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The formation of bacterial biofilms is a common mechanism for antibiotic resistance.  

It has been shown that bis-(3’-5’)-cyclic dimeric guanosine monophosphate, c-di-

GMP, plays a key role in bacterial biofilm formation; therefore, the proteins that 

regulate the metabolism or adaptive response of c-di-GMP are favorable targets for 

novel antimicrobials.  We herein describe a solid-support methodology developed in 

the Sintim Laboratory and efforts toward its application to the synthesis of novel c-di-

GMP analogs.  Our selected targets are a series of analogs bearing various 

substitutions at the 2’-position of the ribose backbone.  Syntheses of 2’-deoxy and 2’-

methoxy analogs were achieved as well as that of key intermediates toward the 2’-

fluoro and conformationally flexible analogs.  
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Chapter 1: Introduction

1.1 The Rise of Antibacterial Resistance

With the rise of antibiotics in the 1940’s through 1960’s, the treatment of infectious 

diseases had greatly increased the quality of life and lengthened life expectancy.1  In 

1969, Surgeon General William H. Stewart2 addressed the United States’ Congress 

saying that it was time to ‘close the book on infectious diseases’.  Today, however, 

infectious disease is prevalent.  In 1998, infectious diseases accounted for 13.3 

million deaths world-wide.3  The resurgence of infectious diseases could be attributed 

to the rise of antibacterial resistance.13

According to the United States Food and Drug Administration, about 70 percent of

infection-causing bacteria in hospitals are resistant to at least one of the drugs most 

commonly used to treat such infections.4  Table 15 illustrates the prevalence of 

resistance in hospital-acquired infections as of 2004.

Table 1. Prevalence of resistance in hospital-acquired infections, US 20045

Antibiotic Pathogen Resistance [%]

methicillin S. aureus 59.5
coagulase-negative staphylococci 89.1

vancomycin enterococci 28.5
cephalosporins Enterobacter spp. 31.1
3rd generation P. aeruginosa 31.9

E. coli 5.80
K. pneumoniae 20.6

imipenem P. aeruginosa 21.4
quinolones P. aeruginosa 29.5
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Furthermore, in the 1980s, pharmaceutical companies began reducing the 

development of new antibiotics.6,7  We can no longer rely on pharmaceutical 

companies to provide the next generation antibiotics in a timely fashion.  As a result, 

academic scientists have embarked on the search for potential antibiotics with novel

modes of action.  One pathway for antibiotic development currently under 

investigation by the academic community is cell-to-cell communication, or quorum 

sensing, as it pertains to the formation of bacterial biofilms.8

Figure 1. New antibacterial agents approved in the US.5

1.2 Bacterial Biofilms

The definition of a biofilm has evolved over the years.  The currently accepted 

definition is as follows: ‘a microbially derived sessile community characterized by 

cells that are irreversibly attached to a substratum or interface or to each other, are 

embedded in a matrix of extracellular polymeric substances that they have produced, 

and exhibit an altered phenotype with respect to growth rate and gene transcription.’8  

Put simply, biofilms are a community of bacteria that are protected by an extracellular 
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matrix.  In the biofilm environment, bacteria are able to survive harsh environmental 

conditions.  Bacterial biofilms have been observed and studied for decades, yet are far 

from being well-understood.  For example, it is known that biofilms are involved in 

antibacterial resistance.  However, currently, the mechanism of this resistance is not 

known, though several hypotheses have been formulated to account for how the 

formation of biofilms leads to antibiotic resistance.8  

It has been argued that in the biofilm environment, there are more opportunities for 

gene-transfer between bacteria, thus leading to resistance.9,10,11  However, this does 

not account for resistance that is observed in bacteria that lack a resistance gene.  It is 

plausible then that the path to resistance arises from the physical barrier created by 

the formation of a biofilm.12,13,14    This protective barrier, which is formed by the 

extracellular matrix, is not easily crossed by conventional antibiotics, and thus, 

resistance can develop.15  It is likely that the rise of bacterial resistance to 

conventional antibiotics when in the biofilm environment is due to the combined

effect of these factors.  

The discovery of small molecules to regulate biofilm formation may have utility in 

the treatment of bacterial infections.  When used in concert with a biofilm inhibitor, 

current antibiotics may once again be rendered effective.  However, as already 

discussed, little is known in the area of bacterial biofilms.  If synthetic small 

molecules are to play a role in modulating biofilm formation, the key processes that 

govern the onset or maturation of bacterial biofilms must be fully understood.  
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Bacterial communication plays a major role in facilitating biofilm formation and is 

therefore an area of intensive investigation by several groups worldwide.16

1.3 c-di-GMP, a Ubiquitous Bacterial Second-Messenger

In recent years it has been shown that bis-(3’-5’)-cyclic dimeric guanosine 

monophosphate, c-di-GMP (Figure 2), plays a key role in bacterial biofilm 

formation.17
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Figure 2. Bis-(3’-5’)-cyclic dimeric guanosine monophosphate, c-di-GMP.

First described by Benziman et. al. as a regulator of cellulose synthase in 

Gluconacetobacter xylinus,18 c-di-GMP is now described as an almost ubiquitous 

bacterial second-messenger.17  Second-messengers are small molecules whose role is 

to link specific environmental cues to a particular response.  This is generally 

achieved by changes in the intracellular concentration of the second-messenger in 

response to environmental cues.  The use of second-messengers has several 

advantages.  For example, the generation of the second-messenger may lead to 
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amplification of a signal.  Also, second-messengers are often able to diffuse 

throughout the cell and affect other processes.19

C-di-GMP is known to be involved in a large number of functions in bacteria which 

include, but are not limited to the following: developmental transitions,20 aggregative 

behavior and adhesion (e.g. biofilm formation),21,22 and virulence.23  The central role 

that c-di-GMP plays in biofilm formation makes the proteins or other 

macromolecules involved in regulating the metabolism or adaptive response of c-di-

GMP favorable targets for novel antimicrobials.  This highlights the need to gain 

insight into the metabolism of c-di-GMP in the cell (Figure 3).
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Figure 3. Metabolism of c-di-GMP.
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Currently it is known that a family of proteins known as diguanylate cyclases 

(DGC’s), which contain the common protein domain GGDEF (glycine-glycine-

aspartate-glutamate-phenylalanine), synthesize c-di-GMP from GTP. The structure of 

a DGC from PleD, a regulatory protein from Caulobacter crescentus has been 

elucidated via X-ray crystallography.24  In this seminal work, Jenal et. al. have shown

that the majority of DGC’s have an allosteric inhibition site that binds to dimeric c-di-

GMP in the crystalline state.  In other words, c-di-GMP regulates its synthesis by 

negative feedback.

