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For researchers exploring causal inferences with simple two group experimental 

designs, results are confounded when using common statistical methods and further are 

unsuitable in cases of treatment nonresponse.  In signal processing, researchers have 

successfully extracted multiple signals from data streams with Gaussian mixture models, 

where their use is well matched to accommodate researchers in this predicament.  While 

the mathematics underpinning models in either application remains unchanged, there are 

stark differences.   In signal processing, results are definitively evaluated assessing 

whether extracted signals are interpretable.  Such obvious feedback is unavailable to 

researchers seeking causal inference who instead rely on empirical evidence from 

inferential statements regarding mean differences, as done in analysis of variance 

(ANOVA).   Two group experimental designs do provide added benefit by anchoring 

treatment nonrespondents’ distributional response properties from the control group.   



 

Obtaining empirical evidence supporting treatment nonresponse, however, can be 

extremely challenging.  First, if indeed nonresponse exists, then basic population means, 

ANOVA or repeated measures tests cannot be used because of a violation of the identical 

distribution property required for each method.  Secondly, the mixing parameter or 

proportion of nonresponse is bounded between 0 and 1, so does not subscribe to normal 

distribution theory to enable inference by common methods.   

This dissertation introduces and evaluates the performance of an information-

based methodology as a more extensible and informative alternative to statistical tests of 

population means while addressing treatment nonresponse.  Gaussian distributions are 

not required under this methodology which simultaneously provides empirical evidence 

through model selection regarding treatment nonresponse, equality of population means, 

and equality of variance hypotheses.  The use of information criteria measures as an 

omnibus assessment of a set of mixture and non-mixture models within a maximum 

likelihood framework eliminates the need for a Newton-Pearson framework of 

probabilistic inferences on individual parameter estimates. This dissertation assesses 

performance in recapturing population conditions for hypotheses’ conclusions, parameter 

accuracy, and class membership.  More complex extensions addressing multiple 

treatments, multiple responses within a treatment, a priori consideration of covariates, 

and multivariate responses within a latent framework are also introduced. 
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Chapter 1: Introduction 
 

 

 The area of finite mixture models is sufficiently large and well established as a 

viable method useful in a number of disciplines for explaining relationships in observed 

data.  There are a number of general excellent resources including Everitt and Hand 

(1981) and McLachlan and Peel (2000).  Medical research such as Boos (1991) and Luo 

(2004) applied mixtures in a regression based framework more broadly described for 

generalized linear models (GLM) by Wedel and Desarbo (1995). Others, such as Pavlic 

(2001), considered mixtures in two group experimental designs with applied research and 

simulation studies.  The nature of these applications and empirical studies are varied; 

some simulations illustrated the viability of a mixture model representation, others 

specified elaborate models representative of a particular data set, while others focused on 

a posterior probability aspect of individual group membership.  None of these articles, 

however, endeavored to provide empirical evidence supporting the theoretical 

supposition of treatment nonresponse. Treatment nonresponse is not that a respondent 

provides no measurement; it is an individual, in full compliance with the particular 

treatment, demonstrates no change in measured response from the treatment compared 

with the baseline group.  The approach advocated in this dissertation represents an 

innovative solution strategy combining a number of current analytic techniques taking 

advantage of sound experimental design.  Further, this strategy serves as a suitable 

foundation upon which to evaluate more complex research questions in a number of 

different directions presented in Chapter 4. 

A common experimental design is a two group posttest-only randomized 
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experimental scenario consisting of a control and treatment, or even competing 

treatments.  Many extensions are available from this basic design: inclusion of a pretest, 

multiple groups, factorial conditions facilitating systematic manipulation of several 

independent variables, and randomized block designs are a few examples.  When 

randomization is neither practical nor feasible, quasi-experimental variations such as the 

non-equivalent groups’ pretest-posttest design are available.   Unfortunately, when 

implementing any of these experimental designs, the effectiveness of any inference 

becomes unclear under consideration of treatment nonresponse.  A commonly held 

assumption is that individuals respond representative of a homogeneous population, 

albeit with varied responses.  The subsequent goal is to estimate the impact of the 

treatment in comparison to the control.   In reality, however, some treatments might only 

yield results for some members while failing completely for others within the same 

sample.  In such cases, treatment sample members represent two populations: treatment 

responders, the basis for any causal inferences, and treatment nonresponders, acting act 

as a contaminant, where unfortunately membership is unknown.  In medical applications, 

explanations of treatment nonresponse to medications are commonly attributed to some 

type of physiological phenomenon.  In the social sciences, however, the definition of a 

treatment has a broader application including additional instruction, supplemental 

training, changes in environmental settings, or even material presented under a different 

pedagogy.  Without such tangible physiological explanations, researchers attribute 

nonresponse to these particular treatments as a simple matter of compliance by an 

individual.  Just as likely is the possibility, having fully complied with the treatment, that 

no change in the cognitive processes or behavior occurred in these individuals assessed in 
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a post treatment evaluation. 

 The difficulty in this seemingly straightforward problem is assessing and 

mitigating the contamination in the treatment group.  A foundational assumption of IID, 

independence and identical distribution, exists in all population means tests, whether a 

particular t-test or in ANOVA.  In certain cases, one is confident that the “I”, 

independence of observations, is violated.  Repeated measures in the paired t-test, 

longitudinal data analysis, hierarchical linear modeling, and time series analysis (AR, 

ARIMA, etc.) parametrically account for this violation.  Upon mitigation, researchers 

return to the comfort of IID upon which subsequent parameter and causal inferences are 

made.  For each of these modeling techniques or statistical tests, the assumption of “ID”, 

identically distributed observations, persists.  Treatment nonresponse, if it exists, is a 

violation of the ID assumption where respondents can no longer be aggregated into a 

homogeneous group.   

 There are currently three choices if one supposes treatment nonresponse exists 

in a particular sample.  The most mathematically convenient and easiest choice is to 

ignore it, which allows the researcher to continue with traditional analysis presented in 

the next section.  The consequence of such a decision is the degree to which inferences 

regarding a true treatment effect are clouded, where the estimate of the treatment 

population mean is affected beyond sampling error.  The typical Type I error control, α , 

used as a threshold in declaring statistical significance, becomes unreliable.  On one 

hand, the clouding may be so minute, for a number of reasons subsequently addressed, 

that the overall conclusion regarding a difference in population means is unchanged.  Of 

greater concern is the possibility that one falsely concludes no difference in the 
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population means.  In either case, the clouding is such the expected estimate of the 

population mean for the treatment is negatively biased due to treatment nonresponse.   

Ignoring nonresponse and aggregating as a homogeneous group, treatment effects would 

be underestimated by up to 70% in the range of experimental conditions subsequently 

evaluated (mathematical expressions for these expected biases are presented in section 

2.2.1).       

 A second option, much more mathematically complex, addresses the lack of 

homogeneity or contamination as a mixture of two components: responders and non-

responders.  Such models introduce a mixing proportion parameter, φ, in model 

specification, usually determined within a maximum likelihood framework.  Both choices 

conduct analysis, though neither option has any empirical evidence regarding 

nonresponse supporting their model specification or particular statistical test.  Using the 

first option is tantamount to concluding a homogeneous treatment response, while the 

latter is also implicitly drawing a conclusion: nonresponders are present.   

 A final option, a combination of the previous two, incorporates the concept of 

treatment nonresponse with the expediency available in traditional analysis include Intent 

to Treat (ITT), and Complier Average Casual Effect (CACE) models.  CACE models 

introduce a measured variable associated with a degree of an individual’s treatment 

compliance as a polytomous indicator, where ANOVA or regression can be subsequently 

utilized as presented in Angrist, Imbrens, and Rubin (1996).  This dissertation assumes a 

single treatment with uniform compliance among sample respondents.  ITT might be 

considered a viable alternative if a researcher aggregates individual results to perform 

analysis on a particular treatment.  Hollis (1999) and Lachin (2000) provided a cursory 

 4



 

look at this particular strategy principally employed to address randomization challenges 

in clinical trials.  Comparison of surgical versus drug therapy options for a medical 

condition is an example, where individuals are not assigned and measured outcomes may 

take months or years post treatment to assess.  ITT is flexible to allow degrees of 

compliance, like CACE models, and particular to this study, can and will prescribe 

different treatments based on an assessed ineffectiveness of the current treatment.  While 

ITT addresses the issue of randomization supporting experimental designs, it is not a 

defensible strategy supporting population treatment nonresponse.  At some point, ITT 

might transition from focus on the individual to conduct group level analysis for 

population inferences after individual classification for a particular treatment.  Using the 

post-treatment response, and perhaps other covariate information, an individual is 

classified as a respondent or nonrespondent.  The overall mixing proportion estimate for 

the population comes from the summation of these individual assessments.  Upon 

classification, traditional analysis methods become available as this established two ID 

groups based wholly, or in part, on the post-treatment response.   

 Used in this manner, this option suffers from two drawbacks, including false 

classification and a lack of probabilities for group membership, both related to individual 

assessment.  The classification process is assumed error free, in other words, there are no 

false classifications, either a nonrespondent as a respondent or respondent as a 

nonrespondent.  False classifications are analogous to non-ID groups which in turn affect 

the conclusions of any subsequent analysis.  However unlikely error free classifications 

may be to a particular treatment with varied responses, one would expect some non-zero 

misclassification probability across the sample of treatment respondents.   
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 A more reasonable modeling approach results in a probability or likelihood to 

each individual regarding treatment nonresponse instead of a dichotomous assignment.  

Drawing inferences about an individual's probability of being in either of these possible 

classes using their measured response is an application of Bayes’ theorem.  Often referred 

to as posterior probabilities, these are more formally presented in section 2.3.3.  

Obtaining these probabilities, unfortunately, is not tractable when focused at the 

individual level because it lacks population distribution properties to complete the 

calculations.  Subsequently, ITT fails to address, even from a probability perspective, 

empirical evidence regarding treatment nonresponse.  Using a mixture framework, 

however, where unknown nonresponders have the same distributional properties in their 

response as the control population, one can obtain a mixing proportion estimate in lieu of 

summarizing individual classifications.  A mixing proportion estimate obtained in this 

fashion in turn enables transition from the population to each individual in the sample 

with calculation of posterior probabilities of treatment nonresponse membership. 

 Consistent among all three options is the lack of empirical evidence as part of 

model selection regarding nonresponse.  Each option has made an a priori decision with 

regard to an analysis technique and ID assumption.  A supposition of treatment 

nonresponse implies some sort of statistical assessment is in order to substantiate this 

claim, where a comparative model framework utilizing information criteria for model 

selection can serve as the basis for statistical assessment.  This dissertation proposes a 

solution beyond individual parameter assessment to a broader level of comparative model 

evaluation as the means of obtaining empirical evidence simultaneously for the following 

hypotheses:  
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   0:1 =φHo  - Homogeneous (ID) population 
  0:1 >φHa  - Treatment Nonresponse Exists 
 
                TCHo μμ =:2  - No Treatment Effect 

      TCHa μμ ≠:2  - Treatment Effect 
 

When a normal distribution is posited for the control or treatment population, an 

additional hypothesis may be assessed concurrently:  

          22
3 : TCHo σσ =  - Equal Population Variances 

         22
3 : TCHa σσ ≠  - Unequal Population Variances 

 

In model representations positing a homogeneous, identically distributed response, a 

holistic model selection utilizing information criteria serves as an alternative to common 

statistical tests on population means and variances.  There is no analog when introducing 

models including treatment nonresponse, yet holistic model selection readily 

accommodates this condition in a broader set of models.  

 The central question of the existing three options and the proposed 

methodology is the same: hypothesis statements regarding differences in population 

means.  Unlike the other options, however, this methodology additionally provides 

empirical evidence regarding treatment nonresponse, both in a manner which does not 

require normal theory probabilistic inferences on individual parameter estimates.   

 

1.1 Two Group Experimental Designs and Traditional Analysis  

 Two group treatment/control designs serve as the workhorse in research studies, 

often used as the launching point into complex multi-factorial designs, multivariate 

responses, or more involved research interests.  The methodological development and 

empirical evaluation in this dissertation focuses on the most basic design.  Experimental 
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design considerations such as a pseudo-random or specific selection study, assessment 

methods, types of measurement, and controlled conditions must be defended by the 

researcher.   

 Figure 1 sets the backdrop for these experimental designs within a broader 

family of procedures used to make inferences regarding population means from samples 

(Park, 2008).   These designs fall within the shaded region where, without considering 

treatment nonresponse, corresponding statistical tests are readily available in SAS, Stata, 

SPSS, and other statistical software.  This section is intended only as a re-familiarization 

as a building block to an alternative approach and subsequent consideration of 

nonresponse.  Kirk (1995) and Keppel (2004) offered more detailed formulation for each 

of these test procedures. 

Figure 1.
Schematic for Population Means Test Procedures with No Mixture

One 
Sample

One Sample
t -test

Paired Sample
t -Test

Independent 
Sample t - test

(pooled σ2 )

Independent 
Sample t - test
(df approx.)

ANOVA

Independent

Equal
σ2

No, Two or more

No, Two

Yes

No

Yes

No

Yes

 

 The shaded region in the figure highlights traditional two sample statistical 

procedures also indicating independence required between samples.  Another required 
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assumption for these tests is identically distributed observations, which corresponds, for 

example to an absence of treatment nonresponse or mixture in the treatment sample.  Let   

     CCC2C1CC .....,2,1for)(~,...,,
c

nifxxx ni == θX                  (1) 

represent responses for a control sample of size nC which can be characterized by some 

parametric distribution.   For a treatment sample, assuming no mixture in the sample, 

then 

      TTT2T1TT ,...,2,1for)(~,...,,
T

njfxxx nj == θX                  (2) 

represents the measured responses for a treatment sample of size nT characterized by 

some parametric distribution.  It is commonly assumed, but not necessary, that  

                                   (3) 
),(Nor)(

),(Nor)(

TTT
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=

=

θ

θ

f

f

An assumption of normality is, in most cases, quite reasonable.  Preference for the 

normal distribution is due to its unique flexibility of distributional parameter 

independence for its first two moments, location and scale, facilitating excellent 

characterization of many types of observed responses. For sufficiently large sample sizes, 

nC and nT, the distribution of the mean is well represented by a normal distribution 

regardless of the population distribution under the protection of the central limit theorem 

where  
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with x  and  used as estimates for the respective population parameters. Because of this  s
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result, both statistical tests yield consistent results if one or both samples display skewed 

or kurtotic properties.  If the researcher believes the population variances are equal, then 

a pooled variance t - test statistic can be computed where 
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and  
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which subscribes to a central t distribution with nC + nT – 2 degrees of freedom (df ).  

However, knowledge of population variances cannot be achieved without knowledge of 

population means.  Moser (1992) accordingly recommended prior to its use a preliminary 

F- test assessing variance equality.  Yet Gans (1984) noted the combination of two 

statistical tests is problematic in controlling Type I error for population means inferences 

with the accompanying recommendation to always use the unequal variance t-test, 

commonly attributed to Satterwaite (1946) and Welch (1938).  This test statistic is 

calculated as  
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and also follows a central t distribution where the degrees of freedom, v, is approximated 
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Either test statistic is compared to a %100)1( ×− α  critical value from the central t 

distribution with the respective df, where larger df results in probability values 

approaching a standard normal distribution.  In the context of this problem, a researcher 

would conduct a one-sided hypothesis test dependent on the theory whether the treatment 

comparatively raises or lowers the measured response.  The result is a reject or a failure 

to reject the null hypothesis of population means equality, where a rejection indicates a 

treatment effect.  Preference for the use of the Satterwaite t - test is further bolstered by 

Coombs (1996) and Zimmerman (2004) who showed the robustness of this statistic 

against differences in samples sizes and population variances, unlike the pooled variance 

test. 

 Two sample experimental designs can also accommodate repeated measures.  

Consider two independent groups, each receiving pre and post-treatment measurements, 

where the control group is administered a placebo treatment.  Setting t = 0 as the baseline 

measurement and t = 1 as the post-treatment measurement, data of this form can be 

represented akin to Equations (1) and (2) where 

             )(),...,()(
cc C0C11C01C11C,01C,1C nntti xxxxxxX −−=−= ==                    (10) 

and  

             )(),...,()(
TT T0T11T01T11T,01T,1T nnttj xxxxxxX −−=−= ==                 (11) 

subsequently using either of the t - tests presented. 

 For multiple subgroups, analysis of variance (ANOVA) can be utilized to 

include two sample comparisons as previously discussed.   This is slightly different from 

the t - tests where random effects ANOVA considers these samples as two sub-groups 
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from a single population, with a more stringent requirement of normality in the 

population and sub-groups in addition to variance equality.    

 

1.2 An Information Criterion Analog

 Considering the experimental designs presented, a researcher can also obtain 

empirical evidence of a treatment effect through a series of comparative model 

assessments.  Instead of relying on summary statistics, x  and , for calculations and 

probabilistic inferences, this can be viewed in a larger context: fitting population 

distribution parameters to a series of models of increasing parsimony through parameter 

equality constraints.  Both methods provide empirical evidence, yet this alternative is 

information based rather than supported by probabilistic inferences. While more 

computationally intensive than the traditional methods presented, it offers added benefits.  

First, it removes inferential statements regarding population parameters where hypothesis 

conclusions are based on arbitrary Type I error control thresholds, be it .01, .05, or even 

.10.   Second, it simultaneously provides empirical evidence regarding variance equality, 

not evaluated in the Satterwaite t - test and is a separate, preliminary statistical test with 

the pooled variance t - test.  Evidence of differing variability for a treatment, producing a 

more consistent or widespread population response, provides a depth of treatment 

information beyond the standard reporting afforded with current traditional testing.  

2s

 Estimation of population distribution parameters can be accomplished within a 

maximum likelihood (ML) framework.  Maximum likelihood is a mathematical 

optimization process resulting in the most likely set of parameters for a given model 

specification using the data.  A general form of the two sample representation is 
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where θ  represents the vector of population distributional parameters,  and .  This 

complicated formula involves the product of products making computations difficult.  To 

simplify, vertically concatenate the control and treatment sample observations such that 

Cθ Tθ

             TCT2T1TC2C1CN Tcccc
,...,,,,...,, nnNxxxxxx nnnnn +== +++Y                 (13) 

and introduce a new term of the form 

                                              (14) 
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where Equation (12) can be rewritten as 
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1
TTCC )|()1()|()|( θθθY                 (15) 

This step reduced the likelihood function to a single product term, yet remains 

computationally challenging because each term results in a probability density function 

(PDF) or probability mass function (PMF) value ranging between [0,1].  The product of 

positive fractional numbers creates an extremely small positive number, affecting 

precision and degrading the ability of search algorithms to maximize this function.  To 

mitigate these problems, a logarithmic transform can be performed without changing the 

location of the maximum value of .  Therefore, the general equation used to 

determine parameter estimates becomes 

)|( θYL

                ( ) ( )∑
=

−+=
N

i
iiii yfhyfhL

1
TTCC )|()1()|(ln)|(ln θθθY                 (16) 

 Further development will use, as an example, normal distributions for the 

control and treatment populations.  This is not a requirement for either population; 
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nonetheless, the normal distribution remains a common and flexible parametric 

representation.  The PDF of the normal distribution for a single observation x is 
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where population parameter estimates for a vector of observations of length n using 

maximum likelihood becomes 
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where, at its maximum value, 

                 x=μ̂    
n

sn 2)1(ˆ −
=σ                  (19) 

though most researchers will use s=σ̂  instead as an unbiased estimate.     

 Under the two sample design with normal population distributions, the 

maximum likelihood representation becomes 
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Because normality or even continuous data are not a requirement, both populations can  

instead be posited from, say, the Poisson distribution where the likelihood representation 

becomes 
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where Y is the concatenated data set and λC and λT characterize the Poisson distributions 

for each population.  Further, there is no requirement for populations to be the same 

parametric family.  A control group posited from an exponential distribution with the 

treatment group from the normal distribution is represented as 
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 Using Equation (20), a series of four models can be constructed, differing only 

parameter constraints, shown in Figure 2. 
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Figure 2. 
Two Sample Model Representations, Normal Distributions, No Mixing Proportion

 

The models represent all possible distribution parameter constraints, freely estimated or 

constrained across populations, where the figure indicates the total number of estimated 

parameters for each particular model.  The φ  term, representing a population mixing 
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proportion of treatment nonresponse, is fixed to 0 as represented in Equation (2) as a 

homogeneous, ID sample, while the arrows indicate the hierarchical nesting structure for 

these models.   

 If these models were hierarchically nested, a series of likelihood ratio tests and 

probabilistic inferences could be used to determine the best representation of the data 

structure.  Because Model #2 and Model #3 are not nested, a different comparative 

method of assessment is required.  The lack of nesting among a set of models continues 

with the introduction of mixture model representations in section 1.3 and subsequently to 

the more complex extensions in Chapter 4.  In a series of influential papers, Hirotugu 

Akaike advocated an omnibus model assessment measure combining information 

quantity and a penalty for model parsimony (Akaike, 1973, 1977, 1981).  His work 

maximizes the amount of information from the data and specified model, accomplished 

by minimizing the Kullback-Leibler function, -2ln(L), with a penalty based on Occam’s 

Razor principle (Kullback, 1951, 1959).  Occam’s Razor stresses simplicity in model 

representation, commonly interchanged with the term parsimony.  There have been a 

number of challenges to this criterion focused almost exclusively on the size of the 

parsimony penalty in an attempt to produce a more consistent estimator.   As a result, 

other criterion methods have been proposed including Bayesian/Swartz Information 

Criteria (BIC) (Schwarz, 1978), corrected Akaike Information Criteria (AICc), and 

Hannan-Quinn Information Criteria (HQC) (Hannan, 1979).  Bozdogan (1987) provided 

an excellent overview of Akaike’s work and connections to these other criteria.  The 

formula for the AIC is  

              )ln(22 LpAIC −=                                 (23) 
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where ln(L) represents the maximum likelihood function value from Equation (20) and p 

is the number of parameter estimates which varies dependent on model constraints.  Of 

the four information criterion indices mentioned, only the AIC has a constant parsimony 

penalty, where as the penalty increases with sample size for the others.   

While simulation studies such as Shibata (1983) and Larimore (1985) have 

evaluated these information criteria, there is a lack of theoretical or empirical evidence 

generalizing improved model selection for a particular information criterion for the two 

sample models presented.  For the pilot study presented in section 2.4 and the full study, 

AIC is used as the selection criterion.  Other criteria could be similarly utilized.  One 

issue employing information criteria with a sample sized based parsimony penalty in 

multi-sample mixture models is use of the total sample size, N, as an overly harsh penalty 

where in fact different model representations and parameters within may only use subsets 

of N, in the ML process.  This point is discussed in greater detail in section 2.2.   

 Maximizing the likelihood function via an appropriate search process such as 

Newton-Rhapson, Quasi-Newton, or Sequential Quadratic Programming (SQP), the 

likelihood value, L, is retained for each model with corresponding parameter estimates.  

With datasets containing missing data, another search process called the Expectation-

Maximization (EM) algorithm can be utilized, presented in Dempster, Laird, and Rubin’s 

(1977) seminal work.  After calculating AIC values, the lowest AIC valued (or min AIC) 

model is selected as the most viable representation of the population.  The number of 

parameter estimates and conclusions for each model upon selection are shown in Table 1. 
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Table 1. 
 Model Selection Result with Hypotheses’ Conclusions, No Mixing Proportion 
 
Model 

Selected 
Parameters 
Estimated 

Hypotheses’ Conclusions 

1 4 Treatment Effect, Unequal Variances 
2 3 Treatment Effect, Equal Variances 
3 3 No Treatment Effect, Unequal Variances 
4 2 No Treatment Effect, Equal Variances 

  
 Model selection results serve as an analog to either version of the t - test in 

addition to a hypothesis test regarding variance equality.  Further, with extensions of 

multiple treatment means, multiple comparison corrections such as Bonferroni or Scheffé 

are not required as with probabilistic inference methods.  Commonly cited terms as 

statistically significant, Type I error control ,α  reject, and fail to reject, are not 

mentioned with respect to these hypotheses’ conclusions.  Those terms are artifacts of 

traditional methods.  Probabilistic inferences are not being made; instead, a set of 

deterministic statements are made based on Akaike Information Criteria values.  

Qualifying treatment effect and population variance equality results with these terms are 

not appropriate with this method.   

 Semantic discussion in usage and appropriateness of such terms obfuscates a 

valid underlying concern: what is the power of the information criterion method?   In 

other words, how often does this model selection process reach correct hypothesis 

conclusions?  Standard errors for estimates under maximum likelihood determined from 

the Fisher information matrix might be used as the basis to construct some type of 

probabilistic inference for individual parameters, but that approach is not easily tractable.  

This process is in essence a multiple comparison procedure, not a hypothesis test of one 

model versus another.  Further, because all parameters are estimated simultaneously, 
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considering standard error for a single parameter with different constraints for each 

model specification is ill-advised as any type of criterion.  Development of an empirical 

framework to provide clarity to this question among others presented in section 1.5 is the 

sole focus of Chapter 2: Method. 

 

Section 1.3 Nonresponse Impact on Traditional Analysis

 An alternative to two statistical tests has been presented using an information-

based model selection process employing a minimum AIC strategy.  While avoiding 

subjective decisions regarding a Type I error control threshold in addition to the variance 

equality hypothesis, an information criterion analog is not available in common statistical 

software applications. Current strategies addressing treatment nonresponse appear to 

reflect this reality.  Whether ignoring the possibility of nonresponders or using an ITT 

method of post treatment non-probabilistic classification creating distinct groups, both 

operate with traditional analysis methods.   

 Establishing empirical evidence regarding treatment nonresponse presents a 

challenge from two aspects.  First, a specific assumption of ID, identically distributed 

observations, is required within the treatment sample for use in fixed effects ANOVA and 

either t - test procedure.  Even the central limit theorem requires an IID sample.  Because 

one is essentially testing the violation of this assumption, traditional methods cannot be 

employed.   Second, common in ANOVA and regression, researchers make inferential 

statements regarding model parameters and predictors based on normal distribution 

theory as the instrument for empirical evidence.  Even if models with some unknown 
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mixing proportion operated under ID conditions, the parameter is bounded [0, 1], 

therefore not subscribing to a normal distribution.   

