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When selling divisible goods such as energy contracts or emission allowances,

should the entire supply be auctioned all at once or should it be spread over a

sequence of auctions? How does the expected revenue in a sequence of uniform price

auctions compare to the expected revenue in a single uniform price auction? These

are questions that come up when designing high-stake auctions and this dissertation

provides answers to them. In uniform price auctions, large bidders have an incentive

to reduce demand in order to pay less for their winnings. In a sequence of uniform

price auctions, bidders also internalize the effect of their bidding in early auctions

on the overall demand reduction in later auctions and discount their bids by the

option value of increasing their winnings in later auctions. This dissertation shows

that a sequence of two uniform price auctions yields lower expected revenue than a

single uniform price auction particularly when competition is not very strong.

It is generally argued that forward trading is socially beneficial. Two of the

most common arguments state that forward trading allows efficient risk sharing

and improves information sharing. It is also believed that when firms can produce



any level of output, strategic forward trading can enhance competition in the spot

market by committing firms to more aggressive strategies. However, firms usually

face capacity constraints, which change the incentives for strategic trading ahead

of the spot market. This dissertation also studies these incentives through a model

where capacity constrained firms engage in forward trading before they participate

in the spot market, which is organized as a multi-unit uniform-price auction with

uncertain demand. This dissertation shows that when a capacity constrained firm

commits itself through forward trading to a more competitive strategy in the spot

market, it actually softens competition in the spot market. Hence, its competitor

prefers not to follow suit in the forward market and thus behave less competitively

in the spot market than otherwise. Moreover, strategic forward trading generally

leaves consumers worse off as a consequence of less intense competition in the spot

market.
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Chapter 1

Introduction

In a uniform price auction bidders have an incentive to shade their bids (i.e.

reduce demand) in order to lower the price they pay for their purchases1. This

incentive grows with the quantity demanded and is inversely related to the size of

bidders, measured by the maximum quantity they want to buy2. When bidders can

choose their sizes or choose to behave as if they have different sizes, bidders have

more degrees of freedom on determining the optimal bid shading. This dissertation

studies two environments where bidders enjoy that extra freedom. In the first case

the focus is on a sequence of uniform price auctions, while in the second case the

focus is on strategic trading ahead of a uniform price auction.

1.1 Sequential Uniform Price Auctions

When designing high-stake auctions, such as auctions for energy contracts or

emission allowances, one of the first questions that come up is whether to have a

single auction or to spread the supply (or demand in a procurement case) over a se-

quence of auctions. More often than not the decision has been to have a sequence of

1In a procurement auction, bidders have an incentive to inflate their bids or reduce their supply

to increase the price they receive.
2In a procurement auction, a bidder’s size is measured by the maximum quantity he wants to

supply.
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auctions. The Regional Greenhouse Gas Initiative (RGGI) which comprises the 10

northeastern states in the U.S. allocates CO2 emission allowances among electricity

generators within the region by means of a sequence of uniform price auctions. The

supply of a given vintage of CO2 emission allowances is spread over four annual auc-

tions and four quarterly auctions.3. Electricity supply contracts are sold quarterly

by Electricitè de France, Endesa and Iberdrola (Spain) and were sold by Electrabel

(Belgium) through the so called virtual power plant auctions4. Gas release pro-

gramme auctions is the name used for the annual auctions of natural gas contracts

used by Ruhrgas, Gas de France (GDF) and Total among others5. The New York

Independent System Operator allocates installed capacity payments through a se-

quence of monthly uniform price auctions6; and the Colombian system operator will

procure forward electricity supply contracts to match the annual forecast electricity

demand by means of a sequence of four quarterly auctions7.

The seller looks for the auction format that is best suited for achieving her main

goals of revenue maximization and efficiency. Sometimes, the seller is also interested

in the market that results after the auction, like in spectrum auctions, and prefers

an auction that yields a diverse pool of winners even at the expense of revenue

maximization and efficiency. There are several features of the market that should

3See Holt et al. (2007) for more details on the auction design for CO2 selling emission allowances

under the RGGI.
4See www.powerauction.com and Milgrom (2004) for more details on virtual power plant auc-

tions.
5See www.powerauction.com for more details on gas release programme auctions.
6See Installed Capacity Manual (2008), NYISO for more details on installed capacity auctions.
7See Cramton (2007) and www.creg.gov.co for more details on the Colombian electricity market.
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be considered when deciding between a single auction and a sequence of auctions

such as transaction costs, budget or borrowing constraints, private information and

bidders’s risk aversion.

When the transaction costs of bidding in an auction are high relative to the

profits bidders can expect to make in that auction, participation in the auction can

be expected to be low, which tends to have a negative effect on expected revenues.

For this reason, the seller might prefer a single auction over a sequence of auctions

to keep transaction costs low. In the event that bidders face budget or borrow-

ing constraints a single auction might limit the quantity they can buy, while in a

sequence of auctions bidders have the chance to raise more capital if needed. A se-

quence of sealed-bid auctions is somewhere between a single sealed-bid auction and

an ascending auction in terms of the private information revealed through the auc-

tions. Hence, when there is private information about the value of the good being

auctioned, a sequence of sealed-bid auctions improves the discovery of the collective

wisdom of the market relative to a single sealed-bid auction, possibly increasing ex-

pected revenues. Since the price in an auction might be too high or too low due to

some unexpected events, risk averse infra-marginal bidders (i.e. bid-takers) prefer a

sequence of auctions over a single auction. If there is a single auction, infra-marginal

bidders might end up paying too high or too low a price for all their purchases. But,

in a sequence of auctions this risk is reduced since the prices bidders pay for their

purchases are determined at several points in time. In the presence of risk averse

bidders the seller might also prefer a sequence of sealed-bid auctions, since such

auction format might increase the seller’s expected revenues not only by increasing
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participation of risk averse bidders, particularly bid-takers, but also by encouraging

marginal bidders to bid more aggressively due to a weaker winner’s curse in a case

with affiliated information8.

In addition, the effect of strategic bidding on revenue generation and efficiency

should be considered when deciding between a single auction and a sequence of auc-

tions. There is an extensive literature that studies equilibrium bidding, revenue

generation and efficiency in sequences of single object auctions, such as sequences of

first price, second price or even English auctions9. However, there is no theoretical

nor empirical research that studies sequences of divisible good auctions. But, in

several real-world cases where sequences of auctions are used, such as those men-

tioned before, the auctioneer sells a divisible good. Moreover, we know from the

case of a single auction, that divisible good auctions are not a trivial extension of

single object auctions; hence one should not expect the results from sequential sin-

gle object auctions to extend over to the case of sequential divisible good auctions.

Therefore, studying strategic bidding in a sequence of divisible good auctions as well

as the efficiency and revenue generation properties of this type of auctions is not

only relevant from an academic perspective, but also from a practical standpoint.

Chapter 2 studies a sequence of two uniform price auctions for a divisible

good in a pure common value model with symmetric information and aggregate

8In the case of common-values with affiliated signals, the extra information that is revealed

through the sequence of auctions reduce the winner’s curse and the real risk imposed by aggressive

bidding.
9See Weber (1983), Milgrom and Weber (1999), Ashenfelter (1989), McAfee and Vincent (1993),

Bernhardt and Scoones (1994), Jeitschko (1999), Katzman (1999).
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uncertainty. The unique profile of equilibrium bid functions in the second auction is

fully characterized, as well as the entire set of equilibrium bid functions in the first

auction. Using the characterization of equilibrium bidding, the revenue generation

properties of the sequence of two uniform price auctions are compared with those of

a single uniform price auction. A sequence of uniform price auctions was chosen over

a sequence of pay-as-bid auctions because uniform price auctions are more widely

used in energy and emission allowance markets, and there is a growing trend toward

the use of this type of auctions in other markets.

Ausubel and Cramton (2002) show bidders in a uniform price auction have an

incentive to shade their bids (i.e. reduce demand) in order to lower the price they

pay for their purchases. This incentive grows with the quantity demanded and is

inversely related to the size of bidders, measured by the maximum quantity they

want to buy. In each auction of a sequence of two uniform price auctions bidders

have the same incentive to shade their bids, since spreading the supply over two

auctions does not change the fact that a bidder behaves like a residual monopsonist.

At the first auction of the sequence, bidders know that if they do not buy all the

quantity they want in that auction, they still have another opportunity to do so

in the second auction. Therefore, bidders discount their first auction bids by the

option value of increasing their purchases in the second auction. This is similar to

the case of a sequence of single object auctions, where bidders discount their bids

in an auction by the option value of participating in later auctions (Milgrom and

Weber (1999), Weber (1983), Bernhardt and Scoones (1994) and Jeitschko (1999)).

In a single uniform price auction or in the first auction of the sequence, the
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maximum quantity each bidder wants to buy (i.e. his demand) is exogenous. How-

ever, in the second auction of the sequence bidders’ demands are endogenous, be-

cause they depend on the quantities bought in the first auction. Since the bid

shading in the second auction depends on bidders’ demands in that auction, bidders

have an incentive to shape the bid shading in the second auction through their bid-

ding in the first auction. In equilibrium, one bidder holds back in the first auction,

by bidding lower prices than his competitors. In that way, this bidder reduces his

competition in the second auction by letting the other bidders buy larger quanti-

ties in the first auction than otherwise. This feature of equilibrium will be called

dynamic bid shading to differentiate it from the static bid shading described by

Ausubel and Cramton (2002). The bidder who benefits the most from this strategic

behavior is the largest bidder, because by having a larger demand he can profit the

most from the more intense bid shading in the second auction.

The static and dynamic bid shading together with the discounting of the option

value of increasing the quantity purchased in the second auction reduce the seller’s

expected revenue when using a sequence of two uniform price auctions. The dynamic

bid shading and the option value discounting, which are not present in single uniform

price auction, are particularly strong when there are few bidders and at least one of

them demands a small share of the supply. These features of equilibrium bidding

are even stronger when the supply is split evenly between the two auctions of the

sequence. Hence, in those cases it is certainly more profitable for the seller to use a

single uniform price auction than a sequence of two uniform price auctions. These

results are in line with the finding that it is better for the seller to use a sealed-
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bid auction than a dynamic auction when competition is not very strong (Cramton

(1998) and Klemperer (2004)).

This is the first study of a sequence of divisible good auctions. The benefit

of modeling sequential divisible good auctions is that it allows for the study of

strategic forward looking bidding, which could have not been done by modeling a

sequence of single object auctions with either unit or multi-unit demands, or even a

sequence of multi-unit auctions with unit demands. Bidders bid in the first auction

not only to buy some quantity at that stage, but also to improve their strategic

position in the second auction. The improvement in a bidder’s strategic position is

not a consequence of the bidder strategically revealing information to manipulate

his opponents’ beliefs, but a consequence of the bidding and the quantity bought in

the first auction.

This study relates to a broad literature on how to create and enhance market

power10. In any market, there are different ways of creating or enhancing market

power. For example, firms can create barriers to entry, or create sub-markets either

by independently differentiating their products from their competitors’ products, or

by explicitly coordinating on some type of market segmentation. The underlying

idea on the different strategies to create or enhance market power is to profitably

differentiate yourself from your potential or actual competitors. This is exactly

what happens in a sequence of two uniform price auctions. Dynamic bid shading is

a strategy that allows bidders to optimally differentiate themselves by splitting up

the market into two less competitive markets.

10See Tirole (1988) for a survey on creation or enhancement of market power.
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The literature on auctions for split-award contracts studies the case in which

a buyer divides the purchases of its input requirements into several (usually two)

contracts that are awarded to different suppliers in separate auctions (Anton and

Yao (1989, 1992), Perry and Sákovics (2003)). In a sequence of two uniform price

auctions, the split or market segmentation, which is endogenous, is not complete

(i.e. all bidders buy in both auctions) because of the uncertainty about the residual

supply in the second auction. However, as chapter 2 shows for the case of forward

trading ahead of a procurement uniform price auction, if bidders’ expected profits

from the first auction or market are zero, then one bidder, usually the largest one,

will wait for the second auction or market even with uncertain residual supply.

This study also relates to a branch of the auction literature that studies auc-

tions with aggregate uncertainty. On one side, Klemperer and Meyer (1989), Holm-

berg (2004, 2005) and Aromı́ (2006) study procurement uniform price auctions where

firms sell a divisible good and demand is uncertain. These framework is known as

the supply function framework since firms compete by submitting supply functions.

On the other side, Wang and Zender (2002) study standard divisible goods auctions

in a common values model with random noncompetitive demand. The model in this

paper is closer to Wang and Zender’s (2002) model than to the supply function mod-

els, not only because it studies a standard auction where the seller is the auctioneer,

but also because it assumes a common values model with random noncompetitive

demand.
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1.2 Forward Trading and Capacity Constraints

It is generally argued that forward trading is socially beneficial. Two of the

most common arguments state that forward trading allows efficient risk sharing

among agents with different attitudes toward risk and improves information shar-

ing, particularly through price discovery. It is also believed that forward trading

enhances competition in the spot market by committing firms to more aggressive

strategies. A firm, by selling forward, can become the leader in the spot market

(the top seller), thereby improving its strategic position in the market. Still, when

firms compete in quantities at the spot market, every firm faces the same incentives,

resulting in lower prices and no strategic improvement for any firm. This is Allaz

and Vila’s (1993) argument. Green (1999) shows when firms compete in supply

functions, forward trading might not have any effect on the intensity of competition

in the spot market, but in general it will enhance competition. This pro-competitive

argument has been used to support forward trading as a market mechanism to mit-

igate incentives to exercise market power, particularly in electricity markets.

The pro-competitive feature of forward trading has been challenged by recent

papers. Mahenc and Salanié (2004) show when, in the spot market, firms producing

substitute goods compete in prices instead of in quantities, firms take long posi-

tions (buy) in the forward market in equilibrium. This increases the equilibrium

spot price compared to the case without forward market. In that paper as in Allaz

and Vila’s paper, firms use forward trading to credibly signal their commitment to

more profitable spot market strategies. However, as Fudenberg and Tirole (1984)
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and Bulow et al. (1985) point out, in those cases prices are strategic complements,

while quantities are strategic substitutes, which is the reason for the different equi-

librium forward positions taken by firms in both papers, and the resulting effect on

the intensity of competition. Liski and Montero (2006) show that under repeated

interaction it becomes easier for firms to sustain collusive behavior in the presence

of forward trading. The reason is that forward markets provide another instrument

to punish deviation from collusive behavior, which reduces the gains from defection.

However, all these papers ignore a key point—that firms usually face capacity

constraints, which affects their incentives for strategic trading ahead of the spot

market. When a capacity constrained firm sells forward, it actually softens compe-

tition in the spot market from the perspective of competitors. In the case where

there are two firms and one sells its entire capacity forward, its competitor becomes

the sole supplier in the spot market, which implies it has the power to set the price.

The following is an example of how forward trading can affect the intensity

of competition in the spot market when firms are constrained on the quantity they

can offer. The In-City (generation) capacity market in New York is organized as a

uniform-price auction, where the market operator (NYISO) procures capacity from

the Divested Generation Owners (DGO’s). Two of the dominant firms in this market

are KeySpan, with almost 2.4 GW of installed capacity and, US Power Gen, with

1.8 GW. Before May 2006, US Power Gen negotiated a three years swap (May 2006

– April 2009) with Morgan Stanley for 1.8 GW, by which it commits to pay (receive

from) Morgan Stanley 1.8 million times the difference between the monthly auction

price and $7.57 kw-month, whenever such difference is positive (negative). Morgan
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Stanley closed its position by negotiating with KeySpan the exact reverse swap.

The first swap works for US Power Gen as a credible signal that it will bid

more aggressively in the monthly auction, since US Power Gen benefits from lower

clearing prices in that auction. Also, this financial transaction could be explained on

risk hedging grounds. The swap reduces US Power Gen’s exposure to the spot price

by locking in, at $7.57 per kw-month, the price it receives for those MWs of capacity

its sells in the spot market. On the other side, the outcome of these transactions left

KeySpan owning, either directly or financially, 4.2 GW of capacity for three years,

which gave it a stronger dominant position in the In-City capacity market, and the

incentive to bid higher prices in the monthly auction than otherwise. Moreover, it

is difficult to explain this financial transaction on risk hedging grounds, since the

swap increases KeySpan’s exposure to the uncertain price of the monthly auction,

by buying at the fixed price and selling at a variable price (the spot price).

As chapter 3 shows, when capacity constrained firms facing common uncer-

tainty compete in a uniform-price auction with price cap, strategic forward trading

does not enhance competition. On the contrary, firms use forward trading to soften

competition, which leaves consumers worse off. The intuition of this result is that

when a capacity constrained firm commits itself through forward trading to a more

competitive strategy in the spot market, its competitor faces a more inelastic resid-

ual demand in that market. Hence, its competitor prefers not to follow suit in the

forward market and thus behave less competitively in the spot market than it oth-

erwise would, by inflating its bids. Because of capacity constraints a firm’s actions

in the forward market can change its competitor’s strategies in the spot market by
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affecting its own marginal revenue in the spot market. This result and its intu-

ition relate to the work of Fudenberg and Tirole (1984) and Bulow et al. (1985)

on strategic interactions. Under the assumptions made here, once US Power Gen

negotiated the swap with Morgan Stanley, KeySpan would have the incentive to bid

higher prices in the monthly auction, than if there were no trading ahead of it, even

if KeySpan did not buy the swap from Morgan Stanley.

When studying the effect of forward trading on investment incentives in a

model with uncertain demand and Cournot competition in the spot market, Murphy

and Smeers (2007) find that in some equilibria of the forward market one of the

firms stays out of the market while the other firm trades. These equilibria come up

when the capacity constraint of the latter firm binds at every possible realization of

demand. Grimm and Zoettl (2007) also study that problem by assuming a sequence

of Cournot spot market with certain demand at each market, but varying by market.

They also find that when a firm’s capacity constraint binds in a particular spot

market, this firm is the only one trading forwards which mature at that spot market.

These results are in the same line as those on chapter 3. However, when the spot

market is organized as a uniform-price auction, as is the case here, they hold even if

the capacity constraints only bind for some demand realizations. Also, by modeling

the spot market as a uniform-price auction with uncertain demand, the results on

this paper are better suited for the understanding of wholesale electricity markets.

The results here are also related to those on demand/supply reduction in

uniform-price auctions. As Ausubel and Cramton (2002) show, in uniform-price

procurement auctions, bidders have an incentive to reduce supply in order to receive
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a higher price for their sales. This incentive grows with the quantity supplied and

it is inversely related to the size of the smallest bidder. Large bidders make room

for small bidders. When a capacity constrained firm sells forward, it behaves like

a smaller bidder in the auction. Therefore, the incentive to inflate bids increases

for the other bidders in the auction. Consequently, strategic forward trading can

be reinterpreted as a mechanism that allows firms to assign themselves to different

markets, in order to strengthen their market power, which leaves firms better off,

but at the expense of consumers who end up worse off. As the paper will show,

usually the smaller firm decides to trade most of its capacity through the forward

market, with the larger firm becoming almost the sole trader on the spot market.

The goal of this chapter is not to challenge the general belief that forward

trading is socially beneficial, but yes to challenge the pro-competitive view of forward

trading by highlighting the impact of capacity constraints on the incentives for

strategic forward trading.

1.3 Outline

This dissertation is organized as follows. Chapter 2 analyzes a sequence of

two uniform price auctions for divisible goods. Chapter 3 analyzes strategic for-

ward trading when firms are capacity constrained and the spot market is organized

a uniform price auction with uncertain demand. Finally, chapter 4 provides the

conclusion to the dissertation.
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Chapter 2

Sequential Uniform Price Auctions

2.1 Introduction

When designing high-stake auctions, such as auctions for energy contracts or

emission allowances, one of the first questions that come up is whether to have a

single auction or to spread the supply (or demand in a procurement case) over a se-

quence of auctions. More often than not the decision has been to have a sequence of

auctions. The Regional Greenhouse Gas Initiative (RGGI) which comprises the 10

northeastern states in the U.S. allocates CO2 emission allowances among electricity

generators within the region by means of a sequence of uniform price auctions. The

supply of a given vintage of CO2 emission allowances is spread over four annual auc-

tions and four quarterly auctions.1. Electricity supply contracts are sold quarterly

by Electricitè de France, Endesa and Iberdrola (Spain) and were sold by Electrabel

(Belgium) through the so called virtual power plant auctions2. Gas release pro-

gramme auctions is the name used for the annual auctions of natural gas contracts

used by Ruhrgas, Gas de France (GDF) and Total among others3. The New York

1See Holt et al. (2007) for more details on the auction design for CO2 selling emission allowances

under the RGGI.
2See www.powerauction.com and Milgrom (2004) for more details on virtual power plant auc-

tions.
3See www.powerauction.com for more details on gas release programme auctions.
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Independent System Operator allocates installed capacity payments through a se-

quence of monthly uniform price auctions4; and the Colombian system operator will

procure forward electricity supply contracts to match the annual forecast electricity

demand by means of a sequence of four quarterly auctions5.

The seller looks for the auction format that is best suited for achieving her main

goals of revenue maximization and efficiency. Sometimes, the seller is also interested

in the market that results after the auction, like in spectrum auctions, and prefers

an auction that yields a diverse pool of winners even at the expense of revenue

maximization and efficiency. There are several features of the market that should

be considered when deciding between a single auction and a sequence of auctions

such as transaction costs, budget or borrowing constraints, private information and

bidders’s risk aversion.

When the transaction costs of bidding in an auction are high relative to the

profits bidders can expect to make in that auction, participation in the auction can

be expected to be low, which tends to have a negative effect on expected revenues.

For this reason, the seller might prefer a single auction over a sequence of auctions

to keep transaction costs low. In the event that bidders face budget or borrow-

ing constraints a single auction might limit the quantity they can buy, while in a

sequence of auctions bidders have the chance to raise more capital if needed. A se-

quence of sealed-bid auctions is somewhere between a single sealed-bid auction and

an ascending auction in terms of the private information revealed through the auc-

4See Installed Capacity Manual (2008), NYISO for more details on installed capacity auctions.
5See Cramton (2007) and www.creg.gov.co for more details on the Colombian electricity market.
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tions. Hence, when there is private information about the value of the good being

auctioned, a sequence of sealed-bid auctions improves the discovery of the collective

wisdom of the market relative to a single sealed-bid auction, possibly increasing ex-

pected revenues. Since the price in an auction might be too high or too low due to

some unexpected events, risk averse infra-marginal bidders (i.e. bid-takers) prefer a

sequence of auctions over a single auction. If there is a single auction, infra-marginal

bidders might end up paying too high or too low a price for all their purchases. But,

in a sequence of auctions this risk is reduced since the prices bidders pay for their

purchases are determined at several points in time. In the presence of risk averse

bidders the seller might also prefer a sequence of sealed-bid auctions, since such

auction format might increase the seller’s expected revenues not only by increasing

participation of risk averse bidders, particularly bid-takers, but also by encouraging

marginal bidders to bid more aggressively due to a weaker winner’s curse in a case

with affiliated information6.

In addition, the effect of strategic bidding on revenue generation and efficiency

should be considered when deciding between a single auction and a sequence of auc-

tions. There is an extensive literature that studies equilibrium bidding, revenue

generation and efficiency in sequences of single object auctions, such as sequences of

first price, second price or even English auctions7. However, there is no theoretical

6In the case of common-values with affiliated signals, the extra information that is revealed

through the sequence of auctions reduce the winner’s curse and the real risk imposed by aggressive

bidding.
7See Weber (1983), Milgrom and Weber (1999), Ashenfelter (1989), McAfee and Vincent (1993),

Bernhardt and Scoones (1994), Jeitschko (1999), Katzman (1999).
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nor empirical research that studies sequences of divisible good auctions. But, in

several real-world cases where sequences of auctions are used, such as those men-

tioned before, the auctioneer sells a divisible good. Moreover, we know from the

case of a single auction, that divisible good auctions are not a trivial extension of

single object auctions; hence one should not expect the results from sequential sin-

gle object auctions to extend over to the case of sequential divisible good auctions.

Therefore, studying strategic bidding in a sequence of divisible good auctions as well

as the efficiency and revenue generation properties of this type of auctions is not

only relevant from an academic perspective, but also from a practical standpoint.

This chapter studies a sequence of two uniform price auctions for a divisible

good in a pure common value model with symmetric information and aggregate

uncertainty. The unique profile of equilibrium bid functions in the second auction is

fully characterized, as well as the entire set of equilibrium bid functions in the first

auction. Using the characterization of equilibrium bidding, the revenue generation

properties of the sequence of two uniform price auctions are compared with those of

a single uniform price auction. A sequence of uniform price auctions was chosen over

a sequence of pay-as-bid auctions because uniform price auctions are more widely

used in energy and emission allowance markets, and there is a growing trend toward

the use of this type of auctions in other markets.

Ausubel and Cramton (2002) show bidders in a uniform price auction have an

incentive to shade their bids (i.e. reduce demand) in order to lower the price they

pay for their purchases. This incentive grows with the quantity demanded and is

inversely related to the size of bidders, measured by the maximum quantity they
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want to buy. In each auction of a sequence of two uniform price auctions bidders

have the same incentive to shade their bids, since spreading the supply over two

auctions does not change the fact that a bidder behaves like a residual monopsonist.

At the first auction of the sequence, bidders know that if they do not buy all the

quantity they want in that auction, they still have another opportunity to do so

in the second auction. Therefore, bidders discount their first auction bids by the

option value of increasing their purchases in the second auction. This is similar to

the case of a sequence of single object auctions, where bidders discount their bids

in an auction by the option value of participating in later auctions (Milgrom and

Weber (1999), Weber (1983), Bernhardt and Scoones (1994) and Jeitschko (1999)).

In a single uniform price auction or in the first auction of the sequence, the

maximum quantity each bidder wants to buy (i.e. his demand) is exogenous. How-

ever, in the second auction of the sequence bidders’ demands are endogenous, be-

cause they depend on the quantities bought in the first auction. Since the bid

shading in the second auction depends on bidders’ demands in that auction, bidders

have an incentive to shape the bid shading in the second auction through their bid-

ding in the first auction. In equilibrium, one bidder holds back in the first auction,

by bidding lower prices than his competitors. In that way, this bidder reduces his

competition in the second auction by letting the other bidders buy larger quanti-

ties in the first auction than otherwise. This feature of equilibrium will be called

dynamic bid shading to differentiate it from the static bid shading described by

Ausubel and Cramton (2002). The bidder who benefits the most from this strategic

behavior is the largest bidder, because by having a larger demand he can profit the
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most from the more intense bid shading in the second auction.

