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This dissertation considers two groups of problems related to secure commu-

nication. The first line of research is devoted to theoretical problems of copyright

protection of digital content. Embedding identification data in the content is a well-

developed technique of content protection known under the name of fingerprinting.

Schemes that provide such protection are known as fingerprinting codes in the liter-

ature. We study limits of the number of users of a fingerprinting system as well as

constructions of low-complexity fingerprinting codes that support a large number of

users. The second problem that is addressed in the dissertation relates to connec-

tivity analysis of ad hoc wireless networks. One of the basic requirements in such

environments is to ensure that none of the nodes are completely isolated from the

network. We address the problem of characterizing threshold parameters for node

isolation that enable the system designer to choose the power needed for network

operation based on the outage probability of links in the network.

The methods of this research draw from coding theory, information theory

and random graphs. An idea that permeates most results in this dissertation is

the application of randomization both in the analysis of fingerprinting and node

isolation.



The main contributions of this dissertation belong in the area of fingerprinting

and are described as follows. We derive new lower and upper bounds on the optimal

trade-off between the number of users and the length of the fingerprints required to

ensure reliability of the system, which we call fingerprinting capacity. Information-

theoretic techniques employed in our proofs of bounds on capacity originate in coding

theorems for channels with multiple inputs. Constructions of fingerprinting codes

draw on methods of coding theory related to list decoding and code concatenation.

We also analyze random graph models for ad hoc networks with link failures

and secure sensor networks that employ randomized key distribution. We establish

a precise zero-one law for node isolation in the model with link failures for nodes

placed on the circle. We further generalize this result to obtain a one-law for secure

sensor networks on some surfaces.
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Chapter 1

Introduction

A central theme in this dissertation is applications of randomization in prob-

lems of secure content distribution and communication. For many complex problems

in system design, deterministic solutions either do not exist, or exhibit poor perfor-

mance and/or implementation complexity. Randomization allows us to introduce

probabilistic schemes which can yield simple solutions with improved performance

and complexity. Sometimes randomization is the only alternative for certain prob-

lems where deterministic schemes cannot work. In adversarial scenarios, it is espe-

cially important to randomize in order to confound the attackers.

Nevertheless, in order to obtain practical schemes, we also require some struc-

ture balancing the randomization. Coding theory and combinatorial designs, in

essence, provide matrices or codes with a special structure. On the other hand,

graphs are a useful tool to model and visualize this structure. In this dissertation,

we attempt to combine randomization together with codes and graphs to tackle

some problems of interest in secure communication. We focus on the two following

classes of problems:

(a) Random codes with application to distributing copyrighted content in a secure

manner so as to prevent piracy,

(b) Random graph models for connectivity analysis of secure networks.

The main accomplishments of this research concern the copyright protection

problem and its variations. We characterize fundamental performance limits for

schemes used to fight piracy of digital content, present explicit constructions of such

1



schemes with performance close to the limits, and extend these results to a number

of related problems in information-theoretic cryptography.

Another aspect of secure communication addressed in this thesis is concerned

with random graph models for secure sensor networks, and networks with random

link failures. In this, somewhat separate, part of our research, we characterize the

threshold parameter scalings that guarantee the absence of isolated nodes in the

network.

In the next two sections we introduce these two topics and discuss previous

work and our results in more detail. We will adhere to an informal discussion style

throughout this introduction, giving formal definitions and statements of results in

later chapters.

1.1 Secure Content Distribution

1.1.1 Motivation

The distribution of licensed digital content (e.g., software, movies, music etc.)

has become increasingly popular in recent times. With this comes the need to

protect the copyright of the distributor against unauthorized redistribution of the

content, commonly known as piracy. To introduce the problem, we begin with an

informal description.

Suppose the distributor has some content which he would like to distribute

among a set of licensed users. One can think of a simple scheme where each licensed

copy is identified by a unique mark (fingerprint) which is embedded in the content

and is imperceptible to the users of the system. Note that the distributed copies

are identical except for the fingerprints. If a naive user distributes a copy of his

fingerprinted content, then the pirated copy can easily be traced back to the guilty

user and hence he will be exposed. Tracing the guilty user becomes more difficult

2
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Figure 1.1: Model of the fingerprinting system. If users 2 and 3 collaborate to create
the pirated copy, we require the decoding algorithm to output either 2 or 3.

when a collection of users form a coalition to detect the fingerprints and modify/erase

them before illegally distributing the data. The members of the coalition will be

referred to as pirates.

Digital fingerprinting is a technique that assigns to each user a mark in a way

that enables the distributor to identify at least one of the pirates as long as the

coalition size does not exceed a certain threshold t, which is a parameter of the

problem. The model of a general fingerprinting system is shown in Figure 1.1. As

an example, if users 2 and 3 collaborate to create the pirated copy, the objective

of the distributor will be to output either 2 or 3 using a decoding algorithm1. The

distributor commits a decoding error if it is unable to identify any user as a member

of the pirate coalition or if a user outside the coalition is identified as a pirate.

There are two main setups considered for the fingerprinting problem in the

literature. The distortion setting is commonly used in applications relating to mul-

timedia fingerprinting. See [62, 82, 85, 52] among others for work on multimedia

fingerprinting. In this model, the fingerprint is usually a “covert signal” which

is superimposed on the original “host” data in such a way that the difference, or

distortion, between the original and the fingerprinted copies is smaller than some

1The terms decoding, tracing, and pirate identification will be used interchangeably throughout.
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threshold. The coalitions are restricted to creating a forgery which has distortion

less than some threshold from at least one of the colluders’ fingerprinted copies.

The line of research into the construction of fingerprinting schemes pursued

in this dissertation applies to systems designed to protect digital content and relies

on the so-called marking assumption setting introduced by Boneh and Shaw

[26]. In this case, the fingerprint is a set of redundant digits which are distributed

in some random positions (unknown to the users) across the information digits of

the original content. The fingerprint positions remain the same for all users. It is

assumed that these redundant digits do not affect the functionality of the content,

while tampering with an information digit damages the content permanently. The

motivation for this assumption arises in applications to protecting software where

modifying arbitrary digits can damage its functionality. Note that the problem of

embedding such fingerprints in the software is a separate non-trivial problem which

we will not consider in this thesis.

The pirate coalition attempts to uncover some of the fingerprint positions

by comparing their copies of the data for differences. Because the users’ copies

are identical except for the fingerprints, once such a difference is located in some

position, it is guaranteed to be a redundant fingerprint digit. The comparison

procedure does not reveal any information regarding the bits that are identical in

all the data copies of the coalition members, which can be either information or

fingerprint digits. The marking assumption states that to preserve functionality of

the data, the coalitions may modify only those positions where they find a difference

in their fingerprinted copies. For this reason, in analyzing this model, it becomes

sufficient to look only at the fingerprint positions and ignore the information digits.

The collection of fingerprint assignments for all the users of the system together

with the decoding algorithm is called a code below. The design objective of a

fingerprinting system is to provide a code construction that will guarantee a low

4



probability of identification error. It is known [26] that any fixed assignment of

fingerprints (a fixed code) cannot satisfy this requirement: namely, there exist attack

strategies of the coalition that will result in the error probability bounded away from

zero irrespective of the decoding employed. For this reason it becomes necessary

for the distributor to use some form of randomization in constructing such codes,

where the random key is known only to the distributor (see Section 2.1 for details).

Informally speaking, a randomized code family is said to be t-fingerprinting

if given a pirated copy produced by any coalition of size at most t, the probability of

decoding error approaches 0 as the length of the fingerprints increases. Such codes

are also termed collusion-secure against t pirates in the literature.

Fingerprinting codes also find applications in the context of broadcast encryp-

tion (e.g., pay-per-view TV) [27, 28]. In this problem, all the users receive the same

broadcast data. To prevent unauthorized users from accessing the content, the data

is encrypted before broadcasting. The broadcast is divided into a number, say n,

of encrypted segments, each of which can be decrypted using one of q keys. Each

licensed user is given a particular collection of n keys, one to decrypt each segment.

A coalition of licensed users may attempt to create a new set of keys (designed

for redistribution) in which for each segment one of the colluders contributes his

assigned key. It is easy to see that the marking assumption is satisfied in producing

such an unlicensed set of keys. Therefore, if the keys are assigned according to a

fingerprinting code, then at least one of the guilty users can be traced from this key

set with high probability.

1.1.2 Previous Work

Though the first works on fingerprinting date back to the 1980s [83, 22], it

was the works of Chor et al. [27, 28] on traitor tracing for broadcast encryption and

of Boneh and Shaw [26] on collusion-secure fingerprinting codes that brought it to

5



the attention of the research community. The paper [26] also was the first to give

a construction of code families of increasing length with vanishing error probability.

Further general constructions were proposed by Barg et al. [15] and Tardos [79],

followed by [21, 68, 70, 72] and many others.

The case of deterministic codes with (exactly) zero error probability was con-

sidered independently by Hollmann et al. [53] who called them codes with the

identifiable parent property, or IPP codes. As was pointed above, such code con-

structions are possible only under some assumptions regarding the problem which

will be discussed in detail later in this thesis. IPP codes were further studied in

[16, 17, 3, 19] among others.

The rate of a fingerprinting code quantifies the tradeoff between the number

of users that can be supported by the system and the fingerprint length required

to make it workable. The rate is given by the ratio of the logarithm of the number

of licensed users to the length of the fingerprints. A fundamental question in

understanding the fingerprinting problem is as follows: Given the maximum number

of colluders, what is the largest rate attainable by fingerprinting codes such that

there is a tracing algorithm that makes an error with an arbitrarily small probability?

This maximum attainable code rate will be called capacity in this thesis. At the

time the dissertation research was carried out, the only lower bounds on the capacity

available were implied by the constructions of [26, 15, 79] and the existence results

of [21]; no upper bounds were known.

At the same time, in the distortion setting, some results on the information-

theoretic limits were known (see [63, 75, 76, 77]). In particular, Somekh-Baruch and

Merhav [75, 77] obtained upper and lower bounds for the optimal rate which differ by

a factor corresponding to the maximum coalition size. However, the methods used to

establish these bounds are insufficient to establish tight bounds on the capacity of the

digital fingerprinting problem or to construct code families and decoding algorithms
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for it. For this reason the two problem formulations complement each other rather

than compete in the context of copyright protection systems. Ahlswede and Cai [2]

considered the marking assumption setting, but addressed a simpler problem whose

results do not directly apply to fingerprinting.

1.1.3 Objectives

The main objectives of this dissertation are to investigate the fundamental

information-theoretic limits of fingerprinting codes and to develop code construc-

tions exhibiting performance close to these limits. Specifically, our goal is to estab-

lish new tighter bounds on the capacity of fingerprinting codes for a given coalition

size. In addition, we also aim to construct codes having high rates, low error prob-

ability of identification, and efficient decoding algorithms.

1.1.4 Main Contributions

The fingerprinting problem. We contribute new bounds on the finger-

printing capacity, analyzing this problem both for coalitions of small size and of

an arbitrary given size t. This is done because the more precise methods proposed

for the former case encounter substantial technical obstacles and are replaced by

other methods for the general case. We also study several problems related to fin-

gerprinting, proposing new code constructions and identification methods in each of

them.

• We introduce a new derivation method for lower bounds on the fingerprinting

capacity which takes account only of the collusion events that occur with high

probability, discarding “atypical” coalitions. This is a novel idea in finger-

printing which enabled us to establish capacity bounds that are substantially

better than previously known results. This is the contents of Chapter 3.
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• Motivated by fingerprinting, in Chapter 4 we study a new problem in multi-

user information theory. Specifically, we analyze the capacity of a multiple-

access channel (MAC) in which (a) all channel inputs use the same code,

and (b) the decoder recovers only one of the transmitted messages. These

differences render the problem much harder to solve than the usual MAC

capacity. We derive upper and lower bounds for the capacity of the above

channel expressed in a form that involves only single-letter mutual information

quantities and thus facilitates numerical computation of the capacity bounds.

• Relying on the insights developed for the MAC problem described, in Chapter

5 we employ information-theoretic methods to obtain the first known upper

bounds on fingerprinting capacity. Evaluating the bounds is a difficult op-

timization problem which we address separately in the general case and for

coalitions of small size. This leads to new capacity bounds in each of these

cases.

• In order to obtain practical codes with high rates and efficient algorithms,

we study a variation of the fingerprinting model known under the name of

“frameproof codes” [26, 78]. In the modified system, whenever a user tries to

access his copy, the fingerprint is submitted to a validation algorithm to verify

that it is indeed permissible before the copy can be executed. In this setup,

we are faced with the simplified objective of designing codes such that the

pirates cannot forge the fingerprint of an innocent user. In Chapter 6, we con-

struct such randomized codes with high rates and with validation complexity

polynomial in the fingerprint length.

• In Chapter 7, we introduce two-level fingerprinting codes which provide partial

information about the pirates even when the coalition size exceeds the designed

limit. In this setting, the users are organized in a hierarchical manner by
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classifying them into various groups. We begin with formalizing the two-level

fingerprinting problem and then move to the construction problem for two-

level codes. The codes that we construct have the following property: As in

traditional fingerprinting codes, if the coalition size is at most t, the tracing

algorithm determines one of the guilty users correctly with high probability.

In addition, even when a larger number s (> t) of pirates participate, the

algorithm provides partial information by tracing one of the groups containing

a guilty user.

• Finally, in Chapter 8 we construct polynomial-complexity one- and two-level

fingerprinting codes. Combining randomized codes with code concatenation

and the list decoding approach of [15], we obtain binary fingerprinting codes

with polynomial-time tracing algorithms having the best known rate of Ω(1/t4)

with coalition size t. We also construct a family of two-level fingerprinting

codes of asymptotically positive rate which performs two-level tracing in time

polynomial in the length of the fingerprints.

The ideas regarding the fingerprinting capacity introduced in the thesis were

very recently adapted and developed by Amiri and Tardos [4], Dumer [36], and

Moulin (with Huang) [61, 54], leading in particular, to tight results for fingerprinting

capacity. We elaborate on these developments in Chapters 3 and 5.

1.2 Security in Sensor Networks

1.2.1 Motivation

A wireless sensor network (WSN) consists of a large collection of sensors dis-

tributed over some terrain and communicating in an ad hoc manner. In order to

establish secure communication between a pair of sensors they need to be equipped

with a shared secret key. A probabilistic key sharing scheme that addresses this
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requirement was proposed by Eschenauer and Gligor [38]. An informal description

of the scheme follows.

The system constructor has a large pool of secret keys. Before deployment,

each sensor is provided with a certain number of keys selected at random from this

key pool. Assuming that the sensors have only a finite communication range (as is

the case in practice) and no interference between transmissions, any two nodes can

now establish a secure link if they are located within the range and share a secret

key. A typical objective is to construct, with high probability, a network which

ensures that any two nodes can communicate securely, perhaps using multiple hops

over intermediate links.

We model the connectivity problem described as a graph whose vertices cor-

respond to the sensors and two vertices are connected by an edge if the pair of

sensors can directly communicate with each other. The objective of enabling any

two nodes in the network to reach each other, is accomplished by making sure that

the corresponding graph model is connected, i.e., that there exists a path linking

any two nodes. Clearly, the above condition requires that the network contains no

isolated nodes (a node is isolated if it has no edges to any of the other nodes).

In a number of contexts, including the application just mentioned, random

graph models have been found to be more appropriate in order to account for the

inherent randomness. A common objective in random graph theory is to identify

the critical scalings (or thresholds) of the graph parameters at which various mono-

tone graph properties (e.g., disappearance of isolated nodes, graph connectedness,

containment of a given subgraph etc.) emerge. Such thresholds are identified by

what are known as “zero-one laws” in the literature.

The classical random graphs were introduced by Erdős and Rényi in their

groundbreaking paper [37]. In wireless networking, random geometric graphs (also

known as disk models) [46, 50, 66] have been proposed to model the effects of
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geometry and limited communication range. In effect, if the security constraint

is removed in our problem, then connectivity between two sensors depends only

on whether they are located within communication range, and this is captured by

random geometric graphs. In the complementary case when there is “full visibility”,

i.e., all nodes are within range of each other, the presence of a secure link between

two nodes depends only on the existence of a shared secret key. Such networks can

be modeled as random key graphs [32, 33, 86].

For secure WSNs, however, the random graph model should take into account

both the communication range and the shared-key constraints. This can be viewed

as taking the intersection of the edge sets of the corresponding random geometric

and key graphs.

To proceed with the above model, we examine a related simpler problem.

Consider a WSN where the nodes have a finite communication range. Suppose that

the link between each pair of nodes can fail independently with a certain probability

(which can scale with the number of nodes). In this case, an edge is present between

two nodes if they are located within range and the pairwise link is indeed active.

The advantage of this model, compared to the latter problem of secure WSNs, is

that it eases analysis by eliminating the dependencies between the edges of the key

graph. Therefore, this model will serve as a precursor to, and hopefully provide

some insight for, the more complicated situation. As an added motivation to study

this graph model, note that it can also be viewed as a simple method to include

fading in the disk model of networks by thinking of fading as link outage.

1.2.2 Previous Work

Connectivity properties of random key graphs, which apply for secure WSNs

under full visibility, have been analyzed by Di Pietro et al. [32, 33] and Yağan and
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Makowski [86]. Although the case of partial visibility is mentioned in [32], their

analysis assumes the range to be constant and does not allow an arbitrary scaling.

In [87], Yi et al. consider a WSN in which each node independently becomes

inactive with a certain fixed probability which does not vary with the number of

nodes. For this case, their results go beyond identifying the critical scalings for node

isolation; they also provide the asymptotic distribution of the number of isolated

nodes for given parameters. Their techniques are further extended in [88] to allow

independent link failures where the failure probability may scale with the number of

nodes. The same flavor of results also apply for secure WSNs. However, the results

are derived under additional (non-trivial) technical assumptions on the scalings, and

therefore, do not provide a complete characterization of the zero-one laws for this

setting.

1.2.3 Main contributions

WSNs with random link failures. In this part of the research, covered in

Chapter 9, we study WSNs with random link failures where the sensors are located

on a circle. We provide a complete zero-one law establishing the exact threshold

scaling which guarantees that with high probability none of the sensors are isolated.

In contrast to earlier works cited above, our result uses no additional assumptions

on the parameter scalings. We also obtain more general results. For both secure

WSNs and networks with random link failures, if the nodes are located on a sphere

or a torus in R
d, we prove a one law which establishes sufficient conditions for the

scalings so that with high probability, the WSN does not contain isolated nodes.
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1.3 Basic Notation and Conventions

Random variables (r.v.’s) will be denoted by capital letters and their real-

izations by lower-case letters. The probability distribution of an r.v. X will be

denoted by PX . If X and Y are independent r.v.’s, then their joint distribution is

written as PX × PY . For positive integers l,m, X l+m
l denotes the collection of r.v.’s

{Xl, Xl+1, . . . , Xl+m}, and the shorthand [l] is used to denote the set {1, . . . , l}. We

use the notation =st to indicate distributional equality. The indicator function of

an event E is denoted by 1 [E].

Vectors are denoted by boldface letters. For example, X denotes a random

vector, while x denotes a fixed vector. The Hamming distance between vectors

x,y is defined as dH(x,y) :=
∑

i 1 [xi 6= yi]. If S is a set of vectors, we abbreviate

miny∈S dH(x,y) as dH(x, S).

The entropy of a random variable with finitely supported distribution will be

denoted by H(X). The mutual information of r.v.’s X and Y is written as I(X; Y ).

For the definition and properties of these and other information-theoretic quantities

used below we refer to the books of Csiszar and Körner [31] or Cover and Thomas

[30]. All such quantities are defined with logarithms to the base q, which denotes

the common support size of the r.v.’s in question. The entropy of a random variable

X with p.m.f. PX(0) = 1 − x, PX(1) = · · · = PX(q − 1) = x/(q − 1) will be called

the q-ary entropy function, denoted hq(x). Explicitly, hq(x) := −x logq x/(q − 1) −

(1−x) logq(1−x). The information divergence of two such random variables equals

Dq(x‖y) := x logq(x/y) + (1 − x) logq((1 − x)/(1 − y)). For q = 2, we write simply

h(x) and D(x‖y).

For two functions f(n), g(n), we write f(n) ∼ g(n) if limn→∞ f(n)/g(n) = 1,

and f(n)
.
= g(n) if limn→∞ n−1 log(f(n)/g(n)) = 0.
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1.4 Useful Identities

The following are some standard identities which will be useful in various

proofs throughout the dissertation.

1) Let Z be a binomial r.v. with parameters (n, p). Then

P [Z ≥ nσ] ≤ q−nDq(σ‖p), if σ > p (1.1)

P [Z ≤ nσ] ≤ q−nDq(σ‖p), if σ < p. (1.2)

2)
σn
∑

k=0

(

n

k

)

(q − 1)k .
= qnhq(σ), if σ ∈

(

0, (q−1)/q
)

. (1.3)
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Chapter 2

Preliminaries on Fingerprinting

This section introduces a formal statement of the fingerprinting problem. It

then proceeds to give a definition of the fingerprinting capacity and to derive some

of its simple properties that were obtained in the course of the present research.

2.1 The Fingerprinting Problem

Suppose that we need to distribute identical copies of some copyrighted mate-

rial to M users. The distributor embeds an imperceptible fingerprint in each legal

copy of the data. The fingerprints are assumed to be located inside the host message

so that their precise position is unknown to the system users. The location of the

fingerprints, however, remains the same for all users.

Let n denote the length of the fingerprints. Let Q denote an alphabet of

(finite) size q, usually taken to be {0, . . . , q − 1} with modulo q addition. The case

q = 2 is called the binary alphabet. Assume that there is some ordering of the users

and denote their set by [M ] = {1, . . . ,M}.

Definition 2.1. An (n,M)q code (C,D) is a pair of encoding and decoding mappings

C : [M ]→ Qn, D : Qn → [M ] ∪ {0}, (2.1)

where the decoder output 0 signifies a decoding failure.

The image of U ⊆ [M ] under C is written as C(U). Also, for convenience,

we sometimes abuse terminology by calling the range of C a code (or codebook),

and use the same notation C for it. Hopefully this ambiguity can be resolved
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by the context. Following standard coding-theoretic terminology, the vectors in the

codebook are called codewords, and the quantities n and M will be referred to as the

code length and size respectively. The rate of this code is given by R = n−1 logq M .

The minimum distance of C is defined as the smallest (Hamming) distance between

any two codewords. If Q is a finite field, then an [n, k, d]q linear code is defined to

be a vector subspace of Qn with dimension k and minimum distance d. Please see

MacWilliams and Sloane’s book [59] for formal definitions and properties of linear

codes.

The distributor’s strategy of assigning fingerprints to the users may be either

deterministic or randomized as explained in the following subsections.

2.1.1 Deterministic Codes

A deterministic assignment of fingerprints is given by an (n,M)q code (C,D)

as defined above in (2.1). A coalition of t users is an arbitrary t-subset of [M ].

Following accepted usage, we will refer to the members of the coalition as “pirates”.

We assume that the code (C,D) is public and can be used by the pirates in designing

their attack. Suppose that the collection of fingerprints assigned to a coalition U ,

namely C(U), is {x1, . . . ,xt}. The coalition attempts to create a pirated copy with

a forged fingerprint y ∈ Qn so as to conceal their identities from the distributor.

Note that although the fingerprint locations are not available to the pirates,

they may detect some of these locations by comparing their copies for differences

and modify the detected positions. Thus, coordinate i of the fingerprints is called

undetectable for the coalition U if

x1i = x2i = · · · = xti

and is called detectable otherwise.
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Definition 2.2 (Marking assumption). The marking assumption states that for

any fingerprint y created by the coalition U , yi = x1i = x2i = · · · = xti in every

coordinate i that is undetectable.

In other words, in creating y, the pirates can modify only detectable positions.

For a given set of observed fingerprints {x1, . . . ,xt}, the set of forgeries that can be

created by the coalition is called the envelope. Its definition depends on the exact

rule the coalition should follow to modify the detectable positions:

• If the coalition is restricted to use only a symbol from their assigned finger-

prints in the detectable positions, we obtain the narrow-sense envelope:

EN(x1, . . . ,xt) = {y ∈ Qn|yi ∈ {x1i, . . . , xti},∀i}; (2.2)

• If the coalition can use any symbol from the alphabet in the detectable posi-

tions, we obtain the wide-sense envelope:

EW (x1, . . . ,xt) = {y ∈ Qn|yi = x1i,∀i undetectable}. (2.3)

We remark that there are further generalizations of the rules above where coalitions

are also allowed to erase the symbols in detectable positions. This generalization

is not considered below; we refer the interested reader to [15]. In the following, we

will use E(·) to denote the envelope from any of the rules or their generalizations

mentioned above.

Remark 2.3. Note that different problems can arise for each definition of the enve-

lope. The binary alphabet is of special interest because of its wide use in practical

digital applications. For this special case, it is easy to see that the narrow-sense and

wide-sense envelopes are exactly the same.
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Given a pirated copy with a forged fingerprint, the distributor’s goal is to

identify one of the pirates using a tracing algorithm. Note that it is impossible

to trace all members of the coalition as some members may essentially contribute

nothing to the forgery. Naturally, we require the error probability in tracing to be

arbitrarily small. However, it was shown in [26] that this objective is unattainable

with deterministic codes under the wide-sense formulation (2.3). Therefore, we

restrict ourselves to the narrow-sense rule (2.2) in the case of deterministic codes.

Consider the following simple decoding strategy. Given a forgery y, the dis-

tributor performs an exhaustive search for all coalitions T ⊆ [M ] of size at most t

such that y ∈ EN(C(T )) and outputs a user that is common to all these coalitions

(an error is declared if there is no common user). Obviously, if there exists such a

common user, it is definitely a pirate. This motivates the following definition.

Definition 2.4 (t-IPP). A code C has t-identifiable parent property (or is t-IPP) if

for any U ⊆ C of size at most t and any y ∈ EN(U), the following holds:

⋂

T⊆C: |T |≤t,
y∈EN (T )

T 6= ∅.

Since any user in the above intersection is guaranteed to have participated in

creating y, this property allows us to identify a guilty user with zero probability of

decoding error.

Remark 2.5. For the alphabetQ = {0, . . . , q−1}, the code C = {(0, . . . , 0), . . . , (q−

1, . . . , q − 1)} is a trivial q-IPP code (for any code length). We say a q-ary t-IPP

code is non-trivial if its size is at least max(t, q) + 1. It was shown in [78] that

non-trivial IPP codes do not exist if t ≥ q.
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2.1.2 Randomized Codes

In this section we define randomized fingerprinting codes. Randomization is a

powerful method of constructing fingerprinting codes both for the narrow-sense and

wide-sense rules (2.2)-(2.3). Moreover, as remarked above, for the latter case any

nontrivial fingerprinting code construction with a small error probability must rely

on randomization. Even for the narrow-sense rule, randomization can increase the

attainable code rates compared to deterministic codes at the cost of a small error

probability.

Let K be a finite set whose size may depend on n. We will refer to the

elements of K as keys. A randomized strategy to assign fingerprints is defined

as the following random experiment. The distributor has at its disposal a family

of codes {(Ck, Dk), k ∈ K}, where each (Ck, Dk) is an (n,M)q code as defined

in (2.1). The distributor chooses a key k according to a probability distribution

function (π(k), k ∈ K) and assigns the fingerprints according to Ck. On receiving

a forged fingerprint, the distributor uses the tracing strategy Dk, corresponding to

the selected key, to determine one of the guilty users. The code resulting from this

random experiment is called a randomized code and is denoted by (C,D).

Following the standard convention in cryptography of the system design being

publicly available, we allow the users to have knowledge of the family of codes

{(Ck, Dk)} and the distribution π(·), while the exact key choice is kept secret by the

distributor.

Consider a coalition U of size t. Suppose that U relies on a randomized strategy

V (·|·, . . . , ·) to create a new fingerprint, where V (y|x1, . . . ,xt) is the probability that

the coalition creates y given that it observes the fingerprints x1, . . . ,xt. Our interest

is in a special class of strategies which satisfy one of the restrictions (2.2), (2.3),

depending on the application, in creating a forgery.
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A strategy V is called admissible if

V (y|x1, . . . ,xt) > 0 only if y ∈ E(x1, . . . ,xt). (2.4)

Let Vt denote the corresponding class of admissible strategies. Since the sequences

y,xi are formed of entries chosen from a finite alphabet, such randomized strategies

model any general attack the coalition is capable of, and also facilitate mathematical

analysis.

Let the random vector YC,U,V represent the forgery generated by U using the

strategy V in this manner. Assuming that the key k was chosen, the distributor

employs the decoder Dk to trace one of the pirates from the observed forged finger-

print. The probability of error for a given coalition U and strategy V averaged over

the family of codes is defined as follows:

e(C,D, U, V ) = P [D(YC,U,V ) /∈ U ] = EK

∑

y:DK(y)/∈U

V (y|CK(U)),

where the expectation is taken with respect to the distribution π(k).

Definition 2.6 (t-fingerprinting). A randomized code (C,D) is said to be t-fingerprinting

with ε-error if

max
U : |U |=τ

max
V ∈Vτ

e(C,D, U, V ) ≤ ε, ∀τ ≤ t. (2.5)

Remark 2.7. The fingerprinting problems arising from the above definition are of

different nature for each of the two envelope restrictions described. However, for the

binary alphabet, either choice leads to the same definition since the narrow-sense

and wide-sense envelopes are exactly the same.
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2.2 Fingerprinting Capacity

We now formulate the fingerprinting problem as a communication problem.

