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In this dissertation, I investigate the two-dimensional Schrödinger equation
with repulsive inverse square potential, i.e.,{

i∂tu+4u− a2

|x|2u = 0 u : R2 × R+ → C,
u(x, 0) = u0(x).

(1)

I prove the following version of the homogeneous endpoint Strichartz estimate:

‖u‖L2
t (L
∞
r Lθ) ≤ C‖u0‖L2 , (2)

where the L∞r Lθ is a norm that takes L2 average in angular variable first and then
supremum norm on radial variable, i.e.,

‖f(x, y)‖L∞r Lθ = sup
r>0

(
1

2π

∫ 2π

0

|f(r cos θ, r sin θ)|2dθ
) 1

2

. (3)

The main result is presented in chapter 4. In chapter 2, I give a brief in-
troduction on the equations that inspired my research, namely the Landau-Lifshitz
equation and the Schrödinger map equation. In chapter 3, I introduce a geometric
concept in order to obtain a gauge system suitable for analysis.
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Chapter 1

Introduction

In this dissertation, I investigate the two-dimensional Schrödinger equation

with repulsive inverse square potential, i.e.,


i∂tu+4u− a2

|x|2u = 0 u : R2 × R+ → C,

u(x, 0) = u0(x).

(1.1)

I prove the following version of the homogeneous endpoint Strichartz estimate:

‖u‖L2
t (L
∞
r Lθ) ≤ C‖u0‖L2 , (1.2)

where the L∞r Lθ is a norm that takes L2 average in angular variable first and then

supremum norm on radial variable, i.e.,

‖f(x, y)‖L∞r Lθ = sup
r>0

(
1

2π

∫ 2π

0

|f(r cos θ, r sin θ)|2dθ
) 1

2

. (1.3)

This problem by itself is mathematically interesting . It is also related to problems

that are concerned with models of ferromagnetism. I will explain more in detail.

One can model magnetization by spins arranged on a lattice. This is the fa-

mous Heisenberg model. The spins interact with each other according to the nature

of the material. For ferromagnetism, the spins try to align if they are neighbors.
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In 1935, Landau and Lifshitz took the continuum limit and derived an evolution

equation for the spin density. Later, the equation became known as Landau-Lifshitz

equation.

The Landau-Lifshitz equation has two parts which reflect the effects of pre-

cession and damping. When we apply the magnetic field on the spin, the precession

effect rotates the spin with the direction of the magnetic field as the axis, on the

other hand, the damping effect rotates the spin so that it becomes parallel to the

magnetic field. If we consider only the damping effect, we will have the harmonic

map heat flow equation, which is well studied. If we consider only the precession

effect, we will have the Schrödinger map equation.

For evolution equations, it is natural to ask weather the solution exist for all

time or it blows up in finite time. For the Schrödinger map equation with one space

dimension, it is well known that the solution has global existence. As a matter of fact

it can be reduced to the cubic nonlinear Schrödinger equation which is integrable.

It is a conjecture that in space dimension two, the solution for the Schrödinger map

equation may blow-up in finite time. There are partial results analyzing a simplified

special class of solutions, namely equivariant solutions by Gustafson, Kang, and

Tsai [16] [17]. The investigation involves deriving from Schrödinger map equation a

nonlinear Schrödinger equation with potential which behaves like inverse square and

using Strichartz estimates. In [16], it was mentioned that the endpoint Strichartz

estimate for space dimension 2 with inverse square potential is open. Very recently,

there is a further result on inhomogeneous endpoint estimate for radial symmetric

data [18].
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The main result is presented in chapter 4. In chapter 2, I give a brief in-

troduction on the equations that inspired my research, namely the Landau-Lifshitz

equation and the Schrödinger map equation. In chapter 3, I introduce a geometric

concept in order to obtain a gauge system suitable for analysis.
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Chapter 2

The Landau-Lifshitz equation and Schrödinger map equation

The equations that motivate this dissertation are Landau-Lifshitz equation

and the related Schrödinger map equation. The Landau-Lifshitz equation is used

to model ferromagnetism in physics. The initial-value problem for Landau-Lifshitz

equation is as follows.


ut = au×4u− εu× (u×4u),

u(x, 0) = u0(x),

(2.1)

where u is a function which maps Rn × R+ to the unit sphere in R3. 4 is the

Laplacian operator and × is the cross product in R3. The first term on the right

hand side of equation (2.1) is dispersive and the second term is dissipative. If we

consider only the dispersive term, we have the Schrödinger map equation.


ut = u×4u,

u(x, 0) = u0(x).

(2.2)

This equation can be generalized. For example, instead of considering the unit

sphere, S2, as the target, we can consider the hyperbolic space H2.

In this chapter, I will give an introduction on the basic properties, and math-

ematical questions on Landau-Lifshitz and Schrödinger map equations.
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2.1 The Heisenberg Model

In the Heisenberg model, we model the magnetism by spins arranged in a lat-

tice. There are three different interactions between spins depending on the material :

paramagnetism, ferromagnetism, and antiferromagnetism. For paramagnetism, the

spins interact with an applied magnetic field but do not interact with each other.

For ferromagnetic materials, like iron, spins not only interact with an applying field

but also with each other. They try to align the neighboring spins so that they are

parallel. Unlike ferromagnetism, the spins of antiferromagnetism tend to align their

neighboring spins so that they are antiparallel.

In 1935, Landau and Lifshitz used the Heisenberg Model for ferromagnetism

and took the continuum limit to derived the equation.(2.1) [25].

The Schrödinger map corresponds to the case ε = 0, a = 1. The case ε = 1,

a = 0 is the well-studied harmonic map heat flow.

2.2 Conservation Laws

First, we consider the Schrödinger map equation (2.2). The energy is defined

as follows:

E(t) =

∫
|∇u|2dx. (2.3)
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If we take the time derivative, we obtain

Et =

∫
2∇ut · ∇udx (2.4)

=

∫
∇(2ut · ∇u)− 2ut ·∆u = −

∫
2ut ·∆u (2.5)

= −
∫

2(u×∆u) ·∆udx = 0. (2.6)

For the Schrödinger map equation, the energy is formally conserved, i.e. the

energy is conserved if the solution is sufficiently smooth and ∇u decays to zero at

infinity sufficiently fast.

We can also do the same calculation for the solutions of the Landau-Lifshitz

equation. We obtain

Et = −a
∫

2(u×∆u) ·∆udx+ ε

∫
2(u× (u×∆u)) ·∆udx. (2.7)

The first integral on the right hand side is zero. For the second integral, we can

apply Lagrange’s formula

A× (B × C) = B(A · C)− C(A ·B), (2.8)

and we obtain,

Et = 2ε

∫
|u ·∆u|2 − |∆u|2|u|2dx, (2.9)

which is non-positive. Thus, the energy decays, and this is the reason we call the
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second term in the equation dissipative.

Remark 2.2.1. Both the Landau-Lifshitz equation and Schrödinger map equation

are defined on the unit sphere. It is natural to check that the maps stay on the sphere

during the evolution.

Suppose u satisfies equation (2.1). We want to see how the vector norm of u

changes over time. We differentiate |u|2 directly and the substitute ut by equation

2.1, we have

∂|u|2

∂t
= 2 < u, ut > (2.10)

= < u, au×4u− εu× (u×4u) >= 0.

Thus, the solution stays on the sphere.

2.3 Scaling Properties

The equation is nonlinear, and it has some interesting features. If we rescale

the space by a ratio s and the time by s2. i.e. Define ũ(t, x) = u(t/s2, x/s), t′ = t/s2,

and x′ = x/s. We have

∂ũ

∂t
=
∂u(t/s2, x/s)

∂t
=

1

s2

∂u(t′, x′)

∂t′
, (2.11)

ũ×∆ũ =
1

s2
u(t′, x′)×∆u(t′, x′). (2.12)

We can see that the new function still satisfies the same Schrödinger map equation.

The energy after rescaling depends on the space dimension through the Jaco-
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bian.

E(ũ) =

∫
|∇ũ|2dx (2.13)

=

∫
s−2|∇u(t′, x′|2dx (2.14)

=

∫
s−2+n|∇u(t′, x′)|2dx́ = s−2+nE(u). (2.15)

For space dimension 1, the energy increases after shrinking the function. For

space dimension 3, the energy decreases after shrinking. For space dimension 2, the

energy does not change under the rescaling. We also describe space dimension 1, 3

and 2 as energy subcritical, supercritical and critical respectively.

