| ∼ 1cA so the corresponding ratio is 0.1. At Ωit = 1.2, the upper limit

of the formation condition
√

2e|φ|
me

= 6cA and |vp − vg| ∼ 1cA so the corresponding

ratio is around 0.16. At Ωit = 1.6, the formation condition
√

2e|φ|
me

= 5cA and

|vpz − vgz| ∼ 1cA so the corresponding ratio is 0.2. The formation condition for the
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Figure 4.10: The group velocity and phase velocity of the fast growing mode versus
the angle θ at time Ωit = 0.4, 0.8, 1.2, 1.6 denoted by black dash-dotted, red dotted,
green solid and blue dashed line, respectively.
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Figure 4.11: Electron distributions fe(x,v) in phase space (z, vez) at time Ωit =
0.4, 0.8, 1.2, 1.6

.

electron holes are satisfied at all times and vpz is close to vgz. Thus the electron

holes at late time are good approximations of the BGK model.

Fig. 4.11 shows the electron distribution function in the phase space z − vez

at Ωit = 0.4, 0.8, 1.21.6. Electrons circulate in the phase space. At the midpoint of

the position of the holes, the potential is a minimum and the relative velocity of the

trapped electrons and the holes reaches a maximum. At the maximum position of

the holes, the relative velocity of the trapped electrons reaches a minimum. Thus
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the trajectories of the trapped electrons in phase space are closed. If the potential

well is not strong enough to trap the electrons, the electron trajectory in the phase

space can’t close. At Ωit = 0.4, trapping of electrons is not evident. At Ωit = 0.8,

trapping of the electrons is evident since the particle number is nearly constant

on the constant energy surface (me
2

(v − vpz)
2 − eφ = constant). At Ωit = 1.2,

though holes with similar width still exist, the electron’s movement has become

more diffuse. At Ωit = 1.6, the electron holes form a wider diffusion layer. The

diffusion of the electrons is likely caused by the lower hybrid instability interaction

with the high velocity electrons at a similar phase speed. The contribution of the

lower hybrid instability is weak and its contribution to the parallel electric field

Ez = cot(θ)Ex ∼ 0.1Ex. The resulting condition for the trapping of the electrons

is |vp − vg| < 2cA, but the difference between the phase velocity and group velocity

is about 5cA at late time (see Fig. 4.10). Thus the lower hybrid instability is not

strong enough to trap electron. Though the frequency of the lower hybrid instability

is much lower than the frequency of the electron two-stream instability and its action

on the electrons is weak, the interaction of these instabilities causes the trajectories

of the trapped electrons to be stochastic (Sagdeev et al. 1988).

The width of the electron holes in phase space is consistent with the wavelength

of the instability. At Ωit = 0.4, kz ∼ 20/di, its corresponding wavelength is 0.3di

which is close to the width of holes in Fig 4.11. At time Ωit = 0.8, the width of the

holes increases by a factor of two while the wave number of the instability decrease

to kz = 10/di. Its corresponding wavelength is 0.3di which is again close to the

width of holes in Fig 4.11.
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Our simulations show that the condition vpz − vgz < ωb/kz is the important

condition for the formation of the electron holes. The group velocity coherently

increases with the phase velocity of the waves so that the electron holes are sustained.

The system can self-regulate the physical process of wave-particle interactions.

4.3 Nonlinear Development of Streaming Instabilities in Low β Plasma

with ωpe/Ωe > 1

In space magnetized plasmas are often in the regime ωpe/Ωe > 1. The develop-

ment of streaming instabilities in this limit is therefore important. The cold plasma

limit of the growth rate for the Buneman instability is proportional to (me
mi

)
1
3ωpe

and for the electron-electron two-stream instability is proportional to ωpe. Thus

in a magnetized plasma with ωpe/Ωe > 1, both instabilities develop and saturate

on a very short time scale. In this case does the growth rate of electron-electron

two stream instability suppress the Buneman instability at late time as in the case

with ωpe/Ωe > 1 or does something new occur? Would the lower hybrid instability

become weaker or stronger? What roles do the instabilities play in the electron and

ion heating? These problems are poorly understood.

We carry out new simulations to investigate these problems. The initial set up

of the new simulation is similar to the simulations in the case of ωpe/Ωe < 1 except

the light speed is increased to c = 80cA and the plasma frequency is increased to

ωpe = 800Ωi compared to the earlier case where c = 20cA and ωpe = 200Ωi. The

magnetic field configurations in these two cases are the same.
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Figure 4.12: Spatial structures of Ez and Ex in the midplane of the current sheet
(x− z plane) at time Ωit = 0.1, 0.2.
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The evolution time scale of instabilities in this case is about 10 times shorter

than that in the case ωpe/Ωe < 1. At time Ωit = 0.05, bipolar electric field Ez

structures have developed and propagate along the magnetic field. At time Ωit =

0.1, some new features appear while parallel thin bipolar structures still dominate

the spatial structures of Ez and Ex (Fig 4.12). Some localized parts of the bipolar

fields grow intense and extend in z. In the image of Ex, the waves become oblique.

At time Ωit = 0.2, the localized bipolar structures remain. The Ex waves become

almost perpendicular to the magnetic field and the structures mix. The extended

strips seen in earlier simulations are absent.

Fig. 4.13 shows the power spectra of Ex and Ez in the midplane of the current

sheet (x − z). At time Ωit = 0.05, both Ek
x and Ek

z show a parallel mode with

kzdi ∼ 100 which corresponds to the bipolar structures seen in Fig. 4.12. At Ωit =

0.1, in Fig. (c) & (d), Ek
x reveals a new strong mode with (kxdi, kzdi) ∼ (35, 12)

with (δkxdi, δkzdi) ∼ (10, 5). The mode is most clean in the spectrum of Ek
z . A new

weak mode appears near (kxdi, kzdi) ∼ (0, 25) in the Ez spectrum; At Ωit = 0.2, in

Fig. (e) & (f), both spectra almost spread over the whole range of kz.