The static and dynamic bid shading together with the discounting of the option

value of increasing the quantity purchased in the second auction reduce the seller’s

expected revenue when using a sequence of two uniform price auctions. The dynamic

bid shading and the option value discounting, which are not present in single uniform

price auction, are particularly strong when there are few bidders and at least one of

them demands a small share of the supply. These features of equilibrium bidding

are even stronger when the supply is split evenly between the two auctions of the

sequence. Hence, in those cases it is certainly more profitable for the seller to use a

single uniform price auction than a sequence of two uniform price auctions. These

results are in line with the finding that it is better for the seller to use a sealed-

bid auction than a dynamic auction when competition is not very strong (Cramton

(1998) and Klemperer (2004)).

This is the first study of a sequence of divisible good auctions. The benefit

of modeling sequential divisible good auctions is that it allows for the study of

strategic forward looking bidding, which could have not been done by modeling a

sequence of single object auctions with either unit or multi-unit demands, or even a

sequence of multi-unit auctions with unit demands. Bidders bid in the first auction

not only to buy some quantity at that stage, but also to improve their strategic

position in the second auction. The improvement in a bidder’s strategic position is

not a consequence of the bidder strategically revealing information to manipulate

his opponents’ beliefs, but a consequence of the bidding and the quantity bought in

the first auction.
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When bidders have private information and multi-unit demands or non trivial

demands in the case of divisible goods, bidders’ beliefs might become asymmetric in

any auction after the first one. This asymmetry might be problematic when analyz-

ing sequential auctions. Most of the literature on sequential auctions, which studies

sequence of single object auctions, avoids this problem by assuming unit demands,

since the winner of an auction does not bid in subsequent auctions 8. Exceptions to

this are Katzman (1999) and Donald, Paarsch and Robert (2006). Katzman (1999)

assumes two bidders with demand for two units, and deals with asymmetric bid-

ders’ beliefs by studying a sequence of two second price auctions, where the beliefs

are irrelevant after the first auction, since the second price auction has a dominant

strategy. Donald, Paarsch and Robert (2006) study a sequence of single-unit English

auctions with multi-unit demands. They assume that the distribution of valuations

is symmetric and remains identical across players, regardless of the number of units

they have purchased in previous auctions. Another way of avoiding the problem of

asymmetric beliefs is assuming pure common values with symmetric information.

This assumption includes two different cases. In one case the value of the good on

sale is known by every bidder. In the other case, the value is unknown but every

bidder receives the same signal about it.

This chapter relates to a broad literature on how to create and enhance market

power9. In any market, there are different ways of creating or enhancing market

8See for example Milgrom and Weber (1999), Weber (1983), Bernhardt and Scoones (1994) and

Jeitschko (1999).
9See Tirole (1988) for a survey on creation or enhancement of market power.
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power. For example, firms can create barriers to entry, or create sub-markets either

by independently differentiating their products from their competitors’ products, or

by explicitly coordinating on some type of market segmentation. The underlying

idea on the different strategies to create or enhance market power is to profitably

differentiate yourself from your potential or actual competitors. This is exactly

what happens in a sequence of two uniform price auctions. Dynamic bid shading is

a strategy that allows bidders to optimally differentiate themselves by splitting up

the market into two less competitive markets.

The literature on auctions for split-award contracts studies the case in which

a buyer divides the purchases of its input requirements into several (usually two)

contracts that are awarded to different suppliers in separate auctions (Anton and

Yao (1989, 1992), Perry and Sákovics (2003)). In a sequence of two uniform price

auctions, the split or market segmentation, which is endogenous, is not complete

(i.e. all bidders buy in both auctions) because of the uncertainty about the residual

supply in the second auction. However, as chapter 2 shows for the case of forward

trading ahead of a procurement uniform price auction, if bidders’ expected profits

from the first auction or market are zero, then one bidder, usually the largest one,

will wait for the second auction or market even with uncertain residual supply.

This chapter also relates to a branch of the auction literature that studies

auctions with aggregate uncertainty. On one side, Klemperer and Meyer (1989),

Holmberg (2004, 2005) and Aromı́ (2006) study procurement uniform price auctions

where firms sell a divisible good and demand is uncertain. These framework is

known as the supply function framework since firms compete by submitting supply
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functions. On the other side, Wang and Zender (2002) study standard divisible

goods auctions in a common values model with random noncompetitive demand.

The model in this chapter is closer to Wang and Zender’s (2002) model than to the

supply function models, not only because it studies a standard auction where the

seller is the auctioneer, but also because it assumes a common values model with

random noncompetitive demand.

The structure of this chapter is as follows. Section 2.2 describes the model

of two sequential uniform price auctions. Section 2.3 develops the case with only

two bidders, by first characterizing the equilibrium bid functions for the second and

first auction, respectively, and then comparing the expected revenue in a sequence

of two uniform price auctions with the expected revenue in a single uniform price

auction. Section 2.4 does the same as section 2.3 but for the case of three bidders.

Section 2.5 concludes.

2.2 Model

The seller has a quantity, normalized to one, of a perfectly divisible good for

sale. She uses a sequence of two uniform price auctions, selling a quantity S1 in the

first auction and a quantity S2 in the second auction, with S1 + S2 = 1. The price

paid and the quantities bought by each bidder in the first auction is revealed before

the second auction takes place. Resale between auctions is not allowed and it also

is assumed the discount factor between both auctions is one.

Each bidder has a constant marginal value for the good, up to the maximum
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quantity he wants to consume10. Moreover, this marginal value, v, is the same for all

bidders and no bidder has private information. This last assumption includes two

different cases. In one case, every bidder knows the true value of the good. In the

other case, the value is unknown, but every bidder receives the same signal about

the value of the good, and winning any quantity in the first auction does not provide

any extra information. In this last case, v can be reinterpreted as the expected value

conditional on the signal. For simplicity, it is assumed the seller derives no value

for this good11.

There are N strategic bidders, each acting to maximize his expected profits.

Each strategic bidder l wants to consume any quantity, ql, up to λl, where λl > 0.

Define λ̃ as the second highest λ, and assume that λ̃ ≤ S2

N
. In the seminal analysis

of divisible good auctions, Wilson (1979) demonstrated that uniform price auctions

have a continuum of equilibria. As it will become clear later, the last assumption

is key in reducing the set of possible equilibria up to the point of having a unique

profile of equilibrium bid functions on the second auction. A strategy for strategic

bidder l is a pair of piece-wise twice continuously differentiable demand functions,

one for each auction, (dl1 (p) , dl2 (p)), with dlt : [0,∞)→ [0, λl].

There is also a continuum of measure 1 of non-strategic bidders, who can con-

sume any quantity up to one. The bid of a non-strategic bidder is just a quantity12.

10The constant marginal value assumption is made just for tractability. As it will become clear

along this chapter, the results would hold even if the marginal values were decreasing.
11The results will not change as long as the seller has a lower value for the good than the bidders.
12This can be interpreted as a non-strategic bidder submitting a flat bid at a price of v, or just

submitting a quantity and telling the auctioneer he will buy that quantity at whichever is the
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Each one of these bidders has probability St of being assigned to auction t, with

t = 1, 2. Once a non-strategic bidder is assigned to an auction he can only bid in

that particular auction. All non-strategic bidders in auction t receive the same de-

mand shock Xt, with xt ∈ [0, 1]. Therefore, a non-strategic bidder in auction t bids

for a quantity Xt. The demand shocks X1 and X2 are i.i.d. with G(x) represent-

ing the cumulative distribution function. The aggregate demand from non-strategic

bidders in auction t is given by StXt with Stxt ∈ [0, St]. Hence, strategic bidders’

residual supply at auction t, Yt = St(1−Xt), is uncertain with F (yt) representing its

cumulative distribution function over the interval [0, St]. In a uniform price auction,

generally there are multiple equilibria, which complicates the study of a sequence of

this type of auctions. As a consequence of the uncertainty on the strategic bidders’

residual supply created by the non-strategic bidders’ random bidding, most, if not

all, of the points on the strategic bidders’ equilibrium demand functions will be

characterized by equilibrium conditions in greater detail than otherwise13.

Since the auctions used by the seller are uniform price auctions, the price

paid by bidders at an auction is the clearing price, which is defined as the highest

losing bid. This price depends on strategic bidders’ residual supply, yt, and the

demand functions submitted by all strategic bidders, pt = inf {p | ∑l dlt(p) ≤ yt}. If

∑
l dlt(pt) = yt, then each strategic bidder l is assigned a quantity qlt (y1) = dlt(pt).

clearing-price.
13All the results would hold if instead of assuming the presence of non-strategic bidders it were

assumed the supply is uncertain. However, in that case it would be hard to conceptualize the idea

that the seller can spread the supply over a sequence of auctions.
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If
∑
l dlt(pt) > yt, then the demand curves of some bidders are discontinuous at pt

and they will be proportionally rationed at such price.

Before the first auction both types of bidders submit their demand functions

for that auction to the auctioneer, who aggregates them and find the clearing-price

for that auction. Then, after the outcome of the first auction is revealed, both type

of bidders submit again their demand functions to the auctioneer, but this time

for the second auction. The auctioneer again aggregates the demands and find the

clearing-price for the second auction. The main difference between the first and

second auction is the maximum quantity each strategic bidder wants to buy in each

auction. Since they will likely buy some quantity in the first auction, the maximum

quantity a strategic bidder wants to buy in an auction weakly decreases from the

first to the second auction.

Given the information structure and the timing of the game, an equilibrium

of this model is a profile of strategies, one for each strategic bidder, that defines

a subgame perfect equilibrium (SPE) of the entire game. From now on, the word

bidder(s) by itself will refer to strategic bidders, while the expression non-strategic

bidders will still be used when referring to this other type of bidders.

2.3 Two-Bidder Case

This section analyzes the case where there are only two strategic bidders.

Given the timing and information structure, the analysis will start focusing on the

second auction and once equilibrium bidding in that auction is fully characterized,
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the focus will shift to the first auction. As the reader probably already imagines the

more interesting findings of this chapter are regarding equilibrium in the first auction

and their effects on expected revenue. This is so because the incentives bidders face

in the last auction of the sequence are indistinguishable from the incentives they

would face in an otherwise identical single uniform price auction.

2.3.1 Second Auction

Once the auctioneer has announced the outcome of the first auction, but be-

fore the residual supply in the second auction, y2, is known, bidders simultaneously

choose their demand functions for the second auction. When doing this, bidder l

maximizes his expected profit from the second auction conditional on the quanti-

ties purchased by each bidder in the first auction. Define ql1 (y1) as the quantity

bought by bidder l in the first auction when the residual supply was y1. Bidder l’s

optimization problem becomes:

max
dl2(p2)

E2 [(v − p2) dl2 (p2)] (2.1)

s.t. dl2 (p2) ≤ λl − ql1 (y1) (2.2)

The most important source of uncertainty in equation (2.1) is non-strategic

bidders’ demand in the second auction, which translates into uncertainty about the

clearing price, p2.

As mentioned above, a demand function for bidder l can be any piece-wise

twice continuously differentiable decreasing function mapping from <+ to [0, λl].

However, as the next lemma shows, equilibrium demand functions in the second
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auction are smooth functions in the interval (0, v)14.

Lemma 1 Equilibrium demand functions in the second auction are continuous for

every price p ∈ (0, v).

Proof. First, clearly no bidder will bid more than v, and both bidders will bid v for

their first unit. Now, define d−l2(p∗) = limp→p∗+ d−l2(p), d−l2(p∗) = limp→p∗− d−l2(p),

and similarly for the aggregate demand, D2(p). Assume bidder −l’s demand is

discontinuous at p∗ ∈ (0, p2). Then
(
d−l2(p∗)− d−l2(p∗)

)
> 0. For any interval [p∗−

ε, p∗] bidder l must demand additional quantity, otherwise bidder −l can profitably

deviate by withholding demand at p∗. Define pε(p∗) = sup{p | dl2(p) ≥ dl2(p∗) + ε}.

Bidder l can increase his expected profit by deviating and submitting the

following demand function:

d̃εl2(p) =


dl2(p∗) + ε if p ∈ (pε(p∗), p∗ + ε)

dl2 (p) otherwise

(2.3)

The effect of this deviation on expected profits can be split in two parts, an

expected loss from higher prices, Ωε, and an expected gain from larger purchases,

Γε.

The expected loss is bounded above by:

Ωε < (p∗ + ε− pε(p∗))(dl2(p∗) + ε)Prε(∆p) (2.4)

Prε (∆p) is the probability that the price changes due to the deviation by

bidder l; and clearly it converges to zero as ε does so. Hence, the derivative of the

upper bound is zero at ε = 0.

14The idea for the proofs of the first three lemmas, or part of them, follows Aromı́ (2006).
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Now, the expected gain, Γε, is bounded below by:

Γε > (v − p∗ − ε)∆Eε(ql2) (2.5)

∆Eε (ql2) is the expected change in quantity bought by bidder l in the second

auction. Clearly, the lower bound of the expected gain is zero at ε = 0. In the case

dl2(p∗) = dl2(p∗):

∆Eε (ql2) > (dl2(p∗)− dl2(p∗ + ε))
[
F (dl2(p∗) + d−l2(p∗))− F (dl2(p∗) + d−l2(p∗))

]
(2.6)

However, if (dl2(p∗)− dl2(p∗)) > 0, then:

∆Eε (ql2) ≥
∫ dl2(p∗)+ε+d−l2(p∗+ε)

D2(p∗+ε)
(y2 −D2 (p∗ + ε)) dF (y2)

+
∫ D2(p∗)

D2(p∗)+ε

[
dl2 (p∗)− dl2 (p∗)− ε
D2 (p∗)−D2 (p∗)− ε

(y2 −D2 (p∗)− ε) + ε

]
dF (y2)(2.7)

− dl2 (p∗)− dl2 (p∗)

D2 (p∗)−D2 (p∗)

∫ D2(p∗)

D2(p∗)
(y2 −D2 (p∗)) dF (y2)

The derivative of the expected change in quantity bought by bidder l in the

second auction evaluated at ε = 0 is positive in both cases. Hence, the upper bound

of the expected gain due to the deviation is strictly increasing at ε = 0.

lim
ε→0

∂∆Eε (ql2)

∂ε

∣∣∣∣∣
ε=0

=
∫ D2(p∗)

D2(p∗)

(
d−l2 (p∗)− d−l2 (p∗)

) (
D2 (p∗)− y2

)
(
D2 (p∗)−D2 (p∗)

)2 dF (y2) + c > 0

(2.8)

where c is positive a constant.

Bidder l is a residual monopsonist whose residual supply is given by the resid-

ual supply both strategic bidders face and the demand from bidder −l: rsl2(p2) =

y2 − d−l2(p2). Even knowing the demand from bidder −l, bidder l’s residual sup-

ply is uncertain due to the uncertainty about y2. The goal of bidder l is to find
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the demand function that maximizes his expected profits conditional on bidder l’s

demand function. If bidder l could find the price-quantity points, (p2, rsl2(p2))15,

that maximize his ex-post profits for every possible realization of y2, and that set of

points could be described by a weakly decreasing demand function, then clearly that

demand function would maximize his expected profits. Since the uncertainty only

affects the location of bidder l’s residual supply and not its slope, there is always a

weakly decreasing demand function that describe the set of ex-post optimal price-

quantity points. A more technical proof of the equivalence between the ex-ante and

ex-post maximizations can be found in appendix A.

When deciding how much to buy, a monopsonist looks for the quantity such

that the marginal addition to his costs equals the marginal addition to his rev-

enue. However, since he pays the same price for all the units he buys, this price

is determined by the residual supply he faces, which is his average cost. Hence,

a monopsonist pays a price lower than his marginal revenue. Now, a standard re-

sult in auctions with uniform pricing rules is that bidders reduce their demands or

shade their bids. The reason for this behavior is found on the incentives faced by

a monopsonist. The marginal revenue for a bidder is the marginal value he has for

the good, and the marginal cost of his purchases is higher than his average cost

(i.e. his residual supply) since he pays the same price for all the quantity he buys.

Equation (2.9), which is the first order condition for bidder l, shows that the more

inelastic is bidder l’s residual supply, the more he shades his bids.

15Bidder l selects a price-quantity point on his residual supply curve for each realization of y2.

Hence, the price bidder l selects is the clearing-price.
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v − p2 =
dl2(p2)

−d′−l2(p2)
(2.9)

In equilibrium, no bidder demands a strictly positive quantity at prices above

v, or bid more than v for any quantity. Since bidder l buys ql1 (y1) in the first

auction, when the residual supply in that auction is y1, the largest quantity he wants

to consume in the second auction is given by λl − ql1 (y1). Define this quantity as

µl and the smallest unsatisfied demand after the first auction as µ = min{µ1, µ2}.

The first order conditions for both bidders define a system of differential equa-

tions, which defines interior equilibrium bidding in the second auction16. However,

since the only asymmetry between bidders is in the maximum quantity each bidder

wants to buy, represented by the λs, the system of first order conditions for an

interior solution is symmetric, and defines the following differential equation:

d′2 (p2) = −d2 (p2)

v − p2

(2.10)

The differential equation in (2.10) has multiple solutions, one for each possible

pair of initial conditions. However, given the assumptions of the model, there is only

one pair of initial conditions, and therefore, only one pair of demand functions in

the second auction which can be part of an equilibrium. The following two lemmas

describe these equilibrium initial conditions.

Lemma 2 In equilibrium, bidder l buys less than λl − ql1 (y1) at any price above

zero.

16Interior bidding means dl2(p2) ∈ (0, µl).

30



Proof. If equilibrium demand functions are strictly decreasing at every price in

(0, v), then no demand function will reach the quantity λl − ql1 (y1) at a strictly

positive price. Hence, showing that equilibrium demand functions are strictly de-

creasing at every price in that interval will prove this lemma.

If bidder l demands the same positive quantity at every p ∈ [p′, p′′], there are

two possible cases. First, if bidder −l demands additional quantity for that range

of prices, then he can increase his expected profit by withholding demand at prices

in [p′, p′′]. Second, if no bidder demands additional quantity at that range of prices,

bidder l can withhold demand at every price in (p′, p′′ − ε)) and increase his expected

profit. Define pε(p
′) = inf{p | dl2(p) ≤ dl2(p′)− ε}.

For example, bidder l can deviate by submitting:

d̂εl2 (p) =



dl2 (pε(p
′)) if p ∈ (p′, pε(p

′))

[dl2 (pε(p
′)) , dl2 (p′′)] if p = p′

dl2 (p) otherwise

(2.11)

The effect of this deviation on expected profit can also be split in two parts,

an expected loss from lower purchases and an expected gain from lower prices. The

expected loss is bounded above by:

Ωε < (v − p′′)ε (F (dl2(p′′) + d−l2(p′′))− F (dl2(pε(p
′)) + d−l2(pε(p

′)))) (2.12)

Moreover, the upper bound converge to zero as ε converges to zero, and its

derivative is also zero at ε = 0. Now, the expected gain is bounded below by:

Γε > (p′′ − p′) dl2 (pε(p
′)) (F (dl2 (p′′) + d−l2 (p′′))− F (dl2 (pε(p

′)) + d−l2 (p′′)))

(2.13)
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The lower bound also converges to zero as ε converges to zero, and is strictly

increasing in ε at ε = 0. Hence, equilibrium demand functions are strictly decreasing

at any price in (0, v).

Lemma 3 In the second auction, the equilibrium demand function of the bidder

with the smallest unsatisfied demand, λl − ql1 (y1), is continuous at p = 0.

Proof. Clearly, at a price of zero, every bidder demands the largest quantity he

wants to consume. Moreover, at least one of the equilibrium demand functions has

to be continuous at p = 0, otherwise any bidder would have the incentive to increase

his demand at a price just above zero.

Now, assume the subscript j refers to the bidder who wants to consume the

smallest quantity after auction one, µ = µj, and i refers to the other bidder. Because

of symmetric interior equilibrium bidding and the strict monotonicity of equilibrium

demand functions, the equilibrium demand function of bidder i can not be contin-

uous at zero, if that of bidder j is not. Hence, the equilibrium demand function of

bidder j in the second auction is continuous at p = 0.

The intuition behind the proof of lemma (3) can be explained as follows. After

the first auction, the maximum quantities both bidders want to consume might be

asymmetric. If that is the case, in equilibrium, the bidder with the largest unsatisfied

demand will not demand more than µ at any positive price, or bid more than zero

for any quantity above it. If the residual supply in the second auction happens to

be larger than 2µ, then the bidder who has a strictly positive value for a quantity

larger than µ becomes the marginal bidder, the one setting the price. Hence, his

32



optimal strategy is to bid a price of zero for any quantity above µ.

These initial conditions together with equation (2.10) define the equilibrium

demand functions in the second auction; which once inverted give the following

equilibrium bid function:

bl2 (ql2; q1) =


v
(

1− ql2
µ

)
if ql2 < µ

0 otherwise

(2.14)

where q1 = (q11 (y1) , q21 (y1)). As discussed before, both bidders bid symmet-

rically for any quantity up to µ. The demand reduction or bid shading in the second

auction increases with the quantity demanded, but most importantly it increases as

µ decreases. A decrease in the smallest unsatisfied demand in the second auction

turns competition in this auction less intense, the smallest bidder becomes smaller.

Hence, the residual supply that each bidder faces becomes more inelastic, which

increases bid shading. This last feature of equilibrium bidding in the second auc-

tion is particularly interesting. In a single auction, the maximum quantity bidders

want to buy is exogenous; however, such quantity becomes endogenous through out

a sequence of auctions. Therefore, bidders can, and will, affect bid shading in the

second auction through their bidding in the first auction.

The second auction equilibrium demand function of each bidder and the equi-

librium price in that same auction are easily derived from equation (2.14). Define

m = min{S2, λ1 + λ2 − y1}. Then, bidder l’s equilibrium profit from the second

auction, as a function of the residual supply in that auction and the purchases in
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the previous auction, can be written as:

πl2 (y2; q1) =



y22
4
v
µ

if y2 < 2µ

vµl if µ = µl and 2µ ≤ y2 ≤ S2

v(y2 − µ) if µ < µl and 2µ ≤ y2 ≤ m

vµl if µ < µl and m ≤ y2 ≤ S2

(2.15)

2.3.2 First Auction

Now that bidders’ equilibrium behavior in the second auction has been derived

and understood, it is time to move backward and study equilibrium behavior in the

first auction. At this stage, bidders simultaneously and independently choose the

demand functions they will submit for the first auction. As in the case of the second

auction analyzed before, bidders make their choices without knowing the demand

from non-strategic bidders in the first auction, which means bidders do not know

the supply left for them in that auction, y1.

For a relevant realization of y1, an increase in bidder l’s purchases in the

first auction implies a decrease in bidder −l’s purchases in that same auction17.

Moreover, since equilibrium bidding in the second auction depends on the smallest

unsatisfied demand, µ, bidder l’s profit from the last auction in the sequence depends

on the demand functions submitted in the first auction. For that reason, when

selecting the demand function for the first auction, bidder l does not look for the

demand that maximizes his expected profits from the first auction, but looks for the

17If y1 > λ1 + λ2 and the increase in bidder l’s purchases in the first auction is smaller than

y1−λ−l, then the quantity bought by bidder −l in the first auction remains unchanged. However,

this case is not relevant since both bidders will buy all they want in the first auction.

34



one that maximizes the expected value of his entire stream of profits. Hence, bidder

l’s optimization problem becomes:

max
dl1(p1)

E1 [(v − p1) dl1 (p1) + E2 [πl2 (q1)]] (2.16)

s.t. dl1 (p1) ≤ λl (2.17)

In order to start characterizing the first auction equilibrium demand functions,

the marginal change in bidder l’s expected profit from the second auction due to

a marginal change in his own purchases in the first auction needs to be defined.

Since dl1 (p1) = y1 − d−l1 (p1) in equilibrium, this change can be expressed in terms

of either ql1 or q−l1
18. But, as it will become clear later, it is more convenient to

express the change in terms of q−l1. Evidently, the effect of a change in demand

reduction depends on whether, after the first auction, bidder l has the smallest

unsatisfied demand or not.

E2

[
∂πl2
∂q−l1

]
=


−
∫ 2µ

0
y22
4

v
µ2 dF (y2) +

∫ S2
2µ v dF (y2) if µ = µl∫ 2µ

0
y22
4

v
µ2 dF (y2) +

∫ S2
2µ v dF (y2) if µ = µ−l

(2.18)

If the quantity purchased by bidder l in the first auction decreases (q−l1 in-

creases), there are two effects on bidder l’s expected profit from the second auction.

On one side, bidder l’s expected profit from the second auction increases, as the

second term in both lines of equation (2.18) shows. By decreasing the quantity he

purchases in the first auction, bidder l increases the maximum quantity he wants to

buy in the second auction, µl. Moreover, the quantity he buys in the second auction

actually increases only in the event that the clearing-price is zero, which happens

18Consequently, ∂πl2
∂ql1

= − ∂πl2
∂q−l1

.
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when y2 is greater than 2µ. On the other side, bidder l’s expected profit from the

second auction increases or decreases depending on whether bidder l has the largest

unsatisfied demand or not after the first auction. In the case that µ = µ−l, the

clearing price in the second auction decreases when y2 is smaller than 2µ, increasing

bidder l’s expected profit from the second auction, as the first term on the bottom

line of (2.18) indicates. However, when µ = µl and y2 is smaller than 2µ, the effect

on bidder l’s expected profit is the opposite since the clearing price increases.

For ease of notation, equation (2.18) will be rewritten as:

E2

[
∂πl2
∂q−l1

]
=


γ if µ = µl

φ if µ = µ−l

(2.19)

The following lemmas start characterizing the equilibrium demand functions

in the first auction, by stating the conditions for them to be smooth and strictly

monotonic. Define p1 = p1(0).

Lemma 4 Equilibrium demand functions in the first auction are continuous at any

price p ∈ (0, p1), as long as D1(p) < S1.

Proof. The proof of this lemma is just an extension of the proof of lemma 1.

Therefore, instead of writing again the entire proof, only the differences between

both cases will be pointed out and their consequences will be developed.

Assume bidder −l’s demand function is discontinuous at p∗ ∈ (0, p1), then

d−l1(p∗) > d−l1(p∗). As before, for any interval [p∗ − ε, p∗] bidder l must demand

additional quantity, otherwise bidder −l can profitably deviate by withholding de-

mand at p∗. Define pε(p∗) = sup{p | dl1(p) ≥ dl1(p∗) + ε}. Observe that pε(p∗) tends
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to p∗ as ε tends to zero, and it equals p∗ when dl1(p) is also discontinuous at p∗.

Bidder l can deviate by submitting a demand function with the same structure as

that in equation (2.3). Obviously, this deviation will also yield a loss and a gain in

expected profit from the first auction due to higher prices and larger purchases in

that auction, respectively.