For space dimension 1 case, it is well-known that the Schrödinger map equation

is equivalent to a cubic nonlinear Schrodinger equation, which is integrable via the

inverse scattering method, and it is globally well-posed. For higher space dimension,

the local well-posedness for initial data in Hs(Rn), s > n/2 + 2, n ≥ 2 is established

by Sulem, Sulem, and Bardos[29]. For gauge system derived from Schrödinger map,

called the molified Schrödinger map equation, Kato [20], Kenig and Nahmod [22]

established local existence result for initial data in H
1
2

+ε(R2). Later Koch and Kato

[23] proved the uniqueness for H
3
4

+ε(R2). Since the gauge system involves derivative

of the original map, for the origninal Schrödinger map equation local existence is

established for data inH1+ 1
2

+ε(R2) and uniqueness for data inH1+ 3
4

+ε(R2). Recently,

there is a result by Bejenaru [1] on local well-posedness for small initial data in

H
n
2

+ε(Rn), n ≥ 2 for Schrödinger map equation. For space dimension 3 or higher,

one expects that singularities are formed. However, there are no definite results so
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far. For space dimention greater the 4, Bejenaru, Ionescu, and Kenig proved global

existence for small data in some critical norm [2]. For space dimension 2, it is a

conjecture that solution with finite energy may blow-up in finite time. This problem

attracted some interest and there are some partial results by Gustafson, Kang, and

Tsai[16] [17].
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Chapter 3

Gauge Transformation

In this chapter the goal is to start from the Schrödinger map equation and

derive a gauge invariant system which is more suitable for analysis. The Schrödinger

map equation is highly nonlinear. By using gauge systems the nonlinearity can be

transformed to quasi-linear. For equivariant case, it can even be transformed to

semi-linear. For this case the usual bootstrap strategy can be applied, provided we

have good estimates for the linear part of the solution.

We start by introducing quaternions to reformulate the evolution equations.

Then, we use the geometric concept of covariant derivative and compatibility rela-

tions in order to obtain a systems of equations that can be solved up to gauge fixing.

We will discuss different cases in the end.

3.1 Rotation using Quaternions

We will introduce the space of quaternions, which are widely used to describe

rotation in 3 or 4 dimensional space. We define the quaternion space

{P = p0I + p1σ1 + p2σ2 + p3σ3|pi ∈ R}, (3.1)

10



where σj are Pauli matrices,

σ1 =

 0 1

−1 0

 σ2 =

 0 i

i 0

 σ3 =

 i 0

0 −i

 . (3.2)

We can check that σ1, σ2, and σ3 have the following properties.

σ2
1 = σ2

2 = σ2
3 = −I, (3.3)

σ1σ2 = σ3, σ2σ3 = σ1, σ3σ2 = σ1, (3.4)

σiσj = −σjσi. (3.5)

We can map a 3 vector to a quaternion.

S(u) = u1σ1 + u2σ2 + u3σ3. (3.6)

We can check directly that

S(u)S(v) = S(u× v)− (u · v)I. (3.7)

Thus, we have

S(u× v) =
1

2
[S(u), S(v)], (3.8)

where [ , ] is the commutator between two matrices. For the quaternion P =

p0I + p1σ1 + p2σ2 + p3σ3, this is the reason we name the first term scalar part and

11



the rest vector part. As an analogy of complex numbers, we also call them real part

and imaginary part respectively. Suppose S is a quaternion only with vector part

correspond to the vector u. We can rewrite the Landau-Lifshitz equation as follows:

∂tS =
a

2
[S,4S]− ε

4
[S, [S,4S]]. (3.9)

We define the conjugate quaternion by

P † = p0 − p1σ1 − p2σ2 − p3σ3. (3.10)

Then, we can check that

PP † = P †P = (p2
0 + p2

1 + p2
2 + p2

3). (3.11)

We define the norm of P to be |P | = (PP †)
1
2 . Note that |P |2 = detP . Suppose

|P | 6= 0, P has inverse P−1 = |P |−2P †.

It is well known that if we conjugate a quaternion having only vector part by

a unit quaternion P with real part cosα, the effect corresponds to a rotation with

a angle 2α with respect to the vector part of P as axis. Thus, if S is correspond to

a unit vector, we can find a unit lenght quaternion, P , such that

S = Pσ3P
−1. (3.12)

12



3.2 Gauge Transform

I would like to explain the emergence of covariant derivatives under gauge

transformation. If we have two similar matrices, S and S0 which are related via

S = PS0P
−1, (3.13)

and S, S0, P are smooth functions of variables xµ for µ = 0, 1, ..., n, we have the

following relations.

∂µS = (∂µP )S0P
−1 + P (∂µS0)P−1 + PS0(∂µP

−1)

= P (P−1∂µPS0 + ∂µS0 + S0∂µP
−1P )P−1. (3.14)

Let

aµ = P−1∂µP. (3.15)

Differentiating the identity P−1P = I, we obtain P−1(∂µP ) + (∂µP
−1)P = 0, thus

(∂µP
−1)P = −aµ. Equation (3.14) becomes

∂µS = P (∂µS0 + [aµ, S0])P−1. (3.16)

Now, we can define the covariant derivative

Daµ
µ S0 = ∂µS0 + [aµ, S0] (3.17)

13



and equation (3.14) can be written as

∂µS = P (Daµ
µ S0)P−1. (3.18)

From

∂µ∂νP = ∂ν∂µP, (3.19)

we calculate directly.

∂µaν − ∂νaµ + [aµ, aν ] = 0. (3.20)

We call these equations compatibility equations.

In our problem, we want to rotate the matrix S to σ3 by a unit length quater-

nion, namely we would like to write

S = Pσ3P
−1, (3.21)

where |P |2 = 1. We write a quaternion in matrix form,

P =

 p0 + ip3 p1 + ip2

−p1 + ip2 p0 − ip1

 =

 ψ φ

−φ̄ ψ̄

 , (3.22)

where

|P |2 = |ψ|2 + |φ|2 = 1. (3.23)
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We can compute the inverse P−1 =

 ψ̄ −φ

φ̄ ψ

. We calculate

aµ = P−1∂µP =

 ψ̄∂µψ + φ∂µφ̄ ψ̄∂µφ− φ∂µψ̄

−ψ∂µφ̄+ φ̄∂µψ ψ∂µψ̄ + φ̄∂µφ

 . (3.24)

We can observe that on the minor diagonal (aµ)21 = −(āµ)12, and on the major

diagonal that (aµ)11 = (āµ)22. We differentiate the |φ|2 + |ψ|2 = 1 to obtain (aµ)11 +

(aµ)22 = 0. Thus, we know that aµ is of the following form.

 bµi

2
Φµ

−Φ̄µ − bµi

2

 , (3.25)

where bµ is real and Φµ is complex. From equation (3.20), we have

∂µbν − ∂νbµ =
2

i
(ΦµΦ̄ν − ΦνΦ̄µ), (3.26)

∂µΦν + ibµΦν = ∂νΦµ + ibνΦµ. (3.27)

Now, we are going to discuss the evolution equations (3.9). ∂0S corresponds to

Da0
0 σ3, that is,

Dao
0 σ3 =

 0 −2iΦ0

−2iΦ̄0 0

 . (3.28)

15



We denote 4a =
∑n

j=1 D
aj
j D

aj
j . We can check directly that

Da1
1 D

a1
1 σ3 =

 −4iΦ1Φ̄1 −2i∂1Φ1 + 2b1Φ1

−2i∂1Φ̄1 − 2b1Φ̄1 4iΦ1Φ̄1

 , (3.29)

[σ3,4aσ3] =

 0
∑n

j=1 4∂jΦj + 4ibjΦj∑n
j=1 4∂jΦ̄j + 4ibjΦ̄j 0

 , (3.30)

[σ3, [σ3,4aσ3]] =

 0
∑n

j=1 8i∂jΦj − 8bjΦj∑n
j=1 8i∂jΦ̄j + 8bjΦ̄j 0

 . (3.31)

From these, we have an evolution equation, namely,

Φ0 = i(a− iε)(
n∑
j=1

∂jΦj + ibjΦj). (3.32)

For the two-dimensional case, we have the following equations.

Φ0 = i(a− iε)(
∑

j=1,2 ∂jΦj + ibjΦj), (3.33)


∂1b2 − ∂2b1 = −2i(Φ1Φ̄2 − Φ̄1Φ2),

∂tb1 − ∂1b0 = −2i(Φ0Φ̄1 − Φ̄0Φ1),

∂tb2 − ∂2b0 = −2i(Φ0Φ̄2 − Φ̄0Φ2),

(3.34)
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
(∂t + ib0)Φ1 = (∂1 + ib1)Φ0,

(∂t + ib0)Φ2 = (∂2 + ib2)Φ0,

(∂1 + ib1)Φ2 = (∂2 + ib2)Φ1.

(3.35)

Remark 3.2.1. The system above is under determined. The system of equations is

invariant under the gauge transformation

bµ −→ bµ + ∂µθ,

Φµ −→ eiθΦµ,

(3.36)

where θ is a arbitrary smooth function. In order to solve this system, we need to add

an extra constrain, called gauge fixing. For example, the Coulomb gauge imposes the

extra restriction ∂1b1 + ∂2b2 = 0.

If we consider the one-dimensional case for the Schrödinger map equation, we

have the evolution equation

Φ0 = i(∂1Φ1 + ib1Φ1), (3.37)

and the compatibility equations

∂1b0 − ∂tb1 = −2i(Φ1Φ̄0 − Φ̄1Φ0), (3.38)

(∂t + ib0)Φ1 = (∂1 + ib1)Φ0. (3.39)

17



We use (3.37) to substitute Φ0 in (3.38) and (3.39). We obtain

∂1b0 − ∂tb1 = −2∂1(Φ1Φ̄1), (3.40)

(∂t + ib0)Φ1 = i(∂2
1Φ1 + i(∂1b1)Φ1 + 2ib1∂1Φ1 − b2

1Φ1). (3.41)

With b1 = 0, which satisfies the Coulomb gauge condition, we can solve b0 =

−2|Φ1|2. We substitute this to (3.41), and we obtain

∂tΦ1 = i(∂2
1Φ1 + 2|Φ1|2Φ1). (3.42)

This explains that the one-dimensional Schrödinger map equation is equivalent to a

cubic nonlinear Schrödinger equation.