While the spatial structures mix, the electron distributions look clean. At

Ωit = 0.05, the electron distribution function remains Maxwellian. At Ωit = 0.1, a

long tail appears on the negative velocity side of the electron distribution function.

At Ωit = 0.2, more high energetic electrons move down to the lower band and the

long tail rises up and extends to high velocity, around 10cA.

We again analyze the simulations using the double Maxwellian model to de-

termine which instability dominates as the system develops in time. We use the
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Figure 4.13: Power spectra |Ex(kx, kz)| and |Ez(kx, kz)| of Ex and Ez spatial struc-
tures in the midplane of the current sheet (x− z) at time Ωit = 0.05, 0.1, 0.2, from
the top to the bottom of the panel, respectively.
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Figure 4.14: Electron and ion distribution functions. Blue Dotted line denotes the
ion distribution function. Black solid line, red dashed line and green dash-dotted line
denote the electron distribution functions at times Ωit = 0.05, 0.1, 0.2, respectively.

dispersion function obtained in equation (4.6) which is applicable for waves with

Ωi � ω � Ωe:

1 +
2ω2

pi

k2v2
ti

[1 + ζiZ(ζi)] +
2(1− δ)ω2

pe

k2v2
te1

[1 + I0(λ)e−λζe1Z(ζe1)]

+
2δω2

pe

k2v2
te2

[1 + I0(λ)e−λζe2Z(ζe2)] = 0,

where ζi = (ω − kzvdi)/kvti, ζe1 = (ω − kzvde1)/kzvzte1,ζe2 = (ω − kzvde2)/kzvzte2,

λ = k2
xv

2
xte/2Ω2

e, δ is the weight of low velocity drifting Maxwellian, Z is the plasma

dispersion function and I0 is the modified Bessel function of the first kind with order

zero. The thermal velocity of species j is defined by v2
tj = 2Ttj/mj and the drift

speed by vdj, which is parallel to the magnetic field (z direction).

The model parameters are shown in table (4.2). The weight of the low velocity

drifting Maxwellian δ increases quickly with time, which means that electrons are

dragged to low velocity from high velocity. The thermal velocity of the low velocity

101



Table 4.2: Parameters of Model Dist. Funs.

vzte1 vzte2 vde1 vde2 vti vdi δ

Ωit=0.05 2.8 9 0.5 -0.8 0

Ωit=0.1 3.5 9.3 11.2 1.25 0.5 -0.8 0.47

Ωit=0.2 3.3 10.5 13.4 4.1 0.5 -0.8 0.76

drifting Maxwellian sharply rises. The thermal velocity of the high velocity electron

drifting Maxwellian increases but remains quite small. This indicates that only a

small amount of kinetic energy is converted into thermal energy of high velocity

electrons.

Fig. 4.15 shows the unstable modes at times Ωit = 0.05, 0.1, 0.2 obtained from

the double drifting Maxwellian model in (kx, kz) space. Fig. 4.15 (a) is the growth

rate at Ωit = 0.05 using both electrons and ions when the electron distribution is

a single Maxwellian. One dominant mode appears at (kxdi, kzdi) ∼ (0, 90) with

width (δkxdi, δkzdi) ∼ (50, 30), which is close to the wavelength obtained from the

cold plasma limit of the Buneman instability k ∼ ωpe/vde ∼ 80/di. However, this

mode is not the classical Buneman instability because its maximum growth rate

γmax/Ωi ∼ 80 is much larger than the wave frequency ωfg/Ωi ∼ 10 (frequency is

shown in Fig. 4.16). The frequency of fastest growing mode ωfg is much bigger than

the classical limit Re(ω) = ωpe
2

(me/2mi)
1/3 + kzvdi ∼ −40Ωi (the Doppler effect is

large, because of the ion drift vdi = −0.8cA). The Buneman instability saturates in

a very short time scale 1/γmax ∼ 0.01Ω−1
i .
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Figure 4.15: The 2D theoretical growth rates of unstable modes obtained by the
double drifting Maxwellian model in (kx, kz) space. In (a), the spectrum at time
Ωit = 0.05 when the electron distribution function is a single Maxwellian; in (b)
& (c), the spectra at Ωit = 0.1 & 0.2 using both the electron and ion distribution
functions; and in (d) & (e), the spectra at Ωit = 0.1 & 0.2, but neglecting ions.
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At Ωit = 0.1, two modes appear in Fig. 4.15 (b). The weak one is a paral-

lel mode, centered at (kxdi, kzdi) ∼ (0, 32) with (δkxdi, δkzdi) ∼ (15, 20) and the

strong one is nearly-perpendicular, centered at (kxdi, kzdi) ∼ (30, 10). The maxi-

mum growth rate of the nearly-perpendicular mode is 5 times larger than the weak

mode. To investigate if this parallel mode is electron-electron two-stream instabil-

ity, we calculate the spectrum again without using ions. The result is shown in

Fig. 4.15 (d). We see the spectrum of the two-stream instability can reproduce the

spectrum of the parallel instability. Thus we conclude that the electron-electron

two-stream instability overtakes the Buneman instability at Ωit = 0.1, although its

growth rate is 20 times smaller than the Buneman instability at earlier time. The

two-stream instability is also a fully kinetic mode rather than a mode that can be

described by a fluid model. What is the strong oblique mode? This mode involves

both electrons and ions. Its frequency is about 40Ωi as shown in Fig. 4.16 by the

red-dashed line at θ ∼ 800, which is around the frequency of the lower hybrid wave

obtained in the cold plasma limit ωlh = ωpi/(1 + ω2
pe/Ω

2
e)

1/2 + kzvdi ∼ 34Ωi.