The set of messages for the communication problem are identified with the set of

users of the fingerprinting system. Each message is mapped to a codeword that

corresponds to the fingerprint of the user. Any set of t messages (a coalition) can be

chosen, and they are transmitted over an unknown communication channel with t

inputs and a single output that is defined by the strategy of the coalition. The class

of possible channels will be defined by the marking assumption. The output of the

channel (that represents the strategy) gives the forged fingerprint. The task of the

decoder is to recover at least one of the transmitted messages that have produced

the channel output.

For readers familiar with the information-theoretic model called a Multiple-

Access Channel (MAC), we observe that the above model differs from the traditional

t-user MAC because: (a) the decoder makes an error only when its output does not

match any of the transmitted messages, and (b) all channel inputs are required to

use the same codebook.

For a given t-user strategy V , the maximum probability of error is given by

emax(C,D, V ) = max
u1,...,ut∈[M ]

e(C,D, {u1, . . . , ut}, V ). (2.6)

It is straightforward to see that the t-fingerprinting condition (2.5) can now be

expressed as

emax(C,D, V ) ≤ ε for every V ∈ Vt. (2.7)

Note that in maximization above the users u1, . . . , ut are not necessarily distinct.

Definition 2.8 (Fingerprinting capacity). A number R ≥ 0 is an achievable rate

for q-ary t-fingerprinting if there exists a sequence of (n, qnRn)q randomized codes
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(Cn,Dn) such that

lim inf
n→∞

Rn = R, lim
n→∞

max
V ∈Vt,n

emax(Cn,Dn, V ) = 0.

The supremum of all such achievable rates is called the capacity of q-ary t-fingerprinting,

and is denoted by Ct,q.

Remark 2.9. A more accurate way to write the above definition involves a se-

quence of codes (Ci,Di), i = 1, 2, . . . of (growing) length ni and rate Ri such that

lim infi→∞ Ri = R. Similar qualifiers apply to the other quantities whose limits are

considered above. Following established practice, we use the streamlined notation

in relation to capacity and other similar notions throughout the thesis.

2.3 Properties of Fingerprinting Capacity

For later analysis let us establish some simple properties of the fingerprinting

capacity Ct,q.

Coalitions of size t. Below it will be convenient to rely on coalitions of size

exactly t as opposed to ≤ t. We argue that this restriction does not change the

value of Ct,q.

Given any t-user strategy V , define the maximum probability of error corre-

sponding to coalitions of size t alone as

ẽmax(C,D, V ) = max
U : |U |=t

e(C,D, U, V ). (2.8)

The capacity value C̃t,q corresponding to the above criterion is defined by substitut-

ing ẽmax(Cn,Dn, V ) in place of emax(Cn,Dn, V ) in Definition 2.8.
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Proposition 2.10.

Ct,q = C̃t,q.

Clearly, Ct,q ≤ C̃t,q. The proof of the opposite inequality is also almost obvious

because any coalition of t pirates can simply ignore any subset of t− τ pirates when

devising a forged fingerprint y. A formal version of this argument is provided by

Lemma 2.17 in the Appendix.

Average vs. maximum error probability. Let us consider the average error

probability

eavg(C,D, V ) =
1

M t

∑

u1,...,ut∈[M ]

e(C,D, {u1, . . . , ut}, V ). (2.9)

and the probability

ẽavg(C,D, V ) =
1
(

M
t

)

∑

U : |U |=t

e(C,D, U, V ). (2.10)

for coalitions of size exactly t. Define the capacities Ca
t,q and C̃a

t,q respectively in

accordance with the above average error probabilities.

Clearly, the average error criterion is weaker compared to the maximum one

and so, we have

Fact 2.11.

Ct,q ≤ C
a
t,q.

For a fixed, known single-user channel, allowing randomized codes makes the

capacity under the maximum error probability criterion equal to that under the

average error probability criterion (see, e.g., [31, p.223, Prob. 5]). We now extend

this argument to the current context of multi-user channels and fingerprinting to

show that both (2.8) and (2.10) lead to the same capacity value.
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Proposition 2.12.

C̃t,q = C̃
a
t,q.

A formal proof is available in the Appendix. The intuitive argument behind

it relies on the fact that here we simply use a randomized code (C,D), which also

includes all M ! permutations of any specific realization of (C,D). Because of the

symmetry introduced by this, the error probability e(C,D, U, V ) is the same for all

coalitions for a given V , and hence the average and the maximum probability are

the same.

2.4 Related Combinatorial Properties

In this section, we recall a few other combinatorial properties of deterministic

codes that are related to t-IPP and t-fingerprinting, and have been previously studied

in the literature.

Definition 2.13 (t-TA). [27, 78] A code C has t-traceability property (or is t-TA)

if for any U ⊆ C of size at most t and any y ∈ EN(U), the following holds:

dH(U,y) < dH(C\U,y).

In essence, the above definition implies that for a t-TA code, we can trace one

of the pirates (with zero error) by simply finding the user whose fingerprint is the

closest to the forgery.

Definition 2.14 (t-frameproof). [78] A code C is t-frameproof if for any U ⊆ C of

size at most t, it holds that:

EN(U) ∩ (C\U) = ∅.
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In other words, any t pirates cannot produce the fingerprint of an innocent

user not part of the actual coalition. Observe that, in relation to t-IPP, the t-

TA property is stricter, while the latter t-frameproof property is weaker. This is

summarized below.

Fact 2.15. [78] t-TA ⇒ t-IPP ⇒ t-frameproof.

The following sufficient conditions are well-known for t-TA and t-frameproof

codes.

Theorem 2.16. [27] For a code C of length n if the minimum distance d satisfies

(a) d > n(1− 1/t2), then C is t-TA.

(b) d > n(1− 1/t), then C is t-frameproof.

2.5 Concatenated Codes

A commonly used technique in the construction of codes with efficient decoding

algorithms is Forney’s code concatenation [41]. Concatenated codes are obtained

as follows. We start with two codes, namely, an “outer” code (Cout, Dout) over an

alphabet of size q and an “inner” code (Cin, Din) over a smaller (say binary) alphabet

with q codewords. To encode a given message index, we first use Cout to obtain a q-

ary codeword. Next, each of the q-ary symbols in the resulting codeword is encoded

using Cin to finally produce a longer binary word. Decoding follows the opposite

sequence where Din first retrieves the q-ary symbol corresponding to the binary word

at every outer level coordinate. The resulting q-ary vector is then decoded using

Dout to obtain the message index. The effective rate of the concatenated code is the

product of the inner and outer code rates.

To give a formal definition, let M = qK be the set of messages to be encoded

with the concatenated code. The encoding mapping C is defined as a composition
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of two maps Cout : [M ]→ QN and Cin : Q → {0, 1}m acting as follows: for i ∈M

C(i) = C×N
in (Cout(i)), (2.11)

where C×N
in is the N -fold extension of the inner encoding mapping applied in each

coordinate of the codevector Cout(i). The decoding mapping D : {0, 1}Nm → [M ] is

the corresponding composition of the maps Din and Dout applied to x ∈ {0, 1}Nm

as follows:

D(x) = Dout(D
×N
in (x)). (2.12)

Typically, the inner code is chosen randomly from some ensemble of codes with

high rate, while the outer level is a structured code with polynomial-time decoding.

Concatenated codes combine structure and randomness to realize the benefits of

both high rates and efficient algorithms.

In the case of deterministic codes, it is a simple and well-known fact that if

both the inner and outer codes are t-frameproof (resp., t-IPP) then the concatenated

code is also t-frameproof (resp., t-IPP). We employ concatenation in Chapters 6 and

8 for constructing efficient randomized codes for copyright protection.

2.6 Appendix

2.6.1 A lemma on the size of coalitions

Lemma 2.17. Let (C,D) be a randomized code of size at least 2t− 1. Assume that

ẽmax(C,D, V ) ≤ ε for every V ∈ Vt. (2.13)

Then for any τ ≤ t,

ẽmax(C,D, V ) ≤ 2ε for every V ∈ Vτ .
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Proof. For simplicity of presentation we take τ = t − 1. The general case of

1 ≤ τ < t can be established with only minor changes to the proof below. For any

V ∈ Vt−1, let us define a V ′ ∈ Vt where

V ′(y|x1, . . . ,xt−1,xt) = V (y|x1, . . . ,xt−1), ∀x1, . . . ,xt,y ∈ Qn.

Then, for any coalition U of size t− 1, and any user u /∈ U,

e(C,D, U, V ) = EK

∑

y:
DK(y)/∈U

V (y|CK(U))

= EK

∑

y:
DK(y)/∈U

V ′(y|CK(U), CK(u))

= EK

[

∑

y:
DK(y)/∈U ′

V ′(y|CK(U ′)) +
∑

y:
DK(y)=u

V ′(y|CK(U ′))

]

, (2.14)

where U ′ = U ∪ {u}. The first term in the last equation satisfies

e(C,D, U ′, V ′) ≤ ε (2.15)

by the assumption of the lemma. We will next show that the second term in (2.14)

is also at most ε. Suppose for the sake of contradiction that

EK

∑

y:
DK(y)=u

V ′(y|CK(U ′)) > ε.
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Let u′ /∈ U ′ and U ′′ = U ∪{u′} (we assume that the size of the code is at least t + 2,

or at least 2t− 1 in the general case). Then

e(C,D, U ′′, V ′) = EK

∑

y:
DK(y)/∈U ′′

V ′(y|CK(U ′′))

≥ EK

∑

y:DK(y)=u

V ′(y|CK(U ′)) > ε.

But this contradicts our initial assumption (2.13).

2.6.2 Proof of Proposition 2.12

It is clear that C̃t,q ≤ C̃a
t,q. Therefore, it is enough to show that for every

randomized code (C,D), there exists another randomized code (C∗,D∗) of the same

rate such that ẽmax(C∗,D∗, V ) = ẽavg(C,D, V ) for every channel V.

We are given {(Ck, Dk), k ∈ K}. Let σ ∈ Σ identify a particular permutation

from the set of all permutations on the message set [M ]. Choose σ uniformly at

random from Σ and construct a new key κ , (k, σ). Define

C∗
κ(·) , Ck(σ(·)), D∗

κ(·) , σ−1(Dk(·)).

Let (C∗,D∗) be the randomized code corresponding to the family {(C∗
κ, D

∗
κ), κ ∈

K × Σ}. Then, for every channel V , ẽavg(C∗,D∗, V ) = ẽavg(C,D, V ). Furthermore,

for any U ⊆ [M ], |U | = t,

e(C∗,D∗, U, V )

=
1

M !

∑

σ∈Σ

∑

k∈K

π(k)
∑

y:
Dk(y)/∈σ(U)

V (y|Ck(σ(U)))
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which does not depend on the subset U because of the averaging over all permuta-

tions. This implies ẽmax(C∗,D∗, V ) = ẽavg(C∗,D∗, V ).
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Chapter 3

Lower Bounds on Fingerprinting Capacity

Lower bounds on fingerprinting capacity known in the literature are implied by

various constructions of fingerprinting codes. Binary codes have been of particular

interest due to their prevalence in practical applications, and thus will be our main

focus in this chapter.

In [26, 15], the authors introduced randomness at some stages of code con-

struction, relying on deterministic codes otherwise. It was later realized [79, 21] that

better code rates are obtained by considering randomization over the entire family of

possible binary codes. In particular, [79] constructed (binary) t-fingerprinting codes

which established that Ct,2 ≥ 1/(100t2). There were subsequent improvements of

the constant 100, see for instance [23, 64, 65, 73, 74], all obtained by optimizing the

parameters in [79]. For coalitions of size 2, [21] showed that one can obtain much

higher code rates than that, proving the estimate C2,2 ≥ 0.2075.

In this chapter, we present new lower bounds for fingerprinting capacity

obtained via two different techniques. The first method ties the ideas from [21] with

the notion of minimal configurations to obtain a better lower bound for size-3 coali-

tions, which is also generalized further to an arbitrary number of pirates. Secondly,

we improve upon the above results through a new idea which takes into account only

typical allocations of fingerprints to coalitions, i.e., allocations that occur with high

probability, discarding all the other possibilities. As it turns out, this idea generally

leads to more powerful results than the method of minimal configurations.
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3.1 Lower Bound I

3.1.1 Code Generation

Encoding: Fix a rate R ∈ (0, 1] and define Mn = b2nRc. Consider the family

of all possible binary (n,Mn) codes (encoding mappings). We choose a code at

random from this family using the uniform distribution that assigns the probability

2−nMn to each of them (equivalently, we choose Mn fingerprints independently with

p(0) = p(1) = 1/2 in each coordinate). For R < 1/2, the fingerprints will be distinct

with high probability.

Decoding: We assume the following strategy to identify pirates. Suppose

the assignment Ck is chosen. The distributor performs an exhaustive search for all

coalitions T ⊆ [Mn] of size at most t such that the suspect fingerprint y ∈ E(Ck(T ))

and outputs users that are common to all these coalitions (and declares an error if

there are no such users). The (n,Mn)2 randomized code thus obtained is denoted

by (Cn,Dn).

At this point, the reader may notice a connection to t-IPP codes as the same

decoding strategy was mentioned to motivate their definition in Chapter 2. Indeed,

the choice of the above strategy enables us to use some elements of the analysis of

IPP codes from [16] in the current problem.

3.1.2 Minimal Configurations

Definition 3.1. A set of coalitions U = {Ui} is called a configuration if they do

not have a user common to all of them, i.e.,
⋂

i Ui = ∅. When every coalition in the

configuration has at most t users, we call it a configuration of degree t.

The concept of configurations together with the identification strategy chosen

enable us to estimate the probability of decoding error. We will use the following
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Definition 3.2 (Minimal configuration). A configuration U = {U1, . . . , Ur} is called

minimal if the subset {U1, . . . , Ui−1, Ui+1, . . . , Ur} is not a configuration for all i ∈ [r].

Remark 3.3. Any configuration contains a minimal configuration.

Configurations can be conveniently represented by hypergraphs. Each node in

the hypergraph corresponds to a user and a hyperedge connects the nodes (users)

in a coalition. We say that two minimal configurations are of the same type if their

hypergraph representations are isomorphic.

Example 3.4. The minimal configurations of degree 2 can be of the two types,

Separation or Triangle. Separation represents two disjoint subsets of size 2, while

Triangle represents three subsets with the following structure: {a, b}, {b, c}, {c, a}.

The following result from [16] will be used below.

Theorem 3.5. Let U = {U1, . . . , Ur} be a minimal configuration of degree t. Then

r ≤ t + 1 and the only minimal configuration with r = t + 1 is a complete t-uniform

hypergraph with t + 1 edges (t-simplex). Moreover,

∣

∣

∣

r
⋃

i=1

Ui

∣

∣

∣
≤
⌊( t

2
+ 1
)2⌋

.

3.1.3 Analyzing the Error Probability

Our aim is to establish that the probability of decoding error for the random-

ized codes (Cn,Dn), n = 1, 2, . . . , constructed above is decaying to zero (so long

as R is less than a certain value). Let U1 be a coalition of size t. As above, let

e(Cn,Dn, U1, V ) be the error probability of identification using some strategy V .

For a vector y ∈ {0, 1}n and coalitions U1, . . . , Ur define the event

τy(U1, . . . , Ur) =
[

y ∈
r
⋂

i=1

E(Cn(Ui))
]
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where the randomness is in the selection of the code Cn. The next proposition

justifies the usefulness of minimal configurations.

Proposition 3.6. Let S = {U1, . . . , Ur} be a degree-t minimal configuration that

contains U1. For all y ∈ {0, 1}n if

P [∃S : τy(S\U1)|τy(U1)]
n→∞−→ 0 (3.1)

then the error probability e(Cn,Dn, U1, V ) approaches zero.

Proof. By Lemma 2.17, it suffices to consider only coalitions of size exactly t.

Let U1 be such a coalition and V ∈ Vt be an admissible strategy. The following

calculation holds for every n, so for simplicity we drop n from the notation. We

have

e(C,D, U1, V ) = P [D(YC,U1,V ) /∈ U1]

=
∑

y∈{0,1}n

P [YC,U1,V = y] P
[

D(y) /∈ U1

∣

∣

∣YC,U1,V = y
]

. (3.2)

Next, consider the inner conditional probability. Recall that D considers all the

t-coalitions whose envelopes contain y. Clearly U1 is such a coalition. An error will

occur if there exists a configuration each member of which can generate y. (Note

that if all the coalitions whose envelopes contain y intersect, then any member of

the intersection is also a member of U1, so no error is made). It suffices to consider

only degree-t minimal configurations. We obtain

P
[

D(y) /∈ U1

∣

∣

∣YC,U1,V = y
]

= P
[

∃S : τy(S\U1)
∣

∣

∣YC,U1,V = y
]

.

= P
[

∃S : τy(S\U1)
∣

∣

∣τy(U1)
]

.
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To explain the second equality, observe that the condition YC,U1,V = y is formed

of two events, one being τy(U1) and the other that y is selected by the members of

the coalition U1 relying on the strategy V . The second event can be dropped from

the conditioning without changing the resulting probability. Substituting the result

obtained in (3.2) and using the assumption of the proposition concludes the proof.

Now observe that

P
[

∃S : τy(S\U1)
∣

∣

∣τy(U1)
]

=
P [∃S : τy(S)]

P [τy(U1)]
. (3.3)

Here the denominator equals

P [τy(U1)] = (1− 2−t)n,

since for each coordinate i only one set of values for the coalition’s fingerprints

{yi + 1, . . . , yi + 1} fails the marking assumption constraint. On the other hand, the

numerator concerns the existence of a degree-t configuration containing the actual

coalition U1 such that all coalitions in the configuration are capable of creating the

forgery y.

To verify that the error probability (3.3) indeed approaches 0, it is sufficient

to show that, for a given t, this holds true for degree-t minimal configurations of

each possible type as long as the total number of types does not grow with n. We

will follow this approach in the next sections.

3.1.4 Coalitions of Size 3

It was proved in [21] that C2,2 ≥ 0.2075. The proof goes by showing that for

any rate R < 1 − (1/2) log2 3 = 0.2075, the sequence (Cn,Dn) is 2-fingerprinting
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{a,b,c}
{d,e,f}
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(a) Separation

d

a

c

b

{a,b,c}
{a,c,d}
{b,c,d}
{a,b,d}

(b) Simplex

a b c

d

e

{a,b,c}
{a,d,e}
{c,d,e}

(c) Modified Triangle

a b c

d

e

f

{a,e,f}
{a,b,c}
{c,d,e}

(d) Triangle

Figure 3.1: Types of minimal configurations of degree 3

with the error probability of identification falling exponentially with n. Here we

analyze the resilience of this code sequence against coalitions of size 3 and establish

the following result.

Theorem 3.7. The capacity of 3-fingerprinting over the binary alphabet satisfies

C3,2 ≥ 0.064.

Proof. The result is established by proving that the randomized code (Cn,Dn) is

3-fingerprinting with error probability decaying exponentially in n for any rate

R < 1− 1

3
log2 7. (3.4)

The number of vertices (users) in a minimal configuration of degree 3 is at

least 4 and at most 6 (by Theorem 3.5). By inspection, there are four different

types of minimal configurations as shown in Figure 3.1 with coalitions listed in the

figure.

For a given vector y, let p
(i)
e , i = 1, . . . , 4 be the error probability corresponding

to (3.3) computed for minimal configurations of type i. By symmetry, p
(i)
e does not

depend on y. Consider two disjoint size-3 coalitions, say {a, b, c} and {d, e, f},

with fingerprints {x(a),x(b),x(c)}, and {x(d),x(e),x(f)}. In any coordinate i, the

vector {xi(a), xi(b), . . . , xi(f)} can take any of 26 equally probable values each of

35



Table 3.1: Bad assignments for degree-3 minimal configurations of Type 3. Boldface
0’s indicate the coalition that cannot produce yi = 1.

xi(a) xi(b) xi(c) xi(d) xi(e)
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 1 0 0 0
0 1 1 0 0
1 0 0 0 0
1 1 0 0 0

which will be called an assignment. An assignment for some coordinate i for a given

minimal configuration is “bad” if at least one coalition of the configuration cannot

create the target yi, i.e., the fingerprint vectors of the users in this coalition all have

the value yi + 1 in this coordinate. For Type 1, there are 15 such bad assignments.

Hence, by the union bound, we have:

p(1)
e ≤M3

n

(1− 15/64)n

(1− 1/8)n
≤ 2n3R

(

7

8

)n

.

For the simplex, whenever three or more of the four users have the value yi + 1

in some coordinate i, the assignment is bad. Hence, we have 5 out of 16 equally

probable values that are bad implying

p(2)
e ≤Mn

(1− 5/16)n

(1− 1/8)n
≤ 2nR

(

11

14

)n

.

To estimate p
(i)
e , i = 3, 4 let us assume w.l.o.g. that y = 1n. The bad assignments

are shown in Table 3.1 and Table 3.2 for i = 3 and i = 4, respectively (in each row,

the boldface 0’s indicate the coalition that cannot produce yi).
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Table 3.2: Bad assignments for degree-3 minimal configurations of Type 4. Boldface
0’s indicate the coalition that cannot produce yi = 1.

xi(a) xi(b) xi(c) xi(d) xi(e) xi(f)
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
...

...
...

...
...

...
0 0 0 1 1 1
0 1 0 0 0 0
0 1 0 0 0 1
1 0 0 0 0 0
1 0 0 0 0 1
1 1 0 0 0 0
1 1 0 0 0 1
0 1 0 1 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 1 1 0 0 0
0 1 1 1 0 0

We conclude that

p(3)
e ≤M2

n

(1− 9/32)n

(1− 1/8)n
≤ 2n2R

(

23

28

)n

,

p(4)
e ≤M3

n

(1− 19/64)n

(1− 1/8)n
≤ 2n4R

(

45

56

)n

.

Taking R to satisfy (3.4), it is easy to see that p
(i)
e tends to zero (exponentially

fast) for all types i. Hence, the total probability of identification error goes to zero

(exponentially fast).
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3.1.5 Coalitions of Arbitrary Size

The case study undertaken for t = 3 does not extend readily to larger t because

it is difficult to list out all possible types of minimal configurations. We will rely on

the following lower bound on the number of bad assignments to work around this.

Lemma 3.8. For any minimal configuration of degree t with N users, the number

of bad assignments in any given coordinate is at least (3/2)2N−t.

Proof. W.l.o.g. let the target vector be y = 1n. Any minimal configuration (type)

contains at least two coalitions, say U1 and U2. An assignment is bad if it assigns

0 to all members of one of the coalitions. Let b be the number of bad assignments.

We have

b ≥ 2N−|U1| + 2N−|U1∪U2|(2|U1\U2| − 1)

where the first term takes into account all assignments where U1 is all-zero and the

second term adds all assignments where U2 is all-zero but U1 is not all-zero. We

obtain

b ≥ 2N−t + 2N−t(1− 2−|U1\U2|) ≥ 3

2
2N−t.

Theorem 3.9. The capacity of t-fingerprinting over the binary alphabet satisfies

Ct,2 ≥ −
4

t2 + 4
log2

(

1− 2−(t+1)

1− 2−t

)

.

Remark 3.10. This bound implies that Ct,2 ≈ Ω
(

1
t22t

)

.

Proof. We show that the randomized code (Cn,Dn) is t-fingerprinting with error

probability decaying exponentially in n for any rate

R < − 4

t2 + 4
log2

(

1− 2−(t+1)

1− 2−t

)

. (3.5)
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For a minimal configuration of a given type i denote by N(i) the number of users in

it. Let b(i) be the number of bad assignments for such a configuration. The error

probability can be bounded above as follows:

p(i)
e ≤MN(i)−t

n

(1− b(i)2−N(i))n

(1− 2−t)n

≤MN(i)−t
n

(

1− 3
2
2−t

1− 2−t

)n

≤ 2nR(t2+4)/4

(

1− 2−(t+1)

1− 2−t

)n

where the last two inequalities were obtained using Lemma 3.8 and Theorem 3.5,

respectively. Therefore, with R chosen as stated in (3.5), the error probability p
(i)
e

tends to 0 as n increases.

In order to prove that the total error probability tends to zero as well, it suffices

to show that the number of types of degree-t minimal configurations (nonisomorphic

t-uniform hypergraphs) does not grow with n. This is obvious because this number

does not exceed the number of t-uniform hypergraphs on s = (t/2 + 1)2 vertices with

i ≤ t + 1 edges which can be crudely bounded above by

t+1
∑

i=2

i−1
∏

j=0

[

(

s

t

)

− j
]

≤ t

(

s

t

)t+1

.

This completes the proof of the theorem.

3.2 Lower Bound II

In this section, we improve upon the previous lower bounds and obtain better

capacity estimates for coalitions of size 2 and 3. The improvement is obtained by

tailoring the decoder for the typical allocations of codewords to coalitions, i.e., the

allocations of codewords that occur with high probability. (We say that an event
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occurs with high probability if the probability that it fails is at most exp(−cn),

where c is a positive constant.) The fingerprinting codes we construct have error

probability decaying exponentially in the code length.

3.2.1 Code Generation

Encoding: The encoding method is the same as in Section 3.1.1. For a

fixed rate R ∈ (0, 1], the encoding mapping Cn is obtained by choosing Mn = b2nRc

fingerprints uniformly and independently (with replacement) from all the 2n different

vectors.

Decoding: The decoding strategy takes advantage of the coalitions that occur

with high probability. Suppose that for every n there exists a set Tt,n ⊆ (Qn)t such

that for any coalition U of size t, the observed fingerprints Cn(U) belong to Tt,n with

high probability. We will call a set with this property a typical set. An explicit

characterization of typical sets for the cases t = 2, 3 will be given later.

Given a forged fingerprint y, the decoder considers only coalitions correspond-

ing to typical fingerprint assignments (x1, . . . ,xt) ∈ Tt,n from the codebook. Each

such t-tuple is then discarded if the fingerprints in it simultaneously disagree with y

in any position s, i.e., x1s = · · · = xts 6= ys. Note that the remaining t-tuples contain

y in their envelope. Finally, we pick any t-tuple (x1, . . . ,xt) from those remaining

and complete the decoding by choosing a user whose fingerprint xi has the smallest

Hamming distance di = dH(y,xi). The (n,Mn)2 randomized code obtained by the

above procedure is denoted by (Cn,Dn) below.

3.2.2 Analyzing the Error Probability

As before, we wish to show that the probability of decoding error for the

sequence of randomized codes (Cn,Dn), n = 1, 2, . . . , vanishes if the rate R is suffi-

40



ciently small. For any coalition U of size t and strategy V ∈ Vt, we observe

e(Cn,Dn, U, V ) = P [Dn(YCn,U,V ) /∈ U ]

∼
∑

(x1,...,xt)∈Tt,n

P [Cn(U) = (x1, . . . ,xt)]
∑

y∈E(x1,...,xt)

V (y|x1, . . . ,xt)

×P
[

Dn(y) /∈ U
∣

∣

∣Cn(U) = (x1, . . . ,xt),YCn,U,V = y
]

.

Thus, it suffices to study the conditions that allow us to obtain the probability

P
[

Dn(y) /∈ U
∣

∣

∣
Cn(U) = (x1, . . . ,xt),YCn,U,V = y

]

n→∞−→ 0

for any coalition U of size t, any typical t-tuple (x1, . . . ,xt) of observed fingerprints,

and any forgery y ∈ E(x1, . . . ,xt).

3.2.3 Coalitions of Size 2

Theorem 3.11. The capacity of 2-fingerprinting over the binary alphabet satisfies

C2,2 ≥ 1/4.

Proof. We prove below that (Cn,Dn) is 2-fingerprinting with exponentially falling

error probability if the rate R satisfies

R < 1/4. (3.6)

Given a small ε > 0, we define the typical set as the set of vector pairs which

agree in l positions, where

l ∈ Iε := [n (1/2− ε) , n (1/2 + ε)] .
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Consider any two pirates u1 and u2. Notice that their observed fingerprints (x1,x2)

belong to the typical set with high probability. Suppose (x1,x2) is a typical pair

with l ∈ Iε agreements. To create a forged fingerprint y, the pirates must fill the

remaining n− l positions. Let d1 = dH(y,x1) and d2 = dH(y,x2). Then n− l ∈ Iε

and therefore

d1 + d2 ∈ Iε. (3.7)

We now analyze the probability of decoding error. Obviously, the fingerprints

x1 and x2 that belong to the factual pirates will not be discarded by the decoding

algorithm. The following probabilistic analysis shows that for two innocent users,

the decoder discards their observed fingerprints (z1, z2) with high probability if the

code rate satisfies (3.6).

Indeed, for (z1, z2) to be typical, they should agree in l ∈ Iε positions. In all

these positions, z1, z2 should also agree with y to fulfill the marking assumption. In

each of the remaining n− l positions, the vectors z1, z2 are represented by only two

combinations, (0, 1) or (1, 0). The probability of choosing such a pair (z1, z2) in our

random code equals

Pl =

(

n

l

)

2n−l/22n

and has exponential order of 2−n/2 for any l ∈ Iε. Furthermore, by the union bound,

the total probability of choosing such a pair in a random code of size Mn = b2nRc

is at most
(

Mn

2

)

∑

l∈Iε

(

n

l

)

2n−l/22n.

This probability tends to 0 exponentially fast for any rate R < 0.25.

Similarly, consider a coalition (x1, z2) that includes the fingerprint x1 of an

actual pirate and the fingerprint z2 of an innocent user. Recall that x1 disagrees

with y in d1 positions. Then to be output instead of x1, the fingerprint z2 must agree

with y in these positions and disagree with it in another set of d2 ≤ d1 positions.
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The total probability of choosing such a fingerprint z2 is at most

Mn2n−d1/2n.