3.3 Complexification

We can simplify the equations if we represent R2 by a complex plane, C. We

let

z = x1 + ix2. (3.43)

Then, we define the complex derivatives

∂z = ∂1 − i∂2, ∂z̄ = ∂1 + i∂2. (3.44)

18



We also let

b = b1 − ib2, b̄ = b1 + ib2,

Φ+ = Φ1 + iΦ2, Φ− = Φ1 − iΦ2.

We define

Db
z = ∂z + ib ;Db̄

z̄ = ∂z̄ + ib̄. (3.45)

Under these changes, equations (3.33) becomes

Φ0 = i(a+ iε)Db̄
z̄Φ− = i(a+ iε)Db

zΦ+. (3.46)

From equation (3.35), we have

(∂t + ib0)Φ+ = Db̄
z̄Φ0 = i(a+ iε)Db̄

z̄D
b
zΦ+, (3.47)

(∂t + ib0)Φ− = Db
zΦ0 = i(a+ iε)Db

zD
b̄
z̄Φ−. (3.48)

From equation (3.34), we have

∂z b̄− ∂z̄b = 2i(Φ̄+Φ+ − Φ̄−Φ−), (3.49)

∂tb− ∂zb0 = −2i(Φ0Φ̄+ − Φ̄0Φ−). (3.50)
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Subsituting Φ0 in (3.52) and (3.53), we have

∂tb− ∂zb0 = 2a∂z̄(Φ̄+Φ−) + 2iε((∂z̄Φ−)Φ̄+ − Φ−(∂z̄Φ̄+))− 4εb̄Φ̄+Φ−. (3.51)

If we consider the Schrödinger map, namely ε = 0, a = 1, we have the system of

equations

(∂t + ib0)Φ+ = iDb̄
z̄D

b
zΦ+, (3.52)

(∂t + ib0)Φ− = iDb
zD

b̄
z̄Φ−, (3.53)

∂z b̄− ∂z̄b = 2i(Φ̄+Φ+ − Φ̄−Φ−), (3.54)

∂tb− ∂zb0 = 2∂z̄(Φ̄+Φ−). (3.55)

Note that Db
z and Db̄

z̄ do not commute. i.e.

[Db
z, D

b̄
z̄]φ = i(∂z b̄− ∂z̄b)φ 6= 0. (3.56)

3.4 Gauge fixing

We mentioned that the system of equations is under determined. We can pose

an extra condition in order to solve the system. A choice is the Coulomb gauge

condition, ∂1b1 +∂2b2 = 0. Under this condition we can find a real potential, p, such

that

b1 = ∂2p ; b2 = −∂1p. (3.57)
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Then,

∂zp = ∂1p− i∂2p = −ib ; ∂z̄p = ∂1p+ i∂2p = ib̄. (3.58)

Thus, we can rewrite the covariant derivatives in the following manner

Db
zφ = ep∂ze

−pφ ; Db̄
z̄φ = e−p∂z̄e

pφ. (3.59)

The equations for Φ+, Φ− become


∂tΦ+ + ib0Φ+ = ie−p∂2

z̄e
pΦ−,

∂tΦ− + ib0Φ− = iep∂2
ze
−pΦ+.

(3.60)

We differentiate equation (3.55) with respect to z̄ and differentiate its complex

conjugate equation with respect to z and sum them up to obtain an equation for

the temporal gauge

∂z∂z̄b0 = −(∂2
z̄ (Φ̄+Φ−) + ∂2

z (Φ+Φ̄−)). (3.61)

From equation (3.49), we obtain an equation for the potential, p:

4p = −(|Φ+|2 − |Φ−|2). (3.62)
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3.5 Stationary Solutions and Radial Symmetric Solutions

We want to consider the stationary solutions of the gauge system derived from

the Schrödinger map equation. Under this setting, we assume P is independent of

time. This implies Φ0 = 0, b0 = 0. If we choose the Coulomb gauge, we have

0 = Φ0 = e−p∂z̄e
pΦ− = ep∂ze

−pΦ+. (3.63)

We observe that if epΦ− is analytic,and if e−pΦ+ is anti-analytic, they satisfy the

equations above. If we choose Φ+ = 0, the temporal gauge equation is automatically

satisfied. We let Φ− = e−pf ′(z), and substitute this into (3.62). We obtain

4p = e−2p|f ′|2. (3.64)

We rewrite the equation in complex differentiation:

∂z∂z̄p = e−2p|f ′|2. (3.65)

We can check that p = ln(1 + ff̄) is a solution of the equation above. Thus, we

obtain static solutions. Suppose the solution is radial symmetric, then we can write

the evolution equations as follows

∂tS =
1

2
[S, (∂2

r +
1

r
∂r)S]. (3.66)
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From this, we can derive an evolution equation for the gauge system:

Φ0 = i(∂Φr + ibrΦr +
1

r
Φr). (3.67)

We have the compatibility equations

(∂t + ib0)Φr = (∂r + ibr)Φ0, (3.68)

∂tbr − ∂1b0 = −2i(Φ0Φ̄r − Φ̄0Φr). (3.69)

If we substitute Φ0 by evolution equation (3.67) to the equations above, we have

(∂t + ib0)Φr = i(∂2
rΦr +

1

r
∂rΦr −

1

r2
Φr (3.70)

+i(∂rbr)Φr + 2ibr∂r + i
br
r

Φr), (3.71)

∂tbr − ∂rb0 = 2∂r(ΦrΦ̄r +
4

r
|Φr|2). (3.72)

br = 0 satisfies the Coulomb gauge condition. We have

(∂t + ib0)Φr = i(∂2
rΦr +

1

r
∂rΦr −

1

r2
Φr), (3.73)

−∂rb0 = 2∂r(ΦrΦ̄r) +
4

r
|Φr|2). (3.74)

We can solve (3.74) and obtain

b0 = −2ΦrΦ̄r −
∫ r

0

4

s
|Φr|2ds. (3.75)
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By substituting back into (3.73), we obtain a Schrödinger-type equation with inverse

square potential and cubic nonlinearity.

i∂tΦr = −(∂2
rΦr +

1

r
∂rΦr −

1

r2
Φr + 2|Φr|2Φr +

∫ r

0

4

s
|Φr|2ds). (3.76)

3.6 Equivariant Solutions

We consider the polar coordinate on R2. We call a map ,v(r, θ, t), from R2 to

unit sphere S2 is m-equivarient if

v(r, θ, t) = emθRV (r, t), (3.77)

R =


0 −1 0

1 0 0

0 0 1

 . (3.78)

R generate rotation respect to z axis.

If we spell it out, we have

v(r, θ, t) =


cosmθV1 − sinmθV2

sinmθV1 + cosmθV2

V3

 . (3.79)
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If we map it to a 2× 2 matrix we defined before, we have

S =

 iV3 eimθ(V1 + iV2)

e−imθ(−V1 + iV2) −iV3

 (3.80)

=

 e
imθ
2 0

0 e−
imθ
2


 iV3 (V1 + iV2)

(−V1 + iV2) −iV3


 e

−imθ
2 0

0 e
imθ
2

 . (3.81)

We rename M(θ) =

 e
imθ
2 0

0 e−
imθ
2

. If we rotate the matrix σ3 by P to S as

before, we have a choice to break P into two matrices,

P = M(θ)Q(r, t). (3.82)

Thus we can compute

a0 = Q−1∂tQ,

a1 = Q−1σ3Q
− sin θ
r

+Q−1∂rQ cos θ,

a2 = Q−1σ3Q
cos θ
r

+Q−1∂rQ sin θ.

(3.83)

These equations implie

(b1, b2) = f(r, t)vθ + g(r, t)vr, (3.84)

where vθ = (− sin θ, cos θ), vr = (cos θ, sin θ). If we impose Coulomb gauge condi-
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tion, we have

∂rg +
1

r
g = 0. (3.85)

If we want solution without singularity, we have g(r) = 0. Thus, the gauge field has

only the component in θ direction. If we compute Φ+ and Φ−, we find

Φ+ = Φ̂(r, t)eiθ, Φ− = Φ̂(r, t)e−iθ. (3.86)

Write (3.49) in term of (b1, b2), we have

∂1b2 − ∂2b1 = (|Φ+|2 − |Φ−|2). (3.87)

Apply Stoke’s theorem on a circle of radius r, we have

f(r, t) =
1

r

∫ r

0

(|Φ+|2 − |Φ−|2)sds. (3.88)

If we directly compute f(r, t), we have

f(r, t) =
m

2r
(|p2

0 + p2
3 − p2

1 − p2
2|). (3.89)

Since P is a unit quaternion, |f(r, t)| ≤ m
2r
. We let

ρ =
2

m

∫ r

0

|Φ+|2 − |Φ−|2, (3.90)

then f(r) = mρ
2r

. With this gauge and the fact Φ+, Φ− is of special form in (3.86) ,
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we can calculate

Db̄
z̄D

b
zΦ+ = ∂z̄∂zΦ+ + ib̄∂zΦ+ + ib∂z̄Φ+ − b̄bΦ+ + i(∂z̄b)Φ+

= ∂z̄∂zΦ+ − (m2ρ2+4mρ)
4r2

Φ+ + i(|Φ+|2 − |Φ−|2)Φ+.