At Ωit = 0.2, there are two modes in Fig. 4.15 (c). These two modes are

of comparable strength and are centered at similar places in (kx, kz) space as the

modes at Ωit = 0.1. Are these two modes the same as before? The spectrum using

only electrons is shown in (e). It is obvious that the spectrum of the electron two-

stream instability is different from the parallel mode in (c) which produces a peak

at kzdi ∼ 15, half of the kz in (c). The phase speed and frequency of the parallel

mode shown by the green dash-dotted line in Fig. 4.16 decreases to the values they

had at Ωit = 0.05. This data implies that the parallel mode is again the Buneman
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instability. This new Buneman instability is a fully kinetic result and far from the

Buneman instability at Ωit = 0.05 which has kzdi ∼ 80. The nearly-perpendicular

mode can be evaluated from the frequency shown by the green dash-dotted line in

Fig. 4.16. Similar to the red dashed line, the green dash-dotted line also decreases

to 40Ωi at θ ∼ 800. Thus the nearly-perpendicular mode is still the lower hybrid

instability.

Until now we have had no difficulties in understanding the spectra extracted

from the simulations. The Buneman instability, with kzdi ∼ 90 occurs at Ωit = 0.05,

is subsequently taken over by the electron two-stream instability and finally a new

Buneman instability with kzdi ∼ 30 arises. The spatial structure produced by the

electron two-stream is weak and transient, leaving fewer hints as to its structure.

The lower hybrid instability produce the strips almost parallel to the magnetic

field which is indicated by the mode with (kxdi, kzdi) ∼ (35, 12) in Fig. 4.15. At

Ωit = 0.2, the new Buneman instability contributes to the new parallel mode with

(kxdi, kzdi) ∼ (0, 50) appearing in Fig. 4.15 (f). These successive instabilities occur

within a time scale 0.2Ω−1
i . One rises before another one dies out, and thus the

spectra evolves rapidly.

However, a question that needs to be answered is what feeds the Buneman

instability and causes it to replace the two-stream instability and keep growing at

late time? The phase speed of the Buneman instability is near zero and it should

decay after saturation if there were no source of free energy. This question is related

to the process of wave-particle interactions and the resulting momentum transport.

Fig. 4.16 shows the phase velocity vpz, group velocity vgz, frequency ωfg and
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Figure 4.17: Parallel phase speed vpz obtained from the simulation by stacking the
cuts of Ex and Ez along z at different times. The slope of the curves is the phase
speed. The image at left is for the time interval 0.3Ω−1

i and z from 0 − 1. The
image at the right is the phase speed vpz shown by Ex during the time interval from
0.2− 0.3Ω−1

i and z from 0− 4.

maximum growth rate γmax of the fast growing mode versus the angle θ between

the wave vector and magnetic field. The black solid line, red dashed line and green

dash-dotted line denote the times Ωit = 0.05, 0.1, 0.2. We see that the phase speed

of the parallel mode is about zero at Ωit = 0.05 when the Buneman instability

dominates. Then the phase speed vpz jumps to about 3cA when the electron two-

stream instability takes over from the Buneman instability at Ωit = 0.1. Finally

the Buneman instability replaces the two-stream instability and the phase speed vpz

drops to zero again. The changing of the phase speed is consistent with what we

obtained from the simulations shown in Fig. 4.17, which is obtained by stacking the

cuts of Ez(x, z) and Ex(x, z) along the z direction in the midplane of the current

sheet (x− z).

Let us look at the phase speed of the lower hybrid instability which is 5cA at

Ωit = 0.1 and rises to 8cA at Ωit = 0.2. The phase speed of the lower hybrid instabil-
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Figure 4.18: Images of electron distributions in phase space (z, vez) at Ωit = 0.1, 0.2.
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ity is just above that of the two-stream instability so this instability might suppress

the two-stream instability. In the case of ωpe/Ωe > 1 the lower hybrid instability

was weaker and the phase speed was much larger so the lower hybrid instability

was not able to suppress the two-stream mode. We conclude that the lower hybrid

dominates at late time when ωpe/Ωe > 1. To investigate if the lower hybrid insta-

bility has a non-negligible contribution to the parallel momentum transport among

electrons, we study the impact of streaming instabilities occurring in the simula-

tions on the formation of electron holes. At Ωit = 0.05, from Fig. 4.16 (denoted by

black solid lines), we have |vgz − vpz| ∼ 4cA, and Ez ∼ 16cAB0/c with kzdi ∼ 90,

then the electron bounce frequency is about ωb/kz ∼
√

2eEz/(kzme) ∼ 6cA, thus

|vgz − vpz| < ωb/kz which marginally satisfies the condition for the formation of

electron holes. At Ωit = 0.1, |vgz − vpz| ∼ 10cA as obtained from the red dashed

lines and Ez increases to 40cAB0/c. The kzdi of the two stream instability is about

30 so the corresponding bounce frequency ωb/kz ∼ 16cA. Thus |vpz − vgz| � ωb/kz

and electron holes can form as shown in Fig. 4.18. At Ωit = 0.2, |vgz − vpz| ∼ 0

(denoted by green dash-dotted lines), which is the coherent condition for the strong

formation of electron holes. However, though the electron holes continue to survive,

the electrons inside the holes are fully randomized as shown in Fig. 4.18. However,

since the electrons are so hot it may be difficult to identify coherent structures in

such phase space plot.