Assume S1 ≥ D1(pε(p∗)). Then, the upper bound for the expected loss and

the lower bound for the expected gain are those on equations (2.4) and (2.5), re-

spectively, with the subscript referring to the auction changed to 1. Also, as it was

shown in the proof of lemma 1, this deviation seems to be profitable for bidder l.

However, since the deviation now takes place in the first auction, it also triggers

a change in expected profits from the second auction. The change in bidder l’s

expected profits caused by the impact this deviation has in equilibrium bidding in

the second auction can be written as:

∆E1 [πl2] =
∫ D1(pε(p∗))

D1(p∗+ε)
E2

[
∂πl2
∂q−l1

]
∆q−l1(y1) dF (y1) (2.20)

The derivative of bidder l’s expected profits from the second auction with

respect to q−l1 can take any sign. Hence, bidder l can suffer an expected loss or an

expected gain from the second auction due to his deviation. For ease of notation, the

expected loss and gain will be represented by Θε and Ψε respectively. The expected

gain is bounded below by zero, by definition, and it is weakly increasing in ε. Bidder

l’s expected loss is bounded above by:

Θε < M (dl1(p∗)− dl1(p∗ + ε) + ε)
[
F (D1(pε(p∗)))− F (D1(p∗ + ε))

]
(2.21)

where M is the maxy1 E2

[
∂πl2
∂q−l1

]
when y1 ∈ [D1(p∗+ε), D1(pε(p∗))]. The upper
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bound and its derivative with respect to ε converge to zero as ε does so.

Now, if D1(pε(p∗)) > S1 > D1(p∗), then all the upper and lower bounds still

approach zero as ε does so. Moreover, the signs of their derivatives with respect to

ε remain unchanged. Hence, the deviation by bidder l is profitable.

Lemma 5 Equilibrium demand functions in the first auction are strictly decreasing

at every price p ∈ (0, p1), as long as D1(p) ≤ S1.

Proof. If bidder l demands the same positive quantity at every p ∈ [p′, p′′], there

are two possible cases. First, if bidder −l demands additional quantity for that

range of prices, then he can increase his expected profit by withholding demand at

prices in [p′, p′′]. Second, if no bidder demands additional quantity at that range of

prices, bidder l can withhold demand at every price in (p′, p′′ − ε)) and increase his

expected profit. Specifically, bidder l can deviate by submitting a demand function

like the one in (2.11).

If S1 ≥ D1(p′), then, after changing the subscript referring to the auction to

1, equations (2.12) and (2.13) represent the lower bound for the expected loss due

to smaller purchases and the upper bound for the expected gain due to lower prices,

respectively. Moreover, as shown on the proof of lemma 2, such deviation seems

to be profitable for bidder l. However, since the deviation now takes place in the

first auction, it also triggers a change in expected profits from the second auction.

The change in bidder l’s expected profits caused by the impact this deviation has

in equilibrium bidding in the second auction can be written as:

∆E1 [πl2] =
∫ D1(p′)

D1(p′)−ε
E2

[
∂πl2
∂q−l1

]
∆q−l1(y1) dF (y1) (2.22)
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In this case ∆q−l1(y1) is positive. As mentioned before, the derivative of bidder

l’s expected profits from the second auction with respect to q−l1 can take any sign.

Hence, bidder l can suffer an expected loss or an expected gain from the second

auction due to his deviation. For ease of notation, the expected loss and gain will

be represented by Θε and Ψε respectively. In this case, the expected gain is also

bounded below by zero, by definition, and it is weakly increasing in ε.

Now, bidder l’s expected loss is bounded above by:

Θε < −Mε [F (D1(p′))− F (D1(p′)− ε)] (2.23)

where M is the miny1 E2

[
∂πl2
∂q−l1

]
when y1 ∈ [D1(p′)−ε,D1(p′)], and it is negative

when ∆E1 [πl2] is negative. This upper bound and its derivative with respect to ε

converge to zero as ε does so. Hence, equilibrium demand functions are strictly

decreasing at any price in (0, p1) as long as D1(p′) ≤ S1.

Bidder l is not only a residual monopsonist in the second auction, but also

in the first auction. As a consequence, bidder l can construct the demand function

for the first auction that maximizes the expected value of his stream of profits by

finding all the price-quantity points (p1, rsl1(p1)) that maximize his ex-post stream

of profits for each possible realization of the residual supply in the first auction,

y1
19. A detailed mathematical proof of this equivalence can also be found in the

appendix. Another implication of bidder l being a residual monopsonist is that

bidder l has the incentive to shade his bids in the first auction for the same reason

as he does in the second auction of the sequence. Since that behavior also comes up

19Ex-post in the first auction means after the realization of the residual supply in the first

auction, but before the realization of the residual supply in the second auction.
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in single uniform price auction, from now on it will be referred as static bid shading

or demand reduction.

The first order condition that characterizes bidder l’s optimal interior bidding

is:

−d′−l1(p1)v − (dl1(p1)− p1d
′
−l1(p1)) = −d′−l1(p1)E2

[
∂πl2
∂q−l1

]
(2.24)

The intuition of equation (2.24) is better understood in terms of the ex-post

maximization where bidder l selects the first auction clearing price, p1, that maxi-

mizes his stream of ex-post profits conditional on y1 and bidder −l’s demand func-

tion, d−l1(p1)20. For a given y1, if bidder l increases p1, the quantity he buys in the

first auction increases by −d′−l1(p1). Hence, the left hand side of equation (2.24)

represents the marginal change in profits from the first auction due to a marginal

increase in p1. The first term represents the marginal increase in value, while the

terms inside the brackets represent the marginal increase in cost. When the clearing

price in the first auction increases, bidder −l buys a smaller quantity in that auction,

which affects the demand reduction in the second auction. The right hand side of

equation (2.24) represents the expected marginal change in profit from the second

auction due to the marginal change in the first auction clearing price. If there were

a single auction, or this were the last auction of the sequence, then the last term

on the right-hand side would be zero. Hence, when selecting his bid for the first

auction, bidder l balances the marginal change in profit from the first auction with

the expected marginal change in profit from the second auction.

20Since in the ex-post maximization bidder l selects a price-quantity point on his residual supply

curve, rsl1(p1) it is equivalent to think he selects a clearing price or a quantity.
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In a single auction or in the last auction of the sequence, a bidder knows that is

the only or the last chance he has to buy the quantity he wants. In the first auction

of the sequence, a bidder knows that if he does not buy in the first all the quantity

he wants, he still have another opportunity to buy, the second auction. In other

words, in a sequence of auctions bidders have the option of buying later. Hence,

bidders discount their bids in the first auction by the option value of increasing

their purchases in the second auction. The option value for bidder l is given by the

expected marginal change of his profit from the second auction to a change in the

quantity he buys in the first auction, which in the two-bidder case analyzed here

can be expressed as E2

[
∂πl2
∂q−l1

]
. In addition, as equation (2.18) shows, the option

value of increasing purchases in the second auction is larger for the bidder reaching

the second auction with the largest unsatisfied demand than for the other bidder,

due to the asymmetric effect on bid shading.

The F.O.C.s for both bidders define a system of differential equations, which

characterizes interior equilibrium bidding. This system of differential equations does

not have explicit solutions. Hence, the next step will be to characterize equilibrium

bidding in as great detail as possible. The following proposition states that, as long

as the residual supply in the first auction is smaller than min{S1, λ1 + λ2}, at the

beginning of the second auction the unsatisfied demand of one of the bidders is

always smaller than that from his opponent. As the proof of the proposition shows,

the cause of the asymmetry can be found on bidders incentive to optimally intensify

the demand reduction in the second auction.
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Proposition 1 In a sequence of two uniform price auctions, bidders always reach

the second auction with asymmetric unsatisfied demands. Moreover, µj < µi, ∀ y1 <

min{S1, λ1 + λ2}, with i, j ∈ {1, 2} and i 6= j.

Proof. Define Π11 = π11 +E2[π12]. Assume without loss of generality bidder 2 uses

d21(p). In equilibrium, d11 (p1) = y1− d21 (p1). Then, bidder 1’s unsatisfied demand

after the first auction can be written as µ1 = λ1 − d11 (p1) = λ1 − y1 + d21 (p1).

Now, define p̃1 as the clearing price in the first auction such that λ2 − d21 (p̃1) =

λ1−y1 +d21 (p̃1) = µ. Then, limp1→p̃−1
E2

[
∂π12

∂d21

]
> limp1→p̃+1

E2

[
∂π12

∂d21

]
, which implies,

limp1→p̃−1
∂Π11

∂p1
< limp1→p̃+1

∂Π11

∂p1
. Hence, it is never optimal for bidder 1 to select p̃1.

Therefore, in equilibrium, bidders can not reach the second auction with identical

unsatisfied demands.

By definition, the subscript j refers to the bidder who reaches the second

auction with the smallest unsatisfied demand, while the subscript i refers to the

other bidder, µ = µj < µi. Bidder j can be either bidder 1 or 2. Now, it needs to

be proved that the bidder labeled as j is the same bidder for every realization of the

residual supply in the first auction that is smaller than min{S1, λ1 +λ2}. Continuity

of the equilibrium demand functions in the first auction ensure the bidder with the

smallest unsatisfied demand after the first auction, bidder j, is the same bidder

(either 1 or 2) for all y1 < min{S1, λ1+λ2}. If the bidder labeled as j were a different

bidder depending on the realization of y1, then there would exist at least one price,

p1, for which both bidders’ unsatisfied demands would be identical. However, that

can not happen in equilibrium.
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A conclusion that can be easily drawn from proposition 1 is that there is no

symmetric equilibrium in the first auction when bidders are symmetric. The next

proposition generalizes this result by showing that no matter whether the bidders

are symmetric or not, equilibrium bidding in the first auction is asymmetric for all

p ∈ (p
1
, p1), where p1 = p1(0) and p

1
= p1(S1).

Proposition 2 In equilibrium, bidder i bids less aggressively than bidder j in the

first auction: dj1 (p) > di1 (p) ∀p ∈ (p
1
, p1).

Proof. When λj ≥ λi, the result comes trivially from proposition 1. So, the case

that needs to be proved is when λj < λi.

First, assume both bidders’ equilibrium demand functions in auction one are

identical for every strictly positive price. Then, ∂Πj1
∂p1

and ∂Πi1
∂p1

equal zero ∀p1 ∈

(p
1
, p1). However,

∂Πj1

∂p1

= −d1 (p1)− d′1 (p1) (v − p1) + d′1 (p1) γ

> −d1 (p1)− d′1 (p1) (v − p1) + d′1 (p1)φ

=
∂Πi1

∂p1

where the inequality comes from φ > γ and d′1 (p1) being negative. Therefore, both

bidders’ equilibrium demand functions in auction one are not identical at every

strictly positive price.

The next step is to prove the equilibrium demand functions do not cross each

other. First, it will be shown that in equilibrium di1(p) is continuous at p1, but

not dj1(p). By definition p1 is the inf{p | di1(p) = 0 and dj1(p) = 0}. First, both
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demand functions can not be discontinuous at p1 otherwise any bidder can deviate

by using a deviation like the one on lemma 4. Second, assume dj1(p) is continuous

at p1. If di1(p) is either continuous or discontinuous at p1, then limp→p−1
∂Πi1
∂p1

=

− (v − p1 − φ) limp→p−1
d′j1(p) − limp→p−1

di1(p) = 0. Now, if di1(p) is continuous

(discontinuous) at p1, then (v−p1−φ) is zero (positive). Hence, (v−p1−γ) is strictly

positive since φ > γ, which implies limp→p−1
∂Πj1
∂p1

= − (v − p1 − γ) limp→p−1
d′i1(p) >

0. Therefore, di1(p) is continuous at p1, but not dj1(p).

Since di1 (p1) = 0 and dj1 (p1) > 0, the equilibrium demand function of bidder

j can only cross that of bidder i from above. Assume the following:

di1 (p) < dj1 (p) if p > p̃

di1 (p) = dj1 (p) if p = p̃

di1 (p) > dj1 (p) if p < p̃

Then d′i1 (p̃) < d′j1 (p̃), and

∂Πj1

∂p1

∣∣∣∣∣
p̃

= −dj1 (p̃)− d′i1 (p̃) (v − p̃− γ)

> −dj1 (p̃)− d′i1 (p̃) (v − p̃− φ)

> −di1 (p̃)− d′j1 (p̃) (v − p̃− φ)

=
∂Πi1

∂p1

∣∣∣∣∣
p̃

Hence, the equilibrium demand functions do not cross each other. Conse-

quently, since di1 (p1) = 0 and dj1 (p1) > 0, then di1 (p) < dj1 (p) for all p ∈ (p
1
, p1).

Propositions 1 and 2 state a quite interesting feature of equilibrium bidding in

a sequence of uniform price auctions which is not found in sequences of single object
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auctions. In the first auction of a sequence of two uniform price auctions bidders

not only internalize they have another option for buying their desired quantity, but

also internalize they can affect the intensity of bid shading in the second auction

through their bidding in the first auction. Hence, in the first auction of the sequence

bidder i bids lower prices than bidder j, allowing bidder j to buy a larger quantity

in that auction than otherwise. This strategy is profitable for bidder i because even

though he buys a lower quantity in the first auction, he then benefits from weaker

competition in the second auction, which translates into larger bid shading in the

last auction of the sequence21. This characteristic of equilibrium bidding will be

called dynamic bid shading since it is a consequence of the dynamic feature of a

sequence of auctions, and also, to differentiate it from the static bid shading that

comes up even in a single uniform price auction.

The idea behind dynamic bid shading relates to a broad literature on how

to create or enhance market power. In any market, there are different ways of

creating or enhancing market power. For example, firms can create barriers to

entry, or create sub-markets either by independently differentiating their products

from their competitors’ products, or by explicitly coordinating on some kind of

market segmentation. The underlying idea on the different strategies to create or

enhance market power is to profitably differentiate yourself from your potential or

21Bidder i not only buys a lower quantity in the first auction, but also pays a lower price in

that auction. However, what makes this strategy profitable is the higher expected profit bidder i

can reap from the second auction. Otherwise, there would be asymmetric bid shading in the last

auction of the sequence and even in single uniform price auction.
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actual competitors. This is exactly what happens in a sequence of two uniform

price auctions. Dynamic bid shading is a strategy that allows bidders to optimally

differentiate themselves by splitting up the market into two less competitive markets.

There is no full market segmentation, where bidder j buys only in the first auction

and bidder i waits for the second auction, because of the uncertainty about the

residual supply in the second auction. However, as Herrera-Dappe (2008) shows

for the case of forward trading ahead of a uniform price auction, if bidders make

no profits from the first auction or market, then bidder i will wait for the second

auction or market even with uncertain residual supply.

If the highest possible residual supply in the first auction, S1, is smaller than

the maximum quantity both bidders want to consume, λ1 + λ2, then the system

of equations defined by the F.O.C.s in (2.24) only characterizes the equilibrium

demand functions for prices in the interval [p
1
, p1)22. Now, it remains to extend both

demand functions over [0, p
1
) in a way that none of these prices become clearing

prices. This can be achieved by using any pair of decreasing twice continuously

differentiable functions (d̃j1(p), d̃i1(p)) defined over the interval [0, p
1
], that satisfy

d̃l1(p
1
) = dl1(p

1
) for l = i, j as well as the following inequalities for all p ∈ [0, p

1
):

−(S1 − d̃j1(p))− d̃′j1(p)(v − p− φ) > 0 (2.25)

and

−(S1 − d̃i1(p))− d̃′i1(p)(v − p− γ) > 0 (2.26)

22When p
1

equals zero, the interval is open at p
1
; because the equilibrium demand functions are

not necessarily continuous at zero and dl1(0) = λl for all l.
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The left-hand sides on (2.25) and (2.26) are the derivatives of bidder i and j’s

ex-post stream of profits23 with respect to the price in the first auction, evaluated

using the market-clearing condition and y1 = S1.

According to proposition 2 bidder j bids more aggressively than bidder i in any

equilibrium of the first auction. However, nothing has been said about the identity

of these bidders. If bidders are symmetric, clearly for every pair of equilibrium

bid functions there will be two almost identical equilibria, where the only difference

between them will be bidders’ identity. However, as the maximum quantities bidders

want to buy become more asymmetric, bidding lower prices in the first auction

becomes less profitable for the smaller bidder. The reason is the smaller bidder’s

unsatisfied demand after the first auction becomes smaller, leaving him with less

quantity to profit from the more intense bid shading in the second auction. Define

λi as the lowest demand of bidder i for an equilibrium to exist. Clearly, λi depends

on the demand of bidder j, the marginal value of the good, the split of the supply

and the distributions of the second auction residual supply. If bidders demands are

such that λ2 ∈
[
λ1, λ

−1
1 (λ2)

]
, then there are two equilibria, one with j = 1 and

another with j = 2. But, when bidders are so asymmetric that λ2 lies outside of

that interval, then there is only one equilibrium and the bidder holding back in the

first auction (i.e. bidder i) is the larger bidder. As Table 2.1 shows, bidders do not

have to be too different for only one equilibrium to exist.

The expected marginal change in bidder l’s profit from the second auction

23Remember ex-post in this case means after the realization of the residual supply in the first

auction, but before the realization of the residual supply in the second auction.
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Table 2.1: First auction equilibria when Y2 ∼ U [0, 1− S1]

S1 v λi
a λj p1 dj1(p1) di1(0) ∆

b
∆c

0.5 10 0.165 0.18 3.83 0.036 0.111 0.069 0.036
0.5 10 0.092 0.10 2.13 0.020 0.061 0.039 0.020
0.5 10 0.230 0.25 5.32 0.053 0.154 0.096 0.060

0.5 20 0.165 0.18 7.67 0.036 0.111 0.069 0.036
0.5 20 0.092 0.10 4.26 0.020 0.061 0.039 0.020
0.5 20 0.230 0.25 10.65 0.053 0.154 0.096 0.060

0.36 10 0.165 0.18 2.99 0.036 0.111 0.069 0.036
0.36 10 0.092 0.10 1.66 0.020 0.061 0.039 0.020
0.36 10 0.229 0.25 4.16 0.053 0.154 0.096 0.060

0.64 10 0.165 0.18 5.32 0.036 0.111 0.069 0.036
0.64 10 0.092 0.10 2.96 0.020 0.061 0.039 0.020

aLowest λi for the equilibrium to exist. b∆ = max[dj1(p)− dj1(p)].
c∆ = min[dj1(p)− dj1(p)].

due to a change in the quantity bought by bidder −l in the first auction, γ or

φ, depends on the quantity purchased by bidder j in the first auction, qj1
24. The

equation v − p̌ − γ = 0 defines a locus of price-quantity points, (p̌, q1 (p̌)), where

equilibrium bidding has a particular feature. If the equilibrium demand function

of bidder i is perfectly elastic at price p̌, then the optimal quantity demanded by

bidder j at such price will be q1 (p̌). Following Klemperer and Meyer (1989), this

locus will be called bidder i’s Bertrand locus. Similarly, the equation v − p̂− φ = 0

defines bidder j’s Bertrand locus of price-quantity points, (p̂, q1 (p̂)). In this case,

if the quantity demanded in equilibrium by bidder j at price p̂ equals q1 (p̂) and

di1 (p̂) > 0, then the equilibrium demand function of bidder j will be perfectly

elastic at price p̂.

24Remember j can be either l or −l.
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Bidder j equilibrium demand function in the first auction can not go through

any point above or to the right of bidder j’s Bertrand locus; otherwise, bidder i

would be demanding negative quantities or bidder j’s demand function would be

increasing. Since φ > γ, bidder j’s Bertrand locus is lower than bidder i’s Bertrand

locus. Hence, bidder j’s Bertrand locus defines the upper bound of his equilibrium

bids in the first auction25. The upper bound of bidder j first auction equilibrium

bids becomes26:

b̂j1 (q1) =



v
(
F (2λ)−

∫ 2λ
0

y22
4λ2 dF (y2)

)
if q1 ∈ [0, λj − λ)

v
(
F (2 (λj − q1))−

∫ 2(λj−q1)
0

y22
4(λj−q1)2

dF (y2)
)

if q1 ∈ [λj − λ, λj)

0 otherwise

(2.27)

In addition, since bidder j buys a larger quantity than bidder i in the first

auction, and the difference is at least λj − λ, the upper bound of bidder i’s first

auction equilibrium bids becomes: b̂i1(q1) = b̂j1(q1 + λj − λ).

The upper bounds of bidders first auction bids take into account the discount-

ing of bidder i’s option value of increasing his purchases in the second auction, φ(q1).

However, they do not fully take into account the dynamic bid shading that takes

25The way demand functions were extended over the whole domain of prices ensures bids are also

bounded above by bidder j’s Bertrand locus for all q1 ∈ (dj1(p
1
), λj). However, this is actually

irrelevant since those bids are never going to be realized.
26Since bidder j is the bidder with the smallest unsatisfied demand after auction one, if λj > λ,

then there is no equilibrium with qj1 ∈ [0, λj − λ]. Hence, b̂1 (q1) = b̂1 (λj − λ) for all q1 ∈

[0, λj − λ].

49



λj q1

v

v - φ

dj1(p)
di1(p)

p

Figure 2.1: Bidder j’s Bertrand locus28

place in the first, and they completely ignore the static bid shading in that auc-

tion27. Since the option value is positive, the terms in brackets in (2.27) are smaller

than one; which means the upper bounds of equilibrium bids are smaller than v.

Moreover, when bidder j buys his maximum demand, λj, in the first auction, bid-

der i’s option value equals the value of the good; because if he were to buy some

quantity in the second auction, he would pay zero for it, since he would become the

only bidder submitting a bid in that auction. In addition, the highest equilibrium

bid in the first auction is not higher than v
(
F (2λ)−

∫ 2λ
0

y22
4λ2 dF (y2)

)
.

As mentioned before, the F.O.C.s for both bidders define a system of differ-

ential equations, which characterizes interior equilibrium bidding. There is not one

but multiple pairs of demand functions that solve that system of differential equa-

27Only when λj > λ bidder i’s upper bound takes into account a fraction of the dynamic bid

shading.
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tions. The same problem came up in the second auction with equation (2.10). In

that case, the existence of a unique equilibrium was ensured by assuming the smaller

bidder will be able to buy, with strictly positive probability, as much as he wanted

in the second auction (λ ≤ S2

2
). Due to the asymmetric bidding in the first auction,

an equivalent assumption in this case would be to assume S1, the highest possible

residual supply in the first auction, is non smaller than 2λj.

Proposition 3 For any given pair of demands (λi, λj), there exists a unique profile

of equilibrium demand functions in the first auction (di1(p), dj1(p)), if S1 ≥ 2λj and

f(u) ≥
∫ u
0
y22
u3 dF (y2).

Proof. Assume S1 ≥ 2λj. Clearly, at a price of zero every bidder demands the

largest quantity he wants to consume. Since both demand functions can not be

discontinuous at a price of zero and µi < µj, then di1(0) ≡ limp→0 di1(p) < λi

and dj1(0) ≡ limp→0 dj1(p) = λj. Also, dj1(p) < λj for all strictly positive prices.

Otherwise, bidder j’s demand function would cross the upper bound. Hence, the

price-quantity points (0, di1(0)) and (0, λj) are the bottom conditions for the equi-

librium demand functions of bidders i and j respectively. Each profile of equilibrium

demand functions also has a pair of top conditions (p, 0) and (p, dj1(p)) defined by

the equation v − p− φ = 0, where p = inf{p|di1(p) = 0}.

Assume (di1(p), dj1(p)) is a pair of equilibrium demand functions with top

conditions (pa, dj1(pa)). Also, assume (d̃i1(p), d̃j1(p)) is another pair of equilibrium

demand functions, but with top conditions (pb, d̃j1(pb)), where pa > pb and dj1(pa) <

d̃j1(pb). Since d̃j1(pb) > dj1(pb) and γ(d̃j1(pb)) > γ(dj1(pb)), with the last inequality
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coming from the assumption that f(u) ≥
∫ u

0
y22
u3 dF (y2), then d̃′i1(pb) < d′i1(pb).

There exists a price pb − ε such that d̃i1(pb − ε) = di1(pb − ε). Moreover, at

that price d̃′i1(pb − ε) < d′i1(pb − ε), which implies d̃j1(pb − ε) > dj1(pb − ε) since the

elasticity of bidder i’s demand function at a given price increases with the quantity

demanded by bidder j. Therefore, d̃′j1(pb − ε) < d′j1(pb − ε). Hence, since the slopes

of the demand functions are monotonic to the top conditions, there is a unique set

of bottom conditions for each set of top conditions. Therefore, there is a unique

pair of equilibrium demand functions in the first auction.

2.3.3 Revenue Comparison

When choosing among several auction formats, the seller looks for the auction

format that is best suited for achieving her main objectives of revenue maximization

and efficiency. Sometimes, the seller is also interested in the market that results after

the auction, like in spectrum auctions, and prefers an auction that yields a diverse

pool of winners even at the expense of revenue maximization and efficiency. In

this chapter the number of winners is not an issue since the seller is assumed to be

unconcerned about the after auction market. Also, efficiency is not an issue for this

seller since all the bidders are assumed to have the same value for the good.

When the transaction costs of bidding in an auction are high relative to the

profits bidders can expect to make in that auction, participation in the auction can

be expected to be low, which tends to have a negative effect on expected revenues.

For this reason, the seller might prefer a single auction over a sequence of auctions
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to keep transaction costs low. In the event that bidders face budget or borrow-

ing constraints a single auction might limit the quantity they can buy, while in a

sequence of auctions bidders have the chance to raise more capital if needed. A se-

quence of sealed-bid auctions is somewhere between a single sealed-bid auction and

an ascending auction, in terms of the private information revealed through the auc-

tions. Hence, when there is private information about the value of the good being

auctioned, a sequence of sealed-bid auctions improves the discovery of the collective

wisdom of the market relative to a single sealed-bid auction, possibly increasing

expected revenues. Since the price in an auction might be too high or too low due

to some unexpected events, risk averse bidders prefer a sequence of auctions over a

single auction. If there is a single auction, bidders might end up paying too high

or too low a price for all their purchases. But, in a sequence of auctions this risk is

reduced since the prices bidders pay for their purchases are determined at several

points in time. In the presence of risk averse bidders the seller might also prefer a

sequence of sealed-bid auctions, since such auction format might increase the seller’s

expected revenues not only by increasing participation of risk averse bidders, but

also by encouraging them to bid more aggressively due to a weaker winner’s curse

in a case with affiliated information29.

The characterization of equilibrium bidding in the sequence of two uniform

price auctions showed that even in an environment without transaction costs, bud-

29In the case of common-values with affiliated signals, the extra information that is revealed

through the sequence of auctions reduce the winner’s curse and the real risk imposed by aggressive

bidding.
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get or borrowing constraints, where bidders are risk neutral and the revelation of

information is not an issue, a single uniform price auction and a sequence of two uni-

form price auctions most likely differ in terms of the expected revenues they yield.