Since d1 + d2 ∈ Iε and d2 ≤ d1, we have the restriction d2 ≤ n/2 (1/2 + ε). In this

case, the above probability tends to 0 exponentially fast for any rate R < 0.25.

Thus, with high probability, at least one pirate will be output by the decoder, and

no remaining (innocent) users will be chosen as pirates.

3.2.4 Coalitions of Size 3

Theorem 3.12. The capacity of 3-fingerprinting over the binary alphabet satisfies

C3,2 ≥ 1/12.

Proof. We will show that the error probability for (Cn,Dn) with 3 pirates ap-

proaches 0 if the rate

R < 1/12. (3.8)

For a triple (x1,x2,x3), let

L = {s ∈ [n] : x1s = x2s = x3s},

Lij = {s ∈ [n] : xis = xjs}, i, j = 1, 2, 3, i 6= j,

and let l = |L|, lij = |Lij|. Given a small ε > 0, we say that (x1,x2,x3) form a

typical triple if

l ∈ Jε := [n(1/4− ε), n(1/4 + ε)], (3.9)

l12, l13, l23 ∈ Iε := [n(1/2− ε), n(1/2 + ε)]. (3.10)
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For any three users u1, u2, u3, note that the observed fingerprints form a typical

triple with high probability.

Using the same idea as before, we now take the observed fingerprints (x1,x2,x3)

to be a typical triple. A forged fingerprint y agrees with all the three fingerprints on

L and takes arbitrarily values {0, 1} on the remaining subset [n]\L positions. Let

di = dH(y,xi) for i = 1, 2, 3. Note that every position in [n]\L contributes 1 or 2 to

the sum d1 + d2 + d3 implying

n(3/4− ε) ≤ d1 + d2 + d3 ≤ n(3/2 + 2ε). (3.11)

Obviously, the fingerprints (x1,x2,x3) corresponding to the factual pirates will

not be discarded by the decoder. The following probabilistic analysis shows that

a randomly chosen code with rate satisfying (3.8) enables the decoder to discard

with high probability all typical triples (z1, z2, z3) of fingerprints formed by three

innocent users.

Indeed, a typical triple can be identified only if the fingerprints in it simulta-

neously agree with y in some subset of l ∈ Jε positions. To simplify our analysis

in this case, we can even ignore the extra conditions (3.10) in any of the remaining

n− l positions. Thus, we allow the vectors (z1, z2, z3) to take on any combination of

binary symbols {0, 1} different from all zeros or all ones. Given 6 such combinations,

any typical triple is chosen with probability at most

Pl ≤
(

n

l

)

6n−l/23n.

We further observe that the total probability of choosing such a triple in a random

code of size Mn = b2nRc equals

(

Mn

3

)

∑

l∈Jε

(

n

l

)

6n−l/23n
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and tends to 0 exponentially fast if (3.8) holds.

Now consider a slightly more involved case when the decoder locates the pi-

rate coalition (x1,x2,x3) along with another coalition (x1, z2, z3) that includes the

fingerprint x1 of an actual pirate and the fingerprints z2, z3 of two innocent users.

In what follows, we prove that a random code of rate (3.8) satisfies at least one of

the following two conditions:

(i) The decoder chooses x1 in the coalition (x1, z2, z3) with high probability.

(ii) The coalition (x1, z2, z3) has vanishing probability.

Recall that d1 = dH(y,x1). Then an innocent user, z2 say, can be output by

the decoder if dH(y, z2) ≤ d1. The probability that any such z2 is chosen among

Mn random codewords is obviously at most

Mn2−n

d1
∑

i=0

(

n

i

)

.

Given a code of rate (3.8), this probability vanishes if d1/n ≤ 0.33. Therefore, condi-

tion (i) above fails if

d1/n > 0.33. (3.12)

Now let us consider condition (ii) given this restriction. Consider a typical coalition

(x1, z2, z3). We have

l = |{s ∈ [n] : x1s = z2s = z3s = ys}|,

l′ = |{s ∈ [n] : z2s = z3s 6= x1s}|.

Thus, the vectors z2, z3 have fixed values on the one subset of size l, where these

vectors are equal to x1, and on the other non-overlapping subset of size l′, where

the vectors z2, z3 are equal to the binary complement of x1. According to conditions
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(3.9) and (3.10), l ∈ Jε and

l′ = l23 − l ∈ J2ε.

In the remaining n− l − l′ positions we have

(z2s, z3s) ∈ {(1, 0), (0, 1)}.

Summarizing the above arguments, we conclude that the total probability of choos-

ing such vectors z2, z3 in the random code is bounded above as

(

Mn

2

)

2−2n
∑

l∈Jε

∑

l′∈J2ε

(

n− d1

l

)(

n− l

l′

)

2n−l−l′ .

Straightforward verification shows that this quantity vanishes given conditions (3.9),

(3.10), and (3.12) for a code of rate R < 0.086. Thus a random code of smaller rate

(3.8) discards all mixed coalitions of the form (x1, z2, z3) with high probability.

The last remaining case, of a mixed coalition (x1,x2, z3), is analyzed in a

similar fashion (the analysis is simpler than the one above and will be omitted).

3.3 Summary and Comparisons

In this chapter, we studied lower bounds for fingerprinting capacity using

random codes taking values over the entire space of possible binary codes. The main

accomplishment of this chapter is proposing the idea of studying typical coalitions

as opposed to all coalitions. This enabled us to improve the previous estimates

of fingerprinting capacity for t = 2, 3 to the values C2,2 ≥ 0.25 and C3,2 ≥ 0.083,

respectively. We have also examined the notion of minimal configurations (which

had enabled us to improve the bound on C3,2 from what was known earlier). Of

these two approaches the former one is more powerful and accounts for the strongest

results of this research.
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For t = 2, the previous best lower bound C2,2 ≥ 0.2075 was given by Kaba-

tiansky [21], improved to 0.25 in Theorem 3.11 above. It has been shown recently

[61, 54] that this rate matches the exact capacity value, and thus the proposed codes

indeed achieve capacity. We elaborate further on these recent results in Chapter 5.

The case t = 3 was studied in [15, 57, 70, 68, 69, 79, 4, 54] of which the last two

works followed the appearance of our paper [9, 10]. At the time when our bounds

on C3,2 were obtained, they were the best known in the literature and improved

the known results by an order of magnitude. Subsequent to our work (and relying

partly on its ideas) the bound on C3,2 was improved from our 0.083 to 0.098 [4, 54].

The best presently known bound for general t is Ct,2 ≥ 1/(t22 ln 2), and is due to

Amiri and Tardos, [4], Dumer [36], and Moulin and Huang [61, 54].

Publications: The results of this chapter have appeared in [5, 9, 10].
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Chapter 4

Interlude: The “Decode-One” Multiple Access Channel

In the previous chapter, our objective was to compute lower bounds on the

maximum attainable rates (capacity) of fingerprinting codes. In order to comple-

ment the previous results by finding upper bounds, we rely on information-theoretic

techniques. Before studying this problem, we examine some related questions in

multi-user information theory which are motivated by our interest in fingerprint-

ing capacity. We later utilize the results and insight obtained here to derive upper

bounds on fingerprinting capacity in Chapter 5.

In this chapter we consider a multiple-access channel (MAC) model that distin-

guishes itself from standard models of information theory in the following important

aspects:

(a) the decoding task is to recover one of the transmitted messages to have pro-

duced the channel output,

(b) all channel inputs are required to use the same codebook (encoding).

We call this channel model decode-one MAC below. For simplicity of presentation

we focus primarily on the case of two channel inputs. Most of the results are easily

generalized to an arbitrary finite number of channel inputs.

In this chapter we derive new bounds for the capacity of the decode-one

MAC. The chapter is organized into two parts, the first studying capacity of the

decode-one MAC whose channel matrix is fixed and available to both communicating

parties, and the second one addressing the case of the channel varying arbitrarily

within a given family of transition matrices.

Throughout the chapter logarithms are taken to the base q.
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4.1 Single Known Channel

4.1.1 Problem Statement

Let Q be an alphabet of finite size q and let [M ] denote the set of messages

available for transmission. Each of the two transmitting terminals selects one mes-

sage, say i and j respectively, from [M ]. The corresponding length-n codewords are

computed according to the encoding mapping of an (n,M)q code (C,D) as defined

in (2.1). Both codewords are then transmitted symbol-by-symbol over a channel

W : Q×Q → Q, which is defined as a conditional probability distribution so that

for all x1, x2, y ∈ Q, W (y|x1, x2) gives the probability that the symbol y is output

given that x1, x2 are sent. The memoryless n-letter extension of W is written as

W n : Qn ×Qn → Qn, where

W n(y|x1,x2) =
n
∏

l=1

W (yl|x1l, x2l). (4.1)

Once the n output symbols are received, the decoder D attempts to recover one of

the two transmitted messages. Let YC,(i,j),W denote the random vector output of

the channel W when the input messages are i and j. Then the probability of error

for (i, j) is

e(C,D, (i, j),W n) = P
[

D(YC,(i,j),W ) /∈ {i, j}
]

=
∑

y: D(y)/∈{i,j}

W n(y|C(i), C(j)).

The average probability of error is given by

eavg(C,D,W n) =
1

M2

∑

i,j∈[M ]

e(C,D, (i, j),W n).

Definition 4.1 (Capacity of decode-one channel). Given a q-ary decode-one chan-

nel W , we call R ≥ 0 an achievable rate if there exists a sequence of (n, qnRn)q

49



(deterministic) codes (Cn, Dn) such that

lim inf
n→∞

Rn = R, lim
n→∞

eavg(Cn, Dn,W n) = 0.

The supremum of all such achievable rates is called the capacity of the decode-one

channel W and is denoted by Cq(W ).

Remark 4.2. In the above problem statement, both input terminals as well as the

output use the same alphabet. Clearly, since both channel inputs have the same

codebook, by definition the input alphabets are required to be identical. Here, we

further assume the output alphabet to be the same as the input alphabet due to

our underlying interest in the fingerprinting problem. The results are essentially of

the same form even if the output alphabet is different.

4.1.2 Main Results

Theorem 4.3 (Single known channel: Lower bound). The capacity of the 2-input

q-ary decode-one channel W satisfies

Cq(W ) ≥ max
PX1X2

:
X1,X2 i.i.d.

max

(

I(X1; Y ), I(X2; Y ),
1

2
I(X1, X2; Y )

)

, (4.2)

where X1, X2, Y are q-ary r.v.’s and PY |X1X2 = W .

Proof. Encoding: Fix a probability distribution P on Q. Codewords X(i), i =

1, . . . ,Mn = bqnRc of the code used for transmission are generated independently

according to the distribution P [X(i) = x] =
∏n

l=1 P (xl). Let Cn : [Mn] → Qn be

the (random) encoding mapping defined by Cn(i) = X(i) for every i ∈ [Mn].

Decoding: Given the channel W the decoder is defined as follows. Based on

W , the decoder either attempts to decode jointly both transmitted messages or to
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recover one of them as detailed below. The decoder finds which of the three mutual

information quantities in (4.2) yields the largest rate. Suppose that this is I(X1; Y ),

then the decoder attempts at recovering only the message from Terminal 1. It

pursues the recovery of the message from Terminal 2 or both messages if I(X2; Y )

or 1/2I(X1, X2; Y ) is the largest of the values in (4.2), respectively.

First, we consider a method to jointly decode both transmitted messages. The

proof technique is similar to the classical MAC with a few adjustments that account

for the decode-one channel.

For q-ary r.v.’s X1, X2, X3 with joint distribution PX1X2X3 , the set T ε
n (PX1X2X3)

of ε-typical sequences of length n is defined by

T ε
n (PX1X2X3)

=

{

(x1,x2,x3) :

∣

∣

∣

∣

− 1

n
log P n

XS
(xS)−H(XS)

∣

∣

∣

∣

< ε, ∀S ⊆ {1, 2, 3}
}

, (4.3)

where XS = (Xi, i ∈ S), xS = (xi, i ∈ S) and P n
XS

(xS) =
∏n

l=1 PXS
(xSl) (For

background on jointly typical sequences and typicality based decoding, please refer

to [30, §14.2, §8.7]).

Denote by T ε
n := T ε

n (PX1X2Y ), where PX1X2Y = P × P ×W , the set of typ-

ical input-output triples (x1,x2,y). On receiving the channel output, the decoder

attempts to estimate both transmitted messages correctly (which is in fact more

than what is required by the decode-one problem). The caveat, though, is that the

decoder need not identify which specific input terminal each estimate corresponds

to, i.e., the ordering of the receiver estimates is irrelevant! For any realization

{x(1), . . . ,x(Mn)} of the random codebook, and a given received vector y, the de-

coder outputs the pair {i, j} such that

i 6= j and (x(i),x(j),y) ∈ T ε
n
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if such a pair exists and it is unique. An error is declared otherwise. The random

code generated using the encoding and decoding described above is denoted by

(Cn, Dn).

Error probability analysis: Observe that the expected average error probability

for the random code is

E [eavg(Cn, Dn,W n)]

=
1

M2
n









∑

i,j∈[Mn]:
i6=j

E [e(Cn, Dn, (i, j),W n)] +
∑

i,j∈[Mn]:
i=j

E [e(Cn, Dn, (i, j),W n)]









≤ Mn − 1

Mn

E [e(Cn, Dn, (1, 2),W n)] +
1

Mn

∼ E [e(Cn, Dn, (1, 2),W n)] ,

where the last two equations are due to the symmetry in the random code, and

because Mn →∞ as n→∞.

Let Y denote the random received vector when messages (1,2) are sent. Define

Eij = [(X(i),X(j),Y) ∈ T ε
n ]. Then

E [e(Cn, Dn, (1, 2),W n)]

≤ P [Ec
12] +

∑

i∈{1,2}
j /∈{1,2}

P [Eij] +
∑

j∈{1,2}
i/∈{1,2}

P [Eij] +
∑

i,j /∈{1,2}
i6=j

P [Eij] . (4.4)

The first term above P [Ec
12] → 0 from the properties of typical sequences. Next,

we examine the error event Eij with i ∈ {1, 2}, j /∈ {1, 2}.
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P [Eij] =
∑

(x1,x2,y)∈T ε
n

P [X(j) = x2] P [X(i) = x1,Y = y]

≤ |T ε
n |q−n(H(X2)−ε)q−n(H(X1,Y )−ε)

≤ q−n(H(X2)+H(X1,Y )−H(X1,X2,Y )−3ε)

= q−n(I(X2;X1,Y )−3ε)

= q−n(I(X2;Y |X1)−3ε),

where X1 and X2 are i.i.d. with distribution P and PY |X1,X2 = W . The inequalities

above follow from the definition (4.3) of the typical set, and the fact that |T ε
n | ≤

qH(X1,X2,Y )+ε.

The remaining two types of error events are analyzed similarly, yielding

P [Eij] ≤ q−n(I(X1;Y |X2)−3ε), j ∈ {1, 2}, i /∈ {1, 2},

P [Eij] ≤ q−n(I(X1,X2;Y )−4ε), i, j /∈ {1, 2}, i 6= j.

Substituting the above in (4.4) and using the union bound, we get

E [eavg(Cn, Dn,W n)]

∼ E [e(Cn, Dn, (1, 2),W n)]

≤ P [Ec
12] + qnRq−n(I(X2;Y |X1)−3ε) + qnRq−n(I(X1;Y |X2)−3ε) + qn2Rq−n(I(X1,X2;Y )−4ε).

Since ε > 0 can be chosen arbitrarily small, the expected average error probability

for the random code tends to 0 if

R < min

(

I(X1; Y |X2), I(X2; Y |X1),
1

2
I(X1, X2; Y )

)

.
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This also establishes that the ensemble of random codes contains deterministic codes

(C?
n, D

?
n), n = 1, 2, . . . of rate Rn approaching the r.-h.s. of the above inequality and

such that eavg(C
?
n, D

?
n,W n)→ 0.

On the other hand, we can obviously use a decoder which attempts to de-

code just the message from the first (resp., second) input all the time, treating the

transmission of the other input as noise in the channel. Thus we effectively have

a single-user point-to-point channel with respect to the selected input. It is there-

fore straightforward to obtain codes with rate I(X1; Y ) (resp., I(X2; Y )) by using a

joint-typicality decoder for the chosen input.

Since the decoder is designed to achieve the maximum of the three rates, it is

easy to verify that

max

(

I(X1; Y ), I(X2; Y ), min

(

I(X1; Y |X2), I(X2; Y |X1),
1

2
I(X1, X2; Y )

))

= max

(

I(X1; Y ), I(X2; Y ),
1

2
I(X1, X2; Y )

)

.

Finally, we optimize the achievable rate on the choice of the probability distribution

P, thereby obtaining the claimed lower bound.

Remark 4.4. In the special case when W is symmetric, i.e., W (y|x1, x2) = W (y|x2, x1)

for all x1, x2, y ∈ Q, the lower bound (4.2) above reduces to

Cq(W ) ≥ max
PX1X2

:
X1,X2 i.i.d.

1

2
I(X1, X2; Y ).

54



Theorem 4.5 (Single known channel: Upper bounds). The capacity of the 2-input

q-ary decode-one channel W satisfies

(a) Cq(W ) ≤ max
PX1X2

:
X1,X2 i.i.d.

I(X1, X2; Y ), (4.5)

(b) Cq(W ) ≤ max
PX1X2

:
X1,X2 indep.

max (I(X1; Y |X2), I(X2; Y |X1)) , (4.6)

where X1, X2, Y are q-ary r.v.’s and PY |X1X2 = W .

Proof of Theorem 4.5: Upper bound (a).

Let (Cn, Dn), n = 1, 2, . . . be a sequence of n-length codes of rate Rn satisfying

lim inf
n→∞

Rn = R, eavg(Cn, Dn,W n) ≤ εn, (4.7)

where εn approaches 0 as n increases. Let U1, U2 be independent r.v.’s uniformly

distributed over the message set [Mn] = {1, . . . , qnRn} and let

X1 := Cn(U1), X2 := Cn(U2). (4.8)

Also, let Y be such that PY|X1,X2 = W n. Then, we have

P [Dn(Y) /∈ {U1, U2}] ≤ εn, (4.9)

which follows from (4.7). We also have the following Markov chain

U1, U2 ↔ X1,X2
W n

←→ Y. (4.10)

Now,

I(U1, U2; Y) = 2nRn −H(U1, U2|Y), (4.11)
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because U1 and U2 are independent and uniformly distributed over [Mn]. The second

term in (4.11) can be bounded above as follows. Define Ei = 1 [Dn(Y) 6= Ui] , i =

1, 2. Let p1 = P [E1 = 0, E2 = 1] and p2 = P [E2 = 0, E1 = 1]. Since Dn(Y), E1, E2

are known given Y, U1, U2,

H(U1, U2|Y) = H(U1, U2, E1, E2|Y, Dn(Y))

(a)

≤ 2 log 2 + H(U1, U2|Y, Dn(Y), E1, E2)

(b)

≤ 2 log 2 + p1H(U2|U1,Y, E1 = 0, E2 = 1)

+ p2H(U1|U2,Y, E2 = 0, E1 = 1) + εn2nRn

≤ 2 log 2 + nRn + εn2nRn.

The inequality (a) follows because E1, E2 are binary r.v.’s, and in (b), we have used

the fact that Ui is known under the event considered in pi. Using this in (4.11), we

obtain

nRn(1− 2εn) ≤ I(U1, U2; Y) + 2 log 2. (4.12)

Next, we exploit (4.10) and the memoryless property of the channel which gives

Rn ≤
1

1− 2εn

(

1

n
I(U1, U2; Y) + ξn

)

≤ 1

1− 2εn

(

1

n
I(X1,X2; Y) + ξn

)

≤ 1

1− 2εn

(

1

n

n
∑

l=1

I(X1l, X2l; Yl) + ξn

)

,

where ξn = 2 log 2/n approaches 0 as n → ∞. Moreover, X1 and X2 are i.i.d. by

(4.8). Therefore, for every l ∈ [n], X1l, X2l are i.i.d. Hence,

Rn ≤
1

1− 2εn



 max
PX1X2

:
X1,X2 i.i.d.

I(X1, X2; Y ) + ξn



 .
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Taking n→∞ and using (4.7), we obtain the stated upper bound (4.5).

Proof of Theorem 4.5: Upper bound (b).

We will actually prove a stronger statement than bound (b) establishing that this

upper bound is true even for a fixed average error probability ε ∈ (0, 1) (not neces-

sarily decaying to 0 as the code length increases). Results of this kind are generally

known as strong converse theorems. We borrow techniques from [1] in this proof.

Consider a sequence (Cn, Dn), n = 1, 2, . . . of length-n codes of rate Rn satis-

fying

lim inf
n→∞

Rn = R, eavg(Cn, Dn,W n) ≤ ε, (4.13)

where 0 < ε < 1. Let xi := Cn(i) be the fingerprints and Di = {y : Dn(y) = i}

denote the decoding regions for i = 1, . . . ,M = qnRn . (In this notation we have

suppressed the dependence on n for simplicity.) Then the above error criterion can

be written as follows:

1

M2

M
∑

i,j=1

W n(Di ∪ Dj|xi,xj) ≥ 1− ε.

Consequently, either

1

M2

M
∑

i,j=1

W n(Di|xi,xj) ≥
1− ε

2
(4.14)

or
1

M2

M
∑

i,j=1

W n(Dj|xi,xj) ≥
1− ε

2
(4.15)

must be true. Let us assume (4.14) is true. We first find a subset A of “good” pairs

of messages for W . Define

A := {(i, j) : W n(Di|xi,xj) ≥ 1− ε̄, 1 ≤ i, j ≤M}, (4.16)
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where ε̄ is such that 0 < 1− ε̄ < (1− ε)/2. Then

|A| ≥ (1− ε∗)M2, where ε∗ :=
1 + ε

2ε̄
. (4.17)

Next, we derive a subset Ā of the “good” pairs where approximate independence

holds between the codewords corresponding to a pair of messages uniformly dis-

tributed over this subset. This is needed to restrict the maximization in the final

result (4.6) to joint distributions where the r.v.’s are independent.

Lemma 4.6. [1] Let C = {x1, . . . ,xM} ⊆ Qn, A ⊂ {1, . . . ,M} × {1, . . . ,M} with

|A| ≥ (1− ε∗)M2, 0 < ε∗ < 1. Then for any 0 < γ < ε∗/(1− ε∗), 0 ≤ λ < 1, there

exist l1, . . . , lr ∈ [n], where r ≤ ε∗/(γ(1 − ε∗)), and some (x̄1, x̄
′
1), . . . , (x̄r, x̄

′
r), such

that for Ā := {(i, j) ∈ A : xilm = x̄m, xjlm = x̄′
m,∀m ∈ [r]}

(a)
∣

∣Ā
∣

∣ ≥ λr |A|, and

(b) For all x1, x2 ∈ Q, l ∈ [n],

(1 + γ)P
[

X̄1l = x1

]

P
[

X̄2l = x2

]

− γ − |Q|2λ

≤ P
[

X̄1l = x1, X̄2l = x2

]

≤ max
{

(1 + γ)P
[

X̄1l = x1

]

P
[

X̄2l = x2

]

, λ
}

,

where (X̄1, X̄2) are r.v.’s with uniform distribution on {(xi,xj) : (i, j) ∈ Ā}.

Applying Lemma 4.6 to A as in (4.16) with parameters γ = n−1/2, λ = n−1,

we obtain
∣

∣Ā
∣

∣ ≥ λr |A| , for some r ≤ n1/2ε∗/(1− ε∗). (4.18)

For j = 1, . . . ,M, define B(j) = {i : (i, j) ∈ Ā, 1 ≤ i ≤ M}. Observe that the

subcode corresponding to B(j) is a “good” code for the single-user point-to-point
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channel obtained by fixing the second input to j. Thus, the strong converse for the

single-user channel given below holds for this subcode.

Lemma 4.7. [14] If (C,D) is an (n,M)q code with codewords {x1, . . . ,xM} and

decoding regions Di, i = 1, . . . ,M, for the (non-stationary) single-user memoryless

channel {Wl}∞l=1, such that for every i = 1, . . . ,M, P [Di|xi] ≥ 1 − ε̄, 0 < ε̄ < 1,

then

log M ≤
n
∑

l=1

I(Xl; Yl) + O(n1/2),

where X is distributed uniformly on the set of codewords, and PYl|Xl
= Wl, l =

1, . . . , n.

Using Lemma 4.7 on the subcode B(j),

log |B(j)| ≤
n
∑

l=1

I(X̄1l; Ȳl|X̄2l = xjl) + O(n1/2), (4.19)

where (X̄1, X̄2) are distributed as in Lemma 4.6 and PȲ|X̄1,X̄2
= W n. Furthermore,

using (4.19), we obtain

|Ā|−1
∑

(i,j)∈Ā

log |B(j)|

≤ |Ā|−1
∑

(i,j)∈Ā

n
∑

l=1

I(X̄1l; Ȳl|X̄2l = xjl)
∑

x∈Q

1 [xjl = x] + O(n1/2)

=
n
∑

l=1

∑

x∈Q

|Ā|−1
∑

(i,j)∈Ā

1 [xjl = x] I(X̄1l; Ȳl|X̄2l = xjl) + O(n1/2)

=
n
∑

l=1

I(X̄1l; Ȳl|X̄2l) + O(n1/2), (4.20)

since P
[

X̄2l = x
]

= |Ā|−1
∑

(i,j)∈Ā 1 [xjl = x] for l ∈ [n].
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We next establish a lower bound on the left-side term in order to obtain an

inequality for M. By the definition of B(j),

|Ā|−1
∑

(i,j)∈Ā

log |B(j)| = |Ā|−1

M
∑

j=1

|B(j)| log |B(j)|

≥ |Ā|−1
∑

j:|B(j)|≥ 1−ε∗

n
Mλr

|B(j)| log |B(j)|

≥ |Ā|−1 log

(

1− ε∗

n
Mλr

)

∑

j:|B(j)|≥ 1−ε∗

n
Mλr

|B(j)|. (4.21)

Now,

∑

j:|B(j)|≥ 1−ε∗

n
Mλr

|B(j)| =
M
∑

j=1

|B(j)| −
∑

j:|B(j)|< 1−ε∗

n
Mλr

|B(j)|

≥ |Ā| − 1− ε∗

n
M2λr

≥ |Ā| − 1

n
|Ā|

by using (4.17) and (4.18). Using this inequality in (4.21), we get

|Ā|−1
∑

(i,j)∈Ā

log |B(j)| ≥
(

1− 1

n

)

log

(

1− ε∗

n
Mλr

)

. (4.22)

Combining (4.20), (4.22) and (4.18),

log M ≤
(

1 +
1

n− 1

)

(

n
∑

l=1

I(X̄1l; Ȳl|X̄2l) + O(n1/2)

)

− log(1− ε∗) + log n +
ε∗

1− ε∗
n1/2 log n

≤
n
∑

l=1

I(X̄1l; Ȳl|X̄2l) + O(n1/2 log n). (4.23)

Although the above inequality resembles what is needed in the theorem, note that

X̄1l and X̄2l are not necessarily independent.
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For l ∈ [n], let (X1l, X2l, Yl) be r.v.’s with distribution

P [X1l = x1, X2l = x2, Yl = y] = P
[

X̄1l = x1

]

P
[

X̄2l = x2

]

W (y|x1, x2)

for all x1, x2, y ∈ Q. From Lemma 4.6(b), for n−1/2 ≥ |Q|2n−1 and every l ∈ [n]

(1 + n−1/2)P
[

X̄1l = x1

]

P
[

X̄2l = x2

]

− 2n−1/2

≤ P
[

X̄1l = x1, X̄2l = x2

]

≤ (1 + n−1/2)P
[

X̄1l = x1

]

P
[

X̄2l = x2

]

+ n−1,

i.e., |P [X1l = x1, X2l = x2]−P
[

X̄1l = x1, X̄2l = x2

]

| ≤ 2n−1/2.

Thus, by the uniform continuity of mutual information, for all l ∈ [n],

|I(X1l; Yl|X2l)− I(X̄1l; Ȳl|X̄2l)| ≤ αn,

where αn → 0 as n→∞. Together with (4.23) and dividing by n,

Rn ≤ max
PX1X2

:
X1,X2 indep.

I(X1; Y |X2) + βn, (4.24)

where βn = αn + O(n−1/2 log n) → 0 as n → ∞. Similarly, assuming (4.15) is true,

one can prove

Rn ≤ max
PX1X2

:
X1,X2 indep.

I(X2; Y |X1) + β′
n. (4.25)

Since either (4.24) or (4.25) always holds, taking n→∞ and using (4.13) completes

the proof.
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4.2 Arbitrarily Varying Channel

In the previous section, we considered a single channel which was known to

both senders and the receiver. Therefore, it was possible to design the code to suit

the given channel. We now consider a more complex situation where the channel in

fact varies arbitrarily over a family of memoryless channels. On the other hand, we

permit the use of a randomized code with the code selection available to both the

input and output terminals. This problem is more in line with the fingerprinting

scenario where the coalitions may choose an arbitrary admissible strategy, and the

distributor uses a randomized code.

4.2.1 Problem Statement

As before, let Q be an alphabet of size q (< ∞) and let [M ] be the set of

messages. We assume the use of a randomized code (C,D) similar to the description

in Section 2.1.2. Recall that (C,D) is an r.v. over a family {(Ck, Dk)} of (n,M)q

codes. One of the codes is chosen at random and the selection is known to both

senders and the receiver. Each input terminal picks one message and encodes it into

a codeword according to the selected code Ck. Both codewords are then transmitted

over a channel. The communication model is given by an arbitrarily varying channel

(AVC) as defined below.