A little understood family of proteins known as phosphodiesterases (PDE’s), 

characterized by the EAL (glutamate-alanine-leucine) protein domain, is responsible 

for degradation of c-di-GMP.25,20  This domain was first described as a modulator of 

c-di-GMP by Benziman et. al. through studies of the regulation of cellulose synthesis 

in G. xylinus,18  It was later described by Merkel et. al. in BvgR as a repressor of 

virulence gene expression in Bordetella pertussis.26 Over-expression of genes coding 

for EAL domain-containing proteins lead to reduced c-di-GMP levels in the cell, 

suggesting a role in c-di-GMP degradation.27,28,29  Conversely, it was shown that 

mutating the EAL domain leads to an increase in the concentration of c-di-GMP.30  

However, the exact enzymatic mechanism of c-di-GMP degradation is unknown.

  

In addition to its wildly diverse set of biological functions, c-di-GMP also displays an 

array of interesting structural characteristics.  For example, in 1990, Wang illustrated 
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by X-ray crystallography that c-di-GMP adopts an intercalated quartet organization, 

with four guanines stacked on one another (Figure 4).31,32  
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Figure 4.  Intercalated quartet form of c-di-GMP.

While crystal structures can be valuable tools in confirming the structure of a 

compound, ultimately, solution phase structures can be more useful in understanding 

how molecules interact with various proteins and other small molecules.

Recently, Jones et. al. have shown that in solution phase, high concentrations of c-di-

GMP can also exist in an intercalated dimeric form.  Using a well-designed series of 

ultraviolet spectroscopy, circular dichroism, and one and two-dimensional nuclear 

magnetic resonance experiments, Jones has illustrated the metal-ion dependent 

polymorphism of c-di-GMP.33,34  This work shows that c-di-GMP can adopt an array 

of various structures in solution, in response to the presence of different metals.  

However, Jones’ work raises several questions which will be discussed later.
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1.4 Evolution: The Synthesis of c-di-GMP

The ability to use chemical probes to study this important bacterial signaling system 

is limited by access to the molecule of interest and its analogs.  The synthesis of c-di-

GMP has proven challenging for chemists in this field since the earliest indication of 

its importance.  Enzymatic synthesis provides a rapid route to c-di-GMP from GTP.  

However, the enzymatic synthesis of c-di-GMP analogs is non-trivial since enzymes 

usually have substrate specificity.  A chemical synthesis is desirable for obtaining 

analogs in the quantity that will be necessary for the types of in-depth studies that will 

be required to fully elucidate the complexities of this system.  The chemical synthesis 

of c-di-GMP has evolved over time.  There are currently both solution phase and 

solid support routes to this compound.

The first chemical synthesis of c-di-GMP was reported by van Boom et. al. in the late 

1980’s (Scheme 1).35  This method employed a phosphotriester approach to natural 

and unnatural cyclic oligonucleotides.  This approach, developed in collaboration 

with Benziman et. al., gave access to these compounds in order to make observations 

into the processes of cellulose synthase, which is regulated by c-di-GMP.  

Unfortunately, detailed experimental conditions never accompanied this work.  When 

the link was made between c-di-GMP and biofilm formation, several groups began 

exploring new approaches to making these compounds.
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Scheme 1. Van Boom’s phosphotriester approach to cyclic oligonucleotides.

In 2003, Hayakawa reported a phosphoramidite coupling approach to synthesize c-di-

GMP (Scheme 2).36  Hayakawa’a approach begins with commercially available 

phosphoramidites 5.  Oxidation of compound 5 with 2-butanone peroxide followed by 

deprotection of the dimethoxytrityl (DMT) group affords phosphate 6.  Next, the two 

building blocks (phosphate 6 and phosphoramidites) are coupled in the presence of 

imidazolium perchlorate (IMP) in acetonitrile to give 7.   A subsequent oxidation 

followed by deprotection of the allyl group and cyclization with a mixture of

triisopropylbenzenesulfonyl chloride (TPSCl) and N-methylimidazole in 

tetrahydrofuran yields the cyclic oligonucleotide 8.  Compound 9 is then converted 

into c-di-GMP by standard deprotection protocols.37
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CH3CN; (b) 6.7% 2-butanone peroxide/toluene solution; (c) dichloroacetic acid, CH2Cl2, 0 oC; (d) 
phosphoramidite 5, imidazolium perchlorate, MS 3A, CH3CN; (e) concentrated aqueous
ammonia:CH3OH (1:10 v/v); (f) triisopropylbenzenesulfonyl chloride, N-methylimidazole, 
tetrahydrofuran; (g) Pd2(dibenzylideneacetone)3, CHCl3, triphenylphosphine, butylammonium formate, 
tetrahydrofuran; (h) triethylamine trihydrofluoride.

Hayakawa’s method provided a synthesis of c-di-GMP and its analogs.  However, 

this method involves several steps and tedious column chromatographic separations.  

To make c-di-GMP analogs readily available, a better synthetic strategy was required.

In 2004, Roger Jones et. al. reported a new solution phase approach to c-di-GMP 

using an H-phosphonate cyclization as the key step.28  In this method (Scheme 3) the 
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H-phosphonate group serves as a protecting group during the coupling step.  

However, the length of the overall procedure is not reduced.
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Scheme 3. Jones’ phosphotriester, H-phosphonate method.  (a) Bis(diisopropylamino)methyl or 
bis(diisopropylamino)cyanoethyl phosphoramidite and pyridinium trifluoroacetate; (b) 2-chloro-4H-
1,3,2-benzodioxaphosphorin-4-one; (c) pyridinium trifluoroacetate; (d) tert-butylhydroperoxide; (e) 
sulfonic acid resin; (f) adamantoylcarbonyl chloride; (g) CH3OH/N-bromosuccinimide; (h) 
pyridine/aqueous ammonia (1:1); (i) triethylamine trihydrofluoride.

Currently, there are also several solid-support approaches to the synthesis of these 

compounds.  Solid-support chemistry provides several advantages over traditional 

solution phase chemistry.  Immobilizing the molecule onto a resin allows for use of 
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large excesses of reagent to push the reaction to completion.  Also, these methods 

eliminate the need for exhaustive purification of intermediates by allowing excess 

reagents and by-products to be removed by filtration and successive washings.  Solid-

support methods also create the opportunity for large portions of the synthesis to be 

carried out on an automated DNA synthesizer.

The first reported solid-support approach to cyclic oligonucleotides was reported in 

1993.38,39  In this method, the exocyclic amino group of cytosine is attached to the 

solid support, where elongation and cyclization are then carried out.  This method is 

of course limited by the fact that cytosine must be present in the sequence.
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trichloroacetic acid, phosphoramidite, tetrazole, followed by iodine/pyridine; (e) 1-(mesitylene-2-
sulfonyl)-3-nitro-1,2,4-triazole; (f) tetramethylguanidinium syn-pyridine-2-aldoximate, concentrated 
aqueous ammonia.
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The next reported method for solid-support synthesis of cyclic oligonucleotides was 

that of Pedroso in 1997.40  Pedroso reported an elegant synthesis (Scheme 4) that 

circumvented the need for a particular base in the sequence.  However, in Pedroso’s 

method, two solution phase reactions are required before attaching the substrate to the 

solid support.  This reduces some of the benefits of doing solid-phase synthesis.  