What causes the thermalization of electrons in phase space at late time? We

have shown that the Buneman instability can produce a strong coherent structure in

Ez at Ωit = 0.2. Is it possible that the strong lower hybrid instability is responsible
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for the thermalization? From the theoretical results shown in Fig .4.16, we find that

|vpz − vgz| ∼ 0 for the lower hybrid instability at all time, which is the condition for

the stable electron holes. The parallel phase velocity of Ex within the time interval

0.2− 0.3Ω−1
i is displayed in Fig. 4.17. We see two type of curves. One is horizontal

which indicates vpz ∼ 0, and the other is oblique with vpz ∼ 10cA. However, the

component of Ez caused by lower hybrid instability is very small for θ ∼ 800 and in

general its frequency is much lower than the two-stream instability. At Ωit = 0.1, the

frequency of the electron two-stream is about 100Ωi and the lower hybrid instability

is ∼ 40Ωi. Therefore the lower hybrid instability acts weakly on the electrons even

though the resonant velocity of the two modes are close to one other (two-stream

instability vpz is about 3cA while that of the lower hybrid instability is about 4cA).

However, at Ωit = 0.2, the frequency of the lower hybrid instability is much higher

than the Buneman instability (green dash-dotted lines in Fig. 4.16) and the phase

speed of the Buneman instability is about zero while the lower hybrid instability is

about 10cA. These conditions make it possible for the lower hybrid instability to

interact with the electrons at vpz ∼ 10cA as the Buneman instability interacts with

the electrons at low velocity.

How are the electrons are thermalized by these coupled interactions? The

interaction velocity range of the Buneman instability is about v ∼ vpz ±
√

2eEz
kzme

∼

±10cA and the interaction velocity range of the lower hybrid instability is about v ∼

vpz±
√

2eExcotθ
kxme

∼ 10±4cA which ranges from 6−14cA. Thus the velocity resonances

overlap over 6−10cA, which allows the low velocity electrons to gain momentum from

high velocity electrons. This is consistent with the electron distribution function in
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Fig. 4.14 where the long tail caused by the wave-electron resonances is observed to

extend to high velocity at late time.

4.4 Conclusion

We have studied both the cases with ωpe/Ωe < 1 and ωpe/Ωe > 1.

In the case of ωpe/Ωe < 1, we have shown that in strongly magnetized plas-

mas, both theory and 3D simulations reveal two distinct phases. First, the parallel

Buneman instability grows and traps low velocity electrons. Second, the Buneman

instability evolves into two distinct instabilities: the parallel two-stream instability

and the nearly-perpendicular lower hybrid instability. The two-stream instability

continuously sustains the electron holes that first formed due to the Buneman in-

stability while the lower hybrid instability drives turbulence in the perpendicular

direction. The high phase speed of the waves at late time couples the highest velocity

streaming electrons to the ions and low velocity electrons.

In the case of ωpe/Ωe > 1, we have observed three distinct phases of the

development of streaming instabilities from both kinetic theory and 3D simulations.

First, the Buneman instability develops and quickly decays. Second, the Buneman

instability is taken over by a weak electron two-stream instability and strong lower

hybrid instability. Third, the electron two-stream instability stops growing, and

instead, a new Buneman instability with longer wavelength overtakes and grows

with a growth rate comparable to that of the lower hybrid instability. The lower

hybrid instability interacts with high velocity electrons and transfers the momentum
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Figure 4.19: Cuts of the electron drift vde = −jez/ene in the midplane x− z of the
current sheet at Ωit = 0.4, 1.6 in the solid and dashed lines, respectively.

to low velocity electrons in phase space to feed the growth of the Buneman instability.

During reconnection the electron two-stream and lower hybrid instabilities

might prevent high velocity electrons runaway, facilitating the breaking of the frozen-

in condition required for fast reconnection. Through the turbulence, the kinetic

energy of electron streaming is converted into the thermal energy of electrons. The

drift velocity drops while the thermal velocity of electrons increases significantly.

Fig. 4.19 shows the cuts of current along z at midplane x − z of current sheet at

Ωit = 0.4, 1.6. The drift velocity of the electrons drops from the initial value at 10cA

to 6cA within a time interval of 1.2Ω−1
i through turbulence induced drag.
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Chapter 5

Nonlinear Development of Streaming Instabilities

in 3D Magnetic Reconnection

We have discussed 3D PIC simulations of magnetic reconnection in Chapter

III. In the low temperature simulations of 3D magnetic reconnection with a guide

field, the Buneman instability occurs around the x-line at the beginning of the

simulations. A major difference between the simulation of magnetic reconnection

with a guide field and the simulations introduced in Chapter IV is the reconnection

electric field produced around the x-line in magnetic reconnection simulations. This

reconnection electric field accelerates electrons and drives an intense beam. How the

development of streaming instabilities are affected by the acceleration of electron

streams is poorly understood (Omura et al. 2003; Rowland et al. 1981). In this

chapter we will perform detailed analysis of the evolving development of streaming

instabilities in the simulations of the low temperature magnetic reconnection that

we have discussed in Chapter III.

In this chapter, we show that Buneman instabilities occur at the beginning of

the magnetic reconnection simulations but then the Buneman instability decays and

the lower hybrid instability dominates. Electron-electron two stream instabilities do

not develop. Parallel to the magnetic field, the lower hybrid waves resonate with

the electrons at higher velocity and form electron holes which move at high speed
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along the magnetic field. Late in time the lower hybrid instability drags electrons

to low velocity, which again drives the Buneman instability. The instability forms

electron holes which move slowly along magnetic field. The overlapping of resonance

of the Buneman instability and the lower hybrid instability feeds the growth of the

Buneman instability and stabilizes the lower hybrid instability. Perpendicular to the

magnetic field, the lower hybrid waves resonantly interact with the ions and enables

the transfer tmomentum from electrons to ions.