Let W denote a family of (memoryless) channels

W = {Ws : Q×Q → Q, s ∈ S}

indexed by s ∈ S which is called the “state” and is used to identify the particular

channel in W . The AVC model allows the channel state to vary from symbol to
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symbol. For a given state sequence s ∈ Sn, the channel is given by

W n
s (y|x1,x2) =

n
∏

l=1

Wsl
(yl|x1l, x2l). (4.26)

The family of such channels W n
s : Qn ×Qn → Qn, s ∈ Sn is denoted by Wn.

On receiving the channel output, the decoder Dk corresponding to the selected

code is employed to recover one of the two transmitted messages. For a given state

sequence s, let YC,(i,j),s denote the random channel output when the messages (i, j)

are sent. The probability of error for messages (i, j) and state sequence s is

e(C,D, (i, j), s) = P
[

D(YC,(i,j),s) /∈ {i, j}
]

= EK

∑

y: DK(y)/∈{i,j}

W n
s (y|CK(i), CK(j)).

The average probability of error for the state sequence s is given by

eavg(C,D, s) =
1

M2

∑

i,j∈[M ]

e(C,D, (i, j), s).

Definition 4.8 (Capacity of decode-one AVC). Given a class of q-ary decode-one

channels W , we call R ≥ 0 an achievable rate for the decode-one AVC defined on

W if there exists a sequence of (n, qnRn)q randomized codes (Cn,Dn) such that

lim inf
n→∞

Rn = R, lim
n→∞

max
s∈Sn

eavg(Cn,Dn, s) = 0.

The supremum of all such achievable rates is called the capacity of the decode-one

AVC over W with randomized codes and is denoted by Cq(W).
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4.2.2 Main Results

In the following, the convex closure W of W is defined as the closure of prob-

ability distributions V of the form

V (y|x1, x2) =
∑

s∈S

P (s)Ws(y|x1, x2), x1, x2, y ∈ Q

where S is any finite subset of S, and P is any probability distribution over S. (A

set of probability distributions is called convex/closed if it is convex/closed as a set

of vectors in the real space of the corresponding dimension.)

Theorem 4.9 (Arbitrarily varying channel: Lower bound). The capacity of the

2-input q-ary decode-one AVC over W satisfies

Cq(W) ≥ max
PX1X2

:
X1,X2 i.i.d.

max

(

min
W∈W

I(X1; Y ), min
W∈W

I(X2; Y ), min
W∈W

1

2
I(X1, X2; Y )

)

,

where X1, X2, Y are q-ary r.v.’s and PY |X1X2 = W .

Proof. The proof is based on techniques from the single-user AVC proof given in

[31, Lemma 6.10] and is in a number of aspects parallel to the proof of Theorem 4.3.

In particular, we will consider three decoding strategies accounting for the recovery

either one of the two or both transmitted messages.

Encoding: Fix a probability distribution P over Q. We generate length-n

codewords Xi, i = 1, . . . ,M = bqnRc independently, where the symbol in each coor-

dinate is picked in an i.i.d. manner according to P . The message i is then encoded
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as Xi. We will use the following notation. For a distribution P and a channel W ,

PPW (y) =
∑

x1,x2∈Q

P (x1)P (x2)W (y|x1, x2),

(PW )1(y|x1) =
∑

x2

P (x2)W (y|x1, x2),

(PW )2(y|x2) =
∑

x1

P (x1)W (y|x1, x2),

I(P × P,W ) =
∑

x1,x2,y∈Q

P (x1)P (x2)W (y|x1, x2) log
W (y|x1, x2)

PPW (y)
.

Decoding: We start by considering a joint decoder, i.e., a decoder which makes

a decision by computing the likelihood of each possible message pair. Let W ? ∈ W

be a channel attaining the minimum of I(P ×P,W ) for W ∈ W . For every W ∈ W

and 0 ≤ α ≤ 1, we have

I(P × P, αW + (1− α)W ?) ≥ I(P × P,W ?),

i.e.,

lim
α→0

∂

∂α
I(P × P, αW + (1− α)W ?) ≥ 0.

Since

∂

∂α
I(P × P, αW + (1− α)W ?) =

∑

x1,x2,y

P (x1)P (x2)(W (y|x1, x2)−W ?(y|x1, x2)) log
αW (y|x1, x2) + (1− α)W ?(y|x1, x2)

αPPW (y) + (1− α)PPW ?(y)
,

it follows that

∑

x1,x2,y

P (x1)P (x2)W (y|x1, x2) log
W ?(y|x1, x2)

PPW ?(y)
≥ I(P × P,W ?). (4.27)
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Consider a two-step maximum likelihood decoder tuned to the worst channel

W ? ∈ W and operating as follows: For any realization of the random codebook

{x1, . . . ,xM},

1. Find

(u1, u2) = arg max
i,j∈[M ]: i6=j

W ?n(y|xi,xj)

2. Decode y as follows:

D(y) =











u1 if (PW ?)n
1 (y|xu1) ≥ (PW ?)n

2 (y|xu2)

u2 otherwise.

The randomized code obtained by the above procedure is denoted as (C,D).

Error probability analysis: Fix s ∈ Sn. As in Theorem 4.3, it is clear that the

average probability of error

eavg(C,D, s) ∼ e(C,D, (1, 2), s)

as the code length increases due to the symmetry of the random code. Now,

e(C,D, (1, 2), s)

= EC

[

∑

y

W n
s (y|X1,X2)1 [D(y) /∈ {1, 2}]

]

=
∑

x1,x2

P n(x1)P
n(x2)EC

[

∑

y

W n
s (y|X1,X2)1 [D(y) /∈ {1, 2}]

∣

∣

∣

∣

∣

X1 = x1,X2 = x2

]

=
∑

x1,x2,y

P n(x1)P
n(x2)W

n
s (y|x1,x2)P

[

D(y) /∈ {1, 2}
∣

∣X1 = x1,X2 = x2

]

. (4.28)
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The last term in (4.28) can be bounded above as follows:

P
[

D(y) /∈ {1, 2}
∣

∣X1 = x1,X2 = x2

]

≤ P [Ea] + P [Eb,1] + P [Eb,2] + P [Ec,1] + P [Ec,2] (4.29)

where

Ea = [∃i, j /∈ {1, 2}, i 6= j : W ?n(y|Xi,Xj) ≥ W ?n(y|x1,x2)] ,

Eb,1 = [∃i /∈ {1, 2} : W ?n(y|Xi,x1) ≥ W ?n(y|x1,x2), (PW ?)n
1 (y|Xi) ≥ (PW ?)n

2 (y|x1)] ,

Eb,2 = [∃i /∈ {1, 2} : W ?n(y|Xi,x2) ≥ W ?n(y|x1,x2), (PW ?)n
1 (y|Xi) ≥ (PW ?)n

2 (y|x2)] ,

Ec,1 = [∃j /∈ {1, 2} : W ?n(y|x1,Xj) ≥ W ?n(y|x1,x2), (PW ?)n
2 (y|Xj) ≥ (PW ?)n

1 (y|x1)] ,

Ec,2 = [∃j /∈ {1, 2} : W ?n(y|x2,Xj) ≥ W ?n(y|x1,x2), (PW ?)n
2 (y|Xj) ≥ (PW ?)n

1 (y|x2)] .

Let us first look at the error event Ea. If

W ?n(y|x1,x2)

(PPW ?)n(y)
<

M2

ε2
,

we bound P [Ea] by 1. In the opposite case, since E[W ?n(y|Xi,Xj)] = (PPW ?)n(y),

by the Markov inequality

P [Ea] ≤
∑

i/∈{1,2}
j /∈{1,2}

i6=j

P

[

W ?n(y|Xi,Xj)

(PPW ?)n(y)
≥ M2

ε2

]

≤ ε2.
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Using this in (4.28), we get

∑

x1,x2,y

P n(x1)P
n(x2)W

n
s (y|x1,x2)P [Ea]

≤
∑

x1,x2,y:
W?n(y|x1,x2)
(PPW?)n(y)

< M2

ε2

P n(x1)P
n(x2)W

n
s (y|x1,x2) + ε2

= P

[

W ?n(Y|X1,X2)

(PPW ?)n(Y)
<

M2

ε2

]

+ ε2

where the independent r.v.’s X1,X2 have distribution P n and PY|X1X2 = W n
s .

Lemma 4.10. If R ≤ 1
2
I(P × P,W ?)− ε, then for n ≥ 2

ε
log 1

ε

P

[

W ?n(Y|X1,X2)

(PPW ?)n(Y)
<

M2

ε2

]

≤ c(ε)n−1 (4.30)

where c(ε) > 0 is a constant which depends on ε.

The proof is provided in the Appendix. We now turn to the error event Eb,1.

P [Eb,1] ≤ P






∃i /∈ {1, 2} :

W ?n(y|Xi,x1)
(PW ?)n

2 (y|x1)
+

(PW ?)n
1 (y|Xi)

(PPW ?)n(y)

≥ W ?n(y|x1,x2)
(PW ?)n

2 (y|x1)
+

(PW ?)n
2 (y|x1)

(PPW ?)n(y)






(4.31)

We will bound P [Eb,1] as follows. If

W ?n(y|x1,x2)

(PW ?)n
2 (y|x1)

+
(PW ?)n

2 (y|x1)

(PPW ?)n(y)
<

M

ε

we bound P [Eb,1] by 1. In the opposite case, since E [W ?n(y|Xi,x1)] = (PW ?)n
2 (y|x1)

and E [(PW ?)n
1 (y|Xi)] = (PPW ?)n(y),

P [Eb,1] ≤
∑

i/∈{1,2}

P

[

W ?n(y|Xi,x1)

(PW ?)n
2 (y|x1)

+
(PW ?)n

1 (y|Xi)

(PPW ?)n(y)
≥ M

ε

]

≤ 2ε

by the Markov inequality.
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Using this in (4.28), we get

∑

x1,x2,y

P n(x1)P
n(x2)W

n
s (y|x1,x2)P [Eb,1]

≤
∑

x1,x2,y:
W?n(y|x1,x2)

(PW?)n2 (y|x1)
+

(PW?)n2 (y|x1)

(PPW?)n(y)
< M

ε

P n(x1)P
n(x2)W

n
s (y|x1,x2) + 2ε

= P

[

W ?n(Y|X1,X2)

(PW ?)n
2 (Y|X1)

+
(PW ?)n

2 (Y|X1)

(PPW ?)n(Y)
<

M

ε

]

+ 2ε

≤ P

[

W ?n(Y|X1,X2)

(PW ?)n
2 (Y|X1)

<
M

ε
,
(PW ?)n

2 (Y|X1)

(PPW ?)n(Y)
<

M

ε

]

+ 2ε

≤ P

[

W ?n(Y|X1,X2)

(PPW ?)n(Y)
<

M2

ε2

]

+ 2ε (4.32)

where X1,X2 have distribution P n and PY|X1X2 = W n
s . The first probability term

in (4.32) can again be bounded by Lemma 4.10. The remaining error events can

also be bounded in the same way as Eb,1. Hence, if R ≤ 1
2
I(P × P,W ?) − ε, then

for any s ∈ Sn, when n ≥ 2
ε

log 1
ε

e(C,D, (1, 2), s) ≤ 5c(ε)n−1 + ε2 + 8ε.

As ε > 0 was arbitrary, this establishes that the rate

1

2
I(P × P,W ?) = min

W∈W

1

2
I(X1, X2; Y )

claimed in the theorem is indeed achievable.

The remaining decoding options are handled as follows. We can focus on

decoding only the message from the first terminal, treating the input from the other

terminal as part of the channel. Specifically, for a fixed distribution P generating

the codewords, we may select W ? ∈ W to be a channel minimizing I(P, (PW )1) for

W ∈ W , where by I(P, (PW )1) we mean the quantity I(X1; Y ). Now, performing

standard (one-step) maximum likelihood decoding with respect to (PW ?)n
1 , it is
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possible to obtain codes with rate

I(P, (PW ?)1) = min
W∈W

I(X1; Y )

essentially by using the results for the single-user (point-to-point) AVC [31, Lemma

6.10]. In a similar way, by decoding just the second message we can attain the rate

minW∈W I(X2; Y ). Since any of the above decoding choices may be invoked based

on the distribution P , and P can be chosen to optimize the rate, this establishes

the achievability of the stated lower bound.

Theorem 4.11 (Arbitrarily varying channel: Upper bounds). The capacity of the

2-input q-ary decode-one AVC over W satisfies

(a) Cq(W) ≤ min
W∈W

max
PX1X2

:
X1,X2 i.i.d.

I(X1, X2; Y ),

(b) Cq(W) ≤ min
W∈W

max
PX1X2

:
X1,X2 indep.

max (I(X1; Y |X2), I(X2; Y |X1)) ,

where X1, X2, Y are q-ary r.v.’s and PY |X1X2 = W .

The proof is an extension of the ideas from the single known channel case

(Theorem 4.5). We do not provide the proof here as we will face a similar, but

considerably harder, task in the next chapter when we compute upper bounds for

fingerprinting capacity. Please see Corollary 5.2 and Theorem 5.4.

4.3 Concluding Remarks

Our main objectives in this chapter were to enhance our understanding of the

fingerprinting problem, and to develop techniques for computing capacity bounds by

studying a similar, yet simpler, class of problems in multi-user information theory. In

particular, we examined the decode-one MAC problem, where the input terminals
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share the same codebook and the decoder is required to output only one of the

transmitted messages. We calculated upper and lower bounds for the capacity of

the decode-one MAC, both for the single channel and AVC case. However, the

following fundamental question still remains unresolved.

Open Problem 4.12. Compute the exact value of capacity for a decode-one MAC.

4.4 Appendix

4.4.1 Proof of Lemma 4.10

Define

Zl := log
W ?(Yl|X1l, X2l)

(PPW ?)(Yl)
, l = 1, . . . , n

where X1l, X2l are i.i.d. with distribution P , and PYl|X1lX2l
= Wsl

. As (X1l, X2l, Yl), l =

1, . . . , n are mutually independent, the r.v.’s Zl are also independent and

E[Zl] =
∑

x1,x2,y

P (x1)P (x2)Wsl
(y|x1, x2) log

W ?(y|x1, x2)

(PPW ?)(y)
≥ I(P × P,W ?) (4.33)

where the last inequality is due to (4.27). Also, |Zl| ≤ − log mW ? , where mW ? is the

smallest positive entry of W ?. Hence

var(Zl) ≤ (log mW ?)2. (4.34)
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Now,

P

[

W ?n(Y|X1,X2)

(PPW ?)n(Y)
<

M2

ε2

]

≤ P

[

n
∑

l=1

Zl < 2nR + 2 log
1

ε

]

(a)

≤ P

[

n
∑

l=1

Zl < n(I(P × P,W ?)− 2ε) + 2 log
1

ε

]

(b)

≤ P

[∣

∣

∣

∣

∣

n
∑

l=1

(Zl − E [Zl])

∣

∣

∣

∣

∣

> 3nε

]

(c)

≤ (log mW ?)2

9nε2

where inequalities (a) and (b) follow from the assumptions on R and n (resp.) in

the lemma, and (c) is because of the Chebyshev inequality and (4.34).
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Chapter 5

Upper Bounds on Fingerprinting Capacity

In this chapter we extend the information-theoretic techniques used for the

decode-one multiple-access channel (MAC) from Chapter 4 to obtain new com-

putable upper bound expressions for fingerprinting capacity. We consider several

particular cases of the capacity problem for the binary fingerprint alphabet, evalu-

ating numerically the upper bound for small-size coalitions as well for coalitions of

arbitrary size.

Let us recall the equivalent communication problem associated with finger-

printing, described in Section 2.2. We identify the users of the fingerprinting system

with the set of messages available for communication. Each message (user) is en-

coded into a codeword (fingerprint). Once a subset of messages (a coalition) is cho-

sen, the corresponding codewords are transmitted over an unknown channel which

represents the coalition strategy. The task of the decoder is to recover one of the

transmitted messages (pirates) to have produced the channel output (the forgery).

The coalition can choose any channel from the admissible class Vt, defined in

(2.4) as its attack strategy. To make the problem of upper bounds tractable, we

restrict the class of possible attacks investigated to the set of memoryless attack

channels. By memoryless we mean that at any given coordinate, the symbol used

in the forged fingerprint depends only on the coalition’s observed symbols in that

coordinate and not on any of the other coordinates. Notice that any upper bound on

the capacity obtained with this restriction will be also valid in the original problem.

Consequently, we will be interested in the family Wt of memoryless channels

W : Q×· · ·×Q → Q with t inputs that satisfy the marking assumption for a single
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letter, i.e.,

Wt = {W : W (y|x, . . . , x) = 0 if y 6= x,∀x, y ∈ Q}. (5.1)

Note that Wt is a convex and compact set.

Observe that the above definition of Wt corresponds to the wide-sense attack

rule EW (·) defined in (2.3). For the narrow-sense envelope EN(·) (2.2) and other

variations of the problem it is possible to define similar communication channels

and study their upper bounds on capacity. Our upper bounds extend to these

situations by an appropriate restriction of the set Wt of permissible channels.

Unless stated otherwise, in the chapter all logarithms are to the base q.

5.1 Upper Bound I

We model the coalition’s strategy by an arbitrarily varying channel (AVC)

over Wt (cf. Section 4.2). The index s ∈ St that identifies the particular channel

W ∈ Wt will be called a state below. We will write Ws(y|x1, . . . , xt) for channels in

Wt. For a given state sequence s ∈ Sn
t , the corresponding n-letter channel is given

by

W n
s (y|x1, . . . ,xt) =

n
∏

l=1

Wsl
(yl|x1l, . . . , xtl).

We denote the family of such channels W n
s : Qn × · · · × Qn → Qn, s ∈ Sn

t by Wn
t .

Since the state sequence s completely identifies the channel, we will use eavg(C,D, s)

to denote the average error probability in (2.9). Below in this section we extend

the techniques of Theorem 4.5(a) to cover channels with many inputs, AVCs and

randomized codes, and obtain bounds on fingerprinting capacity. We begin with the

case of general, arbitrarily sized alphabets, and then specialize the results obtained

to the binary case.
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5.1.1 The general case

Recall that a fingerprinting code is an r.v. taking values on a family {(Ck,Dk), k ∈

K} of codes, where K refers to the set of keys.

Theorem 5.1. Let (C,D) be a q-ary t-fingerprinting code with ε-error (0 < ε < 1)

of length n, rate R, and |K| keys, such that εqnR ≥ 2t. Then

R ≤ 1

1− 2tε

(

max
PKX1...Xt

min
W∈Wt

I(X1, . . . , Xt; Y |K) + ξn

)

where ξn = t log 2/n, X1, . . . , Xt, Y are q-ary r.v.’s, PY |X1...Xt
= W , K is an r.v.

taking values on a set of cardinality |K| and satisfying the Markov chain K ↔

X1, . . . , Xt ↔ Y, and the maximization is over joint distributions

PKX1...Xt
= PK × PX1|K × · · · × PXt|K

with PX1|K = · · · = PXt|K .
(5.2)

Proof. Let K be a set of keys and let {(Ck, Dk), k ∈ K} be a family of codes with

probability distribution π(k) over K. Since (C,D) is t-fingerprinting with ε-error, it

satisfies

eavg(C,D, s) ≤ ε for every s ∈ Sn
t . (5.3)

Let U1, . . . , Ut be independent r.v.’s uniformly distributed over the message set

{1, . . . , qnR} and let K be an r.v. independent of U1, . . . , Ut, and with probabil-

ity distribution π(k) over K. Also, let

Xi := CK(Ui), i = 1, . . . , t. (5.4)

Fix some s ∈ Sn
t and let Y be such that PY|X1,...,Xt

= W n
s . Then, we have

P [DK(Y) /∈ {U1, . . . , Ut}] ≤ ε, (5.5)
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which follows from (5.3). We also have the following Markov chain

U1, . . . , Ut, K ↔ X1, . . . ,Xt
W n

s←→ Y. (5.6)

Now,

I(U1, . . . , Ut; Y|K) = tnR−H(U1, . . . , Ut|Y, K), (5.7)

because U1, . . . , Ut are independent and uniformly distributed over [qnR]. The sec-

ond term in (5.7) can be bounded above as follows. Define Ei = 1 [DK(Y) 6= Ui] ,

i = 1, . . . , t. Let pi = P [Ei = 0, Ej = 1, j = 1, . . . , t, j 6= i], i = 1, . . . , t. Since

DK(Y), E1, . . . , Et are known given K,Y, U1, . . . , Ut,

H(U1, . . . , Ut|Y, K) = H(U1, . . . , Ut, E1, . . . , Et|Y, DK(Y), K)

(a)

≤ t log 2 + H(U1, . . . , Ut|Y, DK(Y), K,E1, . . . , Et)

(b)

≤ t log 2 + εtnR + 2tq−nRtnR

+
t
∑

i=1

piH(U t
1\Ui|Ui,Y, K,Ei = 0, Ej = 1, j 6= i)

≤ t log 2 + (ε + 2tq−nR)tnR + (t− 1)nR.

The inequality (a) holds true because E1, . . . , Et are binary r.v.’s, and (b) follows

from the fact that Ui is determined under the event considered by pi and there are

at most 2t remaining terms each of which can be bounded above by q−nRtnR. Using

this in (5.7), we obtain

nR(1− (ε + 2tq−nR)t) ≤ I(U1, . . . , Ut; Y|K) + t log 2. (5.8)
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We now use the premise that εqnR ≥ 2t, together with (5.6) and the memoryless

property of the channel, which results in

R ≤ 1

1− 2tε

(

1

n
I(U1, . . . , Ut; Y|K) + ξn

)

≤ 1

1− 2tε

(

1

n
I(X1, . . . ,Xt; Y|K) + ξn

)

≤ 1

1− 2tε

(

1

n

n
∑

l=1

I(X1l, . . . , Xtl; Yl|K) + ξn

)

.

Moreover, since the above bound applies for every s ∈ Sn
t , i.e., for every W n ∈ Wn

t ,

R ≤ 1

1− 2tε

(

1

n
min

W n∈Wn
t

n
∑

l=1

I(X1l, . . . , Xtl; Yl|K) + ξn

)

=
1

1− 2tε

(

1

n

n
∑

l=1

min
W∈Wt

I(X1l, . . . , Xtl; Yl|K) + ξn

)

,

because the minimization is over channels whose state may vary over Wt for every

letter. Note that X1, . . . ,Xt are i.i.d. given K (by (5.4)). Therefore, given K, for

every l ∈ [n], X1l, . . . , Xtl are i.i.d. Hence,

R ≤ 1

1− 2tε

(

max
PKX1...Xt

min
W∈Wt

I(X1, . . . , Xt; Y |K) + ξn

)

.

where the maximization is over joint distributions satisfying (5.2).

Corollary 5.2. The capacity of t-fingerprinting over a q-ary alphabet satisfies

Ct,q ≤ min
W∈Wt

max
PX1...Xt

I(X1, . . . , Xt; Y ), (5.9)

where X1, . . . , Xt, Y are q-ary r.v.’s, PY |X1...Xt
= W and the maximization is over

joint distributions such that X1, . . . , Xt are i.i.d.
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Proof. As we prove only a min-max type result, it becomes sufficient to consider

only “fixed” memoryless coalition strategies, i.e., strategies that remain fixed at

every symbol instead of varying arbitrarily. In the subsequent text, W n : Qn×Qn →

Qn will denote the memoryless n-letter extension (4.1) of a channel W : Q×Q → Q.

Consider any sequence of t-fingerprinting codes (Cn,Dn), n = 1, 2, . . . of rate

Rn and error εn, where lim infn Rn = R and εn approaches 0 as n increases. Then

eavg(C,D,W n) ≤ εn for every W ∈ Wt. (5.10)

Fix some W ∈ Wt. We find that (5.8) holds for every n. Therefore by the arguments

in Theorem 5.1

Rn ≤
1

1− ε′n

(

1

n

n
∑

l=1

I(X1l, . . . , Xtl; Yl|K) + ξn

)

, (5.11)

where both ε′n = (εn + 2tq−nR)t and ξn approach 0 as n→∞. Considering the inner

term, we note that

1

n

n
∑

l=1

I(X1l, . . . , Xtl; Yl|K) ≤ I(X1l∗ , . . . , Xtl∗ ; Yl∗|K = k∗),

where l∗ = l∗(W ) and k∗ = k∗(W ) are the coordinate and key which maximize the

mutual information. The term on the r.-h.s. is a function of (PX1l∗ ...Xtl∗ |K=k∗ ,W ).

For every l ∈ [n], X1l, . . . , Xtl are i.i.d. when conditioned on K. Therefore this term

is at most

max
PX1...Xt

I(X1, . . . , Xt; Y ),

where X1, . . . , Xt, Y are q-ary r.v.’s with PY |X1,...,Xt
= W, and the maximization is

over i.i.d. r.v.’s. Finally, since (5.11) is true for every W ∈ Wt, we obtain the stated

result by taking n→∞.
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Figure 5.1: The uniform channel with 2 pirates

5.1.2 The binary case

Consider the case where Q = {0, 1}. We would like to evaluate the upper

bound on Ct,2 given by Corollary 5.2. Computing the exact optimum in this formula

is a difficult problem. Instead of attempting this, we will use a particular channel W

in (5.9) and compute a maximum on the prior distribution PX1...Xt
for this channel.

The resulting value of the rate gives an upper bound on capacity Ct,2. Let W be the

“uniform channel” defined by

W (1|x1, . . . , xt) =
w

t
, W (0|x1, . . . , xt) = 1− w

t
,

where w is the number of 1s among x1, . . . , xt. Figure 5.1 shows the uniform channel

for t = 2. Intuitively this choice is the worst strategy of the coalition from the

distributor’s perspective. If X1, . . . , Xt are independent binary-valued r.v.’s with

P [Xi = 1] = p, 0 ≤ p ≤ 1, i = 1, . . . , t, and Y is the output of the uniform channel

with inputs X1, . . . , Xt, we have P [Y = 1] = p and

H(Y |X1, . . . , Xt) =
t
∑

i=0

(

t

i

)

pi(1− p)t−ih

(

i

t

)

.

Evaluating the maximum mutual information in (5.9) for this channel gives a closed-

form upper bound:
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Theorem 5.3. The capacity of t-fingerprinting over the binary alphabet satisfies

Ct,2 ≤ max
p∈[0,1]

{

h(p)−
t
∑

i=0

(

t

i

)

pi(1− p)t−ih

(

i

t

)

}

(5.12)

≤ 1

t ln 2
. (5.13)

A proof of the estimate (5.13) is given in the Appendix.

5.2 Upper Bound II

Next, we generalize the techniques of Theorem 4.5(b) to prove the following

upper bound which is tighter compared to Corollary 5.2 for certain cases.

5.2.1 The general case

Theorem 5.4. The capacity of t-fingerprinting over a q-ary alphabet satisfies

Ct,q ≤ min
W∈Wt

max
PX1...Xt

max
i=1,...,t

I(Xi; Y |X i−1
1 , X t

i+1), (5.14)

where X1, . . . , Xt, Y are q-ary r.v.’s, PY |X1...Xt
= W and the maximization is over

joint distributions such that X1, . . . , Xt are independent.

Proof. The proof relies on Theorem 4.5(b). As before, we actually prove a “strong

converse” theorem that the upper bound claimed is true even for a fixed average error

probability ε ∈ (0, 1) (not necessarily decaying to 0 as the code length increases).

For simplicity of presentation, the result is proved for the case t = 2.

Consider a sequence (Cn,Dn), n = 1, 2, . . . of (n, qnRn)q randomized codes

which are 2-fingerprinting with ε-error, where lim infn Rn = R and 0 < ε < 1.
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In particular, this means that

eavg(Cn,Dn,W n) ≤ ε for every W ∈ W2.

For a given n and key k, let x
(k)
i,n = Ck,n(i) denote the fingerprints and D

(k)
i,n = {y :

Dk,n(y) = i} denote the decoding regions for i = 1, . . . ,Mn = qnRn . Then the above

error criterion can be written as follows: For every W ∈ W2,

EKn

[

1

M2
n

Mn
∑

i,j=1

W n(D
(Kn)
i,n ∪ D

(Kn)
j,n |x(Kn)

i,n ,x
(Kn)
j,n )

]

≥ 1− ε.

Fix some W ∈ W2. There exists a sequence of keys k?
n = k?

n(W ) such that

1

M2
n

Mn
∑

i,j=1

W n(D
(k?

n)
i,n ∪ D

(k?
n)

j,n |x(k?
n)

i,n ,x
(k?

n)
j,n ) ≥ 1− ε.

Now, applying Theorem 4.5(b) for the channel W and the code sequence indexed

by k?
n, we obtain

R ≤ max
PX1X2

:
X1,X2 indep.

max (I(X1; Y |X2), I(X2; Y |X1)) ,

where X1, X2, Y are q-ary r.v.’s and PY |X1X2 = W . Finally, we observe that the

above inequality holds for every W ∈ W2 establishing the stated result for t = 2.

The general result for arbitrary t is obtained using the corresponding (straight-

forward) generalization of Theorem 4.5(b).