 A comparative evaluation of a series of models, however, is ideally suited to 

provide empirical evidence.   These models assume treatment nonrespondents are 

distributionally unaffected by application of a particular treatment, retaining the 

characteristics of the control population.    As such, the general representation of the 

treatment group positing nonresponse becomes 

         )()1()(~,..., TCT2T1TT T
θθ ffxxxX nj φφ −+=                 (24) 

where φ  represents the proportion of nonrespondents in the treatment population.  To 

evaluate representations inclusive of mixing proportions requires an additional layer of 

models, shown in Figure 3. 
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Figure 3. 
Two Sample Model Representations, Normal Distributions, with Mixing Proportion 
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This builds upon Figure 2 introducing two mixture models which require a non-zero 

mixing proportion, where arrows indicate the hierarchical nesting structure within and 

across these layers.  To be thorough, two other model representations are possible with 

normal population distributions with a non-zero mixing proportion: 

           
CTCT

CTCT

,)8(
,)7(

σσμμ
σσμμ

==
≠=

                (25) 

Models #7 and #8, while specifying treatment nonresponse, are either not mathematically 

tractable or have substantial convergence issues with a ML process.  Model #8 results in 

a singular matrix with infinitely many solutions at the maximized function value for any 

mixing proportion estimate between [0, 1] .  Successful parameter estimates might be 

possible for a Model #7 specification for normal distribution specification given the 

independence of their two moments, but there would be a consistency issue.  As a more 

general statement, convergence of particular representations is much harder for any 

parametric distribution whose expected values (means) are constrained to be equal across 

the treatment and control populations.        

 

1.4 Mixture Model Framework with Information Criteria 

 The addition of an extra layer of models shown in Figure 3 supports empirical 

evidence for the following hypothesis 

   0:1 =φHo  - Homogeneous (ID) Population 
  0:1 >φHa  - Treatment Nonresponse Exists 

 

Again, where most hypothesis tests inferentially assess some test statistic in a reject or 

fail to reject conclusion, this evidence is information based in a holistic assessment of 

model fit.  In a number of articles, Dayton similarly advocated a minimum AIC strategy 
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evaluating a series of models (Dayton, 1998, 2003a, 2003b).  His motivation, however, 

was to replace inferential statements used in multiple sample comparison of population 

means, not mixtures, where a dozen post hoc statistic correction procedures exist, at times 

with conflicting results.  The motivation here is not to replace existing procedures, but 

more simply to offer an evidentiary technique addressing treatment nonresponse. 

 To construct model representations with a mixing proportion, Models #5 and #6 

from Figure 3, the treatment sample from Equation (2) is now represented as  
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Inserting this into the maximum likelihood formula, using normal distributions as the 

example, results in  
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Simplifying this result using Equations (13) and (14), this formula can be rewritten for 

any parametric distribution  
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where θ  represents the vector of parameter estimates.  Maximizing this equation 

provides distributional parameters and mixing proportion estimates for a particular model 

specification.  Because -2ln(L) is required for use in the AIC, this value can be obtained 

simultaneously with corresponding parameter estimates in a single step with the 

minimization of 
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This general formula is used for all models presented in Figure 3, varying only 

distributional parameter and mixing proportion constraints.  This formula also applies to 

any parametric distribution specifications; however, the number and construction of 

possible models will differ as subsequently illustrated in Chapter 4.  Selecting the min 

AIC from among the set of models enables a treatment nonresponse hypothesis 

conclusion building on the results from Table 1 shown in Table 2.  

Table 2.  
Model Selection Result with Hypotheses’ Conclusions With Mixing Proportion 
 
Model 

Selected 
Parameters 
Estimated 

Hypotheses’ Conclusions 

1 4 Homogeneous Population, Treatment Effect, Unequal Variances 
2 3 Homogeneous Population, Treatment Effect, Equal Variances 
3 3 Homogeneous Population, No Treatment Effect, Unequal Variances 
4 2 Homogeneous Population, No Treatment Effect, Equal Variances 
5 5 Treatment Nonresponse, Treatment Effect, Unequal Variances 
6 4 Treatment Nonresponse, Treatment Effect, Equal Variances 

  
 Certain research fields and journals might require inferential test statistic values 

and p-values for parameter estimates, but that is not the mean of evidentiary support 

utilized with this approach.  Distributional parameter and mixing proportion estimates 

should be reported, though should a researcher feel compelled to provide such a statistic, 

the following may be used  

                     

T

2
T

TC

2
C

TC

)ˆ1(
ˆ

ˆ
ˆ

|ˆˆ|
*ˆ

nnn

z

φ
σ

φ
σ

μμ

−
+

+

−
=                  (30) 

associated with inferential statements regarding population mean differences.  The 

corresponding p-value is  

                                  (31) *)ˆ(value 1 zp −Φ=−
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While Equation (30) uses normal distributions, this statistic can be used for any specified 

population parametric distributions capitalizing on the central limit theorem, given 

sufficient sample sizes, with the general form 
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 Previously noted, the impact of treatment nonresponse not only confounds 

estimation of the treatment population mean, but disqualifies traditional analysis 

statistical testing because of an ID violation in the treatment sample.  Both Equations (30) 

and (32) indicate probabilistic inferences remain problematic when considering sample 

sizes.  Sample size, often ignored as a readily available input for statistical tests, is 

replaced by effective sample size which can only be estimated.  The use of the term 

effective sample size is different in this application compared with Louis’ use of the same 

term associated with the EM algorithm (1982). Used in the post model selection test 

statistic, replacing a known nC and nT used in section 1.1, these effective sample sizes are   

                                  (33) TC
*
C

ˆ nnn φ+=

and  

                                  (34) T
*
T )ˆ1( nn φ−=

where the total sample size, N, remains unchanged 

                               (35) TTC
*
T

*
C )ˆ1(ˆ nnnnnN φφ −++=+=

 A final comment regarding two sample designs involving repeated measures 

using this method is noteworthy.  With traditional analyses, an assumption of normality 

was required for baseline and post treatment measurements.  The interest in this approach 
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is neither the baseline nor post treatment measurement, but their difference as some 

parametric form, normally distributed or otherwise.  Differencing creates the 

independence necessary by combining measurements for an individual.  The result is 

population models with and without mixtures using the differenced measure of an 

individual, where the distributional structure of its initial components is irrelevant.  No 

probabilistic inferences are made, normality is not required, and any parametric 

distribution(s) may be posited for these populations and used with Equation (29). 

 

1.5 Empirical Research Questions 

The purpose of the proposed empirical research, like most others, is to evaluate 

the performance of a particular statistic, correction, or in this case methodology under 

controlled conditions.   Despite all the formulas and models presented, the systematic 

process is straightforward, outlined in the following steps: 

a. For a set of population conditions, generate samples of data where:   

1) The mixing proportion,φ , assumes zero and non-zero values.   

2) Nonrespondents in the treatment group have the same distributional 

properties as the control population.  

b. For each sample of data, fit the six models within a ML framework and using 

a min AIC strategy, select the most representative model. 

c. For each selected model, retain a series of performance metrics. 

d. Steps (a) through (c) constitute a single trial.  Repeat for many trials, retaining 

summary information for all trials for the particular set of conditions.   

e. Repeat steps (a) through (d) for all other population conditions.  
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Because there is no precedent for an empirical study of this nature, most elements 

within this systematic process require considerable development.  For instance, it is 

unreasonable to assume conditions varied in traditional studies of test statistic 

performance directly map to information based model selection process involving 

mixtures.  The phrase “series of performance metrics” from (c) above is a bit vague, 

where unlike evaluating a particular statistic, this evaluation is on an entire 

methodological process.  Finally, because an optimization algorithm is utilized in 

parameter estimation, certain technical elements can affect the performance.  

Accordingly, Chapter 2 Method will be a bit unconventional in its development.  

The empirical research questions explored in this dissertation target three different 

levels: model, parameter, and individual.  At the model level, 

a. How often does this process select the correct model? 

b. How often does this process provide correct empirical evidence regarding 

differences in population means? 

c. How often does this process provide correct empirical evidence regarding 

treatment nonresponse? 

d. How often does this process provide correct empirical evidence for equality of 

variances? 

e. For models which require an optimization algorithm, what is the percentage of 

viable convergence per model per experimental condition? 

Parameter level questions focus on the min AIC selected model, irrespective of whether it 

was the correct population representation, include: 
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a. What is the bias and mean squared error (MSE) for the population mixing 

proportion estimate? 

b. What is the bias and MSE for the control and treatment population 

distributional parameter estimates? 

Research questions at the individual level, focused on respondents from the treatment 

sample for a chosen model, are:   

a. What is the individual average error in probability of class membership as a 

treatment nonresponder? 

b. What is the overall percentage of correct classification for individuals within a 

treatment sample? 
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Chapter 2: Method  
 

 

This chapter seeks clarity to research questions presented in section 1.5 under 

controlled experimental conditions, focusing on two sample designs using normal 

distributions.  Even though the methodology supports other parametric distribution 

specifications, normality in both populations remains the example in technical 

discussions, mathematic representations of performance criteria, development of control 

variables, and use in the pilot study (the progression of this chapter).   

Unfortunately, no currently available software performs the model comparison 

procedure presented in Chapter 1, so code was developed in Gauss 8.0 (Aptech, 2005).  

Code results were validated, where possible, with EQS 6.1 (Bentler, 2006), Stata 10 

(StataCorp, 2007), and using Microsoft Excel premium solver.  More specific 

information with regard to code validation is provided in the next section with other 

technical information requisite for code construction.      

An empirical study to evaluate these research questions not only entails 

identification of influential study parameters for systematic variation, but their upper and 

lower boundaries and segmentation within where substantive changes in performance 

occur.  Without similar studies in the literature for reference, a degree of theoretical 

development is required.  An ensuing pilot study not only validates study parameter 

selection, but provides insight regarding parameter boundaries prior to engaging in a 

comprehensive study.  The Pavlic study is the closest in conception, having conducted 

simulations under a two sample design with treatment nonresponse.  Pavlic simulated fit 

of a Gaussian mixture under 90 different conditions of 100 trials each, only fitting the 
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correct population model.  Experimental conditions evaluated had very large, equal 

sample sizes, 1000 and 2000 in each sample, with unequal population variances in a fixed 

1.25 ratio.   These qualifications are offered not to diminish the quality of his study, but 

to provide some inkling to the complexity and computational intensiveness of a 

comprehensive multi-model selection study.  By comparison, for each sample of data, six 

models are fit instead of only the correct specification.  Further, approximately 580 

experimental conditions with 500 trials per condition are evaluated, a six and five fold 

respective increase.   

 

2.1 Technical Discussion 

Software enabling a min AIC selection of competing models involving mixtures is 

unavailable for even a single set of data, let alone to support an extensive empirical study.  

In supporting this effort, code was developed in Gauss 8.0, which can be made available 

upon request.  To validate parameters estimates, -2ln(L), and AIC values of the code 

output, two fixed sample datasets were compared against Microsoft Excel premium 

solver for all six models.  Results from Models #1-4 were also validated against EQS 6.1, 

which does not accommodate mixture representations.  For Models #5-6, considering 

only the treatment group sample, the denormix (Kolenikov, 2001) add-on package for 

Stata verified the results.   A number of other stand alone software choices, including 

MPlus (Muthen, 2001) and others evaluated by Haughton (1997), which allow 

specification of other parametric distributions, are available, but focus on extracting 

mixtures from single data samples, not multi-sample designs.  Liesch (2004) provides a 

flexible add-on package for R (R, 2008) called flexmix supporting regression and a 
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broader family of general linear models, though without support to multi-sample designs.  

MPlus does allow constraints across groups in mixture model representations, but still 

does not support this methodological process in the univariate case or the multivariate 

latent extension discussed in Chapter 4 where its limitations are detailed.  

A number of technical decisions were required in the construction of code to 

support the empirical study. 

a. Data were generated according to distribution population parameters, drawing 

samples of size nC and nT, with a specified population mixing proportion, φ, 

present within the treatment sample.  Fixing this value in the sample instead 

of the population from which a sample was drawn made φ consistent for each 

trial.  For example, experimental conditions with φ  of 0.20 in a nT of 100 

always has 20 treatment nonresponders in each treatment sample whose 

response subscribed to the control population distribution.   

b. 500 trials were conducted for each experimental condition.  A sufficient 

number of trials are required given the interest in percentages of model 

selection supporting each hypothesis.  The choice of 500 trials is tempered 

against the extensive computational requirement fitting six models, five of 

which are misspecified, requiring a non-linear optimization algorithm in three 

models.  Pilot study results, depending on experimental conditions, required 

between 2 hours and 3 days to complete 500 trials on a dedicated Pentium P4 

3.0 GHz with 2GB RAM running Windows XP with the Gauss system cache 

increased from 32KB to 512KB. 
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c. The non-linear optimization command within Gauss, SQPSolve, only supports 

determination of a minimum value.  This conveniently coincides with 

Equation (29) enabling direct calculations of the -2ln(L) value. 

d. The SQPSolve command allows parameter bounds to be specified to quicken 

the optimization search process.  Population standard deviation estimates were 

restricted to be greater than zero, avoiding a degeneracy issue noted by 

Hathaway (1985) and Ridolfi (1999).  For mixture models, the population 

mixing proportion is restricted to be greater than 0 and less than 1.  

Optimization estimate results of 0 and 1 are redundant, corresponding to 

traditional Models #1 and #4 respectively.   

e. Initially, convergence of the mixing proportion estimate was problematic 

using the SQP process given its natural restriction of values between 0 and 1.  

Despite having the same likelihood shape, rescaling the mixing proportion 

parameter within the likelihood function ranging between 0 and 1000 

alleviated this problem .  For example, an output of 426 corresponds to a 

mixing proportion estimate of 0.426.   

 

2.1.1 Model Estimation Techniques   

Three of the models utilize mathematically proven results foregoing the need for 

any optimization algorithm.  Incorporating these results directly into the code created a 

more efficient application that reduced processing time.  Model #1 posits no mixing 

proportion, requires four parameters estimates, where the minimum value of the -2ln(L) 

function occurs at 
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Model #2 similarly posits no mixing proportion, but requires three parameter estimates 

where the minimum value of the -2ln(L) function occurs with Equation (36) and a single 

standard deviation estimate of  

N
snsn 2

TT
2
CC

TC ˆˆˆ +
=== σσσ            (38) 

which is weighted averaged of the sample variances. Model #3 also has three parameters, 

but requires a non-linear optimization of Equation (29) with the following constraints 

         TC,0 μμμφ ===          (39) 

where estimates  

       { }TC ˆ,ˆ,ˆ),ln(2 σσμL−          (40) 

are returned. Model #4 has two parameters where the minimum value of the -2ln(L) 

occurs at 

           y=== TC ˆˆˆ μμμ          (41) 
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 where Y represents both samples in a concatenated data set presented in Equation (13). 

Model #5 has five parameters, requiring an optimization of equation (29) with the 

following constraint 

                 10 << φ           (43) 

where estimates 
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            { }TTCC ˆ,ˆ,ˆ,ˆ,ˆ),ln(2 σμσμφL−                   (44) 

are returned. Model #6 also includes a mixing proportion, though only has four 

parameters where the constraints in the optimization of Equation (29) are 

   TC,10 σσσφ ==<<         (45) 

returning estimates 

  { }σμμφ ˆ,ˆ,ˆ,ˆ),ln(2 TCL−         (46) 

SQPSolve employs a sequential quadratic programming (SQP) search method, a 

generalization of the more common Newton’s method.  Default settings for the tolerance 

condition of 1E-5 and the maximum number of search iterations of 1E+5 were retained.  

The success of any optimization routine depends, in part, on initial parameter estimates, 

commonly called starting values, initiating the search process.  These values not only 

affect convergence, but arrival at local optimal solutions opposed to a true global 

solution.   

For the three models requiring an optimization algorithm for parameter 

estimation, the same process was used to generate starting values regardless of population 

conditions. Using Model #3 for example, Equation (41) is used as the representative 

measure for a single population mean.  Similarly, for Model #6, Equation (38) is used as 

the representative measure for the same standard deviation across populations. For any 

particular set of starting values, the algorithm may not converge as defined in the next 

section. In such cases, new starting values were created and the process was repeated.   

Let  represent a vector of summary statistics commensurate with a particular model 

specification for its distributional parameters, corresponding starting values are 

determined by 

Pθ̂
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                           (47) PInitial
ˆ)Rand*075.1(ˆ θθ Φ+=

There are no summary measures available to serve as a reasonable starting point for the 

population mixing proportion, so   

                      (48) )65.0,01.0(Randˆ
UniInitial =φ

was used.  Treatment population summary measures become increasingly inaccurate with 

higher proportions of nonresponse, though still serve as a reasonable starting point upon 

which to initiate the algorithmic search process.  The random generation process 

embedded in the creation of starting values is necessary to mitigate convergence issues. 

 

2.1.2 Convergence   

The term convergence in this dissertation encompasses the conventional 

definition of the search algorithm successfully arriving at a set of estimates with a more 

restrictive second condition of satisfying specific model requirements.  Whether a result 

of poor starting values, model complexity, or model misspecification, an optimization 

algorithm can fail to converge in a computational manner for such reasons as gradient, 

Hessian, and function calculation failures, or exceeding the maximum number of 

iterations.  The second condition of satisfying model specific requirements capitalizes 

upon the hierarchical nesting structure shown in Figure 3.   

Regardless of the population conditions underlying the sample of data, Models 

#3, #5, and #6 require use of an optimization algorithm.  For each model, if the process 

does not reach a solution or the solution fails to meet model fit conditions defined 

subsequently, a failed attempt is registered.  Each model is afforded up to 15 attempts to 

attain a viable set of parameters estimates.  While such problems can also occur for an 
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applied researcher, it is greatly exacerbated in an empirical study which contributed to the 

often lengthy amount of time necessary to complete 500 trials.   Models failing to 

converge after 15 attempts are assigned an excessively high AIC value essentially 

eliminating their selection in a min AIC comparison.  Because the process ceases when 

satisfying model fit conditions, the -2ln(L) value is assumed to be the global minimum.  

More rigorous methods ensuring a global minimum are presented in Chapter 4, though 

are better applied with a single data set.  Employing these methods requires additional 

computations, and given the significant time required for a set of trials, was not 

implemented in this study. 

Models #3, #5, and #6 must also satisfy model fit conditions taking advantage of 

their hierarchical relationships with models that do not require an optimization algorithm 

for estimation.  Model #3 results must meet the following condition 

            Model4Model3Model1 )ln(2)ln(2)ln(2 LLL −≤−≤−                   (49) 

as Model #3 is hierarchically nested between Model #1 and Model #4.  Model #1 and 

model #4 use established results to obtain to their -2ln(L) values.  For Model #5 

                    Model1Model5 )ln(2)ln(2 LL −≤−                    (50) 

while for Model #6  

            Model2Model6 )ln(2)ln(2 LL −≤−              (51) 

must be satisfied as a result of their hierarchical relationships with Models #1 and  #2 

respectively. The hierarchical relationship between Models’ #5 and #6 is not used 

because both require an optimization algorithm and a failed convergence and resulting 

high AIC assignment would be problematic when evaluating model fit conditions.     
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2.2 Simulation Parameter Development  

Without the ability to reference similar studies in the literature, identification of 

controlled study parameters begins with some theoretical development.  Focusing on the 

central element of the AIC, the -2ln(L) value, rewriting Equation (29) 
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Simple inspection reveals seven variables (five population parameters and two sample 

size conditions) that require variation   

                ( )φσμσμ ,,,,,, TTTCCC nn                       (53) 

Even the coarsest manipulation of these variables, two levels each, totals 128 

experimental conditions.  Such coarse levels of manipulation provide a very limited 

ability to generalize findings and characterize relationships in order to assess the posited 

research questions.  Consideration of more levels per variable becomes a combinatoric 

expansion unsupportable given the time length to complete 500 trials.  This eliminates a 

multifactorial simulation approach without some parameter reduction.  The goal in 

development, therefore, is reduction of a seven parameter space to a more manageable 

three parameter set by combining variables in a theoretically supported manner.  This 

reduction comparatively enables greater variation of controlled study parameters 

resulting in a more informative set of experimental conditions.  Identification of variable 
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composites also affects population level research questions, replacing individual 

parameter evaluations as discussed in the next section.  Brief assessments for each of 

these seven variables, interrelationships, and impact on Equation (52), are provided 

below:  

a. Sample sizes, nC and nT:  The control group sample size, nC, affects the 

accuracy of the control population parameter estimates { }CC ˆ,ˆ σμ .  The 

treatment group sample size, nT, affects the accuracy of the treatment 

population parameter estimates { }TT ˆ,ˆ σμ .   Both are conditioned upon correct 

model specification. 

b. Mixing Proportion, φ : For models specifications including a mixing 

proportion, no longer are nC and nT independently responsible for determining 

respective population distributional parameters, instead replaced by effective 

sample sizes shown in Equations (34) and (35).  Introduced in section 1.4 and 

further detailed in the next section, these terms require estimation.  Because 

population conditions are controlled in this study, the true effective sample 

sizes,  and  are known.  Accuracy of the mixing proportion estimate is 

influenced by the total sample size, N.  Its accuracy is also influenced by a 

treatment effect; a measure, subsequently presented, summarizing a degree of 

separation between control and treatment populations.   

*
Cn *

Tn

c. Control population parameters, { }CC ,σμ : Estimates for these parameters and 

their accuracy are determined by some combination of sample or effective 

sample sizes depending on model specification.  For example, the Model #1 
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Cμ̂  estimate is influenced only by nC where for Model #5, Cμ̂  is influenced 

by   (or *
Cn TC nn φ+ ).    

d. Treatment population parameters, { }TT ,σμ : The same points discussed in the 

control population are applicable whose estimate accuracy is contingent on 

effective sample size and model specification.  For example, the Model #2 Tμ̂  

estimate is influenced by nT.      

Resulting from these assessments, the following parameters were controlled in an 

empirical study, further explicated in subsequent subsections 

     },,effecttreatment{ Tnφ                                (54) 

 

2.2.1 Treatment Effect 

Defined as a measure of separation between the control and treatment 

populations, a treatment effect impacts the accuracy of the mixing proportion estimate.  

Of the three presented, the simplest is an unstandardized treatment effect defined as 

           || TC μμ −=ud          (55) 

This representation of treatment effect is unit dependent and becomes difficult to 

generalize across experiments where mean representations operate on different scales.  A 

more common representation is a standardized treatment effect such as Cohen’s d (1988), 

represented as  
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where, after adjusting for effective sample sizes, takes the form  
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This unitless measure generalizes well across mean and variance combinations and is not 

influenced by particular nC and nT values, only their ratio.  Further, this standardized 

treatment effect is often reported in scholarly and applied publications perhaps due to its 

easy interpretation.  Aside from differences in population means, variation in the other 

parameters in a two sample design can also occur in the following configurations: 

 Type 1: TCTC nn ≠≠ ,σσ  
Type 2: TCTC nn =≠ ,σσ  
Type 3: TCTC nn ≠= ,σσ  
Type 4: TCTC nn == ,σσ  

 

Exploring this treatment effect measure in relation to these elements and the mixing 

proportion, let  

    TC nna =                         (58) 

where a represents the sample size ratio and  

          2
T

2
C

2
rat σσσ ==b          (59) 

where b represents the variance ratio.  Substituting these results into Equation (57) 

produces 
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which after collecting like terms and some reduction, yields 
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reaffirming this measure is not a function of either sample size.  Further, when the 

population variances are equal (b = 1), this reduces further to  

                       
σ

μμ || TC* −
=d          (62) 

where this measure is now unaffected by the mixing proportion. 

There is a third representation of treatment effect, possibly not thought of in such 

terms.  Using normal distributions specifications, the difference of two population means 

expressed as z*, inclusive of a mixing proportion, is  
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This is also a unitless measure, though unlike d*, has a dependence on sample size.  This 

measure can be rewritten to accommodate any parametric distribution where   
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Despite similarities in construction with the Satterwaite test statistic, it is not used for 

probabilistic inferences on estimated parameter differences.  

Unfortunately, while controlling for a treatment effect in the study, Equation (52) 

cannot be formally expressed as a function of du, d*, or z*, requiring empirical validation 

accomplished via a pilot study.  To illustrate differences and select from among these 

treatment effect representations, consider the following table indicating whether a 

treatment effect measure is affected by a particular change in experimental conditions.   
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Table 3. 
Comparison of Treatment Effect Measures 
 

  Treatment Effect Affected (Y/N)? 
Variance Equality Condition Change dU d* z* 
Any condition nC or nT sizes NO NO YES 

Cμ or Tμ  YES YES YES 

φ  NO NO YES 
2
T

2
C σσ =  

Sample size ratio NO NO YES 

Cμ or Tμ  YES YES YES 

φ  NO YES YES 
Sample size ratio NO YES YES 

2
T

2
C σσ ≠  

Variance ratio NO YES YES 
 
As Table 3 illustrates, no treatment effect measure is immune to every experimental 

condition change.  Because of its consistency in changing across all conditions, z* will be 

used as the controlled parameter representative of treatment effect.  This does not mean 

the other treatment effect measures are neglected; to the contrary, shown in the next 

section, population level research questions focus on recapturing both du and d*.  

 Figures 4 and 5 graphically illustrate differences in standardized treatment effect 

measures when the population variances are equal.  For both figures, the d* measure 

remains constant at 2 showing the comparative z* value when total sample size, sample 

size ratio, and mixing proportion conditions are varied.   
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If suspicious of treatment nonresponse, d and du estimates should not be 

calculated by using sample summary measures.  Use of these summary measures as 

estimators for the treatment population mean and variance produce inaccurate, negatively 

biased results and  invalidate the statistical tests presented in section 1.1.   To quantify 
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these inaccuracies, if a researcher fails to consider treatment nonresponse, treatment 

effect estimates from the summary measures, referred to as T_IDμ  and  because of 

the incorrectly assumed ID property become 

T_IDσ

             TCTT_ID )1()(E μφφμμ −+== X         (65) 

and 
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2
CT_ID ))(1()1( μμφφσφφσσ −−+−+=         (66) 

The impact of utilizing the summary measures is two fold: it underestimates the true 

treatment population mean and overestimates the true treatment population variance.  

This results in expected negative biases for the treatment effect estimate.   With equal 

sample sizes, the unstandardized treatment effect bias is 

  TC))((E μμφ −−=udbias          (67) 

where the assumed IID summary statistics underestimate the unstandardized treatment 

effect by up to 50% in the experimental conditions evaluated.   

The degree of negative bias for the standardized treatment effect, Cohen’s d, is 

more severe given the overestimation of the treatment population variance.  Using equal 

sample sizes, the bias is represented as  
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underestimating the standardized treatment effect by up to 70% in the study’s 

experimental conditions.   For example, the consequences of using summary measures 

are quite harsh where a true standardized treatment effect of 1.0 instead would  

be estimated at 0.30. 