Perhaps more limiting, Pedroso’s methodology is not amenable to RNA analogs 

bearing a bulky 2’-substituent.  Additionally, this chemistry was not repeatable in our 

hands.

In 2002, Kool and co-workers published another synthesis of short cyclic 

oligonucleotides.41  Although Kool did not make c-di-GMP, as the importance of this 

molecule was not known at the time, the method can be extended to the synthesis of 

c-di-GMP.  Kool’s approach (Scheme 5) utilizes an oxidative sulfurization with the 

commercial reagent 3H-1,2-benzodithiol-3-one-1,1-dioxide (Beaucage reagent) 

leading to the thiophosphotriester.  After the second coupling cycle and removal of

the terminal 5’-dimethoxytrityl group; iodination of the 5’-end is performed.  

Deprotection of bases, release from the CPG support, and cyclization by SN2

displacement, are all conducted in a single step by treatment with concentrated 

ammonium hydroxide for 24 h at room temperature.

The obvious shortcoming to this method is that it forms cyclic oligodinucleotides

with a sulfur atom replacing one of the bridging phosphodiester oxygen atoms. It 
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remains to be seen how this sulfur-for-oxygen replacement affects biological 

activities.
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Our lab has developed a solid-phase methodology to access c-di-GMP and analogs 

that is without the aforementioned shortcomings.42  In our method (Scheme 6) the 

protected dinucleotides on the CPG solid support are obtained on a DNA synthesizer.  

For this approach, the P-methoxy phosphoramidite is used for both coupling steps.  

Treatment of the solid-supported dinucleotide 26 with triethylamine, followed by 1-

(mesitylene-2-sulfonyl)-3-nitro-1,2,4-triazole (MSNT), yields the cyclic dinucleotide 
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28.  This approach consists of cleavage of the dinucleotide into solution followed by 

cyclization in the same pot without any isolation or purification.
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Equipped with our method, we now have access to c-di-GMP and analogs thereof to 

study this important signaling system.  The rush to develop these chemistries

illustrates the importance of c-di-GMP in bacterial signaling networks.

1.5 Unanswered Questions

Great strides have been made in the field of c-di-GMP signaling in the past decades.  

However, there are still important questions to be answered.  Several of these 

questions are discussed herein.
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To begin, as alluded to previously, little is known about the phosphodiesterases, 

which are responsible for degradation of cellular c-di-GMP.20,25  The enzymatic 

mechanism by which these proteins cleave c-di-GMP is unknown.  It is also worth 

noting that while it is has been shown that the binding of c-di-GMP to a non-catalytic 

site of diguanylate cyclases inhibits synthesis of c-di-GMP,43 it has not yet been 

shown whether there is a mechanism by which c-di-GMP exerts a similar pattern of 

inhibition or even activation on phosphodiesterases.

To begin to fully understand this enzyme, its mode of action must be elucidated.  A 

crystal structure could prove to be a starting point to glean information regarding the 

binding of c-di-GMP to the active site of EAL domain-containing proteins and might 

provide clues to the mechanism of c-di-GMP degradation.  However, obtaining a 

crystal structure has proven challenging.  Co-crystallization of PDEA with c-di-GMP 

in the active site is desirable; however, since c-di-GMP is cleaved upon introduction 

into the enzyme, a non-hydrolysable analog is needed for co-crystallization.

As mentioned previously Jones’ seminal work on the polymorphism of c-di-GMP34,35

also raises many questions: Are the different interconverting polymorphic structures 

of c-di-GMP biologically relevant?  Do different c-di-GMP adaptor proteins bind to 

different polymorphic structures?  Experiments that can delineate the roles of the 

various c-di-GMP polymorphs in the bacterial signaling network would likely unravel 

the role that c-di-GMP plays in modulating bacterial lifestyle changes in response to 
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the availability of essential metals, if in fact the various polymorphic forms exist at 

biologically relevant concentrations.

My work, described herein, involves the synthesis of c-di-GMP analogs as tools for 

beginning to answer these important questions.  In 1992 it was stated that “Almost 

nothing is known about the mechanisms whereby c-di-GMP exerts its action on the 

diverse cellular functions under its control.”1  Nearly two decades later, not much has 

changed.  The concerted efforts of chemists and biologists will help unravel the 

intricacies of c-di-GMP signaling.  The era of the c-di-GMP signaling network has 

indeed begun.
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Chapter 2: Design and Synthesis of c-di-GMP Analogs

2.1 Design Principles

Equipped with the tools necessary to access analogs of c-di-GMP, we set out to 

design a rational set of molecules which would allow exploration into some of the 

important questions surrounding this system.  The series of analogs should allow one 

to discern the role of specific structural features of c-di-GMP.  As a first step, we 

chose to explore the role of the ribose moiety in the structure of the parent c-di-GMP 

molecule.  Does the sugar provide any important hydrogen-bonding interactions? Or 

is it merely a source of structural rigidity?

Ribose and deoxyribose are 5-membered rings and exist in a dynamic equilibrium of 

four conformations (Figure 644).  The two most common conformations for DNA and 

RNA nucleotides are the 3’-endo and 2’-endo conformations, with the 3’ and 2’ 

position out of plane and on the same side as the base, respectively.  As determined 

by NMR spectroscopy, c-di-GMP apparently adopts a 3’endo, 2’exo puckering mode.
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Figure 5. Common puckering modes in ribose and deoxyribose.

The analogs for this initial series are shown in Figure 6.  Each molecule in this series 

of 2’-analogs of c-di-GMP should exhibit different hydrogen-bonding and sugar-

puckering patterns.  This will hopefully allow us to begin to delineate the role of the 

ribose in the natural compound.
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C-di-dGMP 30, a DNA analog of the natural c-di-GMP, should illustrate whether the 

2’-OH has a role as a hydrogen-bonding partner.  However, substitution of the 2’-

hydroxyl group with hydrogen will result in both loss of a hydrogen-bond donor and a 

change in the sugar puckering as deoxyribose has all puckering modes available to it.  

The typical solution to this problem is to introduce a 2’-methoxy substituent.  The 2’-

methoxy substitution, compound 31, is a natural progression in the family of analogs 

as it should exhibit the same puckering pattern as the natural analog but cannot act as 

a hydrogen bond donor.  This molecule is also relatively easy to access from a 

synthetic standpoint.  However, the extra sterics introduced by the methyl group 

should make one cautious when interpreting the results associated with the 2’-

methoxy analog.  