An ideal scenario for comparing the expected revenues from a single uniform price

auction and a sequence of two uniform price auctions would be one with analytical

solutions for the equilibrium bid functions. However, as it was discussed before, that

is not the case here. Therefore, the approach will be to define and upper bound of

the expected revenue in a sequence of two uniform price auctions using the upper

bounds of equilibrium bids and then compare it with the expected revenue in a

single uniform price auction.

From equation (2.14), the equilibrium price in the second auction as a function

of the residual supply in that auction and conditional on the residual supply in the

first auction becomes:

p2 (y2 | y1) =


v
[
1− y2

2(λj−qj1(y1))

]
if y2 < 2 (λj − qj1 (y1))

0 otherwise

(2.28)

In equilibrium, bidder j buys more than half the residual supply in the first

auction plus (λj − λ)/2, as long as the residual supply is smaller than λj + λ. Also,

since the equilibrium price in equation (2.28) is decreasing in qj1, the following is an

54



upper bound of the equilibrium revenue in a second auction30:

R̂2 (y2 | y1) =


vS2

[
1− y2

λj+λ−y1

]
if y2 < λj + λ− y1

0 otherwise

(2.29)

Define ∆− = λj − λ and ∆+ = λj + λ. Using the upper bounds of individual

bids in the first auction, the upper bound of the equilibrium revenue in the first

auction becomes:

R̂1 (y1) =



vS1

(
F (2λ)−

∫ 2λ
0

y22
4λ2 dF (y2)

)
if y1 ∈ [0,∆−)

vS1

(
F (λj + λ− y1)−

∫ λj+λ−y1
0

y22
(λj+λ−y1)2

dF (y2)
)

if y1 ∈ [∆−,∆+)

0 otherwise

(2.30)

If the seller decides to run a single uniform price auction, equilibrium bidding

in this auction will be similar to the bidding in the last auction of the sequence. The

only difference is that the demand reduction will be driven by the smallest of the

highest possible individual demands, λ. Hence, the equilibrium revenue in a single

auction can be written as:

R̂ (y) =


v
[
1− y

2λ

]
if y < 2λ

0 otherwise

(2.31)

There is not much that can be said regarding the comparison of expected

revenues without making any assumption on the distribution of the demand shock

30If λj < λi and y1 > 2λj , then qj1 (y1) = λj might be smaller than half the residual supply in the

first auction, and (λj − qj1 (y1)) would be larger than
(
λj − y1

2

)
. However, for those realizations

of y1, the equilibrium price in the second auction is zero, since bidder i is the only strategic bidder

submitting a bid in that auction.
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received by non-strategic bidders, G(x). The following proposition states sufficient

conditions for the expected revenue in a sequence of two uniform price auctions to

be smaller than that from a single uniform price auction when the demand shocks

are uniformly distributed.

Proposition 4 When the demand shocks are uniformly distributed, the sequence

of two uniform price auctions yields lower expected revenues than a single uniform

price auction if:

S1+3
6(1−S1)λ

(
λj + λ− S1

2
− (λj−λ)2

2S1

)
< 1 for λj − λ < S1 < 2λj

S1+3
12(1−S1)S1λ

(
6λjλ− λ2

j − λ2
)
< 1 for 2λj ≤ S1

Proof. If the demand shocks are uniformly distributed, then the residual supply in

any auction is also uniformly distributed. Hence, the expected revenue in a single

uniform price auction becomes vλ. Adding (2.29) and (2.30), taking expectations

and dividing by the expected revenue in a single uniform price auction gives the

left-hand side on both inequalities on proposition 4. The right-hand side comes

from dividing the expected revenue in a single uniform price auction by itself.

Proposition 4 says: (i) When the smallest bidder is the one who bids higher

prices in the first auction (i.e. λj = λ), and he demands less than 18.75% of the

agreggate supply, a single uniform price auction yields higher expected revenue than

any equilibrium of a sequence of two uniform price auctions. (ii) However, in any

other case (i.e. λj = λ > 0.1875 or λj > λ) the upper bound of the expected revenue

in a sequence of two uniform price auctions is higher than the expected revenue in

a single uniform price auction for at least some values of S1. Remember the upper
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Figure 2.2: Ratio of E[RevSeq] to E[RevSingle] when λi ≥ λj = 0.1

bound of the expected revenue in a sequence of two uniform price auctions ignores

the static bid shading that takes place in the first, and it does not fully take into

account the dynamic bid shading in that auction. Consequently, it does not fully

take into account the static bid shading in second auction either.

When bidder j has the smallest demand of both bidders and his demand

increases, bidder i’s option value of increasing his purchases in the second auction

decreases. The reason is bid shading in the second auction will be smaller and

its response to changes on the quantities purchased in the first auction will also

be weaker. As a consequence, the upper bound of the expected revenue in the

sequence of uniform price auctions increases more than the expected revenue in a

single uniform price auction. The main difference between the cases where λj ≥ λi

and λj < λi, for a given λj, is that in the former case the expected revenue in a

single auction is smaller than the upper bound of the expected revenue in a sequence
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of auctions when the first auction is small. As λi decreases below λj, the expected

price in a single uniform price auction decreases, since the smallest bidder becomes

smaller, and so its expected revenue. The upper bounds of the expected equilibrium

prices in the first and second auctions of a sequence also decrease, but their impact

on the upper bound of the expected revenue is smaller for small values of S1. Hence,

in case (ii) the upper bound of expected revenue in a sequence of two uniform price

auctions might not convey enough information since it does not fully take into

account the bid shading that takes place in the first and second auctions. However,

as Figure 2.3 shows, even in case (ii) there are some equilibria of the sequence

of auctions that yield lower expected revenue than a single uniform price auction.

Moreover, since the uniform distribution satisfies the condition in proposition 3, the

equilibria in Figure 3 are not just random equilibria, but the unique equilibria for

S1 ≥ 0.44. The same is true about the equilibria in Figure 2 for values of S1 greater

than or equal to 0.2.

As long as λj < 0.215, the upper bound of the expected revenue in a sequence

of two uniform price auctions is lower than the expected revenue in a single uniform

price auction for some values of S1. Moreover, the conditions in proposition 4 tell

us that in such case the worst for the seller is to spread the supply fairly evenly over

the two auctions in the sequence. In addition, the equilibria depicted on Figure 2.3

shows us that the same is true even when the upper bound of the expected revenue in

a sequence is higher than the expected revenue in a single uniform price auction for

all relevant supply splits. As the supply in the first auction increases, the expected

price in the second auction conditional on the residual supply in the first auction
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increases. Consequently, the option value of increasing the quantity purchased in

the second auction decreases, which increases the price in the first auction for a

given y1. At the same time, a larger first auction supply increases the probability of

low prices in both auctions at the expense of a reduction in the probability of high

prices, also in both auctions. Hence, since Y1 and Y2 are identically distributed,

and the uniform distribution is symmetric, these effects offset each other when the

supply is evenly split between both auctions.

2.4 Three-Bidder Case

This section extends the analysis of the previous section to the case of three

strategic bidders showing the results obtained when there are only two strategic

bidders are not specific to that case. The reason for developing the three-bidder

case and not the more general N-bidder case is just clarity of exposition, since the
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mathematics in the latter case becomes entangled due to the asymmetries among

bidders and the non-existence of symmetric equilibria even in the symmetric case.

Moreover, the intuition seems to indicate the incentives and, therefore, the results

found in the three-bidder case extend to the more general N-bidder case.

2.4.1 Second Auction

When three strategic bidders participate in a sequence of two uniform price

auctions, the equilibrium demand functions in the second auction are continuous

for every price p ∈ (0, v). A deviation similar to the one used in lemma 1 for the

two-bidder case can be used to rule out discontinuities or elastic segments on the

equilibrium demand functions when there are three bidders.

As in the two-bidder case, the only difference among bidders is in the maximum

quantity each bidder wants to consume, represented by the λs. Hence, the system of

first order conditions for an interior solution is symmetric, and defines the following

differential equation:

(n− 1)d′2 (p2) = −d2 (p2)

v − p2

(2.32)

where n represents the number of bidders whose demand constraint is not binding

at p2.

This differential equation also has multiple solutions, one for each possible pair

of initial conditions. However, like before, the assumptions of the model guarantee

there is only one pair of initial conditions and, therefore, only one pair of second

auction demand functions which can be part of an equilibrium. The subscripts i, j
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and k will be used to label bidders according to their unsatisfied demands after the

first auction: µi ≥ µj ≥ µk. The following lemma describes the equilibrium initial

conditions:

Lemma 6 In the second auction, in equilibrium:

(i) The demand function of bidder k might reach his unsatisfied demand at a

strictly positive price.

(ii) Bidders i and j buy less than their unsatisfied demands at any price above

zero.

(iii) If only one bidder has the largest unsatisfied demand (µi > µj), then his de-

mand function is discontinuous at p = 0.

Proof. (i) When there are three bidders participating in the auction, at any given

price range the equilibrium demand functions of at least two bidders are strictly

decreasing. If at least two of the bidders were demanding the same quantity for some

price range, then a deviation like the one in lemma 2 would be profitable. However,

since in this particular case, interior bidding is symmetric, equilibrium demand

functions are strictly decreasing at least for interior quantities. Nevertheless, it

is possible the demand function for bidder k reaches his unsatisfied demand at a

strictly positive price. (ii) The proof of this point is identical to that of lemma 2.

(iii) Clearly, at a price of zero, every bidder demands the largest quantity

he wants to consume. Moreover, at least two of the equilibrium demand functions

have to be continuous at p = 0, otherwise some bidder would have the incentive to
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increase his demand at a price just above zero.

When µi > µj, because of symmetric interior equilibrium bidding and the

strict monotonicity of at least two equilibrium demand functions, the equilibrium

demand function of bidder i can not be continuous at zero, if that of bidder j is

not. Hence, the equilibrium demand function of bidder j in the second auction is

continuous at p = 0. Therefore, bidder i becomes the marginal bidder for every

y2 ≥ µk + 2µj, and his optimal strategy is to bid a price of zero for any quantity

above µj.

These initial conditions together with equation (2.32) define the equilibrium

demand functions in the second auction; which once inverted give the following bid

functions:

bl2 (ql2; q1) =



v
[
1− q2l2

µjµk

]
if ql2 ∈ [0, µk)

v
[
1− ql2

µj

]
I(k) if ql2 ∈ [µk, µj)

0 otherwise

(2.33)

where I(k) is an indicator function that equals zero if l = k, and one otherwise.

As discussed before, all three bidders bid symmetrically for any quantity up

to µk. While bidders i and j also bid symmetrically for any quantity in [µk, µj]. As

expected, when the three bidders are active (i.e. dl2(p) < λl far all l), bidders shade

their bids less than when there are only two active bidders. Also, the bid shading or

demand reduction in the second auction is determined by µk and µj. A decrease in

either the smallest or the second smallest unsatisfied demand in the second auction

turns competition in that auction less intense. Hence, the residual supply that each

bidder faces becomes more inelastic, which increases bid shading. Consequently,
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in the three-bidder case, bidders will also affect bid shading in the second auction

through their bidding in the first auction.

The second auction equilibrium demand function of each bidder and the equi-

librium price in that same auction are easily derived from equation (2.33). Define

m = min {S2,
∑
l λl − y1}. Then, bidder l’s equilibrium profit from the second auc-

tion, as a function of the residual supply in that auction and the purchases in the

previous auction, can be written as:

πl2 (y2; q1) =



y32v

27µjµk
if y2 ∈ [0, 3µk)

v(y2−µk)2

4µj
if l 6= k and y2 ∈ [3µk, µk + 2µj)

v(y2−µk)µk
2µj

if l = k and y2 ∈ [3µk, µk + 2µj)

vµl if l 6= i and y2 ∈ [µk + 2µj, S2]

v(y2 − µk − µj) if l = i and y2 ∈ [µk + 2µj,m]

vµl if l = i and y2 ∈ (m,S2]

(2.34)

2.4.2 First Auction

For a relevant realization of y1, an increase in a bidder’s purchases in the first

auction implies a decrease in at least one of the other bidder’s purchases in that

same auction31. Moreover, since equilibrium bidding in the second auction depends

on the two smallest unsatisfied demands, µk and µj, bidder l’s profit from the last

auction in the sequence depends on the demand functions submitted in the first

31If y1 > λ1 + λ2 + λ3 and the increase in bidder l’s purchases in the first auction is smaller

than y1−
∑
−l λ−l, then the quantity bought by the other two bidders in the first auction remains

unchanged. However, this case is not relevant since all bidders will buy all they want in the first

auction.
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auction. For that reason, when selecting the demand function for the first auction,

bidder l does not look for the demand that maximizes his expected profits from the

first auction, but looks for the one that maximizes the expected value of his entire

stream of profits. Therefore, bidder l has to take into account not only the effect this

bid will have on his profit from the first auction, but also the effect on his expected

profit from the second auction through demand reduction.

When there are two bidders and one bidder increases (decreases) the quantity

he buys in an auction, there is an identical decrease (increase) in the quantity the

other bidder buys in the same auction. When there are more than two bidders, the

change in a bidder’s purchase also implies a balancing change in the purchases of

all other bidders. However, how that change is allocated among the other bidders

depends on the elasticity of their demand functions. Also, given the first auction

demand functions of all bidders except l, it is equivalent to think of bidder l as

increasing the quantity he buys in the first auction or increasing the clearing price

in that auction. Therefore, the marginal change in bidder l’s expected profit from

the second auction due to a marginal change in the first auction clearing price will

be defined in this section. This change depends on bidder l’s unsatisfied demand

after the first auction (i.e. whether l is i, j or k).

E2

[
∂πl2
∂p1

]
= E2

[
∂πl2

∂q−l1

]
· d′−l1(p1) (2.35)

Where E2

[
∂πl2
∂q−l1

]
and d′−l1(p1) are both vectors of the corresponding deriva-

tives. For ease of notation, define Alh = E2

[
∂πl2
∂qh1

]
with l 6= h. The expression for
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each of the six Alh are the followings:

Aij =
∫ 3µk
0

y32v

27µ2
jµk

dF (y2) +
∫ µk+2µj

3µk
v(y2−µk)2

4µ2
j

dF (y2) +
∫ S2
µk+2µj

v dF (y2)

Aik =
∫ 3µk

0
y32v

27µjµ2
k

dF (y2) +
∫ µk+2µj

3µk
v(y2−µk)

2µj
dF (y2) +

∫ S2
µk+2µj

v dF (y2)

Aji = −Aij + 2
∫ S2
µk+2µj

v dF (y2)

Ajk = Aji −
∫ 3µk

0
y32v

27µjµ2
k

dF (y2) +
∫ µk+2µj

3µk
v(y2−µk)

2µj
dF (y2)

Aki = −
∫ 3µk

0
y32v

27µjµ2
k

dF (y2) +
∫ µk+2µj

3µk
v(y2−2µk)

4µj
dF (y2) +

∫ S2
µk+2µj

v dF (y2)

Akj = Aki +
∫ 3µk

0
y32v)

27µ2
jµk

dF (y2) +
∫ µk+2µj

3µk
v(y2−µk)µk

2µ2
j

dF (y2)

Lemma 4 stated the conditions for the first auction equilibrium demands func-

tions to be continuous in the two-bidder case. The same conditions hold for the

three-bidder case. The lemma is restated below and the proof is updated for the

three-bidder case. Remember, p1 = p1(0).

Lemma 7 Equilibrium demand functions in the first auction are continuous at any

price p ∈ (0, p1), as long as D1(p) < S1.

Proof. The proof of this lemma is just an extension of the proof of lemma 1.

Therefore, instead of writing again the entire proof, only the differences between

both cases will be pointed out and their consequences will be developed.

Assume bidder −l’s demand function is discontinuous at p∗ ∈ (0, p1), then

d−l1(p∗) > d−l1(p∗). As before, for any interval [p∗ − ε, p∗] bidder l must demand

additional quantity, otherwise bidder −l can profitably deviate by withholding de-

mand at p∗. Define pε(p∗) = sup{p | dl1(p) ≥ dl1(p∗) + ε}. Observe that pε(p∗) tends

to p∗ as ε tends to zero, and it equals p∗ when dl1(p) is also discontinuous at p∗.

Bidder l can deviate by submitting a demand function with the same structure as
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that in equation (2.3). Obviously, this deviation will also yield a loss and a gain in

expected profit from the first auction due to higher prices and larger purchases in

that auction, respectively.

Assume S1 ≥ D1(pε(p∗)). Then, the upper bound for the expected loss and

the lower bound for the expected gain are those on equations (2.4) and (2.5), re-

spectively, with the subscript referring to the auction changed to 1. Also, as it was

shown in the proof of lemma 1, this deviation seems to be profitable for bidder l.

However, since the deviation now takes place in the first auction, it also triggers a

change in expected profits from the second auction. The change in bidder l’s ex-

pected profits caused by the impact this deviation has in equilibrium bidding in the

second auction can be written as: The change in bidder l’s expected profits caused

by the impact bidder l’s deviation has in equilibrium bidding in the second auction

due to his deviation in the first auction can be written as:

∆E1 [πl2] =
∫ D1(pε(p∗))

D1(p∗+ε)
E2

[
∂πl2

∂q−l1

]
·∆q−l1(y1) dF (y1) (2.36)

The derivative of bidder l’s expected profits from the second auction with

respect to q−l1 can take any sign. Hence, bidder l can suffer an expected loss or an

expected gain from the second auction due to his deviation. For ease of notation, the

expected loss and gain will be represented by Θε and Ψε respectively. The expected

gain is bounded below by zero, by definition, and it is weakly increasing in ε. Bidder

l’s expected loss is bounded above by:

Θε < M l (dl1(p∗)− dl1(p∗ + ε) + ε)
[
F (D1(pε(p∗)))− F (D1(p∗ + ε))

]
(2.37)

Since, Aik > Aij, Ajk > Aji and Akj > Aki, then M i = maxy1 Aik, M j =
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maxy1 Ajk and Mk = maxy1 Akj, when y1 ∈ [D1(p∗ + ε), D1(pε(p∗))]. The upper

bound and its derivative with respect to ε converge to zero as ε does so.

Now, if D1(pε(p∗)) > S1 > D1(p∗), then all the upper and lower bounds still

approach zero as ε does so. Moreover, the signs of their derivatives with respect to

ε remain unchanged. Hence, equilibrium demand functions are smooth as long as

D1(p) < S1.

One of the features of equilibrium demand functions in the two-bidder case

was their strict monotonicity. When three bidders participate in the sequence of two

uniform price auctions, it is possible that equilibrium demand functions are constant

at some price range. However, at most a single demand function can be constant

for a given price range. If the demand functions of two bidders were constant at the

same price range, then that of the third bidder should also be constant or he would

have the incentive to withhold demand at those prices. Now, if all the demand

functions were constant at the same price range, then any of the bidders could

deviate by submitting a demand function like the one in (2.11). The proof that

such deviation is profitable is the proof of lemma 5 updated to the three-bidder case

in the same way as the proof of lemma 4 was updated for lemma 7. In the second

auction, interior inelastic segments on the equilibrium demand functions were ruled

out because of the symmetric bidding for interior quantities. However, that is not

necessarily the case in the first auction.

Bidder l’s optimal interior bidding in the first auction, conditional on other

bidders’ demand functions, is characterized by the following equations for all y1 ≤

min{S1,
∑
l λl}:
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(i) If dl1(p) is strictly decreasing:

−
∑
h6=l

d′h1(p1)(v − p1)− dl1(p1) = −
∑
h6=l

d′h1(p1)Alh (2.38)

(ii) If dl1(p) is constant for p ∈ (p′, p′′) ⊂ (p
1
, p1):

∫ D1(p)

D1(p′)
[−
∑
h6=l

d′h1(p1)(v − p1 − Alh)− dl1(p1)] dF (y1) ≤ 0 ∀p ∈ (p′, p′′)(2.39)

∫ D1(p
1
)

D1(p1)
[−
∑
h6=l

d′h1(p1)(v − p1 − Alh)− dl1(p1)] dF (y1) = 0 (2.40)

Equation (2.38) is the counterpart of equation (2.24) for the three-bidder case.

The left-hand side represents the marginal change in profit from the first auction

due to a marginal change in the first auction clearing price. The right hand side

represents the expected marginal change in profit from the second auction due to

the marginal change in p1. For a given y1 and conditional on the demand functions

of all bidders besides l, an increase in the first auction clearing price decreases the

quantity bidder l buys in that auction, thus increasing his unsatisfied demand in the

second auction and altering the demand reduction in that auction. Hence, bidder

l’s option value of increasing his purchase in the second auction becomes:

E2

[
∂πl2
∂Q−l1

]
=

∑
h6=l d

′
h1(p1)Alh∑

h6=l d
′
h1(p1)

(2.41)

Where Q−l1 represents the quantity bought in the first auction by all bid-

ders besides l. Equations (2.39) and (2.40) characterize any interior inelastic seg-

ments that bidder l’s equilibrium demand function might have, as long as D1(p) ≤

min{S1,
∑
l λl}.

Equations (2.38) to (2.40) for the three bidders define a system of differential

equations, which characterizes interior equilibrium bidding. This system of differen-
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tial equations does not have explicit solutions. Hence, as in the two-bidder case, the

next step will be to characterize equilibrium bidding in as great detail as possible.

When three bidders participate in a sequence of two uniform price auctions, bidders

not only shade their bids for the same reason they do it in a single uniform price

auction (i.e. static bid shading), but they also shade their bids in the first auction

to increase the bid shading in the second auction (i.e. dynamic bid shading). The

following proposition states that as long as the residual supply in the first auction is

non greater than min{S1,
∑
l λl}, at the beginning of the second auction the unsat-

isfied demand of one of the bidders is always smaller than those from his opponents.

Like in the two-bidder case, the cause of this asymmetry can be found on the de-

mand reduction that takes place in the second auction and bidders’ incentive to

increase it.

Proposition 5 In a sequence of two uniform price auctions, at least one of the

bidders always reach the second auction with a different unsatisfied demand than the

others. Moreover, µi > µj ≥ µk, ∀y1 < min{S1,
∑
l λl}, with i, j, k ∈ {1, 2, 3} and

i 6= j 6= k.

Proof. Assume without loss of generality that bidders 2 and 3 submit the functions

d21(p) and d31(p), and also λ2 − q21(y1) ≤ λ3 − q31(y1). In equilibrium, d11(p1) =

y1 − d21(p1) − d31(p1). Then, bidder 1’s unsatisfied demand after the first auction

can be written as λ1 − d11(p1) = λ1 − y1 + d21(p1) + d31(p1). (i) If λ2 − q21(y1) <

λ3−q31(y1), then define p̃1 as the clearing price in the first auction such that µ1 = µ2.

Then, limp1→p̃−1
Aij > limp1→p̃+1

Aji and limp1→p̃−1
Aik > limp1→p̃+1

Ajk, which implies
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limp1→p̃−1
∂Π11

∂p1
< limp1→p̃+1

∂Π11

∂p1
. Hence, it is never optimal for bidder 1 to select p̃1

when d′11(p̃1) < 0. Moreover, since at most one equilibrium demand function can

be constant at a given price range, bidders 1 and 2 reach the second auction with

asymmetric unsatisfied demands. (ii) If λ2 − q21(y1) = λ3 − q31(y1), then for the

same reason bidders 1, 2 and 3 can not reach the second auction with symmetric

unsatisfied demands.

Now, assume λ2 − q21(y1) < λ3 − q31(y1) and define p̂1 as the clearing price

in the first auction such that µ1 = µ3. Then, limp1→p̂−1
Aji = limp1→p̂+1

Aki and

limp1→p̂−1
Ajk = limp1→p̂+1

Akj, which implies limp1→p̂−1
∂Π11

∂p1
= limp1→p̂+1

∂Π11

∂p1
. Hence,

in equilibrium, bidders 1 and 3 could reach the second auction with symmetric

unsatisfied demands if λ2 − q21(y1) < λ3 − q31(y1). Actually, whether they are

symmetric or not depends on whether λ1 and λ3 are symmetric or not, otherwise a

contradiction would arise.

Finally, continuity of equilibrium demand functions in the first auction ensures

the ranking of bidders according to their unsatisfied demands after the first auction

is the same for all y1 < min{S1,
∑
l λl}.

When bidders are symmetric as well as when λi ≤ λj ≤ λk, it is clear from

proposition 5 that bidders use bidding in the first auction to optimally shape bid

shading in the second auction. In both cases bidder i demands the smallest quantity

at every price, followed by bidder j and then bidder k, di1(p) < dj1(p) ≤ dk1(p) for all

p ∈ (p
1
, p1). Because of the endogenous asymmetries in the model, it is convenient

to focus on partially symmetric equilibria, those where µj = µk, which only come

up when λi ≥ λj = λk. The following proposition shows there is also dynamic bid
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shading in partially symmetric equilibria.

Proposition 6 In partially symmetric equilibria (i.e. µj = µk), bidder i bids less

aggressively than bidders j and k in the first auction: di1(p) < dj1(p) = dk1(p) for

all p ∈ (p
1
, p1):

Proof. First, if µj = µk, then Aji = Aki and Ajk = Akj, which implies dj1(p) =

dk1(p). Hence, µj = µk only happens if λj = λk. Moreover, if λi were smaller than

λj and λk, a contradiction would arise for small realizations of the residual supply,

y1.

Assume di1(p) = dj1(p) = d1(p) at every strictly positive price. Then, ∂Πj1
∂p1

and ∂Πi1
∂p1

equal zero for every price in (p
1
, p1). However,

∂Πj1

∂p1

= −d1(p1)− (v − p1 − Aji)d′1(p1)− (v − p1 − Ajk)d′1(p1)

> −d1(p1)− (v − p1 − Aij)d′1(p1)− (v − p1 − Aik)d′1(p1)

=
∂Πi1

∂p1

where the inequality comes from Aji < Aij and Ajk < Aik. Hence, di1(p) and dj1(p)

are not identical at every strictly positive price.

The next step is to prove bidder i equilibrium demand functions does not cross

those of bidder j and k. Define pi1 is the inf{p | di1(p) = 0}. First, it will be shown

that in equilibrium di1(pi1) = 0, but dj1(pi1) and dk1(pi1) are strictly positive.