 

2.2.2 Mixing Proportion: 

Of all parameters requiring estimation, this is arguably the most important.  If 

group membership were truly known to a researcher, conventional statistical tests for 

comparing population mean differences become available and probabilistic inferences on 

the mixing proportion estimate are not necessary.  Because that is not the case, we are 

relying on an omnibus information-based approach as the form of empirical evidence for 

both research interests.  

Choice of the mixing proportion as a controlled study parameter implies 

performance of this methodology is additionally influenced beyond integration into the 

treatment effect measure calculation.  While accuracy of the mixing proportion estimate 

is a function of treatment effect and sample size, this process is not wholly about 

accuracy in parameter estimation; it is first and foremost an issue of model selection to 

obtain empirical evidence.  Of course, an inherent belief is that greater accuracy of 

parameter estimates in an omnibus sense results in a greater likelihood in of identifying 

the correct model specification.  From a practical matter in analyzing the AIC, Equation 

(23), the improvement of model fit from an additional parameter must exceed the 

parsimony penalty.  For example, for model specifications differing only by inclusion of 

a mixing proportion, the resulting AIC improvement must be greater than 2 to select the 

 44



 

more complex representation.  It is possible, therefore, for population values to be exactly 

estimated under a correct specification and that model is not selected.  As the true mixing 

proportion approaches 0, holding sample size and treatment effect constant, there is 

greater likelihood the overall model fit improvement will not exceed 2. 

This is an appropriate time to readdress selection of the AIC from among other 

possible information criteria.  The AIC is the only criterion whose parsimony penalty is 

independent of sample size, and with sample sizes considered in the study it is the most 

favorable for selection of more complex mixture models.  While the literature is silent 

with regard to an information criterion preference in multi-sample mixture models, there 

is an issue in implementing sample size based parsimony penalties.   Demonstrating this 

issue, Table 4 shows each model and the corresponding sample sizes used to estimate 

their particular parameters. 

Table 4. 
Effective Sample Sizes for Parameters in Specified Models 
 
 Parameter 
Model φ  Cμ  Cσ  Tμ  Tσ  

1 None Cn  Cn  Tn  Tn  

2 None Cn  N  Tn  None 

3 None N  Cn  None Tn  

4 None N  N  None None 

5 N  *
Cn  *

Cn  *
Tn  *

Tn  

6 N  *
Cn  N  *

Tn  None 

 
The use of total sample size is not precise as parameters within a model use smaller and 

different effective sample sizes in their estimation.  Nor is there a single representative 

sample size for all parameters for any model enabling construction of a consistent 

penalty.  Using effective sample sizes determining the parsimony penalty would impose 

different penalties for the same data depending on model specification.  Also unclear with 
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a sample sized based parsimony penalty is resolution when the EM algorithm is required 

due to incomplete datasets.  Discussion of AIC and other information criteria is again 

revisited in the context of the study results, section 3.4.  

  

 2.2.3 Treatment Group Sample Size 

 Model parameter estimates are determined from the information resident the data 

samples, albeit in different configurations based on the model specification illustrated in 

Table 4.  The greater the effective sample size, the less the impact of sampling error.  

While z* requires sample sizes for its calculation, it does not fix these values.  Selection 

of a treatment group sample size, nT, as a controlled study parameter fixes values for an 

empirical study where determination of total sample size, N, and control group sample 

size, nC, are attained using the nC / nT ratio defined in Equation (58).  Another aspect of 

sample size is its effect on the fixed parsimony penalty in the AIC.   Larger total sample 

sizes invariably result in higher -2ln(L) values where a fixed penalty has comparatively 

smaller impact to an overall fit measure in competing models.  

 

2.3 Performance Measures 

 With study parameters chosen for systematic manipulation, attention turns to 

providing mathematical specificity to accompany the research questions.  Maintaining the 

same structure as the research questions in section 1.5, corresponding performance 

measures are introduced in a top down approach: model, population, and individual level.      

 

 2.3.1 Model Level: 
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 For any experimental condition, retaining the proportion of correctly identified  

model specifications via a min AIC selection is a straightforward endeavor.  Correct 

model selection percentages, however, only represent the lower bound of correct 

empirical evidence percentage for each of the hypotheses.  Selection of an incorrect 

model can, depending on the hypothesis, still provide the correct hypothesis conclusion.  

Table 5 shows model selections corresponding to correct empirical evidence regarding a 

particular hypothesis for different population conditions.         

Table 5.  
Correct Empirical Evidence by Model Selection (Normal Distribution) 
 

Population Conditions* Correct Empirical Evidence 
φ  σ  Correct  for φ  for μ  for ** 2σ

TC σσ ≠  Model  
#1 

Model  
#1, 2, 3, 4 

Model  
#1, 2, 5, 6 

Model  
#1, 3, 5 0=φ  

TC σσ =  Model  
#2 

Model  
#1, 2, 3, 4 

Model  
#1, 2, 5, 6 

Model  
#2, 4, 6 

TC σσ ≠  Model  
#5 

Model  
#5, 6 

Model  
#1, 2, 5, 6 

Model  
#1, 3, 5 10 << φ

 
TC σσ =  Model  

#6 
Model  
#5, 6 

Model  
#1, 2, 5, 6 

Model  
#2, 4, 6 

* Note: All population conditions operated with a population treatment effect. 
** Note: Evidence for this condition is only possible when either the control or treatment population is 
posited from a normal distribution.  Chapter 4 will provide another distributional example. 

 
For example, consider population conditions which had a treatment effect, equal 

population variances, and treatment nonresponse (Model #6), but the min AIC selection 

was Model #5.  Despite being the incorrect model representation, the treatment effect and 

mixture hypotheses conclusions are still correct. While this process does not make 

probabilistic inferences, the complement to proportions of correct hypotheses conclusions 

is analogous to Type I error.   The culmination of the empirical study is a series of tables, 

Appendices 2-5, providing successful hypotheses conclusions as a function of the 

controlled parameters for reference in future applied research.  Of course, a min AIC 
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selection does not guarantee quality of fit, at worst resulting in the least poor choice 

among ill-fitting models.  To help prevent this possibility, pre and post-model selection  

tests supporting a researcher’s parametric distribution choices are presented in Chapter 4.  

 Finally, convergence can be problematic in a comparative model selection, 

particularly if the optimization algorithm of the correctly specified model fails to 

converge.  Enumerated in the previous section, convergence is a function of many 

elements: data, model specification, starting values, number of iterations, number of 

attempts, and model fit conditions.  Convergence rates are retained for the three models 

requiring an optimization algorithm, Models #3, #5, and #6, with particular focus on the 

mixture model specifications.   

 

 2.3.2 Population Level   

 The recapturing of population level parameters is based on the AIC selected 

model where the overall composition of correct and incorrect models for a series of trials 

differs for every experimental condition.  Bias and mean squared error (MSE) will be 

retained for .  The general form for bias is φ̂

                      (69) θθθθ
θ

−== )ˆ(),ˆ(ˆ Ebiasbias

where we will use the average sample results as an estimate of the expected value 

              ∑
=

=
trials#

1

ˆ
trials#
1ˆ

i
iθθ                                 (70) 

and MSE is 

                     (71) ),ˆ()ˆ(V)ˆ( 2 θθθθ biasMSE +=

where the expected variance is estimated from the sample results 
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with 500 trials per experimental condition.   Applying these general formulas, the 

estimated bias and MSE for  are φ̂

                ( )∑
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i φφ                   (73) 

and  

          ( ) φφφ ˆ2
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1 bias
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i −−∑
=

                 (74) 

respectively.  In lieu of providing bias and MSE values for each distributional parameter 

estimate, because treatment effects are commonly reported, either  or , these 

composite estimates are evaluated instead.  Despite both being representative of a 

treatment effect, recapturing of population information may differ, where ’s bias and 

MSE are estimated as 

ud̂ *d̂

ud̂

                ( ) ( )TC

500

1
TC ˆˆ

500
1 μμμμ −−⎟⎟
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and 

             ( ) ud
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500
1
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=

μμ                  (76) 

respectively.  Bias and MSE for the standardized treatment effect estimate, , are 

calculated using 

*d̂
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and 
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 Relating these population level measures to model level measures in the last 

section as well as highlighting the variety of outcomes, the following results are possible 

for a single trial: 

a. Correct model selection can result in treatment effect estimates, { }udd ˆ,ˆ *  

which greatly deviate from their true value. Further, inaccuracies between 

these estimates can be varied.  

b. Correct model selection can result in a mixing proportion estimate, , which 

greatly deviates from its true value.  

φ̂

c. An incorrect model selection can result in exact estimates for either treatment 

effect representation. 

d. An incorrect model selection, dependent on population conditions, can 

produce an exact estimate of the mixing proportion.  For example, if model #5 

was the correct specification, a model #6 selection can result in an exact 

estimate of the mixing proportion. 

 To mitigate sampling error effects as well as model convergence issues, 500 

trials were conducted providing well supported proportions of hypotheses conclusions.  
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Despite differences in model selection composition, the following results are possible for 

an experimental condition: 

a. A 100% correct model selection rate can result in a positive or negative bias 

for one or both of the treatment effect estimates.  

b. A large proportion of incorrect model selection can result in unbiased 

treatment effect estimates. 

c. A 100% correct model selection rate can result in positive or negative bias of 

the mixing proportion estimate.  For experimental conditions where the 

population mixing proportion is 0, the bias can only be positive. 

d. A large proportion of incorrect model selection can result in an unbiased 

mixing proportion estimate.  When the population mixing proportion is 0, 

however, model selection must be entirely composed of Models #1-4 in order 

to obtain an unbiased result. 

Comparative performances in regards to bias and MSE between the treatment effect 

representation estimates are not tenable because of their different scales. 

 

 2.3.3 Individual Level 

 Invariably accompanying the supposition of nonresponse to a particular 

treatment is an interest in class membership of each individual in the treatment sample.  

With the selected model’s parameter estimates, Bayes’ theorem is utilized post-model 

selection, estimating the probability of being a treatment nonrespondent for each jth 

individual as 
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While z* requires a population mixing proportion in its calculation, individual 

probabilities are not required, where the relationship from individual to population level 

can be expressed as 
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φ                   (80) 

 Measuring the recovery of group membership for a series of trials can be 

accomplished two ways, regardless of population conditions and subsequent model 

selection.  The first method provides an average error per treatment sample respondent 

between their predicted posterior probability and known membership per experimental 

condition  

                ∑ ∑
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where ij ,π̂  is estimated post model selection per trial i using Equation (79) and jπ  values 

are known as part of the data generation process described in section 2.1, where the 

probability of being a treatment nonrespondent is either 0 or 1.  Measurement per 

individual facilitates comparisons across different treatment sample sizes.   

 A second measure, percentage of correct classification, while coarser, is more 

easily interpreted.  For each individual j in trial i, perform the following calculation  

                               (82) 
500,..,2,1for,..,2,1for

1ˆelse;0ˆthen,50.ˆif

T

*
,

*
,,

==

==≤

inj

ijijij πππ

where the average overall correct classification percentage becomes 
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Measurement as an overall classification as well facilitates comparisons across different 

treatment sample sizes.  A single trial Model #1-4 selection is not very interesting with 

the predicted nonresponse membership of each treatment sample respondent being 0.  

More interesting is the case where model selection provides empirical evidence 

supporting nonresponse.  Consider Figure 6 as an example where a mixture model was an 

incorrect selection when population conditions had zero treatment nonresponse. 
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Figure 6.
Graph: Single Trial Illustration of Posterior Probabilities at φ  = 0, n T  = 60,
            Incorrect Model Selection

 

Respondents above the 0.50 threshold will be incorrectly classified using the coarse 

assessment measure presented. Continuing this example, the average respondent error per 

treatment respondent is 12.6%, while the correct classification percentage is 93.3%.  

Another possible outcome is Figure 7, where the correct model is selected and treatment 

nonresponse exists.   
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Figure 7.
Graph: Single Trial Illustration of Posterior Probabilities at φ  = .20, n T  = 60, 
            Correct Model Selection

 

Respondents in the upper left and lower right quadrants are incorrectly classified, where 

this trial had a 25.2% average probability error per respondent and an overall 

classification rate of 81.7%. Similar to the scenarios possible between the model and 

population level measures, there is no guarantee performances of individual measures 

coincide with performance at either the model or population level.    

 

2.4 Simulation Parameter Validation (Pilot Results) 

 This section validates, through a pilot study, that the three study parameters 

chosen for manipulation, },*,{ Tnz φ , effect changes in selected performance measures, 

focusing on correct model selection and mixture hypothesis evidence.  Population means 

values are fixed with a treatment effect where 

                     
30

20

T

C

=

=

μ

μ
                 (84) 

and sample sizes, standard deviations, and the mixing proportion adjusted to differentiate 
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experimental conditions.  Using Equation (84), the unstandardized treatment effect 

remains constant at 

            10TC =−= μμud                   (85) 

where d* will change as part of other experimental conditions.  A second equally useful 

purpose from the pilot study provides information on effective boundaries for the 

controlled parameters. Theoretical analysis from section 2.2 helped only to identify these 

parameters, not describe the shape of their relationships to these model level measures.  

Inspection of these relationships can eliminate conditions where no change in model 

selection occurs with greater magnification in ranges of change in the comprehensive 

study.  Beyond the systematic variation of the study parameters is inclusion of other 

design characteristics, shown in the four configurations varying sample size and variance 

ratios presented in section 2.2.1, represented as a and b from Equations (58) and (59). 

 

 2.4.1  False Mixture Classification with Zero Treatment Nonresponse 

 The easiest experimental conditions to explore occur where   

          0=φ                   (86) 

and the effective treatment group sample size becomes 

                          (87) T
*
T nn =

The last section related the proportion of incorrect hypotheses conclusions from min AIC 

selection as a proxy to Type I error in inferential tests.   Continuing this analogy, Type II 

error, false acceptance of a mixture model, is an equally bad result and a necessary 

component to conduct power analysis presented in Chapter 4. 
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 Returning to the experimental conditions manipulated to obtain the z* values in 

the pilot study, additional restrictions were imposed such that 
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                  (88) 

where nT values were varied in z* value construction.  In the comprehensive study, nT is 

fixed to delineate the changes in model selection due solely to z*.  Sample sizes chosen 

are consistent with small to large scale studies, while sample size and variance ratios 

ranged from 
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                             (89) 

where values of 1.00 indicate equality.  This range of ratios represents comparatively 

larger treatment sample sizes and treatment population variances.  Ratios greater than 

1.00 will be incorporated into the comprehensive study contingent on the pilot results.  

Table 6 provides the population conditions, a d* value, and experimental design type 

(sample size and variance ratio configurations) used in the 36 sets of conditions, each 

having 500 trials.  For all experimental condition tables in the dissertation, population 

standard deviations are reported in lieu of variances retaining the same metric as 

population means to improve interpretation.  
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Table 6.
Empirical Conditions for various z* when φ = 0, σ C = σ T and σ C  < σ T

z*
1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

Type 1 2 1 2 3 4 1 1 2
d* 0.28 0.48 0.62 0.90 1.00 1.25 0.98 1.10 0.95
σ C 32.00 17.00 13.00 10.00 10.00 8.00 9.00 8.00 9.90
σ Τ 38.00 24.00 18.00 12.10 10.00 8.00 11.00 10.00 11.10
n C 50 54 50 50 50 54 100 110 200
n T 60 54 68 50 77 54 125 125 200

Type 3 4 3 4 1 2 3 4 3
d* 0.29 0.45 0.67 0.90 1.03 1.24 1.01 1.22 1.03
σ C 35.00 22.00 15.00 11.10 9.00 7.00 9.90 8.20 9.70
σ Τ 35.00 22.00 15.00 11.10 10.30 9.00 9.90 8.20 9.70
n C 50 60 50 50 50 55 100 97 150
n T 62 60 61 50 63 55 123 97 196

z*
11 13 15 17 19 22 26 30 34

Type 4 3 2 4 3 1 2 4 1
d* 0.91 1.25 1.11 1.45 1.64 1.63 2.59 2.27 2.68
σ C 11.00 8.00 8.00 6.90 6.10 5.30 3.50 4.40 3.50
σ Τ 11.00 8.00 9.90 6.90 6.10 6.70 4.20 4.40 3.90
n C 293 204 365 275 250 300 202 349 275
n T 293 230 365 275 290 397 202 349 363

Type 1 2 4 1 2 3 4 2 3
d* 1.01 1.30 1.22 1.50 1.66 1.67 2.44 2.36 2.70
σ C 9.00 7.00 8.20 6.20 5.50 6.00 4.10 3.70 3.70
σ Τ 10.50 8.30 8.20 7.00 6.50 6.00 4.10 4.70 3.70
n C 200 199 303 225 262 320 227 322 290
n T 262 199 303 280 262 382 227 322 348  

Graphical results summarizing the correct mixture hypothesis conclusion in Figure 8 are 

extremely informative.  A definitive relationship is evident between z* and correct 

empirical evidence of a mixture, with surprising clarity given variations in treatment 

sample sizes.  
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Figure 8.
Graph: Correct Mixture Hypothesis Conclusion when φ  = 0.0

 

The results are more informative than confirmation of z*’s relation to the correct mixture 

hypothesis conclusion: 

a. The behavior of models with similar variance ratios,{ }1,1 ≠= bb , is quite 

consistent irrespective of sample size ratios, represented as two pairs, {Type 

3, Type 4} and {Type 1, Type 2}, which reflect design characteristics from 

section 2.2.1 in terms of sample size and variance ratios. This does not imply 

sample size differences are unimportant, instead that differences are subsumed 

within z*.   

b. A clear distinction exists in performance when variance ratios differ where 

Type 3 and Type 4 correspond to a ratio of 1.0 and equality.  Performance 

results by variance ratio clearly indicate these differences are not subsumed in 

the z* measure, unlike the sample size ratio.    

c. The interest from these conditions is the false selection of any mixture model 

which is the complement of the correct mixture hypothesis conclusion  

                                       (90) ?,,0|%Correct1 2
rat

*
Mix

*
Mix ==−= σφβ z
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 As an example, consider the case of a zero treatment nonresponse with a z* 

value of 5.  The false selection percentage of a mixture model with equal population 

variances is 11%, where inequalities in the range of ratios evaluated is 27%. 

 The other model level measure, correct model selection, is shown in Figure 9 

with the 36 experimental conditions equally divided between Model #1 and #2 as the 

correct model specification.   
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Figure 9.
Graph: Correct Model Selection when φ  = 0.0

 

A disparity in results between variance ratios with this measure is reaffirmed and even 

more pronounced.  Correct model selection as a function of z* was consistent irrespective 

of sample size ratios when σ2
rat was 1.0, which was not observed with unequal variances.  

These findings coincide with another multiple sample empirical study not involving 

mixtures where heterogeneity in group variances detrimentally affected correct model 

identification rates (Huang, 1995).  With equal variance conditions, a sharp decline in 

correct model selection occurred as z* dropped below 4, where model selection 

increasingly became Model #3 or Model #4 concluding no treatment effect.  
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 Based on these results, construction of remaining pilot study conditions was 

simplified to validate mixing proportion and treatment sample size impact on the selected 

performance measures.  First, because performance appears conditioned on the variance 

ratio, the remainder of the pilot study considers only variance equality.  Second, because 

no performance differences were observed due to changes in the sample size ratio, 

sample sizes were made equal. 

 

 2.4.2  Impact of Mixing Proportion 

 To illustrate model selection performance impact due to the mixing proportion, 

conditions were established fixing both z* and nT.  Table 7 provides the experimental 

conditions, including d*, for six different mixing proportions and two nT values with the 

same fixed z*.   

Table 7.
Empirical Conditions for various φ , z* fixed at 15, Type 4

      n T  = 100       n T  = 200
           φ            φ

0.02 0.05 0.10 0.20 0.35 0.50 0.02 0.05 0.10 0.20 0.35 0.50

d* 2.12 2.12 2.13 2.16 2.26 2.45 1.50 1.50 1.51 1.53 1.60 1.73
σ C, σ T 4.71 4.71 4.69 4.62 4.42 4.08 6.67 6.66 6.63 6.53 6.24 5.77  

Figures 10 and 11 present the findings by nT condition, with each graph displaying 

correct model selection and correct mixture hypothesis conclusion percentages. 
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Graph: Model Selection, σ 2
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Graph: Model Selection, σ 2

rat  = 1.0, z*  = 15, n T  = 200

 

These figures confirm both selected performance measures are affected by the mixing 

proportion, improving as φ  deviates from 0.  A comparison of the plots reveals a 

counterintuitive result; larger sample sizes have worse correct model and hypothesis 

conclusion rates.  Recall, however, z* is not independent of sample size, so maintaining a 

fixed z* value with larger sample sizes requires increased standard deviations.  

 A commonly expected result regarding increased sample size can be observed 

using d* as the treatment effect measure instead of z*, where d* is independent of sample 
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size.  Using the results from sample sizes of 100, another set of trials was conducted with 

the same standard deviation values while increasing the sample sizes each to 250.  While 

the d* values remained the same, this increased z* to over 21.  The results, presented in 

Figure 12, which co-label φ  and d* on the x-axis, indicate improvement in correct 

mixture hypothesis conclusion with larger samples.  
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 2.4.3  Impact of Treatment Effect 

 To verify the impact of z* on model level performance with conditions of 

treatment nonresponse, φ  and nT values were fixed.  Three different treatment effect 

values and four different nT values with a constant φ  of 0.30, presented in Table 8, were 

evaluated. 
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Table 8.
Empirical Conditions for various n T , φ  fixed at 0.30, Type 4

z*  fixed at 11 z* fixed at 15 z*  fixed at 19
            n T             n T             n T

34 50 67 100 34 50 67 100 34 50 67 100

d* 2.79 2.30 1.99 1.63 3.80 3.14 2.72 2.22 4.83 3.98 3.44 2.28
σ C, σ T 3.58 4.34 5.02 6.13 2.63 3.18 3.68 4.50 2.07 2.51 2.91 3.55  

Figure 13 illustrates the correct mixture hypothesis conclusion while Figure 14 illustrates 

the correct model selection.  
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Larger z* values improved both model level performance measures, where noted 

previously, results were comparatively worse with larger nT values when z* was fixed.  A 

mixing proportion of 0.10, reduced from 0.30, with significantly larger nT values was also 

evaluated, with experimental conditions provided in Table 9 and graphical results in 

Figures 15 and 16.   

Table 9.
Empirical Conditions for various n T , φ  fixed at 0.10, Type 4

z*  fixed at 11 z* fixed at 15 z*  fixed at 19
            n T             n T             n T

100 150 200 300 100 150 200 300 100 150 200 300

d* 1.56 1.28 1.10 0.90 2.13 1.74 1.51 1.23 2.70 2.20 1.91 1.56
σ C, σ T 6.40 7.83 9.05 11.10 4.69 5.75 6.63 8.12 3.70 4.54 5.23 6.41  
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The results are consistent with those of the 0.30 mixing proportion previously evaluated.   

Comparatively, however, the smaller mixing proportion had much lower correct 

hypothesis conclusion and model selection rates, even with larger nT values, with the 

greatest disparity occurring at smaller z* values. 

 

 2.4.4 Impact of Treatment Group Size 

 While the relationship between nT and model selection was introduced last 

section, this section extends the previous study considering larger nT values.  Extension 

of Tables 8 and 9 increasing the total number of nT conditions to six are provided for both 

mixing proportions in Table 10.   

Table 10.
Empirical Conditions for various z* , various φ , Type 4

φ  = 0.30 φ  = 0.10
n T  = 133 n T  = 167 n T  = 400 n T  = 500

z* z* z* z*
11 15 19 11 15 19 11 15 19 11 15 19

d* 1.41 1.93 2.44 1.26 1.72 2.18 0.78 1.07 1.35 0.70 0.95 1.21
σ C, σ T 7.07 5.19 4.09 7.93 5.81 4.59 12.79 9.38 7.41 14.30 10.49 8.28  
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Because this is an extension of results presented in previous section, d* was used on the 

x-axis instead.  These relationships are consistent with those presented in section 2.4.2 

illustrating dramatic changes in performance within a relatively small range of d* values 

shown in Figures 17 and 18.  
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Graph: Correct Mixture Hypothesis Conclusion, σ 2

rat  = 1.0 for φ  = 0.30 and φ  = 0.10 with d*
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Graph: Correct Model Selection, σ 2

rat  = 1.0 for φ  = 0.30 and φ  = 0.10 with d*

 

Correct model selection and mixture hypothesis conclusions remain comparatively lower 

for smaller mixing proportions.   

 

 2.4.5 Treatment Effect Relationships 

 Selection of z* as a controlled parameter, despite validation from a pilot study, 

makes interpretation of some results initially confusing.  Because d* also demonstrated 

relationships with the selected model level performance measures, connections can be 
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explored between these treatment effect representations.  Such exploration can also 

explain other results observed in the pilot study.   

 For instance, recall from section 2.4.1 the invariance in model selection in 

varied sample size ratios resulting in the ratio subsequently fixed to 1.0.  When treatment 

nonresponse is present, the sample size ratio, a, is adjusted using effective sample sizes 

as 

                      *
T

*
C*

n
n

a =                                 (91) 

With zero treatment nonresponse, this reduces to Equation (58), otherwise with equal 

sample sizes, the effective ratio becomes 

    
)1(
)1(*

φ
φ

−
+

=a                   (92) 

The maximum z* value, z*
max, with a σ2

rat of 1.0 occurs when a* is 1, where other 

treatment effect representations, d* and du, are unaffected by changes in a*.  Accordingly, 

if planning an experimental design supportive of unequal samples, treatment sample size 

should be increased to account for nonresponse.  For studies constrained to equal sample 

sizes, z* will be less than its maximum depending on the amount of nonresponse.  The 

deviation from its maximum, or penalty, independent of sample size, is characterized as 

             )1( 2*
max

*
adj φ−= zz                   (93) 

with a graphical illustration in Figure 19. 
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Figure 19.
Graph: Percentage of z* max  over φ ; with Equal σ 2  and Sample Sizes

 

Adjusting the information from this figure to experimental conditions in section 2.4.1, 

sample size ratios evaluated corresponded to less than a 4% change from the maximum z* 

value resulting in no observable change in model level performance.  This suggests z* is 

robust to moderate effective ratio differences as a result of either experimental design or 

treatment nonresponse in equal samples.   