(3.91)

Similarly

Db
zD

b̄
z̄Φ− = ∂z∂z̄Φ− −

(m2ρ2 − 4mρ)

4r2
Φ− + i(|Φ+|2 − |Φ−|2)Φ−. (3.92)

Thus, we have



−i∂tΦ+ = ∂z̄∂zΦ+ − (m2ρ2+4mρ)
4r2

Φ+ + i(|Φ+|2 − |Φ−|2)Φ+ − b0Φ+,

−i∂tΦ− = ∂z∂z̄Φ− − (m2ρ2−4mρ)
4r2

Φ− + i(|Φ+|2 − |Φ−|2)Φ− − b0Φ−,

ρ = 2
m

∫ r
0
|Φ+|2 − |Φ−|2,

∂t
imρ
2z̄
− ∂za0 = 2∂z̄(Φ̄+Φ−).

(3.93)

3.7 Equations for blow up solution

We observe equation (3.52) and (3.53) are of very similar form. We consider

a solution of the following form.

Φ+ = ∂z̄f(s),Φ− = ∂zf(s), (3.94)
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where s = zz̄
t

. By direct calculation, we have

Φ+ = f ′(s)
z

t
; Φ− = f ′(s)

z̄

t
, (3.95)

∂tΦ+ = −f ′′(s)s z
t2
− f ′(s) z

t2
, (3.96)

∂zΦ+ = f ′′(s)
s

t
+ f ′(s)

1

t
, (3.97)

∂z̄Φ+ = f ′′(s)
z2

t2
, (3.98)

∂z̄∂zΦ+ = f ′′′(s)s
z

t2
+ 2f ′′(s)

z

t2
. (3.99)

If solutions are of form (3.94), equation (3.50) becomes

∂z b̄− ∂z̄b = 0. (3.100)

We can choose the trivial solution b = 0. Thus, we can solve b0:

b0 =
1

t
(−2f ′f̄ ′s− 2

∫
f ′f̄ ′ds). (3.101)

Then, from both (3.52) and (3.53), f(s) satisfies the following ODE:

sf ′′′ + (2− is)f ′′ − (i+ l(s))f ′ = 0, (3.102)

where

l(s) = −2f ′f̄ ′s− 2

∫
f ′f̄ ′ds. (3.103)
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3.8 H2 Case

In this section, we will consider the hyperbolic space, H2, instead of unit

sphere, S2, as target for the Schrödinger map equation. The hyperbolic space, H2,

is defined as follows.

H2 = {(x, y, z)|z2 − x2 − y2 = 1}. (3.104)

It has two components. We consider u that maps Rn×R+ to the upper component

where z > 0, and satisfies the following evolution equation.


ut = u×̇ 4 u,

u(x, 0) = u0(x),

(3.105)

where the pseudo-crossproduct ×̇ is defined as follows.

Definition 3.8.1. If a = (a1, a2, a3), b = (b1, b2, b3), we define

a×̇b = (a2b3 − a3b2, a3b1 − a1b3,−(a1b2 − a2b1)). (3.106)

We map u = (u1, u2, u3) to a 2× 2 matrix, S, in the following way.

S = iu1σ1 + iu2σ2 + u3σ3. (3.107)

We can check directly that this is a homomorphism from (u, ·×̇·) to (s, 1
2
[·, ·]). We
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have the evolution equation

St =
1

2
[S,4S]. (3.108)

We consider a quaternion P = p0I + ip1σ1 + ip2σ2 + p3σ3. Then,

P =

 p0 + ip3 −p2 − ip1

−p2 − ip1 p0 − ip3

 =

 ψ φ

φ̄ ψ̄

 . (3.109)

We note that

detP = |ψ|2 − |φ|2. (3.110)

Suppose detP 6= 0, we have P−1 = (detP )−1

 ψ̄ −φ

−φ̄ ψ

. If we consider

S = Pσ3P
−1, (3.111)

where detP = 1. Similar to the sphere case, we can define covariant derivative,

Daµ
µ S0 = ∂µS0 + [aµ, S0], (3.112)

where aµ = P−1∂µP . In this case, aµ is of the following form:

aµ =


ibµ
2

Φµ

Φ̄µ − ibµ
2

 . (3.113)

With the same argument as before, we obtain
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Φ0 = iDb
zΦ+ = iDb̄

z̄Φ−, (3.114)
∂1b2 − ∂2b1 = 2i(Φ1Φ̄2 − Φ̄1Φ2),

∂tb1 − ∂1b0 = 2i(Φ0Φ̄1 − Φ̄0Φ1),

∂tb2 − ∂2b0 = 2i(Φ0Φ̄2 − Φ̄0Φ2)

(3.115)


(∂t + ib0)Φ1 = (∂1 + ib1)Φ0,

(∂t + ib0)Φ2 = (∂2 + ib2)Φ0,

(∂1 + ib1)Φ2 = (∂2 + ib2)Φ1.

(3.116)

Note that equations (3.115) are different from the equations which have unit sphere

as target only up to a sign. Using the complex notation as we introduced in section

2.2, we obtain

∂z b̄− ∂z̄b = −2i(Φ̄+Φ+ − Φ̄−Φ−), (3.117)

∂tb− ∂zb0 = −2∂z̄(Φ̄+Φ−), (3.118)

(∂t + ib0)Φ+ = Db̄
z̄Φ0 = iDb̄

z̄D
b
zΦ+, (3.119)

(∂t + ib0)Φ− = Db
zΦ0 = iDb

zD
b̄
z̄Φ−. (3.120)

We consider a solution of the following form

Φ+ = ∂z̄f(
zz̄

t
),Φ− = ∂zf(

zz̄

t
). (3.121)
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Then, f(s) satisfies the following ODE:

sf ′′′ + (2− is)f ′′ − (i+ l(s))f ′ = 0, (3.122)

l(s) = 2f ′f̄ ′s+ 2

∫
f ′f̄ ′ds. (3.123)

We rearrange the equation terms in (3.122) to obtain

(2f ′′ − if ′) + s(f ′′′ − if ′′ − 2f ′f̄ ′f ′ − 2

s

∫
f ′f̄ ′dsf ′) = 0. (3.124)

If we collect terms without s and set to be 0, we have

2f ′′ − if ′ = 0. (3.125)

We have a general solution

f ′ = αe
i
2
s. (3.126)

Substituting this into equation (3.123), we obtain l(s) = 4α2s. Equation (3.122)

then becomes

s(−1

4
α +

1

2
α− 4|α|2α) = 0. (3.127)

We have |α| = 1
4

. This gives us the infinite energy blow-up solution in the paper

by Ding [10].

Remark 3.8.2. If we try the same approach on the S2 case, we have |α|2 = − 1
16

,

which is impossible.
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Because we want to keep the coefficients of the equation real, we let f ′(s) =

eiwsg(s). Then, equation (3.122) becomes

(sg′′ + (2− is+ 2iws)g′ + (2iw + sw − i− sw2 − l(s))g)eiws = 0. (3.128)

If we choose w = 1
2
, we obtain

g′′ +
2

s
g′ + (

1

4
− 2g2 − 2

s

∫
g2ds)g = 0. (3.129)

Immediately, we have the constant solutions g = 0,±1
4
.

Remark 3.8.3. For the S2 case, we have the similar equation

g′′ +
2

s
g′ + (

1

4
+ 2|g|2 +

2

s

∫
|g|2ds)g = 0. (3.130)

The only constant solution is trivial.

Since we are interested in the blow-up solution with finite energy. We want to

find a solution which decays quickly to zero at infinity enough so that the energy is

finite. Suppose we have such solutions, we can substitute s = zz̄
b−t and obtain blow

up solution at time b.
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Chapter 4

Spherical Averaged Endpoint Strichartz Estimates for The

Two-dimensional Schrödinger Equations with Inverse Square

Potential

4.1 Introduction

Strichartz estimates are crucial in handling local and global well-posedness

problems for nonlinear dispersive equations (See[5] [11] [35]). For the Schrödinger

equation below 
i∂tu−4u = 0 u : Rn × R+ → C,

u(x, 0) = u0(x),

(4.1)

one considers estimates in mixed spacetime Lebesque norms of the type

‖u(x, t)‖LqtLrx = (

∫
‖u(·, t)‖qLrxdt)

1/q. (4.2)

Let us define the set of admissible exponents.

Definition 4.1.1. We say that the exponent pair (q, r, n) is admissible if q, r ≥

2, (q, r, n) 6= (2,∞, 2) and they satisfy the relation

2

q
+
n

r
=
n

2
. (4.3)
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Under this assumption, the following estimates are known.

Theorem 4.1.2. If (q, r, n) is admissible, we have the estimates

‖u(x, t)‖LqtLrx ≤ ‖u0‖L2
x
. (4.4)

From a scaling argument, or in other words by dimensional analysis, we can

see that the relation (4.3) is necessary for inequality (4.4) to hold.