Assume dj1(pi1) = 0 and dk1(pi1) = 0. If di1(p) is either continuous or discontin-

uous at pi1, then lim
p→pi−1

∂Πi1
∂p1

= −2 (v − pi1 − Aij) lim
p→pi−1

d′j1(p)−lim
p→pi−1

di1(p) =

0. Now, if di1(p) is continuous (discontinuous) at pi1, then (v−pi1−Aij) is zero (posi-

tive). Hence, (v−pi1−Aji) and (v−pi1−Ajk) are strictly positive since Aij > Aji and
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Aij = Aik > Ajk, which implies lim
p→pi−1

∂Πj1
∂p1

= − (v − pi1 − Aji) lim
p→pi−1

d′i1(p) −

(v − pi1 − Ajk) lim
p→pi−1

d′k1(p) > 0. Therefore, di1(pi1) = 0 and dj1(pi1) = dk1(pi1) > 0.

Since di1 (pi1) = 0 and dj1(pi1) = dk1(pi1) > 0, the equilibrium demand functions

of bidder j and k can only cross that of bidder i from above. Assume the following:

di1 (p) < dj1 (p) if p > p̃

di1 (p) = dj1 (p) if p = p̃

di1 (p) > dj1 (p) if p < p̃

Then d′i1 (p̃) < d′j1 (p̃), and

∂Πj1

∂p1

∣∣∣∣∣
p̃

= −dj1 (p̃)− d′i1 (p̃) (v − p̃− Aji)− d′k1 (p̃) (v − p̃− Ajk)

> −dj1 (p̃)− d′i1 (p̃) (v − p̃− Aij)− d′k1 (p̃) (v − p̃− Aik)

> −di1 (p̃)− d′j1 (p̃) (v − p̃− Aij)− d′k1 (p̃) (v − p̃− Aik)

=
∂Πi1

∂p1

∣∣∣∣∣
p̃

Hence, the equilibrium demand functions do not cross each other. Conse-

quently, since di1(pi1) = 0 and dj1(pi1) = dk1(pi1) > 0, then di1(p) < dj1(p) = dj1(p)

for all p ∈ (p
1
, p1).

If the highest possible residual supply in the first auction, S1, is smaller than

the aggregate quantity bidders want to consume,
∑
l λl, then the system of equations

defined by the F.O.C.s in (2.38) - (2.40) only characterizes the equilibrium demand

functions for prices in the interval [p
1
, p1)32. Now, it remains to extend all demand

functions over [0, p
1
) in a way that none of these prices become clearing prices. This

32When p
1

equals zero, the interval is open at p
1
; because the equilibrium demand functions are

not necessarily continuous at zero and dl1(0) = λl for all l.
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Table 2.2: First auction partially symmetric equilibria when Y2 ∼ U [0, 1− S1]

S1 v λi
a λj λk p1 pi

b

1 di1(0) ∆
c

0.5 10 0.10 0.10 0.10 5.99 2.94 0.067 0.035
0.5 10 0.15 0.15 0.15 8.99 4.42 0.099 0.052

0.5 20 0.10 0.10 0.10 11.98 5.89 0.067 0.035
0.5 20 0.15 0.15 0.15 17.98 8.83 0.099 0.052

0.3 10 0.10 0.10 0.10 4.28 2.10 0.067 0.035
0.3 10 0.15 0.15 0.15 6.42 3.16 0.099 0.052

0.7 10 0.10 0.10 0.10 9.99 4.90 0.067 0.035

aLowest λi for the partially symmetric equilibrium to exist.
bpi1 is the inf{p | di1(p) = 0}, c∆ = max[dj1(p)− dj1(p)].

can be achieved by using any decreasing twice continuously differentiable functions

(d̃k1(p), d̃j1(p), d̃i1(p)) defined over the interval [0, p
1
], that satisfy d̃l1(p

1
) = dl1(p

1
)

as well as the following inequality for all p ∈ [0, p
1
) and for l = i, j, k:

−(S1 −
∑
h6=l

d̃h1(p))−
∑
h6=l

d̃′h1(p)(v − p− Alh) > 0 (2.42)

The left-hand side is the derivative of bidder l’s ex-post stream of profits with

respect to the price in the first price auction, evaluated using the market-clearing

condition and y1 = S1.

In a partially symmetric equilibrium, it is possible to define an upper bound

of the the first auction equilibrium bids similar to the one defined in the two-bidder

case. When bidders j and k reach the second auction with symmetric unsatisfied

demands, Aij = Aik > Ajk = Akj > Aji = Aki. The equation v − p − Aij = 0

defines bidders j and k’s Bertrand locus when each one of the three bidders bid for

positive quantities. Since di1(p) < dj1(p) = dk1(p), there is a range of prices at which

only j and k bid for positive quantities. In that case, bidder j and k’s Bertrand
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locus is defined by v − p − Ajk = 0. Finally, bidder i’s Bertrand locus is given by

v−p−Aji = 0. Since Aij > Ajk > Aji and di1(p) < dj1(p) = dk1(p), an upper bound

of each bidder’s equilibrium bid, when they all bid for positive quantities is given

by p = v−Aij. When bidder i does not bid for positive quantities, an upper bound

of bidders j and k’s equilibrium bids is given by p = v − Ajk. Without an analytic

solution for the equilibrium it is not possible to pin down the highest price bidder

i bids for a positive quantity, p̂1, and dj1(p̂), which makes impossible to compare

the expected revenues from a sequence of two uniform price auction and a single

uniform price auction using this upper bound for bidders j and k’s bids. Hence,

when defining an upper bound for the seller’s expected revenue, it will be assumed

bidders j and k bid according to p = v − Ajk for all q1.

b̂jk1 (q1) =



vF (3λi) if q1 ∈ [0, λj − λi)

vF (3(λj − q1)) if q1 ∈ [λj − λi, λj)

0 otherwise

(2.43)

When bidder i bids for a strictly positive quantity in the first auction, the bid

of every bidder is bounded above by p = v − Aij. Since bidders j and k buy larger

quantities than bidder i in the first auction, and the difference is at least λj−λ, the

upper bound of bidder i’s equilibrium bids in the first auction becomes:

b̂i1(q1) =


v
(
F (3(λ− q1))−

∫ 3(λ−q1)
0

y32
27(λ−q1)3

dF (y2)
)

if q1 ∈ [0, λ)

0 otherwise

(2.44)

The upper bound of bidder i’s first auction bids takes into account the dis-

counting of the option value of increasing his purchases in the second auction, Aij.

However, it does not fully take into account the dynamic bid shading that takes
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place in the first, and it completely ignores the static bid shading in that auction33.

The upper bound of bidders j and k’s first auction bids only takes into account their

option value of increasing purchases in the second auction when bidder i does not

buy any quantity in the first auction. This option value is larger than the option

value when bidder i buys in the first auction, but smaller than bidder i’s own option

value. In addition, the highest equilibrium bid in the first auction is not higher than

vF (3λ).

2.4.3 Revenue Comparison

In a partially symmetric equilibrium, the price in the second auction as a

function of the residual supply in that auction and conditional on the residual supply

in the first auction becomes:

p2(y2 | y1) =


v
(
1− y22

9(λj−qj1(y1))2

)
if y2 < 3(λj − qj1(y1))

0 otherwise

(2.45)

In a partially symmetric equilibrium bidders j and k buy the same quantity

in the first auction, with each of them buying more than one third of the residual

supply in that auction plus (λj−λ)/3, as long as the residual supply is smaller than

2λj +λ. Also, since the equilibrium price in equation (2.45) is decreasing in qj1, the

33Only when λj > λ, bidder i’s upper bound takes into account a fraction of the dynamic bid

shading.
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following is an upper bound of the equilibrium revenue in the second auction34:

R̂2 (y2 | y1) =


vS2

(
1− y22

(2λj+λ−y1)2

)
if y2 < 2λj + λ− y1

0 otherwise

(2.46)

If the seller decides to run a single uniform price auction, equilibrium bidding

in this auction will be similar to the bidding in the last auction of the sequence.

The only difference is that demand reduction will be driven by the smallest of the

highest possible individual demands, λ. Hence, the equilibrium revenue in a single

auction can be written as:

R̂ (y) =


v
[
1− y2

9λ2

]
if y < 3λ

0 otherwise

(2.47)

Proposition 7 When the demand shock is uniformly distributed, partially symmet-

ric equilibria of a sequence of two uniform price auctions yield lower expected revenue

than a single uniform price auction, if:

4λj+2λ−S1

6λ
+ 3(4λj−S1)S1−12(λj−λ)2

8(1−S1)λ
< 1 for S1 ∈ [2(λj − λ), 2λj − 3

2
λ)

(20+7S1)(4λj+2λ−S1)

120(1−S1)λ
+

3(56λjλ−24λ2
j−31λ2)

80(1−S1)λ
< 1 for S1 ∈ [2λj − 3

2
λi, 2λj + λi)

(λj+λ)2

6S1λ
+ 48λj−15λ

16(1−S1)
< 1 for S1 ∈ [2λj + λ,∞)

Proof. If the demand shocks are uniformly distributed, then the residual supply in

any auction is also uniformly distributed. Hence, the expected revenue in a single

uniform price auction becomes 2vλ. The left-hand side on the three inequalities

34If λj < λi and y1 > 3λj , then qj1 (y1) = λj might be smaller than one third of the residual

supply in the first auction, and (λj − qj1 (y1)) would be larger than
(
λj − y1

3

)
. However, for those

realizations of y1, the equilibrium price in the second auction is zero, since bidder i is the only

strategic bidder submitting a bid in that auction.
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in proposition 7 are the upper bound of expected revenue in a sequence of two

uniform price auctions as a proportion of the expected revenue in a single uniform

price auction. The upper bound of the expected revenue in the first auction of the

sequence can constructed by using (2.43) and (2.44), while the upper bound of the

expected revenue in the second auction of the sequence comes from (2.46).

Proposition 7 says: (i) When there are two symmetric bidders, each one de-

manding less than 1/9 of the aggregate supply and the third bidder is not smaller

than them, a single uniform price auction yields higher expected revenue than any

partially symmetric equilibrium of a sequence of two uniform price auctions. (ii)

However, if either the two symmetric bidders are the smallest, but they demand

more than 1/9 of the aggregate supply, or the third bidder is the smallest of all,

then the upper bound of the expected revenue of partially symmetric equilibria in

a sequence of two uniform price auctions is higher than the expected revenue in a

single uniform price auction for at least some values of S1. Remember the upper

bound of the expected revenue in a sequence of two uniform price auctions ignores

the static bid shading that takes place in the first, and it does not fully take into

account the dynamic bid shading in that auction. Consequently, it does not fully

take into account the static bid shading in the second auction either.

The conditions in proposition 7 are similar to the conditions in proposition 4 for

the two-bidder case. When there are three bidders, the seller still suffers the largest

loss in expected revenue when spreading the supply evenly over the two auctions in

the sequence. However, when a third bidder participates in the auctions, the loss in

expected revenue as a consequence of spreading the supply over a sequence of two
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uniform price auctions represents a smaller share of the expected revenue the seller

can raise by selling the entire supply through a single uniform price auction.

2.5 Conclusion

When choosing among several auction formats, the seller looks for the auction

format that is best suited for achieving her main objectives of revenue maximization

and efficiency. Sometimes, the seller is also interested in the market that results after

the auction, like in spectrum auctions, and prefers an auction that yields a diverse

pool of winners even at the expense of revenue maximization and efficiency. One

decision that needs to be made by the seller when she has a divisible good for sale is

whether to sell the entire supply in one auction or to spread it over several auctions.

There are several features of the market that should be considered when deciding

between a single auction and a sequence of auctions such as transaction costs, budget

or borrowing constraints, private information and bidders’s risk aversion.

The seller might prefer a single auction over a sequence of auctions when the

transaction costs of bidding in an auction are high relative to the profits bidders

can expect to make in that auction. In the event that bidders face budget or

borrowing constraints a single auction might limit the quantity they can buy, while

in a sequence of auctions bidders have the chance to raise more capital if needed.

When there is private information about the value of the good being auctioned, a

sequence of sealed-bid auctions improves the discovery of the collective wisdom of the

market relative to a single sealed-bid auction, possibly increasing expected revenue.
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If infra-marginal bidders are risk averse, the seller might also prefer a sequence of

sealed-bid auctions, since that auction format reduces bidders’ risk which might

increase the seller’s expected revenue by increasing participation.

In addition, the effect of strategic bidding on revenue generation and efficiency

should be considered when deciding between a single auction and a sequence of

auctions. There is an extensive literature that studies equilibrium bidding, revenue

generation and efficiency in sequences of single object auctions, such as sequences of

first price, second price or even English auctions. However, there is no theoretical nor

empirical research that studies sequences of divisible good auctions. This chapter

filled that gap in the literature for the case of divisible good auctions with a uniform

pricing rule by studying a sequence of two uniform price auctions and comparing its

revenue generation properties with those of a single uniform price auction.

In auctions where bidders pay the clearing price for the quantity won, bidders

have an incentive to reduce demand (i.e. shade their bids) to pay less for their

winnings. This incentive grows with the quantity demanded and is inversely related

to bidders’ demands. In a sequence of two uniform price auctions, bidders internalize

that their bidding in the first auction has an effect on the demand reduction in the

later auction. Bidders reduce their demands even more in the first auction with

one bidder, usually the largest one, reducing it more than the others and thus

strengthening the bid shading or demand reduction in the second auction. Hence,

in a sequence of uniform price auctions there is not only static demand reduction

but also dynamic demand reduction.

In any auction within a sequence of single object auctions with the exception
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of the last, bids are discounted by the option value of participating in later auctions.

In the case of a sequence of two uniform price auctions, bids in the first auction are

also discounted respect to what they would be in a single uniform price auction. The

discount this time represents the option value of increasing the quantity purchased

in the later auction.

In a sequence of two uniform price auctions with non-strategic bidders who bid

randomly and strategic bidders with, equilibrium bidding in the second auction was

shown to be unique and symmetric for any supply split with S2 ≥ Nλ̃. However,

this was not the case in the first auction. Nevertheless, first auction equilibrium

bids are bounded above by the value of the good discounted by the option value of

increasing the quantity purchased in the second auction35. Using this upper bound

of equilibrium bids, an upper bound of the expected revenue in a sequence of two

uniform price auctions was defined.

The static and dynamic bid shading together with the discounting of the option

value of increasing the quantity purchased in the second auction reduce the seller’s

expected revenue when using a sequence of two uniform price auctions. The dynamic

bid shading and the option value discounting, which are not present in single uniform

price auction, are particularly strong when there are few bidders and at least one of

them demands a small share of the supply. These features of equilibrium bidding

are even stronger when the supply is split evenly between the two auctions of the

35If bidders do not know the actual value of the good and they all receive the same signal about

it, then the upper bound is given by the expected value of the good discounted by the option value

of increasing the quantity purchased in the second auction.
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sequence. Hence, in those cases it is certainly more profitable for the seller to use a

single uniform price auction than a sequence of two uniform price auctions. These

results are in line with the finding that it is better for the seller to use a sealed-bid

auction than a dynamic auction when competition is not very strong.
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Chapter 3

Market Power, Forward Trading and Supply Function Competition

3.1 Introduction

It is generally argued that forward trading is socially beneficial. Two of the

most common arguments state that forward trading allows efficient risk sharing

among agents with different attitudes toward risk and improves information shar-

ing, particularly through price discovery. It is also believed that forward trading

enhances competition in the spot market by committing firms to more aggressive

strategies. A firm, by selling forward, can become the leader in the spot market

(the top seller), thereby improving its strategic position in the market. Still, when

firms compete in quantities at the spot market, every firm faces the same incentives,

resulting in lower prices and no strategic improvement for any firm. This is Allaz

and Vila’s (1993) argument. Green (1999) shows when firms compete in supply

functions, forward trading might not have any effect on the intensity of competition

in the spot market, but in general it will enhance competition. This pro-competitive

argument has been used to support forward trading as a market mechanism to mit-

igate incentives to exercise market power, particularly in electricity markets.

The pro-competitive feature of forward trading has been challenged by recent

papers. Mahenc and Salanié (2004) show when, in the spot market, firms producing

substitute goods compete in prices instead of in quantities, firms take long posi-
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tions (buy) in the forward market in equilibrium. This increases the equilibrium

spot price compared to the case without forward market. In that paper as in Allaz

and Vila’s paper, firms use forward trading to credibly signal their commitment to

more profitable spot market strategies. However, as Fudenberg and Tirole (1984)

and Bulow et al. (1985) point out, in those cases prices are strategic complements,

while quantities are strategic substitutes, which is the reason for the different equi-

librium forward positions taken by firms in both papers, and the resulting effect on

the intensity of competition. Liski and Montero (2006) show that under repeated

interaction it becomes easier for firms to sustain collusive behavior in the presence

of forward trading. The reason is that forward markets provide another instrument

to punish deviation from collusive behavior, which reduces the gains from defection.

However, all these papers ignore a key point—that firms usually face capacity

constraints, which affects their incentives for strategic trading ahead of the spot

market. When a capacity constrained firm sells forward, it actually softens compe-

tition in the spot market from the perspective of competitors. In the case where

there are two firms and one sells its entire capacity forward, its competitor becomes

the sole supplier in the spot market, which implies it has the power to set the price.

The following is an example of how forward trading can affect the intensity

of competition in the spot market when firms are constrained on the quantity they

can offer. The In-City (generation) capacity market in New York is organized as a

uniform-price auction, where the market operator (NYISO) procures capacity from

the Divested Generation Owners (DGO’s). Two of the dominant firms in this market

are KeySpan, with almost 2.4 GW of installed capacity and, US Power Gen, with
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1.8 GW. Before May 2006, US Power Gen negotiated a three years swap (May 2006

– April 2009) with Morgan Stanley for 1.8 GW, by which it commits to pay (receive

from) Morgan Stanley 1.8 million times the difference between the monthly auction

price and $7.57 kw-month, whenever such difference is positive (negative). Morgan

Stanley closed its position by negotiating with KeySpan the exact reverse swap.

The first swap works for US Power Gen as a credible signal that it will bid

more aggressively in the monthly auction, since US Power Gen benefits from lower

clearing prices in that auction. Also, this financial transaction could be explained on

risk hedging grounds. The swap reduces US Power Gen’s exposure to the spot price

by locking in, at $7.57 per kw-month, the price it receives for those MWs of capacity

its sells in the spot market. On the other side, the outcome of these transactions left

KeySpan owning, either directly or financially, 4.2 GW of capacity for three years,

which gave it a stronger dominant position in the In-City capacity market, and the

incentive to bid higher prices in the monthly auction than otherwise. Moreover, it

is difficult to explain this financial transaction on risk hedging grounds, since the

swap increases KeySpan’s exposure to the uncertain price of the monthly auction,

by buying at the fixed price and selling at a variable price (the spot price).

As this chapter shows, when capacity constrained firms facing common uncer-

tainty compete in a uniform-price auction with price cap, strategic forward trading

does not enhance competition. On the contrary, firms use forward trading to soften

competition, which leaves consumers worse off. The intuition of this result is that

when a capacity constrained firm commits itself through forward trading to a more

competitive strategy in the spot market, its competitor faces a more inelastic resid-
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ual demand in that market. Hence, its competitor prefers not to follow suit in the

forward market and thus behave less competitively in the spot market than it oth-

erwise would, by inflating its bids. Because of capacity constraints a firm’s actions

in the forward market can change its competitor’s strategies in the spot market by

affecting its own marginal revenue in the spot market. This result and its intu-

ition relate to the work of Fudenberg and Tirole (1984) and Bulow et al. (1985)

on strategic interactions. Under the assumptions made here, once US Power Gen

negotiated the swap with Morgan Stanley, KeySpan would have the incentive to bid

higher prices in the monthly auction, than if there were no trading ahead of it, even

if KeySpan did not buy the swap from Morgan Stanley.

When studying the effect of forward trading on investment incentives in a

model with uncertain demand and Cournot competition in the spot market, Murphy

and Smeers (2007) find that in some equilibria of the forward market one of the

firms stays out of the market while the other firm trades. These equilibria come up

when the capacity constraint of the latter firm binds at every possible realization of

demand. Grimm and Zoettl (2007) also study that problem by assuming a sequence

of Cournot spot market with certain demand at each market, but varying by market.

They also find that when a firm’s capacity constraint binds in a particular spot

market, this firm is the only one trading forwards which mature at that spot market.

These results are in the same line as those on this chapter. However, when the spot

market is organized as a uniform-price auction, as is the case here, they hold even if

the capacity constraints only bind for some demand realizations. Also, by modeling

the spot market as a uniform-price auction with uncertain demand, the results on
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this chapter are better suited for the understanding of wholesale electricity markets.

The results here are also related to those on demand/supply reduction in

uniform-price auctions. As Ausubel and Cramton (2002) show, in uniform-price

procurement auctions, bidders have an incentive to reduce supply in order to receive

a higher price for their sales. This incentive grows with the quantity supplied and

it is inversely related to the size of the smallest bidder. Large bidders make room

for small bidders. When a capacity constrained firm sells forward, it behaves like

a smaller bidder in the auction. Therefore, the incentive to inflate bids increases

for the other bidders in the auction. Consequently, strategic forward trading can

be reinterpreted as a mechanism that allows firms to assign themselves to different

markets, in order to strengthen their market power, which leaves firms better off,

but at the expense of consumers who end up worse off. As this chapter will show,

usually the smaller firm decides to trade most of its capacity through the forward

market, with the larger firm becoming almost the sole trader on the spot market.

The goal of this chapter is not to challenge the general belief that forward

trading is socially beneficial, but yes to challenge the pro-competitive view of forward

trading by highlighting the impact of capacity constraints on the incentives for

strategic forward trading.

The chapter is organized as follows. Section 3.2 analyzes the case where firms

are only allowed to sell forwards at date 0. Section 3.3 analyzes the case where

firms are also allowed to buy forward and shows that the results do not change.

Section 3.4 concludes.
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3.2 Short Forward Positions

There are two firms which produce and sell an homogeneous good in the spot

market (date 1) to satisfy demand from non strategic consumers. At date 0, before

the spot market takes place, firms can sell forward contracts (i.e. take short posi-

tions) in a competitive forward market, with the good traded in the spot market

being the underlying good of the forward contracts. Also, at date 0 competitive risk

neutral traders take positions on the forward market1. As it is usually assumed,

forward contracts mature at the time the spot market meets, date 1. For simplicity,

it is assumed the discount factor between forward and spot markets is one. If a

firm sells forward at price ph and the price in the spot market is p, the payoff of the

forward contract at maturity will be
(
ph − p

)
per unit. Therefore, forward contracts

can be interpreted as specifying the seller receives (pays) the difference between the

forward price, ph, and the spot price, p, if such difference is positive (negative). This

is just a financial forward, which is settled without physical delivery, but through an

equivalent monetary payment2. It is assumed along the chapter there is no risk of

default from any party involved in a transaction in the forward market. Moreover,

no contract can be renegotiated in the spot market.

1It is not necessary that all traders be risk neutral. As long as a large proportion of them are so,

the results hold. Also, consumers could be allowed to participate in the forward market without

any change on the results.
2As Mahenc and Salanié (2004) point out, most actual forward markets function as markets

without physical delivery. Nevertheless, the qualitative results would not change if forward con-

tracts were settled through physical delivery.
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The demand faced by both firms in the spot market, D (p, x), is assumed

to be uncertain, with x being a demand shock which can take any value on the

interval [0,M ]. F (x) is the cumulative distribution function of the demand shock,

which is assumed to be strictly increasing, continuous and piece-wise continuously

differentiable. The spot market is modeled as a uniform-price auction, where the

auctioneer’s goal is to ensure enough supply to match demand. A firm’s strategy

consists of a forward transaction and a piece-wise twice continuously differentiable

supply function for the spot market. The realization of the demand uncertainty

takes place at date 1, but after firms have chosen their supply functions. Firms are

assumed to be capacity constrained, with kl representing the installed capacity of

firm l. Each firm’s cost function, Cl (ql) where ql is the quantity produced by firm

i, is assumed to be increasing, piece-wise continuously differentiable and convex.

Firms’ cost functions and installed capacities are common knowledge. At date

0, firms simultaneously and independently chose the amount of forward contracts

they want to sell. Then, at date 1 given its portfolio of forward contracts and

that of its competitor, each firm chooses the supply function it will submit to the

auctioneer. This choice is also made simultaneously and independently by both

firms. Once the auctioneer has the supply functions from both firms, the demand

uncertainty is realized. Given the information structure and the timing of the game,

an equilibrium of this model is a profile of strategies, one for each firm, that defines

a subgame perfect equilibrium of the entire game. Hence, the first step on the

study of firms’ incentives to trade forward at date 0 is solving for the spot market

equilibrium for every pair of forward transactions, h = (h1, h2).
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3.2.1 Spot Market

At date 1 before the demand shock is realized, firms chose their optimal supply

functions taking h as given, with that for firm l (l = 1, 2) represented by si (p; h).

In order to perform a meaningful analysis of the forward market, it is necessary

to have analytical solutions for the equilibrium spot supply functions. However, as

it will become clear later, that might turn out cumbersome. For this reason, the

spot market demand will be assumed inelastic, D (p, x) = x, which will simplify the

analysis3. To guarantee existence of a relevant equilibrium, it will be assumed there

is a price cap, p, in the spot market. Also, proportional rationing will be used when

required.

The literature on supply function equilibrium shows that when demand is

certain or when it is uncertain but with the highest possible demand, M in this

case, lower than total installed capacity, k1 + k2, there exist multiple equilibria

in the spot market (see Klemperer and Meyer (1989)). However, when there is

positive probability of both capacity constraints binding, the spot market has a

unique equilibrium (see Holmberg (2004) and Aromı́ (2007)). For this reason, it is

assumed that M > k1 + k2
4.

Firms’ supply functions depend on the forward portfolio, h. However, for ease

3This might seem a strong assumption. However, for example, wholesale electricity demand

can be closely approximated by an inelastic demand. Moreover, the modeling in this chapter fits

the functioning of most wholesale electricity markets.
4This is also a reasonable assumption in many markets, and particularly in wholesale electricity

markets. Another option is to interpret D (p, x) as the residual demand after subtracting the bids

from non-strategic firms.
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of notation, such reference will be suppressed hereafter, sl (p) ≡ sl (p; h). Since the

spot market is modeled as a uniform-price auction, the equilibrium spot price for a

given profile of supply functions, (s1 (p) , s2 (p)), and quantity demanded, x, is the

lowest price that clears the market:

p (x, s) =


inf {p ∈ [0, p] : x ≤ s1 (p) + s2 (p)}

p

if x < S (p)

otherwise

(3.1)

where s = (s1,s2) and S (p) is the aggregate supply function.

Remember that the payoff of a forward transaction, when firms have submitted

the profile s of supply functions and x is the realization of the spot demand, is just(
ph − p (x, s)

)
per unit, with ph being the forward price. Hence, if firm l sold hl

units in the forward market, its expected profit can be written as:

Πl (sl, s−l; h) = E
[
p (x, s) ql (x, s)− Cl (ql (x, s)) +

(
ph − p (x, s)

)
hl
]

(3.2)

where ql (x, s) is the quantity delivered in equilibrium by firm i for a given

realization of the demand and a given pair of supply functions. If there is no excess

demand, ql (x, s) = sl (p (x, s)), otherwise ql (x, s) < sl (p (x, s)) due to rationing5.