5.1 Lower Hybrid Instability Dominating Evolution

At the beginning of simulations, the Buneman instability is driven by the elec-

tron streaming around x-line. The resonance velocity is around [me/(2mi)]
1/3vde ∼

−0.68cA, where the initial electron drift velocity vde is −4cA. From the electron dis-

tribution function at Ωit = 1 in Fig. 5.1, we see a bump caused by inverse-Landau

damping appearing around the resonance velocity.

The Buneman instability creats strong bipolar structures and these bipolar

structures evolve into two distinct structures at late time. In Fig. 5.2, at Ωit = 3, the

spatial structures of the electric field Ez around the x-line (x ∼ 1di) is characterized

by the round holes while the spatial structures of electric field Ex is characterized

by the oblique strips. The similar structures appeared before in the simulations

with ωpe/Ωe < 1 introduced in Chapter IV. A natural question is whether these

structures are caused by the same physical processes?

Fig. 5.3 shows the power spectra of |Ex(kx, kz)|2 and |Ez(kx, kz)|2. The power
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Maxwellian model.
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Figure 5.2: Spatial structures of Ex and Ez at Ωit = 3 in the midplane of the current
sheet (x− z).

spectra of Ez shown by Fig. 5.3 (b, d, e) has a peak around (kxdi, kzdi) ∼ (0, 20)

with width (δkxdi, δkzdi) ∼ (10, 10). Another peak has a large k⊥ with (kxdi, kzdi) ∼

(30, 10).

To learn more about the two unstable bands appearing during reconnection,

in Fig. 5.4 we plot cuts of Ex(z) and Ez(z) along z around the x-line at a series

of times. The movement of the peaks and valleys form curves. The slope of these

curves is the phase speed vpz. Before Ωit = 1, the slopes calculated from both

Ex and Ez are around vpz ∼ −1cA, which is close to the resonance phase speed of

Buneman instability. At late time, two different phase speed appear, one is about

−0.3cA and the other is about −6cA which means there are two different waves

acting on the electrons. This is substantially different from the results we obtained

in the corresponding simulations in chapter IV. What are these waves and what role

do they play in the formation of the electron holes?

To investigate the detailed physics, we calculate the theoretical spectra using
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Figure 5.3: 2D power spectra |Ex(kx, kz)|2 and |Ez(kx, kz)| at Ωit = 1, 3, 4 in the
midplane of the current sheet (x − z), denoted by (a,b), (c,d), (e,f), respectively.
The power spectra are shown in logarithmic scale.
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Figure 5.4: The cuts of Ex(z) and Ez(z) along z at x-line versus time. The slope of
the curves is the phase speed vpz.

the double-Drifting Maxwellian model with the dispersion relation obtained earlier

for waves with Ωi � ω � Ωe:

1 +
2ω2

pi

k2v2
ti

[1 + ζiZ(ζi)] +
2δω2

pe

k2v2
te1

[1 + I0(λ)e−λζe1Z(ζe1)]

+
2(1− δ)ω2

pe

k2v2
te2

[1 + I0(λ)e−λζe2Z(ζe2)] = 0,

where ζi = (ω − kzvdi)/kvti, ζe1 = (ω − kzvde1)/kzvzte1, ζe2 = (ω − kzvde2)/kzvzte2,

λ = k2
xv

2
xte/2Ω2

e, δ is the weight of low velocity drifting Maxwellian, Z is the plasma

dispersion function and I0 is the modified Bessel function of the first kind with order

zero. The thermal velocity of species j is defined by v2
tj = 2Ttj/mj and drift speed

by vdj, which is parallel to the magnetic field (z direction). The ions are taken to

be isotropic.

The fitting parameters of distribution functions denoted by red dashed lines in
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Table 5.1: Parameters of Model Dist. Funs.

vzte1 vzte2 vde1 vde2 vti vdi δ

Ωit= 1 2.8 1.1 -4.2 -0.1 0.3 0 0.07

Ωit= 3 3.6 3.5 -9.0 -2.0 0.3 0 0.16

Ωit= 4 4.0 4.2 -9.0 -5.0 0.34 0.1 0.26

Fig. 5.1 are listed in the table 5.1. Note that the fitting is not as good as in the case

of ωpe/Ωe < 1 in Chapter III,the resulting wave spectra seem to fit simulations very

well. Note that δ increase more than 30 times from Ωit = 1 to Ωit = 4, which means

that high velocity electrons are diffused into the low velocity band, as indicated by

the increasing of vzte2 which is the thermal velocity of the low velocity electrons.

The corresponding theoretical unstable modes obtained from the dispersion

relation are shown in Fig. 5.5. Fig. 5.5 (a) is the spectrum at Ωit = 0. Initially

electron distribution function is a single Maxwellian, and the Buneman instability

has a peak growth rate around kzdi ∼ 25, which is two times smaller than the

wavenumber of fast growing mode from cold plasma limit kz ∼ ωpe/vde ∼ 50/di.

The growth rate of the fastest growing mode is γmax ∼ 5, much lower than the cold

plasma limit γmax ∼
√

3ωpe/2[(me/2mi)
1/3] ∼ 28. These differences are caused by

the thermal effects. In this regime the Buneman instability needs to be treated as

a kinetic rather than a fluid-like instability.

At Ωit = 1, the parallel mode shifts to (kxdi, kzdi) = (0, 20) and remains

steadily at the same location during the reminder of the simulation, which is con-
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Figure 5.5: From the top to the bottom, theoretical spectra obtained by the double
drifting Maxwellian model at Ωit = 0, 1, 3, 4, respectively. (a), (b), (c) and (d)
obtained from contribution of both electrons and ions; (e), (f) and (g) obtained
from the contribution of electrons, but neglecting that of the ions.
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sistent with the parallel mode we found in the power spectra from the simulations

shown in Fig. 5.3. Is this mode still the Buneman instability or is it the electron-

electron two-stream instability? To answer this question, we exclude the ions and

the spectra produced by the remaining electrons at Ωit = 1, 3, 4 are shown by Fig. 5.5

(e, f, g). The surviving mode is an electron-electron two-stream instability whose

growth rate and kz are much smaller than the Buneman mode. Thus we conclude

that the parallel mode is still the kinetic Buneman instability.