5.2.2 The binary case

Fix Q = {0, 1}. For the case of t = 2 and t = 3, we again pick the uniform

channel and obtain upper bounds on the expression in Theorem 5.4, which turn out

to be stronger than the bounds resulting from (5.12). The calculations become quite
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tedious for larger t. For t = 2, let X1, X2 be independent binary-valued r.v.’s with

P [Xi = 1] = pi, 0 ≤ pi ≤ 1, i = 1, 2, and let Y be the output of the uniform channel

with inputs X1 and X2. We have

H(Y |X2) = (1− p2)h
(p1

2

)

+ p2h

(

1− p1

2

)

H(Y |X1, X2) = (1− p1)p2 + p1(1− p2).

Computing the maximum conditional mutual information gives C2,2 ≤ 0.322. A

similar computation for t = 3 yields

H(Y |X2, X3) = (1− p2)(1− p3)h
(p1

3

)

+ (1− p2)p3h

(

1 + p1

3

)

+ p2(1− p3)h

(

1 + p1

3

)

+ p2p3h

(

1− p1

3

)

,

H(Y |X1, X2, X3) = (1− p1p2p3 − (1− p1)(1− p2)(1− p3)) h

(

1

3

)

,

and the maximization gives C3,2 ≤ 0.199. Combining these upper bounds with our

lower bounds from Theorem 3.11 and Theorem 3.12 we obtain:

Theorem 5.5. The capacity of 2- and 3-fingerprinting over the binary alphabet

satisfy

0.25 ≤ C2,2 ≤ 0.322,

0.083 ≤ C3,2 ≤ 0.199.

5.3 Summary and Recent Results

In this chapter, we proved several new upper bounds on fingerprinting ca-

pacity relying upon converse theorems for a class of channels which are similar to

the multiple-access channel. For the binary case our results establish that Ct,2 ≤

(t ln 2)−1. Combined with the result of [79] this implies that Ω(1/t2) ≤ Ct,2 ≤
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O(1/t). For the general case with arbitrary alphabets, we established some upper

bounds on the capacity involving only single-letter mutual information quantities.

The bounds presented here have been subsequently improved in recent works

[4, 61, 54], relying in part on the ideas and results of this research.

Amiri and Tardos [4] provide tighter estimates of the upper bounds presented

in this chapter. Moulin [61] provides an exact formula for fingerprinting capacity

involving mutual information quantities. In Huang-Moulin’s work [54], numerical

estimates of the capacity formula in [61] are given for binary codes.

Publications: The results in this chapter have appeared in [9, 10].

5.4 Appendix

5.4.1 Proof of Theorem 5.3

Our goal is to estimate maxp∈[0,1] u(p, t), where we use the following notation

u(p, t) = h(p)−
t
∑

i=0

αih
(

i
t

)

.

αi =

(

t

i

)

pi(1− p)t−i.

First, note that h is a concave function, and therefore u(p, t) is non-negative for all

p ∈ [0, 1]. Bernstein proved that the sequence of polynomials Bt(p) =
∑t

i=0 αif(i/t), t =

1, 2, . . . , where f is a function continuous on [0, 1], provides a uniform approxima-

tion to f on [0, 1]. His proof, found for instance in Feller [39] §7.2, relies on the weak

law of large numbers. Refining the proof in the case of the function h, we show that

for any p ∈ [0, 1] and any t,

u(p, t) ≤ 1

t ln 2
. (5.15)
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It suffices to consider the case p ∈ (0, 1/2]. Given some x = i/t, let us write a

quadratic Taylor approximation for h(x) :

h (x) = h(p) + (x− p) log2

1− p

p
+

(x− p)2

2
a(x) (5.16)

where the coefficient a(x) depends on x, since a(x) = h′′(γ) for some γ ∈ [x, p]. We

shall also consider the residual function

g̃ (x) = h (x)− h(p)− (x− p) log2

1− p

p
.

The main part of our proof is to show that for any x ∈ [0, 1],

2p−2 log2 (1− p) ≤ a(x) ≤ 0. (5.17)

The right inequality is obvious since h′′ (x) < 0 for all 0 < x < 1. The left inequality

will be proven in two steps.

Let us take any point x0 ∈ [0, p]. Then we compare g̃ (x) with the quadratic

function

gx0(x) = a(x0)
(x− p)2

2

on the entire interval x ∈ [0, p]. We first prove that functions gx0(x) and g̃ (x) coincide

at only two points, namely p and x0. Indeed, let us assume that there exists a third

such point x1. Without loss of generality, let x0 < x1 < p. The functions gx0(x) and

g̃ (x) coincide at the ends of both intervals [x0, x1] and [x1, p]; therefore there exist

two points θ′ ∈ (x0, x1) and θ′′ ∈ (x1, p) where both functions have equal derivatives:

a(x0)(θ
′ − p) = log2

1− θ′

θ′
− log2

1− p

p
;

a(x0)(θ
′′ − p) = log2

1− θ′′

θ′′
− log2

1− p

p
.

84



0.1 0.2 0.3 0.4

-0.2

-0.4

-0.6

g�HxL

x

gx0 HxL

g0HxL

p

Figure 5.2: To the proof that a(x0) > a(0).

The left sides of both equalities represent a linear function of θ given by a(x0)(θ−p)

whereas the right sides represent a convex function log2
1−θ

θ
− log2

1−p
p

. A linear

function can intersect a convex function at no more than two points. This leads to

a contradiction, which shows that x0 = x1 and that the functions gx0(x) and g̃ (x)

intersect at two points p and x0.

Our next step is to find the minimum a(x) ≤ 0 for all x ∈ [0, p]. Compare the

function gx0(x) with g0(x) for any parameter x0 ∈ (0, p]. Now we use the fact that

both functions intersect g̃ (x) at only two points, one of which is x = p. However,

g0(x) has its second intersection x = 0 to the left of x0. Thus, g0(x) < gx0(x) for

0 ≤ x < p and therefore, a(x0) > a(0) (see Figure 5.2). Now we conclude that

a(0) = min
x∈[0,p]

a(x).

Finally, we find a(0) using the equality g0(0) = g̃ (0) , which gives a(0) =

2p−2 log2(1− p).

The second interval x ∈ [p, 1] can be considered similarly. Again, we use

the same arguments and conclude that the end point x = 1 gives the minimum

a(1) = minx∈[p,1] a(x). Direct calculation also shows that the global minimum is
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achieved at 0 as a(0) < a(1) for all p < 1/2, and a(1) = a(0) for p = 1/2. This gives

us the left inequality in (5.17) and shows that for any p ≤ 1/2 and any x ∈ [0, 1],

h (x) ≥ h(p) + (x− p) log2

1− p

p
+ (x− p)2 log2 (1− p)

p2
.

Let us take x = i/t, i = 0, 1, . . . , t and substitute the above estimate into the ex-

pression for u(p, t). In this substitution, we also use the first two moments of the

binomial distribution {αi} , which gives

S1 :=
t
∑

i=0

αi

(

i
t
− p
)

= 0,

S2 :=
t
∑

i=0

αi

(

i
t
− p
)2

=
p(1− p)

t
.

Then

u(p, t) ≤ − log2

1− p

p
S1 −

log2(1− p)

p2
S2 ≤ −

(1− p) ln(1− p)

pt ln 2
.

Finally, it is easy to verify that the function − (1−p) ln(1−p)
p

monotonically decreases

on the interval [0, 1
2
] and achieves its maximum 1 at p = 0. This establishes (5.15)

and hence the bound (5.13).
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Chapter 6

Randomized Frameproof Codes

In this chapter, we consider a variation of the fingerprinting problem. In the

modified system, each time a user accesses his fingerprinted copy, the fingerprint is

validated to verify whether it is in fact permissible in the codebook being used and

the execution continues only if the validation is successful. This limits the forgery

possibilities for the pirates at the cost of an additional validation operation carried

out every time a user accesses his copy. The purpose of this chapter is to design

codes that permit a simple validation procedure, which does not lead to an excessive

complexity overhead in the operation of the system.

In addition, since the pirates are limited to creating only a valid fingerprint

and because we are interested in unique decoding, there is no additional tracing

needed: instead, the distributor implicates as guilty the user corresponding to the

fingerprint in the pirated copy.

Consequently, in this case, the coalition is successful if it is able to forge the

fingerprint of an innocent user, thus “framing” him as the pirate. The distributor’s

objective is to design codes for which the probability that this error event occurs is

small; thus the name frameproof codes.

In the deterministic case with zero error probability, frameproof codes (cf. Def-

inition 2.14) arise as a special case of separating codes, which have been studied over

many years since being introduced by Friedman et al. [42]. For further references

on deterministic frameproof codes and separating codes, the interested reader may

consult [67, 29, 78, 20]. To attain higher code rates in this chapter we introduce

randomized frameproof codes with a small error probability.
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Our specific objectives in this chapter are: (a) to characterize the theoretical

lower limits on the rates of randomized frameproof codes (Section 6.2), and develop

code constructions with polynomial-complexity validation performing close to these

theoretical limits (Sections 6.3 and 6.4).

Remark 6.1. (a) The fingerprinting property of codes does not directly imply the

frameproof property. Nevertheless, we demonstrate an improvement in the rates

achievable by frameproof codes over fingerprinting constructions.

(b) Let us stress the difference between frameproof and fingerprinting codes.

The former problem assumes that validation is performed every time the content is

accessed by every user of the system. In the fingerprinting problem, no validation

is performed until the distributor is alerted to a possible pirated copy of the data,

at which point a tracing algorithm is executed. Thus the choice between these two

scenarios depends on the application, in particular, the devices involved, complexity

requirements, and the number of users to be supported.

6.1 Problem Definition

Following our previous notation, letQ denote an alphabet of finite size q. Also,

let M and n denote the number of users in the system and the fingerprint length,

respectively.

As before, the distributor constructs a randomized code C by choosing one of

the (n,M)q codes {Ck, k ∈ K} according to some probability distribution (π(k), k ∈

K). As remarked earlier, we will not require a decoding (tracing) procedure in this

problem. The rate of this code is R = n−1 logq M .

Before a user executes his copy, his fingerprint is submitted to a validation

algorithm that checks whether the fingerprint is a valid codeword in the current

codebook. The execution continues only if the validation succeeds.
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Once the key k is selected, each user is assigned a specific fingerprint. A

coalition U of t users has access to the collection of fingerprints assigned to them,

denoted Ck(U). The goal of the pirates is to create a forged fingerprint different from

theirs which is valid under the current key choice. In the following definition, the

envelope E(·) may correspond to either the narrow-sense rule (2.2) or the wide-sense

rule (2.3), each leading to a different problem.

Definition 6.2. A randomized code C is said to be t-frameproof with ε-error if for

all U ⊆ [M ] such that |U | ≤ t, it holds that

P [E(C(U)) ∩ (C\C(U)) 6= ∅] ≤ ε, (6.1)

where the probability is taken with respect to the distribution π(·).

Remark 6.3. Note again that a code which is t-fingerprinting with ε-error is not

automatically t-frameproof with ε′-error, for any 0 ≤ ε′ < 1.

In the subsequent text, we write sz(x1, . . . ,xt) to denote the number of columns

equal to zT in the matrix formed with the vectors x1, . . . ,xt as the rows.

6.2 Lower Bounds for Binary Frameproof Codes

Code generation: Fix R ∈ (0, 1], Mn = b2nRc, and p ∈ [0, 1]. Let us construct

an (n,Mn)2 randomized code Cn as follows. We pick each entry in the Mn×n matrix

independently to be 1 with probability p.

Theorem 6.4. The randomized (binary) code Cn is t-frameproof with error proba-

bility decaying exponentially in n for any rate

R < −pt log2 p− (1− p)t log2(1− p). (6.2)
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Proof. For ε > 0, define the set of t-tuples of vectors

T ε
t,n := {(x1, . . . ,xt) : s1(x1, . . . ,xt) ∈ Iε, s0(x1, . . . ,xt) ∈ Jε} ,

where Iε := [n(pt−ε), n(pt +ε)] and Jε := [n((1−p)t−ε), n((1−p)t +ε)]. It is clear

that for any coalition U of size t, the observed fingerprints (x1, . . . ,xt) belong to T ε
t,n

with high probability. Hence, we will refer to T ε
t,n as the set of typical fingerprints.

For any coalition U of size t

P [E(C(U)) ∩ (C\C(U)) 6= ∅]

≤ P
[

C(U) /∈ T ε
t,n

]

+ P
[

∃y ∈ C\C(U) : y ∈ E(C(U))|C(U) ∈ T ε
t,n

]

. (6.3)

The first term in the above equation decays exponentially in n. It is left to prove

that the second term is also exponentially decaying for R satisfying (6.2).

A codeword in C\C(U) is a part of E(C(U)) if it contains a 1 (resp., 0) in all

s1(C(U)) (resp., s0(C(U))) positions. Since C(U) ∈ T ε
t,n, by taking a union bound

the second term in (6.3) is at most

2nRpn(pt−ε)(1− p)n((1−p)t−ε),

which decays exponentially in n for

R < −(pt − ε) log2 p− ((1− p)t − ε) log2(1− p).

The proof is completed by taking ε to be arbitrarily small.

The bias p in the construction of Cn can be chosen optimally for each value of

t. Numerical values of the rate thus obtained are shown in Table 6.1, where they are

compared with the existence bounds for deterministic zero-error frameproof codes
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Table 6.1: Comparison of achievable rates of randomized frameproof codes with
deterministic frameproof and fingerprinting codes

Rates
t Randomized Deterministic Fingerprinting

Frameproof Frameproof
2 0.5 0.2075 0.25
3 0.25 0.0693 0.098
4 0.1392 0.04 0.054
5 0.1066 0.026 0.034

(from [29]) and rates of fingerprinting codes (from [10, 4, 54]). Observe that there is

a factor of t improvement compared to the rate of deterministic frameproof codes.

We remark that for large t, the optimizing value of p in

Rt = max
p∈[0,1]

[

−pt log2 p− (1− p)t log2(1− p)
]

(6.4)

is approximately 1/t. Thus, for t large

Rt ≈
1

tt
log2 t +

(

1− 1

t

)t

log2

(

t

t− 1

)

= Ω(t−t log t).

6.3 Linear Frameproof Codes

While randomized frameproof codes eliminate the need for a tracing algorithm,

the fingerprints still need to be validated. Since the validation algorithm is executed

every time a user accesses his copy, we require that this algorithm have an efficient

running time. Although the codes designed in the previous section have high rates,

they come at the price of an exp(n) complexity validation algorithm. Linear codes

are an obvious first choice in trying to design efficient frameproof codes as they can

be validated in O(n2) time by simply verifying the parity-check equations.
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6.3.1 Linear Construction for t = 2

We now present a binary linear frameproof code for t = 2 which achieves the

rate given by Theorem 6.4.

Code generation: Suppose we have Mn = 2nR users. We construct an (n,Mn)2

randomized linear code Cn as follows. Pick a random n(1−R)×n parity-check matrix

with each entry chosen independently to be 0 or 1 with equal probability. The null

space of this matrix forms a linear code whose size is 2nR with high probability.

Each user is then assigned a unique codeword selected uniformly at random from

this collection. In the few cases that the code size exceeds 2nR, we simply ignore the

remaining codewords during the assignment. However, note that since the validation

algorithm simply verifies the parity-check equations, it will also identify the ignored

vectors as valid.

Theorem 6.5. The randomized (binary) linear code Cn is 2-frameproof with error

probability decaying exponentially in n for any rate R < 0.5.

Proof. As in the proof of Theorem 6.4, we begin by defining the set of typical

pairs of fingerprints. For ε > 0, define

T ε
n :=

{

(x1,x2) : sij(x1,x2) ∈ Iε,∀i, j ∈ {0, 1}
}

,

where Iε := [n(1/4− ε), n(1/4 + ε)]. For any coalition U of two users

P [E(C(U)) ∩ (C\C(U)) 6= ∅]

≤ P [C(U) /∈ T ε
n ] +

∑

(x1,x2)∈T ε
n

P [C(U) = (x1,x2)]

×P [∃y ∈ C : y ∈ E(x1,x2)\{x1,x2}|C(U) = (x1,x2)] .
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It can be seen that the first term again decays exponentially in n. We now consider

the term inside the summation

P [∃y ∈ C : y ∈ E(x1,x2)\{x1,x2}|C(U) = (x1,x2)] .

Observe that for any two binary vectors (x1,x2) ∈ T ε
n , the sum x1 + x2 /∈ E(x1,x2)

and also 0 /∈ E(x1,x2). Therefore, every vector in E(x1,x2)\{x1,x2} is linearly

independent from x1,x2. Thus for any y ∈ E(x1,x2)\{x1,x2},

P [y ∈ C|C(U) = (x1,x2)] = P [y ∈ C] = 2−n(1−R).

Since (x1,x2) ∈ T ε
n , |E(x1,x2)| ≤ 2n(1/2+2ε). Using the union bound and taking ε to

be arbitrarily small, we obtain the result.

6.3.2 Connection to Minimal Vectors

In this subsection, we show a connection between linear 2-frameproof codes and

minimal vectors of linear codes. Let us first recall the definition of minimal vectors

(see, e.g., [13]). Let C be an [n, k]q linear code. The support of a vector c ∈ C is

defined as supp(c) = {i ∈ [n] : ci 6= 0}. We write c′ � c if supp(c′) ⊆ supp(c).

Definition 6.6. A nonzero vector c ∈ C is called minimal if 0 6= c′ � c implies

c′ = αc, where c′ is another code vector and α is a nonzero constant.

Proposition 6.7. For any x1,x2 ∈ C, x1 6= x2, if x2 − x1 is minimal then

EN(x1,x2) ∩ (C\{x1,x2}) = ∅. If q = 2, the converse is also true.

Proof. Consider any y ∈ Qn and define the translate y′ := y− x1. It follows that

y ∈ C ⇔ y′ ∈ C (6.5)

y /∈ {x1,x2} ⇔ y′ /∈ {0,x2 − x1}. (6.6)
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Furthermore, if yi ∈ {x1i, x2i}, then y′
i ∈ {0, x2i − x1i} for all i ∈ [n]. Therefore,

y ∈ EN(x1,x2)⇒











y′ � x2 − x1,

y′ 6= α(x2 − x1),∀α /∈ {0, 1}.
(6.7)

Using (6.5), (6.6), (6.7), we obtain that EN(x1,x2) ∩ (C\{x1,x2}) 6= ∅ implies that

x2 − x1 is non-minimal.

For q = 2, it is easily seen that the reverse statement also holds in (6.7) and

thus the converse is also true.

Recall the random binary linear code constructed by generating a random

n(1 − R) × n parity-check matrix in the previous subsection. With some abuse of

notation, let us denote the (unordered) set of vectors satisfying the random parity-

check matrix also by Cn. Let M(Cn) denote the set of minimal vectors in Cn. We

have the following companion result to Corollary 2.5 in [13].

Corollary 6.8. As n→∞,

E

[ |M(Cn)|
|Cn|

]

=











1, R < 1/2

0, R > 1/2

Proof. As a consequence of Proposition 6.7, for any two users {u1, u2}, we obtain

P [E(Cn(u1, u2)) ∩ (Cn\Cn(u1, u2)) 6= ∅]

= P [Cn(u2)− Cn(u1) /∈M(Cn)]

= 1− E

[ |M(Cn)|
|Cn| − 1

]

.

The first part of the result is now true by Theorem 6.5. We skip the proof details

of the second part which is easily established using Chernoff bounds.
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6.3.3 Linear Codes for Larger t

In the light of Theorem 6.5, a natural question to ask is whether there exist

randomized linear frameproof codes for t > 2, perhaps allowing even a larger alpha-

bet. It turns out that, just as in the deterministic case, linear frameproof codes do

not always exist in the randomized setting too.

Proposition 6.9. There do not exist q-ary linear t-frameproof codes with ε-error,

0 ≤ ε < 1, which are secure with the wide-sense envelope if either t > q or q > 2.

Proof. Consider a coalition of q + 1 users. For any linear code realized from

the family where the observed fingerprints are, say, x1, . . . ,xq+1, the forgery y =

x1 + · · ·+xq+1 is a part of EW (x1, . . . ,xq+1). In addition, it is also a valid fingerprint

as the code is linear. This proves the first part of the proposition.

To prove the second part, consider an alphabet (a field) with q > 2. For any

two pirates with fingerprints x1 and x2, the forgery y = αx1 + (1 − α)x2, where

α 6= 0, 1, is a valid codeword (by linearity) and is also a part of the wide-sense

envelope.

Consequently, in considering linear frameproof codes which are wide-sense

secure, we are limited to t = 2, q = 2.

6.4 Polynomial-time Validation for Larger t

We are mainly interested in constructing binary frameproof codes which have

polynomial-time validation. With the binary alphabet, there is no distinction be-

tween wide-sense and narrow-sense envelopes. Therefore, there do not exist binary

linear frameproof codes for t > 2 by Proposition 6.9. In this section, we use the

idea of code concatenation [41] (described in Section 2.5) to construct a binary

frameproof code with polynomial-time validation.
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In the case of deterministic codes, it is known that if both the inner and

outer codes are t-frameproof (with zero error), then the concatenated code is also

t-frameproof. We will now establish a similar result when the inner code is a ran-

domized t-frameproof code.

Construction: Let the outer code Cout be a (deterministic) linear [N,K, ∆]q

code with K = RoutN and ∆ = δN . For each of the N coordinates of the outer

code, generate an independent instance of an (m, q)2 randomized code Cin which

is t-frameproof with ε-error. Then the concatenated code C with outer code Cout

and inner code independent instances of Cin is a randomized binary code of length

n = Nm and size qK .

Validation Algorithm:

Given a fingerprint y = (y1, . . . ,yN), where each yi is a binary word of length m,

the algorithm operates in two steps.

1) For every outer coordinate i = 1, . . . , N , validate yi with the inner code.

Specifically, verify whether yi is a part of the realization of Cin at coordinate i

by an exhaustive search over the q codewords. If the validation is successful at

all N coordinates, map y into the corresponding q-ary vector ŷ = (ŷ1, . . . , ŷN).

2) Check whether ŷ is a member of the outer (linear) code by verifying its parity-

check equations.

Theorem 6.10. If the relative minimum distance of the outer code Cout satisfies

δ ≥ 1− 1− ξ

t
(6.8)

and the inner code Cin is t-frameproof with error probability ε < ξ, then the concate-

nated code C is t-frameproof with error probability 2−ND(ξ‖ε).
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Proof. In the proof, we will identify users with the codewords of Cout. Consider

a coalition U = {x1, . . . ,xt} ⊆ Cout. In any coordinate i ∈ [N ] of the outer level,

the coalition has the symbols {x1i, . . . , xti} of which at most t are different. These

t symbols correspond to t different codewords of the inner code. Thus if the t-

frameproof property holds for the observed symbols for the realization of Cin in

coordinate i, then at the outer level the coalition is restricted to output one of the

symbols {x1i, . . . , xti}, i.e., the narrow-sense rule (2.2) holds. On the other hand, a

failure of the t-frameproof property at the inner level code implies that the coalition

is able to create a symbol different from {x1i, . . . , xti}.

Accordingly, let χi, i = 1, . . . , N, denote the indicator r.v.’s for failures at the

inner level with P [χi = 1] ≤ ε since the inner code has ε-error. Note that χi are

independent because we have an independent instance of the randomized code for

every i = 1, . . . , N . Then Z =
∑N

i=1 χi is a binomial r.v. denoting the number of

coordinates where the narrow-sense rule fails at the outer level. For 0 ≤ z ≤ N, let

Ez(·) denote the envelope when the narrow-sense rule is followed only in some N − z

outer-level coordinates, i.e.,

Ez(x1, . . . ,xt) = {ŷ : sH(ŷ, {x1, . . . ,xt}) ≥ N − z}, (6.9)

where

sH(ŷ, {x1, . . . ,xt}) := |{i ∈ [N ] : ŷi ∈ {x1i, . . . , xti}}|.

For any ŷ ∈ Ez(x1, . . . ,xt), there exists some l ∈ [t] such that sH(ŷ,xl) ≥ (N−z)/t,

i.e., dH(ŷ,xl) ≤ N − (N − z)/t. Therefore,

Ez(x1, . . . ,xt) ⊆
{

ŷ : dH(ŷ, {x1, . . . ,xt}) ≤ N − N − z

t

}

. (6.10)
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The coalition U succeeds when it creates a forgery which is valid in the outer code.

Thus the probability of error is at most

P [∃ŷ ∈ Cout\U : ŷ ∈ EZ(U)]
(a)

≤ P

[

∃y ∈ Cout\U : dH(ŷ, U) ≤ N − N − Z

t

]

(b)
= P

[

N − N − Z

t
≥ ∆

]

(c)

≤ P [Z ≥ Nξ]

(d)

≤ 2−ND(ξ‖ε),

where inequality (a) follows from (6.10), (b) is because Cout is a linear code with

minimum distance ∆, (c) is due to condition (6.8), and (d) is obtained using (1.1).

We now make specific choices for the outer and inner codes in Theorem 6.10

to arrive at explicit constructions. We take Cin to be the binary randomized t-

frameproof code presented in Theorem 6.4 with length m growing. Thus we have

the inner code rate as Rt, given by (6.4), and error probability ε = 2−mβ for some

β > 0. The outer code Cout is a [q,K] extended Reed-Solomon (RS) code whose rate

is at most (1 − ξ)/t so that the minimum distance of the code satisfies condition

(6.8). Consequently, n = m2mRt and therefore m ≈ (log2 n)/Rt. Thus an exhaustive

search over the inner code has only polynomial complexity in the overall code length

n. Observe that for ε approaching 0 (for large m) and ξ fixed, D(ξ‖ε) ∼ ξ log2(1/ε).

Therefore, with ε = 2−mβ, the error probability of the concatenated code is at most

2−n(ξβ+o(1)). We can take ξ arbitrarily small and m sufficiently large to satisfy ε < ξ

so that the effective rate of the concatenated code is close to Rt/t.

Alternately, take Cin to be a fixed (m, q)2 randomized t-frameproof code with

ε-error constructed using Theorem 6.4. Choose m to be sufficiently large, but fixed,

so that the inner code rate is approximately Rt, and q is an even power of a prime.
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In this case, the validation complexity for the inner code is constant. The outer code

is an algebraic-geometry (AG) code with rate approaching Rout = 1−δ−1/(
√

q−1)

for large N [80, 81]. Therefore, for large q and ξ arbitrarily small, we again achieve

rates close to Rt/t. Moreover, the construction complexity for our outer code choice

is polynomial in N [71] (it is constant for the inner code). As a consequence, we

obtain the following result.

Corollary 6.11. There exists a sequence of binary t-frameproof codes of length n

with rate arbitrarily close to Rt/t, error probability exp(−Ω(n)), and having valida-

tion and construction complexity poly(n).

6.5 Concluding Remarks

In this chapter, we proposed a variation of the fingerprinting system where fin-

gerprints are validated before the content can be accessed, leading to a formalization

of randomized frameproof codes. We showed an improvement in the achievable rates

with the proposed codes over traditional fingerprinting for coalitions of small size.

For coalitions of size t, we proved the existence of randomized frameproof codes with

rate Rt given in (6.4). Furthermore, we constructed concatenated frameproof codes

where validation can be performed with complexity polynomial in the fingerprint

length.

Open Problem 6.12. Find upper bounds on the maximum attainable rate of

randomized frameproof codes.

Open Problem 6.13. Study frameproof code constructions which allow the vali-

dation algorithm to make an error with a small probability.

Publications: This chapter’s contents have appeared in [6].
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Chapter 7

Two-level Fingerprinting

7.1 Introduction

In the previous chapters, we have seen that fingerprinting codes enable the

distributor to identify at least one of the pirates as long as the size of the coalition

that produced the illegal copy does not exceed a certain threshold t. However, if

the coalition size exceeds this threshold, the output of the tracing algorithm can be

useless.

To overcome this weakness, we formalize the notion of multi-level finger-

printing codes, which are inspired by error-correcting codes with unequal error

protection used in communications problems (cf. for instance Bassalygo et al. [18]).

We focus on the simplest case of two-level fingerprinting codes in this chapter, but

the concepts introduced apply to an arbitrary number of protection levels.

In this setting, the users are organized in a hierarchical manner, for instance,

according to geographical location. The distribution area is divided into several

regions, and users from the same region are collected into one group. Fingerprinting

systems for multimedia with a similar hierarchical structure were studied by Wang

et al. [84].

The two-level fingerprinting codes studied in this chapter have the following

property: As in traditional (one-level) codes, the tracing algorithm determines at

least one of the guilty users if the coalition size is at most t. Moreover, even when

a larger number s (> t) of pirates participate, the algorithm provides partial in-

formation by retrieving the index of a group that contains a member of the pirate

coalition.
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Formal definitions of two-level fingerprinting codes and related code families

are given in Section 7.2. Our goal in this section is to devise analogs of the main

concepts discussed for one-level codes for the present, more general context. In

Section 7.3, we obtain sufficient conditions for two-level traceability and frameproof

codes. Finally, we provide constructions for two-level fingerprinting codes

and analyze the achievable rates in Section 7.4.

7.2 Problem Statement

Consider the problem where the content is to be distributed to M1M2 users

organized in M1 groups, each of which contains M2 users. Assume that there is

some ordering of the groups, and of the users within each group. Thus, any user u

is identified by a pair of indices u ≡ (u1, u2) ∈ [M1]× [M2]. For a user u = (u1, u2),

let G(u) be its group index, i.e., G(u) = u1.

The distributor hides a distinctive fingerprint in each legal copy. We carry the

same notation as before, denoting the length of the fingerprints and the alphabet

by n and Q respectively. We take Q to be {0, . . . , q − 1} with modulo q addition

(for some q <∞).