The goal of firm l when choosing its spot market supply function, sl (p), is to

maximize its expected profits, represented by (3.2), subject to its capacity constraint

and taking date 0 forward sales as given.

Aromı́ (2007) characterizes the unique equilibrium when there is no forward

trading. The remainder of this section extends his results to the case where firms

5When there is excess demand at the equilibrium price p, then ql (x, s) = sl (p) +

(x− S (p)) sl(p)−sl(p)

S(p)−S(p)
, where sl (p) ≡ limε→0 sl (p− ε), sl (p) ≡ limε→0 sl (p+ ε) and the same

applies for the aggregate supply.
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have previously sold forwards. Let cl (ql) represent the marginal cost function of

firm l, and define p0 = inf {p ≥ 0 : s1 (p) > 0 and s2 (p) > 0}.

Lemma 8 When firms have sold forward, the equilibrium supply functions are con-

tinuous for every price p ∈ (p0, p) and 0 ≤ p0 ≤ max {c1 (0) , c2 (0)} .

Proof. This lemma states that if both firms are offering strictly positive quantity in

equilibrium and the spot price is below the price cap, equilibrium supply functions

are continuous when firms have sold forwards. This proof follows Aromı́’s proof for

the case when firms did not sell forward.

Assume firm −l offers
(
q−l − q−l

)
> 0 at a price p∗ ∈ (p0, p). For any subset

[p∗, p∗ + ε] firm l must offer additional quantity, otherwise firm −l can profitably de-

viate by withholding supply at p∗. Let’s define pεl (p∗) = inf {p : sl (p) ≥ sl (p
∗) + ε},

and observe that limε→0 p
ε
l (p∗) = p∗.

For example, firm l can deviate by submitting the following supply function:

ŝεl (p) =


sl (p

∗) + ε if p ∈ (p∗ − ε, pεl (p∗))

sl (p) otherwise

(3.3)

The effect of this deviation on the expected profits can be split in two parts,

a loss from lower prices, Ωε, and a gain from larger sales, Γε.

The loss is bounded above by:

Ωε < (pεl (p∗)− p∗ + ε) (sl (p
ε
l (p∗))− hl)Prε (∆p) (3.4)

Prε (∆p) is the probability that the price changes due to the deviation by firm

l, and clearly it converges to zero as ε does so. Moreover, the difference in prices
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also converges to zero with ε, hence the derivative of the upper bound is zero at

ε = 0.

Now, the gain Γε, is bounded below by:

Γε > (p∗ − ε− cl (sl (p∗) + ε)) ∆Eε (ql) (3.5)

The unit markup is strictly positive at ε = 0. In addition, as Aromı́ shows,

the change in expected quantity, ∆Eε (ql), is strictly increasing in ε at ε = 0 and it

is independent of forward transactions. Therefore, this deviation is profitable even

in the case where firms sell forwards.

Lemma 9 When firms have sold forward, the equilibrium supply functions are

strictly increasing at every p ∈ (p0, p).

Proof. This lemma states that if both firms are offering strictly positive quantity in

equilibrium and the spot price is below the price cap, equilibrium supply functions

are strictly increasing when firms have sold forward. Besides a minor change on the

lower bound for the gains in terms of prices to allow firms to sell forward, this proof

follows step by step Aromı́’s proof of its lemma 2.

When firms did not trade ahead of the spot market, if firm l offers the same

quantity for p ∈
[
p, p

]
there are two possible cases. If firm −l is offering additional

units for that range of prices, then firm −l can increase its expected profits by

withholding supply for that range of prices. If no firm offers additional units for

that range of prices, firm l can withhold supply at every p ∈
(
p− ε, p

)
, and increase

its expected profits.
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For example, firm l can deviate to:

s̃εl (p) =



sl
(
p− ε

)
if p ∈

(
p− ε, p

)
[
sl
(
p− ε

)
, sl

(
p
)]

if p = p

sl (p) otherwise

(3.6)

The losses in terms of quantities are bounded above by:

Ωε < p
(
sl
(
p
)
− sl

(
p− ε

)) (
F
(
sl
(
p
)

+ s−l
(
p
))
− F

(
sl
(
p− ε

)
+ s−l

(
p− ε

)))
(3.7)

Moreover, the upper bound converge to zero as ε converges to zero and its

derivative is also zero at ε = 0. Now the gains in terms of prices are bounded below

by:

Γε >
(
p− p

) (
sl
(
p− ε

)
− hl

) (
F
(
sl
(
p
)

+ s−l
(
p
))
− F

(
sl
(
p
)

+ s−l
(
p− ε

)))
(3.8)

The lower bound is strictly increasing in ε at ε = 0, even after firms sold

forward.

Since equilibrium supply functions are strictly increasing at every price on the

interval (p0, p), no firm offers in equilibrium its entire installed capacity at a price

below the price cap. Aromı́ showed that when no firm has traded ahead of the

spot market, both firms offer all of their installed capacity at the price cap, and the

equilibrium supply function of at least one firm is continuous at p. That result still

holds when firms have sold forward at date 0. The reason is it is not profitable for

firms to reduce the quantity supplied at the price cap below its installed capacity,

even when firms have sold forward, since the price can not go higher. Moreover, since
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equilibrium supply functions are continuous for prices up to p, if limp→p ql (p) < kl

for both firms, at least one of them will find profitable to deviate and sell a larger

quantity at prices just below the price cap, no matter whether they sold forward or

not.

Firm l’s residual demand is dl (p;x) ≡ max {0, x− s−l (p)}. The collection of

price-quantity points that maximize firm l’s ex-post profits given firm −l’s supply

function form an ex-post optimal supply function. Since the uncertainty in the

model, which comes from the additive demand shock, causes firm l’s residual demand

to shift horizontally without affecting its slope, the ex-post optimal supply function

is also the ex-ante optimal supply function, the one that maximizes (3.2) given

firm −l’s supply function. This equivalence between ex-ante and ex-post optimal

supply functions holds as long as firm are risk-neutral and the uncertainty can

be represented by a single random variable that only affects firms’ residual demand

additively. If firms are risk-averse and the uncertainty in the model enters additively,

the ex-ante optimal supply function might not be equivalent to the supply function

that maximizes ex-post utility, but it will be equivalent to the one that maximizes

ex-post profit.6

Therefore, firm l’s optimization problem can be represented as one where firm

l chooses the clearing price that maximizes its profit for each particular level of

6See Hortaçsu and Puller (2007) for a discussion of the case where firms have private information

and are risk-averse.
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demand, given its competitor (firm −l) supply function.

maxp(x)

[
p (x) (x− s−l (p (x))) +

(
ph − p (x)

)
hl − Cl (x− s−l (p (x)))

]
s.t. 0 ≤ x− s−l (p (x)) ≤ kl

(3.9)

Both firms first order conditions for an interior solution define a system of

differential equations which characterizes the equilibrium supply functions once x−

s−l (p (x)) is replaced by sl (p (x)):

s′2 (p (x)) =
s1 (p (x))− h1

p (x)− c1 (s1 (p (x)))
(3.10)

s′1 (p (x)) =
s2 (p (x))− h2

p (x)− c2 (s2 (p (x)))
(3.11)

The bottom conditions of the equilibrium supply functions depend on both

firms’ forward transactions. The following lemma characterizes them.

Lemma 10 The equilibrium supply function of firm l satisfies: sl (cl (hl)) = hl; and

∀p < p0 sl (p) = hl if cl (hl) ≤ p0 otherwise sl (p) = sl (p0) < hl, l = 1, 2.

Proof. Define s∗l (p) as firm l’s equilibrium supply function, and remember that

p (x) is the equilibrium price as a function of demand. Therefore, s∗l (p (x)) =

min
{
x− s∗−l (p (x)) , kl

}
represents the quantity firm l supplies in equilibrium when

demand is x. Now, if s∗l (p) and s∗−l (p) are continuous and strictly increasing (p > p0)

equation (3.10) or (3.11) and s∗−l (p) define s∗l (p) . It is easy to see that when x −

s∗−l (p (x)) = hl, the only price that satisfy the FOCs is p (x) = cl (hl) .

Now for p < p0 at least one firm is offering zero quantity in equilibrium.

Hence, there are two possible cases s∗l (p0) = 0, which implies s∗l (p) = 0 for all

p < p0, and s∗l (p0) > 0, which means firm l’s residual demand equals the min {x, kl}
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and therefore it is inelastic at every p < p0. If p0 < cl (hl), then s∗l (p0) < hl.

When 0 < x < s∗l (p0), firm l’s residual demand is lower than the quantity hedged

by its forward sales and it is inelastic, hence
∂πhl (x)

∂p
< 0 at every p < p0 and for

every 0 < x < s∗l (p0), where πhl (x) is firm l’s ex-post profit. Therefore, p (x) = 0

∀x < s∗l (p0); which means, s∗l (p) = s∗l (p0) ∀p < p0.

When cl (hl) ≤ p0, and x < hl,
∂πhl (x)

∂p
< 0 at every p < cl (hl), for the same

reasons explained above, then p (x) = 0. However, when hl < x < s∗l (p0), firm l’s

residual demand is higher than its contract holdings and also inelastic at any price

below p0, hence
∂πhl (x)

∂p
> 0 for all prices in that range, and p (x) = p0. Therefore,

s∗l (p) = hl ∀p < p0.

Since forwards are assumed to be financial contracts, a firm’s residual demand

might be lower than its forward portfolio. In that case the firm can be seen not

as a seller in the spot market, but as a net buyer. To see this, rewrite (3.9) as

πhi = p (si (p)− hi)+Ci (si (p))+phhi, where the reference to x have been suppressed

for ease of notation. If di (p) < hi, then si (p) < hi, therefore, the first term which

is the net revenue from the spot market would be negative. In that event, firm i

does not have any incentive to exercise monopoly power over its residual demand

by pushing the equilibrium price as high as it is profitable. On the contrary, it has

an incentive to exercise monopsony power by driving down the equilibrium price as

much as it is profitable. For example, if 0 < si (p0) < hi, the optimal strategy for

firm i will be to offer any quantity below si (p0) at the lowest possible price, which

is zero. This is the intuition behind lemma 10.

Lemmas 8 through 10 and equations (3.10) and (3.11) characterize the equilib-
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rium profile of supply functions. It can be easily seen from the system of first order

conditions and the proof of lemma 10 that such supply functions are actually mutual

best responses; hence, there exists at least one equilibrium of the spot market. As

Aromı́ shows for the case when firms have sold no contracts, the monotonicity and

continuity of the profile of supply functions with respect to the boundary conditions

at the price cap ensure uniqueness of the equilibrium in supply functions. It can

also be seen from equations (3.10) and (3.11) that when firms sold in the forward

market, the profile of supply functions defined by those equations is also monotonic

and continuous with respect to the boundary conditions at p. Hence, the equilib-

rium defined by lemmas 1 through 3 and equations (3.10) and (3.11) is the unique

equilibrium in supply functions when firms have previously sold forwards.

When firm l sells forward contracts, its marginal net revenue from the spot

market decreases, but its marginal cost remains unchanged. Hence, given the strat-

egy of its competitor, if firm l sold forward contracts, its strategy in the spot market,

sl (p), becomes more aggressive (i.e. bids lower prices) than if it did not sell ahead

of the spot market. As equation (3.10) or (3.11) show, given the strategy of firm −l,

the higher is hl, the lower is the price chosen by firm l for any realization of dl (x).

Hence selling ahead of the spot market shifts firm l’s supply function outwards.

Therefore, a forward sale is just a credible commitment device for a more aggressive

selling strategy in the spot market.

When firms face no capacity constraints and there is no price cap, there exist

multiple equilibria of the spot market. Also when marginal costs are constant and

symmetric, with Cl (ql) = cql, the supply functions are linear in price in every
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equilibria. Moreover, their slopes, which are symmetric, are independent of forward

positions and only the intercept of each firm’s equilibrium supply function depends

on its own forward position7. Hence, in this case there is a clear relationship between

forward transactions and equilibrium spot supply functions, which is not necessarily

true when equilibrium supply functions are non linear in price.

The goal of this chapter is to study how capacity constraints shape firms’

incentives for strategic forward trading. Hence, assuming constant and symmetric

marginal costs is a sensible choice, since in this way the effect of capacity constraints

can be clearly identified. When firms are capacity constrained and there is a price

cap8, the supply functions in the unique equilibrium are still linear in prices. How-

ever, now not only the intercept depends on forward positions, but also the slope

of the equilibrium supply functions. The reason is equilibrium supply functions are

strictly increasing at every price on the interval (p0, p), which means no firm offers

in equilibrium its total installed capacity at a price below the price cap. Let’s define

kal = max {0, kl − hl} as firm l’s adjusted capacity and kam = min {ka1, ka2}. The

following expressions define the equilibrium supply functions:

sl (p) =



αl + βp0 p ∈ [0, p0]

αl + βp p ∈ (p0, p)

kl p = p

l = 1, 2 (3.12)

with
7The difference among all the possible equilibria for a given profile of forwards, h, is just the

slope of the supply functions.
8The role of the price cap is to ensure the existence of a relevant equilibrium, otherwise firms

would be offering every unit at a price of infinite.
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αl = hl − βc, β =
kam
p− c

(3.13)

p0 = c− min {h1, h2}
β

(3.14)

As lemma 10 states, when p = c, the quantity supplied by firm l equals

its short forward position, sl (c) = hl. Additionally, if ka1 < ka2, then the supply

function of firm 1 is continuous at p, while the limp→p s2 (p) = k2−(ka2 − ka1) < k2,

which means firm 2 withholds (ka2 − ka1) units.

Firm l is more aggressive than firm −l in the spot market, if it offers a larger

quantity than firm −l at every price in (p0, p). Now, this implies the relatively

less aggressive firm is the one that withholds part of its installed capacity in the

spot market. In the case of constant symmetric marginal costs, the difference in

adjusted capacity not only indicates which firms is the most aggressive one in the

spot market, but it also represents the quantity withheld in that market. When

firms have symmetric constant marginal costs, but asymmetric installed capacities

and they did not sell ahead of the spot market, the optimal strategy for the largest

firm is to mimic the other firm at prices on the interval [c, p) and then offer its

extra capacity at the price cap9. Since in equilibrium firms offer any quantity up to

its forward holdings at prices below their marginal cost, firm l’s adjusted capacity

represents the portion of firm l’s installed capacity that is offered at prices above

marginal and average cost. Therefore, the firm with the largest adjusted capacity,

9Since the smaller firm has already exhausted its capacity, consumers can only buy from the

largest firm. Hence, the optimal price is p.

100



the less aggressive one, withholds its extra adjusted capacity and offers it at the

price cap.

When costs are not symmetric, which firm is relatively more aggressive depends

not only on the difference in adjusted capacity, but also on the cost difference. For

example, if firms are symmetric in capacity and they have not sold any forward

contracts, but their constant marginal costs are different, the firm with the lowest

marginal and average cost will be more aggressive in the spot market, even though

both firms have exactly the same adjusted capacity. Therefore, difference in adjusted

capacity as well as difference in costs are the factors that determine which firm will

be relatively more aggressive in the spot market.

3.2.2 Forward Market

At date 0 firms compete in the forward market by choosing the amount of

forwards they want to sell, while competitive traders take forward positions. The

competitive assumption together with the neutrality toward risk by firms and traders

implies that (3.2) becomes:

Πl (hl, h−l) = E [p (x,h) ql (x,h)− cql (x,h)] (3.15)

Equations (3.12) - (3.14) define the equilibrium supply functions in the spot

market. Now using them and the demand, D (p, x) = x, the equilibrium spot price
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for a given vector of forward transactions can be written as:

p (x; h) =



0 0 ≤ x ≤ S

x−h1−h2

2β
+ c S < x < S

p x ≥ S

(3.16)

where, S ≡ limp→0 S (p) = h1 + h2 + 2β (p0 − c) and S ≡ limp→p S (p) =

|ka1 − ka2|. Both firms’ equilibrium supply functions, and therefore the aggre-

gate supply function, are strictly increasing for demand realizations on the interval(
S, S

)
.

The quantity delivered by each firm in equilibrium in the spot market depends

on the demand realization, installed capacity and forward sales. When x ∈ [0, S], if

p0 is strictly positive the quantity delivered by firm l can be x or zero, depending

on whether firm l supplies a strictly positive quantity at p0 or not.10. However, if

p0 equals zero, firm l delivers x αl
αl+α−l

in equilibrium in the spot market11. When

x ∈
(
S, S

)
the quantity delivered by firm l is given by p (x; h) and (3.12). If x ∈[

S, k1 + k2

)
, the firm with the lowest adjusted capacity delivers its entire installed

capacity, while the other firm delivers the extra quantity needed to match demand,

and when x ∈ (k1 + k2,M ] each firm delivers its entire installed capacity. Hence,

firm l’s spot profit as a function of the demand realization and forward sales is the

following:

10Remember that p0 = inf {p : s1 (p) > 0 and s2 (p) > 0}. Therefore, if p0 is strictly positive and

lower than the marginal cost, at most one firm offers a strictly positive quantity at this price.
11This comes from assuming proportional rationing when there is excess supply.
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• If 0 ≤ x ≤ S

πl (x,h) =



0 if hl ≤ βc and hl ≤ h−l

−cx if hl > h−l and h−l ≤ βc

−cx αl
α1+α2

if hl > βc and h−l > βc

(3.17)

• If S < x < S

πl (x,h) =
(x− h−l)2 − h2

l

4β
(3.18)

• If S ≤ x < K

πl (x,h) =


(p− c) (x− k−l) if kal < ka−l

(p− c) kl if kal ≥ ka−l

(3.19)

• If K ≤ x ≤M

πl (x,h) = (p− c) kl (3.20)

When there are no capacity constraints, the only effect of a forward sale by

firm l is to make its spot market strategy more aggressive by shifting its supply

function outward without changing its slope. Hence, if firm l does not trigger any

response from its competitor when selling forward, then firm l will have no incentive

to sell them. Firm l could have follow the same more aggressive strategy in the

spot market without selling forward, but it did not do so, because it would have

decreased its expected profits. Firm l’s more aggressive strategy weakly increases

its sales for every demand realization, but it also weakly decreases the equilibrium

spot price, with the latter effect being the dominant one. This is the reason why

firms would not take short forward positions if there were no capacity constraints.

103



When firms are limited on the quantity they can produce, the supply reduction

or bid inflation in the spot market depends on the smallest adjusted capacity. If

firm l has the smallest adjusted capacity in the spot market, because it either has

the smallest installed capacity or sold the most in the forward market, an increase

in firm l’s forward sales decreases the elasticity of its supply function, and therefore,

the elasticity of firm −l’s residual demand. Hence, firm −l has an incentive to

increase the prices at which it offers every single unit. As a result, when firms are

capacity constrained, firm −l’s response might be strong enough to give firm l the

incentive to sell forward. However, if firm −l’s adjusted capacity is the smallest of

both, an increase on the amount sold ahead of the spot market by firm l which does

not alter the ranking of adjusted capacities does not trigger any response from firm

−l.

Expected spot profit is a continuous function of forward transactions, but this

function is not differentiable everywhere. The derivative of Πl with respect to hl

does not exist at hl = kl − k−l + min {h−l, k−l} (i.e. where kal = ka−l). Moreover,

the left hand side derivative is negative, while the right hand side derivative will

never be smaller than the former and it could even be positive. Hence, it is not

guaranteed that Πl (hl, h−l) is quasi-concave in hl
12. As a consequence, existence of

pure-strategy equilibria is not guaranteed for every demand distribution. However,

as proposition 8 states, only one particular type of equilibrium might exists.

Proposition 8 In every possible pure-strategy equilibrium of the forward market,

only one firm sells forward, but less than its installed capacity.

12The best response correspondences might not be closed-graph (i.e. be upper hemi-continuous).
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Proof. Equilibrium spot profits depend on the demand realization, the forward

positions and installed capacities. There are six different cases for the expected

profits depending on the pair of forward sales.

Case (a) kal ≥ ka−l, hl ≤ βc and hl ≤ h−l ⇒ S = h−l−hl, S = 2k−l−h−l+hl

∂Πa
l

∂hl
= − hl

2β

∫ S

S
dF (x) (3.21)

∂Πal
∂hl

is strictly negative unless hl = 0, when it becomes zero.

Case (b) kal ≥ ka−l, hl > h−l and h−l ≤ βc ⇒ S = hl − h−l, S = 2k−l −

h−l + hl

∂Πb
l

∂hl
= −f (S) p0S −

hl
2β

∫ S

S
dF (x) (3.22)

∂Πbl
∂hl

is also strictly negative unless hl = h−l = 0.

Case (c) kal ≥ ka−l, hl > βc and h−l > βc⇒ S = αl +α−l = hl + h−l− 2βc,

S = 2k−l − h−l + hl

∂Πc
l

∂hl
= − cα−l

(α1 + α2)2

∫ S

0
xdF (x)− hl

2β

∫ S

S
dF (x) (3.23)

In this case
∂Πcl
∂hl

< 0, since α−l = h−l − βc and this is strictly positive by

assumption.

Case (d) kal < ka−l, hl ≤ βc and hl ≤ h−l ⇒ S = h−l − hl, S = K −

(ka−l − kal) = 2kl − hl + h−l

∂Πd
l

∂hl
= − hl

2β

∫ S

S
dF (x) +

1

4β

∫ S

S

(x− h−l)2 − h2
l

kl − hl
dF (x) (3.24)

Case (e) kal < ka−l, hl > h−l and h−l ≤ βc⇒ S = hl−h−l, S = 2kl−hl+h−l

∂Πe
l

∂hl
= −cSf (S)− hl

2β

∫ S

S
dF (x) +

1

4β

∫ S

S

(x− h−l)2 − h2
l

kl − hl
dF (x) (3.25)
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Case (f) kal < ka−l, hl > βc and h−l > βc⇒ S = αl + α−l = hl + h−l − 2βc,

S = 2kl − hl + h−l

∂Πf
l

∂hl
=
−cph−l + c2kl

(p− c)S2

∫ S

0
xdF (x)− hl

2β

∫ S

S
dF (x) (3.26)

+
1

4β

∫ S

S

(x− h−l)2 − h2
l

kl − hl
dF (x)

Define λl (h−l) = kl − k−l + h−l as the value of hl such that kal = ka−l. The

derivative of Πl (hl, h−l) with respect to hl does not exists at hl = λl (h−l), since

limhl→λl(h−l)−
∂Πl(hl,h−l)

∂hl
< limhl→λl(h−l)+

∂Πl(hl,h−l)
∂hl

. When firm l is the relatively less

aggressive firm (kal > ka−l), the optimal choice for firm l is to stay out of the

forward market at date 0, as (3.21), (3.22) and (3.23) are strictly negative at every

hl ∈ (0, λl (h−l)) and zero at hl = 0.

Let’s assume (h∗1, h
∗
2) � 0 is the equilibrium of the forward market. Since

∂Πl(hl,h−l)
∂hl

< 0 ∀h−l as long as 0 < hl < λl (h−l), if firm 1 sells a strictly positive

amount at date 0, it has to be that h∗1 > λ1 (h∗2) = k1 − k2 + h∗2, which is the same

as h∗2 < k2 − k1 + h∗1. But this contradicts the assumption that h∗2 > 0, because

this assumption implies h∗2 > k2 − k1 + h∗1. Therefore, (h∗1, h
∗
2) � 0 can not be an

equilibrium.

Let’s assume without lost of generality that k1 > k2. Now, λ1 (h2) > 0 ∀h2,

which means there is always an h1 at which firm 1 will be the less aggressive firm.

Therefore, ∂Π1(0,h2)
∂h1

= 0 ∀h2, since when firm 1 does not sell forwards it is always

the less aggressive firm (ka1 > ka2). In addition, λ2 (0) < 0, hence, firm 2 is the

most aggressive at h = (0, 0) and
∂Πd2(0,0)

∂h2
= 1

4β

∫ S
S

x2

k2
dF (x) > 0. Therefore, no firm

selling forwards at date 0 is not an equilibrium. If k1 = k2, both firms will have the
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incentive to sell forwards when its competitor does not sell.

If hl tends to kl, the relevant cases to focus on are: (c) when h−l = k−l, (e)

when h−l = 0, and (f) when 0 < h−l < k−l. In all the cases lim
hl→k

(−)
l

∂Πl(hl,h−l)
∂hl

< 0,

as long as c > 0. Also, ∂Πl(hl,h−l)
∂hl

= 0 when hl > kl, because selling more than its

capacity does not have any impact on the spot market, firm i is already offering

every unit at a price of zero and it can not be more aggressive than that. Hence, no

firm hedges its entire capacity.

Therefore, in every possible pure-strategy equilibrium of the forward market,

only one firm sells forward, but less than its installed capacity.

When a capacity constrained firm commits itself through forward trading to a

more competitive strategy in the spot market, its competitor faces a more inelastic

residual demand in that market. Hence, its competitor prefers no to follow suit

in the forward market and thus behave less competitively in the spot market than

it otherwise would, by inflating its bids. A firm has an incentive to sell forwards

when its competitor does not sell, because the response it triggers in its competitor

is strong enough to increase its expected profits. Also, no firm wants to hedge its

entire installed capacity, because the negative impact on the spot price would be

too large, since its optimal strategy at date 1 would be to offer every single unit

at a price of zero. Finally, there can not be an equilibrium where both firms sell

strictly positive amounts at date 0, because only one firm at a time can trigger the

necessary response on its competitor to turn a forward sale into a profitable action.

Because of capacity constraints a firm’s actions in the forward market can change

its competitor’s strategies in the spot market by affecting its own marginal revenue
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in the spot market.

Now, by assuming that demand is uniformly distributed on [0,M ] a close

form solution for the equilibrium forward sales, h∗l , can be obtained together with

conditions that guarantee existence. This allows the study of some features of the

equilibria and particularly of the effect of forward transactions on the allocation

of total welfare between consumers, which are represented by the auctioneer, and

producers. Define c = δp, where δ ∈ (0, 1).

Proposition 9 When x ∼ U [0,M ],
(
h∗j , h

∗
i

)
=
(

2(p−c)
2p+c

kj, 0
)

is the equilibrium of

the forward market if:

(2 + δ)

33/2δ
≥ kj

ki(
9δ3 + 4 (1− δ)3

)
(2 + δ)

36δ3 − 9δ4 + 16
3

(1− δ)4 ≥ kj
ki

(4− δ2) (1− δ) δ
2 (δ − δ2 + 2δ3)

≥ kj
ki

Moreover, assume without loss of generality that k1 > k2. If k1− k2 > γ̂, where γ̂ is

defined by:

γ̂2 + γ̂

(
4δ

2 + 3δ

)
k2 −

4

3

(
1− δ
2 + 3δ

)
k2

2 = 0

then, there is a unique equilibrium with firm 2 selling h∗2 = 2(p−c)
2p+c

k2.