A second mode appears at Ωit = 1 around (kxdi, kzdi) = (35, 20), and at

Ωit = 3, this mode moves to around (kxdi, kzdi) = (30, 10), and becomes dominant.

Gradually this nearly-perpendicular mode weakens and becomes very weak at Ωit =

4. This mode is the nearly-perpendicular mode we discussed in Fig. 5.3.

What is the nearly-pependicular mode? Why does it weaken while the par-

allel Buneman instability remains steady? To answer these questions, we calculate

the parallel phase speed vpz, frequency ω and group velocity vgz for unstable waves

around the x-line and show the evolution of the physical parameters of fastest grow-

ing mode versus θ, the angle between the wave vector and the magnetic field. The

results are shown in Fig. 5.6.

At Ωit = 1, shown by black solid line, the phase speed vpz of both the parallel

and nearly-perpendicular modes is around 1cA. This is consistent with the phase

speed for both Ex and Ez propagating along z at early time in the simulations which

is shown in Fig. 5.4. At late time, the phase speed of the parallel mode is still around

−1cA consistent with the Buneman instability while the nearly -perpendicular mode

goes up to −4cA at Ωit = 3, and −7cA at Ωit = 4. These two modes have comparable
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Figure 5.6: Theoretical phase velocity vpz, group velocity vgz, frequency ωfg and
maximal growth rate γmax of the fastest growing mode around the x-line versus
angle θ between the wave vector and the magnetic field. Black solid line, red dashed
line and green dash-dotted line denote the results at Ωit = 1, 3, 4, respectively.
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growth rates during the evolution of the system, so we observe two distinct phase

speeds at late time. The parallel waves resonate with the low velocity electrons

while the nearly -perpendicular waves resonate with the high velocity electrons.

Unlike the parallel mode, the frequency of the nearly-perpendicular mode at

different times is around ωfg ∼ 10Ωi, about half of the frequency of the cold plasma

limit for the lower hybrid frequency ωlh = ωpi/(1 +ω2
pe/Ω

2
e)

1/2 +kzvdi ∼ 18.5Ωi. The

nearly-perpendicular mode should be the lower hybrid instability, which resonates

with ions moving perpendicular to B. To further investigate this perpendicular

mode, we show in Fig. 5.7 the perpendicular phase speed vpx around the x-line

from simulations and the kinetic theory. vpx of the Ex waves around the x-line

propagating along x in the simulations is obtained by stacking the cuts of Ex along

x at successive times. |vpx| increases from ∼ 0.2cA at Ωit = 1 to ∼ 0.8cA at

Ωit = 4. vpx is symmetric with respect to the magnetic field so vpx is either positive

or negative. This is consistent with the theoretical calculation shown in Fig. 5.7.

The nearly-perpendicular mode has strong interactions with ions since its phase

speed is within the thermal range of the ion distribution function. Thus we confirm

that this perpendicular mode is the lower hybrid instability.

The perpendicular waves propagate along x and are dissipated as they heat the

ions. Fig. 5.8 shows the ion distribution functions at Ωit = 1, 3, 4 in the blue solid

line, red dashed line and green dash-dotted line, respectively. We see that the width

of the ion distribution function become wider at late time, but not significantly.

So this indicates that the lower hybrid wave only transfers a small fraction of the

energy from high velocity electrons to ions. Where does the majority of the energy
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Figure 5.7: Perpendicular phase speed vpx. Top: the stack plot of the cuts of Ex(x)
around the x-line in 3D magnetic simulations at successive times that trace the mo-
tion of peaks or valleys of the wave Ex along x. Bottom: Theoretical perpendicular
phase speed vpx versus the angle θ at Ωit = 1, 3, 4, denoted by black solid, red dashed
and green dash-dotted lines, respectively.
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Figure 5.8: Ion distribution function for vx at Ωit = 1, 3, 4, denoted by blue solid
line, red dashed line and green dash-dotted line, respectively.

go?

The evolution of the streaming instabilities is now clear, but two puzzles re-

main. One is what continuously supports the Buneman instability and the other

is what is the sink of the momentum transferred from the high velocity electrons

by lower hybrid instability. The answers to these two questions are the keys to

understanding the coherent relation that builds up among the instabilities and the

mechanism of momentum transport in this turbulence.

The formation condition of electron holes is |vpz−vgz| <
√

2e|φ|/me. At Ωit =

1, 4,
√

2e|φ|/me ∼ 3cA for the parallel Buneman instability and
√

2e|φ|/me ∼ 1.6cA

for the lower hybrid instability, where we calculate φ = Exctanθ/kx for the lower

hybrid instability, and φ ∼ Ez/kz for the Buneman instability using Ex ∼ Ez ∼

1cAB0/c and kzdi ∼ 20. At Ωit = 3, for the Buneman instability
√

2e|φ|/me ∼ 5cA

and for the lower hybrid instability
√

2e|φ|/me ∼ 3cA, where we take Ez ∼ Ex ∼
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Figure 5.9: Electron distribution functions in phase space (z, vez) at Ωit = 1, 3, 4.
The intensity of f(vez, z) is lowered by 104 times.