There is a long line of investigation on this problem. The original work was

done by Strichartz (see [34][32] [33]). A more general result was done by Ginibre

and Velo(See [14]). For dimension n ≥ 3, the endpoint cases (q, r, n) = (2, 2n
n−2

, n)

was proved by Keel and Tao [21].

The double endpoint (q, r, n) = (2,∞, 2) is proved not to be true by Montgomery-

Smith (see [26] ), even when we replace L∞ norm with BMO norm. However, it can

be recovered in some special setting, for example see Stefanov [30] and Tao [36]. In

particular, Tao replaces L∞x by a norm that takes the L2 average over the angular

variables then the L∞ norm over the radial variable.

In the present work, I want to consider the end point estimates for the Schrödinger

equation with inverse square potential,


i∂tu−4u+ a2

|x|2u = 0,

u(x, 0) = u0(x),

(4.5)

where x ∈ Rn, and initial data, u0 ∈ L2. For n ≥ 2 the same Strichartz estimates as

in Theorem 1 are proved by Planchon, Stalker, and Tahvidar-Zadeh(see [7]). They
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did not cover the end point cases for n = 2.

We use the same norm as Tao in [36]. We define the Lθ norm as follows.

Definition 4.1.3.

‖f‖2
Lθ

:=
1

2π

∫ 2π

0

|f(r cos θ, r sin θ)|2dθ. (4.6)

The main result in this paper is the following theorem.

Theorem 4.1.4. For x ∈ R2, a ≥ 0 , suppose u(x, t) satisfies the following homo-

geneous initial value problem,


i∂tu−4u+ a2

|x|2u = 0,

u(x, 0) = u0(x),

(4.7)

then the following a priori estimate holds

‖u‖L2
t (L
∞
r Lθ) ≤ C‖u0‖L2(R2). (4.8)

Remark 4.1.5. The theorem deals with repulsive potential,i.e. the potential and

−4 are both non-negative operators. The attractive potential has long been studied

in the physics literature and it is known to allow for bounded states in the time

independent equation[8]. Thus, we have the oscillatory solution

u(x, t) = eiEtψ(x). (4.9)
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Then,
∫
‖u(·, t)‖2

L∞r Lθ
dt =

∫
‖ψ(x)‖L∞r Lθ =∞, while ‖ψ‖2

L2 is finite. Therefore , the

inequality (4.8) does not hold for an attractive potential.

Let us consider the equation in polar coordinates. Write v(r, θ, t) = u(x, t)

and f(r, θ) = u0(x). We have that v(r, θ, t) satisfies the equation below,


i∂tv − ∂2

rv − 1
r
∂rv − 1

r2
∂2
θv + a2

r2
v = 0,

v(r, θ, 0) = f(r, θ).

(4.10)

We write the initial data as a superposition as follows

f(r, θ) =
∑
k∈Z

fk(r)e
ikθ.

Using separation of variables, we can write v as a superposition,

v(r, θ, t) =
∞∑
−∞

eikθvk(r, t),

where the radial functions, vk, satisfy the equations below


i∂tvk − ∂2

rvk − 1
r
∂rvk + a2+k2

r2
vk = 0, k ∈ Z

vk(r, 0) = fk(r).

(4.11)

Remark 4.1.6. Combining Tao’s result in [36] with the equation (4.11) above, we

can conclude that Theorem 4.1.4 is true in the special cases where a ∈ N and u is

radially symmetric. However, the analysis in [36] does not apply to general cases.

For fixed r, we take the Lθ norm and from the orthogonality of spherical
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harmonics, we have

||v(r, θ, t)||2Lθ =
∑
k∈Z

|vk(r, t)|2.

We will prove the following lemma.

Lemma 4.1.7. Suppose vk satisfies (4.11). For every k ∈ Z, the following a priori

estimate holds. ∫
|vk(r, t)|2L∞r dt ≤ C

∫ ∞
0

|fk(r)|2rdr, (4.12)

where C is a constant independent of k.

The main theorem follows from the Lemma 4.1.7 above because of the following

observation:

||v(r, θ, t)||2L2
tL
∞
r Lθ

=

∫ (
sup
r>0
{(
∑
k∈Z

|vk(r, t)|2)
1
2}

)2

dt

≤
∑
k∈Z

∫
sup
r>0
|vk(r, t)|2dt

≤
∫ ∞

0

∑
k∈Z

|fk(r)|2rdr =

∫ 2π

0

∫ ∞
0

|f(r)|2rdrdθ.

The rest of the paper is devoted to the proof of Lemma 4.1.7.

4.2 Hankel Tranform

The main tools will be the Fourier and Hankel transforms. We want to intro-

duce certain well-known properties of the Hankel transform which are necessary for

the proof. We consider the kth mode. Let ν(k)2 = a2 + k2. We define the following

38



elliptic operator

Aν := −∂2
r −

1

r
∂r +

ν2

r2
. (4.13)

For fixed k, we skip the k in the notation for convenience. Equation (4.11) becomes


i∂tv + Aνv = 0,

v(r, 0) = f(r).

(4.14)

Next, we define the Hankel transform as follows.

φ#(ξ) :=

∫ ∞
0

Jν(rξ)φ(r)rdr, (4.15)

where Jν is the Bessel function of real order ν > −1
2

defined via

Jν(r) =
(r/2)ν

Γ(ν + 1/2)π1/2

∫ 1

−1

eirt(1− t2)ν−1/2dt. (4.16)

The following properties of the Hankel transform are well known, (see [7])

Proposition 4.2.1.

(i) (φ#)# = φ

(ii) (Aνφ)#(ξ) = |ξ|2φ#(ξ)

(iii)

∫ ∞
0

|φ#(ξ)|2ξdξ =

∫ ∞
0

|φ(r)|2rdr.
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If we apply Hankel transform to equation (4.14), we obtain


i∂tv

#(ξ, t) + |ξ|2v#(ξ, t) = 0,

v#(ξ, 0) = f#(ξ).

(4.17)

Solving the ODE and inverting the Hankel transform, we have the formula

v(r, t) =

∫ ∞
0

Jν(sr)e
is2tf#(s)sds. (4.18)

The change of variables y = s2 implies that

v(r, t) =
1

2

∫ ∞
0

Jν(r
√
y)eiytf#(

√
y)dy. (4.19)

Let us define the function h as follows

h(y) :=


f#(
√
y) y > 0,

0 y ≤ 0.

Then the expression in (4.19) becomes

v(r, t) =
1

2

∫
R
Jν(|r||y|1/2)h(y)eiytdy. (4.20)

From Proposition 4.2.1, we have

∫ ∞
−∞
|h(y)|2dy =

1

2

∫ ∞
0

|f#(s)|2sds =
1

2

∫ ∞
0

|f(η)|2ηdη <∞. (4.21)
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So, h is an L2 function. We will work with h(y) belonging to the Schwartz class.

These are C∞ functions that tend to zero faster than any polynomial at infinity, i.e.,

S(R) = {f(x) ∈ C∞(x)| sup
x∈R
|d
αf(x)

dαx
| < Cαβx−β ∀ α, β ∈ N}.

The general case of h ∈ L2 follows by a density argument. We use smooth cut off

functions to partition the Bessel function Jν as follows,

Jν(η) = m0
ν(η) +m1

ν(η) +
∑

j�log ν

mj
ν(η), (4.22)

where m0
ν , m

1
ν and mj

ν are supported on η < ν√
2
, η ∼ ν and η ∼ 2j for j � logν

respectively. Let Jkν =
∑k

0 m
j
ν . Equation (4.20) holds in the sense that we can write

v(r, t) = lim
k→∞

1

2

∫
R
Jkν (|r||y|1/2)h(y)eiytdy. (4.23)

Substituting h by the inverse Fourier formula

h(y) =

∫
R
ei(η−t)yĥ(η − t)dη,

and changing the order of integration, we have

v(r, t) = lim
k→∞

∫
R

(
1

2

∫
R
Jkν (
√
|y||r|)eiηydy

)
ĥk(η − t)dη. (4.24)
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Let us define the kernel below

Kj
ν,r(η) =

1

2

∫
R
mj
ν(
√
|y||r|)eiηydy. (4.25)

For convenience, rename g(y) = ĥ(−y) and define an operator

T jν,r[g](t) = (Kj
ν,r ∗ g)(t). (4.26)

Since it is a convolution, it becomes a multiplication in Fourier space. Thus, this

operator has another equivalent expression, namely,

T jν,r[g](t) =
1√
2π

∫
mj
ν(r|ξ|

1
2 )ĝ(ξ)eiξtdξ. (4.27)

Notice that both the kernel Kj
ν,r and the operator T jν,r are functions of ν. We can

rewrite equation (4.24) in the following form:

v(r, t) = lim
k→∞

∑
j≤k

T jν,r[g(η)](t). (4.28)

The main theorem in this paper will follow from the lemma below.

Lemma 4.2.2. For g ∈ L2, a ≥ 0, C1, C2, C3 independent of ν2(k) = a2 + k2

k ∈ N, the following estimates hold:

∫
R

sup
r>0
|T 0
ν,r(g)(t)|2dt ≤ C1

∫
R
|g(y)|2dy, (4.29)
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∫
R

sup
r>0
|T 1
ν,r(g)(t)|2dt ≤ C2

∫
R
|g(y)|2dy, (4.30)

∫
R

sup
r>0
|T jν,r(g)(t)|2dt ≤ C32−

1
2
j

∫
R
|g(y)|2dy for j � log ν. (4.31)

Notice ‖v‖2
L2
t (L
∞
r Lθ)

can be bounded by the sum of the left hand side terms

in Lemma 4.2.2 and the right hand side terms are summable. Thus, Lemma 4.1.7

follows.