Proof. Proposition 8 showed the only possible equilibria are those where one firm,

which will be called firm i, sells forward a quantity smaller than its installed capacity

(0 < h∗i < ki), while the other firm, which will be called firm j, does not sell forward

(h∗j = 0). This proof will be divided in two parts. First, it will be shown that
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h∗i = 2(p−c)
2p+c

ki is the best response to h∗j = 0. Then, it will be shown that h∗j = 0 is

the best response to h∗i = 2(p−c)
2p+c

ki.

If ki ≤ kj and hj = 0, kai is certainly smaller than kaj; then Πi (hi, 0) is a

continuously differentiable function for all hi in (0, ki). This corresponds to case (e)

in the proof of proposition 8, hence h∗i is defined by:

−cSf (S)− hi
2β

∫ S

S
dF (x) +

1

4β

∫ S

S

(x)2 − h2
i

ki − hi
dF (x) = 0 (3.27)

where the left hand side is
∂Πei
∂hi

from equation (3.25). If x ∼ U [0,M ], then the

F.O.C. becomes:

−2p+ c

3
hi +

2

3
(p− c) ki = 0 (3.28)

and,

h∗i =
2 (p− c)
2p+ c

ki (3.29)

When ki > kj and hj = 0, kai can be either smaller or larger than kaj.

Therefore, Πi (hi, 0) is not continuously differentiable. If hi = 0, it is case (a) in

the proof of proposition 8, Πi (hi, 0) = Πa
i (hi, 0). When hi ∈ (0, λi (0)), it is case

(b), Πi (hi, 0) = Πb
i (hi, 0); while if hi ∈ (λi (0) , ki), it is case (e), with Πi (hi, 0) =

Πe
i (hi, 0). Clearly, Πa

i (0, 0) > Πb
i (hi, 0). Therefore, for h∗i = 2(p−c)

2p+c
ki to be firm

i’s best response to hj = 0, it has to be that maxhi Πe
i (hi, 0) is not smaller than

Πa
i (0, 0). Since ki > kj, then:

Πa
i (0, 0) =

(p− c)
M

[(
k2
i

2
+
k2
j

6

)
+ (M − ki − kj) ki

]
(3.30)

and

Πe
i (h∗i , 0) = − ch

∗
i

2M
− (p− c)

M

[
(ki − h∗i )

3
− kikj − (M − ki − kj) ki

]
(3.31)
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Now, subtracting both expressions, we have:

Πe
i (h∗i , 0)− Πa

i (0, 0) = −(p− c)
M

[(
k2
i

2
+
k2
j

6

)
− kikj +

(ki − h∗i )
3

]
− ch∗i

2M
(3.32)

plugging h∗i , defining ki = kj + γ, and arranging terms:

Πe
i (h∗i , 0)−Πa

i (0, 0) =
2p+ 3c

2 (2p+ c)M

[
−γ2 − γ

(
4ckj

2p+ 3c

)
+

4

3
k2
j

(
p− c

2p+ 3c

)]
(3.33)

Replacing c by δp, (3.33) becomes:

Πe
i (h∗i , 0)− Πa

i (0, 0) =
2 + 3δ

2 (2 + δ)M

[
−γ2 − γ

(
4δkj

2 + 3δ

)
+

4

3
k2
j

(
1− δ
2 + 3δ

)]
(3.34)

Define γ̂ as the value of γ such that Πa
i (0, 0) − Πe

i (h∗i , 0) = 0. Hence, h∗i =

2(p−c)
2p+c

ki can be firm i’s best response to hj = 0 only if ki−kj ≤ γ̂. Now, for h∗i to be

firm i’s best response to hj = 0, h∗i has to be an interior solution, h∗i ∈ (λi (0) , ki),

where λi (0) = ki − kj. If γ were equal to h∗i , it can be shown that equation (3.33)

would be negative. Therefore, γ̂ is smaller than h∗i ; which means h∗i is firm i’s best

response to hj = 0, if ki − kj ≤ γ̂. Consequently, if k1 > k2 and k1 − k2 > γ̂, there

is no equilibrium where the large firm 1 sells forward.

The next step is to find conditions for hj = 0 to be firm j’s best response to h∗i .

When kai < kaj, hj = 0 is the optimal choice for firm j, since ∂Πj(hi,hj)

∂hj

∣∣∣
kai<kaj

<

0 for all hj > 0 and ∂Πj(hi,0)

∂hj

∣∣∣
kai<kaj

= 0. The expected profit function is not

differentiable, but continuous at λj (h∗i ); and it is also concave for hj in (0, λj (h∗i ))

and hj in (λj (h∗i ) , kj). Hence, if the lim
hj→λj(h∗i )

+
∂Πj(h∗i ,hj)

∂hj
is non-positive for cases

(d), (e) and (f), then hj = 0 is firm j’s best response to h∗i .

lim
hj→λj(h∗i )

+

∂Πd
j

∂hj

∣∣∣∣∣
h∗i

=
p− c
M

kj

(
1− (2p+ c)2

27c2

k2
j

k2
i

)

110



lim
hj→λj(h∗i )

+

∂Πe
j

∂hj

∣∣∣∣∣
h∗i

=

(
c+

16 (p− c)4 + 54c3 (p− c)
27 (2p+ c) c2

)
ki −

(
c+

4 (p− c)3

9c2

)
kj

lim
hj→λj(h∗i )

+

∂Πf
j

∂hj

∣∣∣∣∣∣
h∗i

=

(
c (p− c)
2p+ c

+
3c3 (p− c) + 2c4

(2p+ c) (p− c)2

)
ki −

(
c+

c2

2 (p− c)

)
kj

Define c = δp, where δ ∈ (0, 1). Now, the conditions for lim
hj→λj(h∗i )

+
∂Πdj
∂hj

∣∣∣∣
h∗i

to be non-positive can be expressed as follows:

(2 + δ)

33/2δ
≥ ki

kj(
9δ3 + 4 (1− δ)3

)
(2 + δ)

36δ3 − 9δ4 + 16
3

(1− δ)4 ≥ ki
kj

(4− δ2) (1− δ) δ
2 (δ − δ2 + 2δ3)

≥ ki
kj

Where the three conditions are for cases (d), (e) and (f) respectively. For

example, if the installed capacities are symmetric, these conditions will be satisfied

for any δ approximately smaller than 0.48.

A very interesting feature of the equilibrium is that when the asymmetry be-

tween firms in terms of their installed capacity is larger than γ̂, there is a unique

equilibrium of the forward market, where only the smaller firm sells forward. Ob-

viously, having a unique equilibrium is a very interesting feature, but the unique

equilibrium in itself is very striking.

In equilibrium, firms split the two markets (forward and spot) between them.

When |k1 − k2| > γ̂, the small firm trades mainly through the forward market,

while the large firm becomes almost the sole seller in the spot market. There is

no equilibrium where the large firm sells forward at date 0, because the small firm

is relatively so small that its optimal response to the large firm’s more aggressive

strategy in the spot market is not enough to offset the downward impact of this
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latter strategy on the spot price; and on the forward price through the no arbitrage

condition. Hence, when seeing in a market that only the small firm takes a hedge

against the uncertain price, it would be risky to draw the standard conclusion that

this is a sign the smaller firm is more risk averse than the larger one, since as this

chapter shows this might happen even when firms are risk neutral.

When a firm takes a short forward position in equilibrium, the size of the

forward sale is independent of the other firm’s installed capacity. Hence, k−l only

plays a role on determining whether firm l sells at date 0, but not on how much it

sells when it does.

Since demand is assumed to be inelastic, forward trading can not increase or

decrease expected welfare, but it can affect the allocation of the gains from trade

between consumers and producers. As the following proposition shows, firms are

generally better off in aggregate thanks to forward trading. But, the other side of

this story is that consumer are worse off by firms’ strategic use of forward trading,

since it allows firms to step up their exercise of market power. Define k and k as

the largest and smallest installed capacity respectively.

Proposition 10 When firms are capacity constrained and the small firm takes a

short forward position in equilibrium, strategic forward trading reduces expected con-

sumer surplus. However, when the large firm is the one taking the short position

in equilibrium, expected consumer surplus decreases if k − k < γ̃, but increases if

γ̃ < k − k ≤ γ̂; where γ̃ is defined by:

γ̃2 + (2k) γ̃ − (1− δ)2

3 (1 + 2δ)
k2 = 0 (3.35)
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Proof. Let’s assume without loss of generality that k1 ≥ k2. When x ∼ U [0,M ],

Πa
1 (0, 0) is given by equation (3.30) and

Πa
2 (0, 0) =

(p− c)
M

[(
k1k2 −

k2
2

3

)
+ (M − k1 − k2) k2

]
(3.36)

There are two possible equilibria,
(

2(p−c)
2p+c

k1, 0
)

and
(
0, 2(p−c)

2p+c
k2

)
. Let’s start

with the second equilibrium, the one where the small firm 2 takes a short forward

position. The expected profits for both firms are the following:

Πa
1 (0, h∗2) =

(p− c)
M

[
k2

2 + h∗22

6
− k2h

∗
2

3
+
k2

1

2
+ (M − k1 − k2) k1

]
(3.37)

Πe
2 (0, h∗2) = −ch

∗2
2

2
+

(p− c)
M

[
k1k2 −

(k2 − h∗2)2

3
+ (M − k1 − k2) k2

]
(3.38)

Defining ΠT (0, 0) = Πa
1 (0, 0)+Πa

2 (0, 0) and ΠT (0, h∗2) = Πa
1 (0, h∗2)+Πe

2 (0, h∗2),

replacing h∗2 and subtracting, we have

ΠT (0, h∗2)− ΠT (0, 0) =
2

3

(p− c)3

(2p+ c)2

k2
2

M
(3.39)

which is strictly positive for all p > c. Since the expected gains from trade are

constant, the expected consumer surplus decreases when there is strategic forward

trading and the small firm takes a short position.

When the large firm is the one selling forward in equilibrium, the expected

profits are the following:

Πe
1 (h∗1, 0) = −ch

∗2
1

2M
+

(p− c)
M

[
k1k2 −

(k1 − h∗1)2

3
+ (M − k1 − k2) k1

]
(3.40)

Πa
2 (h∗1, 0) =

(p− c)
M

[
k2

1 + h∗21

6
− k1h

∗
1

3
+
k2

2

2
+ (M − k1 − k2) k2

]
(3.41)

Defining ΠT (h∗1, 0) = Πe
1 (h∗1, 0) + Πa

2 (h∗1, 0), we have

ΠT (h∗1, 0)− ΠT (0, 0) =
2

3

(p− c)
M

[
k2

2 −
3p (p+ 2c)

(2p+ c)2 k2
1

]
(3.42)
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Rearranging and replacing k1 by k2 + γ, we obtain

ΠT (h∗1, 0)− ΠT (0, 0) =
−2p (p− c) (p+ 2c)

(2p+ c)2M

[
γ2 + (2k2) γ − (p− c)2

3p (p+ 2c)
k2

2

]
(3.43)

Replacing c by δp, (3.43) becomes:

ΠT (h∗1, 0)− ΠT (0, 0) =
−2 (1− δ) (1 + 2δ)

(2 + δ)2M

[
γ2 + (2k2) γ − (1− δ)2

3 (1 + 2δ)
k2

2

]
(3.44)

Let’s define γ̃ as the value of γ such that strategic forward trading does not

impact aggregate expected profits. When k1 − k2 = γ̃, the extra expected profits

enjoyed by firm 1 exactly offset the loss experienced by firm 2. As it can be seen

from equations (3.34) and (3.44), γ̃ is smaller than γ̂. Hence, when the equilibrium

where the large firm sells forward does exist, the effect of strategic forward trading

on expected aggregate profits and therefore, on expected consumer surplus, depends

on the asymmetry between firms. When the difference between k1 and k2 is smaller

than γ̃, consumers are worse off, however, when k1 − k2 ∈ (γ̃, γ̂] consumers and the

large firm are better off at the expense of the small firm.

3.3 Long and Short Forward Positions

On the previous section firms were only allowed to take short positions in the

forward market. Now, firms are also allowed to take long positions in the forward

market if they find such strategy to be optimal. In this section it will be assumed,

for tractability reasons, firms not only have symmetric constant marginal costs, but

also symmetric installed capacities, k1 = k2 = k. A positive hl represents firm l’s

short position in the forward market, while a negative hl represents firm l’s long

position.
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3.3.1 Spot Market

As it was explained before, when firms sell forward, equilibrium supply func-

tions are strictly increasing and continuous for every price on the interval (p0, p).

Moreover, a forward sale by firm l has the effect of shifting that firm’s equilibrium

supply function outwards. Also, the amount withheld by the less aggressive firm

equals the difference in adjusted capacity. When firms can take long positions on the

forward market, the difference in adjusted capacity can be larger than k, which has

an important consequence on the equilibrium in the spot market. For this reason,

the cases |kal − ka−l| < k and |kal − ka−l| ≥ k will be studied separately.

3.3.1.1 Case a) |kal − ka−l| < k

If 0 < kal−ka−l < k, then firm l is the least aggressive firm and its withholding

will always be smaller than its entire installed capacity. As it will become clear, this

assumption guarantees the existence of a unique pure-strategy equilibria, which is

still characterized by equations (3.10) and (3.11) and by updated versions of lemmas

1 to 3. In this case, the equilibrium spot price and firm l’s expected profit are still

represented by equations (3.1) and (3.2).

When firm l takes a long position in the forward market, its marginal net

revenue from the spot market decreases, but its marginal cost remains unchanged.

Hence, given the strategy of its competitor, if firm l buys forward contracts, its

strategy in the spot market becomes less aggressive (i.e. bids higher prices) than

if it did not buy ahead of the spot market. Therefore, p0, which was defined as
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inf {p : s1 (p) > 0 and s2 (p) > 0}, weakly increases with the amount of forwards

bought buy firms, and can be higher than the marginal cost. Lemmas 4 and 5

are updated version of lemmas 1 and 2, while the top conditions of equilibrium sup-

ply functions described before still hold when firms are allowed to buy forward and

|kal − ka−l| < k.

Lemma 11 When firms have traded forward, the equilibrium supply functions are

continuous for every price p ∈ (p0, p) and 0 ≤ p0 < p.

Proof. This lemma states that if both firms are offering strictly positive quantity in

equilibrium and the spot price is below the price cap, equilibrium supply functions

are continuous when firms have traded forward as long as |kal − ka−l| < k, with

l = 1, 2. The proof of this lemma is identical to the proof of lemma 8, when hl is

allowed to be negative.

Lemma 12 When firms have traded forward, the equilibrium supply functions are

strictly increasing at every p ∈ (p0, p).

Proof. This lemma states that if both firms are offering strictly positive quantity in

equilibrium and the spot price is below the price cap, equilibrium supply functions

are strictly increasing when firms have traded forward as long as |kal − ka−l| < k,

with l = 1, 2. The proof of this lemma is identical to the proof of lemma 9, when hl

is allowed to be negative.

As it was explained before, a firm’s optimization problem can be represented

as one where the firm chooses the clearing price for each particular level of demand,
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given its competitor supply function. Therefore, firm l’s optimization problem for a

given demand level x and a given supply function of firm −l is still represented by

equation (3.9), while equations (3.10) and (3.11) characterize the equilibrium supply

functions in the spot market for prices on the interval (p0, p). The following lemma,

which is an updated version of lemma 10, characterizes the bottom conditions of

equilibrium supply functions when firms are allowed to buy and sell at date 0.

Lemma 13 When firms have traded forwards, firm l’s equilibrium supply function

satisfies: sl (p) = max {0, hl} ∀p < p0, if c ≤ p0; otherwise sl (p) = sl (p0) < hl ∀p <

p0 and sl (c) = hl.

Proof. This proof is similar to the proof of lemma 10. Let’s define s∗l (p) as firm l’s

equilibrium supply function, and remember that p (x) is the equilibrium price as a

function of demand. Therefore, s∗l (p (x)) = min
{
x− s∗−l (p (x)) , kl

}
represents the

quantity firm l supplies in equilibrium when demand is x. Now, if s∗l (p) and s∗−l (p)

are continuous and strictly increasing (p > p0) equation (3.10) or (3.11) and s∗−l (p)

define s∗l (p) . It is easy to see that when x − s∗−l (p (x)) = hl, the only price that

satisfy the FOCs is p (x) = c. However, when at least one firm buys forward, p0 is

strictly higher than c. Let’s assume that firm l is the one that defines p0, s∗l (p0) = 0.

The FOC for firm l becomes s′−l (p0) = −hl
p0−c . If hl < 0 (i.e. firm l buys forward) then

p0 > c, while if hl > 0, p0 < c. Hence, since s∗l (p) ≥ 0 ∀p, then sl (c) = max {0, hl} .

Now for p < p0 at least one firm is offering zero quantity in equilibrium.

Hence, there are two possible cases s∗l (p0) = 0, which implies s∗l (p) = 0 for all

p < p0, and s∗l (p0) > 0, which means firm l’s residual demand equals the min {x, kl}
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and therefore it is inelastic at every p < p0. If p0 < c, then s∗l (p0) < hl. When

0 < x < s∗l (p0), firm l’s residual demand is lower than the quantity hedged by

its forward sales and it is inelastic, hence
∂πhl (x)

∂p
< 0 at every p < p0 and for

every 0 < x < s∗l (p0), where πhl (x) is firm l’s ex-post profit. Therefore, p (x) = 0

∀x < s∗l (p0); which means, s∗l (p) = s∗l (p0) ∀p < p0.

When c ≤ p0, and 0 ≤ x < hl,
∂πhl (x)

∂p
< 0 at every p < c, for the same reasons

explained above, then p (x) = 0. However, when max {0, hl} < x < s∗l (p0), firm l’s

residual demand is higher than its contract holdings and also inelastic at any price

below p0, hence
∂πhl (x)

∂p
> 0 for all prices in that range, and p (x) = p0. Therefore,

s∗l (p) =max{0, hl} ∀p < p0.

Now, it becomes clear that as long as |kal − ka−l| < k, buying forwards has

exactly the opposite effect on the spot market strategy than selling them. Given

the strategy of its competitor, once firm l bought forward contracts, its strategy in

the spot market, sl (p), becomes less aggressive than if it bought none. As equation

(3.10) or (3.11) show, given s−l (p), the smaller is hl, the higher is the price chosen

by firm l for any realization of dl (x). hence buying ahead of the spot market shifts

firm l’s supply function inwards. Therefore, a forward purchase can be seen just as a

credible commitment device for a less aggressive strategy in the spot market. As in

the case where firms can only sell ahead of the spot market, when |kal − ka−l| < k

there exists a unique pair of equilibrium supply functions, which are also represented

by equations (3.12)− (3.14) .
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3.3.1.2 Case b) |kal − ka−l| ≥ k

If firm −l sells forward contracts for an amount equal to or larger than its

installed capacity, it is possible that kal − ka−l ≥ k. However, in that case firm

−l offers its entire installed capacity at a price of zero in the spot market. This

is optimal because for any demand realization firm −l’s residual demand is smaller

than hj, and so firm −l behaves like a net buyer who exercises monopsony power.

As a consequence, the optimal spot market strategy for firm l is to offer the share

of its installed capacity that is not hedged by a forward sale at the price cap and

the share that is hedged at a price of zero.

If hl and h−l are both smaller than k, then kal − ka−l ≥ k can be true

only if firm l bought forward contracts. Since installed capacities are symmetric,

the quantity withheld by the less aggressive firm, in this case firm l, equals the

difference in forward transactions (h−l − hl). However, in the spot market no firm

can withhold more than its entire installed capacity. Hence, if the difference in

forward positions is greater than or equal to k, firm l will not offer any quantity at

prices below p, but it will offer its full installed capacity at the price cap.

The optimal response for firm −l to a strategy like that is to offer the share

of its installed capacity that has not been hedged by forward sales at a price below

the price cap, but as close as possible to it13. However, that price does not exist.

Therefore, there is no pure-strategy equilibrium in the spot market when hl and

h−l are both smaller than k and |h−l − hl| ≥ k. Nevertheless, there is a mixed-

13Remember that demand is uncertain with support [0,M ] and M > k1 + k2. So, whether one

or two firms are needed to satisfy demand depends on the particular demand realization.
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strategy equilibrium14. Before characterizing this equilibrium, some notation needs

to be defined. Firm l’s withholding will be represented by wl. So, if wl = k, then

w−l = min {k, ka−l}.

Proposition 11 If wl = k, there exists a unique mixed-strategy equilibrium of the

spot market, where firms name prices according to continuous and strictly increasing

probability distribution functions, Gl (p) and G−l (p), with support
[
p, p

]
where p ≥ c

and Gl (p) ≤ G−l (p). Moreover, if wl > w−l, firm l names p with strictly positive

probability and Gl (p) < G−l (p) ∀p ∈
(
p, p

)
.

Proof. As it was explained before, when |kal − ka−l| ≥ k and max {hl, h−l} < k,

there is no pure-strategy equilibrium of the spot market, however, there is a unique

equilibrium in mixed-strategy. Let’s define Gl (p) as the equilibrium mixed-strategy

of firm l, and
[
p
l
, pl
]

as its support, with l = 1, 2.

The proof has two parts. In the first part some features of this mixed-strategy

equilibrium are proved, while in the second part the unique equilibrium is calcu-

lated15.

Some features of the equilibrium:

a) p
1

= p
2

= p ≥ c: In equilibrium no firm names a price below its average

cost. If a firm does so, there is a positive probability that it will earn negative profits,

but it can increase its expected profits by just naming with the same probability any

14See von der Fehr and Harbord (1992, 1993) who study the spot market when firms offer their

entire installed capacity at a unique price.
15Some ideas for the proof of proposition 11 come from von der Fehr and Harbord (1992) which

analyzes a case with discrete demand distribution, asymmetric costs and no forward trading.
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price equal to or greater than c. In addition, if the lowest price named by firm −l

is p−l, firm l will never name a price pl < p−l, otherwise it can increase its expected

profits by naming a price p′l ∈
(
pl, p−l

)
.

b) pl = p for at least one firm: Let’s assume p−l < pl < p. When firm l names

pl, it earns a strictly positive profit per unit, (pl − c), only after firm −l has sold its

entire installed capacity. Hence, naming a higher price does not have any impact

on the expected quantity it sells, but increases the unit markup. Therefore, pl = p

for at least one firm.

c) There is no interior mass point, Prob (pl = p) = 0 ∀p ∈
(
p, p

)
: Let’s assume

firm −l names p′ ∈
(
p, p

)
with positive probability in equilibrium and no firm sold

its entire installed capacity at date 0. First, naming p′ with positive probability is

not an optimal strategy for firm l. If it does so, it will be tied with firm −l, sharing

demand proportionally. Let’s define m−l = max {0, h−l} and ml in a similar way.

Because of the tie, one element of firm l’s expected profits is:

Pr (p−l = p′) (p′ − c) wl
wl+w−l

∫ 2k
m−l

(x−m−l)dF (x) if hl < 0

Pr (p−l = p′) (p′ − c)
[
ml + wl

wl+w−l

] ∫ 2k
ml
xdF (x) if h−l < 0

(3.45)

However, if firm l names p′ − ε, with ε > 0, instead of p′, there will be no tie.

Moreover, when firm l names p′ − ε and firm −l names p′, firm l will sell before

firm −l sells any quantity at a strictly positive price16. As ε converges to 0, the

16Firm j will sell hj at a price of zero if it sold forward at date 0.
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corresponding element in firm l’s expected profits converges to:

Pr (p−l = p′) (p′ − c)
[∫ k+m−l
m−l

(x−m−l)dF (x) +
∫ 2k
k+m−l

kdF (x)
]
if hl < 0

Pr (p−l = p′) (p′ − c)
[∫ k
ml
xdF (x) + k

∫ 2k
k dF (x)

]
if h−l < 0

(3.46)

The terms on (3.46) are larger than those on (3.45). Also, all the other elements

on firm l’s expected profits when it names p′− ε, can be made arbitrarily close to all

those elements when it names p′, by choosing a small enough ε. Therefore, naming

p′ with positive probability cannot be part of firm l’s equilibrium strategy when firm

−l already does it.

Second, if firm −l names p′ with strictly positive probability there exists an

ε > 0 such that naming any price on the interval (p′, p′ + ε) is not optimal for firm

l. If firm l names p′ + ε, with ε < ε, (3.45) converges to (3.47) as ε approaches 0.

Pr (p−l = p′) (p′ − c)
∫ 2k
k (x− k) dF (x) if hl < 0

Pr (p−l = p′) (p′ − c)
[
ml

∫ k+ml
ml

dF (x) +
∫ 2k
k+ml

(x− k) dF (x)
]
if h−l < 0

(3.47)

For example, when hl is negative, firm l names a price higher than p′ and

p−l = p′, firm l only sells after its competitor has exhausted its entire installed

capacity. Hence, the increase in price has to be large enough to offset the decrease

in expected quantity, for naming a price higher than p′ to be an optimal strategy

for firm l.

Therefore, if when firm −l names p′ with strictly positive probability, firm l

will not name any price on the interval (p′, p′ + ε), then firm −l will be better off

by naming a price on such interval instead of naming p′ with positive probability,
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which contradicts that the later was part of firm −l’s equilibrium strategy.

d) The support of Gl (p) ,
[
p, pl

]
, is a convex set for l = 1, 2: Let’s assume

there is a subset A ⊂
[
p, p

]
, such that no firm names any price on A. Also, define

pa = inf {p | p ∈ A} and pa = sup {p | p ∈ A}. If pa − ε, for some ε > 0, belongs to

the support of firm l’s mixed-strategy, then firm l can increase its expected profits

by choosing pa + δ ∈ A, instead of pa − ε. As ε converges to zero, the increase in

firm l’s expected profit converges to:

[
G−l (pa)

∫ 2k
k (x− k) dF (x) + [1−G−l (pa)]

∫ k+m−l
m−l

(x−m−l)dF (x)
]
δ if hl < 0[

G−l (pa)
∫ 2k
k+ml

(x− k) dF (x) + [1−G−l (pa)]
∫ k
ml
xdF (x)

]
δ if h−l < 0

(3.48)

Since both expressions on (3.48) are positive, the support of firm l’s equilibrium

mixed-strategy is convex. Now, if firm l is the only firm with prices on A as part of

its strategy, firm l can increase its expected profits by choosing pa+ δ instead of any

price on A. For example, switching from pa− ε to pa + δ, gives increases in expected

profits like those on (3.48) as ε converges to zero. Hence, the support of firm −l’s

equilibrium mixed-strategy is also convex.