2cAB0/c. Going back to Fig. 5.6, we find that both the Buneman instability and

the lower hybrid instability satisfy |vpz − vgz| ∼ 0. Therefore, both instabilities

can lead to the formation of stable electron holes. This conclusion is supported by

the two phase speeds observed around the x-line in the simulations of 3D magnetic

reconnection (Fig. 5.4): one has a velocity close to zero while the other moves much

faster. These observations from the simulations are consistent with the low phase

speed vpz and group velocity vgz for the Buneman instability and high vpz and vgz

for the lower hybrid instability.

Electron distribution functions in phase space (z, vez) are shown in Fig. 5.9.

At Ωit = 1, the resonance velocity range for the Buneman instability is around
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−4cA < v < 2cA and for the lower hybrid instability is −2.6cA < v < 0.6cA, where

we have used the relation |v − vp| <
√

2eφ/me. The overlapping of the resonant

velocities within −2.6cA < v < 0.6cA causes the chaotic motion of electrons in

phase space. The frequency of the lower hybrid wave is close to the frequency of the

Buneman instability, so the action of the lower hybrid instability on the electrons is

as important as that of the Buneman instability. At Ωit = 3, the resonance velocity

range is −5cA < v < 5cA for the Buneman instability and −8cA < v < 1cA for the

lower hybrid instability. The overlapping resonant velocity range is −5cA < v < 1cA.

When the electrons circulate in the phase space in this velocity range, the momentum

is transferred from high velocity electrons to low velocity electrons. This process

continues to provide sufficient energy for the growth of Buneman instability and

gradually stabilizes the lower hybrid instability. Such stochastic motion of electrons

also might lead to the destruction of electron holes. At Ωit = 4, the lower hybrid

instability is weak and the Buneman instability drives the unstable waves. The

lower hybrid instability is too weak to continuously produce electron holes and

most of the electron holes vanish. A few new holes form because of the Buneman

instability. These holes trap electrons in the phase space −3cA < v < 3cA. This

is consistent with the hole appearing at (z, vp) ∼ (3.7, 0) in Fig. 5.9. These holes

quickly decay because of the saturation of the Buneman instability when the lower

hybrid instability has been stabilized.

The momentum is finally transported from high velocity electrons to ions

through the interaction of the lower hybrid and Buneman instabilities.
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5.2 Conclusion

In this chapter, we analyzed the nonlinear development of streaming insta-

bilities in 3D magnetic reconnection. The major difference from the simulations

in Chapter IV is that the electron-electron two-stream instability does not appear.

The phase speed of the lower hybrid instability increases from about zero to high

velocity. This instability suppresses the electron two-stream instability, whose reso-

nant velocity is similar to that of the lower hybrid instability. Playing a similar role

to the Buneman instability, the lower hybrid waves resonate with parallel moving

electrons and cause the formation of electron holes. Through the overlapping of

resonances in phase space, the lower hybrid instability transfers momentum from

high velocity electrons to low velocity electrons which act as the energy source for

the growth of the Buneman instability, and which finally transfers the momentum

to the ions. The overlapping of the resonances also leads to the destruction of the

electron holes.

The formation and destruction of electron holes redistribute the energy in elec-

tron velocity space. Anomalous resistivity is enhanced by the momentum transfer

in phase space. As we have shown in Chapter III, the acceleration of the electrons

at the x-line decreases to zero at late time in the simulations of the low temperature

reconnection since the reconnection electric field being balanced by the turbulence

drag. Note, however the turbulent dissipation does not increase the magnetic recon-

nection rate which is consistent with the insensitivity of reconnection to dissipation

mechanism documented earlier (Shay & Drake 1998; Hesse et al. 1999; Birn et al.
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2001).
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Chapter 6

Conclusions and Discussions

We have discussed the nonlinear development of streaming instabilities in three

different simulations which are based on a similar initial configuration. Two simula-

tions are designed to focus on streaming instabilities in the absence of reconnection

— the limited domain size in the direction perpendicular to the direction of electron

drift inhibits reconnection. The streaming velocity is high enough for the Buneman

instability to grow at the beginning of the simulations. Case 1 has ωpe/Ωe = 0.4

and case 2 has ωpe/Ωe = 1.6. Case 3 is a simulation of magnetic reconnection with

ωpe/Ωe = 0.4.

In these three cases, the development of the nonlinear streaming instabilities

are similar but there are significant differences. What is common in these three

cases? What important physics has been clarified? What physics remains unclear?

In case 1, the Buneman instability (BI) dominates early but is overpowered

by the electron-electron two-stream instability (ETS). The phase speed of the ETS

increases with time and waves resonate with the high velocity electrons at late time,

which sustains the formation of electron holes after the saturation of Buneman

instability. The nearly-perpendicular lower hybrid instability (LHI) is weak and its

parallel phase speed is very high. The high phase speed allows momentum to be

transfered from high velocity electrons to low velocity electrons and ions.
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In case 2, the electron-electron two-stream instability (ETS) again overpow-

ers the Buneman instability (BI) early in time and in turn is overpowered by the

lower hybrid instability (LHI). The parallel phase speed of the lower hybrid insta-

bility exceeds that of the Buneman instability and then further increases with time.

The lower hybrid instability dominates and resonates with the fast electrons, which

quenches the electron-electron two-stream instability. The momentum flows from

fast electrons to slow electrons through overlapping of resonances (OLR) of the BI

and LHI in phase space. The LHI therefore feeds the growth of the Buneman insta-

bility, which becomes comparable in strength to the lower hybrid instability at late

time. The width of the resonance velocity is estimated to be |v − vp| ∼
√

2eφ/me

where φ is the amplitude of the potential of the electrostatic waves.