The 2’-fluoro analog 32 should provide a better isostere, as the 2’-fluorine mimics the 

sugar puckering character as well as the size and electronics of the hydroxyl group,

yet cannot act as a hydrogen-bond donor.  The 2’-fluoro substitution, however, 

provides a more substantial synthetic challenge.  The final analog in the series, 33,

will resolve whether or not structural rigidity is a requirement for efficacy of c-di-

GMP.  This molecule should be completely conformationally flexible, as it is devoid 

of a 2’carbon in the sugar backbone portion.

In addition to these analogs, we found it convenient to also seek a complimentary set 

of ‘hybrid’ molecules, in which each bears one natural and one unnatural ribose.  

These analogs (Figure 7) should provide an interesting intermediary between the 
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structure of natural c-di-GMP and the various 2’-substituted analogs and are easily 

accessed by applying our synthetic methodology utilizing the natural 2’-OH 

phosphoramidite for the second coupling step.
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2.2 Results and Discussion

In order to expeditiously access the family of molecules shown in Figure 7 and 8, our 

previously described solid-support synthesis was chosen (Scheme 6).  This method 

should provide access to these molecules in millimolar quantities, allowing initial 

experiments exploring the structural role of the ribose moiety.  

One shortcoming of our synthetic methodology is the use of the 3’phosphorylation 

CPG 20, which can be prohibitively expensive.  Currently, 20 grams of this CPG, if 

purchased from commercial sources costs around $5,000.  Therefore, before moving 
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forward, we sought to synthesize this support in-house for use in our methodology.  

Literature revealed that the 3’-phosphate CPG can be made in two steps from 2-(4,4)-

dimethoxytrityloxyethylsulfonyl)-ethanol (Scheme7).45
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Scheme 7. Synthesis of 3’-phosphate CPG. (a) succinic anhydride, 4-dimethylaminopyridine; (b) 
amino CPG, 4-dimethylaminopyridine, bromotrichloromethane, triphenylphosphine.

We estimate that when synthesized via this route, 20 grams of the support costs 

around $300, or about 6% of the commercial cost.  The synthesis was successfully 

carried out yielding about 100 grams of the 3’-phosphate CPG, not only to complete 

this work, but also for future use by the Sintim Group.

To employ our method, we must also obtain the 2’-substituted P-methoxy 

phosphoramidites which correspond to each compound in the series.  The 

phosphoramidites are then dissolved in acetonitrile and carried on to the automated 

synthetic steps.  The general structure for the P-methoxy phosphoramidite is shown in 

Figure 8.
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The DNA analog, 30 (Figure 6) was synthesized first.  The previously described 

method was employed using the synthetic 3’-phosphate CPG and the commercially 

available deoxyguanine P-methoxy phosphoramidite.  The compound was purified by 

HPLC and characterized by ESI-MS (Appendix).  
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Scheme 8. Synthesis of 2’-OMe P-methoxy phosphoramidite. (a) N,N,N,N-tetraisopropyl-p-methoxy 
phosphoramide, tetrazole, CH3CN.
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For the synthesis of analogs 31 and 35 (Figures 6 and 7, respectively) bearing the 2’-

OMe substituent, the 2’-OMe P-methoxy phosphoramidite was generated in one step 

from its corresponding commercially available nucleoside using a literature method 

(Scheme 8).46

The P-methoxy phosphoramidite was successfully obtained using N,N,N,N-

tetraisopropyl-P-methoxy phosphoramide in the presence of tetrazole in acetonitrile.  

It was found that the phosphoramidites are somewhat water sensitive and can 

decompose without careful handling.  For these reasons, the phosphoramidite was 

used immediately without purification or characterization.  The previously described 

synthetic route was carried out using the synthetic phosphoramidite.  The key 2’-

TBS-protected intermediate was characterized by ESI-MS (Appendix) to confirm the 

success of the phosphorylation reaction.

The next analogs which were sought are the conformationally flexible acyclo-analogs 

33 and 37 (Figures 6 and 7, respectively) which are devoid of a 2’-carbon in one or 

both of the ribose portions of the structure.  

A search of the literature revealed a reported synthesis47 which would be amenable to 

making the phosphoramidite necessary for the generation of these analogs.  Although 

it appeared simple on paper; in practice, the synthesis (Scheme 9) would turn out to 

be much more challenging.
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Before discussing the issues that were encountered with this synthesis, it is worth 

noting that it is not strictly necessary to carry out an asymmetric synthesis of the 

acyclo phosphoramidite for synthesis of the acyclo dimer analog, due to the fact that 

the final analog is achiral (Figure 9).  However, we initially sought this pathway to 

achieve the syntheses of both the dimer and its corresponding RNA hybrid analog, 

which requires a chiral phosphoramidite.
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The synthesis began with the commercially available compound 1,3-dihydroxy-2-

propoxymethyl guanine (DHPG) 42.  Tri-isobutyryl protection of DHPG with 

isobutyryl chloride was carried out successfully with no deviation from the 

literature.52  However, subsequent treatment with base to obtain the partially 

protected DHPG 44, bearing two free hydroxyl functionalities, proved difficult.  

Often, unwanted deblocking of the exocyclic amine of the base would occur, 

especially in large-scale reactions.  After some efforts, a re-evaluation of the literature 

revealed that compound 44 can be accessed directly from DHPG by a one-pot 

reaction utilizing chlorotrimethylsilane followed by isobutyric anhydride.48  This 

reaction proved to be much more efficient.  

Resolution of the meso diol 44 with porcine pancreatic lipase provided the di-

protected compound 45, in a stereoselective manner as confirmed by 1H NMR.  Our 

initial plan involved subsequent tritylation of the remaining hydroxyl moiety followed 

by selective deprotection under mildly basic conditions to yield the desired 

compound, ready for phosphorylation.



27

The tritylation reaction was carried out with minimal difficulty to give 46.  However, 

in our hands the selective deprotection again resulted in unwanted deblocking of the 

exocyclic amine of the base.  The exocyclic amine would have to be re-protected

before attempting the subsequent phosphorylation reaction.  For this purpose, the N’,

N’-dimethylformamidine (DMF) group was chosen.  The DMF group provides a 

facile protection of the amine in the presence of the free alcohol, thus circumventing 

the need for an additional protection-deprotection sequence.  

The reaction was carried out successfully by treatment with 

dimethylformamide/dimethylacetal giving 48, and finally the phosphorylation was 

carried out.  As before, due to the instability of the phosphoramidite, the product was 

used immediately without purification or characterization.

Unfortunately, after carrying out the previously described synthetic sequence 

(Scheme 6), the desired compounds were not obtained.  It is possible that the 

compounds were lost during the synthesis, but the more likely cause is that the 

phosphorylation reaction failed.  As a result of the length of the synthesis, coupled 

with the number of steps requiring modification or optimization and the cost of the 

DHPG starting material; there was only enough material obtained to attempt one trial 

of the phosphorylation.  
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Although the penultimate compound in the synthesis was not successfully obtained; 

the pitfalls are now well-understood, such that a future member of the Sintim 

Laboratory can repeat the work using the lessons described herein as a guide. 