 Relationships between treatment effect representations can be developed for the 

pilot study case of equal variances, substituting relationships from Equation (62) into 

Equation (63) produces 

               

*
T

2

*
C

2

*
*

nn

dz
σσ

σ

+

=                   (94) 

where after some algebraic manipulation 

                TC
C

2
** for

2
)1(

nn
n

dz =
−

=
φ

                 (95) 

and a general representation which accommodates unequal sample sizes 
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N
nn

dz
*
T

*
C** =                                 (96) 

Formulaic relationships between d* and z* are more complicated with the unequal 

population variances evaluated in the comprehensive study.  While d* remains 

independent of sample sizes, it is no longer independent of φ , σ2
rat, and sample size ratio 

as shown later in section 3.2.4.   

 

2.5 Empirical Conditions 

 The pilot study successfully demonstrated the parameters selected for systematic 

manipulation influence correct model selection and the mixture hypothesis conclusion 

results.  These same parameters are used in the comprehensive study of normal 

population distributions including variance ratios other than 1.0.  The pilot study was also 

successful in identifying boundaries for z*.  Further, as a means of limiting the total 

number of experimental conditions while taking advantage of model level performance 

relation to d*, an empirical condition will not be evaluated if  

                                             (97) 0.425.0 * >> d

This coincides with the pilot study’s region of greatest change, where violations are 

annotated within the experimental condition tables in Appendix 1.  Sample size ratios 

remain fixed at 1.0 while population means of 20 and 30 for the control and treatment 

populations are unchanged.  Unlike the pilot study, this multifactorial study is concerned 

with not only select model level performance measures, but all performance criteria 

presented in section 2.3.  The schematic of the comprehensive study presented in Figure 
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20 consists of over 580 experimental conditions, with added specificity in the following 

subsections.    

Normal Distribution 
(σ2

rat = σ2
C / σ2

T = 1.00)
Treatment Conditions

z*: 9 Values     φ :6 Values     nT : 4 Values

Normal Distribution 
σ2

rat = 0.50

z* : 9 Values
φ : 6 Values
nT : 3 Values

Normal Distribution 
σ2

rat = 2.00

z* : 9 Values
φ : 6 Values
nT : 3 Values

Normal Distribution 
σ2

rat = 0.33

z* : 9 Values
φ : 4 Values
nT : 2 Values

Normal Distribution 
σ2

rat = 3.00

z* : 9 Values
φ : 4 Values
nT : 2 Values

Figure 20. 
Construct for a Comprehensive Empirical Study

 

 

2.5.1 Normal Distributions with Variance Equality: 

 This portion of the study provides a more thorough exploration of results 

observed in the pilot study, where the z* values were 

                                      (98) }40,30,25,20,15,10,7,4,3{

coinciding with the region of greatest changes in the pilot study.  The population mixing 

proportion was varied 

                                         (99) }50.0,35.0,20.0,10.0,05.0,0{
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Selection of a zero mixing proportion illuminates the issue of false classification, 

treatment sample sizes were fixed at  

               (100) }350,200,100,50{

Conditions of zero treatment nonresponse represent Model #2, while Model #6 is the 

correct model specification otherwise.    

 

2.5.2. Normal Distributions with Unequal Variances 

 While the normal distribution’s great flexibility to effectively characterize 

observed and transformed data structures make it the predominant choice as a parametric 

distribution, its selection has some negative implications.  First, under this methodology, 

it requires evaluation of more model representations to obtain empirical evidence, twice 

as many as a single parameter distribution presented in Chapter 4.  Second, generalization 

of any results for data adhering to normal distributions is challenging, highlighted in the 

simple pilot study; normal distributions with unequal population variances performed 

differently on the selected measures.  Such differences likely extend to the additional 

performance measures presented in section 2.3.   Further exacerbating this challenge, the 

pilot study only considered variance ratios less than 1.0, yet ratios greater than 1.0 in 

applied settings are just as common.  Theoretical analysis of the likelihood function 

offered no indication this methodology is symmetric in performance for variance ratios 

equidistant from 1.0 (e.g. 0.50 and 2.0).    Finally, there is an issue of selecting 

appropriate variance ratios which illustrate a substantive change in methodological 

performance.  Zimmerman (2004) conducted a detailed empirical study with variance 

ratios of 2.25 to 6.25 for very small sample sizes exploring Type I error accuracy in 
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conventional statistical tests, both population means and variance equality.  A more 

comprehensive resource, Coombs, Algina, and Oltman (1996), conducted a meta-analysis 

of univariate and multivariate procedures noting similar variance ratios referenced in 

other studies.  The interest is only on the range of ratios as results of test statistic 

accuracy in probabilistic inferences do not relate to an information based approach. 

 Turning to another pilot study, a series of variance ratios under fixed z*, φ , and nT 

conditions evaluated performance of correct model selection and each of the three 

hypotheses conclusions.  The results in Table 11 indicate substantial differences most 

noticeable in the mixture hypothesis.   

Table 11.  
Exploration of Variance Ratios for Normal Distributions on Model Level Performance 
 

Population Conditions* Empirical Results (%)** 
Correct Hypothesis Conclusion Variance 

Ratio 
Population 

Model 
Correct Model 

Selection Mixture Variance 
0.25 Model #5 86.6 86.8 99.8 
0.33 Model #5 72.2 73.8 98.4 
0.50 Model #5 32.0 40.6 91.4 
1.00 Model #6 60.2 68.0 70.2 
2.00 Model #5 96.2 96.2 98.2 
3.00 Model #5 99.6 99.6 100 
4.00 Model #5 100 100 100 

* Note: All conditions were fixed with z* = 15, φ = 0.20, and nT = 200.  
** Note: Correct hypothesis conclusions regarding difference in population means were 100% for each 
experimental condition. 

  
The results provide a snapshot for only a single set of conditions, yet are informative 

enough to suggest variance ratios of {0.33, 0.50, 2.0, 3.0} be explored. 

To keep the total number of experimental conditions at 580, only a subset of 

conditions evaluated under population variance equality were considered.  Z* and φ  

values remain unchanged, where nT levels were reduced to 

                  (101) }350,200,100{
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for variance ratios of 0.50 and 2.0.  Using the same controlled parameter values enables 

comparison of all performance measures with the previous section.  Unlike experimental 

conditions with variance equality, Model #1 is the correct specification with a zero 

mixing proportion and Model #5 otherwise.    

For the more extreme variance ratio conditions, 0.33 and 3.0, an even smaller 

subset of conditions were evaluated.  Z* remains unchanged, with the φ  levels reduced to    

              (102) }35.0,20.0,10.0,0{

and nT levels reduced to 

           (103) }200,100{

Chapter 3 will synthesize the study results in both tabular and graphical fashion 

showcasing relationships between the controlled parameters, population conditions, and 

the 13 performance measures presented in section 2.3.    

 73



 

Chapter 3: Results 
 

 
Chapter 2 developed the z* composite parameter for systematic variation in a 

comprehensive study.  Significant time was also spent presenting pilot study results of 

equal variance normal population conditions that demonstrating z* as predictive in 

selected model level performance measures.  Completion of the more comprehensive 

study including unequal variance conditions reaffirm z* as instrumental and predictive 

across the entire set of performance measures of interest.  This extends beyond select 

model level measures in the pilot study to include population and individual level 

measures.  The remainder of the chapter focuses on characterizing these predictive 

relationships, which become additionally contingent upon the population variance ratio.   

Some additional comments are necessary prior to the presentation of results.  The 

empirical study was tremendously computationally intensive, requiring continuous 

employment of between 2 and 5 dedicated PCs and months to obtain the empirical results 

substantiating these findings.   Summation across the 580 experimental conditions 

exceeded 250,000 trials, fitting roughly 1.75 million models where 80% were knowingly 

misspecified.  To maximize the informative value from such an effort, some 13 

performance measures were identified to more completely quantify the term success.   

Complicating the presentation for any of these performance measures is how to address 

results in the context of four important variables; z*, φ, nT, and σ2
rat.  Graphical displays 

are limited allowing variation of no more than two of these variables, requiring the 

remaining two to be assigned fixed values.  Clearly, graphical results will change when 

the fixed variables are assigned different values, though care was taken to verify the 

general findings noted were consistent across the range of parameters values explored in 
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the study.  Exacerbating this issue with the large number of performance measures 

identified, this analysis, while thorough, is far from exhaustive.   Complete tabular results 

can be provided upon request to facilitate supplemental analysis or new analysis between 

performance measures within or across levels.  The principal interest in this study, 

however, concerns successful hypotheses conclusions (treatment effect, mixture, and 

variance equality) assessed in conjunction with model selection.  Complete tabular results 

of these conclusions are provided in Appendices 2-5, with more detailed analysis 

provided in this chapter.  These findings also serve as the basis for a power analysis 

framework presented in the next chapter. 

In evaluating each of the performance measures, z* serves as the central parameter 

on which findings are characterized.  Z* exhibits asymptotic properties such that as  

     ∞→*z                              (104) 

nearly all hypotheses conclusions are 100% correct, estimates for parameters of interest 

become unbiased with decreasing variability, and correct individual group classification 

approaches 100%.   Exceptions to this asymptotic result occur with conditions of equal 

population variance for the hypothesis of variance equality.  The paths en route to 

asymptotic convergence across all performance measures as a function of z* are non-

linear, in some cases non-monotonic, and are conditioned on  and φ, yet surprisingly 

invariant to n

2
ratσ

T.  Not invariant in the sense that nT does not affect any of these 

performance measures, but nT has no additional impact beyond it use in the calculation of 

z*.  From Equation (63), one also observes z* is not independent of the  and 

φ parameters.  Unfortunately, large values of z

2
ratσ

* are often not available in real world 

studies, where the characterization of these relationships takes on even greater 
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importance.  Of course, a researcher can realize increased z* values by a larger difference 

in population means, smaller variances in the populations, and larger sample sizes.   

 

3.1 Model Level

Selection of the correct model specification is obviously the desired outcome, 

which in turn results in correct treatment effect, mixture, and variance equality 

hypotheses conclusions.  However, this measure alone is insufficient as Table 5 

illustrated a number of incorrect model selections which still provide correct conclusions 

to one or more hypotheses.  Such possible outcomes necessitate separate analysis for each 

hypothesis.  An overarching model level measure was the successful convergence of the 

SQP search algorithm supporting the ML process for the three models requiring its use 

per trial.  The results were quite surprising; for each model, for every trial, for each 

empirical condition, irrespective of the extent of misspecification, there was a 100% 

convergence to a viable solution also satisfying specific model fit requirements.  The 

implication is all six models provided computational AIC values enabling a complete set 

for a min AIC selection.  Whether a testament to algorithmic efficiency or the flexibility 

of normal distributions in finite mixtures, this result dispels any notion that successful 

convergence is a type of evidence in support of correct model specification.  More 

informative convergence information, such as tracking the number of attempts per trial 

and documenting the reason for any convergence failures, was not retained.   

 

3.1.1. Correct Model Selection 

Figure 21 illustrates the asymptotic properties of z* on correct model selection,  
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with distinctive rates conditioned on the variance ratio.  Figure 9 from the pilot study 

foreshadowed these findings where additionally results were not symmetrical as the 

variance ratio deviated from 1.0.  Larger variance ratios, 2.00 and 3.00, consistently 

outperformed the others, while variance ratios of 1.00 and 0.50 comparatively performed 

the poorest.    
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Figure 21.
Graph: Correct Model Selection at φ  = 0.20, n T  = 200 over z*  by σ 2

rat 

 

The exception to the asymptotic convergence of z* in correct model selection occurs at 

population conditions of variance equality.  In such cases, this process asymptotes around 

83%, where the limitation, as shown later, was in selecting models of equal variance.  Of 

note, this was the only exception in the asymptotic properties of z* across all performance 

measures analyzed in this study.  The findings were consistent at other φ and nT 

specifications.   

 Figure 22 evaluates model selection with a variation of φ with fixed z* and nT 

values.  Improved model selection solely as result of an increase in φ does not 

consistently hold, as in the case of a σ2
rat of 2.0 where selection decreases slightly from 

its peak at φ = 0.20.   Figure 11 from the pilot study similarly demonstrated a slight 
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decrease in correct model selection for larger φ values with a different set of fixed 

conditions.  As possible explanation for this phenomenon, recall Figure19 when equal 

sample sizes are used, the difference between z* and z*
max increases dramatically with 

larger φ values.  Explained from a different perspective, the effective sample size ratio, 

Equation (91), deviated greatly from 1.0.  Variance ratios of 0.50 and 1.00 comparatively 

performed worst among variance ratios evaluated.  The results were consistent when 

other fixed z* values were used.  
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Figure 22.
Graph: Correct Model Selection at z*  = 10, φ  > 0.00, n T  = 100 over φ  by σ 2

rat 

 

 Figure 23 considers correct model selection for the poorest performing variance 

ratio, 0.50, considering the effects of sample size at a fixed φ.  Results were mixed.  At 

lower z* values, an increase in sample size is more beneficial to correct model selection, 

while the opposite occurs for larger z* values.   It is impossible to distinguish a separate 

impact for sample size, using nT as the multi-sample measure, when results change over 

the range of z*.  
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Figure 23.
Graph: Correct Model Selection at σ 2

rat  = 0.50, φ  = 0.10, over z*  by n T 

 

 

3.1.2 Treatment Effect Hypothesis Conclusion 

The first hypothesis conclusion to be evaluated is whether model selection is 

accompanied with a treatment effect result.  All empirical conditions had a population 

treatment effect, so instances of a false selection could not be evaluated.  No treatment 

effect corresponds to equality in population means where the du, d*, and z* values are 0.    

Tabular results are provided in Appendix 2, where any z* value exceeding 7, regardless of 

σ2
rat, φ, and nT value had a correct treatment effect hypothesis conclusion rate of 100%.  

Figure 24 is a 3D graph varying variance ratio and z*, only showing the smaller z* results.  

Among the variance ratios evaluated, a σ2
rat of 1.0 had the worst performance.  The 

results appear fairly symmetrical as σ2
rat of 0.50 and 2.0 has similar results and the best 

performance occurred at the largest variance ratio deviations from 1.0.   
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Graph: Correct Treatment Effect Hypothesis Conclusion by z*  and σ 2
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Figure 25 varies z* and now φ for the worst performing variance ratio with respect 

to a correct treatment effect hypothesis conclusion, 1.0.  Across the range of φ values, 

selection goes to 100% as z* increases.   
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Graph: Correct Treatment Effect Hypothesis Conclusion by z*  and φ 
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The correct treatment effect hypothesis conclusion decreases with larger φ values, 

which may similarly be attributed to increasingly larger deviations from 1.0 in the 

effective sample size ratio.  With the same result for all experimental conditions where z* 

exceeds 7, there was not sufficient remaining data to explore differences in this 

hypothesis conclusion as a result of changes in nT for fixed z* and φ values. 

 

 3.1.3 Mixture Hypothesis Conclusion 

The most important empirical evidence in any finite mixture model concerns the 

population mixing proportion estimate, , commensurate with a min AIC model 

selection.  Quantifying this performance measure comes from two directions: the false 

selection of a mixture model when no treatment nonresponse was present and correct 

detection of a mixture via model selection.  Complete tabular results of false mixture 

model selection rates are provided in Appendix 3 while Appendix 4 provides the 

complete tabular results of a correct mixture hypothesis conclusion when treatment 

nonresponse was present. 

φ̂

False selection rates examine experimental conditions without treatment 

nonresponse, hence a φ of 0.0, where results are graphically presented in Figure 26 

simultaneously varying z* and σ2
rat for a fixed nT.       
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Figure 26.
Graph: False Mixture Hypothesis Conclusion by z*  and σ 2

rat  (φ  = 0.0 and n T  = 200)

 

An overall assessment is higher variance ratios performed better where even the σ2
rat of 

1.0 outperformed ratios below 1.0.   False selection rates are noticeably higher in 

population conditions having a σ2
rat of 0.50, particularly in the z* range of 7-15.  Across 

all variance ratios, false selection rates were lowest at the extremes of z* in the study, 

both small and large, making the relationship nonlinear.  Lower false selection rates at 

small z* values are attributed to the decreased selection of models containing a treatment 

effect, which is a prerequisite for evidence of treatment nonresponse.  Lower false 

selection rates at higher z* values is attributed to the asymptotic properties of z*, a 

commonly observed attribute as different measures are subsequently evaluated.  

 Analysis of the correct mixture hypothesis conclusion with treatment nonresponse 

was more involved due to the additional systematic variation of φ.  Figure 27 varies the 

same parameters as Figure 26 where the experimental conditions now have a fixed φ of 

0.20.   
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Figure 27.
Graph: Correct Mixture Hypothesis Conclusion by z*  and σ 2

rat  (φ  = 0.20 and n T  = 100)

 

Higher variance ratios had the highest correct mixture hypothesis conclusion rates, a 

consistent performance finding across the performance measures.   Across all σ2
rat, 

correct hypothesis conclusion rates move to 100% as z* increases demonstrating 

asymptotic properties for a different measure.  Among the variance ratios, σ2
rat of 1.0 

performed poorest.  Also, the changes in correct hypothesis conclusions were not 

monotonic for variance ratios below 1.0.  This result is more clearly seen in a 2D graph, 

Figure 28, which used different fixed φ and nT values from Figure 27. 
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Figure 28.
Graph: Correct Mixture Hypothesis Conclusion at φ  = 0.10, n T  = 100 
            over z*  by σ 2

rat 

 

The findings are consistent with the previous figure illustrating higher selection 

rates for population variances exceeding 1.0 and the asymptotic properties of z* on the 

correct treatment effect hypothesis conclusion.  For these experimental conditions, 

however, a σ2
rat of 1.0 was not the poorest across the entire range of z*, replaced by the 

lowest variance ratios as z* increased.   

To evaluate the impact of φ separate from z*, φ was varied for two fixed z* and nT 

values presented side by side in Figure 29.  In each instance, the larger z* values resulted 

in higher selection rates when comparatively assessing like variance ratios.  As with the 

correct model selection measure, selection rates for a mixture hypothesis tend to improve 

with larger φ values, but that was not a uniform result with exceptions in the largest φ 

values evaluated.   
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Figure 29.
Graphs: Correct Mixture Hypothesis Conclusions at z*  = 7 and 15 over φ  by σ 2

rat  (n T  = 200) 

 

The variation of φ can also be represented in a 3D graph also varying z* for a 

single σ2
rat value.  For this particular set of conditions, larger φ values resulted in higher 

correct mixture hypothesis conclusions compared to conditions of less treatment 

nonresponse.   
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Graph: Correct Mixture Hypothesis Conclusion by z*  and φ  (σ 2

rat  = 0.50 and n T  = 200)

 

Another notable result is the lack of impact, or invariance to nT beyond its use in 

the z* calculation on the correct mixture hypothesis conclusion.  This is clearly illustrated 

in Figure 31 using a σ2
rat of 2.0 and a fixed φ of 0.05.  Other variance ratios and fixed φ 

values were evaluated to validate this finding.  The invariance of nT may hold as well for 
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the treatment effect hypothesis, but there was not enough information from the study to 

either support of refute that claim. 
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Figure 31.
Graph: Correct Mixture Hypothesis Conclusion at σ 2

rat  = 2.00, φ  = 0.05
            over z*  by n T 

 

While correct model selection has undeniable value, hypotheses conclusions are 

reported and, therefore, a more important result.  From Table 5, correct model selection 

rates serve as the lower bound of the correct conclusion rates for each of the three 

hypotheses posited.  To explore this relationship with the mixture hypothesis, Figure 32 

provides results for a set of nonzero φ conditions by variance ratio, where the dashed 

diagonal line graphically illustrates the lower bound property.   
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Graph: Correct Mixture Hypothesis Conclusion at 0 < φ  <= 0.20, n T  = 200 
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In every case, variance ratios exceeding 1.0 had exact correct model and correct mixture 

hypothesis conclusion selection rates.   That was not the case for the other variance ratio 

values where greatest discrepancies occurred at σ2
rat of 0.50 and 1.0.  For the σ2

rat of 

0.50, the larger discrepancy occurs at low model selection rates and diminishes as the 

correct model selection improves.  The opposite was true for the σ2
rat of 1.0, where the 

discrepancy increases with higher correct model selection rates.    

 

 3.1.4 Variance Hypothesis Conclusion

 Tabular results for all experimental conditions are provided for this hypothesis in 

Appendix 5.  Using the same process as the other hypotheses, Figure 33 varied both z* 

and the σ2
rat at fixed φ and nT conditions.  
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Figure 33.
Graph: Correct Variance Hypothesis Conclusion by z*  and σ 2

rat  (φ  = 0.20 and n T  = 200)

 

The farther the population variance ratio deviates from 1.0, the higher the rate of correct 

hypothesis conclusion.  For σ2
rat of 3.0 and 0.33, correct hypothesis selection rates are 

consistently at or near 100% over the range of z* values evaluated.  For σ2
rat of 2.0 and 

0.50, correct hypothesis selection rates consistently increased toward 100% as z* 

increased.  However, for σ2
rat of 1.0, correct hypothesis selection rates never exceeded 

83% regardless of the increase in z* value.  These results indicate it is more difficult to 

provide empirical evidence through model selection supporting variance equality than 

evidence supporting variance inequality.  

 To better demonstrate the asymptotic properties of z* for this hypothesis with 

variance ratios other than 1.0, Figure 34 varies both z* and φ for a σ2
rat of 2.0.   For any φ, 

the selection rate improves as z* increases.  In comparison with the mixture hypothesis, 

the opposite result of lower selection rates occurs as φ increases.    
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Figure 34.
Graph: Correct Variance Hypothesis Conclusion by z*  and φ   (σ 2

rat  = 2.0 and n T  = 100)

 

Figure 35 serves two purposes: to evaluate the effects of z* for a σ2
rat of 1.0 and 

demonstrate its invariance to nT beyond its use in the calculation of z*.   As shown, in z* 

regions of 7-20, the correct variance hypothesis conclusion rates drop below 70%, but at 

the extremes of the z* ranges evaluated, the rates climb to 83%.  Further, these results 

were consistent irrespective of the nT values, which ranged from 50 to 350.  Examination 

of other variance ratios and φ conditions similarly showed no change in hypothesis 

conclusion rates for differing nT values.  
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Figure 35.
Graph: Correct Variance Hypothesis Conclusion by z*  and n T  (σ 2

rat  = 1.0 and φ  = 0.35)
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3.2 Population Level 

 

 3.2.1 Interpretability of Parameter Estimation Characteristics 

Estimation of model parameters within a maximum likelihood framework is well 

established as an effective and reliable method.  Perhaps the greatest feature of this 

method, aside from being generally scale invariant, is its robustness in yielding quality 

parameter estimates (Kaplan, 2000).  This finding has been supported in a number of 

studies including Anderson (1988) and Olsson (1999).   The hallmarks of quality in a 

parameter estimation technique are accuracy and consistency.  The statistical analog to 

the accuracy attribute is bias, shown in Equation (69).  Statistical analogs commonly 

associated to the consistency attribute are either variability or MSE, shown in Equations 

(72) and (71) respectively.  In these same references, and more generally, a strong 
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assumption accompanying the use of maximum likelihood and inferential testing on 

parameter estimates is correct model specification.  The min AIC strategy advocated is a 

data driven model selection using information criteria.   

In a series of articles, Leeb (2005, 2006) clearly articulated the difficulties and 

even impossibilities in determining parameter estimates’ distributional properties to 

enable inference in conjunction with a model selection process.  While Leeb’s work did 

not include finite mixture models, his work is especially informative in the context of this 

problem.  Unlike his work, this interest is not making probabilistic inferences on the 

model parameters or parameter composite estimates, or , but at a methodological 

level to defend this entire process as consistent and unbiased.   Even at this more basic 

level, each experimental condition evaluated resulted in a different amalgamation of 

correct and different incorrectly specified models from a set of trials which form the bias 

and MSE statistics.  Issues surrounding model misspecification and maximum likelihood 

have been discussed in the literature for at least 35 years, with more recent contributions 

particular to the area of finite mixture models (White, 1982; Gray, 1994).  These articles 

focus on the strong assumption failure in correct model specification where the same 

wrong model is repeatedly fit.  A min AIC strategy forgoes that ML assumption, relying 

instead on information criterion assessing overall model fit.   

,ˆ,ˆ udφ *d̂

With different compositions of models in each experimental condition, an overall 

assessment of this process in regards to the traditional metrics of bias and MSE similarly 

reaches Leeb’s conclusion as ‘an impossibility’.  If the issue of varied model composition 

per experimental condition was not enough, even the use of bias and MSE as viable 

measures is in question.  It is reassuring and natural to envision these terms graphically as 
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nicely unimodal, symmetric shapes centered or only slightly off center the true 

population value.  Without these properties, these measures have little to no interpretative 

value.   While varied model composition in each experimental condition reduces the 

likelihood of attaining these properties, there are other factors which also degrade the 

interpretability of these parameter estimation measures. 

a. Not all model parameters are freely estimated from the ML process.  Among 

the competing models, different parameter constraints exist between samples 

for variance and/or mean equality.  

b. The mixing proportion parameter estimate is bounded by definition and further 

constrained in model specification where 

                 (105) 1ˆ0 << φ

c. The reported treatment effects estimates of interest, and , are not directly 

estimated, but are composites of separate model parameter estimates that 

computationally involve an absolute value transformation.  These composites 

are bounded in construct such that  

ud̂ *d̂

                  (106) 0, * ≥ddu

 

 3.2.2 Experimental Condition Examples Illustrating Summary Parameter 

Estimation Measures 

To exemplify these difficulties, four empirical conditions from among the 580 

were chosen varying σ2
rat and z* values with a wide range of correct model selection and 

hypotheses conclusion rates.  These experimental conditions and their corresponding 

model level performance results are provided in Table 12.   
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Table 12. Experimental Conditions and Model Level Results used in Parameter Estimate 
                Histogram Assessment 

 

Experimental 
Conditions  

Population Values Min AIC Model Results* (%) 

 σ2
rat φ z* nT d* du Correct 

Model 
Correct 

Mix Hyp 
Correct 
Var Hyp 

Condition #1  1.00 0.20 10 50 2.04 10 54.8 65.4 72.2 
Condition #2 2.00 0.20 10 200 0.95 10 81.2 81.2 98.6 
Condition #3 3.00 0.20 15 100 1.96 10 99.0 99.0 99.4 
Condition #4 0.50 0.20 15 350 1.24 10 42.0 51.4 90.6 

* Note: All experimental conditions resulted in a 100% correct hypothesis conclusion regarding difference in 
population means. 