In case 3, the electron beams around the x-line are accelerated by the magnetic

reconnection electric field from 4cA to 10cA until the turbulence drag balances the

acceleration (see Chapter III). The Buneman instability occurs at the beginning

of the simulations and then the lower hybrid instability dominates. The parallel

phase speed of the nearly perpendicular lower hybrid instability starts off close to

zero and increases to high velocity at late time. The electron-electron two-stream

instability is suppressed. The overlapping resonance (OLR) of the BI and LHI again

transfers the momentum from high velocity electrons to low velocity electrons, which

sustains the growth of Buneman instability and eventually weakens the lower hybrid

instability. Both the Buneman instability and the lower hybrid instability can form

electron holes.

In all of these three simulations, turbulence dissipates the kinetic energy of
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Figure 6.1: Top: a schematic for the evolution of the electron distribution function
in case 1 (ωpe/Ωe = 0.4). Bottom: Electron distribution function in phase space
z − vez in case 1.

the electron beams into thermal energy of electrons and ions.

From the results summarized above, we have developed a global picture of

the competition between the electron-electron two stream (ETS) and lower hybrid

instability (LHI), the momentum transport by the turbulence and the turbulent

dissipation. In the following, three schematic diagrams of the evolving electron

distribution function show the competition among the streaming instabilities.
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In Fig. 6.1, the schematic diagram of the electron distribution function shows

the evolution of streaming instabilities in case 1 with ωpe/Ωe = 0.4. In this case the

BI traps low velocity electrons, forming an electron distribution with two distinct

peaks. These peaks cause the ETS to grow. The electron-electron two-stream

instability continues to drive electron holes at late time. In parallel with the ETS,

the LHI develops and resonates with high velocity electrons. The range of the

resonance velocity of the two-stream and the lower hybrid instabilities overlap at

late time, and the electron trajectory become chaotic, destroying the electron holes

(see the electron distribution function in phase space at time Ωit = 1.2, 1.6).

In Fig. 6.2, we can see the difference of the evolution of the streaming insta-

bility between case 2 and case 1. In both cases, BI occurs first and then leads to the

ETS. The difference is that the LHI resonates with electrons at a velocity just above

the the resonance velocity of two-stream instability, which blocks the development

of two-stream instability. Instead, the Buneman instability grows and the parallel

speed of the lower hybrid instability increases with the time. The increasing parallel

phase speed of the LHI enables it to tap the energy of high velocity electrons and

pull them down to low velocity where they in turn drive the BI. The overlapping of

resonance causes the trajectories of electrons in the phase space to be completely

randomized (see the electron distribution function in phase space at time Ωit = 0.2).

In Fig. 6.3, we show the schematic evolution of electron distribution function

in 3D magnetic reconnection. Case 3 has the same ratio of ωpe/Ωe as case 1, but

the development of the streaming instability is more like case 2. After the initial BI

saturates, the LHI grows and resonates with the intermediate velocity electrons. As
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Figure 6.2: Top: a schematic for the evolution of electron velocity distribution
function in case 2 (ωpe/Ωe = 1.6). Bottom: Electron distribution function in phase
space z − vez in case 2.

134



Figure 6.3: Top: a schematic for the evolution of electron velocity distribution
function in case 3 (ωpe/Ωe = 0.4) with reconnection. Bottom: Electron distribution
function in phase space z − vez in case 3.
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a result the ETS is completely suppressed. The parallel phase speed of the LHI then

increases with time, which leads to the fast growth of the LHI as it taps the energy

of high velocity electrons. The LHI quickly dominates the dynamics. As in case 2,

the overlapping of the resonance between the BI and the LHI sustains the BI and

finally weakens the LHI. The resulting chaotic motion of electrons in phase space

destroys the electron holes formed by the Buneman and lower hybrid instabilities.

From these three cases, we can conclude:

1: Lower hybrid instability dominates the development of streaming instabil-

ities in low β plasma. The growth of electron-electron two-stream instability or

Buneman instability depends on the parallel phase speed of the lower hybrid in-

stability. If its parallel phase speed is larger and leaves sufficient velocity space

for electron-electron two-stream instability to grow, the two-stream instability takes

over the Buneman instability and can dominate the process. If not, then the two-

stream instability will be suppressed and the Buneman instability grows.

2: The instability with the high phase speed can tap the energy of the high

velocity electrons and dominate the process, like the electron two-stream instability

in case 1 and the lower hybrid instability in cases 2 and 3. The strong lower hybrid

instability can also form electron holes.

3: The condition for the formation of stable electron holes requires |vp− vg| <√
2e|φ|/me, where φ is the amplitude of the electric potential.

4: The overlapping resonance in phase space is the dominant mechanism for

transporting the momentum and energy from the high velocity electrons to the low

velocity electrons. It also leads to the chaotic motion of electrons in phase space

136



and finally to the destruction of electron holes.

5: The birth and destruction of the electron holes transforms the kinetic energy

of electron beams into thermal energy of electrons and ions and acts as an effective

drag on electrons. As a result, turbulence induced anomalous resistivity can play

an important role in fast magnetic reconnection.

What is unclear to us is what determines the phase speed of the lower hybrid

instability and electron-electron two-stream instability. The dynamics is determined

by their phase speed.

In our studies turbulence effectively converts the electron streaming energy into

thermal energy. However, the turbulent dissipation does not significantly accelerate

the process of magnetic reconnection. The simulation studies in past years on fast

magnetic reconnection show that the Hall effect facilitates fast reconnection and

that the reconnection rate is independent of the mechanism of dissipation (Shay &

Drake 1998; Hesse et al. 1999; Birn et al. 2001). Our results seem consistent with this

result. However, it remains unclear if anomalous resistivity facilitate fast magnetic

reconnection without the Hall effect which is generically contained within the PIC

mode (Kulsrud 1998; Ji et al. 1998; Kulsrud et al. 2005). This issue requires further

exploration. Electron-positron magnetic reconnection might be a good choice to

study the role of anomalous resistivity in which Hall effect is absent and turbulence

is dominant.
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