As in the one-level case, the distributor’s strategy of assigning fingerprints to

the users can be either deterministic or randomized as explained in the following

subsections. Randomization can potentially increase the number of users that can

be supported for a given fingerprint length at the cost of a small error probability.
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7.2.1 Deterministic Codes

An (n,M1,M2)q two-level code (C,D1, D2) is a triple consisting of one encoding

and two decoding mappings

C : [M1]× [M2]→ Qn,

D1 : Qn → [M1] ∪ {0},

D2 : Qn → ([M1]× [M2]) ∪ {0},

(7.1)

with 0 signifying a decoding failure. A two-level deterministic assignment of finger-

prints is given by the encoding mapping C of such a two-level code. Using the same

convention as before, we do not distinguish between the encoding mapping C and

the collection of codewords in its range, using the same notation for both.

The rate pair of an (n,M1,M2)q two-level code is defined as

(R1, R2) :=

(

1

n
logq M1,

1

n
logq M2

)

.

It is assumed that the users have complete knowledge of the code (C,D1, D2).

A coalition U ⊆ [M1]× [M2] has access to the fingerprints C(U) and attempts

to produce an illegal copy. In order to conceal their identities from the distributor,

the coalition creates a modified fingerprint y from the envelope E(C(U)) consisting

of all forgeries that follow the marking assumption (cf. Definition 2.2).

Given a pirated copy with a forged fingerprint, the distributor performs tracing

based on D1 and D2 to locate one of the pirates. The decoder D2 attempts to trace

the exact identity of one of the pirates, while D1 focuses only on locating a group

containing at least one of the pirates. As in the one-level setting, with deterministic

codes, the probability of decoding error is bounded away from zero if the pirates

can output a forgery within the wide-sense envelope (2.3). Therefore, for the case

102



of fixed codes we investigate only the case of the narrow-sense rule defined in (2.2).

Below, we write E(·) for the narrow-sense envelope.

In order to extend the notion of traceability to two-level codes, let us consider

the case where the tracing is accomplished using minimum distance (MD) decoding.

Specifically, we take

D2(y) = arg min
u∈[M1]×[M2]

dH(C(u),y),

D1(y) = G(D2(y)).

(7.2)

If the minimum distance above is attained for multiple users, the decoder D2 outputs

any one of the closest users. This leads us to the notion of two-level traceability

codes in the deterministic setting.

Definition 7.1 ((t1, t2)-TA). A two-level code C has (t1, t2)-traceability property

(or is (t1, t2)-TA) where t1 > t2 if:

(a) For any coalition U of size at most t2 and any y ∈ E(C(U)), the decoding

result D2(y) ∈ U .

(b) For any coalition U of size at most t1 and any y ∈ E(C(U)), the decoding

result D1(y) ∈ G(U).

Comparing the above with Definition 2.13 for one-level traceability, we observe

that a (t1, t2)-TA code is t2-TA; moreover, for coalitions of the larger size t1, one of

the groups containing a pirate is closer to the forgery compared to the remaining

groups.

Definition 7.2 ((t1, t2)-frameproof). A two-level code C is (t1, t2)-frameproof where

t1 > t2 if:

(a) For any coalition U of size at most t2, E(C(U)) ∩ (C\C(U)) = ∅.
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(b) For any coalition U of size at most t1, E(C(U)) ∩ (C\C̃(U)) = ∅, where

C̃(U) = {C(u) : u1 ∈ G(U)}.

Consequently, a (t1, t2)-frameproof code satisfies the one-level t2-frameproof

property (Definition 2.14); furthermore, the larger size-t1 coalitions cannot forge

the fingerprint of an innocent user present in a different group from the pirates.

7.2.2 Randomized Codes

A randomized strategy to assign fingerprints in the two-level setting is defined

as the following random experiment. The distributor has a family of (n,M1,M2)q

two-level codes {(Ck, D1k, D2k), k ∈ K}, where K is a finite set of “keys”. The

distributor chooses one of the keys according to a probability distribution (π(k), k ∈

K). If the key k is selected, then fingerprints are assigned according to Ck and

tracing is done using D1k and D2k. The code resulting from this random experiment

is called a (two-level) randomized code and is denoted by (C,D1,D2).

Consider a coalition U of size t. As in the one-level case, any attack by the

coalition can be modeled as a randomized strategy V (·|·, . . . , ·), where V (y|x1, . . . ,xt)

gives the probability that the coalition creates y given that it observes the finger-

prints x1, . . . ,xt. For tractability reasons, we limit the coalitions to create forgeries

according to the narrow-sense rule (2.2) while considering two-level codes. Here-

after, E(·) stands for the narrow-sense envelope. Accordingly, a strategy V is called

admissible if

V (y|x1, . . . ,xt) > 0 only if y ∈ E(x1, . . . ,xt).

Let Vt denote the class of admissible strategies.

Denote the random forgery generated by U using the strategy V by YC,U,V .

The distributor, on observing the forged fingerprint, employs the decoders D1k and

D2k while using the key k.
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For a given coalition U and strategy V , we define the following error proba-

bilities:

e1(C,D1, U, V ) = P [D1(YC,U,V ) /∈ G(U)] = EK

∑

y:D1K(y)/∈G(U)

V (y|CK(U)),

e2(C,D2, U, V ) = P [D2(YC,U,V ) /∈ U ] = EK

∑

y:D2,K(y)/∈U

V (y|CK(U)),

where the expectation is taken with respect to the distribution π(k).

Definition 7.3 ((t1, t2)-fingerprinting). A randomized code (C,D1,D2) is said to be

a (t1, t2)-fingerprinting with ε-error where t1 > t2 if:

(a) For any coalition U of size at most t2 and any admissible strategy V , the error

probability e2(C,D2, U, V ) ≤ ε.

(b) For any coalition U of size at most t1 and any admissible strategy V , the error

probability e1(C,D1, U, V ) ≤ ε.

Comparing this against Definition 2.6 for one-level fingerprinting, we find that

a (t1, t2)-fingerprinting code is t2-fingerprinting; in addition, when coalitions are of

the larger size t1, the tracing algorithm can locate a group containing one of the

pirates with high probability.

Definition 7.4. A rate pair (R1, R2) is said to be achievable for q-ary (t1, t2)-

fingerprinting if there exists a sequence of (n, qnR1n , qnR2n)q randomized codes that

are (t1, t2)-fingerprinting with error probability εn such that

lim
n→∞

εn = 0, lim inf
n→∞

Rin = Ri, i = 1, 2.

The goal of this chapter is to investigate randomized constructions of two-

level fingerprinting codes and to characterize the corresponding set of achievable

rate pairs.
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Remark 7.5. 1. If an (n,M1,M2)q two-level code is (t1, t2)-fingerprinting (resp.,

TA, frameproof), then choosing any single user from every group forms an

(n,M1)q one-level code that is t1-fingerprinting (resp., TA, frameproof).

2. If an (n,M1M2)q one-level code is t1-fingerprinting (resp., TA, frameproof),

then for any t2 < t1, it can also be treated as a (n,M1,M2)q two-level code

that is (t1, t2)-fingerprinting (resp., TA, frameproof).

7.3 Traceability and Frameproof Codes: Simple Facts

For a given two-level code C, we define the following minimum distances:

d1(C) := min
u,v∈[M1]×[M2]

u1 6=v1

dH(C(u), C(v)), (7.3)

d2(C) := min
u,v∈[M1]×[M2]

u2 6=v2

dH(C(u), C(v)). (7.4)

Let d(C) = min (d1(C), d2(C)). It is known [28] that a one-level code of

length n is t-TA if the distance between any pair of fingerprints is strictly greater

than n(1− 1/t2) (recall Theorem 2.16(a)). In the case of two-level codes, we obtain

the following analogous result.

Proposition 7.6. Suppose t1 > t2 and C is a two-level code of length n with

d1(C) > n(1− 1/t21) and d2(C) > n(1− 1/t22).

Then C is (t1, t2)-TA.

Proof. It is straightforward to see that the assumptions in the proposition imply

that d(C) > n(1 − 1/t22). Therefore, property (a) in Definition 7.1 follows directly

from the result for one-level codes.
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Next, we show that property (b) is a consequence of d1(C) > n(1− 1/t21). Let

U be a coalition of size at most t1 and y ∈ E(C(U)). Then, there exists some user

u ∈ U who coincides with y in at least n/t1 coordinates. For any user u′ such that

G(u′) /∈ G(U), the number of agreements with y is at most t1(n− d1(C)) < n
t1

, thus

establishing property (b).

We now establish a similar sufficient condition for two-level frameproof codes,

which is the analog of Theorem 2.16(b) for one-level codes. The proof is a straight-

forward extension of the one-level proof and is along the same lines as above.

Proposition 7.7. Suppose t1 > t2 and C is a two-level code of length n with

d1(C) > n(1− 1/t1) and d2(C) > n(1− 1/t2).

Then C is (t1, t2)-frameproof.

As a consequence, ideas used for constructing unequal error protection codes

can be also employed to construct two-level TA and frameproof codes. As in the

one-level case, to be able to construct large-size codes based on the above sufficient

conditions, one needs large alphabets.

7.4 Fingerprinting Codes

We denote the Hamming weight of x ∈ Qn by wH(x). For w ∈ [n], define

Sw,n = {x ∈ Qn : wH(x) = w}.

7.4.1 Code Generation

For R1, R2 ∈ [0, 1], define M1n = bqnR1c, M2n = bqnR2c. Fix ω ∈ [0, 1]. We

take n such that w = ωn is an integer and construct an (n,M1n,M2n)q two-level

randomized code (Cω
n ,Dω

1n,Dω
2n) as follows.
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For i ∈ [M1n], pick random vectors Ri independently and uniformly at random

from Qn. We will refer to the Ri’s as “centers”. Choose Sij, (i, j) ∈ [M1n]× [M2n],

independently and uniformly at random from Sw,n. Generate M1nM2n fingerprints

Xij = Ri + Sij, (i, j) ∈ [M1n]× [M2n]

and assign Xij as the fingerprint for user (i, j).

Once the fingerprint assignments are fixed, tracing is based on the MD decoder

(7.2). The MD decoder may be sub-optimal in general; however, it is amenable for

analysis in our code construction.

7.4.2 Useful Facts

In the following subsections, we analyze the error probability and characterize

the achievable rate pairs for two-level fingerprinting using the above construction.

The lemmas below will be useful in the analysis.

Lemma 7.8. Let S have a uniform distribution on Sw,n. Then, for l ∈ [n] and a ∈

Q\{0}, P [Sl = a] = ω/(q − 1). Moreover, the r.v.’s {Sl, l ∈ [n]} are asymptotically

pairwise independent.

For p ∈ [0, 1] and ε > 0, define

In(p, ε) := [n(p− ε), n(p + ε)].

Lemma 7.9. Fix p ∈ [0, 1] and ε > 0. For l ∈ [n], let Zl be a Bernoulli r.v.

with P [Zl = 1] = p, and let {Zl, l ∈ [n]} be pairwise independent. Then, with

Z :=
∑

l∈[n] Zl, we have

P [Z /∈ In(p, ε)] ≤ p(1− p)

ε2n
.
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Notation: For a coalition U = {u1, . . . ,ut}, we denote the realizations of

Xui ,Rui
1
,Sui by xi, ri, si respectively, with xi = ri + si, i ∈ [t]. Let z ∈ Qt be a

vector. Denote by sz(x1, . . . ,xt) the number of columns equal to zT in the matrix

whose rows are x1, . . . ,xt. We will denote the q-ary entropy function by h(x) =

−x logq x/(q − 1)− (1− x) logq(1− x).

7.4.3 (t, 1)-fingerprinting

We begin by considering the (2, 1)-fingerprinting property. This is the simplest

case of two-level fingerprinting that goes beyond the known techniques for one-level

codes. Although coalitions of size 1 are trivial to handle for one-level fingerprinting,

it is still non-trivial to construct a (2, 1)-fingerprinting code.

Theorem 7.10. For any ω ∈ [0, (q − 1)/2q], the randomized code (Cω
n ,Dω

1n,Dω
2n) is

(2, 1)-fingerprinting with error probability decaying to 0 if

R1 < 1− h

(

1

2

(

1− 1

q

)

+ ω

)

, (7.5)

R2 < h(ω). (7.6)

Discussion: The above theorem provides a set of achievable rate pairs for q-ary

(2, 1)-fingerprinting. Let us fix Q = {0, 1} and put the result in the perspective of

bounds available for one-level fingerprinting (see Figure 7.1).

• Outer bound: Since the (2, 1)-fingerprinting property implies one-level 1-fingerprinting,

we should have R1 + R2 ≤ 1. Moreover, R1 cannot exceed the rate of a one-

level 2-fingerprinting code (by part (1) of Remark 7.5); thus, any upper bound

for it also applies to R2. In particular, by [54] R2 ≤ 0.25.

• Inner bound: By part (2) of Remark 7.5, the rate pairs (R1, R2) such that

R1 +R2 < 0.188 are achievable (with MD decoding) using the 2-fingerprinting
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Figure 7.1: Achievable rate region for binary (2, 1)-fingerprinting. The bounds from
previous works follow by using one-level fingerprinting schemes.

code given in [58]. In fact, by allowing other decoders, we can do better,

achieving R1 + R2 < 0.25 through the 2-fingerprinting construction in [10].

Proof of Theorem 7.10.

Size-1 coalitions: Let u = (u1, u2) be the pirate. For size-1 coalitions, the envelope

is degenerate as it consists of only the user’s own fingerprint. Now,

e2(Cω
n ,Dω

2n,u) = P [∃u′ 6= u : Xu′ = Xu]

≤ P [∃u′ 6= u : u′
1 = u1,Xu′ = Xu] + P [∃u′ 6= u : u′

1 6= u1,Xu′ = Xu]

(a)

≤ P
[

∃u′
2 6= u2 : Su1u′

2
= Su1u2

]

+ P
[

∃u′
1 6= u1 : dH(Ru′

1
,Xu) ≤ w

]

(b)

≤ qnR2P
[

Su1u′
2

= Su1u2

]

+ qnR1P
[

dH(Ru′
1
,Xu) ≤ w

]

.
= q−n(h(ω)−R2) + q−n(1−h(ω)−R1),

where (a) is due to the fact that if the fingerprint of another user matches with

the pirate’s fingerprint, then the corresponding center is within distance w from the

pirate’s fingerprint, and (b) follows from the union bound. Consequently, the error

probability for size-1 coalitions approaches 0 if R2 < h(ω) and R1 < 1− h(ω).
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Size-2 coalitions: There are two possibilities: either both users are in the same

group or they are in different groups. It turns out that the latter case is the dominant

one. Since the analysis for the two cases is similar, we only consider the latter case

below.

Let U = {u1,u2} be such a coalition. For any strategy V ∈ V2, we have

e1(Cω
n ,Dω

1n, U, V )

=
∑

r1,r2,s1,s2

P [r1, r2, s1, s2]
∑

y

V (y|x1,x2)P
[

Dω
1n(y) /∈ G(U)

∣

∣

∣
r1, r2, s1, s2

]

. (7.7)

Consider the inner probability term

P
[

Dω
1n(y) /∈ G(U)

∣

∣

∣
r1, r2, s1, s2

]

(a)
= P [∃u′ /∈ U : u′

1 /∈ G(U), dH(Xu′ ,y) ≤ dH({x1,x2},y)]

(b)

≤ P
[

∃u′
1 /∈ G(U) : dH(Ru′

1
,y) ≤ dH({x1,x2},y) + w

]

≤ qnR1P
[

dH(Ru′
1
,y) ≤ dH({x1,x2},y) + w

]

,

where we have exploited the independence in the construction in (a), and (b) follows

because if the fingerprint of another user is within distance d from y, then the

corresponding center is within d + w from y. For ε > 0, define

T ε
n :=

{

(r1, r2, s1, s2) : s(a,a)(x1,x2) ∈ In(1/q2, ε/q),∀a ∈ Q
}

.

Observe that Xu1 and Xu2 are independent and uniformly distributed over Qn.

Therefore, using Lemma 7.9, it is a simple matter to show that

P
[

(Ru1
1
,Ru1

2
,Su1 ,Su2) /∈ T ε

n

]

→ 0 as n→∞.
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Now, take any (r1, r2, s1, s2) ∈ T ε
n and y ∈ E(x1,x2). The number of unde-

tectable positions in {x1,x2} is at least n(1/q− ε), implying that dH({x1,x2},y) ≤
n
2

(

1− 1
q

+ ε
)

. Thus, in this case

qnR1P
[

dH(Ru′
1
,y) ≤ dH({x1,x2},y) + w

]

≤ qnR1P

[

dH(Ru′
1
,y) ≤ n

2

(

1− 1

q
+ ε

)

+ w

]

.
= q−n(1−h( 1

2(1− 1
q
+ε)+ω)−R1).

Substituting the above in (7.7) and taking ε→ 0, we conclude that the error prob-

ability for size-2 coalitions approaches 0 if (7.5) holds.

We now extend the techniques to larger coalitions.

Theorem 7.11. For any ω such that t−1
t

(

1− 1
qt−1

)

+ ω ≤ q−1
q

, the randomized code

(Cω
n ,Dω

1n,Dω
2n) is (t, 1)-fingerprinting with error probability decaying to 0 if

R1 < 1− h

(

t− 1

t

(

1− 1

qt−1

)

+ ω

)

, (7.8)

R2 < h(ω). (7.9)

Proof. Size-1 coalitions: For a single pirate u, the analysis in Theorem 7.10 proves

that the probability of decoding error approaches 0 if R2 < h(ω) and R1 < 1−h(ω).

Size-t coalitions: It can be shown that the case where the t pirates are in

distinct groups is the dominant one. Once this is shown, we use exactly the same

arguments as in the case of size-2 coalitions in Theorem 7.10. We finally obtain that

the error probability for coalitions of size t approaches 0 if (7.8) holds.

Remark 7.12. A sufficiently large alphabet is required in order for an ω satisfying

t−1
t

(

1− 1
qt−1

)

+ ω ≤ q−1
q

to exist. For instance, it suffices to take q ≥ t + 1.
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7.4.4 (t, 2)-fingerprinting

Let q ≥ 3. For ω, γ, α, β ∈ [0, 1], with α ≤ 1−γ, β ≤ γ, α+β ≤ ω, ω−α ≤ γ,

let

ϕ(ω, γ, α, β) := (1− γ)h

(

α

1− γ

)

+ (γ − β)h

(

ω − α− β

γ − β

)

+ γh

(

β

γ

)

+ (ω − α) logq

(

q − 2

q − 1

)

− β logq(q − 2).

Let

δ1(ω) =
1

2

(

1− (1− ω)2 − ω2

q − 1

)

,

δ2(ω) =
1

2

(

1− 1

q

)

,

f1(ω) = max
γ,α,β:

ω2≤γ≤1−(1−ω)2,γ−β+α≤δ1(ω)

ϕ(ω, γ, α, β),

f2(ω) = max
γ,α,β:

ω( q−1
q )≤γ≤1− 1−ω

q
,γ−β+α≤δ2(ω)

ϕ(ω, γ, α, β).

Theorem 7.13. Let q ≥ 3. For any ω such that t−1
t

(

1 − 1
qt−1

)

+ ω ≤ q−1
q

, the

randomized code (Cω
n ,Dω

1n,Dω
2n) is (t, 2)-fingerprinting with error probability decaying

to 0 if

R1 < 1− h

(

t− 1

t

(

1− 1

qt−1

)

+ ω

)

, (7.10)

R2 < h(ω)−max(f1(ω), f2(ω)). (7.11)

Proof. Size-t coalitions are handled in the same way as in Theorem 7.11.

Size-2 coalitions: There are two possibilities depending on whether the pirates

belong to the same group or not. We sketch the case where they are in different

groups below. The other case is analyzed similarly.
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Consider a coalition U = {u1,u2}, where the users are in different groups, and

let V ∈ V2 be an admissible strategy. We have

e2(Cω
n ,Dω

2n, U, V )

=
∑

r1,r2,s1,s2

P [r1, r2, s1, s2]
∑

y

V (y|x1,x2)P [Dω
2n(y) /∈ U |r1, r2, s1, s2] . (7.12)

Now,

[Dω
2n(y) /∈ U ] = E1 ∪ E2 ∪ E3,

where, the events E1, E2, E3 are formed of those u′ /∈ U that satisfy dH(Xu′ ,y) ≤

dH({x1,x2},y) and the conditions u′
1 = u1

1, u′
1 = u2

1, u′
1 /∈ G(U), respectively. The

error event E3 was already analyzed in Theorem 7.10 and its conditional probability

approaches 0 if (7.5) holds. We consider E1 below. The analysis for E2 is identical

by symmetry.

P
[

E1

∣

∣r1, r2, s1, s2

]

= P
[

∃u′
2 6= u1

2 : dH(r1 + Su1
1u′

2
,y) ≤ dH({x1,x2},y)

]

≤ qnR2P
[

dH(r1 + Su1
1u′

2
,y) ≤ dH({x1,x2},y)

]

= qnR2P
[

dH(Su1
1u′

2
,y′) ≤ dH({s1, r1 + x2},y′)

]

, (7.13)

where y′ = y + r1 ∈ E(s1, r1 +x2). In this case, we use Lemmas 7.8 and 7.9 to show

that

T ε
n :=























(r1, r2, s1, s2) :

s(0,0)(s1, r1 + x2) ' n1−ω
q

s(a,a′)(s1, r1 + x2) ' n ω
(q−1)q

∀a, a′ ∈ Q\{0}























.

is the typical set. For simplicity, we have omitted ε and will use the approximate

relations ', ., & in its place. Now, take any (r1, r2, s1, s2) ∈ T ε
n and y′ ∈ E(s1, r1 +

x2). The number of undetectable positions in {s1, r1 + x2} is ' n/q, while the
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number of coordinates where both symbols are non-zero is ' nω(q − 1)/q. This

implies dH({s1, r1 +x2},y′) . nδ2(ω) and nω(q−1)/q . wH(y′) . n(1− (1−ω)/q).

Let wH(y′) = γn, where γ ∈ [0, 1]. Then

P
[

dH(Su1
1u′

2
,y′) ≤ nδ2(ω)

]

.
= q−nE(ω,γ),

where

E(ω, γ) = h(ω)− max
α,β:

γ−β+α≤δ2(ω)

ϕ(ω, γ, α, β).

Since γ can be chosen by the pirates such that ω q−1
q

. γ . 1− 1−ω
q

, by substituting

the above in (7.13), we conclude that the conditional probability of E1 (and E2)

approaches 0 if R2 < h(ω) − f2(ω). Similarly, we obtain R2 < h(ω) − f1(ω) when

the pirates are in the same group.

Let us show that the rate region thus defined is nontrivial. Given ω and γ, the

maximizing values of the other arguments of ϕ are α = ω(1−γ) and β = ωγ/(q−1),

so

ϕ(ω, γ, α, β) ≤ h(ω)− γω
(

logq

q − 1

q − 2
+

logq(q − 2)

q − 1

)

.

Consequently, we get max(f1(ω), f2(ω)) ≤ h(ω)−D, where D = D(ω) = ω3
(

logq
q−1
q−2

+

logq(q−2)

q−1

)

and D(ω) > 0 for all ω > 0. This shows that the r.-h.s. of (7.11) is

positive. By Remark 7.12, the r.-h.s. of (7.10) is also positive if q ≥ t + 1 and

t−1
t

(

1 − 1
qt−1

)

+ ω < q−1
q

. This calculation can be further refined because of the

additional constraints on the parameters α, β, γ mentioned above.
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7.5 Concluding Remarks

We introduced a new class of problems involving two-level codes, where the

licensed users are organized in several groups. The main advantage of two-level codes

is their ability to partially tolerate coalitions larger than the designed threshold. For

instance, in the case of two-level fingerprinting codes, if the coalition size is beyond

the designed limit, then up to a certain larger threshold, the tracing algorithm can

identify a group containing a pirate. We presented constructions of codes with the

two-level fingerprinting property. Our main focus was on the narrow-sense rule (2.3)

and minimum distance based decoding.

In the next chapter, we investigate concatenated constructions with the ob-

jective of designing two-level codes with polynomial-time tracing. The concept of

two-level codes raises several new questions. A few are identified below.

Open Problem 7.14. Construct two-level fingerprinting codes under the wide-

sense rule (2.3) for generating forgeries. In particular, constructions for binary

codes and other tracing algorithms besides MD decoding are especially of interest.

Open Problem 7.15. Find upper bounds on the rates of two-level fingerprinting

(also TA, frameproof) codes.

Publications: The results of this chapter appear in [7]. An expanded version [8]

is presently being prepared for publication.
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Chapter 8

Fingerprinting Codes with Polynomial-time Tracing

In this chapter, we construct fingerprinting codes (both one-level and two-

level) with a tracing algorithm of complexity polynomial in the fingerprint length

and code rates better than previously known in the literature. We employ the

technique of code concatenation (explained in Section 2.5, Eqns. (2.11)-(2.12)) in

our constructions.

The use of concatenated codes in (one-level) fingerprinting has been demon-

strated in previous constructions [26, 15]. The paper of Barg et al. [15] proposed

the idea of using list decoding of algebraic codes [48, 47] to develop fingerprinting

codes with polynomial-time tracing algorithms. Similar applications of list decod-

ing to IPP and TA codes have been studied in [17] and [72] respectively. Yet, the

best known rate of binary t-fingerprinting codes with polynomial-time decoding is

approximately Ω(1/t422t) [15]. In comparison, with no complexity restraints the

overall best available rate of binary t-fingerprinting codes is Ω(1/t2) [79].

The main contribution of this chapter is an adaptation of the idea of con-

catenation to two-level fingerprinting codes. The definition of these codes was given

in Chapter 7 where we provided some constructions which employ the minimum

distance (MD) decoder (7.2). Attempting at improving the tracing complexity from

exponential estimates for the MD decoder, we employ multilevel concatenation for

the construction and analysis of efficient fingerprinting codes.

We also advance constructions of single-level efficient fingerprinting codes.

Specifically, referring to earlier works [15, 40, 72] we suggest to use a high-rate, but

relatively short fingerprinting code in the inner level of the concatenated scheme. As
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before, the tracing complexity of the inner-level code will not have a major impact

on the overall complexity of the scheme because of this code’s small length. In this

way we can combine powerful earlier constructions such as Tardos’ codes [79] with

algebraic outer codes arriving at one-level binary t-fingerprinting code with rate

Ω(1/t4) and polynomial-time tracing.

8.1 One-level Codes

Before proceeding to describe our construction, let us recall the list decoding

result of Guruswami-Sudan (GS) [48, 47]. For x,y ∈ QN , the notation sH(x,y)

stands for the number of coordinates i where xi = yi.

Theorem 8.1. [48, 47] Let C be an [N,K, δN ]q RS code (or one-point AG code)

over the alphabet Q of size q. Then for any given y ∈ Qn, the number of codewords

x ∈ C such that

sH(x,y) ≥ N
√

1− δ

is polynomial in N . Moreover, there exists an algorithm with complexity polynomial

in N which outputs the list of all such codewords.

8.1.1 Code Construction

In this section we employ the concatenated code construction to design t-

fingerprinting codes.

Let the outer code Cout be an [N,K, ∆]q RS (or one-point AG) code with

K = RoutN and ∆ = δN . Let (Cin,Din) denote an (m, q)2 randomized code which

is t-fingerprinting with ε-error. For every outer coordinate i = 1, . . . , N , generate

an independent instance of Cin for the inner encoding. In this way we obtain a

randomized binary concatenated code C of length n = Nm and size qK .
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Assumptions: W.l.o.g. we assume the tracing strategy of the inner fingerprint-

ing code always outputs exactly one user. In practice, sometimes the decoder can

suggest several pirate candidates or fail to provide even one such candidate. We

assume that in the former case the decoding output is chosen randomly from the

candidate list, while in the latter case the decoder outputs a user chosen uniformly

out of the set of all users.

Secondly, we assume that the inner fingerprinting code is “symmetric” across

the users, meaning that the fingerprints of different users are identically distributed

random variables. Indeed, most constructions, and in particular codes that we

have in mind for this chapter’s applications, satisfy this condition. (In fact, even

if the fingerprinting code is asymmetric, we can artificially introduce symmetry by

randomly permuting the inner codewords, similarly to [15]).

The following statement is clearly true.

Fact 8.2. If the inner t-fingerprinting code of size q with ε-error satisfies the above

assumptions, then for any coalition U of size at most t, the probability that a given

innocent user u′ /∈ U is accused during tracing is at most ε/(q − t).

In the subsequent text, we find it convenient to identify the users with the

codewords of Cout.

Decoding Algorithm:

Given a forged fingerprint y = (y1, . . . ,yN), where each yi ∈ {0, 1}m, the algorithm

operates as follows.

1) For every i = 1, . . . , N , apply the tracing strategy Din of the inner fingerprint-

ing code to yi to obtain a q-ary symbol ŷi. Completing this procedure for all

N outer coordinates produces a q-ary vector ŷ = (ŷ1, . . . , ŷN).
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2) Let ξ > ε. Using the GS list decoding algorithm of Cout for the vector ŷ,

output the list of all outer codewords (users) x ∈ Cout such that

sH(x, ŷ) ≥ 1− ξ

t
N. (8.1)

The concatenated code above together with the decoding algorithm described

is written as (C,D) below.

8.1.2 Main Result

Theorem 8.3. Let 0 < ε < ξ and σ = 1−ξ
t
− t(1 − δ). Suppose that the relative

minimum distance of Cout satisfies

δ ≥ 1−
(

1− ξ

t

)2

+
ε

t(q − t)
(8.2)

and the inner code (Cin,Din) is t-fingerprinting with ε-error. Then the concatenated

code (C,D) is t-fingerprinting with error probability at most

2−ND(ξ‖ε) + qNRout2−ND(σ‖ ε
q−t

) (8.3)

and tracing complexity poly(n).