 
 Instead of focusing on each individual parameter estimate, analysis is limited on 

recapturing the population mixing proportion, φ, and the unstandardized and standardized 

treatment effect representations, du and d*.   Of the three, φ could be characterized as the 

simplest because it is not a composite representation of various estimates.  Figure 36 

provides a histogram of the selected conditions  values where 0.20 was the true 

population value.    
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Figure 36.
Graph: Histogram of φ est  for Selected Experimental Conditions 

 

Failure to arrive at the correct mixture hypothesis conclusion, not the more 

restrictive correct model selection, creates a bimodal shape.  Not only do bimodal shapes 
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confound the interpretation of bias, but increase the estimate’s variability captured in the 

MSE term.  Such conditions also make any type of probabilistic inference on the estimate 

untenable, where only condition #3 presents a unimodal shape.  Yet, in this particular 

case, the results are not symmetric, having a negative skew.  While not as problematic as 

bimodal representations, the accuracy of any probabilistic inference becomes an issue.  

Either bimodality or skewness creates a difference between central tendency and the 

average estimate.  

Turning to the treatment effect representations, there was no issue of bimodality, 

resulting from the 100% correct treatment effect hypothesis conclusions for each 

condition.  Examining the standardized treatment effect in Figure 37, even with error free 

hypothesis conclusions, declaring the histograms of these estimates as neatly unimodal is 

an overly generous characterization.  Not only are probabilistic inferences inappropriate, 

interpreting bias is challenging where Equation (77) uses an estimate average, but the real 

interest is in the central tendency.  Because results can not be attributed to incorrect 

hypothesis conclusions, the most likely cause is its composite representation of many 

parameter estimates in a complex formula, Equation (57).  
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Figure 37.
Graph: Histogram of d* est  for Selected Experimental Conditions
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A simpler composite representation is the unstandardized treatment effect, which 

only involves the population mean estimates.  Benefiting as well from the 100% correct 

hypothesis conclusion, compared to Figure 37, Figure 38 has more consistent results 

across the selected conditions centered on the true value.  The results are far from ideal, 

where only condition #3 demonstrates sufficient unimodal and symmetric properties 

suitable to enable probabilistic inference.  Further, the process and model selection 

compositions are such that making generalizations across all experimental conditions is 

ill-advised.   
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Figure 38.
Graph: Histogram of d u est  for Selected Experimental Conditions

 

Unfortunately, despite a strong set of arguments with supporting empirical 

evidence critiquing the value of bias and MSE as population levels measures of 

performance under this methodology, no other alternative is available.  Performing no 

analysis and thereby ignoring the quality of the population level estimates is undoubtedly 

the worst course of action. There is no value in obtaining correct hypotheses conclusions 

only to report wildly inaccurate results.  So analysis must proceed, but cautiously, using 
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bias and MSE qualifying the recapturing of these selected population parameters.  To 

appropriately describe the goals of this analysis: 

a. Given the nebulous value of the bias and MSE terms used, their use in 

assessing this methodology is more qualification than quantification.  

b. Probabilistic inferences for any of these parameter estimates are not 

recommended.  Fortunately, because this methodology operates at the model 

level through a comparative evaluation of many models, such inferences are 

not necessary. 

c. Z* will be used as the independent variable in evaluating population level 

measures, having demonstrated informative relationships with asymptotic 

properties and invariance to nT for the three hypotheses posited.   

 

 3.2.3 Population Mixing Proportion Estimate

Figure 39 shows the  bias over zφ̂ * for each σ2
rat in the empirical study.  Similar 

to the model level measures, σ2
rat values above 1.0 performed better.  Biases are mostly 

negative, particularly at lower values of z*, due to an incorrect mixture hypothesis 

conclusion.  With an incorrect hypothesis conclusion,  is 0, which perpetuates a 

bimodal histogram shape in the set of trials, lowering the average estimate value used in 

determining the bias value in this figure.   

φ̂
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Figure 39.
Graph: φ  Estimate Bias at φ  = 0.20, n T  = 100 over z*  by σ 2

rat

 

Demonstrated in the last section, higher z* values result in a higher correct 

mixture hypothesis conclusion, lessening or removing the bimodal condition.   

Increasingly, the resulting shape of the estimate set will be unimodal, as shown in Figure 

36, though are likely to be skewed and kurtotic to some extent.  Under these conditions, 

there is interpretative value in the bias term where a value of 0 is most preferred.  That 

the bias values differ conditioned on σ2
rat as a function of z* is interesting, but most 

important is the bias goes to 0 for each σ2
rat value as z* increases.  These results were 

consistent under examination of other fixed φ and nT conditions.  

To examine the effects of varying sample size on the  bias, the correct mixture 

hypothesis conclusion was used as the independent variable with population conditions 

whose σ

φ̂

2
rat was 1.0.  Figure 40 shows the invariance of results to sample size, this time in 

respect to a population level measure where the strong relation between z* and the 

mixture hypothesis conclusion has been established.  Evaluation of other σ2
rat and φ 

conditions yielded the same result.   
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Figure 40.
Graph: φ  Estimate Bias at σ 2

rat  = 1.0, φ  = 0.20 over Correct Mixture
            Hypothesis Conclusion % by n T 

 

The measure of consistency used for  is MSE, combining both variability and 

bias into a summary measure.  The results for this measure, shown in figure 41 are 

consistent with many of the previous measures evaluated: different relationships over z* 

as a function of σ

φ̂

2
rat and comparatively better performance for σ2

rat values exceeding 1.0.  

Like the bias measure, the MSE of  decreases to 0 as z* increases.   φ̂
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Figure 41.
Graph: MSE (φ  Estimate) at φ  = 0.10, n T  = 100 over z*  by σ 2

rat
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 3.2.4 Population Treatment Effect Estimates 

Qualifying the recapturing of true population treatment effect involves analysis of 

two composite representation estimates,  and .  While these estimates are not 

afflicted with bimodality as a function of incorrect hypothesis conclusions, generalizing 

results is confounded by their formulaic expression of many estimates.  As a cursory 

exploration, the scatterplot in Figure 42 was constructed involving these estimates’ bias, 

 bias, correct model selection, and the correct mixture hypothesis conclusion.  Due to 

the preponderance of experimental conditions with 100% correct treatment effect 

hypothesis conclusions, this measure was uninformative in indicating any relationships 

and was omitted from the scatterplot.  

ud̂ *d̂

φ̂

Figure 42.
Graph: Matrix Scatterplot of Selected Parameter Estimate Biases (all conditions at n T  = 200)
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The uppermost left plot is a similar representation of Figure 32 where the σ2
rat 

values are not separately distinguished.   Strong  and  correlations and similar ud̂ *d̂
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relationships to the other measure was expected, and while confirmed in this plot, were 

hard to qualify with inclusion of additional parameter estimates to calculate .  Where 

previous analysis pinpointed examination of an estimate’s variability for a single 

experimental condition over a set of trials, these plots provide a broader view 

characterizing variability in their estimate biases across many experimental conditions.  

There appears to be no definitive relationship between correct model selection and either 

treatment effect estimate bias, though the overall cone-like shapes do indicate a 

decreased bias variability as model selection improves.  Surprisingly, there is a stronger 

relationship between  and  biases than between the two treatment effect 

representations.   

*d̂

ud̂ φ̂

Returning to the variation of z* with fixed φ and nT values, Figure 43 shows  

bias approaches 0 as z

*d̂

* increases.  Figure 44 illustrates similar findings using du estimate 

bias as the treatment effect measure with a different set of φ and nT conditions.   
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Figure 43.
Graph: d*  Estimate Bias at φ  = 0.20, n T  = 100 over z*  by σ 2
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Figure 44.
Graph: d u  Estimate Bias at φ  = 0.35, n T  = 200 over z*  by σ 2
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Reaffirmed with other φ and nT conditions for both treatment effect 

representations, σ2
rat values exceeding 1.0 performed best on these performance 

measures.   An interesting observation while bias converges to 0, the treatment effect 

tends to overestimation for σ2
rat conditions below 1.0 while tending to underestimation 

for the remaining σ2
rat conditions. 

Focusing of variability across experimental conditions, the MSE of the 

unstandardized treatment effect estimated was presented in Figure 45.  Again, the 

asymptotic properties of z* are displayed where the MSE of this estimate approaches 0 as 

z* increases.  Similar results occurred with consideration of the  MSE. *d̂

 101



 

0

5

10

15

20

25

30

0 5 10 15 20 25
z*

M
SE

(d
u

 E
st

im
at

e)
  

0.33
0.50
1.00
2.00
3.00

valuesrat
2σ

Figure 45.
Graph: MSE (d u  Estimate) at φ  = 0.10, n T  = 100 over z*  by σ 2

rat 

 

Not graphically illustrated in this dissertation was the impact of varying nT on the 

both treatment effect representation bias and MSE measures.  Consistent with the  

results from Figure 40 as well as the hypotheses conclusions, the results were invariant to 

changing n

φ̂

T when z* was fixed. 

Section 2.4.5 explored the relationships between z*, du, and d*, culminating with 

the formulaic expression shown in Equation (96).  That expression, however, was 

predicated on conditions of variance equality in the two populations, where the 

comprehensive study evaluated ratios other than 1.0.  Using a similar development 

process from that section, allowing for unequal sample size and variance ratios, the 

relationship between z* and d* is represented as 
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    (107) 

Using the effective sample size relationships defined in Equations (33) and (34), this can 

be rewritten into a more concise form 
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where the term inside the parentheses equals 1.0 with population variance equality.  This 

relationship is necessary in support of the power analysis framework presented in the 

next chapter. 

 

3.3 Individual Level

 After analyzing hypotheses conclusions from the min AIC selection and the 

accuracy and consistency of the chosen model’s parameter estimates, attention now shifts 

to the individual respondent in the treatment sample.  With evidence supporting treatment 

nonresponse, the population mixing proportion estimate can be translated to an 

individual’s likelihood of being a treatment nonresponder using Bayes’ theorem, 

Equation (79).  Because these calculations depend on model selection as well as 

parameter estimates, they are subject to the same concerns noted in previous sections: 

varied composition of selected models, interpretations of bias and MSE, and bimodality.    

The individual classification error, being an averaged measure, has interpretation 

challenges in bimodal conditions, where this measure is heavily dependent on the mixing 

proportion estimate.   Taking into account these concerns, Figure 46 illustrated findings 

similar to other performance measures; variance ratios exceeding 1.0 comparatively had 

the best results and each σ2
rat condition became increasingly error free as z* increased. 
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Figure 46.
Graph: Average Individual Classification Error at φ  = 0.10, n T  = 200, 
            over z*  by σ 2

rat

 

 An alternative to individual classification error is a dichotomous classification of 

an individual’s group membership based on their posterior probability.  These 

classifications are aggregated to determine an overall correct classification rate for the 

entire sample, shown in Figure 47, with fixed φ and nT conditions different from the 

previous figure.     
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Figure 47.
Graph: Correct Classification % at φ  = 0.35, n T  = 100 over z*  by σ 2
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Each σ2
rat condition approaches 100% correct classification as z* increases, where 

perhaps resulting from the method of classification, this particular measure appears 

relatively robust to σ2
rat changes.  Performance of this same measure was also examined 

under varied nT conditions fixing z* for a single σ2
rat value, shown in Figure 48.     
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Figure 48.
Graph: Correct Classification % at φ  = 0.05, σ 2

rat  = 0.50 over z*  by n T

 

Unlike the population level measures and hypotheses conclusions, nT demonstrates an 

effect when z* was fixed.  The effects, however, similar to those in correct model 

selection, are mixed where larger nT values had improved performance at lower z* values 

but comparatively worsened as z* increased. 

 

3.4 Results Summary

This section provides a synopsis and synthesis of all the findings from the pilot 

and comprehensive studies.  First, the z* composite parameter is central in relating to all 

of the performance measures supported by the following comments: 
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a. It demonstrates asymptotic properties for the correct treatment effect and 

mixture hypotheses conclusions, reaching 100% selection rates as z* 

increases. 

b. The findings in (a) are even more noteworthy as those asymptotic properties 

similarly hold in assessing the accuracy and consistency of parameter 

estimates of interest, as the bias and MSE of , ,and each move to 0 as 

z* increases. 

ud̂ *d̂ φ̂

c. Exceptions to the asymptotic properties for correct model selection and the 

variance hypothesis condition occurred when the σ2
rat was 1.0.  In such 

conditions, the results asymptote around 83%, though still increase as z* 

increases.   All other population σ2
rat conditions asymptote to a 100% 

selection rate.   

d. The path towards convergence for each of the performance measures as a 

function of z* differs conditioned on this ratio, where σ2
rat values exceeding 

1.0 consistently provided the best results. 

e. Recapturing the individual class membership, higher z* values resulted in 

increasingly error free classification, whether using an average individual 

error or overall sample correct classification measure.  Unlike the other 

performance measures, the overall correct classification results seemed more 

robust to changes in the population variance ratio. 

f. Z* is moderately robust to departures in the effective sample size ratio from 

1.0.  This was graphically illustrated in Figure 19 as well as Equation (93), 

which in turn allowed equal sample sizes to be evaluated when transitioning 
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from the pilot study to the comprehensive study.  The impact of this result is 

even though a researcher should increase the treatment group sample size if 

treatment nonresponse is suspected, the deviation from z*
max is relatively small 

with limited effect on resulting hypothesis conclusions.  

g. Perhaps the most significant finding for the key performance measures which 

are the three hypothesis conclusions and the bias and MSE of the reported 

parameter estimates and , these results were invariant to nud̂,φ̂ *d̂ T when z* 

was fixed.   

h. For other performance measures such as correct model selection and overall 

correct classification, nT affected results even when z* was fixed.  Findings 

were similar for each measure and varied as a function of z* where increased 

nT values comparatively improved results for smaller z* values but 

comparatively worsened as z* increased.   

The population mixing proportion impacted hypotheses conclusions with fixed z* 

values. Higher φ values generally resulted in the higher correct mixture hypotheses 

conclusions across all σ2
rat values.  In the highest φ values evaluated, correct mixture 

hypothesis conclusion rates decreased slightly, attributed to the large deviation in the 

effective sample size ratio from 1.0.  The mixing proportion impact, however, was the 

opposite with respect to the variance equality hypothesis.  Larger φ values decreased the 

correct variance hypothesis conclusion rate.   

All of these results including the tables provided in Appendices 2-5 are predicated 

on the use of the AIC as the information criterion.   While other information criteria could 

be the basis for model selection, based on the results the AIC is strongly recommended.  
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Aside from the reasons provided in the preceding chapters, the use of any sample size 

based parsimony penalty nullifies the valuable invariance properties of nT with z* in 

hypotheses conclusion results.  Selection of another criterion is based on some 

assumption that its use will provide improved results.  With particular focus on the 

mixture hypothesis, “improved” is a reduction in the false classification rates in 

Appendix 3 and increased selection rates in Appendix 4.  Using total sample size in 

construction of the parsimony penalty, while false classifications decrease, the correct 

identification will worsen to some unknown extent.  Additionally the mixed results in 

correct model selection and overall individual correct classification rates with nT as a 

function of z* are further exacerbated with a parsimony penalty that increases with N.  
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Chapter 4: Discussion 
 
 

 Against some 13 performance measures ranging from correct hypotheses 

conclusions to the quality of parameter estimation to recapturing group membership, this 

min AIC strategy is established as a viable technique for obtaining empirical evidence of 

treatment nonresponse in two sample designs.   There are a number of other areas which 

require comment, however, in order to effectively transition this technique from a 

simulation environment to applied research.   Further, advocating only this series of 

models is terribly shortsighted where the series of models in this study serve as a 

foundational block upon which to build and obtain empirical evidence for more complex 

research questions.   Accordingly, this chapter was not titled “Discussion of Results”, but 

more simply “Discussion” in a number of directions for this methodology to take root in 

the diverse world of applied research.     

 

4.1 Transition to Applied Research 

Transition to applied research greatly reduces the computational burden involved 

in this process with analysis of a single dataset.  Bias, MSE, and correct selection rates in 

the experimental study are replaced with a reliance on the model selection process to 

provide correct hypothesis conclusions with accurate population estimates.     

 

4.1.1 Defense of Parametric Distribution Specifications 

Selection of appropriate parametric distributions is foundational from model 

development to model selection.  Unlike empirical research which operates under 

controlled conditions, the onus is on the researcher for the selection and defense of 
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parametric distribution specifications for the control and treatment populations.  This is a 

more stringent requirement than statistical tests of population means presented in section 

1.1, yet is more flexible than fixed effects ANOVA, for example, which requires 

normality and variance equality.  Assisting in this regard for the control population, a 

researcher can view a histogram and summary statistics from the control sample.  

Researchers may feel restricted focusing exclusively on only common parametric 

distributions, but there is a vast selection of available choices (Leemis, 2008).   

Identification of a parametric distribution for the treatment population is more 

difficult.  Selection of a distribution characterizing the treatment population is 

recommended, but is not required, to be the same distribution as the control population.  

Evaluation of summary statistics or viewing a histogram from a treatment sample, 

however, is not informative and potentially misleading, where the presence of some 

unknown proportion of nonrespondents affect the results.  To illustrate the difficulty in 

assessing the underlying parametric distribution from the treatment sample, the following 

mixture probability density functions (PDF) shown in Figure 49 are from a normally 

distributed treatment population whose mean and variance values varied in each plot.  

Each plot had a 0.20 proportion of treatment nonresponse from a normally distributed 

control population.  Overlaid on each plot in dashed lines is a normal PDF to illustrating 

skewness, kurtotic, or even bimodal properties. 
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Figure 49.
Graph: Various Probability Density Function Mixtures from Normal Distributions
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Until now, the information based approach has not required any probabilistic 

inferences and Type I error control upon which to base hypothesis conclusions.  A min 

AIC strategy selects the most reasonable representation of the data comparatively from 

among a set of models.  Despite having the best comparative fit, this fails to serve as an 

absolute fit measure, available in other modeling procedures such as R2 in regression and 

the SRMR in structural equation modeling.  Because this technique has no measure of 

absolute fit for reference and selection of appropriate parametric distributions underpins 

the entire process, non-parametric distributional tests should be conducted as a degree of 

support for these choices, where the Kolomogorov-Smirnov (K-S) test (D’Agostino, 

1986) is recommended.     

Prior to presentation of the K-S test, it should be noted that statisticians have 

concerns with this test, or more generally any distributional tests.  Their concerns are 

two-fold involving the critical test statistic determined as a function of N.  First, in case of 

small sample sizes, such tests are not powerful enough to reject an incorrect parametric 
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distribution.  With very large sample sizes, the test statistic becomes so small that any 

trivial distributional deviation results in a rejection of the null hypothesis.  While these 

are valid concerns, like the bias and MSE measures presented last chapter, there does not 

seem to be another alternative available.  The bottom line is some type of justification is 

required for these parametric distribution choices.  Whether the presentation of 

questionable evidence in the form of a K-S test or operating under the unsupported 

assumption those are the correct population distributions is better remains a fair and open 

debate. 

The K-S test compares the empirical distribution function (EDF) from a sample of 

data against a fully specified hypothesized distribution’s cumulative density function.  

Preference for this test in lieu of other nonparametric tests is calculation of its test 

statistic and critical values do not depend on the hypothesized distribution.  Further, the 

K-S test is an exact test, and shown to be more powerful than goodness of fit tests, which 

are highly dependent on sample size and the number of bins.   A disadvantage to this 

particular test, however, is the critical values become less reliable when distributional 

parameters are estimated from the data.  For that reason, for certain common 

distributions, the Anderson-Darling or Shapiro-Wilk (for normality) tests have been 

shown to be more powerful (Sheskin, 2007).  These tests, however, do not have 

corresponding critical test statistic values to support evaluation of a mixture distribution 

CDF, the desired result of the min AIC selection process represented in the treatment 

sample.  Adjustments to the K-S test, such a two-stage K-S variant introduced by Khamis 

(2000) have been shown to increase the power of the test, demonstrated for common 

distributions such as the normal and exponential, but do not support mixture CDFs.       
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Because there are two data samples, two K-S tests are necessary, where the first 

test on the control group sample can occur prior to any model selection process.  

Observing the sample histogram for the control group, a researcher can select a 

parametric distribution representative of the control population or perform a data 

transformation in order to obtain to a more well suited structure.  Any data 

transformations, however, must be consistently applied to both data samples in order for 

treatment nonrespondents in the treatment group sample to retain the same distributional 

properties.  To construct the EDF, reorder the control group sample, , from smallest to 

largest, where the EDF is represented as   

Cxr

            
C

CC |EDF
n
ix i =        (109) 

for each value in the data sample where i corresponds to the index number in the 

reordered data vector.   The hypothesis being evaluated using the EDF is 

  )()(: *
CC xFxFHo =  - the data follows the specified distribution 

 )()(: *
CC xFxFHa ≠  - the data does not follow the specified distribution 

 

Distributional parameter estimates are determined by using the summary statistics shown 

previously in Equations (36) and (37) for a normal distribution specification.   Of interest 

is the maximum distance between the EDF step function and hypothesized distributional 

CDF expressed in the following formula 

        ⎥
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⎤
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A researcher would reject the null hypothesis when  

         
C

CritC
22.1
n

DD =>        (111) 
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which is the approximate critical value of the two-sided hypothesis test at 10.0=α   

(Conover, 1999).  Use of this data sample omits possible treatment nonrespondents 

population parameters estimates may differ slightly from those resulting from a min AIC 

selection.  Nonetheless, there is sufficient information to achieve the goal of this test; 

some evidence supporting the parametric distribution selection for the control population.    

 Given the difficulty in identifying a treatment population distribution from Figure 

49,  using the same parametric distribution successfully defended in the initial K-S test, 

construction of the EDF for the treatment group sample follows in the manner where 

            
T

TT |EDF
n
ix i =        (112) 

The distribution to be evaluated under this hypothesis test, , is returned with 

parameter estimates as part of the min AIC model selection of the form 

)( T
* xF

                 (113) )ˆ()ˆ1()ˆ(ˆ)( TCT
* θθ FFxF φφ −+=

If both distributions are normally distributed, this coincides with the set of models 

presented in Figure 3 and results presented in Chapter 3.  Following the min AIC model 

selection, therefore, the hypothesis 

)()(: *
TT xFxFHo =  - the data  follows the min AIC specified distribution 
)()(: *

TT xFxFHa ≠  - the data does not follow the min AIC specified distribution 
 

is evaluated comparing the following test statistic 
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against the critical value shown in equation (109).   A failure to reject conclusion 

provides a degree of evidence affirming use of the same parametric distribution for each 
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population. Conversely, a rejection of the null hypothesis indicates the same parametric 

distribution for each population is not empirically supported, where a different parametric 

distribution for the treatment population can be explored.  Specification of another 

population distribution will, however, change the number and construction of models as 

subsequently presented in section 4.2.1.  

 A broader type of comparative fit assessment might also be used as a degree of 

support for the parametric distributions choices.  A researcher may evaluate a larger set 

of competing models positing various distributions, still using a min AIC selection as the 

mechanism for model selection.  

 

4.1.2. Software Transition 

Transitioning the software built to conduct this experimental study to support 

applied research also requires modifications.  The addition of the K-S tests must be 

included within the software.  The biggest addition is a broader selection of parametric 

distributions, consistent for both populations and subsequently expanded to allow 

different parametric distribution combinations.  At times, transformations of data 

approximating normality are not tenable or not preferred to retain the original data scale 

and interpretation.  The number and construct of models evaluated under this min AIC 

methodology are determined from the parametric distribution specifications, where 

results from normally distributed populations presented in Chapter 3 do not generalize to 

other parametric distributions. 

Regardless of the distribution specifications, the use of an optimization algorithm 

is still required, where default tolerance and maximum number of search iterations can be 
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increased from the experimental study.  Creation of reasonable starting values can follow 

a similar process utilizing sample summary statistics.  Time savings garnered by 

analyzing a single set of data allow a more rigorous method ensuring a global minimum 

of the -2ln(L) function to be implemented.   Due to the large number of trials and 

experimental conditions, the current optimization routine for selected models is 

conducted up to 15 times, stopping at any point if the respective model criteria are 

satisfied.  As an alternative, the optimization routine would run a fixed number of 

iterations, 25 for example, retaining the likelihood function value and corresponding 

parameter estimates.  From among the 25 likelihood function values, select the smallest 

confirming the model criteria are satisfied.  This provides, via a comparative assessment 

of optimization routine results on the same data differing only in starting values, greater 

confidence of a global solution.   

Finally, the results of this normal distributions study should be incorporated into 

the software, assisting the researcher from a power analysis perspective and in sample 

size planning for their particular study.   

 

4.1.3 A Power Analysis Framework 

In an applied setting, it seems unreasonable not to entertain empirical evidence as 

part of the model selection process.  In fact, researchers consistently use empirical results 

of a wholly theoretically based model, whether a mixture model specification or more 

classic IID representation.  Because this methodology advocates an empirically based 

model selection, a degree of power should be afforded to a researcher.   There is no 

comparative analog with an a priori model selection or technique which results in 
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inferential statements of model parameters.   Providing the researcher a power analysis 

framework in model selection reflects a combination of both frequentist and Bayesian-

like approaches.  A frequentist approach makes no conditions upon parameter estimates 

in terms of being influenced with a priori knowledge.  However, a predetermined model 

selection applies a priori knowledge, making it Bayesian-like in nature.  In many ways, 

this is worse where a purely Bayesian approach allows empirical evidence to influence 

results; a priori model selection does not. 

This does not suggest that a priori knowledge and theory should not be part of 

model selection.  On the contrary, it is critically important, but must be bolstered by 

empirical evidence.   The fusion of a researcher’s knowledge and empirical evidence 

from this study can be performed both pre-model and post-model selection for a series of 

models evaluating treatment nonresponse.  Power analysis does not eliminate the need for 

the K-S tests or other defense of the parametric distributional choices.       

Prior to evaluating any models, a researcher positing normal distributions for the 

populations can get an estimate of the likelihood of obtaining empirical evidence 

supporting the existence of treatment non-response.  From the experimental study results 

presented in Appendix 4, a researcher can obtain  

)ˆ,,ˆ*,ˆ|Correctr(P̂ 2
ratTMix σφ nz                              (115) 

based on their belief of population conditions and available sample sizes.  Likelihood 

estimates can be interpolated, linearly or by some other method, for population conditions 

that do not directly coincide with table values (e.g., a φ estimate of 0.25 or a z* value of 

12).  As noted in Chapter 3, the lowest likelihoods of obtaining a correct mixture 
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hypothesis conclusion occurred at σ2
rat of 1.00 or 0.50, which could be used as a worst 

case approximation.     