The remaining molecules in the set are those bearing the 2’-fluoro substituent 

(compounds 32 and 36, Figures 6 and 7, respectively).  A review of the literature 

revealed that the synthesis of the 2’-fluoro-2’-deoxy guanosine moiety is non-trivial.  

Our search revealed a recent chemical synthesis of 2’-fluoro adenine49 involving 

condensation of 1-O-acetyl-2-deoxy-2-fluoro-3,5-di-O-benzoyl-β-D-ribo-furanose50

with N2-palmitoyl adenine in the presence of trimethylsilyl triflate (Scheme 10).
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Oxidation of arabinoside 50 with dimethyl sulfoxide-acetic anhydride affords a

mixture of the epimeric free ketones 51.  Reduction with sodium borohydride in 

ethanol followed by column chromatography gives 52.  Subsequent protection of the 

3’-hydroxyl group gives compound 53, which is then converted to the acetate 54.  

Treatment of the acetate with N2-palmitoyl adenine in the presence of trimethylsilyl 

triflate and subsequent deprotection yields the free 2’-deoxy-2’-fluoro-adenine 56.

There are several problems with this route that are immediately obvious.  To begin,

the overall yield in transforming compound 50 to our desired intermediate compound

54 is 46% over five steps.  Although this seems reasonable initially, further inspection 

reveals that compound 50 is not commercially available.  It is not discussed explicitly 

in the paper, but we believe that compound 50 can be accessed in a minimum of four

steps from commercially available ribose.  Therefore the overall length of the 

sequence is at best nine steps and potentially low-yielding (we do not have any 

information about the overall yield of steps 1-4).  The length of this route, coupled 

with the preponderance of low-yielding and non-stereospecific steps and the number 

of column chromatographic separations, led us to pursue an alternative synthetic 

pathway.  

Further search of the literature revealed that 2’-deoxy-2’-fluoro-uridine can accessed 

readily in two steps from the commercially available nucleotide uridine or in only one 

step from 2,2’-anhydro-1-(β-D-arabinofuranosyl)uracil51, which is also commercially 

available.  It has also been shown that uridine to guanine glycosyl transfer reactions 
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occur readily in the presence of N,O-bis(trimethylsilyl)acetamide and 

trimethylsilyltriflate in acetonitrile.52  However, to our knowledge, no one has

combined these strategies and applied them to the synthesis of 2’-deoxy-2’-fluoro-

guanosine.  
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Scheme 11. Route to 2’-deoxy-2’-fluoro-guanosine and its phosphoramidite. (a) diphenyl carbonate, 
hexamethylphosphoramide, sodium carbonate; (b) hydrofluoric acid/pyridine; (c) benzyl chloride, 
pyridine; (d) N,O-Bis(TMS)acetamide, N2isobutyryl-Guanine, trimethylsilyl triflate; (e) H2/Pd; (f) 
dimethoxytrityl chloride; (g) N,N,N,N-tetraisopropyl-P-methoxy phosphoramide, tetrazole, CH3CN.

Therefore, we sought a novel synthetic route to 2’-fluoro-substituted guanosine, 

employing a U to G transglycosylation reaction as the key step, which is a significant 

improvement over current methods (Scheme 11).  This sequence should provide the 

key intermediate 60, ready for the transglycosylation in two steps from the 

commercially available compound 58. 

Due to cost considerations, we opted to synthesize compound 58 in-house.  Treatment

of uridine 57 with diphenyl carbonate in HMPA, in the presence of sodium carbonate 
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provided 2,2’-anhydro-1-(β-D-arabinofuranosyl)uracil 58 in 57% yield.  

Stereoselective ring opening to 59 was achieved in 32% yield by heating in 

HF/pyridine in sealed plastic centrifuge tubes.

  

Our plan for the remaining synthesis involves benzyl-protection of the free hydroxyl 

groups followed by transglycosylation, leading to the desired 2’-deoxy-2’-fluoro-

guanosine.   The synthesis will be completed by tritylation of the product followed by 

phosphorylation providing the p-methoxy phosphoramidite for the solid-support 

synthesis of the corresponding c-di-GMP analog.  

2.3 Conclusions

The Sintim laboratory has developed a solid-support methodology which is amenable 

to synthesis of a wide scope of c-di-GMP analogs.  The issue of the cost-effectiveness 

of the method has now been solved by synthesizing the 3’-phosphate CPG in-house.  

A phosphorylation reaction, which should be amenable to future work in the Sintim 

Laboratory, was also successfully applied to the synthesis of the 2’-OMe P-methoxy 

phosphoramidite.

Although the synthesis of the acyclo phosphoramidite was unsuccessful, the 

intricacies of the reactions involved have been elucidated for application by a future 

member of the group.  A robust synthesis of the final intermediate prior to 

phosphorylation has been achieved.  Further, the groundwork has also been laid for 

the synthesis of the 2’-fluoro phosphoramidite, the synthetic approach to which is 
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described herein.  Additionally, a significant amount of the key intermediate, 2’-

fluoro-2’-deoxyuridine, was accessed for this purpose.

2.4 Future Work in the Sintim Group

Future work in the Sintim Group will involve the application of synthetic routes 

described herein to the completion the analog series.  Further work will involve the 

use of these analogs to study of the mechanism of degradation by PDE-A.
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The general mechanism for an RNAse degradation of ribonucleotides is shown in 

Figure 10.53  In this mechanism, attack of oxygen on phosphorus forms a trigonal 
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bipyramidal transition state.  The transition state falls apart to form the cleaved 

products.  For RNA hydrolysis, the nucleophile can be the 2’-OH of the ribose 

moiety, resulting in a cyclic 2’,3’-phosphate moiety.

In an alternative mechanism (Figure 11), attack of oxygen on phosphorus performs a 

direct SN2 displacement of the 5’-phosphorylated fragment leading to the formation 

of the same cleavage products.  In this case, there is no observed trigonal bipyramidal 

transition state.

A third possibility is that an external hydroxyl group from deprotonated water or a 

nucleophilic side chain in the nuclease enzyme can act as the nucleophile in the attack 

on the phosphorus, yielding a 5’-phosphate and a 3’-hydroxyl.  This mechanism 

(Figure 1239) can act on both DNA and RNA.  Note that this mechanism may also 

occur via an SN2-type pathway (not shown).
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One might assume that because c-di-GMP is an RNA oligomer, the mode of 

hydrolysis is of the RNAse-type.  However, this mechanism is dependent on the 

ability of the 2’-OH to approach the phosphorus in the first intramolecular step.  After 

examination of the sugar puckering patterns of the ribose moiety in DNA and RNA 

nucleotides, and further analysis of the structure of c-di-GMP, one might instead 

predict a DNAse-type cleavage.  The key question is how might we begin to delineate 

among these various possibilities?