Calculation of the mixed-strategy equilibrium: Since installed capac-

ities are symmetric and equal to k, if hl and h−l are both smaller than k, then

kal − ka−l ≥ k can be true only if firm l bought forwards (more than firm −l) at

date 0. In this case, firm l’s withholding, wl, equals k, while w−l = min {k, ka−l},

since firm −l could have sold forwards.

Now, the expected profit of firm l when it names p and firm −l plays according

to the mixed-strategy G−l (p) ≡ Pr (p−l ≤ p) is:
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E−lΠl (p,G−l (p)) = G−l (p) (p− c)
∫ 2k

k
(x− k) dF (x)

+ [1−G−l (p)] (p− c)
∫ k+m−l

m−l
(x−m−l) dF (x) (3.49)

+k
∫ 2k

k+m−l
dF (x)

∫ p

p
(s− c) dG−l (s)

+ (p− c) k
∫ M

2k
dF (x)

E−l means the expectation is taken with respect to firm −l’s mixed-strategy.

The first term on the right side is the expected profit when firm −l undercuts firm

l, but the latter is the marginal firm. The second and third term are when firm −l

names higher prices than firm l. In the second term the marginal firm is l, while in

the third is −l. Finally, the last term is when demand happens to be larger than

the installed capacity of both firms.

In equilibrium the derivative of E−lΠl (p,G−l (p)) with respect to p equals zero

for all p ∈
[
p, p

)
.

∂E−lΠl (p,G−l (p))

∂p
= g−l (p) (p− c) η−l −G−l (p)µ−l + ν−l (3.50)

where g−l (p) ≡ G
′
−l (p) and

η−l =
∫ 2k

k
(x− k) dF (x)−

∫ k+m−l

m−l
(x−m−l) dF (x)− k

∫ 2k

k+m−l
dF (x)(3.51)

µ−l =
∫ k+m−l

m−l
(x−m−l) dF (x)−

∫ 2k

k
(x− k) dF (x) (3.52)

ν−l =
∫ k+m−l

m−l
(x−m−l) dF (x) (3.53)

By setting (3.50) equal to zero, g−l (p) becomes:

g−l (p) =
µ−lG−l (p)

η−l (p− c)
− ν−l
η−l (p− c)

(3.54)
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The expected profit of firm −l when it names p and firm l plays according to

the mixed-strategy Gl (p) is:

ElΠ−l (Gl (p) , p) = Gl (p) (p− c)
∫ 2k

k+m−l
(x− k) dF (x)

+ [1−Gl (p)] (p− c)
∫ k

m−l
xdF (x) (3.55)

+k
∫ 2k

k
dF (x)

∫ p

p
(s− c) dGl (s)

+ (p− c) k
∫ M

2k
dF (x)

In the same line as before, in equilibrium gl (p) becomes:

gl (p) =
µlGl (p)

ηl (p− c)
− νl
ηl (p− c)

(3.56)

where

ηl =
∫ 2k

k+m−l
(x− k) dF (x)−

∫ k

m−l
xdF (x)− k

∫ 2k

k
dF (x) (3.57)

µl =
∫ k

m−l
xdF (x)−

∫ 2k

k+m−l
(x− k) dF (x) (3.58)

νl =
∫ k

m−l
xdF (x) (3.59)

If h−l ≤ 0, wl = w−l, then (3.54) and (3.56) are the same. However, when

h−l > 0, wl > w−l. In this last case, firm l names p with strictly positive probability,

otherwise we would get a contradiction when solving (3.54) and (3.56). Since in

equilibrium each firm has to leave its competitor indifferent among the prices on[
p, p

]
and firm −l by being the smallest of both is more at risk of being undersold,

then firm l has to be less aggressive by stochastically naming higher prices

By solving (3.54) and using the end conditions
(
G−l

(
p
)

= 0 andG−l (p) = 1
)
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together with the fact that G−l (p) is continuous at p, G−l (p) becomes:

G−l (p) =


λ−l ln

(
p−c
p−c

)
+ 1 if x ∼ U(

p−c
p−c

)φ−l (
1 + λ−l

φ−l

)
− λ−l

φ−l
otherwise

(3.60)

and

p =


c+ (p− c) e−

1
λ−l if x ∼ U

c+ (p− c)
(

λ−l
φ−l+λ−l

) 1
φ−l otherwise

(3.61)

where λ−l = −ν−l
η−l

, φ−l = µ−l
η−l
. Then, solving (3.56) and using Gl

(
p
)

= 0 and

(3.61), Gl (p) becomes:

Gl (p) =


λl ln

(
p−c
p−c

)
+ λl

λ−l
if x ∼ U(

p−c
p−c

)φl λl
φl

(
λ−l

φ−l+λ−l

)−φl
φ−l − λl

φl
otherwise

(3.62)

Gl (p) = 1

where λl and φl are defined in a similar way as λ−l and φ−l. The equilibrium

mixed-strategies and the lower bound of their support are different when demand is

uniformly distributed, because µ−l = µl = 0.

From (3.60) and (3.62) it can be seen that Gl (p) < G−l (p) , ∀p ∈
[
p, p

)
when

wl > w−l. However, when wl = w−l, Gl (p) = G−l (p), and they are represented by

expression (3.60), while p remains the same.

Hence, in equilibrium firm l offers its entire installed capacity at a single price

from the interval
[
p, p

]
, while firm −l offers w−l also at a single price from the same

interval. In addition, if firm −l has a short position in the forward market, firm −l

will offer h−l at a price of zero in the spot market.
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3.3.2 Forward Market

At date 0 firms and competitive risk-neutral traders take their preferred for-

ward positions. As before, equation (3.15) represents firm l’s expected profit. Also,

expressions 3.16) and (3.17) to (3.20) represent the equilibrium price and net profit

in the spot market when |kal − ka−l| < k. When at date 0 no firm sold its installed

capacity nor more than that, and one firm bought so much that |kal − ka−l| ≥ k,

then at date 1 firms play the mixed-strategies described on proposition 11. In those

cases, firm l’s expected profit is given by (p− c)
[∫ 2k
k+ml

(x− k) dF (x) +
∫M

2k kdF (x)
]
,

where ml = max {0, hl},.

When 0 < kal − ka−l < k, an increase in firm l’s long position gives firm l an

incentive to bid higher prices in the spot market. This action increases the price

that firm l receives in the spot market, but at the same time decreases the quantity

it sells. Moreover, this less aggressive bidding behavior in the spot market would

only be profitable if firm −l responds by withholding its supply at prices above p0
17.

However, firm −l might withhold some quantity at prices below p0, but it does not

change its bidding behavior at any price above p0 and below the price cap, because

the slope of equilibrium supply functions at those prices depends on the smallest

adjusted capacity, that of firm −l, which has not changed. Therefore, no firm has

a long position in the forward market in equilibrium.

Proposition 12 The equilibria of the forward market when firms can buy or sell

17If this action were optimal without any change on firm −l′s bidding behavior, then firm l

would have taken it without increasing its long position in the forward market.
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-k

-k

k

k

h-l – hl = k

hl

h-l – hl = -k

R2

R1

R5 R7

R4

R3

h-l

R8 R6

Figure 3.1: Pairs of forward positions organized by firm l’s expected profit and spot

market equilibrium

forward are the same as those when they can only sell forward.

Proof. The space of all pairs of forward transactions can be divided into eight

regions (R1, ..., R8) in terms of the spot market equilibrium and features of expected

profit. These regions are represented in Figure 3.1. On regions R1, R3 and R4 the

equilibrium in the spot market is in mixed-strategies, while on the remaining regions

the equilibrium is in pure-strategies, hereafter SFE, for supply function equilibrium.
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The expected profit of firm l is18:

EΠl(h) =



(p− c)
[∫ 2k
k (x− k) dF (x) +

∫M
2k kdF (x)

]
if h ∈ R1, R2 or R3

(p− c)
[∫ 2k
k+hl

(x− k) dF (x) +
∫M

2k kdF (x)
]
if h ∈ R4 or R5

k
∫M
k (p (x)− c) dF (x) if h ∈ R6

k (p̄− c)
∫M

2k dF (x) if h ∈ R7

ΠSFE
l (h) if h ∈ R8

(3.63)

where p (x) is given by expression (3.16) and ΠSFE
l (h) refers to firm l’s ex-

pected profits when the equilibrium in the spot market is a SFE. On the proof of

proposition 8 there are six different cases (a to f) for ΠSFE
l (h). However, when

installed capacities are symmetric there are only four, because cases b) and d) are

not possible19.

The limhl→k(−)
∂EΠl(h)
∂hl

< 0, as long as c > 0 and ∂EΠl(h)
∂hl

= 0 when hl > k.

Therefore, firm l will not sell at date 0 an amount equal to or greater than its entire

installed capacity, and because of symmetry the same can be said about firm −l.

Hence, regions R2, R5, R6 and R7 can be ruled out as regions where best responses

might intersect.

The next step is to show that for a given h−l, firm l is better off by choosing

an hl in R8 than any hl in R1. Firm l’s expected profit in R1 is independent

18Πl represents firm l’s expected profit, where the expectation is over the uncertain demand.

The E on EΠl represents the expectation over firms’ spot market strategies. In the case of SFE

such expectation is trivial.
19For example, kai > kaj ⇔ hi < hj , therefore, case b) does not exist. The opposite inequality

rules out d).
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of hl. Also, ΠSFE
l (h) converges to firm l’s expected profit in R1 as hl converges

to (h−l − k). Now,
∂ΠSFEl (h)

∂hl

∣∣∣∣
hl<h−l

= − hl
2β

∫ 2k
h−l−hl dF (x), which is strictly positive

when hl < 0. This derivative does not exists at hl = h−l, but when h−l < 0,

the lim
hl→h

(+)
−l

∂ΠSFEl (h)

∂hl
= 1

4β

∫ 2k
0

x2−2xh−l
k−h−l

dF (x), which is positive since h−l < 0.

Therefore, R1 and the section of R8 where hl < 0 and hl < h−l can be also ruled

out as regions where there might be an equilibrium. By the same reasoning but for

firm −l, it is possible to rule out R3, R4 and the section of R8 where hl > h−l and

h−l < 0.

Finally, the only region, or subregion, left is R8 where h ≥ 0. Therefore, if

there are equilibria in the forward market, they are the same as those described in

proposition 8, when firms were only allowed to sell at date 0.

3.4 Conclusion

Forward trading allows efficient risk sharing among agents with different at-

titudes toward risk and improves information sharing, particularly through price

discovery. It is also believed that forward trading enhances competition in the spot

market. The standard argument claims a firm, by selling forward, can become the

leader in the spot market (the top seller), thereby improving its strategic position in

the market. Still, every firm faces the same incentives, resulting in lower prices and

no strategic improvement for any firm. Due to this effect on competition, forward

trading has become a centerpiece of most liberalized electricity markets. However,

as this chapter showed, this argument does not hold when firms face capacity con-
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straints.

When capacity constrained firms facing common uncertainty compete in a

uniform-price auction with price cap, strategic forward trading does not enhance

competition. On the contrary, firms use forward trading to soften competition,

which leaves consumer worse off. The intuition of this result is that when a capac-

ity constrained firm commits itself through forward trading to a more competitive

strategy at the spot market, its competitor faces a more inelastic residual demand in

that market. Hence, its competitor prefers not to follow suit in the forward market

and thus behaves less competitively at the spot market than it otherwise would, by

inflating its bids. Therefore, forward trading allows firms to step up the exercise of

market power, which leaves them better off at the expense of consumers.

The results on this chapter generalize to the standard auction case where the

auctioneer is the seller and the bidders are the buyers. Bidders in uniform-price

auctions have an incentive to reduce demand in order to pay a lower price for their

purchases. This incentive grows with the quantity demanded. In a standard auc-

tion, when a bidder with demand for a finite quantity buys forward, it behaves like a

smaller bidder in the auction. Therefore, the incentive to reduce their bids increases

for the other bidders in the auction. Consequently, strategic forward trading in-

tensify demand reduction in standard uniform-price auctions, which reduces seller’s

expected revenue.
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Chapter 4

Conclusion

4.1 Sequential Uniform Price Auctions

When choosing among several auction formats, the seller looks for the auction

format that is best suited for achieving her main objectives of revenue maximization

and efficiency. Sometimes, the seller is also interested in the market that results after

the auction, like in spectrum auctions, and prefers an auction that yields a diverse

pool of winners even at the expense of revenue maximization and efficiency. One

decision that needs to be made by the seller when she has a divisible good for sale is

whether to sell the entire supply in one auction or to spread it over several auctions.

There are several features of the market that should be considered when deciding

between a single auction and a sequence of auctions such as transaction costs, budget

or borrowing constraints, private information and bidders’s risk aversion.

The seller might prefer a single auction over a sequence of auctions when the

transaction costs of bidding in an auction are high relative to the profits bidders

can expect to make in that auction. In the event that bidders face budget or

borrowing constraints a single auction might limit the quantity they can buy, while

in a sequence of auctions bidders have the chance to raise more capital if needed.

When there is private information about the value of the good being auctioned, a

sequence of sealed-bid auctions improves the discovery of the collective wisdom of the
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market relative to a single sealed-bid auction, possibly increasing expected revenue.

If infra-marginal bidders are risk averse, the seller might also prefer a sequence of

sealed-bid auctions, since that auction format reduces bidders’ risk which might

increase the seller’s expected revenue by increasing participation.

In addition, the effect of strategic bidding on revenue generation and efficiency

should be considered when deciding between a single auction and a sequence of

auctions. There is an extensive literature that studies equilibrium bidding, revenue

generation and efficiency in sequences of single object auctions, such as sequences of

first price, second price or even English auctions. However, there is no theoretical

nor empirical research that studies sequences of divisible good auctions. Chapter 2

filled that gap in the literature for the case of divisible good auctions with a uniform

pricing rule by studying a sequence of two uniform price auctions and comparing its

revenue generation properties with those of a single uniform price auction.

In auctions where bidders pay the clearing price for the quantity won, bidders

have an incentive to reduce demand (i.e. shade their bids) to pay less for their

winnings. This incentive grows with the quantity demanded and is inversely related

to bidders’ demands. In a sequence of two uniform price auctions, bidders internalize

that their bidding in the first auction has an effect on the demand reduction in the

later auction. Bidders reduce their demands even more in the first auction with

one bidder, usually the largest one, reducing it more than the others and thus

strengthening the bid shading or demand reduction in the second auction. Hence,

in a sequence of uniform price auctions there is not only static demand reduction

but also dynamic demand reduction.
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In any auction within a sequence of single object auctions with the exception

of the last, bids are discounted by the option value of participating in later auctions.

In the case of a sequence of two uniform price auctions, bids in the first auction are

also discounted respect to what they would be in a single uniform price auction. The

discount this time represents the option value of increasing the quantity purchased

in the later auction.

In a sequence of two uniform price auctions with non-strategic bidders who bid

randomly and strategic bidders with, equilibrium bidding in the second auction was

shown to be unique and symmetric for any supply split with S2 ≥ Nλ̃. However,

this was not the case in the first auction. Nevertheless, first auction equilibrium

bids are bounded above by the value of the good discounted by the option value of

increasing the quantity purchased in the second auction1. Using this upper bound

of equilibrium bids, an upper bound of the expected revenue in a sequence of two

uniform price auctions was defined.

The static and dynamic bid shading together with the discounting of the option

value of increasing the quantity purchased in the second auction reduce the seller’s

expected revenue when using a sequence of two uniform price auctions. The dynamic

bid shading and the option value discounting, which are not present in single uniform

price auction, are particularly strong when there are few bidders and at least one of

them demands a small share of the supply. These features of equilibrium bidding

1If bidders do not know the actual value of the good and they all receive the same signal about

it, then the upper bound is given by the expected value of the good discounted by the option value

of increasing the quantity purchased in the second auction.
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are even stronger when the supply is split evenly between the two auctions of the

sequence. Hence, in those cases it is certainly more profitable for the seller to use a

single uniform price auction than a sequence of two uniform price auctions. These

results are in line with the finding that it is better for the seller to use a sealed-bid

auction than a dynamic auction when competition is not very strong.

4.2 Forward Trading and Capacity Constraints

Forward trading allows efficient risk sharing among agents with different at-

titudes toward risk and improves information sharing, particularly through price

discovery. It is also believed that forward trading enhances competition in the spot

market. The standard argument claims a firm, by selling forward, can become the

leader in the spot market (the top seller), thereby improving its strategic position in

the market. Still, every firm faces the same incentives, resulting in lower prices and

no strategic improvement for any firm. Due to this effect on competition, forward

trading has become a centerpiece of most liberalized electricity markets. However, as

chapter 3 showed, this argument does not hold when firms face capacity constraints.

When capacity constrained firms facing common uncertainty compete in a

uniform-price auction with price cap, strategic forward trading does not enhance

competition. On the contrary, firms use forward trading to soften competition,

which leaves consumer worse off. The intuition of this result is that when a capac-

ity constrained firm commits itself through forward trading to a more competitive

strategy at the spot market, its competitor faces a more inelastic residual demand in
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that market. Hence, its competitor prefers not to follow suit in the forward market

and thus behaves less competitively at the spot market than it otherwise would, by

inflating its bids. Therefore, forward trading allows firms to step up the exercise of

market power, which leaves them better off at the expense of consumers.

The results on chapter 3 generalize to the standard auction case where the

auctioneer is the seller and the bidders are the buyers. Bidders in uniform-price

auctions have an incentive to reduce demand in order to pay a lower price for their

purchases. This incentive grows with the quantity demanded. In a standard auc-

tion, when a bidder with demand for a finite quantity buys forward, it behaves like a

smaller bidder in the auction. Therefore, the incentive to reduce their bids increases

for the other bidders in the auction. Consequently, strategic forward trading in-

tensify demand reduction in standard uniform-price auctions, which reduces seller’s

expected revenue.
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Appendix A

Equilibrium Bidding in Sequential Uniform Price Auctions

A.1 First Order Conditions

A.1.1 Ex-ante Profit Maximization

The expected profit of bidder l before auction t, when he bids dlt(p) and his

competitors bid their equilibrium demand functions dmt(p) with m 6= l, can be

written as:

Et [Πlt] = Et [(v − pt) dlt(pt) + I(t)Et+1 [πlt+1 (qt)]]

where I(t) is an indicator function which equals one if t = 1 and zero if t = 2.

Remember pt is the clearing price in auction t. Also, πlt+1 (qt) is the ex-post profit

from auction t+ 1 when the vector of purchases in auction t was qt.

Bidder l’s optimization problem at t is:

max
dlt(p)

Et [Πlt]

s.t. dlt(p) ≤ λl − qlt−1(yt−1)

where ql0 = 0.

The most important source of uncertainty in auction t is the demand from

non-strategic bidders in that auction, which translates into uncertainty about the

clearing price in that auction, pt. Let’s define a probability measure over realizations
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of the clearing price, from the perspective of bidder l, conditional on him bidding

dlt(p), while his competitors bid the demand functions {dmt(p),m ∈ −l}:

H t(p, dlt(p)) ≡ Pr [pt ≤ p | dlt(p)]

By the definition of the clearing price, the event pt ≤ p is equivalent to dlt(p)+

∑
−l d−lt(p) ≤ yt. This probability distribution can be written as:

H t(p, dlt(p)) = Pr[dlt(p) +
∑
−l
d−lt(p) ≤ yt | dlt(p)]

=
∫
I{dlt(p) +

∑
−l
d−lt(p) ≤ yt} dF (yt)

where I{·} is the indicator function for the enclosed event.

Now, bidder l’s expected profit maximization can be written as:

max
dlt(p)

∫ p

p
[(v − p)dlt(p) + I(t)Et+1 [πlt+1]] dH t (p, dlt(p))

Integration by parts of the expected profit function yields:

c−
∫ p

p

((
v − p+ I(t)Et+1

[
∂πlt+1

∂dlt

])
d′lt(p)− dlt(p)

)
H t (p, dlt(p)) dp

where c is a constant. Now define:

M t(p, dlt, d
′
lt) ≡

((
v − p+ I(t)Et+1

[
∂πlt+1

∂dlt

])
d′lt(p)− dlt(p)

)
H t (p, dlt(p))

Then, the Euler equation becomes:

∂

∂p
M t

d′
lt

= M t
dlt

Evaluating the derivatives,

M t
d′
lt

=

(
v − p+ I(t)Et+1

[
∂πlt+1

∂dlt

])
H t (p, dlt(p))

M t
dlt

=

(
I(t)Et+1

[
∂2πlt+1

∂d2
lt

]
d′lt(p)− 1

)
H t (p, dlt(p))

+

((
v − p+ I(t)Et+1

[
∂πlt+1

∂dlt

])
d′lt(p)− dlt(p)

)
H t
dlt

(p, dlt(p))
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where H t
dlt

(p, dlt(p)) is the derivative of the probability distribution of the clearing

price with respect to dlt. Taking the total derivative of M t
d′
lt

with respect to p:

∂

∂p
M t

d′
lt

=

(
I(t)Et+1

[
∂2πlt+1

∂d2
lt

]
d′lt − 1

)
H t(p, dlt(p))

+

(
v − p+ I(t)Et+1

[
∂πlt+1

∂dlt

]) (
H t
p(p, dlt(p)) + d′lt(p)H

t
dlt

(p, dlt(p))
)

Therefore, the Euler equation becomes:

H t
p(p, dlt)

H t
dlt

(p, dlt)
=

−dlt(p)
v − p+ I(t)Et+1

[
∂πlt+1

∂dlt

]
Now, using the definition of the clearing price, the derivatives of the probability

functions become:

H t
p(p, dlt(p)) =

∂

∂p
Pr[dlt(p) +

∑
−l
d−lt(p) ≤ yt | dlt(p)]

=
∂

∂p
[1− F (dlt(p) +

∑
−l
d−lt(p))]

= −f(dlt(p) +
∑
−l
d−lt(p))

∑
−l
d′−lt(p)

and

H t
dlt

(p, dlt(p)) =
∂

∂dlt
Pr[dlt(p) +

∑
−l
d−lt(p) ≤ yt | dlt(p)]

= −f(dlt(p) +
∑
−l
d−lt(p))

Hence, the Euler equation becomes:

∑
−l
d′−lt(p) =

−dlt(p)
v − p+ I(t)Et+1

[
∂πlt+1

∂dlt

] (A.1)

Finally, using Et+1

[
∂πlt+1

∂dlt

]
d′lt(p) =

∑
−lEt+1

[
∂πlt+1

∂d−lt

]
d′−lt(p), (A.1) becomes:

∑
−l

(
v − p− I(t)Et+1

[
∂πlt+1

∂d−lt

])
d′−lt(p) = −dlt(p) (A.2)
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A.1.2 Ex-post Profit Maximization

Assume bidder l knows the realization of the residual supply at auction t and

his competitors’ demand functions at that auction. Also, assume that at stage t,

bidder l only chooses the price-quantity pair, (pt, qlt), that maximizes the sum of

his stream of profits and clears the market at t. Then, his optimization problem in

auction t can be written as:

max
pt

(v − pt)(yt −
∑
−l
d−lt(pt)) + I(t)Et+1 [πlt+1 (qt)] (A.3)

s.t. dlt(pt) ≤ λl − qlt−1(yt−1)

In this case, the F.O.C. for interior bidding becomes:

−(yt −
∑
−l
d−lt(pt))−

∑
−l

(
v − pt − I(t)Et+1

[
∂πlt+1 (qt)

∂d−lt

])
d′−lt(p) = 0 (A.4)

Which is identical to the Euler equation in (A.2), once (yt −
∑
−l d−lt(pt)) has

been replaced by dlt(p).

A.2 Second Order Conditions

Since the ex-ante and ex-post profit maximization problems are equivalent

under the assumptions made here, only the second order conditions for the latter

case will be developed.

∂2Πl1

∂p2
1

=
∑
−l
d′−l1(p1) +

∑
−l

(1 + I(t)E2

[
∂2πl2

∂d−l1∂p1

]
)d′−l1(p1)

−
∑
−l

(v − p1 − I(t)E2

[
∂πl2
∂d−l1

]
)d′′−l1(p1) (A.5)
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Evaluating the F.O.C. in (A.4) at the equilibrium, and then totally differentia-

ting it with respect to p1 to obtain an expression for the second term on (A.5) gives:

∂2Πl1

∂p2
1

= d′l1(p1) +
∑
−l
d′−l1(p1)

< 0

Therefore, any solution to equation (A.4) would define a global maximum if

bidders had unlimited demands.

Now, when t = 2 and bidder l wants to consume any quantity up to λl, only

one demand function that solves (A.4) is a global maximum, and that is the one that

also satisfy the end conditions described in lemmas 2 and 3 for the two-bidder case

and lemma 6 for the three-bidder case. For every y2 ∈ [0, Nµj], with N = 2, 3, the

demand functions are characterized by (A.4), where the global S.O.C.s are satisfied.

For y2 ∈ (Nµj, S2] all but one bidder buy all they want to consume, therefore, the

best the other bidder can do is to choose a price of zero. Hence, the profiles of

second auction bid functions given by equation (2.14) for the two-bidder case and

equation (2.33) for the three-bidder case are Nash equilibrium of the second auction.

The sum of ex-post profit from the first auction and expected profit from the

second auction, Πl1, is twice continuously differentiable with respect to the first

auction clearing price at every price besides p̃1.1 Hence, when t = 1, any solution

to (A.4) locally maximizes Πl1 either on (p
1
, p̃1) or (p̃1, p1). Obviously, if the left-

hand side and right-hand side derivatives of Πl1 with respect to p1, evaluated at p̃1,

have the same sign, then any solution to (A.4) when t = 1 will globally maximize

1Remember p̃1 is defined by λi − di1(p̃1) = λj − dj1(p̃1).

141



Πl1. If S1 <
∑
l λl, the way demand functions were extended over the interval [0, p

1
)

guarantees none of these prices will maximize Πl1. If S1 ≥
∑
l λl, then for some

realizations of y1 all but one bidder buy all the quantity they want to consume, and

the best the other bidder can do is to choose a price of zero for those realizations of

y1. Hence, at least the local S.O.C.s are satisfied.

Since the system of differential equations defined by the set of F.O.C.s does

not have analytical solutions when t = 1, the only way to find profiles of demand

functions which are solutions to that system is through numerical methods. In that

case it can be easily checked whether each bidder’s demand function is a global

maximum conditional on the other bidders’ demand functions (i.e. if the profiles

are Nash equilibria of the first auction). Tables 2.1 and 2.4.2 present some equilibria

and show the set of equilibria is not the empty set.
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