 EXAMPLE:  A researcher conducted a two group study consisting each of 150 

respondents.  He/she posits both populations subscribe to normal distributions that result 

in the following conditions 

{ }00.1ˆ,20.0ˆ,15*ˆ 2
rat === σφz  

and is interested in the likelihood of obtaining the correct mixture hypothesis conclusion.  

First, a researcher can compute the expected biases for du and Cohen’s d by using 

summary statistics in lieu of utilizing a maximum likelihood framework with Equations 

(67) and (68).   Using the tables in Appendix 4,    

832.)00.1ˆ,100,20.0ˆ,15*ˆ|Correctr(P̂ 2
ratTMix ===== σφ nz  

and  

716.)00.1ˆ,200,20.0ˆ,15*ˆ|Correctr(P̂ 2
ratTMix ===== σφ nz  

where an interpolation provides a likelihood estimate of 0.767 from this min AIC 

strategy. 

A researcher might also utilize the experimental study results in sample size 

planning prior to conducting a particular study to ensure a minimally acceptable 

likelihood for a correct mixture hypothesis conclusion using the Appendix values if 

normal distribution specifications are made for each population.  Because sample sizes 

are a component in z* calculation, this is a more complex and iterative process.  The 

iterative process begins with estimates of the population conditions and a reasonable  

value where the following relationship can be used  

*ẑ
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where a is the sample size ratio defined in Equation (58). With this estimate, a researcher 

now has all the elements for Equation (115) to refer to Appendix 4. 

 EXAMPLE:  A researcher is planning a study and wants to determine the 

minimum sample sizes required for a 90% likelihood of empirical evidence supporting 

treatment nonresponse from the following conditions  

{ }00.1,15.0ˆ,10ˆ,10ˆ,20ˆ,5ˆ 2
TC

2
CC ====== aφσμσμ  

To begin, the researcher selects an arbitrary z* value of 15, and using Equation (116) 

results in a nT requirement of  

( ) ( )
( ) 2634.262

)15.01)(15.01(105
)15.01(*10)15.01(*2015ˆ

2

2

T =≈
−+−

++−
≈n  

With the treatment sample size calculated, the researcher can interpolate a value shown in 

the table below  

Table 13. 
Corresponding Extracts from Appendix 4 for Mixture Hypothesis Evidence 
for Sample Size Planning Example  

 nt value 
φ  200   350 

0.10 89.0  87.4 

    

0.20 96.2  96.4 

 

( )15.0ˆ =φ

( )263ˆ =tn( 263=Tn )

 

resulting in an estimated likelihood of 0.922, slightly above the desired power.  As a 

result, the researcher can decrease the sample size, conscious of the fact this will also 

lower z* value.  Lowering the sample size to 200, using equation (63) reduces z* from 15 

to 13.09.    Interpolation from Appendix 4 leads to a new estimated likelihood 0.83, an 
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overcorrection in the sample size reduction.  After a second iteration, 240 respondents per 

sample, given the desired sample size ratio, are necessary to achieve the desired power 

obtaining a correct mixture hypothesis conclusion. 

A researcher can also evaluate their a priori knowledge conditioned upon the 

results of the model selection.  Assuming a mixture model was chosen, such a result is 

only possible when 

Mixture Model Chosen | Treatment Group had nonresponse 
or 

Mixture Model Chosen | Treatment Group had zero nonresponse   

Using the information regarding false classification tables in Appendix 3 with Equation 

(90), this probability can be estimated.  For a correct mixture hypothesis conclusion when 

treatment nonresponse is present, the estimated probability becomes 

           
2
ratT
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 EXAMPLE.  A researcher conducts a two group study consisting each of 200 

respondents, positing normal distributions for both populations with the following 

estimates  

{ }00.1ˆ,10.0ˆ,20*ˆ 2
rat === σφz  

Using Appendix 4, the likelihood of obtaining empirical evidence supporting treatment 

nonresponse is 0.844.  If indeed there was zero treatment nonresponse, the z* value 

would be slightly increased due to the denominator changes in Equation (63), where 

0.0|*ˆ =φz  equals 20.1. The likelihood of a false mixture selection under these conditions 

can be found in Appendix 3 as 0.052.  If the model selection process results in the 
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mixture hypothesis conclusion supporting treatment nonresponse, then using Equation 

(117), the a priori information results in 

942.0
052.844.

844.
=

+
 

which is a significant improvement in the likelihood from Appendix 4. 

Conversely, the complement to this model selection result can also be developed: 

the case when a no mixture model was incorrectly selected. This likelihood is estimated 
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EXAMPLE.  Using the same experimental conditions from the previous example, 

the min AIC model selection process selects a model that provides a  of 0.  Using 

Equation (118), the likelihood this was an incorrect hypothesis conclusion is 

φ̂

141.0
)052.1()844.1(

)844.1(
=

−+−
−  

There are simpler and more general planning tools available to a researcher 

unsure of population distributional parameters in order to determine z* required for power 

analysis.  The basis for these tools is to maximize z* as function of a, the sample size 

ratio, σ2
rat, and φ .  Further, Equation (64) illustrates z*’s suitability for any parametric 

distribution specification.  Maximizing z* capitalizes on its asymptotic properties with 

regard to correct hypothesis conclusions, among other performance measures, 

demonstrated in the experimental study of Normal distributions.  These properties remain 

under consideration of different parametric distributions as shown in the next section.  

Now, with beliefs regarding σ2
rat and φ ,  a researcher can determine the optimal sample 

size ratio, amax, to achieve z*
max using  

 121



 

      ( ) φφσ −−= 12
ratmaxa       (119) 

Valid sample size ratios, however, must be such that amax > 0.   Notice this formula is 

independent of N and any distributional parameter estimates.  This formula does not 

determine the value of z*
max, but the position in 3-dimensional space, {σ2

rat, φ , amax}, 

where this value exists. 

 In many research situations, however, including the experimental study, amax may 

not be utilized where instead equal sample sizes, a = 1, is a common choice.  In such 

cases, the z* value is some percentage below the z*
max value.  This percentage or deviation 

from z*
max is determined  
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is a generalization of Equation (93) and likewise is independent of N and distribution 

parameters.  A graphical representation of this deviation, presented in Figure 50, is a 3-D 

extension of Figure 19 additionally varying σ2
rat.  The larger deviations for σ2

rat 

conditions less than 1 under equal sample sizes might explain, in part, performance 

differences in variance ratios equidistant from 1 noted in Chapter 3.  Researchers using a 

sample size between 1 and amax can use this figure to estimate the deviation from z*
max as 

a result of the sample size ratio selection.    
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Figure 50.
Graph: Deviation from z* max  when using a  = 1 by σ 2

rat  and φ 

 

 

4.2 Other Parametric Distributions 

 A flexibility of this methodology is its ability to specify almost any parametric 

distribution.  Both Titterington (1985) and Grun (2002) indicate mixtures of these types 

are mathematically tractable for most distributions, yet the performance of a min AIC 

strategy under a two sample design has not been evaluated.  The set of research 

questions, presented in Section 1.5 have an overarching level: distributional.  To illustrate 

the suitability of other parametric distributions and differences across performance 

measures due to distributional specifications, populations from a Poisson distribution will 

be considered.  Z*, the mixing proportion, and treatment sample sizes are extensible to 

other parametric distributions and are retained as control parameters enabling 

comparisons with the normal population distributions.   
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 4.2.1 Poisson Distribution 

Unlike the normal distribution, the Poisson distribution is a single parameter 

distribution, characterized by λ  requiring discrete data.  The probability mass function 

(PMF) for this distribution is 

           
!

)|()(
x

expoisxXP
xλλ

λ−

===       (121) 

whose mean and variance are the same 

         λ== )(V)(E XX           (122) 

Unlike the normal distribution example used to this point, the researcher now assumes 

that 

       CCC2C1CC ,...,2,1for)(,...,
C

nifxxx n =→= λX               (123) 

represents the control group and treatment group is characterized by either           

                  (124) 
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for models posited without and with treatment nonresponse. Development of these 

models under a maximum likelihood framework proceeds in the same fashion as section 

1.4 using Equation (29).  Because this is a single parameter distribution, however, the 

series of comparative models are fewer, illustrated in Figure 51. 
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Figure 51. 
Model Representations with Mixing Proportion with Poisson Distributions

 

Referencing Figure 3, normal distribution Models #2, #3, and #6 cannot be constructed as 

mean and variance constraints across populations must be consistent.  There is not a 

separate variance hypothesis.  Because of Poisson distribution specifications, selection of 

a model with a treatment effect also results in unequal variances, where a selection of no 

treatment effect indicates variance equality.  Model selection corresponding to a correct 

mixture hypothesis and treatment effect conclusion is shown below.  

Table 14. 
Correct Hypothesis Result by Model Selection for Poisson Distributions 
 

Population Conditions* Correct Hypothesis Result 
φ  Correct Model for φ  for  )(E X

0=φ  Model  
#1 

Model  
#1, 2 

Model  
#1, 3 

10 << φ  Model  
#3 

Model  
#3 

Model  
#1, 3 

* Note: All population conditions operated with a population treatment effect. 
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Without available software to support an evaluation, code was developed in Gauss 

using the same validation, technical decisions and specifications outlined in section 2.1.  

Only the mixture model representation required an optimization algorithm where the 

others utilize mathematically proven results.  For Poisson Model #1, the minimum value 

of the -2ln(L) function occurs at 

    CC
ˆ x=λ                        TT

ˆ x=λ                (125) 

Poisson Model #2 requires a single parameter estimate whose minimum -2ln(L) value 

occurs at  

          y=== TC
ˆˆˆ λλλ        (126) 

where y is the concatenated samples.  Poisson model #3 has 3 parameters where the 

optimization algorithm has the following constraint 

             (127)  1ˆ0 << φ

where  

       { }φλλ ˆ,ˆ,ˆ),ln(2 TCL−        (128) 

are returned.  Starting value generation, number of optimization attempts, and model fit 

requirements established by its hierarchical relationship were similarly applied. 

 

 4.2.1.1 Experimental Conditions 

 Experimental conditions evaluated include both an increase and decrease of λ  

between the control and treatment populations.  To facilitate comparison to the normal 

population distributions results, the λ values were set at 1.00 and 2.00, which is a 

variance ratio of 0.5 and 2.0 depending on which is assigned as the control population.  A 

corresponding graphical depiction of the population PMFs is provided in figure 52.   
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Figure 52.
Graph: Poisson PMFs for Experimental Conditions where σ 2

rat  = 2.0 and 0.50

 

Because the Poisson is a single parameter distribution, the standard deviation is 

subsequently fixed by the λ term, so z* can not be systematically varied as done in the 

previous study.  The φ and nT values, however, are varied in the same levels as the 

normal distribution variance ratio equivalents.  Tables 15 and 16 provide the 

experimental conditions in addition to the associated z* and d* values.   

Table 15.
Empirical Conditions: Poisson Distribution λ C  = 1.00, λ T  = 2.00, n C  = n T

φ 0.00 0.05 0.10 0.20 0.35 0.50
n C z* z* z* z* z* z*

100 5.77 5.72 5.65 5.48 5.12 4.63
200 8.16 8.09 7.99 7.75 7.24 6.55
350 10.80 10.70 10.57 10.25 9.57 8.66

d* 0.82 0.82 0.83 0.85 0.87 0.89  

Table 16.
Empirical Conditions: Poisson Distribution λ C  = 2.00, λ T  = 1.00, n C  = n T

φ 0.00 0.05 0.10 0.20 0.35 0.50
n C z* z* z* z* z* z*

100 5.77 5.81 5.84 5.86 5.75 5.48
200 8.16 8.22 8.26 8.28 8.14 7.75
350 10.80 10.88 10.93 10.95 10.76 10.25

d* 0.82 0.81 0.80 0.79 0.77 0.76  
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Another series of experimental conditions compared normal distribution results of 

variance ratios of 0.33 and 3.00, where the λ values selected were 2.25 and 0.75.  

Population PMFs are provided in Figure 53 with the experimental conditions provided in 

Tables 17 and 18.  
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Figure 53.
Graph: Poisson PMFs for Experimental Conditions where σ 2

rat  = 3.00 and 0.33

 

Table 17.
Empirical Conditions: Poisson Distribution λ C  = 0.75, λ T  = 2.25, n C  = n T

φ 0.00 0.10 0.20 0.35
n C z* z* z* z*

100 8.66 8.41 8.09 7.48
200 12.25 11.89 11.44 10.58

d* 1.22 1.26 1.29 1.35  

Table 18.
Empirical Conditions: Poisson Distribution λ C  = 2.25, λ T  = 0.75, n C  = n T

φ 0.00 0.10 0.20 0.35
n C z* z* z* z*

100 8.66 8.84 8.94 8.93
200 12.25 12.50 12.65 12.63

d* 1.22 1.20 1.17 1.13  
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 4.2.1.2 Results 

 Results from the Poisson distribution study are not as detailed as the Normal 

distributions study where the primary purpose is to illustrate differences resulting from 

parametric distribution specification.   Unlike the Normal distribution study, the 

optimization algorithm did not converge for every trial.  Despite increasing the 

converging attempts to 20 per trial, convergence rates ranged between 70-100%.  

Convergence rates improved as difference between the population λs increased and with 

increased φ values.  This result dispels the complement to the false belief from the 

Normal distribution study that a failed convergence implies model misspecification.  No 

analysis was conducted pinpointing the predominant cause of failed convergence, 

whether the SQP algorithm, errors resulting from matrix inversion, not satisfying model 

hierarchical relationships, or some other factor.   Completion of the study allowed a 

distributional comparison under similar z*, φ, nT, and σ2
rat experimental conditions.  A 

qualitative summary of selected performance measures are provided in Table 19 along 

with more particular assessments for two subgroups created with σ2
rat values less than 

and greater than 1.  At the model level, no observable distributional differences were 

noted for the treatment effect hypothesis as selection rates were 100% in nearly all the 

conditions examined.  For correct model selection, and more generally the preponderance 

of performance measures, the Poisson distribution specification outperformed the Normal 

distribution whose λrat and σ2
rat values were below 1.0.  Selection of the correct model 

yielded mixed results illustrated in the comparison of the distributional specifications, 

shown in Figure 54. 
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Table 19.  
Distributional Performance Measure Comparison with the Same φ, nT, z*  
                and σ2

rat Conditions  
    

 Poisson Comparison to Normal 
Performance Measure λrat = σ2

rat < 1 λrat = σ2
rat > 1 Overall 

Model Level*    
Correct Model Selection Better Worse Mixed 
Correct φ Hypothesis Result Mixed Worse Worse 

Population Level    
biasd *  Better Equal Better 
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Figure 54.
Graphs: Correct Model Comparisons {σ 2

rat  = 0.50,  n T = 100} and {σ 2
rat  = 3.00, n T  = 200}

 

 Examining hypothesis conclusions, the Normal distribution more frequently 

arrived at the correct mixture hypothesis conclusion, shown in Figure 55.   Possible 

explanations for this finding include the flexibility of the Normal distribution, the 

coarseness of data required in Poisson models, or the change in the distributional shape 

commensurate with a λ change. 
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Graphs: Mix Hypothesis Comparisons {σ 2

rat  = 0.33,  n T = 100} and {σ 2
rat  = 2.00, n T  = 350}

 

 For population level measures, the ability to recapture the unstandardized 

treatment effect, du, was not done as these values were different between studies.  The 

Poisson distribution comparatively performed better in recapturing the population 

standardized treatment effect in terms of a lower bias and MSE.  The result could also be 

attributed to the Normal distribution’s flexibility, in this case serving as a detriment.  

With a larger of number of parameters simultaneously estimated to calculate a composite 

measure, , a larger bias and larger MSE should be an expected result, shown in Figures 

56 and 57.  
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The population mixing proportion estimate, , unlike , is not a composite measure.  

Perhaps due to this condition, the Normal distribution provided less biased results than 

the Poisson distribution as shown in Figure 58.  Comparison of  MSE values returned 

mixed results due largely to the poor performance of Normal distribution at a variance 

ratio of 0.50. 
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 At the individual level, comparative evaluation of both performance results 

were mixed, where the percentage of correct classification is presented in Figure 59.   
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4.2.2 Near Equivalent Probability Representations: 

The previous section indicated Poisson distribution specifications are 

comparatively more difficult to obtain the correct mixture hypothesis conclusion.  

Despite using the same controlled parameters, {z*, φ, nT, and σ2
rat}, differences could be 

attributed to the distributional shape, where the Poisson data representations explored 

were highly skewed and kurtotic.   Another explanation could be the coarseness of 

measurement, where the Poisson distributions used discrete data.  Making the conditions 

similar across both distributional specifications, for larger values of λ, the Normal 

distribution becomes an excellent approximation of data from a Poisson population 

(Devore, 2000) where 

    )|,()|( xNorxPois σμλ ≈                   (129) 

with the following distributional parameter relationships 

           (130) 2σμλ ==

Using these relationships in order to evaluate the min AIC strategy with data equally well 

characterized by either distribution, larger λ values of 10 and 15 were selected, with the 

distribution specific PMFs or PDFs shown in Figure 60.   
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Graph: Poisson PMF / Normal PDF Comparison {λ C  = 10, λ T  = 15}

 

From these population conditions, 500 trials were conducted with the Normal distribution 

specification models presented in section 1.4 and the Poisson distribution specification 

models introduced in the previous section.  Both an increase and decreasing in the 

treatment effect were evaluated using equal sample sizes where nT = 200 and a φ of 0.20.  

For an increase in the population treatment effect, { }15,10 TC == λλ , the z* value was 

13.6 with a corresponding variance ratio of 0.67.  A histogram comparing the model 

selection results for each distributional specification is shown in Figure 61 below. 
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Comparison of the correct model selection is startling, where even the mixture hypothesis 

conclusions are significantly improved when specifying Poisson distributions, differing 

from the results observed in the last section.  Poisson is a more parsimonious distribution 

where the normal distribution requires estimation of twice as many parameters to assess 

the same hypotheses.  This is, in essence, an application of Occam’s razor in regards to 

parametric distribution selection.   A full comparison of results, now including a σ2
rat of 

1.5 is provided in Table 20. 

Table 20.  
Performance Results Near Equivalent Probability Representations 
                (Normal and Poisson Distributions) 
   

 {λC = 10, λT = 15} {λC = 15, λT = 10} 
Performance Measure Normal Poisson Normal Poisson 

Model Level*     
Correct Model Selection 1.2% 59.8% 58.4% 73.4% 
Correct φ Hypothesis Result 26.0% 59.8% 61.2% 73.4% 
Correct σ2 Hypothesis Result 74.4% n/a 76.4% n/a 

Population Level     

biasφ̂  -3.39 -1.89 -2.54 -.88 
( )φ̂MSE  147.3 59.2 54.2 45.9 

biasd *  -.03 -.02 -.04 -.01 
( )*d̂MSE  .09 .02 .03 .02 

biasud̂  -.12 -.05 -.13 -.03 
( )udMSE ˆ  .54 .27 .21 .20 

Individual Level     
errorπ  11.38% 6.58% 6.20% 5.51% 

Class%π  87.90% 89.94% 90.75% 90.82% 
* Note: Each distribution specification resulted in 100% correct hypothesis conclusions regarding 
population means. 

 
For every performance measure, Poisson distribution specifications outperformed an 

equally well fitting Normal distribution specification. 

 

4.3 Methodological Extensions 

 Using the framework developed in Chapter 1 bolstered by the experimental study 
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 results in Chapter 3, a number of more complex research questions can be 

accommodated within this framework, where introductory development of a few 

examples is provided within this section.  Those examples include multiple treatments, 

multiple responses within a treatment, a priori consideration of covariates, and most 

promisingly multivariate responses within a latent framework.  By no means is this an 

exhaustive list of all possible extensions.  Normal distributions for the control and 

treatment populations are again used as examples in this section 

Inherently supporting more complex research questions are more complex 

models, which in a comparative model framework create a combinatoric expansion of 

less parsimonious models to evaluate.  In these cases, evaluation of all possible models is 

impractical, where the researcher must defend their choice of a reasonable and sufficient 

subset of models.  One reduction option for normal distribution specifications is to no 

longer evaluate the hypothesis for variance equality, making each population variance 

parameter freely estimated.  As a result of this decision, the set of models presented in 

Figure 3 is reduced to 
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where Equation (29) remains the basis for these constructed models.  This set of models 

still simultaneously evaluates mixture and treatment effect hypotheses.  Most 

importantly, the results and formulaic use of Appendices 2-4 can still be used for this 

model set, though Appendix 5 is no longer valid.  Unchanged is the requirement of 

researcher input for the population variance ratio to extract the appropriate likelihood 

value.  Presentation of the univariate extensions use this reduced set of models thereby 

omitting evaluation of variance equality.  

 
 
 4.3.1 Multiple Treatments

 The first research extension evaluates two different treatments, treatment A and 

B, with the same control group, where two comparative frameworks can be utilized.  The 
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simpler framework is separate analyses between the control group and each treatment due 

to independence in the administration of the treatments, shown in Figure 63.    

bTC μμ ≠
Model #1

4 Parameters

TRADITIONAL MODELS
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Figure 63. 
Model Composition Assessing Multiple Treatments (Option #1)
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 Beyond mixture hypothesis conclusions, a secondary interest is differences in 

the two treatments, whether in degree of treatment nonresponse or differences in 

population means.  Upon model selections, population estimates can be reported for each 

treatment.  , , or âφ b̂φ ( )ba
ˆˆ φφ −  do not subscribe to a normal distribution, where reporting 

of confidence intervals or inferential statement for these estimates is not readily available.  

Equation (64) can be used to generate a p-value with regard to the comparison of 

population mean estimates.      

 Resulting from independent analysis for each treatment, interpretation and 

reporting of control population parameters becomes challenging.  Under any number of 

model selection scenarios, estimates for the control population parameters will be 

different with separate analysis.  While the differences may be quite small, one option is 

to report an average from both analyses.  A more rigorous option and second framework 

is to consider both treatments simultaneously with the common control group through a 

single model selection process.  Where the previous option totaled six models and two 
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min AIC selections, this option is a single min AIC selection of 13 models.  Composition 

of these models is presented in Figure 63, where because of its complexity, the display of 

hierarchical relationships and number of parameters estimated for each model has been 

omitted.   

Figure 64. 
Model Composition Assessing Multiple Treatments (Option #2)
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Not only does a single model selection process eliminate conflicting control population 

estimates, assessing differences in treatment means follows as part of model selection.  If 

a researcher was also interested in variance equality assessments, the addition of this 

hypothesis would require an evaluation of 35 different model specifications, a near 3 fold 

increase.  Empirical evidence assessing the homogeneity of  and  can also be 

evaluated in a comparative model process with new models added to figure 63, but is not 

presented.  K-S tests should be conducted for the control sample initially and post model 

selection for each separate treatment sample as defense for the parametric distribution 

choices.  

âφ b̂φ
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 4.3.2 Multiple Responses to a Single Treatment 

 There is an obvious difference in interpretation between nonresponse to a 

treatment and multiple responses to a treatment, where distinction between these 

outcomes is not afforded in single sample experimental designs.  With the presence of a 

control group, empirical evidence for and delineation of these outcome becomes tenable, 

represented in a series of five models presented in figure 64 which considers two 

(multiple) different responses. 
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Figure 65. 
Model Composition Assessing Multiple Responses to a Single Treatment

 

Three of the models are the reduced set of normal distributional models previously 

presented where the constraints 

             }0,{ r2TT r2r1
== φμμ                 (131) 

indicate the treatment response is represented by a single distributional structure.  

 The remaining two models have been added as layers to support evaluating a 

treatment response as a mixture of two distributional responses.  These model 
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specifications posit two different treatment responses, where unlike Equations (2) or (26) 

without and with treatment response, the treatment sample is represented as the following 

distributional form 

   
T

T12rnrT2r2CnrT2T1TT

,...2,1for

)()1()()(~,...,
T

nj

fffxxx n

=

−−++= θθθX φφφφ
            (132) 

A normal distribution is specified for the 2nd treatment response.    The model at the 

bottom of Figure 64 with nrφ  constrained to 0 indicates a treatment sample without 

treatment nonresponse characterized by a mixture of two different responses while the far 

right model of Figure 64 has both treatment nonresponse and two distinct responses.    

 While the treatment effect hypothesis remains generally unchanged, the 

hypothesis regarding mixtures and a homogeneous (ID) population now creates a number 

of alternatives where 

  0,: 21 =rnrHo φφ          - Homogeneous (ID) population 
 0,0: 21 => rnraHa φφ  - Treatment Nonresponse Exists, Single Treatment  
           Response 
 0,0: 21 >= rnrbHa φφ   - Zero Treatment Nonresponse, Multiple (2) Treatment 
           Responses Exist 
 0,: 21 >rnrcHa φφ         - Treatment Nonresponse and Multiple (2) Treatment 
           Responses Exist 

 

Adding the variance equality hypothesis increases the set of models to 13.  K-S tests 

should be conducted in the same manner where this test can accommodate the most 

complex representation where the sample is a mixture of three population distributions.   
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 4.3.3 Mixture Extension Considering Covariate A Priori  

 Often, supplemental information for respondents is available affording greater 

depth in analysis.  Should a mixture model be advocated from this process, post hoc 

analysis of posterior probabilities of group membership, responders and nonresponders, 

based on these covariates provide tremendous insight.  In the comparative model 

strategies presented assessing treatment nonresponse and the subsequent research 

extensions, determination of a population mixing proportion was based only on an 

observed response.    

 Consideration of covariates in an a priori fashion, however, is a fundamentally 

different issue and quite challenging.  Such a decision implies with the same treatment 

response, respondents with differing covariate information will have different likelihoods 

of being classified a nonrespondent.  This changes the two sample construct maintained 

throughout to one focused on different subgroups of the treatment sample.  Such a change 

enables each subpopulation to have different proportions of treatment nonresponse for the 

same treatment.   Figure 66 provides an example where the interest in the treatment group 

is divided by gender and handedness, which also requires separation of the control 

sample to sub-populations by the same covariates. 

CONSIDERATION OF A PRIORI COVARIATE INFORMATION 
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Figure 66. 
Mixture Extension Considering Covariates A Priori
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 Unlike ANOVA, distributional normality is not required nor is equality of 

variance, but the researcher is now required to specify control and treatment parametric 

distributions for each subpopulation.  Division of these samples makes the choice of 

parametric distributions more difficult and reduces the overall information (power) 

available to the min AIC selection, conducted K times for each K subpopulation shown in 

Figure 67. 
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Separate K-S tests are required for each subpopulation.  Comparison of subpopulation 

treatment means can be accomplished with traditional statistical tests with an appropriate 

multiple comparison correction.   There is not any type of statistical test available to 

compare  across subpopulations though competing models could be assessed in 

evaluating homogeneity of  in selected pairs. 