We hope that this work has provided the tools necessary to access these analogs 

which will ultimately allow us to discern among these possibilities.  We can begin to 

establish whether cleavage of c-di-GMP takes place by an RNAse-type mechanism or 
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by a DNAse-type mechanism involving an external hydroxyl nucleophile and also 

whether a direct SN2 displacement is occurring.  Further, we hope to discover whether 

the 2’ hydroxyl moiety is necessary for structural rigidity or rather as an internal 

nucleophile.  Detailed binding and kinetic experiments on the PDEA enzymes will be 

required to answer these questions.

These analogs may also allow us to observe the role of the various polymorphs 

described by Jones’.  If for example we find that a particular analog is biologically 

active, but unable to form higher order aggregates, we can conclude that such 

aggregates are biologically irrelevant. Conversely, if such analogs are less active, we 

might infer that the aggregation is necessary for activity or that possible the aggregate 

itself is the active form.
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Chapter 3: Experimental

3.1 General Materials and Methods

All reactions were carried out under a nitrogen or argon atmosphere, using anhydrous 

solvents and oven-dried glassware, unless otherwise noted.  Syringes were oven-dried 

and cooled in vacuo.  Commercially available compounds were used as obtained, 

unless otherwise noted.  Compounds were purchased from one of the following: 

Sigma-Aldrich, VWR, Toronto Research Chemicals, Fisher Scientific, or Acros 

Organics.  Anhydrous solvents were obtained as follows:  dichloromethane, pyridine,

and acetonitrile were distilled from calcium hydride under an argon atmosphere; 

benzene, dimethylformamide, and triethylamine, were dried over activated molecular 

sieves.  Reactions were stirred magnetically and monitored by multi-lane analysis 

thin-layer chromatography on Sorbent Technologies 200 micron aluminum-backed 

plates.  Thin-layer chromatography plates were visualized using UV (254 nm) or 

stains where appropriate.  Automated syntheses were carried out on an Applied 

Biosystems 392 DNA/RNA Synthesizer.  All yields refer to chromatographically and 

spectroscopically pure compounds, unless otherwise noted.  Compounds were 

purified via either silica gel chromatography, using standard grade, 230x400 mesh 

Sorbent Tech silica gel and specified solvents as mobile phase or by high pressure 

liquid chromatography using a Varian ProStar HPLC and mixtures of water or 

ammonium carbonate buffer and acetonitrile.
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Compounds were characterized by one or more of the following methods: 1H, 13C, 

and 19F NMR, and mass spectrometry.  Compounds with a literature precedent were 

compared to previously obtained spectroscopic data.  Nuclear magnetic resonance 

spectra were obtained using a 400 MHz Bruker Avance Nuclear Magnetic Resonance 

(NMR) Spectrometer utilizing d-chloroform, d-methanol, or deuterium oxide as 

solvent, as noted, and are referenced by the relevant solvent residual peak.  Mass 

spectral data was obtained using either a Finnigan TSQ Quantum Discovery Max 

Mass Spectrometer or an Applied Biosystems QSTAR/Pulsar Mass Spectrometer.

3.2 General Procedures

Solid-support synthesis of cyclic oligonucleotides Commercial or synthetic 

phosphoramidites are dissolved in anhydrous acetonitrile to obtain a final 

concentration of approximately 1 M.  Automated synthesis of the linear dinucleotide 

coupled to the 3’-phosphate CPG is then carried out using the DNA synthesizer.  

Subsequent cleavage of the linear dimer from the solid-support is achieved by 

treatment of the resin with ~30% triethylamine in anhydrous acetonitrile for 5 h.  The 

resin is then recovered by filtration and re-subjected to cleavage overnight.  The 

combined filtrates are concentrated in vacuo, dried by co-evaporation with anhydrous 

pyridine and suspended in anhydrous pyridine to which 1-(mesitylene-2-sulfonyl)-3-

nitro-1,2,4-triazole is added (final concentration ~0.1 M). The reaction is stirred at 

room temperature for ~48 h.  After 48 h, the reaction mixture is concentrated in vacuo

and the residue is re-suspended in 28-30% aqueous ammonium hydroxide.  After 

heating at 55 oC on a heating block for 18 h, the ammonia is removed by heating at 65
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oC for ~2 h open to the atmosphere.  The sample is then filtered and purified by 

HPLC.  Compounds containing the 2’-TBS moiety are subsequently treated with 200

µL triethylamine trihydrofluoride in 200 µL DMSO and heated at 65 oC for 2.5 h 

after which the reaction is quenched by addition of 1.3 mL of TRIS RNA quenching 

buffer, filtered, and purified by HPLC using a reverse phase C18 column by gradient 

elution (0-90% acetonitrile:ammonium carbonate) at 25 ˚C.

3.3 Chemical Procedures

DMTO

S

O

OO O

O

OH

39

Mono 2-dimethoxytrityloxyethanesulfonyl)-ethyl succinate45 (39) To a stirred 

solution of 2-(dimethoxytrityloxyethylsulfonyl)-ethanol (1.00 g, 2.19 mmol) and 

dimethylaminopyridine (281 mg, 2.30 mmol) in dichloromethane (9 mL), was added 

succinic anhydride (230 mg, 2.30 mmol).  The reaction was stirred at ambient 

temperature for 30 min.  After this time, the reaction mixture was diluted with 

dichloromethane, washed with 0.5 M potassium phosphate (pH = 5) and water, dried 

over sodium sulfate, filtered, and concentrated in vacuo yielding 39 (1.10 g, 1.98

mmol, 90%) as a white crystalline solid.  This material was used without any further 

purification or characterization.  P085AS (Notebook reference).
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3’-Phosphorylation CPG45 (20) Mono 2-(4,4)-dimethoxytrityloxyethanesulfonyl)-

ethyl succinate 39 (4.48 g, 8.05 mmol) was suspended in acetonitrile (160 mL), to 

which were added sequentially bromotrichloromethane (3.98 g, 20.1 mmol) and 

dimethylaminopyridine (1.95 g, 15.9 mmol).  To this mixture was added a solution of 

triphenylphosphine (1.05 g, 4.00 mmol) in acetonitrile (80 mL).  The mixture was 

stirred for 30 s after which the amino CPG was added.  The heterogeneous mixture 

was stirred at ambient temperature for 30 min.  At this time, the functionalized resin 

was recovered on a sintered glass funnel, washed with acetonitrile and diethyl ether, 

and dried in vacuo.  Unfunctionalized amino groups were capped by treatment with 

commercial capping solution (equal parts Cap A and Cap B containing acetic 

anhydride/triethylamine/N-methylimidazole/dichloromethane) for 30 min at ambient 

temperature to cap unreacted amino groups.  The functionalized resin was again

recovered on a sintered glass funnel, washed with acetonitrile and diethyl ether, and 

dried in vacuo.  The reaction product was confirmed by a small-scale detritylation 

with trichloroacetic acid in dichloromethane resulting in the formation of an intense 

orange color.
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N-Ac-rG-2’OMe P-methoxy phosphoramidite46 (41)  To an oven-dried 50-mL 

round-bottom flask was added N-Ac-rG-2’OMe nucleoside (1.00 g, 1.56 mmol).  The 

material was co-evaporated with anhydrous pyridine, dried in vacuo for 2 h, and 

suspended in anhydrous acetonitrile (6 mL).  To this was added N,N,N,N-

tetraisopropyl-p-methoxy phosphoramide (450 mg, 1.72 mmol).  The reaction 

mixture was cooled to 0 ˚C and tetrazole (3.80 mL, 0.45 M in acetonitrile) was added.  