We will refer to these three cases as low frequency, middle frequency, and high

frequency, respectively. We will prove inequalities (4.29), (4.30), and (4.31) in the

following sections.

4.3 Estimates for Low Frequency

Our strategy is to estimate the kernel defined in (4.25) and apply Hardy-

Littlewood maximal inequality in this case. By changing variable z := r2y in (4.25),

we can write

K0
ν,r(η) =

1

r2
K0
ν,1(

η

r2
), (4.32)

and therefore we have

‖K0
ν,r(η)‖L1 = ‖K0

ν,1(η)‖L1 . (4.33)

We will prove the following estimate.

Lemma 4.3.1. The kernel K0
ν,1(η) is bounded as follows,

|K0
ν,1(η)| ≤ Φ0

ν(η), (4.34)
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where Φ0
ν is an even nonnegative decaying L1 function defined as follows.

Φ0
ν =


c(1 + |η|)−(1+ν/2) when 0 < ν ≤ 2,

C(ν)(1 + |η|)−2 when 2 < ν,

(4.35)

where C(ν) is uniformly bounded.

We can see ‖Φ0
ν‖L1 is finite for every ν from a direct calculation. Since C(ν)

is uniformly bounded, ‖Φ0
ν‖L1 is uniformly bounded when ν > 2. For 0 < ν ≤ 2,

‖Φ0
ν‖L1 = 4/ν. However, since ν(k)2 = a2 + k2 are discrete, we can find a universal

L1 bound for given a 6= 0. Since Φ0
ν is an even nonnegative decaying function, we

can use the property of approximate identity and obtain

sup
r>0

T 0
ν,r[g](t) ≤ ‖Φ0

ν‖L1M [g](t), (4.36)

where M [g](t) is Hardy-Littlewood maximal function of g at t, defined as follows:

M(g)(t) = sup
r>0

1

|I(t, r)|

∫
I(t,r)

|g|dx, (4.37)

where I(t, r) = (t − r, t + r). Finally, we apply the Hardy-Littlewood maximal

inequality

‖M(F )‖Lp ≤ C(p)‖F‖Lp 1 < p <∞ (4.38)

to finish the proof.

We will prove Lemma (4.3.1) case by case as presented in (4.35).
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Proof. We need to prove K0
ν,1(η) is bounded and decays with the the power adver-

tised in (4.35). We first prove the decay of the tail.

Because m0
ν is even, we have

K0
ν,1(η) =

1

2

∫
R
m0
ν(
√
|y|)eiηydy =

∫ ∞
0

m0
ν(
√
y) cos(ηy)dy. (4.39)

Integrate by parts to obtain

K0
ν,1(η) = − 1

2η

∫ ∞
0

m0
ν
′
(y1/2)y−1/2 sin(ηy)dy. (4.40)

Differentiating the expression of the Bessel function in (4.16), we can find the fol-

lowing recursive relation for Bessel functions:

J ′ν(r) = νr−1Jν(r)− Jν+1(r). (4.41)

From the definition of Bessel function (4.16), we can see

Jν(r) ∼
1

Γ(ν + 1)
(
r

2
)ν if r <

√
ν + 1. (4.42)

Moreover, for all r the following upper bound is true

Jν(r) ≤
c

Γ(ν + 1)
(
r

2
)ν . (4.43)

Combining (4.41) and (4.42), the integrant in (4.40) behaves like ∼ νy
ν
2
−1, when
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y � 1 + ν.

We will examine various cases of the parameter ν.

• Case 1: 0 < ν ≤ 2

We break the integral into two parts, from 0 to |η|−α and the rest and integrate by

parts the latter, i.e., we write K0
ν,1(η) = I1 +B2 + I2, where

I1 = − 1

2η

∫ |η|−α
0

m0
ν
′
(y1/2)y−1/2 sin(ηy)dy,

B2 = − 1

2η2
cos(η|η|−α)m0

ν
′
(|η|−α/2)|η|α/2,

I2 = − 1

4η2

∫ ∞
|η|−α

m0
ν
′′
(y1/2)y−1 cos(ηy)−m0

ν
′
(y1/2)y−3/2 cos(ηy)dy,

where α is a parameter to be determined later.

Estimate I1 using the equation (4.42), we have |I1| ∼ |η|−1−α ν
2 . Taking the

absolute value, we have |B2| ∼ ν|η|−α ν2 +α−2. For I2, we use the fact that Bessel

function is the solution of the following differential equation

J ′′ν (r) +
1

r
J ′ν(r) + (1− ν2

r2
)Jν(r) = 0. (4.44)

Combining (4.44) with the identity (4.41), we have

J ′′ν (r) =
1

r
Jν+1(r)− (1 +

ν

r2
− ν2

r2
)Jν(r). (4.45)

Using (4.43), we can estimate the integrant in I2 by cν(ν − 2)y
ν
2
−2. Thus, we have

|I2| ≤ cν|η|−α ν2 +α−2. To balance the contribution from I1, B2, and I2, we choose

46



α = 1. Thus, we have K0
ν,1(η) < cν−(1+ ν

2
).

• Case 2: ν < 2

We do not split the integral in this case. We can integrate by parts twice without

introducing boundary terms and obtain

K0
1(η) = − 1

4η2

∫ ∞
0

(
m0
ν
′′
(y1/2)y−1 cos(ηy)−m0

ν
′
(y1/2)y−3/2 cos(ηy)

)
dy.

Since m0
ν is supported within [0, ν/

√
2), the integral is bounded by η−2 multiplied by

a constant namely C(ν) = c(ν − 2)(Γ(ν + 1))−12
−3ν
2 P (ν), where P is a polynomial

with finite degree. Using Stirling’s formula

Γ(z) =

√
2π

z

(z
e

)z (
1 +O(

1

z
)

)
, (4.46)

and observing that e < 23/2, we can see that C(ν) has a bound independent of ν.

Now, we took care of the tail. The remaining task is to prove that K0
ν,1(η) is

bounded. We take absolute value of the integrant in (4.40)

|K0
ν,1(η)| ≤

∫
|m0

ν(
√
|y|)|dy. (4.47)

Since m0
ν is a bounded function with a compact support, we proved K1

ν,1(η) is

bounded for fixed ν. Furthermore if we apply (4.43), we have

|K0
ν,1(η)| ≤ c

ν3νν

Γ(ν + 1)2
3ν
2

. (4.48)
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Using Stirling’s formula (4.46) again, we can show that there is a bound independent

of ν.

4.4 Estimates for Middle Frequency

The goal is to prove inequality (4.30), namely,

‖T 1
ν,r(g)(t)‖L2

tL
∞
r
≤ C‖g‖L2 .

First, we want to estimate the L∞r norm for fixed t. Recall the equation (4.27), we

have

T 1
ν,r(g)(t) =

1√
2π

∫
m1
ν(r|ξ|

1
2 )ĝ(ξ)eiξtdξ. (4.49)

Since composing Fourier transform with inverse Fourier transform will form identity

map , we have

T 1
ν,r0

(g)(t) =
1

2π
3
2

∫ ∫ ∫
m1
ν(r|ξ|

1
2 )ĝ(ξ)eiξtdξ eirρdr e−iρr0dρ. (4.50)

Using smooth dyadic decomposition, we write ĝ(ξ) =
∑∞
−∞ ĝn(ξ) where ĝn is

supported on (−2n+1,−2n−1)
⋃

(2n−1, 2n+1). We will prove the following lemma.

Lemma 4.4.1. For gn ∈ L2(R) such that ĝn is supported on (−2n+1,−2n−1)
⋃

(2n−1, 2n+1),

we have the estimate

‖T 1
r (gn)(t)‖L2

tL
∞
r
≤ C‖gn‖L2 , (4.51)

where C is independent of n.
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Proof. On the right hand side of (4.50), we multiply and divide by
√
b+ ρ2b−1,

where b > 0 is a parameter to be chosen later. We change the order of integration,

and apply Hölder’s inequality to obtain

|T 1
r0

(gn)(t)| ≤ C

(∫
|e−iρr0(t)|2

(b+ ρ2b−1)
dρ

) 1
2

· (4.52)(∫ ∣∣∣∣∫ ∫ m1
ν(r|ξ|

1
2 )ĝn(ξ)eiξteirρdξdr

∣∣∣∣2 (b+ ρ2b−1)dρ

) 1
2

.

Note that the first integral on the right hand side is π for any b > 0. Thus, equation

(4.52) reduces to

‖T 1
r0

(gn)(t)‖L∞r0 ≤ (4.53)

C

(∫ ∣∣∣∣∫ ∫ m1
ν(r|ξ|

1
2 )ĝn(ξ)eiξtdξeirρdr

∣∣∣∣2 (b+ ρ2b−1)dρ

) 1
2

.