φ̂

kφ̂
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 The inclusion of covariate information in analysis is recommended post model 

selection from the set of models represented in Figure 62 or the more extensive set in 

Figure 3 only if treatment nonresponse is supported.   In such cases, no longer is 

dependent variable the treatment response; instead, it is replaced by either the posterior 

probability of being a treatment nonresponder using Equation (79) or the dichotomous 

treatment class assignment measure per respondent from Equation (82). 

 

 4.3.4 Multivariate Responses under a Latent Construct 

The last two sample extension example occurs when a researcher has multiple 

measured outcomes.  This section is not a complete development, only a sufficient 

introduction.  Proposed is a latent variable or factor approach where the measured 

outcomes collectively fix a factor in location and scale (Hancock, 2004).   This approach 

fundamentally differs from multivariate analysis of variance (MANOVA) which provides 

empirical evidence on composites of measured variables. Hancock (2003) and Cole 

(1993) provided greater clarity on the distinctions between MANOVA and latent variable 

methods.  Currently available software, such as MIXFIT, offers a MANOVA solution 

evaluating mixtures within a single sample (McLachlan, 1998). 

  Experimental design with latent variables has a much shorter history, yet a 

number of software applications such as LISREL, EQS, and MPlus were developed in 

response to the increased popularity of these methods.  The research interest in latent 

means differences changes the analysis from strictly covariance structures to augmented 

moment matrices or structured means modeling (SMM) (Sörbom, 1974), facilitating 

hypothesis evaluation directly at the construct level.  With consideration of treatment 
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nonresponse at the factor level, the method of empirical evidence similarly transitions 

from inferential statements on model parameter estimates to an omnibus, information 

based selection process from competing models.  Of the SMM modeling software 

programs mentioned, only MPlus accommodates mixtures within a particular sample.   

Particular to MPlus, the most recent 5.1 version allows constraints to be specified 

across populations characterized by multivariate samples.  There are, however, three 

distinctions which prevent this program from supporting the proposed methodology: 

a. While MPlus allows intercept and factor loadings constraints across groups 

and specification of a number of latent classes in the treatment group, it does 

not allow the properties of one of the latent classes to be fixed, crucial to 

assessing treatment nonresponse.  Shown subsequently in Figure 68, this 

coincides with one of the latent classes from the treatment sample to be  

                            (133) ),0(Nor~ CControl1ClassF2, σθθ =

where the control group latent factor, assumed normally distributed, is 

centered at 0. 

b. Discussed in section 2.1.3, successful convergence takes advantage of the 

hierarchical nesting in a series of models, requiring an improvement on a         

-2ln(L) value.  MPlus does not incorporate results from other model 

representations in parameter estimation providing an extra degree of insurance 

against local optimum solutions. 

c. Most importantly, MPlus relies on robust statistics resulting from a Satorra-

Bentler correction, shown to provide more accurate inferential statements on 

model parameters for data departures from multivariate normality (Curran, 
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West, & Finch, 1992; Satorra, 1994, 2003).  These robust statistics do not 

provide inferences on the mixing proportion estimate, where instead a 

difference in latent means is used as a proxy in defense of its existence.  

Calculation of these robust statistics are a function of the data structure, the 

model implied augmented covariance structure, and the Jacobian matrix.  This 

becomes confusing with a multiple model assessment where there would be 

different corrections per model specification altering the -2ln(L) values used 

in AIC construction.  Multivariate normality, however, is exclusively a data 

condition which is unchanged for all these models.   A min AIC strategy 

comparing various model representations as an omnibus selection replaces 

utilization of robust statistics defending results intended for a single model 

specification.  Robust statistics may be subsequently used assessing particular 

factor loadings and intercepts on the selected model.  

As an example, consider an experiment involving a series of r = 3 measured indicators 

where 

             CCCCnC2C1C ....,2,1for),(Nor~,...,
C

ni == ΣμxxxX rrrr               (134) 

represents a nC by 3 matrix of responses for a control sample of size nC characterized by a 

multivariate normal distribution.  Independence is assumed between respondents where 

after accounting for the effects of the single latent variable, the responses are unrelated.  

For the treatment group, let  

      

),(Nor)1(),(Nor~

,..,2,1for),(~,...,,

TTCC

TTTTnT2T1T T

ΣμΣμ

ΣμxxxX
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represent a nT by 3 matrix of responses for a treatment sample of size nT characterized by 

a multivariate normal distribution.  The same assumptions apply for the treatment sample, 

where a representation of this latent structure is illustrated in Figure 68. 
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Figure 68. 
Mixture Extension for Multivariate Responses Under a Single Latent Variable Construct

 

With traditional structured means models, where the number of latent classes, C, is one, 

each latent variable is assumed to follow a normal distribution represented by its 

particular sample     

                        (136) 
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When evaluating model representations which posit treatment nonresponse, C becomes 2, 

represented as 
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The two structural components presented in Figure 68 are considered a single model for 

parameter estimation.  Some comments relative to this model: 

a. The *’s represent parameters estimated using maximum likelihood, where 

constraints are allowed across structural components. 

b. The solid lines, , relate the variance of the measured variables to its 

respective latent variable, F1 or F2.  Latent variables are unmeasured by 

definition with no relative location or scale, complicated somewhat by 

assuming distributional normality.  Because normality is assumed and its first 

two moments are independent, each distributional parameter must be “fixed” 

separately.  Setting the relationship, often referred to as a loading, between X3 

and its appropriate factor to 1 fixes each factor’s variance.  Researchers 

commonly constrain the loadings of the same measured indicator in both 

structural components.   

b
r

c. The dashed lines, a
r

, relate the mean of the measured variables to the latent 

variables, F1 or F2.  To simplify these relations, loadings between the 

measured variables and the intercept term, represented as a triangle in Figure 

68, are constrained to be the same for both structural components.  Second, 

the interest is in differences between the factor means, not individual values.  

To facilitate assessing these differences while fixing location, the loading 

between the intercept and F1 is set to 0.  This fixes the F1 location, 01 =Fμ , 

creating a baseline to compare the F2 location, 2Fμ . 

 Similar hypotheses from Chapter 1 are simultaneously considered; existence of 

treatment nonresponse, now at the latent level, differences in the factor means, and 
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equality of factor variances.  The interest in latent means necessitates analysis of 

augmented moment matrices, which take the form 
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for the augmented sample structure and 
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representing the model implied augmented moment structure, which are more 

conveniently represented as a series of structural equations.  These structural equations 

contain the “*” values, the  and ba
r r

 loadings, subsequently estimated when replacing 

elements within the model implied augmented matrix.   Maximum likelihood is still used 

as the mechanism for parameter estimation, where first  

                     ]))ˆ()]ˆ([([tr
2
1 21

AAA
−−= θΣθΣSF                (140) 

is calculated to provide the general form of the likelihood function for a single structural 

component model as  

              nFL =)(θ           (141) 

where tr is the trace of the r +1 by r +1 augmented matrix consisting of the sample 

augmented moment matrix  and model implied augmented moment matrix . AS )ˆ(A θΣ
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  While the same AIC comparison can be used, models which posit treatment 

nonresponse cannot utilize summary representations in an augmented form for parameter 

estimation.  Bollen (1989) provides the general form of the likelihood function for each 

individual in a single sample 
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where p represent the number of parameters to be estimated for a particular model and 

the dimension of each vector equals the number of measured indicators, r.  A natural log 

transformation can be performed, and multiplying each side by -2 results in 

              ∑
=

−∑−+∑+=−
n

i
iinnpL

1
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which is an AIC component.  For a single sample, using similar notation from Figure 68, 

structural relationships exist where 

                   Fμaxμ rrr
+=                 (144) 

and  

          Θbb +=∑ '2
rr

Fσ        (145) 

where Θ  represents the dimension r covariance matrix of the errors of the form  
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with zeros in the off diagonals assuming their independence.  These equations provide the 

framework to develop the likelihood function for two sample designs with treatment 

nonresponse on the latent variable.   
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 Under a multivariate scenario, the K-S tests utilized as a means of defending the 

parametric distributions are no longer available.   Annotated in Equation (134), each 

population is assumed to follow a multivariate normal distribution.  Visualizing or even 

describing a parametric shape in more than two dimensions is challenging, where Mardia 

(1970, 1980) has advocated a series of omnibus tests evaluating this condition.  Other less 

notable tests are also available (Mudholkar, 1992; Doornik, 1994).  All of these methods 

evaluate both skewness and kurtosis which involve 3rd and 4th order moments in various 

combinations in their calculations.   

 With Mardia tests recommended as the multivariate replacement to the K-S tests, 

calculation of the test statistics requires a few steps.  Considering first the control sample, 

the data is first centered where  

 riii
c
c ,..,1for)( =−= xxx rr        (147) 

and squared by 

             
n

c
c

c
c xx

M
rr '

mat =        (148) 

resulting in a r by r matrix.  This matrix is then transformed to a nC by nC matrix whose 

result is used in the calculation of the Mardia skewness and kurtosis test statistics by  
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Calculation of the skewness test statistic is 
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which asymptotically follows a chi-square distribution whose degrees of freedom equals 
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The kurtosis test statistic is calculated 
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which asymptotically subscribes to a standard normal distribution.  These test statistics 

are the basis evaluating the following hypothesis 

             )()(: *
CC xFxFHo rr

=  - the data subscribes to a multivariate normal distribution 
            )()(: *

CC xFxFHa rr
≠  - the data does not subscribe to a multivariate normal 

                                                 distribution  

where the null hypothesis would be rejected if either test statistic exceeded its respective 

critical value against a specified Type I error control. 

 Evaluating a similar hypothesis with the treatment sample requires an additional 

step where, unlike K-S tests, Mardia’s tests are not inherently supportive of mixtures.   

Assessing multivariate normality of the treatment sample can be conducted by weighting 

each individual’s set of responses according to the complement of their posterior 

probability of being classified as a treatment nonrespondent represented as  

  )ˆ1( jj πω −=         (153) 

determined post min AIC selection using Bayes’ theorem.  Weighting cases or 

respondents is common in surveys to account for oversampling, but applied in this 

manner separates any nonresponse impact from the sample establishing pseudo ID 

conditions.  Any model selection failing to support treatment nonresponse results in each 

respondent’s weighting as 1.  The construction and evaluation of the multivariate 
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normality hypothesis for the weighted treatment sample proceeds in the same manner 

outlined above.   

 

4.4 Closing Remarks 

The development and proliferation of computers transitioned finite mixture 

models from theoretical development to practical application by handling the complex 

process of parameter estimation.  More recently, significant advances in computing 

power and customizable programming packages have enabled comprehensive empirical 

studies in justifying their utility and applicability across many fields of research.  

Consequently, the collective result has been an increased popularity for this newer type of 

modeling where its integration with or replacement of traditional techniques has only 

begun to be developed. 

Similarly, the use of information criterion methods and assessment of multiple 

representations of a data structure is much more available now than in recent years.  

Assessing multiple representations in an omnibus fashion provides many advantages over 

probabilistic inferences on single parameter estimates burdened with normality 

requirements and the strong assumption of a correct model specification.  As shown, 

information criterion measures can be used as an alternative to basic population means 

and variance hypothesis tests, assessed simultaneously, without requiring multiple 

comparison corrections, or conditioning results on a subjectively chosen Type I error 

control.   For those uneasy about subscribing to a data driven model selection strategy, 

this is the same data providing empirical evidence for the inferential testing of multiple 

model parameter estimates. 
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As research questions become more involved, so does the corresponding 

complexity of models required to provide empirical evidence.  It should naturally follow, 

therefore, to obtain evidence in an omnibus sense rather than dissect complex models to a 

series of independent hypothesis tests of parameter estimates that are invariably related.  

When considering finite mixture models, such dissection can not be done, leaving an 

omnibus assessment as the only available technique to obtain empirical evidence.  

Finally, and most exciting, are the numerous extensions available from the basic 

methodological construct advocated in this dissertation, particularly the multivariate 

extension.    
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Appendix 1: Normal Distribution Experimental Study Conditions 
 

 
VARIANCE RATIO = 1.0 

 
Empirical Conditions for σ 2

rat  = 1.00, n C  = n T  at φ  = 0.00

      n T  = 50      n T  = 100      n T  = 200      n T = 350
z* d* σ C, σ T d* σ C, σ T d* σ C, σ T d* σ C, σ T

3 0.60 16.65 0.42 23.60 0.30 33.30      d*  < 0.25
4 0.80 12.49 0.57 17.66 0.40 25.00 0.30 33.10
7 1.40 7.14 0.99 10.10 0.70 14.30 0.53 18.89

10 2.00 5.00 1.41 7.07 1.00 10.00 0.76 13.23
15 3.00 3.33 2.12 4.71 1.50 6.66 1.13 8.82
20 4.00 2.50 2.82 3.54 2.00 5.00 1.51 6.61
25        d*  > 4 3.53 2.83 2.50 4.00 1.89 5.29
30        d*  > 4        d*  > 4 3.00 3.33 2.27 4.41
40        d*  > 4        d*  > 4 4.00 2.50 3.02 3.31  

 
Empirical Conditions for σ 2

rat  = 1.00, n C  = n T  at φ  = 0.05

      n T  = 50      n T  = 100      n T  = 200      n T = 350
z* d* σ C, σ T d* σ C, σ T d* σ C, σ T d* σ C, σ T

3 0.60 16.65 0.42 23.55 0.30 33.30      d*  < 0.25
4 0.80 12.47 0.57 17.65 0.40 24.95 0.30 33.00
7 1.40 7.13 0.99 10.09 0.70 14.30 0.53 18.88

10 2.00 4.99 1.42 7.06 1.00 10.00 0.76 13.21
15 3.00 3.33 2.12 4.71 1.50 6.66 1.14 8.81
20 4.00 2.50 2.83 3.53 2.00 4.99 1.51 6.61
25        d*  > 4 3.55 2.82 2.50 4.00 1.89 5.28
30        d*  > 4        d*  > 4 3.00 3.33 2.27 4.40
40        d*  > 4        d*  > 4 4.00 2.50 3.03 3.30  

 
Empirical Conditions for σ 2

rat  = 1.00, n C  = n T  at φ  = 0.10

      n T  = 50      n T  = 100      n T  = 200      n T = 350
z* d* σ C, σ T d* σ C, σ T d* σ C, σ T d* σ C, σ T

3 0.60 16.60 0.42 23.60 0.30 33.20      d*  < 0.25
4 0.80 12.45 0.57 17.60 0.40 24.90 0.30 32.90
7 1.41 7.11 1.00 10.05 0.70 14.22 0.53 18.80

10 2.01 4.97 1.42 7.03 1.01 9.95 0.76 13.16
15 3.01 3.32 2.13 4.69 1.51 6.63 1.14 8.77
20 4.00 2.49 2.84 3.52 2.01 4.97 1.52 6.58
25        d*  > 4 3.56 2.81 2.51 3.98 1.90 5.26
30        d*  > 4        d*  > 4 3.01 3.32 2.28 4.39
40        d*  > 4        d*  > 4 4.00 2.49 3.04 3.29  
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Appendix 1: Normal Distribution Experimental Study Conditions 
(continued) 

 
 

Empirical Conditions for σ 2
rat  = 1.00, n C  = n T  at φ  = 0.20

      n T  = 50      n T  = 100      n T  = 200      n T = 350
z* d* σ C, σ T d* σ C, σ T d* σ C, σ T d* σ C, σ T

3 0.61 16.35 0.43 23.10 0.31 32.70      d*  < 0.25
4 0.82 12.25 0.58 17.30 0.41 24.50 0.31 32.40
7 1.43 7.00 1.01 9.90 0.71 14.00 0.54 18.51

10 2.04 4.90 1.44 6.93 1.02 9.80 0.77 12.96
15 3.06 3.27 2.16 4.62 1.53 6.53 1.16 8.64
20        d*  > 4 2.89 3.46 2.04 4.90 1.54 6.48
25        d*  > 4 3.61 2.77 2.55 3.92 1.93 5.18
30        d*  > 4        d*  > 4 3.06 3.27 2.31 4.32
40        d*  > 4        d*  > 4        d*  > 4 3.09 3.24  

 
 

Empirical Conditions for σ 2
rat  = 1.00, n C  = n T  at φ  = 0.35

      n T  = 50      n T  = 100      n T  = 200      n T = 350
z* d* σ C, σ T d* σ C, σ T d* σ C, σ T d* σ C, σ T

3 0.64 15.55 0.45 22.10 0.32 31.20      d*  < 0.25
4 0.86 11.67 0.60 16.55 0.43 23.40 0.32 31.00
7 1.50 6.66 1.06 9.45 0.75 13.39 0.56 17.70

10 2.14 4.67 1.51 6.63 1.07 9.37 0.81 12.39
15 3.22 3.11 2.26 4.42 1.60 6.25 1.22 8.20
20        d*  > 4 3.02 3.31 2.14 4.68 1.61 6.20
25        d*  > 4 3.77 2.65 2.67 3.75 2.02 4.95
30        d*  > 4        d*  > 4 3.21 3.12 2.42 4.13
40        d*  > 4        d*  > 4        d*  > 4 3.23 3.10  

 
 

Empirical Conditions for σ 2
rat  = 1.00, n C  = n T  at φ  = 0.50

      n T  = 50      n T  = 100      n T  = 200      n T = 350
z* d* σ C, σ T d* σ C, σ T d* σ C, σ T d* σ C, σ T

3 0.69 14.45 0.49 20.40 0.35 28.90 0.26 38.20
4 0.92 10.83 0.65 15.30 0.46 21.65 0.35 28.65
7 1.62 6.19 1.14 8.75 0.81 12.37 0.61 16.37

10 2.31 4.33 1.63 6.13 1.15 8.66 0.87 11.45
15 3.46 2.89 2.45 4.08 1.73 5.77 1.31 7.65
20        d*  > 4 3.27 3.06 2.31 4.33 1.75 5.73
25        d*  > 4        d*  > 4 2.89 3.46 2.18 4.58
30        d*  > 4        d*  > 4 3.46 2.89 2.62 3.82
40        d*  > 4        d*  > 4        d*  > 4 3.50 2.86  
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Appendix 1: Normal Distribution Experimental Study Conditions 
(continued) 

 
 

VARIANCE RATIO = 0.50 
 

Empirical Conditions for σ 2
rat  = 0.50, n C  = n T  at φ  = 0.00

  n T  = 100  n T = 200   n T  = 350
z* d* σ C  σ T d* σ C σ T d* σ C σ T

3 0.42 19.25 27.22 0.30 27.25 38.54 d*  < 0.25
4 0.57 14.42 20.39 0.40 20.40 28.85 0.30 27.00 38.18
7 1.00 8.25 11.67 0.71 11.66 16.49 0.54 15.43 21.82

10 1.44 5.77 8.16 1.01 8.17 11.55 0.77 10.80 15.27
15 2.15 3.85 5.44 1.52 5.44 7.69 1.15 7.20 10.18
20 2.87 2.89 4.09 2.03 4.08 5.77 1.53 5.40 7.64
25 3.59 2.31 3.27 2.53 3.27 4.62 1.92 4.32 6.11
30 d*  > 4 3.05 2.72 3.85 2.30 3.60 5.09
40 d*  > 4 d*  > 4 3.07 2.70 3.82  

 
Empirical Conditions for σ 2

rat  = 0.50, n C  = n T  at φ  = 0.05

  n T  = 100  n T = 200   n T  = 350
z* d* σ C  σ T d* σ C σ T d* σ C σ T

3 0.43 19.05 26.94 0.30 27.00 38.18 d*  < 0.25
4 0.58 14.30 20.22 0.41 20.20 28.57 0.31 26.75 37.83
7 1.02 8.17 11.55 0.72 11.55 16.33 0.55 15.29 21.62

10 1.46 5.72 8.09 1.03 8.09 11.44 0.78 10.70 15.13
15 2.19 3.81 5.39 1.55 5.39 7.62 1.17 7.13 10.08
20 2.92 2.86 4.04 2.07 4.04 5.71 1.56 5.35 7.57
25 3.65 2.29 3.24 2.59 3.23 4.57 1.95 4.28 6.05
30 d*  > 4 3.09 2.70 3.82 2.35 3.56 5.03
40 d*  > 4 d*  > 4 3.13 2.67 3.78  

 
Empirical Conditions for σ 2

rat  = 0.50, n C  = n T  at φ  = 0.10

  n T  = 100  n T = 200   n T  = 350
z* d* σ C  σ T d* σ C σ T d* σ C σ T

3 0.44 18.85 26.66 0.31 26.60 37.62 d*  < 0.25
4 0.60 14.13 19.98 0.42 20.00 28.28 0.31 26.40 37.34
7 1.04 8.07 11.41 0.74 11.41 16.14 0.56 15.10 21.35

10 1.49 5.65 7.99 1.05 7.99 11.30 0.80 10.57 14.95
15 2.24 3.77 5.33 1.58 5.33 7.54 1.20 7.05 9.97
20 2.98 2.83 4.00 2.11 4.00 5.66 1.59 5.29 7.48
25 3.73 2.26 3.20 2.63 3.20 4.53 1.99 4.23 5.98
30 d*  > 4 3.17 2.66 3.76 2.39 3.52 4.98
40 d*  > 4 d*  > 4 3.19 2.64 3.73  
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Appendix 1: Normal Distribution Experimental Study Conditions 
(continued) 

 
 

Empirical Conditions for σ 2
rat  = 0.50, n C  = n T  at φ  = 0.20

  n T  = 100  n T = 200   n T  = 350
z* d* σ C  σ T d* σ C σ T d* σ C σ T

3 0.46 18.25 25.81 0.33 25.80 36.49 d*  < 0.25
4 0.63 13.70 19.37 0.44 19.38 27.41 0.33 25.60 36.20
7 1.10 7.82 11.06 0.77 11.07 15.66 0.59 14.65 20.72

10 1.57 5.47 7.74 1.11 7.75 10.96 0.84 10.25 14.50
15 2.35 3.65 5.16 1.66 5.16 7.30 1.26 6.83 9.66
20 3.13 2.74 3.87 2.22 3.87 5.47 1.68 5.12 7.24
25 3.92 2.19 3.10 2.77 3.10 4.38 2.09 4.10 5.80
30 d*  > 4 3.33 2.58 3.65 2.51 3.42 4.84
40 d*  > 4 d*  > 4 3.35 2.56 3.62  

 
 

Empirical Conditions for σ 2
rat  = 0.50, n C  = n T  at φ  = 0.35

  n T  = 100  n T = 200   n T  = 350
z* d* σ C  σ T d* σ C σ T d* σ C σ T

3 0.51 17.05 24.11 0.36 24.10 34.08 d*  < 0.25
4 0.69 12.80 18.10 0.48 18.10 25.60 0.36 23.90 33.80
7 1.21 7.31 10.34 0.85 10.34 14.62 0.64 13.67 19.33

10 1.72 5.12 7.24 1.22 7.24 10.24 0.92 9.57 13.53
15 2.58 3.41 4.82 1.82 4.83 6.83 1.38 6.38 9.02
20 3.44 2.56 3.62 2.43 3.62 5.12 1.84 4.78 6.76
25 d*  > 4 3.05 2.89 4.09 2.30 3.83 5.42
30 d*  > 4 3.66 2.41 3.41 2.76 3.19 4.51
40 d*  > 4 d*  > 4 3.69 2.39 3.38  

 
 

Empirical Conditions for σ 2
rat  = 0.50, n C  = n T  at φ  = 0.50

  n T  = 100  n T = 200   n T  = 350
z* d* σ C  σ T d* σ C σ T d* σ C σ T

3 0.58 15.45 21.85 0.41 21.80 30.83 d*  < 0.25
4 0.78 11.58 16.38 0.55 16.35 23.12 0.41 21.65 30.62
7 1.37 6.61 9.35 0.97 9.35 13.22 0.73 12.38 17.51

10 1.96 4.63 6.55 1.38 6.55 9.26 1.05 8.66 12.25
15 2.93 3.09 4.37 2.08 4.36 6.17 1.57 5.77 8.16
20 3.92 2.31 3.27 2.77 3.27 4.62 2.09 4.33 6.12
25 d*  > 4 3.46 2.62 3.71 2.62 3.46 4.89
30 d*  > 4 d*  > 4 3.14 2.89 4.09
40 d*  > 4 d*  > 4 d*  > 4  
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Appendix 1: Normal Distribution Experimental Study Conditions 
(continued) 

 
 

VARIANCE RATIO = 2.0 
 

Empirical Conditions for σ 2
rat  = 2.00, n C  = n T  at φ  = 0.00

  n T  = 100  n T = 200   n T  = 350
z* d* σ C  σ T d* σ C σ T d* σ C σ T

3 0.42 27.22 19.25 0.30 38.54 27.25 d*  < 0.25
4 0.57 20.39 14.42 0.40 28.85 20.40 0.30 38.18 27.00
7 1.00 11.67 8.25 0.71 16.49 11.66 0.54 21.82 15.43

10 1.44 8.16 5.77 1.01 11.55 8.17 0.77 15.27 10.80
15 2.15 5.44 3.85 1.52 7.69 5.44 1.15 10.18 7.20
20 2.87 4.09 2.89 2.03 5.77 4.08 1.53 7.64 5.40
25 3.59 3.27 2.31 2.53 4.62 3.27 1.92 6.11 4.32
30 d*  > 4 3.05 3.85 2.72 2.30 5.09 3.60
40 d*  > 4 d*  > 4 3.07 3.82 2.70  

 
Empirical Conditions for σ 2

rat  = 2.00, n C  = n T  at φ  = 0.05

  n T  = 100  n T = 200   n T  = 350
z* d* σ C  σ T d* σ C σ T d* σ C σ T

3 0.42 27.40 19.37 0.30 38.80 27.44 d*  < 0.25
4 0.57 20.55 14.53 0.39 29.10 20.58 0.30 38.50 27.22
7 0.99 11.75 8.31 0.70 16.61 11.75 0.53 21.99 15.55

10 1.41 8.22 5.81 1.00 11.63 8.22 0.75 15.39 10.88
15 2.12 5.48 3.87 1.50 7.76 5.49 1.13 10.25 7.25
20 2.83 4.11 2.91 2.00 5.82 4.12 1.51 7.69 5.44
25 3.53 3.29 2.33 2.50 4.65 3.29 1.89 6.15 4.35
30 d*  > 4 2.99 3.88 2.74 2.26 5.13 3.63
40 d*  > 4 3.99 2.91 2.06 3.02 3.85 2.72  