The reaction mixture was stirred for 5 min after which, it was allowed to warm to 

ambient temperature and stirred for 1 h.  At this time, the reaction was filtered into an 

oven-dried glass vessel and carried on to the automated syntheses without any further 

purification or characterization.  P097AS.
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Triisobutyryl-DHPG47 (43) A 50-mL round-bottom flask was charged with 1,3-

dihydroxy-2-propoxymethyl guanine (DHPG) (1.00 g, 3.92 mmol) and pyridine (16



41

mL) and cooled to 0 °C in an ice-water bath.  Isobutyryl chloride (1.66 g, 15.7 mmol) 

was added to the mixture dropwise via syringe over 5 min.  The reaction mixture was 

allowed to warm to ambient temperature and stirred for 18 h.  After complete 

conversion of starting material as judged by TLC, the mixture was poured over ice.  

The mixture was then concentrated in vacuo, and the resultant product was purified 

via column chromatography using 100% ethyl acetate.  Fractions containing the 

product were combined and concentrated.  Removal of solvent in vacuo yielded 43

(1.71 g, 3.69 mmol, 94%) as a slightly yellow solid. 1H NMR (400 MHz, CDCl3, δ): 

7.72 (s, 1H), 5.50 (s, 2H), 4.23 (m, 2H), 4.15 (m, 3H), 2.64 (h, 1H, J=8.0), 2.51 (h, 

2H, J=11.2), 1.28 (d, 6H, J=6.8), 1.13 (dd, 12H, J=4.8).  13C NMR (100 MHz, 

CDCl3, δ): 177.45, 155.77, 148.80, 139.27, 121.57, 77.14, 72.66, 63.21, 36.90, 34.30, 

19.32. P002AS.
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N-isobutyryl-DHPG47 (44) To a 10-mL round-bottom flask containing methanol (0.5

mL) and pyridine (2.15 mL) at 0 °C, was added triisobutyryl-DHPG 43 (200 mg, 

0.431 mmol). 2 M sodium hydroxide was added to the reaction mixture to obtain a 

pH of 13.5.  After conversion of starting material as indicated by TLC, the pH was 

adjusted to 8 by dropwise addition of 2 M hydrochloric acid.  DOWEX (strongly 

acidic cation exchange) resin was suspended in 20% aqueous pyridine.  After 20 min, 
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the suspension was poured through a fritted funnel, creating a DOWEX pad through 

which the reaction mixture was poured and collected.  The pad was washed with 

methanol and the flow through and washings were combined.  The mixture was then 

concentrated in vacuo, and the resultant product was purified via column 

chromatography using gradient elution (10-30%) methanol in chloroform.  Fractions 

containing the product were combined and concentrated.  Removal of solvent in 

vacuo yielded 44 (131 mg, 0.431 mmol, 94%) as a yellow solid.

N-isobutyryl-DHPG47 (44) To a solution of 1,3-Dihydroxy-2-propoxymethyl 

guanine (DHPG) (1.00 g, 3.92 mmol) in anhydrous pyridine (20 mL) was added 

chlorotrimethylsilane (3.8 mL) dropwise at 0 ˚C over 5 min.  The mixture was 

allowed to warm to ambient temperature and monitored by TLC.  Upon complete 

disappearance of starting material as indicated by TLC, the mixture was once again 

cooled to 0 ˚C, isobutyric anhydride (3.25 mL) was added, and stirring was resumed 

at ambient temperature for 18 h.  At this time, the mixture was returned to 0 ˚C and 

cold water (18 mL) was added followed by 28% aqueous ammonium hydroxide (7.5

mL) and the mixture was stirred at ambient temperature for 1 h.  Upon complete 

conversion as indicated by TLC, the mixture was concentrated in vacuo.  The

resultant residue was dissolved in water.  The aqueous layers were washed with ethyl 

acetate (3 x 15 mL), filtered, and concentrated in vacuo.  The resultant product was 

purified via column chromatography using gradient elution (10-20%) methanol in 

chloroform.  Fractions containing the product were combined and concentrated.  

Removal of solvent in vacuo yielded 44 (625 mg, 1.93 mmol, 49%) as a slightly 
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yellow solid.  1H NMR (400 MHz, CD3OD, δ): 8.11 (s, 1H), 5.50 (s, 2H), 3.75 (m, 

1H), 3.46 (m, 1H), 2.71 (m, 1H), 1.22 (d, 6H, J=6.8).  13C NMR (100 MHz, MeOD, 

δ): 181.45, 147.14, 142.21, 81.28, 61.70, 36.01, 18.34. P009AS.
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(S)-O-acetyl-N-isobutyryl-DHPG47 (45) To a 250-mL round-bottom flask 

containing pyridine (45 mL) and benzene (22 mL) was added N-isobutyryl-DHPG 44

(300 mg, 0.898 mmol).  Vinyl acetate (9 mL) and porcine pancreatic lipase (9 g) were 

added and the reaction was stirred at ambient temperature for 18 h.  Upon 

disappearance of starting material, the reaction mixture was filtered and concentrated 

in vacuo.  The resultant product was purified via column chromatography using 

gradient elution (0-20%) methanol in chloroform.  Fractions containing the product

were combined and concentrated.  Removal of solvent in vacuo yielded 45 (256 mg, 

0.697 mmol, 78%) as a light brown oil. 1H NMR (400 MHz, CD3OD, δ): 8.06 (s, 

1H), 5.62 (s, 2H), 4.10 (d, 1H, J=8.4), 3.94 (m, 2H), 3.57 (m, 2H), 3.36 (m, 1H), 2.70 