We name the integral on the right hand side of (4.53) as l(t). We distribute the sum

(b+ b−1ρ2) and write l2(t) = l1(t) + l2(t), where

l1(t) =

∫ ∣∣∣∣∫ ∫ b
1
2m1

ν(r|ξ|
1
2 )ĝn(ξ)eiξtdξeirρdr

∣∣∣∣2 dρ,
l2(t) =

∫ ∣∣∣∣∫ ∫ b−
1
2ρm1

ν(r|ξ|
1
2 )ĝn(ξ)eiξtdξeirρdr

∣∣∣∣2 dρ.
For l2(t), we integrate by parts with respect to r to remove ρ and obtain,

l2(t) =

∫ ∣∣∣∣∫ ∫ b−
1
2 |ξ|

1
2 (m1

ν)
′(r|ξ|

1
2 )ĝn(ξ)eiξtdξeirρdr

∣∣∣∣2 dρ.
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Using Plancherel’s theorem, we have

l1(t) =

∫ ∣∣∣∣∫ b
1
2m1

ν(r|ξ|
1
2 )ĝn(ξ)eiξtdξ

∣∣∣∣2 dr, (4.54)

l2(t) =

∫ ∣∣∣∣∫ b−
1
2 |ξ|

1
2 (m1

ν)
′(r|ξ|

1
2 )ĝn(ξ)eiξtdξ

∣∣∣∣2 dr. (4.55)

We square both sides of (4.53) and integrate over t. Then, we change the order

of integration with respect to r, t, and apply Plancherel’s theorem again to obtain

‖T 1
r0

(gn)(t)‖2
L2
tL
∞
r0
≤ C

∫ ∫ ∣∣∣b 1
2m1

ν(r|ξ|
1
2 )ĝn(ξ)

∣∣∣2 dξdr (4.56)

+C

∫ ∫ ∣∣∣b− 1
2 |ξ|

1
2m1

ν(r|ξ|
1
2 )ĝn(ξ)

∣∣∣2 dξdr.
We change the variable by y = r|ξ| 12 . We have

‖T 1
r0

(gn)(t)‖2
L2
tL
∞
r0
≤ C

∫ (∫
b

|ξ| 12
|m1

ν(y)|2 +
|ξ| 12
b
|m′1(y)|2dy

)
|ĝn(ξ)|2dξ. (4.57)

Use Lemma (4.6.1) (see appendix) which implies

∫
|m1

ν(y)|2dy < C, |
∫

(m1
ν)
′
(y)|2dy < C. (4.58)

Recall that the ĝn is supported on (−2n+1,−2n−1)
⋃

(2n−1, 2n+1). By choosing b =

2
n
2 , we complete the proof.

We proved (4.30) for function that has bounded support in the Fourier space

described above. Now we are going to discuss the general case without restriction
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in Fourier space.

Proof. (4.30) Suppose r0(t) realizes at least half of the supremun at every t for the

function g, i.e.,

1

2
sup
r>0
|T 1
ν,r(g)(t)| ≤ |T 1

ν,r0(t)(g)(t)|. (4.59)

Then, it is enough to prove the inequality

∫
|T 1
ν,r0(t)(g)(t)|2dt ≤ C‖g‖2

L2
. (4.60)

We will prove (4.60) for an arbitrary function r0(t). We dyadically decompose the

range of r0(t). The corresponding domains are defined as follows:

Ik = {t| 2k < r0(t) ≤ 2k+1}. (4.61)

Since m1
ν is supported on (ν/2, 2ν), we have

ν

2
< r0|ξ|

1
2 < 2ν. (4.62)

On Ik, by definition we have 2k < r0(t) ≤ 2k+1. Combining (4.61) and (4.62), the

integrant in expression (4.50) is nonzero only when

2 log2 ν − 2k − 4 < log2 |ξ| < 2 log2 ν − 2k + 2. (4.63)

As a result, there are only 8 components in the dyadic decomposition in {ĝn} in-
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volved. When t ∈ Ik, we can rewrite (4.50) as

T 1
ν,r0(t)(g)(t) =

1√
2π

∫
m1
ν(r0|ξ|

1
2 )

n0+7∑
n=n0(k)

ĝn(ξ)eiξtdξ =

n0+7∑
n=n0(k)

T 1
ν,r0(t)(gn)(t), (4.64)

where n0(k) = b2 log2 ν − 2k− 4c. Thus, use the Cauchy-Schwartz inequality in the

finite sum to obtain

|T 1
ν,r0(t)(g)(t)|2 =

∣∣∣∣∣∣
n0+7∑

n=n0(k)

T 1
ν,r0(t)(gn)(t)

∣∣∣∣∣∣
2

≤ 8

n0+7∑
n=n0(k)

∣∣T 1
ν,r0(t)(gn)(t)

∣∣2 . (4.65)

Combine the above with the Lemma (4.4.1), we have

∫
Ik

|T 1
ν,r0(t)(g)(t)|2dt ≤ C

n0+7∑
n=n0(k)

‖gn‖2
L2
. (4.66)

We sum over k to obtain

∫
|T 1
ν,r0(t)(g)(t)|2dt ≤ C

∑
k∈Z

n0+7∑
n=n0(k)

‖gn‖2
L2
. (4.67)

Note that when we increase from k to k + 1, n0 increases by 2. As a result, every n

only appears four times. Thus

∫
|T 1
ν,r0(t)(g)(t)|2dt ≤ 4C

∑
n∈Z

‖gn‖2
L2
≤ 4C‖g‖2

2. (4.68)

This completes the proof.
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4.5 Estimates for High Frequency

The goal is to prove (4.31), which is equivalent to

∥∥∥∥∫
R
Kj
ν,r(t)(t− η)g(η)dη

∥∥∥∥
L2
t

≤ C2−
1
4
j‖g(y)‖L2 , (4.69)

for an arbitrary function r(t). Using the T ∗T argument, we have the following

lemma.

Lemma 4.5.1. The following three inequalities are equivalent.

∥∥∥∥∫
R
Kj
ν,r(t)(t− η)g(η)dη

∥∥∥∥
L2
t

≤ C2−
1
4
j‖g(y)‖L2 , ∀g ∈ L2(R1), (4.70)

∥∥∥∥∫
R
Kj
ν,r(t)(t− η)F (t)dt

∥∥∥∥
L2

≤ C2−
1
4
j‖F‖L2 ∀F ∈ L2(R1), (4.71)

∥∥∥∥∫
R

∫
R
Kj
ν,r(t)(t− η)Kj

ν,r(t′)(t
′ − η)dηF (t′)dt′

∥∥∥∥
L2

(4.72)

≤ C2−
1
2
j||F ||L2 , ∀F ∈ L2(R1).

Proof. Suppose we have (4.70). We want to show it implies (4.71). We multiply the

integrand on the left hand side of (4.70) with an arbitrary L2 function F (t), then

integrate over t, η. We apply Hölder’s inequality and (4.70) to obtain

∫ ∫
R
Kj
ν,r(t)(t− η)F (t)dtg(η)dη ≤ Ce−

1
4
j‖g‖L2‖F‖L2 . (4.73)
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Using the property that L2 is self-dual, i.e.

‖h‖L2 = sup
f∈L2

∫
f(t)h(t)dt

‖f‖L2

, (4.74)

we obtain (4.71). Using the same argument again, we can prove (4.70)⇐⇒ (4.71).

Suppose we have (4.71). We will show that (4.72) holds . We multiply the integrant

on the left hand side of (4.72) with an arbitrary L2 function G(t) and integrate over

η, t′, and t. We change the order of integration and apply Holder’s inequality and

(4.71) to obtain

∣∣∣∣∫ ∫ ∫ Kj
ν,r(t)(t− η)Kj

ν,r(t′)(t
′ − η)dηF (t′)dt′G(t)dt

∣∣∣∣
≤
∥∥∥∥∫ Kj

ν,r(t)(t− η)G(t)dt

∥∥∥∥
L2

∥∥∥∥∫ Kj
ν,r(t′)(t

′ − η)F (t′)dt′
∥∥∥∥
L2

≤ Ce−
1
2
j‖G‖L2‖F‖L2 ,

which implies (4.72) by duality.

Suppose (4.72) holds. We multiply the integrand on the left hand side of (4.72)

with the complex conjugate of F (t), F (t), integrate over η, t′, and t, apply Hölder’s

inequality and (4.72), we obtain (4.71). This completes the proof.

Thus, to prove (4.69), we have to prove (4.72). Inequality (4.72) will follow

from the following estimate.

Lemma 4.5.2. For any a, b > 0, t, t′ ∈ R we have

∣∣∣∣∫ Kj
a(t− η)Kj

b (t
′ − η)dη

∣∣∣∣ < 1

a2
Φj(
|t− t′|
a2

), (4.75)
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where Φj are even non-increasing non-negative functions with

‖Φj‖L1 = ‖ 1

a2
Φj(

y

a2
)‖L1 ≤ C2−

1
2
j. (4.76)

Estimate (4.75) does not depend on b. Φj is even, non-increasing, and non-

negative. Thus, we have

∣∣∣∣∫
R

∫
R
Kj
r(t)(t− η)Kj

r(t′)(t
′ − η)dηF (t′)dt′

∣∣∣∣ ≤ ∫
R

1

r(t)2
Φj(
|t− t′|
r(t)2

)|F (t′)|dt′

≤ sup
r>0

∫
R

1

r2
Φj(
|t− t′|
r2

)|F (t′)|dt′ ≤ ‖Φj‖L1M(F )(t) ≤ C2−
j
2M(F )(t),

where M(F ) is the Hardy-Littlewood maximal function of F . We apply the Hardy-

Littlewood maximal inequality (4.38) to finish the proof of (4.31).