Proof. Consider a coalition U = {x1, . . . ,xt} ⊆ Cout. Let Y = (Y1, . . . ,YN),

where Yi are binary length-m vectors, be a random forgery generated by U using

an admissible strategy. In any outer coordinate i ∈ [N ], the coalition observes at

most t distinct q-ary symbols among {x1i, . . . , xti}. At the inner level, this can be

viewed as a virtual coalition among at most t symbols, and correspondingly, Yi is

generated by an admissible strategy for these symbols. Thus if the output Ŷi of the

inner decoding Din is correct and matches one of the symbols {x1i, . . . , xti}, then

the narrow-sense rule (2.2) applies at the outer level in producing the q-ary vector
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Ŷ. This observation will be used in the analysis of the error probability which

is split into two cases corresponding to the probability of missed detection and of

identifying an innocent user.

Let χi, i = 1, . . . , N, be an r.v. that indicates an inner decoding error in the ith

coordinate. Then for all i we have P [χi = 1] ≤ ε since the inner code has ε-error,

and χi, i = 1, . . . , N, are mutually independent because independent instances of

Cin are taken for every i ∈ [N ]. Thus Z =
∑N

i=1 χi is a binomial r.v. denoting the

number of coordinates where a decoding error occurs at the inner level. From our

earlier observation, Z corresponds to the number of outer coordinates where the

narrow-sense rule fails. Therefore, Ŷ ∈ EZ(x1, . . . ,xt), where the notation Ez(·),

introduced in (6.9), denotes the envelope of the outer codevectors when the narrow-

sense rule holds only in some N − z positions.

Let us begin by examining the probability that none of the members of U are

output by the decoding algorithm.

P [D(Y) ∩ U = ∅] = P

[

max
l∈[t]

sH(xl, Ŷ) <
1− ξ

t
N

]

(a)

≤ P

[

N − Z

t
<

1− ξ

t
N

]

= P [Z > Nξ]
(b)

≤ 2−ND(ξ‖ε).

The inequality (a) follows from the fact that if ŷ ∈ Ez(x1, . . . ,xt), then there exists

l ∈ [t] such that sH(xl, ŷ) ≥ (N − z)/t, while (b) is true by (1.1).

Next, consider the false-positive probability. Let x′ /∈ U be an innocent user.

In any coordinate i ∈ [N ], there are two possible ways for the inner decoder to

output the symbol x′
i. Namely, either x′

i is one of the symbols {x1i, . . . , xti} of the

actual coalition. The number of such positions is at most t(1− δ)N . Alternately, if

x′
i is different from the coalition’s symbols, it may be output when the inner decoder

commits an error. By Fact 8.2, the probability of this event is at most ε/(q − t).
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Let Z̃ be a binomial r.v. that represents the number of coordinates where the latter

error event occurs. Then

sH(x′, Ŷ) ≤ Z̃ + t(1− δ)N

and we get

P [x′ ∈ D(Y)] = P

[

sH(x′, Ŷ) ≥ 1− ξ

t
N

]

≤ P

[

Z̃ + t(1− δ)N ≥ 1− ξ

t
N

]

= P
[

Z̃ ≥ Nσ
]

≤ 2−ND(σ‖ ε
q−t

),

where the last inequality again holds because of (1.1). Taking the union bound

completes the proof of the error probability estimate.

Lastly, the tracing complexity is polynomial in the code length because under

the condition (8.2) we have (1−ξ)/t >
√

1− δ, and thus the GS algorithm (Theorem

8.1) succeeds in finding the list of codewords satisfying (8.1) in time poly(N).

We now proceed to make explicit code choices in Theorem 8.3. Let (Cin,Din)

be a sequence of binary t-fingerprinting codes with error probability ε = 2−mβ for

some β > 0 obtained from Tardos’ construction [79]. The rate of Cin is close to

Rt = 1/(100t2) for arbitrarily small β. The outer code Cout is a [q,K] (extended)

RS code satisfying the condition (8.2). We have m ≈ O(log2 n) since n = m2mRt ,

and so the tracing algorithm for the inner code has only polynomial complexity in

the overall code length n. The first term in (8.3) is easily shown to be exponentially

decaying in n. With ξ, t fixed and m growing, we have

D
(

σ
∥

∥

∥

ε

q − t

)

∼ Nσ log2

q

ε
= nσ(Rt + β).
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Therefore, with R = RoutRt representing the rate of the concatenated code, and us-

ing 1−δ ∼ Rout for RS codes, the error probability (8.3) approaches 0 exponentially

if

R <

(

1− ξ

t
− tRout

)

Rt,

i.e., R <
1− ξ

t(t + 1)
Rt.

We can take ξ arbitrarily small and m sufficiently large to satisfy ε < ξ obtaining

Corollary 8.4. There exists a sequence of binary t-fingerprinting codes of length

n with rate Ω(1/t4), error probability exp(−Ω(n)), and having decoding complexity

poly(n).

8.2 Two-level Codes

In this section we extend the concatenated construction of single-level codes

of the previous section to the two-level scenario.

Following the definition of two-level codes earlier in Chapter 7, let t1 > t2 be

the two threshold values of the coalition size. Let Q1 and Q2 denote finite alphabets

of size Q1 and Q2 respectively. We introduce the operation ∗ which is the n-fold

extension of the direct product operation on the alphabets. For x ∈ QN
1 , y ∈ QN

2 ,

x ∗ y = ((x1, y1), . . . , (xN , yN)) ∈ (Q1 ×Q2)
n.

Let C1 be an [N,K1, ∆1]Q1 linear code and C2 be an [N,K2, ∆2]Q2 linear code.

The ∗ product extends to the codes C1 and C2 as follows:

C1 ∗ C2 = {x1 ∗ x2 : x1 ∈ C1,x2 ∈ C2}.
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To obtain a two-level code, we associate C1 with groups and C2 with users within

the group. Thus C1 ∗C2 can be viewed as an (N,QK1
1 , QK2

2 )Q1Q2 two-level code over

the alphabet Q1 ×Q2. Obviously, it is true that

d1(C1 ∗ C2) ≥ ∆1 and d2(C1 ∗ C2) ≥ ∆2,

where the quantities d1 and d2 are defined in (7.3), (7.4). Therefore, choosing

∆1 > N(1 − 1/t21) and ∆2 > N(1 − 1/t22) makes the resulting code C1 ∗ C2 into a

(t1, t2)-TA code by Proposition 7.6. This observation forms the motivation for the

code choices in our concatenated scheme described below.

8.2.1 Code Construction

In this section we construct a (t1, t2)-fingerprinting code by adapting the con-

catenation technique for two-level codes.

Let C1 and C2 both be RS (or one-point AG) codes with parameters [N,K1, ∆1]Q1

and [N,K2, ∆2]Q2 respectively, where Ki = Ri,outN and ∆i = δiN for i = 1, 2. Each

codeword from C1 corresponds to a particular group, while the codewords of C2 are

associated with the user indices within a group. Then the outer code Cout = C1 ∗C2

is an (N,QK1
1 , QK2

2 )Q1Q2 deterministic two-level code. Let (Cin,D1,in,D2,in) denote

an (m,Q1, Q2)q randomized code which is (t1, t2)-fingerprinting with ε-error under

exhaustive search decoding. For every outer coordinate i = 1, . . . , N , we generate

an independent instance of (Cin,D1,in,D2,in) for the inner level.

For a given user u ≡ (u1, u2), the fingerprint is assigned as follows. At the

outer level, pick x1 ∈ C1 and x2 ∈ C2 corresponding to u1 and u2 respectively, and

construct x = x1 ∗x2. Next, for each i = 1, . . . , N , encode (x1i, x2i) ∈ Q1×Q2 using

the realization of the two-level code Cin. This procedure results in a concatenated

code C which is a randomized (n,QK1
1 , QK2

2 )q two-level code with n = Nm.
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Remark 8.5. This code construction is an adaptation of generalized concatenated

codes which are known in coding theory literature [24] for problems dealing with

error correction.

Below, we state some assumptions on the inner fingerprinting code used in

our construction which are analogous to the assumptions made for the one-level

construction.

Assumptions: Suppose that the tracing strategy D2,in of the inner fingerprint-

ing code always outputs exactly one user. As before in Section 8.1, sometimes the

decoder can suggest several pirate candidates or fail to provide even one such can-

didate. We assume that in the former case the decoding output is chosen randomly

from the candidate list, while in the latter case the decoder outputs a user chosen

uniformly out of the set of all users. Secondly, it is assumed that for any given

forged fingerprint y, D1,in(y) = G(D2,in(y)) as in the case of MD decoding.

We also assume that the inner fingerprinting code is “symmetric” across the

users, meaning that the fingerprints of different users are identically distributed

random variables. We also assume that this applies to different groups as a whole.

Note that all the specified conditions are satisfied for the codes presented in

Section 7.4, and are quite reasonable to expect in other general constructions.

Fact 8.6. If the inner (m,Q1, Q2)q code (Cin,D1,in,D2,in) which is (t1, t2)-fingerprinting

code with ε-error satisfies the above assumptions, then

(a) For any coalition U of size at most t2, the probability that a given innocent

user u′ /∈ U such that G(u′) ∈ G(U) is accused by D2,in is at most ε/(Q2− t2).

(b) For any coalition U of size at most t1, the probability that a given group u′ /∈

G(U) is accused by D1,in is at most ε/(Q1 − t1).
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In the subsequent text, the users are identified with the codewords of Cout.

For x = x1 ∗ x2 ∈ Cout, with some abuse of notation we write G(x) = x1. We again

make use of GS list decoding (Theorem 8.1) in the tracing algorithm below.

Decoding Algorithm:

Given a forged fingerprint y = (y1, . . . ,yN), where each yi is a q-ary length-m

vector, the algorithm operates as follows.

1) For every i = 1, . . . , N , apply the tracing strategy D2,in of the inner finger-

printing code to yi to obtain a Q1 × Q2 symbol (ŷ1i, ŷ2i). Completing this

procedure for all N outer coordinates produces a vector ŷ = ŷ1 ∗ ŷ2 over the

alphabet Q1 ×Q2.

2) Let ξ > ε. Run the GS list decoding algorithm for C1 and C2 to compute the

lists

Lj(ŷj) =

{

xj ∈ Cj : sH(xj, ŷj) ≥
1− ξ

tj
N

}

, j = 1, 2. (8.4)

3) Let L1(ŷ1) be the output of the decoder D1. The decoder D2 outputs the list

L(ŷ) =

{

x ∈ Cout : sH(x, ŷ) ≥ 1− ξ

t2
N

}

. (8.5)

computed as follows. First we find L1(ŷ1) ∗ L2(ŷ2) and then construct the

subset list L(ŷ) by eliminating codewords that appear in the product list

above but do not satisfy the condition for L(ŷ).

The concatenated code thus defined together with the decoding algorithm

described is denoted by (C,D1,D2) below.
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8.2.2 Main Result

Theorem 8.7. Let 0 < ε < ξ and σi = 1−ξ
ti
− ti(1− δi), i = 1, 2. Suppose that the

relative minimum distances of C1 and C2 satisfy

δi ≥ 1−
(

1− ξ

ti

)2

+
ε

ti(Qi − ti)
, i = 1, 2, (8.6)

and the inner code (Cin,D1,in,D2,in) is (t1, t2)-fingerprinting with ε-error. Then the

concatenated code (C,D1,D2) is (t1, t2)-fingerprinting with error probability at most

q−ND(ξ‖ε) + QK1
1 q

−ND(σ1‖
ε

Q1−t1
)
+ QK2

2 q
−ND(σ2‖

ε
Q2−t2

)
(8.7)

and decoding complexity poly(n).

Proof. We begin by outlining a basic argument used repeatedly in the proof.

Throughout the proof, we write a coalition U of size t as a subset {x1, . . . ,xt} ⊆ Cout

where xi = xi
1∗xi

2, i = 1, . . . , t. Let Y = (Y1, . . . ,YN), where Yi are q-ary vectors of

length m, be a random forgery generated by U using any admissible strategy. In any

outer coordinate i ∈ [N ], the coalition observes at most t distinct Q1 ×Q2 symbols

among {(x1
1i, x

1
2i), . . . , (xt

1i, x
t
2i)}. At the inner level this is equivalent to the action

of a virtual coalition of size at most t, and correspondingly Yi is generated by an

admissible strategy from these symbols. This enables us to utilize the fingerprinting

property of the inner code to derive some properties for Ŷ = Ŷ1 ∗ Ŷ2 ∈ (Q1×Q2)
N

which is the result of inner level decoding performed in Step 1 of the algorithm.

We use the above argument to establish the (t1, t2)-fingerprinting property of

the concatenated code by analyzing separately t1- and t2-sized coalitions. For each

of these two cases, we analyze the probability of missed detection and of identifying

an innocent user.
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Size-t1 coalitions: Consider a coalition U = {x1, . . . ,xt1} and a random forgery

Y generated by U . As mentioned above, this amounts to a virtual coalition of at

most t1 symbols acting in every outer coordinate. Therefore, for every i ∈ [N ],

the probability that the output Ŷ1i of the inner decoder D1,in (i.e., the group index

output by D2,in) does not match one of the symbols {x1
1i, . . . , x

t1
1i} is at most ε. Let

Z1 be a binomial r.v. denoting the number of coordinates where this error event

occurs. Then

max
l∈[t1]

sH(xl
1, Ŷ1) ≥

N − Z1

t1
,

and so the probability that none of the guilty groups are output

P [D1(Y) ∩ G(U) = ∅] = P
[

L1(Ŷ1) ∩ G(U) = ∅
]

≤ P

[

N − Z1

t1
<

1− ξ

t1
N

]

= P [Z1 > Nξ] ≤ q−ND(ξ‖ε),

where the last inequality holds due to (1.1). This concludes the analysis of the

missed group detection case.

Next, consider an innocent group x′
1 /∈ G(U). In any coordinate i ∈ [N ], there

are two possible ways for G(D2,in) to output the symbol x′
1i. The first possibility is

that x′
1i ∈ {x1

1i, . . . , x
t1
1i}, and the number of such positions is at most t1(1 − δ1)N .

Otherwise, if x′
1i is different from the above symbols, it can be output when the

inner decoder makes an error. By Fact 8.6(b) the probability of this event is at

most ε/(Q1 − t1). Let Z̃1 be a binomial r.v. counting the number of coordinates

where the latter error event occurs. Then

sH(x′
1, Ŷ1) ≤ Z̃1 + t1(1− δ1)N

128



and we obtain

P [x′
1 ∈ D1(Y)] = P

[

sH(x′
1, Ŷ1) ≥

1− ξ

t1
N

]

≤ P

[

Z̃1 + t1(1− δ1)N ≥
1− ξ

t1
N

]

= P
[

Z̃1 ≥ Nσ1

]

≤ q
−ND(σ1‖

ε
Q1−t1

)
,

because by (8.6), σ1 > ε/(Q1 − t1). Applying the union bound, we conclude that

the error probability is less than the estimate (8.7).

Size-t2 coalitions: Consider the coalition U = {x1, . . . ,xt2} and let Y be a

forged fingerprint generated by it. For every i ∈ [N ], we employ the inner decoder

D2,in to obtain (Ŷ1i, Ŷ2i). The probability that (Ŷ1i, Ŷ2i) is not one of the symbols

{(x1
1i, x

1
2i), . . . , (xt2

1i, x
t2
2i)} is at most ε. Let the binomial r.v. Z2 denote the number

of coordinates where this error event occurs. Then

max
l∈[t2]

sH(xl, Ŷ) ≥ N − Z2

t2
,

and so the probability that none of the users in U are output

P [D2(Y) ∩ U = ∅] = P
[

L(Ŷ) ∩ U = ∅
]

≤ P

[

N − Z2

t2
<

1− ξ

t2
N

]

= P [Z2 > Nξ] ≤ q−ND(ξ‖ε).

This concludes the analysis of the missed detection case.

Next, consider an innocent user x′ /∈ U contained in one of the guilty groups,

i.e., x′
1 ∈ G(U). In any coordinate i ∈ [N ], there are two possible ways for D2,in to

output the symbol (x′
1i, x

′
2i). One possibility is that (x′

1i, x
′
2i) ∈ {(x1

1i, x
1
2i), . . . , (xt2

1i, x
t2
2i)},

and there are at most t2(1 − δ2)N such positions. Secondly, if (x′
1i, x

′
2i) is different

129



from the actual coalition’s symbols, it may be output when D2,in makes an error.

The probability of this event is at most ε/(Q2− t2) by Fact 8.6(a). Let Z̃2 be a bino-

mial r.v. denoting the number of coordinates where the second error event occurs.

Then

sH(x′, Ŷ) ≤ Z̃2 + t2(1− δ2)N,

and we get

P [x′ ∈ D2(Y)] = P

[

sH(x′, Ŷ) ≥ 1− ξ

t2
N

]

≤ P

[

Z̃2 + t2(1− δ2)N ≥
1− ξ

t2
N

]

= P
[

Z̃2 ≥ Nσ2

]

≤ q
−ND(σ2‖

ε
Q2−t2

)
,

since σ2 > ε/(Q2 − t2) from (8.6).

The only remaining case is to consider an innocent group x′
1 /∈ G(U). The

analysis is similar to the corresponding case for coalitions of size t1, so we omit

some details. We have

P [x′
1 ∈ G(D2(Y))] ≤ P

[

sH(x′
1, Ŷ1) ≥

1− ξ

t2
N

]

≤ q
−ND(σ1‖

ε
Q1−t2

)
.

Using the union bound, we see that the error probability is less than the estimate

(8.7).

Finally, let us show that the tracing complexity is polynomial in n. It is

straightforward to see that (1 − ξ)/ti >
√

1− δi, i = 1, 2, under the condition

(8.6). Therefore, the GS list decoding algorithm (Theorem 8.1) succeeds in finding

the lists L1 and L2, defined in (8.4), with polynomial complexity. Moreover, the list
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L (see (8.5)) can also be computed in polynomial time since both lists L1 and L2

are of size polynomial in N .

Let us analyze the rates attained by Theorem 8.7 by fixing our code choices.

Let C1 and C2 be extended RS codes with parameters [Q,K1] and [Q,K2], respec-

tively, satisfying the condition (8.6). At the inner level, consider a sequence of

q-ary (t1, t2)-fingerprinting codes with error probability ε = o(1) and rate (Rin, Rin).

The tracing procedure of the inner code will be performed by exhaustive search;

for instance, the codes in Section 7.4 can be used at the inner level. We have

m ≈ O(logq n) since n = mqmRin . Hence, the tracing for the inner code has only

polynomial complexity in the code length n. With ξ, t1, t2 fixed and m growing, we

have

D
(

σi

∣

∣

∣

∣

∣

∣

ε

Q− ti

)

∼ Nσi logq

Q

ε
≥ nσiRin, i = 1, 2.

Let Ri = Ri,outRin, i = 1, 2 denote the rate pair of the concatenated code. Since for

RS codes we have 1 − δi ∼ Ri,out, the error probability (8.7) for the concatenated

code approaches 0 if

Ri <

(

1− ξ

ti
− tiRi,out

)

Rin, i = 1, 2,

i.e., Ri <
1− ξ

ti(ti + 1)
Rin, i = 1, 2.

Finally, taking ξ arbitrarily small and m sufficiently large to satisfy ε < ξ we obtain

the following result.

Corollary 8.8. There exists a sequence of q-ary (t1, t2)-fingerprinting codes of length

n with error probability decaying with n, having decoding complexity poly(n) and rate

pair Ri = Ω(Rin/t
2
i ), i = 1, 2.

The material of this chapter is intended for publication as a part of [8].
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Chapter 9

Beyond the Disk Model of Wireless Networks

In this chapter we describe the part of our research that deals with connectivity

analysis of WSNs using random graphs. We study two such applications introduced

informally in Section 1.2. In both the applications of interest, the scarce energy

resources of the sensors translate into a limited range for communication. For this

reason we assume that any two nodes can establish a link only if they are located

within the communication range. This geometric constraint is captured by random

graphs referred to as disk models in the literature, see Gupta and Kumar [46], Han

and Makowski [50], or Penrose’s book [66]. In the networks considered in this

chapter, further constraints need to be taken into account by the random graph

model as explained below.

The first problem that we consider concerns a WSN where the link between

each pair of nodes can experience an outage independently of the other links with a

certain probability. Thus, two nodes can communicate directly if they are located

within the range, and in addition the link between them is active. We study a

simple network topology described by the sensors being placed on a circle, making

the first step of the analysis of the exact threshold parameters for connectivity of

the class of geometric random graphs with link failures studied in this chapter. As

our main result we provide a complete characterization of the zero-one law,

thereby establishing the exact critical parameter scaling which guarantees that with

high probability none of the sensors are isolated. This result strengthens similar

theorems proved earlier in the works of Yi et al. [88] by removing assumptions on

the outage probability taken there.
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The second problem that we study addresses node isolation in a WSN where

a probabilistic scheme is used to assign secret keys to the sensors for establishing

secure links. In this case, a secure link is possible between two sensors if they are

within the range and possess a shared secret key. We study both secure WSNs and

networks with random link failures with nodes located on a sphere or on a torus in

R
d. We prove a one-law for such networks, which establishes sufficient conditions

for the scalings so that with high probability, the WSN does not contain isolated

nodes.

9.1 Model and Assumptions

We begin with a formal definition of the random graph models studied in our

research. Throughout this chapter, we are only concerned with undirected graphs.

Following standard terminology, we say a node is isolated if no edge exists between

the node and any of the remaining nodes. Throughout this chapter we use natural

logarithms.

Let n denote the number of nodes in the WSN. Each node is identified by a

label in {1, . . . , n}. We first describe the geometric component of the model which

captures the range constraints associated with both kinds of random graphs studied

below. Suppose that the n nodes are placed in a compact region D ⊆ R
d (d > 0)

(the only regions that we consider in this chapter are: the interval [0, 1], a circle, a

sphere, and a torus in R
d). Let the r.v.’s X1, . . . , Xn represent the node locations.

We assume that X1, . . . , Xn are i.i.d. r.v.’s which are distributed uniformly over

D. Once deployed, the sensors do not change their location. Let d(·, ·) denote

an appropriate notion of distance on D. All nodes have the same transmission

range r > 0. Thus, nodes i and j are within the range if d(Xi, Xj) ≤ r. Let

χij(r) := 1 [d(Xi, Xj) ≤ r] denote the indicator r.v. of this event.
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The 1-dimensional case d = 1 will be our main focus. Specifically, we take

D = [0, 1] as well as [0, 1] whose ends are identified (a circle). Correspondingly, the

distance is measured either as

d(x, y) = |x− y|, x, y ∈ [0, 1]

or as

d(x, y) = min(|x− y|, 1− |x− y|), x, y ∈ [0, 1].

The unit circle is a simpler model to study because it eliminates the boundary

effects in the unit interval. For any pair of nodes i, j ∈ [n] on the unit circle, observe

that P [χij(r) = 1] = P [d(Xi, Xj) ≤ r] = min(1, 2r). For convenience, we use the

shorthand

`(r) := min(1, 2r), r ≥ 0

in the subsequent text.

To distinguish between the cases of the unit circle and unit interval, we use

the superscripts (C) and (L) respectively in our notation. As a way to lighten the

notation, we omit the superscripts (C) and (L) when the discussion applies equally

well to both cases. We now proceed to describe each of the random graphs studied

below.

9.1.1 WSNs with random link failures

Let p ∈ [0, 1] be the probability that a link is active (i.e., not in outage). Let

{Bij(p), 1 ≤ i < j ≤ n} be a collection of i.i.d. {0, 1}-valued r.v.’s with success

probability p. The link between nodes i and j is active if Bij(p) = 1. Throughout

we always assume that the r.v.’s {Xi, i = 1, . . . , n} representing the node locations,

and {Bij(p), 1 ≤ i < j ≤ n} are mutually independent.
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The random graph model for WSNs with link failures is parametrized by the

number n of nodes, the transmission range r and the probability p. To lighten the

notation we often group the parameters r and p into the ordered pair θ ≡ (r, p) and

denote the random graph by G(n; θ).

Two nodes in the WSN can communicate if and only if they are located within

range and the pairwise link between them is active. Therefore, the indicator r.v.

χij(θ) that an edge is present between nodes i and j in G(n; θ) is given by

χij(θ) =























χij(r)Bij(p) if i < j

χij(r)Bji(p) if j < i.

For each i = 1, . . . , n, node i is isolated in G(n; θ) if it is either not within

transmission range from each of the (n− 1) remaining nodes, or within range from

some nodes, but the corresponding links all are inactive. The indicator r.v. χn,i(θ)

that node i is an isolated node in G(n; θ) can be expressed as

χn,i(θ) =
n
∏

i=1, j 6=i

(1− χij(θ)) . (9.1)

The number of isolated nodes in G(n; θ) is equal to

In(θ) =
n
∑

i=1

χn,i(θ). (9.2)

9.1.2 Secure WSNs

Next, we formally describe the randomized key distribution scheme proposed

by Eschenauer and Gligor [38] and define a random graph model for a WSN employ-

ing this scheme. Suppose the distributor has a total of P secret keys available in a

key pool. Each node i is assigned a size-K subset Si(K,P ) of keys chosen uniformly
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at random from the key pool. The procedure is repeated independently for each

node i ∈ [n].

The parameters for the random graph model are the number n of nodes, the

transmission range r, and the numbers K and P . For convenience, the parameters

r, K and P are grouped, and written as ω ≡ (r,K, P ). The corresponding graph

model is denoted by G(n; ω).

In this case, two sensors can establish a secure link if and only if they are

located within range and they have a common secret key. Therefore, the indicator

r.v. χij(ω) for the edge between nodes i and j in G(n; ω) is given by

χij(ω) = χij(r)1 [Si(K,P ) ∩ Sj(K,P ) 6= ∅] .

Accordingly, the indicator r.v. χn,i(ω) that node i is isolated, and the number

of isolated nodes in G(n; ω) are defined by substituting ω for θ in (9.1) and (9.2),

respectively. For any two nodes, i, j ∈ [n], we note that

P [Si(K,P ) ∩ Sj(K,P ) = ∅] =

(

P−K
K

)

(

P
K

) .

We find it convenient to denote the r.-h.s. above by

q(K,P ) :=

(

P−K
K

)

(

P
K

) .

Remark 9.1. For each of the models described above, it will be convenient to view

the specific cases on the circle and interval, G
(C)(n; ·) and G

(L)(n; ·), as coupled

in that they are constructed from the same r.v.’s X1, . . . , Xn defined on the same

probability space (Ω,F , P).
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9.1.3 Objectives

Some terminology: A scaling for the WSN with link failures is defined as a

mapping θ : N0 → R+× [0, 1]. Similarly, in the case of a secure WSN, the scaling is

a mapping ω : N0 → R+ × N× N.

The main objective of this chapter can be stated as follows: For each of the

random graph models G(n; θ) and G(n; ω) defined above, we wish to identify the

conditions for the parameter scalings such that the probability that the random

graph contains no isolated nodes is either 0 or 1.

Specifically, we would like to establish conditions on the scalings θn and ωn

to ensure that

lim
n→∞

P [In(θn) = 0] = 1 (resp., 0),

lim
n→∞

P [In(ωn) = 0] = 1 (resp., 0).

In the literature such results are known as zero-one laws. Interest in them stems from

their ability to capture the threshold behavior of the underlying random graphs.

9.2 Previous Work

Some previous results related to the random graph models studied in this

chapter are mentioned in Section 1.2.2. In particular, the best characterization of

the zero-one laws for G(n; θ) and G(n; ω) is given by Yi et al. [88], where the 2-

dimensional case with the nodes located on a unit-area disk or square is considered.

The authors prove that the asymptotic distribution of the number of isolated nodes

in both random graph models is Poisson under certain conditions on the parameter

scalings. For the case of WSNs with random link failures, a zero-one law (stated in

Theorem 9.2 below) can be obtained as a direct consequence of their results.
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Let us associate the sequence αn with a scaling θn for the WSN with random

link failures through

pn
˜̀(rn) =

log n + αn

n
, n = 1, 2, . . . (9.3)

where ˜̀(r) := πr2.

Theorem 9.2. [88] If θn is a scaling for the WSN with random link failures such

that

lim
n→∞

pn log n =∞, (9.4)

then we have the zero-one law

lim
n→∞

P [In(θn) = 0] =























0 if limn→∞ αn = −∞

1 if limn→∞ αn = +∞,

where the sequence αn is determined through (9.3).

We draw the reader’s attention to the technical assumption (9.4) used in the

above zero-one law. For instance, if the link outage probability for the given ap-

plication scales as pn =
√

(log n)/n, then Theorem 9.2 is unable to provide the

transmission range (i.e., power) needed to guarantee the absence of isolated nodes.

Therefore, the above result provides only a partial characterization of the zero-one

law for WSNs with random link failures. Similar remarks also apply for the analogue

result obtained from [88] for secure WSNs.

Our goal is to eliminate the need for additional assumptions and thereby pro-

vide a complete zero-one law. We establish such a result for WSNs with random

link failures on the circle.

138



9.3 Main Results

WSN with link failures on the unit circle. With a scaling θn for the WSN

with link failures we associate the sequence αn through

pn`(rn) =
log n + αn

n
, n = 1, 2, . . . (9.5)

In the case of the random graph G
(C)(n; θ) defined on the unit circle, we get a

complete zero-one law.