 
Empirical Conditions for σ 2

rat  = 2.00, n C  = n T  at φ  = 0.10

  n T  = 100  n T = 200   n T  = 350
z* d* σ C  σ T d* σ C σ T d* σ C σ T

3 0.41 27.50 19.45 0.29 39.00 27.58 d*  < 0.25
4 0.56 20.65 14.60 0.39 29.20 20.65 0.29 38.60 27.29
7 0.98 11.80 8.34 0.69 16.70 11.81 0.52 22.09 15.62

10 1.39 8.26 5.84 0.99 11.69 8.27 0.75 15.46 10.93
15 2.09 5.51 3.90 1.48 7.79 5.51 1.12 10.31 7.29
20 2.79 4.13 2.92 1.97 5.84 4.13 1.49 7.73 5.47
25 3.48 3.31 2.34 2.46 4.68 3.31 1.86 6.18 4.37
30 d*  > 4 2.96 3.89 2.75 2.24 5.15 3.64
40 d*  > 4 3.94 2.92 2.06 2.98 3.87 2.74  
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Appendix 1: Normal Distribution Experimental Study Conditions 
(continued) 

 
 

Empirical Conditions for σ 2
rat  = 2.00, n C  = n T  at φ  = 0.20

  n T  = 100  n T = 200   n T  = 350
z* d* σ C  σ T d* σ C σ T d* σ C σ T

3 0.41 27.60 19.52 0.29 39.00 27.58 d*  < 0.25
4 0.55 20.70 14.64 0.38 29.30 20.72 0.29 38.70 27.37
7 0.96 11.83 8.37 0.68 16.72 11.82 0.51 22.13 15.65

10 1.37 8.28 5.85 0.97 11.71 8.28 0.73 15.49 10.95
15 2.05 5.52 3.90 1.45 7.81 5.52 1.10 10.33 7.30
20 2.74 4.14 2.93 1.93 5.86 4.14 1.46 7.75 5.48
25 3.42 3.31 2.34 2.42 4.69 3.32 1.83 6.20 4.38
30 d*  > 4 2.90 3.90 2.76 2.19 5.17 3.66
40 d*  > 4 3.87 2.93 2.07 2.93 3.87 2.74  

 
 

Empirical Conditions for σ 2
rat  = 2.00, n C  = n T  at φ  = 0.35

  n T  = 100  n T = 200   n T  = 350
z* d* σ C  σ T d* σ C σ T d* σ C σ T

3 0.40 27.10 19.16 0.29 38.30 27.08 d*  < 0.25
4 0.54 20.35 14.39 0.38 28.80 20.36 0.29 38.05 26.91
7 0.95 11.63 8.22 0.67 16.45 11.63 0.51 21.75 15.38

10 1.36 8.14 5.76 0.96 11.51 8.14 0.73 15.22 10.76
15 2.04 5.43 3.84 1.44 7.67 5.42 1.09 10.15 7.18
20 2.72 4.07 2.88 1.92 5.76 4.07 1.45 7.61 5.38
25 3.39 3.26 2.31 2.40 4.60 3.25 1.81 6.09 4.31
30 d*  > 4 2.88 3.84 2.72 2.18 5.07 3.59
40 d*  > 4 3.84 2.88 2.04 2.90 3.81 2.69  

 
 

Empirical Conditions for σ 2
rat  = 2.00, n C  = n T  at φ  = 0.50

  n T  = 100  n T = 200   n T  = 350
z* d* σ C  σ T d* σ C σ T d* σ C σ T

3 0.41 25.80 18.24 0.29 36.50 25.81 d*  < 0.25
4 0.56 19.35 13.68 0.39 27.40 19.37 0.30 36.20 25.60
7 0.97 11.07 7.83 0.69 15.65 11.07 0.52 20.70 14.64

10 1.39 7.74 5.47 0.99 10.95 7.74 0.74 14.49 10.25
15 2.09 5.17 3.66 1.48 7.31 5.17 1.12 9.66 6.83
20 2.79 3.87 2.74 1.97 5.48 3.87 1.49 7.25 5.13
25 3.48 3.10 2.19 2.46 4.38 3.10 1.86 5.80 4.10
30 d*  > 4 2.96 3.65 2.58 2.23 4.83 3.42
40 d*  > 4 3.94 2.74 1.94 2.98 3.62 2.56  
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Appendix 1: Normal Distribution Experimental Study Conditions 

(continued) 
 

 
VARIANCE RATIO = 0.33 

 
Empirical Conditions for σ 2

rat  = 0.33, n C = n T  at n T = 100

   φ  = 0.0 φ = 0.10 φ = 0.20   φ = 0.35
z* d* σ C  σ T d* σ C σ T d* σ C σ T d* σ C σ T

3 0.42 16.65 28.84 0.45 16.20 28.06 0.48 15.55 26.93 0.54 14.40 24.94
4 0.57 12.50 21.65 0.60 12.15 21.04 0.64 11.67 20.21 0.72 10.80 18.71
7 0.99 7.14 12.37 1.05 6.94 12.02 1.12 6.67 11.55 1.26 6.18 10.70

10 1.41 5.00 8.66 1.50 4.85 8.40 1.60 4.67 8.09 1.80 4.32 7.48
15 2.12 3.33 5.77 2.24 3.24 5.61 2.40 3.11 5.39 2.70 2.88 4.99
20 2.83 2.50 4.33 2.99 2.43 4.21 3.19 2.34 4.05 3.60 2.16 3.74
25 3.54 2.00 3.46 3.74 1.94 3.36 d*  > 4 d*  > 4
30 d*  > 4 d*  > 4 d*  > 4 d*  > 4
40 d*  > 4 d*  > 4 d*  > 4 d*  > 4  

 
 

Empirical Conditions for σ 2
rat  = 0.33, n C = n T  at n T = 200

   φ  = 0.0 φ = 0.10 φ = 0.20   φ = 0.35
z* d* σ C  σ T d* σ C σ T d* σ C σ T d* σ C σ T

3 0.30 23.60 40.88 0.32 22.90 39.66 0.34 22.00 38.11 0.38 20.40 35.33
4 0.40 17.68 30.62 0.42 17.15 29.70 0.45 16.50 28.58 0.51 15.28 26.47
7 0.70 10.10 17.49 0.74 9.81 16.99 0.79 9.44 16.35 0.89 8.73 15.12

10 1.00 7.07 12.25 1.06 6.86 11.88 1.13 6.60 11.43 1.27 6.11 10.58
15 1.50 4.71 8.16 1.58 4.58 7.93 1.69 4.40 7.62 1.91 4.07 7.05
20 2.00 3.53 6.11 2.12 3.43 5.94 2.26 3.30 5.72 2.54 3.06 5.30
25 2.50 2.83 4.90 2.64 2.75 4.76 2.82 2.64 4.57 3.19 2.44 4.23
30 3.00 2.36 4.09 3.17 2.29 3.97 3.39 2.20 3.81 3.82 2.04 3.53
40 d*  > 4 d*  > 4 d*  > 4 d*  > 4  
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Appendix 1: Normal Distribution Experimental Study Conditions 
(continued) 

 
 

VARIANCE RATIO = 3.0 
 

Empirical Conditions for σ 2
rat  = 3.00, n C = n T  at n T = 100

   φ  = 0.0 φ = 0.10 φ = 0.20   φ = 0.35
z* d* σ C  σ T d* σ C σ T d* σ C σ T d* σ C σ T

3 0.42 28.84 16.65 0.41 29.50 17.03 0.39 29.80 17.21 0.38 29.80 17.21
4 0.57 21.65 12.50 0.54 22.10 12.76 0.52 22.38 12.92 0.51 22.35 12.90
7 0.99 12.37 7.14 0.95 12.63 7.29 0.91 12.78 7.38 0.89 12.76 7.37

10 1.41 8.66 5.00 1.35 8.84 5.10 1.31 8.94 5.16 1.27 8.93 5.16
15 2.12 5.77 3.33 2.03 5.89 3.40 1.96 5.96 3.44 1.90 5.95 3.44
20 2.83 4.33 2.50 2.70 4.42 2.55 2.61 4.47 2.58 2.53 4.46 2.57
25 3.54 3.46 2.00 3.38 3.54 2.04 3.26 3.58 2.07 3.16 3.57 2.06
30 d*  > 4 d*  > 4 3.92 2.98 1.72 3.79 2.98 1.72
40 d*  > 4 d*  > 4 d*  > 4 d*  > 4  

 
 

Empirical Conditions for σ 2
rat  = 3.00, n C = n T  at n T = 200

   φ  = 0.0 φ = 0.10 φ = 0.20   φ = 0.35
z* d* σ C  σ T d* σ C σ T d* σ C σ T d* σ C σ T

3 0.30 40.88 23.60 0.29 41.70 24.08 0.28 42.10 24.31 0.27 42.10 24.31
4 0.40 30.62 17.68 0.38 31.25 18.04 0.37 31.60 18.24 0.36 31.60 18.24
7 0.70 17.50 10.10 0.67 17.85 10.31 0.65 18.08 10.44 0.63 18.05 10.42

10 1.00 12.25 7.07 0.96 12.50 7.22 0.92 12.65 7.30 0.89 12.63 7.29
15 1.50 8.17 4.72 1.43 8.34 4.82 1.39 8.43 4.87 1.34 8.42 4.86
20 2.00 6.12 3.53 1.91 6.25 3.61 1.85 6.32 3.65 1.79 6.32 3.65
25 2.50 4.90 2.83 2.39 5.00 2.89 2.31 5.06 2.92 2.24 5.05 2.92
30 3.00 4.08 2.36 2.87 4.17 2.41 2.77 4.22 2.44 2.68 4.21 2.43
40 4.00 3.06 1.77 3.82 3.13 1.81 3.70 3.16 1.82 3.58 3.16 1.82  
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Appendix 2: Correct Treatment Effect Hypothesis Conclusion % 
 
 
 

           z*  = 3          z* = 4           z*  = 7

             n T              n T              n T

σ 2
rat φ 50 100 200 350 50 100 200 350 50 100 200 350

0.33 0 95.6 96.2 100.0 100.0 100.0 100.0
10 92.2 93.2 98.6 98.8 100.0 100.0
20 90.8 94.4 99.6 99.6 100.0 100.0
35 92.2 90.4 98.4 98.6 100.0 100.0

0.50 0 95.2 93.8 99.6 100.0 99.4 100.0 100.0 100.0
5 96.0 92.2 99.4 98.8 99.6 100.0 100.0 100.0

10 93.0 91.4 99.6 99.2 99.8 100.0 100.0 100.0
20 89.8 92.4 96.6 98.4 97.4 100.0 100.0 100.0
35 85.0 85.8 96.4 96.6 95.8 100.0 100.0 100.0
50 78.8 81.0 92.4 92.0 94.0 100.0 100.0 100.0

1.00 0 94.4 95.0 94.4 99.4 99.0 99.8 100.0 100.0 100.0 100.0
5 92.4 93.6 92.0 98.8 99.6 99.0 100.0 100.0 100.0 100.0

10 90.8 88.4 94.0 98.8 99.0 98.4 100.0 100.0 100.0 100.0
20 86.4 89.2 85.2 97.8 95.4 96.6 100.0 100.0 100.0 100.0
35 76.8 76.6 74.8 90.0 91.4 90.6 100.0 100.0 99.8 99.8
50 60.2 65.2 66.6 61.2 81.4 81.8 81.4 98.8 99.2 100.0 99.6

2.00 0 94.2 93.2 99.8 99.8 99.8 100.0 100.0 100.0
5 95.2 92.2 98.4 99.0 99.2 100.0 100.0 100.0

10 93.4 89.0 99.0 98.0 99.0 100.0 100.0 100.0
20 84.4 85.2 95.2 97.0 96.8 100.0 100.0 100.0
35 76.6 76.8 91.2 90.6 90.6 99.8 100.0 100.0
50 66.8 68.6 75.0 83.8 81.4 95.8 98.6 98.2

3.00 0 95.2 93.0 100.0 99.2 100.0 100.0
10 94.0 92.8 99.2 98.4 100.0 100.0
20 91.0 91.4 98.4 97.2 100.0 100.0
35 83.4 88.0 93.4 94.0 99.6 100.0  
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Appendix 3: False Mixture Classifcation % when φ = 0.0 
 
 
 
Note: Entries in emboldened italics correspond to correct treatment effect mean 
hypothesis conclusions below 100%. 
 

z*
n T σ 2

rat 3 4 7 10 15 20 25 30 40
50 1.00 10.2 9.8 8.8 7.0 3.8 1.8

100 0.33 8.2 8.2 21.8 15.4 9.4 6.6 3.8
0.50 10.4 15.6 32.8 18.8 7.6 5.8 4.0
1.00 2.6 9.6 11.0 9.2 7.2 6.4 2.2
2.00 7.4 4.2 5.6 4.2 3.8 3.2 2.0
3.00 5.0 3.4 4.8 3.8 3.8 1.4 0.8

200 0.33 7.4 8.4 11.4 12.8 12.4 7.4 7.4 7.4
0.50 5.8 5.0 19.8 22.6 8.6 9.0 7.4 6.6
1.00 1.6 4.6 7.4 8.2 8.2 5.2 6.6 5.2 1.8
2.00 5.4 7.4 5.6 4.8 5.0 2.2 4.0 2.4
3.00 3.6 4.4 4.2 3.2 4.2 4.0 2.2 1.6 0.6

350 0.50 9.4 8.4 21.4 14.8 10.2 8.6 7.6 7.6
1.00 2.6 9.4 8.0 7.2 7.0 5.4 5.8 4.6
2.00 4.0 4.2 5.2 5.0 3.2 3.6 3.4 2.0  
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Appendix 4: Correct Mixture Hypothesis Conclusion % 
 
 
Note: Entries in emboldened italics correspond to correct treatment effect mean 
hypothesis conclusions below 100%. 
 
 

σ 2
rat  = 0.33

z*
n T φ 3 4 7 10 15 20 25 30 40
100 10 16.6 17.2 31.4 30.0 36.8 71.4 97.2

20 23.2 31.8 45.6 52.6 66.8 96.4
35 46.8 58.4 76.0 86.4 96.2 100.0

200 10 15.6 15.6 27.2 33.6 38.0 44.2 74.6 96.6
20 34.2 37.2 48.2 59.6 69.4 86.0 97.2 100.0
35 55.8 62.6 83.0 92.8 96.6 99.8 100.0 100.0  

 
 
 

σ 2
rat  = 0.50

z*
n T φ 3 4 7 10 15 20 25 30 40
100 5 12.0 20.4 34.0 22.2 22.0 57.0 90.0

10 12.6 23.2 38.6 24.8 32.2 79.2 99.0
20 17.4 30.4 48.4 37.8 56.0 94.8 99.8
35 28.8 46.4 59.8 63.8 86.4 98.8
50 43.0 58.2 79.4 87.2 99.2 100.0

200 5 8.8 10.6 26.0 26.8 14.8 25.6 54.0 85.0
10 11.2 15.0 31.6 30.4 18.4 37.4 81.0 98.8
20 15.8 16.6 43.8 42.6 45.0 66.2 95.2 100.0
35 28.0 38.4 63.8 70.6 82.2 92.2 99.2 100.0
50 37.2 53.2 82.0 90.2 98.4 100.0 100.0

350 5 10.8 16.2 20.6 21.6 21.8 24.8 50.8 98.0
10 11.0 16.6 33.0 26.6 29.8 41.2 77.8 100.0
20 27.2 36.2 50.4 51.4 59.4 77.8 96.2 100.0
35 39.2 63.4 79.6 87.6 93.8 98.0 100.0 100.0
50 56.2 84.0 95.6 99.2 99.8 100.0 100.0  
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Appendix 4: Correct Mixture Hypothesis Conclusion % 
(continued) 

 
 
Note: Entries in emboldened italics correspond to correct treatment effect mean 
hypothesis conclusions below 100%. 
 
 

σ 2
rat  = 1.0

z*
n T φ 3 4 7 10 15 20 25 30 40
50 5 10.4 13.6 15.6 34.2 73.6 96.4

10 10.0 13.0 27.8 49.2 87.6 99.4
20 11.6 16.6 35.4 65.4 94.2
35 13.6 20.4 46.2 72.0 97.2
50 11.8 23.2 49.8 79.8 98.4

100 5 3.2 11.2 13.8 21.2 48.6 80.0 96.4
10 5.8 9.6 20.0 33.8 68.2 96.0 100.0
20 6.8 9.4 21.6 52.0 83.2 98.6 100.0
35 5.8 12.2 31.0 56.8 88.0 99.8 99.6
50 8.2 16.6 39.8 64.8 90.8 99.6

200 5 2.6 6.0 12.2 17.0 34.0 61.6 86.6 98.4 100.0
10 3.8 5.6 13.8 23.4 49.8 84.4 98.2 100.0 100.0
20 3.2 6.0 19.6 28.8 71.6 95.0 99.4 100.0
35 3.4 7.8 25.4 44.6 72.2 94.2 100.0 100.0
50 4.8 13.0 24.2 51.4 78.0 96.2 99.6 100.0

350 5 1.4 9.8 10.8 21.2 44.2 73.0 91.8 99.8
10 3.4 14.4 15.6 36.4 67.8 89.0 99.0 100.0
20 5.0 14.2 23.2 53.4 82.0 95.0 100.0 100.0
35 2.0 19.2 33.2 66.6 79.6 96.4 99.8 100.0
50 3.6 4.4 19.6 41.2 64.4 82.6 97.2 100.0 100.0  
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Appendix 4: Correct Mixture Hypothesis Conclusion % 
(continued) 

 
 
Note: Entries in emboldened italics correspond to correct treatment effect mean 
hypothesis conclusions below 100%. 
 
 

σ 2
rat  = 2.00

z*
n T φ 3 4 7 10 15 20 25 30 40
100 5 15.0 17.6 25.8 45.0 72.2 94.0 99.2

10 19.8 24.4 43.4 62.4 87.6 99.6 99.8
20 27.4 34.6 55.2 75.4 96.4 99.8 100.0
35 26.8 35.4 51.6 71.6 96.2 100.0 100.0
50 24.6 31.0 45.0 68.2 96.6 100.0 100.0

200 5 17.0 15.6 27.4 41.8 71.8 88.2 97.0 99.8 100.0
10 23.6 28.4 38.2 63.8 89.0 98.8 99.6 100.0 100.0
20 32.8 38.8 58.0 81.2 96.2 99.4 100.0 100.0 100.0
35 37.6 44.4 68.8 82.6 95.8 99.8 100.0 100.0 100.0
50 33.4 39.2 58.8 71.6 91.8 99.6 100.0 100.0 100.0

350 5 20.8 28.4 41.8 68.2 86.0 97.4 99.6 100.0
10 35.0 50.4 63.6 87.4 97.6 99.6 100.0 100.0
20 45.4 70.0 85.0 96.4 99.4 100.0 100.0 100.0
35 49.4 74.4 89.2 97.8 99.6 100.0 100.0 100.0
50 48.0 66.6 81.4 92.4 99.2 100.0 100.0 100.0  

 
 

σ 2
rat  = 3.00

z*
n T φ 3 4 7 10 15 20 25 30 40
100 10 39.6 43.6 63.2 81.8 97.0 100.0 100.0

20 56.8 62.6 78.8 93.6 99.0 100.0 100.0 100.0
35 56.4 63.8 85.8 93.0 99.0 100.0 100.0 100.0

200 10 53.0 54.6 71.8 82.6 98.2 99.6 100.0 100.0 100.0
20 65.4 72.8 87.8 96.4 99.6 100.0 100.0 100.0 100.0
35 72.4 75.4 91.2 97.0 99.6 100.0 100.0 100.0 100.0  
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Appendix 5: Correct Variance Hypothesis Conclusion %  
 
 
Note: Entries in emboldened italics correspond to correct treatment effect mean 
hypothesis conclusions below 100%. 
 
 

σ 2
rat  = 0.33

z*
n T φ 3 4 7 10 15 20 25 30 40
100 0 100.0 99.6 88.8 94.4 100.0 100.0 100.0

10 100.0 99.4 87.0 92.8 98.8 99.8 100.0
20 100.0 98.0 80.2 92.6 98.8 99.6
35 98.4 91.0 73.8 84.0 95.6 99.0

200 0 100.0 100.0 99.6 96.2 99.8 100.0 100.0 100.0
10 100.0 98.8 98.2 97.0 100.0 100.0 100.0 100.0
20 100.0 100.0 98.8 94.2 100.0 100.0 100.0 100.0
35 100.0 100.0 91.4 88.4 97.4 100.0 100.0 100.0  

 
 

σ 2
rat  = 0.50

z*
n T φ 3 4 7 10 15 20 25 30 40
100 0 97.8 89.0 69.2 82.0 93.0 97.8 97.2

5 97.0 87.2 69.6 81.0 92.0 92.2 95.2
10 93.8 86.6 66.8 79.4 90.4 92.2 94.0
20 92.6 80.4 60.6 74.2 83.6 89.4 92.8
35 86.0 69.6 60.2 64.8 75.0 81.8
50 73.8 57.0 46.2 54.0 67.8 79.6

200 0 100.0 100.0 87.4 81.4 97.2 99.2 99.8 100.0
5 100.0 100.0 84.6 79.6 94.0 99.2 99.6 100.0

10 100.0 100.0 82.2 81.6 94.6 98.4 99.2 99.4
20 100.0 99.6 77.6 77.6 90.4 96.8 99.0 99.6
35 98.8 97.2 64.8 65.4 85.2 94.6 96.0 98.0
50 95.4 89.4 51.4 58.0 76.0 87.8 93.8

350 0 100.0 99.6 87.4 92.2 99.4 99.8 100.0 100.0
5 100.0 100.0 90.2 93.6 99.2 100.0 100.0 100.0

10 100.0 99.6 84.6 95.4 98.2 100.0 100.0 100.0
20 100.0 98.6 81.0 90.6 98.0 100.0 100.0 100.0
35 100.0 90.2 68.0 86.0 95.8 99.0 99.4 100.0
50 98.6 72.4 58.0 81.6 90.6 96.4 99.0  
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Appendix 5: Correct Variance Hypothesis Conclusion % 
(continued) 

 
 
Note: Entries in emboldened italics correspond to correct treatment effect mean 
hypothesis conclusions below 100%. 
 
 

σ 2
rat  = 1.0

z*
n T φ 3 4 7 10 15 20 25 30 40
50 0 82.6 85.2 83.4 82.4 85.4 85.0

5 82.4 84.0 84.0 79.4 79.8 84.4
10 82.2 84.6 78.6 80.2 84.8 83.2
20 79.4 84.4 73.8 72.2 79.8
35 80.2 80.4 71.2 64.6 82.0
50 79.4 76.8 62.0 70.0 83.6

100 0 85.6 84.8 84.8 83.4 79.8 83.0 83.8
5 83.8 80.8 88.4 82.6 81.6 81.0 84.8

10 80.8 85.0 83.0 80.0 77.0 84.4 83.4
20 80.0 83.0 80.6 73.8 76.2 83.6 79.6
35 83.0 85.6 71.2 66.4 73.8 86.4 81.0
50 80.8 82.2 70.8 65.2 74.4 83.0

200 0 82.2 85.4 85.0 84.6 83.6 84.2 85.0 83.6 88.0
5 82.8 84.6 88.4 84.0 81.0 77.2 80.0 85.6 80.2

10 79.8 80.0 85.4 79.0 74.4 81.0 84.6 87.2 81.2
20 80.0 82.6 83.0 77.2 71.6 84.0 83.6 83.0
35 82.2 82.0 79.4 69.8 65.4 83.0 84.4 82.6
50 79.6 81.2 73.2 58.2 64.2 82.4 83.8 81.8

350 0 83.0 85.2 83.6 86.2 83.8 86.4 86.0 82.4
5 83.4 86.2 83.2 81.2 79.8 79.0 81.0 82.2

10 80.0 85.8 84.0 79.0 73.4 81.8 82.4 80.0
20 82.8 83.0 79.0 69.8 74.0 82.0 83.4 83.8
35 83.0 78.6 71.0 64.0 71.2 83.2 84.8 85.4
50 82.4 81.6 78.2 66.6 56.8 72.0 84.8 87.4 84.4  
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Appendix 5: Correct Variance Hypothesis Conclusion % 
(continued) 

 
 
Note: Entries in emboldened italics correspond to correct treatment effect mean 
hypothesis conclusions below 100%. 
 
 

σ 2
rat  = 2.00

z*
n T φ 3 4 7 10 15 20 25 30 40
100 0 96.8 97.6 97.2 97.2 98.8 98.8 98.0

5 96.4 95.0 96.2 94.2 95.0 95.8 96.2
10 93.8 92.0 92.8 88.4 91.0 95.2 95.6
20 89.4 86.4 81.8 83.4 91.4 91.8 93.4
35 72.8 67.6 67.2 71.8 84.8 87.4 90.6
50 55.8 53.2 52.8 62.0 76.2 75.8 84.0

200 0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
5 100.0 100.0 99.8 99.8 99.6 99.8 99.8 99.8 100.0

10 100.0 99.6 99.4 99.8 98.8 99.6 99.8 100.0 100.0
20 98.6 98.4 98.6 98.6 99.0 99.0 99.6 99.6 99.8
35 91.2 90.6 91.4 91.0 93.8 99.2 98.4 99.2 99.6
50 79.0 78.0 73.8 75.8 86.6 93.0 93.4 94.6 96.8

350 0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10 100.0 100.0 100.0 99.8 100.0 100.0 100.0 100.0
20 100.0 99.8 100.0 99.8 99.8 100.0 100.0 100.0
35 98.4 98.0 98.6 98.6 99.6 100.0 100.0 100.0
50 94.0 90.0 91.2 93.2 97.6 99.8 98.6 99.4  

 
 

σ 2
rat  = 3.00

z*
n T φ 3 4 7 10 15 20 25 30 40
100 0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10 100.0 100.0 99.8 100.0 100.0 100.0 100.0
20 99.6 99.2 99.8 99.6 99.4 99.8 100.0 99.8
35 95.2 95.4 94.6 96.0 98.6 99.4 99.6 99.8

200 0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
10 100.0 100 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 100.0 100 100.0 100.0 100.0 100.0 100.0 100.0 100.0
35 100.0 99.8 99.8 100.0 99.8 100.0 100.0 100.0 100.0  
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