Proof. (Lemma 4.5.2) The kernel is in the form of the inverse Fourier transform

Kj
ν,r(η) =

∫
R
mj
ν(r|y|1/2)eiηydy. (4.77)

By Plancherel’s theorem, we have

∫
Kj
ν,a(t− η)Kj

ν,b(t
′ − η)dη =

∫
mj
ν(a|y|1/2)mj

ν(b|y|1/2)ei(t−t
′)ydy. (4.78)
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We introduce a standard asymptotic of Bessel functions for large r (see [37])

Jν(r) ∼ (
πr

2
)−

1
2 cos(r − νπ

2
− π

4
)
∞∑
j=0

ajr
−2j (4.79)

+(
πr

2
)−

1
2 sin(r − νπ

2
− π

4
)
∞∑
j=0

bjr
−2j, (4.80)

where aj = (−1)j(ν, 2j)2−2j and bj = (−1)j(ν, 2j + 1)2−2j−1 with

(ν, k) =
Γ(1

2
+ ν + k)

k! · Γ(1
2

+ ν − k)
. (4.81)

With this asymptotic, we can write

mj
ν(ξ) =

∑
±

2−j/2e±iξψ±j (2−jξ). (4.82)

where ψ±j (ξ) are function supported on |ξ| ∼ 1 and bounded uniformly in j, ν

. We can rewrite the right hand side of (4.77) as a finite number of expressions of

the form

2−j
∣∣∣∣∫ ei(±a±b)|y|

1/2

ei(t−t
′)yψ±j (2−ja|y|1/2)ψ±j (2−jb|y|1/2)dy

∣∣∣∣ , (4.83)

where the ± signs need not agree. Since the bump functions are supported on

(1
2
, 2), this expression is identically zero except when 1

4
< b

a
< 4. Let α = b

a
. The
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expression in (4.83) becomes

2−j
∣∣∣∣∫ ei(±1±α)a|y|1/2ei(t−t

′)yψ±j (2−ja|y|1/2)ψ±j (2−jαa|y|1/2)dy

∣∣∣∣ . (4.84)

Let s = (−t′. We denote the sum of this expression φja,α(s). By changing variable

to y′ = a2y, we can see that

φja,α(s) =
1

a2
φj1,α

( s
a2

)
. (4.85)

By letting s′ = s
a2 , we have

‖φja,α(s)‖L1 = ‖φj1,α(s)‖L1 . (4.86)

Now, φj1,α(s) is finite sum of the following expressions

2−j
∣∣∣∣∫ ei(±1±α)|y′|1/2ei(s)y

′
ψ±j (2−j|y′|1/2)ψ±j (2−jα|y′|1/2)dy′

∣∣∣∣ . (4.87)

By changing the variable to z = 2−j|y′|1/2, the expression in (4.87) becomes

2j+2

∣∣∣∣∫ ∞
0

ei(±1±α)2jz+s22jz2ψ±j (z)ψ±j (αz)zdz

∣∣∣∣ . (4.88)

We will prove the following lemma.
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Lemma 4.5.3. φj1,α is controlled by the following function

Φj(s) = C


2j when 0 < s ≤ 2−2j,

s−1/2 when 2−2j < s < 40 2−j,

2j(22js)−10 otherwise.

(4.89)

Notice that we can estimate directly and get ‖Φj‖L1 ≤ C2−
j
2 .

The remaining task is to prove the lemma (4.5.3).

Proof. (Lemma 4.5.3) Take the absolute value of the integrand to obtain the bound

2j. We will use stationary phase technique to prove the other two estimates. We

call the function on the index of exponential phase. If we differentiate the phase, we

get 2 22jsz + (±1 ± α)2j. Note α is between 1/4 and 4, and the product of bump

functions is supported on (1/8, 8). Suppose s > 20 2−j, the derivative is never zero

on the support. We get the bound 2j(22js)−10 from non-stationary phase analysis.

Otherwise, we note the second derivative of the phase, namely 22j+1s, is not zero.

By stationary phase analysis we obtain the bound s−1/2.
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4.6 Appendix: Estimates of Bessel Function around ν

Lemma 4.6.1. For the Bessel function Jν of positive order ν with 1
2
ν ≤ r ≤ 2ν, we

have the following estimates

|Jν(r)| ≤ Cν−
1
3 (1 + ν−

1
3 |r − ν|)−

1
4 , (4.90)

|J ′ν(r)| ≤ Cν−
1
2 . (4.91)

Proof. We have the following integral representation for the Bessel function of order

ν > −1
2

(see[37]):

Jν(r) = Aν(r)−Bν(r), (4.92)

where

Aν(r) =
1

2π

∫ π

−π
e−i(r sin θ−νθ)dθ, (4.93)

Bν(r) =
sin(νπ)

π

∫ ∞
0

e−νt−r sinh(t)dt. (4.94)

We see that

Bν(r) <
sin(νπ)

π

∫ ∞
0

e−νtdt < Cν−1. (4.95)

So, we only need to estimate Aν . We will accomplish this by using stationary phase

for two different cases: r > ν and r ≤ ν. Let us consider the case when r > ν

first. Call the phase in (4.93) φ(θ) = r sin θ − νθ. We differentiate the phase,

φ′(θ) = (r cos θ − ν). We find φ′ = 0 at ±θ0, where θ0 = cos−1(ν
r
). In order to

obtain the estimate, we will break the integral into a small neighborhood around
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these points and the rest, that is cosider the regions

Nε := {θ : |θ ± θ0| < ε}, (4.96)

Sε := [−π, π]/Nε. (4.97)

Since the integrand in (4.93) is bounded, we have

|
∫
Nε

e−i(r sin θ−νθ)dθ| < cε. (4.98)

On Sε, we integrate by parts to obtain

∫
Sε

e−i(r sin θ−νθ)dθ =
ei(r sin θ−νθ)

i(r cos θ − ν)

∣∣∣∣{π,θ0±ε}
{−θ0±ε,−π}

+

∫
Sε

ei(r sin θ−νθ)r sin θ

i(r cos θ − ν)2
dθ.

All terms in the expression above are controlled by c|r cos(θ0 ± ε)− ν|−1. We want

to balance the contribution from Nε and Sε by choosing appropriate ε, such that

ε ∼ |r cos(θ0 ± ε)− ν|−1. (4.99)

By using the trigonometric identities cos(θ0 ± ε) = cos(θ0) cos(ε) ∓ sin(θ0) sin(ε),

and the definition of θ0, we have

|r cos(θ0 ± ε)− ν| = |ν cos ε−
√
r2 − ν2 sin ε− ν|. (4.100)

When ε is small, (4.100) is approximately ν
2
ε2 + ε

√
r2 − ν2. Thus, we have the two
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estimates

|r cos(θ0 ± ε)− ν|−1 ≤ 2ν−1ε−2, (4.101)

|r cos(θ0 ± ε)− ν|−1 ≤ ε−1(r2 − ν2)−
1
2 . (4.102)

When r − ν is small, (4.101) is sharper. We pick ε ∼ ν−
1
3 . When r − ν is big,

(4.102) is sharper. We pick optimal ε ∼ (r2 − ν2)−
1
4 . Since r ≤ 2ν , we have

|(r2 − ν2)−
1
4 | < (3ν)−

1
4 (r − ν)−

1
4 . Thus, we have proven (4.90) for the case r ≥ ν.

Now, we will discuss the case when r ≤ ν. When ν − ν−
1
3 < r < ν, we

follow the analysis above by choosing θ0 = 0, ε = ν−
1
3 . We have an estimate

Jν(r) ≤ Cν−
1
3 . When ν − ν− 1

3 > r, we use non-stationary phase to obtain Jν(r) ≤

C 1
|ν−r| ≤ Cν−

1
4 |ν − r|− 1

4 .

The remaining task is to prove (4.91). Considering the derivative of Jν , we

can show that

|B′ν(r)| = |
sin(νπ)

π

∫ ∞
0

e−νt−r sinh(t) sinh(t)dt| ≤ c|
∫ ∞

0

e−νtdt| ≤ c

ν
. (4.103)

So, we only need to estimate

A′ν(r) =
1

2π

∫ π

−π
ei(r sin θ−νθ)i sin θdθ. (4.104)

When r > ν, break the integral into two parts as we did in the previous case. Take
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L∞ estimate of the integrand of the integral on Nε, we obtain

∣∣∣∣ 1

2π

∫
Nε

ei(r sin θ−νθ)i sin θdθ

∣∣∣∣ < Cε. (4.105)

Integrate by parts for the integral on Sε, and use trigonometric identity and Taylor

expansion. Then, we can find it is controlled by

c1

√
r−ν
ν

+ c2ε

ν ε
2

2
+ c3

√
ν
√
r − ν

. (4.106)

If we balance between integral on Nε and Sε, we get an optimal ν−
1
2 estimate. For

the case r ≤ ν, we can apply similar ideas as in the proof of (4.90).
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