Theorem 9.3 (Unit circle). For any scaling θn for the WSN with random link

failures, we have the zero-one law

lim
n→∞

P
[

I(C)
n (θn) = 0

]

=























0 if limn→∞ αn = −∞

1 if limn→∞ αn = +∞

where the sequence αn is determined through (9.5).

WSN with link failures on the unit interval. With a scaling θn, we also

associate the sequence α′
n through

pn`(rn) =
2(log n− log log n) + α′

n

n
, n = 1, 2, . . . (9.6)

For the random graph G
(L)(n; θ) defined on the unit interval there is a gap between

the zero and one laws that we are able to prove.
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Theorem 9.4 (Unit interval). For any scaling θn for the WSN with random link

failures, we have the zero-one law

lim
n→∞

P
[

I(L)
n (θn) = 0

]

=























0 if limn→∞ αn = −∞

1 if limn→∞ α′
n = +∞,

where the sequences αn, α
′
n are determined through (9.5) and (9.6), respectively.

Remark 9.5. An elementary coupling argument shows that for any particular re-

alization of the r.v.’s {Xi, i = 1, . . . , n} and {Bij(p), 1 ≤ i < j ≤ n}, the graph on

the circle contains more edges than the graph on the interval. As a result, the zero

law for the unit circle automatically implies the zero law for the unit interval, and

so only the former needs to be established.

General results. Consider the case where the nodes are located in a region D

which is a sphere or a torus in R
d. Let us define

`D(r) := P [d(x, Y ) ≤ r] ,

where x is an arbitrary point in D, the r.v. Y is uniformly distributed over D, and

d(·, ·) is the appropriate notion of distance. The quantity `D(r) gives the probability

that any two nodes are within the transmission range r.

For a scaling θn for the WSN with random link failures, define the sequence

αn through

pn`D(rn) =
log n + αn

n
, n = 1, 2, . . . .

We obtain the one law
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Theorem 9.6 (WSN with link failures). For any scaling θn

lim
n→∞

P [In(θn) = 0] = 1 if limn→∞ αn = +∞.

Similarly, in the case of a secure WSN, for a scaling ωn with Kn ≤ Pn, defining

the sequence αn through

(1− q(Kn, Pn))`D(rn) =
log n + αn

n
, n = 1, 2, . . .

we obtain the one law

Theorem 9.7 (Secure WSN). For any scaling ωn with Kn ≤ Pn

lim
n→∞

P [In(ωn) = 0] = 1 if limn→∞ αn = +∞.

9.4 Method of First and Second Moments

The proofs rely on the method of first and second moments [55, p. 55], an

approach widely used in the theory of Erdős-Rényi graphs: Let Z denote an N-

valued r.v. with finite second moment. The method of first moments [55, Eqn.

(3.10), p. 55] relies on the inequality

1− E [Z] ≤ P [Z = 0] , (9.7)

while the method of second moments [55, Remark 3.1, p. 55] uses the bound

P [Z = 0] ≤ 1− E [Z]2

E [Z2]
. (9.8)

We describe applications of this technique to the model with link failures. Note

that the discussion in this section also applies for secure WSNs. Pick any scaling
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θn. From (9.7) we see that the one law

lim
n→∞

P [In(θn) = 0] = 1

is established if we show that

lim
n→∞

E [In(θn)] = 0. (9.9)

On the other hand, it is plain from (9.8) that

lim
n→∞

P [In(θn) = 0] = 0

if

lim inf
n→∞

(

E [In(θn)]2

E [In(θn)2]

)

≥ 1. (9.10)

Upon using the exchangeability and the binary nature of the r.v.’s involved

in the count variables of interest, we can obtain simpler characterizations of the

convergence statements (9.9) and (9.10). Indeed, for all n = 2, 3, . . . and every θ,

the calculations

E [In(θ)] =
n
∑

i=1

E [χn,i(θ)] = nE [χn,1(θ)]

and

E
[

In(θ)2
]

=
n
∑

i=1

E [χn,i(θ)] +
n
∑

i,j=1, i6=j

E [χn,i(θ)χn,j(θ)]

= nE [χn,1(θ)] + n(n− 1)E [χn,1(θ)χn,2(θ)]

are straightforward, so that

E [In(θ)2]

E [In(θ)]2
=

1

nE [χn,1(θ)]
+

n− 1

n
· E [χn,1(θ)χn,2(θ)]

E [χn,1(θ)]2
.
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Thus, for the given scaling θn, we obtain the one law by showing that

lim
n→∞

nE [χn,1(θn)] = 0, (9.11)

while the zero law will follow if we show that

lim
n→∞

nE [χn,1(θn)] =∞ (9.12)

and

lim sup
n→∞

(

E [χn,1(θn)χn,2(θn)]

E [χn,1(θn)]2

)

≤ 1. (9.13)

The bulk of the technical discussion therefore amounts to establishing (9.11), (9.12)

and (9.13) under the appropriate conditions on the scaling θn.

9.5 Calculation of First Moments

Let us consider the model with random link failures. Let X and Y be mutually

independent r.v.’s with a uniform distribution on [0, 1]. Fix n = 2, 3, . . . and θ in

R+ × [0, 1]. For both the unit circle and unit interval, the enforced independence

assumptions readily imply

E [χn,1(θ)] = E

[

n
∏

i=1, j 6=i

(1− χij(θ))

]

= E
[

(1− pa(X; r))n−1]

=

∫ 1

0

(1− pa(x; r))n−1 dx (9.14)

where we have set

a(x; r) := P [d(x, Y ) ≤ r] , 0 ≤ x ≤ 1, r > 0. (9.15)
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Closed-form expressions for (9.15) depend on the geometry of the region where the

nodes are located.

The unit circle. As there are no border effects, we get

a(C)(x; r) = `(r), 0 ≤ x ≤ 1, r > 0 (9.16)

and with the help of (9.14) this yields

E
[

χ
(C)
n,1 (θ)

]

= (1− p`(r))n−1 , r > 0, p ∈ [0, 1]. (9.17)

The unit interval. For r ≥ 1, it is plain that

a(L)(x; r) = 1, 0 ≤ x ≤ 1.

On the other hand, when 0 < r < 1, elementary calculations show that

a(L)(x; r) =























































































x + r
if 0 < r ≤ 0.5, 0 ≤ x ≤ r

or 0.5 < r < 1, 0 ≤ x ≤ 1− r

`(r)
if 0 < r ≤ 0.5, r ≤ x ≤ 1− r

or 0.5 < r < 1, 1− r ≤ x ≤ r

1− x + r
if 0 < r ≤ 0.5, 1− r ≤ x ≤ 1

or 0.5 < r < 1, r ≤ x ≤ 1.
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Reporting this information into (9.14), we obtain the following upper bound for any

fixed n = 2, 3, . . . , and θ in R+ × [0, 1]:

E
[

χ
(L)
n,1(θ)

]

≤ (1− p`(r))n−1 +
2

np

(

1− 1

2
p`(r)

)n

. (9.18)

The general case. In the general case when the nodes are located on a torus or

sphere in higher dimensions, the analysis is a direct extension of that in the unit

circle. Because there are no boundary effects, we get

a(x; r) = `D(r), 0 ≤ x ≤ 1, r > 0,

and using (9.14) we obtain

E [χn,1(θ)] = (1− p`D(r))n−1 , r > 0, p ∈ [0, 1]. (9.19)

Similarly, in the case of a secure WSN, we get

E [χn,1(ω)] = (1− (1− q(K,P ))`D(r))n−1 , r > 0, 0 ≤ K ≤ P. (9.20)

9.6 Proof of the One Laws

As discussed in Section 9.4, the one law will be established if we show that

(9.11) holds. Below we consider separately the unit circle and the unit interval. In

that discussion we repeatedly use the elementary bound

1− x ≤ e−x, x ≥ 0. (9.21)

One law for the unit circle and torus. The one law over the unit circle

reduces to showing the following convergence.
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Lemma 9.8. For any scaling θn, we have

lim
n→∞

nE
[

χ
(C)
n,1 (θn)

]

= 0 if limn→∞αn = +∞

where the sequence αn is determined through (9.5).

Proof. Fix n = 1, 2, . . . and in the expression (9.17) substitute (r, p) by (rn, pn)

according to the scaling θn. We get

nE
[

χ
(C)
n,1 (θn)

]

= n (1− pn`(rn))n−1

= n

(

1− log n + αn

n

)n−1

≤ n
1
n e−

n−1
n

αn

where the bound (9.21) was used. Letting n go to infinity we get the desired con-

clusion since limn→∞ αn =∞.

Following the same steps as above, the one laws given in Theorem 9.6 and

Theorem 9.7 are established using the expressions (9.19) and (9.20), respectively.

One law for the unit interval. A similar approach is taken for the random

graphs over the unit interval.

Lemma 9.9. For any scaling θn, we have

lim
n→∞

nE
[

χ
(L)
n,1(θn)

]

= 0 if limn→∞α′
n = +∞

where the sequence α′
n is determined through (9.6).
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Proof. Fix n = 1, 2, . . . and in the upper bound (9.18) substitute (r, p) by (rn, pn)

according to the scaling θn. We get

nE
[

χ
(L)
n,1(θn)

]

≤ n (1− pn`(rn))n−1 +
2

pn

(

1− 1

2
pn`(rn)

)n

.

As in the proof of Lemma 9.8, we can show that

lim
n→∞

n (1− pn`(rn))n−1 = 0

under the condition limn→∞ α′
n =∞. The desired conclusion will be established as

soon as we show that

lim
n→∞

2

pn

(

1− 1

2
pn`(rn)

)n

= 0 (9.22)

under the same condition limn→∞ α′
n =∞.

To do so, fix n = 1, 2, . . . sufficiently large so that α′
n ≥ 0 – This is always

possible under the condition limn→∞ α′
n =∞. On that range we note that

1

pn

(

1− 1

2
pn`(rn)

)n

≤ 1

pn`(rn)

(

1− 1

2
pn`(rn)

)n

≤ log n

2(log n− log log n)
e−

1
2
α′

n

upon using the fact `(rn) ≤ 1 and the bound (9.21). Letting n go to infinity we

obtain (9.22).

9.7 Calculation of Second Moments

The calculation of second moments is needed in the proof of the zero laws in

Theorems 9.3 and 9.4 using (9.13). By Remark 9.5, we need only consider the unit

circle as we do from now on. We drop the superscript (C) for simplicity of notation.

Throughout we denote by X, Y and Z three mutually independent r.v.’s which

are uniformly distributed on [0, 1], and by B, B′ and B′′ three mutually independent
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{0, 1}-valued r.v.’s with success probability p. The two groups of r.v.’s are assumed

to be independent.

Again fix n = 2, 3, . . . and θ in R+ × [0, 1]. The same arguments apply for

both the unit circle and unit interval: For x, y in [0, 1], write

b(x, y; θ) := E [(1−B′1 [d(x, Z) ≤ r]) (1−B′′1 [d(y, Z) ≤ r])]

= 1− pa(x; r)− pa(y; r) + p2u(x, y; r)

with

u(x, y; r) := P [d(x, Z) ≤ r, d(y, Z) ≤ r] .

We then proceed with the decomposition

χn,1(θ)χn,2(θ) =
n
∏

j=2

(1− χ1j(θ)) .
n
∏

k=1,k 6=2

(1− χ2k(θ))

= (1− χ12(θ))
n
∏

j=3

(1− χ1j(θ)) (1− χ2j(θ)) .

Under the enforced independence assumptions, an easy conditioning argument (with

respect to the triple X1, X2 and B12) based on this decomposition now gives

E [χn,1(θ)χn,2(θ)] = E
[

(1−B1 [d(X,Y ) ≤ r]) b(X,Y ; θ)n−2
]

.

From (9.16) it is plain that

b(x, y; θ) = 1− 2p`(r) + p2u(x, y; r)

for all x, y in [0, 1].
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We note that

u(x, y; r) = P [d(x, Z) ≤ r, d(y, Z) ≤ r]

= u(0, d(x, y); r)

by translation invariance. Thus, writing

b̃(z; θ) := 1− 2p`(r) + p2ũ(z; r), z ∈ [0, 0.5] (9.23)

with

ũ(z; r) := u(0, z; r),

we get

b(x, y; θ) = b̃(d(x, y); θ), x, y ∈ [0, 1].

Taking advantage of these facts we now find

E [χn,1(θ)χn,2(θ)] = E
[

(1− p1 [d(X,Y ) ≤ r]) b̃(d(X,Y ); θ)n−2
]

= 2

∫ 0.5

0

(1− p1 [z ≤ r]) b̃(z; θ)n−2dz

by a straightforward evaluation of the double integral

∫ 1

0

dx

∫ 1

0

dy (1− p1 [d(x, y) ≤ r]) b̃(d(x, y); θ)n−2.

Consequently,

E [χn,1(θ)χn,2(θ)] ≤ 2

∫ 0.5

0

b̃(z; θ)n−2dz. (9.24)
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It is possible to compute the value of ũ(z; r) for various values for z, r (details

have been omitted). For 0 < r < 0.5, we find

ũ(z; r) =











































































2r − z if 0 < r < 0.25, 0 ≤ z ≤ 2r

0 if 0 < r < 0.25, 2r < z ≤ 0.5

2r − z if 0.25 ≤ r < 0.5, 0 ≤ z ≤ 1− 2r

4r − 1 if 0.25 ≤ r < 0.5, 1− 2r < z ≤ 0.5.

Obviously, if r ≥ 0.5, then ũ(z; r) = 1 for every z in [0, 0.5]. Thus, for 0 ≤ p ≤ 1,

through (9.23) we obtain

b̃(z; θ) =







































































































1− 4pr + p2(2r − z) if 0 < r < 0.25, 0 ≤ z ≤ 2r

1− 4pr if 0 < r < 0.25, 2r < z ≤ 0.5

1− 4pr + p2(2r − z) if
0.25 ≤ r < 0.5,

0 ≤ z ≤ 1− 2r

1− 4pr + p2(4r − 1) if
0.25 ≤ r < 0.5,

1− 2r < z ≤ 0.5.

Using this fact in (9.24) and evaluating the integral, we obtain the following upper

bounds:
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(i) For 0 < r < 0.25 and 0 < p ≤ 1,

E [χn,1(θ)χn,2(θ)] ≤ (1−4r)(1−4pr)n−2+
2(1− 4pr)n−1

(n− 1)p2

(

(

1 +
2p2r

1− 4pr

)n−1

− 1

)

.

(ii) For 0.25 ≤ r < 0.5 and 0 < p ≤ 1,

E [χn,1(θ)χn,2(θ)] ≤ (4r − 1)(1− 2pr)2(n−2) + (2− 4r)(1− 4pr + 2p2r)n−2.

(iii) For r ≥ 0.5 and 0 < p ≤ 1,

E [χn,1(θ)χn,2(θ)] = (1− p)2n−3.

(iv) For r > 0 and p = 0,

E [χn,1(θ)χn,2(θ)] = 1.

Furthermore, combining these bounds with (9.17), we obtain the following

upper bound on

Rn(θ) :=
E [χn,1(θ)χn,2(θ)]

E [χn,1(θ)]2

in the various cases listed below.

(i) For 0 < r < 0.25 and 0 < p ≤ 1,

Rn(θ) ≤ 1− 4r

1− 4pr
+

2

(n− 1)p2

(

(

1 +
2p2r

1− 4pr

)n−1

− 1

)

. (9.25)

(ii) For 0.25 ≤ r < 0.5 and 0 < p ≤ 1,

Rn(θ) ≤ 4r − 1

(1− 2pr)2
+ (2− 4r)

(1− 4pr + 2p2r)n−2

(1− 2pr)2(n−1)
. (9.26)
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(iii) For r ≥ 0.5 and 0 < p ≤ 1,

Rn(θ) =
1

1− p
. (9.27)

(iv) For r > 0 and p = 0,

Rn(θ) = 1. (9.28)

9.8 Proof of the Zero Laws

As observed in Remark 9.5, when dealing with the zero law we need only

concern ourselves with the unit circle case. Therefore, the superscript (C) is ignored

for simplicity.

Throughout this section, we take θn and associate with it the sequence αn

through (9.5). We now show (9.12) and (9.13) under the condition limn→∞ αn =

−∞. This will complete the proof of the zero laws.

In the discussion we shall make use of the following elementary fact: For any

sequence a : N0 → R+, the asymptotic equivalence

(1− an)n ∼ e−nan (9.29)

holds provided limn→∞ an = limn→∞ na2
n = 0.

Establishing (9.12). The first step is contained in the following zero law com-

plement of Lemma 9.8.

Lemma 9.10. For any scaling θn, we have

lim
n→∞

nE [χn,1(θn)] =∞ if limn→∞αn = −∞

where the sequence αn is determined through (9.5).

152



Proof. Fix n = 1, 2, . . . and in the expression (9.17) substitute (r, p) by (rn, pn)

according to the scaling θn. As in the proof of Lemma 9.8 we start with the expres-

sion

nE [χn,1(θn)] = n (1− pn`(rn))n−1 . (9.30)

Under the condition limn→∞ αn = −∞ we note that αn = −|αn| for all n

sufficiently large, say for all n ≥ n? for some finite integer n?. Using (9.5) we get

|αn| ≤ log n on that range by the non-negativity condition pn`(rn) ≥ 0. Therefore,

pn`(rn) ≤ log n

n
and n (pn`(rn))2 ≤ (log n)2

n
(9.31)

for all n ≥ n?, and the equivalence (9.29) (with an = pn`(rn)) now yields

n (1− pn`(rn))n−1 ∼ ne−npn`(rn) (9.32)

with

ne−npn`(rn) = ne−(log n+αn) = e−αn , n = 1, 2, . . . (9.33)

Finally, letting n go to infinity in (9.30) and using (9.32)-(9.33), we find

lim
n→∞

n (1− pn`(rn))n−1 = lim
n→∞

e−αn =∞

as desired under the condition limn→∞ αn = −∞.

Establishing (9.13). The proof of the one law will be completed if we establish

the next result.

Proposition 9.11. For any scaling θn, with the sequence αn determined through

(9.5), we have

lim sup
n→∞

Rn(θn) ≤ 1 if limn→∞αn = −∞.
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The proof of Proposition 9.11 is organized around the following simple obser-

vation: Consider a sequence a : N0 → R and let N1, . . . , NK constitute a partition of

N0 into K subsets, i.e., Nk ∩N` = ∅ for distinct k, ` = 1, . . . , K, and ∪K
k=1Nk = N0.

In principle, some of the subsets N1, . . . , NK may be either empty or finite. For each

k = 1, . . . , K such that Nk is non-empty, we set

αk := lim sup
n→∞
n∈Nk

an = inf
n∈Nk

(

sup
m∈Nk: m≥n

am

)

with the natural convention that αk = −∞ when Nk is finite. In other words, αk is

the limsup for the subsequence {an, n ∈ Nk}. It is a simple matter to check that

lim sup
n→∞

an = max? (αk, k = 1, . . . , K)

with max? denoting the maximum operation over all indices k such that Nk is non-

empty.

Proof. As we plan to make use of this fact with K = 4, we write

Rk := lim sup
n→∞
n∈Nk

Rn(θn), k = 1, . . . , 4

with

N1 :={n ∈ N0 : 0 < rn < 0.25, 0 < pn ≤ 1},

N2 :={n ∈ N0 : 0.25 ≤ rn < 0.5, 0 < pn ≤ 1},

N3 :={n ∈ N0 : 0.5 ≤ rn, 0 < pn ≤ 1}
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and

N4 :={n ∈ N0 : rn > 0, pn = 0}.

Therefore, we have

lim sup
n→∞

Rn(θn) = max?(Rk, k = 1, . . . , 4)

and the result will be established if we show that

Rk ≤ 1, k = 1, . . . , 4.

In view of the convention made earlier, we need only discuss for each k = 1, . . . , 4,

the case when Nk is countably infinite, as we do from now on.

The easy cases are handled first: From (9.28) it is obvious that R4 = 1.

Next as observed before, (9.31) holds for all n sufficiently large under the condition

limn→∞ αn = −∞. Since `(rn) = 1 for all n in N3, we conclude that

lim
n→∞
n∈N3

pn = 0

and the conclusion R3 = 1 is now immediate from (9.27). We complete the proof

by invoking Lemmas 9.12 and 9.13 given next which establish R1 ≤ 1 and R2 ≤ 1,

respectively.

Lemma 9.12. Under the assumptions of Proposition 9.11, with N1 countably infi-

nite, we have R1 ≤ 1.
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Proof. Fix n = 2, 3, . . . and pick (r, p) such that 0 < r < 0.25 and 0 < p ≤ 1.

With (9.25) in mind, we note that

2

(n− 1)p2

(

(

1 +
2p2r

1− 4pr

)n−1

− 1

)

=
2

(n− 1)p2

n−1
∑

k=1

(

n− 1

k

)(

2p2r

1− 4pr

)k

=
4r

1− 4pr
+

2

(n− 1)p2

n−1
∑

k=2

(

n− 1

k

)(

2p2r

1− 4pr

)k

and we can rewrite the r.-h.s of (9.25) as

1− 4r

1− 4pr
+

2

(n− 1)p2

(

(

1 +
2p2r

1− 4pr

)n−1

− 1

)

=
1

1− 4pr
+

2

(n− 1)p2

n−1
∑

k=2

(

n− 1

k

)(

2p2r

1− 4pr

)k

≤ 1

1− 4pr
+

2

(n− 1)

n−1
∑

k=2

(

n− 1

k

)(

2pr

1− 4pr

)k

since pk ≤ p2 for k = 2, . . . , n− 1. Therefore,

Rn(θ) ≤ 1

1− 4pr
+

2

(n− 1)

(

1 +
2pr

1− 4pr

)n−1

.

In this last bound, fix n in N1 and substitute (r, p) by (rn, pn) according to

the scaling θn. Standard properties of the limsup operation yield

R1 ≤ lim sup
n→∞
n∈N1

(

1

1− 4pnrn

)

+ lim sup
n→∞
n∈N1

(

2

(n− 1)

(

1 +
2pnrn

1− 4pnrn

)n−1
)

and the desired result R1 ≤ 1 will follow if we show that

lim sup
n→∞
n∈N1

(

1

1− 4pnrn

)

= 1 (9.34)
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and

lim sup
n→∞
n∈N1

(

2

(n− 1)

(

1 +
2pnrn

1− 4pnrn

)n−1
)

= 0. (9.35)

To do so, under the condition limn→∞ αn = −∞ we once again use the fact

that (9.31) holds for large n with pn`(rn) = 2pnrn for all n in N1. Thus,

lim
n→∞
n∈N1

pnrn = 0

and the convergence (9.34) follows.

Next, since 1 + x ≤ ex for all x in R, we note for all n in N1 that

2

n− 1

(

1 +
2pnrn

1− 4pnrn

)n−1

≤ 2eβn

with

βn := (n− 1)
pn`(rn)

1− 2pn`(rn)
− log(n− 1).

Thus, (9.35) follows if we show that

lim
n→∞
n∈N1

βn = −∞. (9.36)

From (9.31) we get

βn ≤
(

n− 1

n

)

log n + αn

1− 2 log n
n

− log(n− 1)

for large n. It is now a simple exercise to check that

lim
n→∞

(

n− 1

n

)

log n

1− 2 log n
n

− log(n− 1) = 0

and the conclusion (9.36) is obtained under the assumption limn→∞ αn = −∞.
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Lemma 9.13. Under the assumptions of Proposition 9.11, with N2 countably infi-

nite, we have R2 ≤ 1.

Proof. Fix n = 2, 3, . . . and pick (r, p) such that 0.25 < r ≤ 0.5 and 0 < p ≤ 1.

From (9.26) we get

Rn(θ) ≤ 4r − 1

(1− 2pr)2
+

2− 4r

(1− 2pr)2

(1− 4pr + 2p2r)n−2

(1− 2pr)2(n−2)

=
4r

(1− 2pr)2

(

1− (1− 4pr + 2p2r)n−2

(1− 2pr)2(n−2)

)

+
1

(1− 2pr)2

(

2
(1− 4pr + 2p2r)n−2

(1− 2pr)2(n−2)
− 1

)

.

Now fix n in N2 and substitute (r, p) by (rn, pn) according to the scaling θn in

(9.26). As before, properties of the limsup operation yield

R2 ≤ R2c (R2a + R2b) (9.37)

with

R2a := lim sup
n→∞
n∈N2

(

4rn

(

1− (1− 4pnrn + 2p2
nrn)n−2

(1− 2pnrn)2(n−2)

))

,

R2b := lim sup
n→∞
n∈N2

(

2
(1− 4pnrn + 2p2

nrn)n−2

(1− 2pnrn)2(n−2)
− 1

)

and

R2c := lim sup
n→∞
n∈N2

1

(1− 2pnrn)2
.

As in the proof of Lemma 9.12, it is also the case here that R2c exists as a

limit and is given by

R2c = lim
n→∞
n∈N2

1

(1− 2pnrn)2
= 1.
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Next, we show that

lim
n→∞
n∈N2

(1− 4pnrn + 2p2
nrn)n−2

(1− 2pnrn)2(n−2)
= 1. (9.38)

Once this is done, we see from their definitions that R2a = 0 and R2b = 1, and the

conclusion R2 ≤ 1 follows from (9.37).

To establish (9.38) we note that

4pnrn − 2p2
nrn = pn`(rn)(2− pn) ≤ 2pn`(rn)

and

2pnrn = pn`(rn)

for all n in N2. Now making use of (9.31) we conclude that

lim
n→∞
n∈N2

(

4pnrn − 2p2
nrn

)

= lim
n→∞
n∈N2

(n− 2)
(

4pnrn − 2p2
nrn

)2
= 0

while

lim
n→∞
n∈N2

2pnrn = lim
n→∞
n∈N2

(n− 2) (2pnrn)2 = 0.

By the equivalence (9.29) used with an = 4pnrn−2p2
nrn and an = 2pnrn, respectively,

we now conclude that

(1− 4pnrn + 2p2
nrn)n−2

(1− 2pnrn)2(n−2)
∼ e−(n−2)(4pnrn−2p2

nrn)

(e−(n−2)(2pnrn))
2 = e2(n−2)(p2

nrn) (9.39)

as n goes to infinity in N2.

Finally, for n in N2, because `(rn) = 2rn ≥ 0.5, we get

2(n− 2)
(

p2
nrn

)

= (n− 2)
(pn`(rn))2

`(rn)
≤ 2(n− 2)

n
· n (pn`(rn))2
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so that

lim
n→∞
n∈N2

2(n− 2)
(

p2
nrn

)

= 0

with the help of (9.31). The conclusion (9.38) now follows from (9.39), and the proof

of Lemma 9.13 is complete.

9.9 Simulation Results
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Figure 9.1: Simulation results for WSNs with random link failures

In this section, we present some plots from simulations in Matlab which confirm

the results in Theorem 9.3 and Theorem 9.4. For given n, p and r, we estimate the

probability that there are no isolated nodes by averaging over 1000 instances of the

random graphs G
(C)(n; θ) and G

(L)(n; θ).

In Figure 9.1(a), we have taken n = 100 and p = 0.25, and examine the

threshold behavior of the probability that there are no isolated nodes by varying r.

Theorem 9.3 suggests that the critical range for the graph over the unit circle when

n = 100 and p = 0.25 should be r? = 0.09. This is confirmed by the simulation
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results. In the case of the unit interval, we expect from Theorem 9.4 that the critical

range will be between r? = 0.09 and r?? = 0.12; this is in agreement with the plot.

In Figure 9.1(b), we have taken n = 100 and r = 0.1, and repeat the analysis

by choosing various values for p. As expected from Theorem 9.3, the critical edge

probability for the unit circle is found to occur at p? = 0.23. It is also clear that for

the unit interval, the critical edge probability is between p? = 0.23 and p?? = 0.31

as predicted by Theorem 9.4.

9.10 Concluding Remarks

We have proved that the critical scaling for the link failure model on the unit

circle is given by

p?
n`(r

?
n) =

log n

n
, n = 1, 2, . . .

This is an example of the general phenomenon that critical scalings for the absence

of isolated nodes for many random graph models in the literature are determined

through the requirement

P [Edge exists between two nodes] =
log n

n
. (9.40)

The analogous result for the unit interval established in Theorem 9.4 still shows

a gap between the scalings for the zero and one laws. While we believe that this gap

can be bridged, the technique employed in this chapter is apparently insufficient to

accomplish this.

Open Problem 9.14. Study the asymptotic distribution of the number of isolated

nodes for WSNs with link failures on the unit circle with no assumptions on the link

outage probability.
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Open Problem 9.15. Examine the critical scalings for connectedness of the ran-

dom graphs studied in this chapter.

The results of this chapter are intended for publication as a part of [11].
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[86] O. Yağan and A. M. Makowski, “On the random graph induced by a random
key predistribution scheme under full visibility,” Proc. IEEE Internat. Sympos.
Information Theory (ISIT 2008), pp. 544–548, 2008.

[87] C.-W. Yi, P.-J. Wan, X.-Y. Li and O. Frieder, “Asymptotic distribution of the
number of isolated nodes in wireless ad hoc networks with Bernoulli nodes,” Proc.
IEEE Wireless Communications and Networking Conference (WCNC 2003), pp.
1585–1590, 2003.

[88] C.-W. Yi, P.-J. Wan, K.-W. Lin and C.-H. Huang, “Asymptotic distribution of
the number of isolated nodes in wireless ad hoc networks with unreliable nodes
and links,” Proc. IEEE Global Telecommunications Conference (GLOBECOM
2006), Nov. 2006.

170