(q, 1H, J=6.8), 1.85 (s, 3H), 1.21 (d, 6H, J=6.8).  P022AS.
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(S)-DMT-O-acetyl-N-isobutyryl-DHPG47 (46) A 10-mL round-bottom was 

charged with (S)-O-acetyl-N-isobutyryl-DHPG 45 (256 mg, 0.687 mmol) and 

dichloromethane (3.5 mL).  To this stirring mixture were added sequentially Hunig’s 

base (diisopropylethylamine) (0.73 mL), dimethoxytrityl chloride (472 mg, 1.39

mmol), and dimethylaminopyridine (8.5 mg, 0.07 mmol).  The reaction was stirred at 

ambient temperature and monitored by TLC.  After complete conversion of the 

starting material, the reaction was quenched by addition to water and diluted with 

dichloromethane (5 mL).  The aqueous layers were extracted with dichloromethane (3 

x 15 mL).  The combined organic layers were washed with water (3 x 15 mL), dried 

over sodium sulfate, filtered, and concentrated in vacuo.  The resultant product was 

purified via column chromatography (silica neutralized with 1% triethylamine) using 

gradient elution (0-2%) methanol in dichloromethane.  Fractions containing the 

product were combined and concentrated.  Removal of solvent in vacuo yielded 46

(362 mg, 0.541 mmol, 78%) as a slightly orange solid.  1H NMR (400 MHz, CD3OD, 

δ): 7.75 (s, 1H), 7.30 (m, 9H), 6.82 (d, 4H, J=8.8), 5.57 (s, 2H), 4.12 (d, 2H, J=5.6), 

3.89 (q, 1H, J=8.0), 3.20 (m, 2H), 2.80 (s, 6H), 1.93 (s, 3H), 1.18 (d, 6H, J=6.8).  

P025AS.
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(S)-DMT-DHPG (47)  (S)-DMT-O-acetyl-N-isobutyryl-DHPG 46 (60 mg, 0.09

mmol) was suspended in 5% potassium carbonate (1.1 mL), which was previously 

prepared by addition of 5 g of potassium carbonate to 60 mL methanol and 40 mL 

water.  The reaction was stirred at ambient temperature and monitored by TLC.  After 

30 min the reaction was diluted with dichloromethane, washed with water (3 x 15

mL), dried over sodium sulfate, filtered, and concentrated in vacuo.  The resultant 

product was purified via column chromatography (silica neutralized with 1% 

triethylamine) using gradient elution (0-5%) methanol in dichloromethane.  Fractions 

containing the product were combined and concentrated.  Removal of solvent in 

vacuo yielded 47 (28 mg, 0.045 mmol, 50%) as a slightly yellow solid.  1H NMR

(400 MHz, CD3OD, δ): 7.86 (s, 1H), 7.25 (m, 9H), 6.78 (d, 4H, J=8.4), 5.58 (s, 2H), 

3.96 (s, 2H), 3.55 (q, 1H, J=8.0), 3.40 (m, 2H), 3.00 (s, 6H).  P024AS.
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(S)-DMT-N-DMF-DHPG54 (48)  To a stirring solution of (S)-DMT-DHPG 47 (50

mg, 0.09 mmol) in dry dimethylformamide (2 mL) was added dimethylformamide 

dimethylacetal (0.2 mL).  The mixture was stirred at ambient temperature and 

monitored by TLC.  After 3 h, the reaction mixture was concentrated in vacuo and 

purified via column chromatography (silica neutralized with 1% triethylamine) using 

8% methanol in dichloromethane.  Fractions containing the product were combined 

and concentrated.  Removal of solvent in vacuo yielded 48 (49 mg, 0.08 mmol, 89%) 

as an off-white solid.  1H NMR (400 MHz, CD3OD, δ): 8.39 (s, 1H), 7.66 (s, 1H), 

7.29 (m, 9H), 6.77 (d, 4H, J=8.4), 5.58 (s, 2H), 3.96 (s, 2H), 3.00 (s, 6H), 3.55 (q, 

1H, J=8.0), 3.40 (m, 2H), 2.94 (s, 3H), 2.63 (s, 3H).  P117AS.
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(S)-DMT-N-DMF-DHPG-O-P-methoxy phosphoramidite (49)  To an oven-dried 

50-mL round-bottom flask was added (S)-DMT-N-DMF-DHPG 48 (96 mg, 0.157
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mmol).  The material was co-evaporated with anhydrous pyridine, dried in vacuo for 

2 h, and suspended in anhydrous acetonitrile.  To this was added N,N,N,N-

tetraisopropyl-P-methoxy phosphoramide (45 mg, 0.172 mmol).  The reaction 

mixture was cooled to 0 ˚C and tetrazole (0.37 mL, 0.45 M in acetonitrile) was added.  

The reaction mixture was stirred for 5 min after which, it was allowed to warm to 

ambient temperature and stirred for 1 h.  At this time, the reaction was filtered into an 

oven-dried vessel and carried on to the automated syntheses without any further 

purification or characterization.  P121AS.
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2,2’-anhydro-1-(β-D-arabinofuranosyl)uracil51 (58)  To a solution of uridine (10 g, 

41.0 mmol) and diphenyl carbonate (11.4 g, 53.24 mmol) in 

hexamethylphosphoramide (HMPA) was added sodium bicarbonate (344 mg, 4.1

mmol).  The reaction was stirred at 150 ˚C and monitored by TLC.  After 20 min, the 

mixture was cooled, added to water, and extracted with chloroform.  The aqueous 

layer was concentrated in vacuo, and the resultant product was recrystallized from 

methanol yielding 58 (5.3 g, 23.43 mmol, 57%) as a slightly off-white powdery solid.  

1H NMR (400 MHz, D2O, δ): 7.32 (d, 1H, J=7.6), 6.41 (d, 1H, J=5.6), 5.26 (d, 1H,
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J=5.6), 4.50-3.50 (m, 6H).  13C NMR (100 MHz, D2O, δ): 176.02, 161.91, 138.88, 

109.95, 91.55, 90.12, 90.05, 75.55, 61.14.  P124AS.
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2’-fluoro-2’-deoxyuridine52 (59) To a solution of 2,2’-anhydro-1-(β-D-

arabinofuranosyl)uracil 58 (25 mg, 0.11 mmol) in anhydrous 1,4-dioxane (1.2 mL) 

was added hydrofluoric acid:pyridine complex (0.4 mL).  The mixture was stirred in a 

sealed plastic screw-capped vial at 100 ˚C for 48 h.  The reaction was then cooled to 

ambient temperature, and quenched by careful addition of excess solid calcium 

carbonate.  The mixture was stirred for 24 h, after which the solid was filtered and 

washed with methanol.  The combined filtrates were concentrated in vacuo, and the 

resultant product was purified via column chromatography using 20% methanol in 

dichloromethane.  Fractions containing the product were combined and concentrated.  

Removal of solvent in vacuo yielded 59 (8.6 mg, 0.04 mmol, 32%) as a slightly 

yellow solid.  1H NMR (400 MHz, CD3OD, δ): 7.83 (d, 1H, J=8.4), 6.11 (d, 1H, 

J=4.4), 5.63 (d, 1H, J=8.0), 4.20-3.50 (m, 5H).  13C NMR (100 MHz, D2O, δ): 

165.48, 151.19, 143.25, 99.93, 86.55, 85.45, 76.63, 76.00, 61.52.  19F NMR (100 

MHz, D2O, δ):  -80.23.  P136AS.
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