ABSTRACT
Title of dissertation: ON THE MODEL THEORY OF RANDOM GRAPHS
Justin Brody, Doctor of Philosophy, 2009
\section*{Dissertation directed by: Professor Michael C. Laskowski

Department of Mathematics}

Hrushovski's amalgamation construction can be used to join a collection of finite graphs to produce a "generic" of this collection. The choice of the collection and the way they are joined are determined by a real-valued parameter α. Classical results have shown that for α irrational in $(0,1)$, the model theory of the resulting structure is very well-behaved.

This dissertation examines analogous constructions for rational r. Depending on the way in which the parameter's control of the construction is defined, the model theory of the resulting generic will be either very well-behaved or very wild. We characterize when each of these situations occurs.

ON THE MODEL THEORY OF RANDOM GRAPHS

by
Justin Brody
Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
2009
Advisory Committee:
Professor Michael C. Laskowski, Chair/Advisor
Professor David W. Kueker
Professor Edgar G.K. Lopez-Escobar
Professor William I. Gasarch
Professor William J. Idsardi

(c) Copyright by Justin Brody

2009

Dedication

For my family - my wife, parents, sister, and nieces. They've all worked for my well-being, and all brought me a great deal of happiness.

Acknowledgments

Despite the modest contribution to mathematics which this thesis represents, it was possible only with a great deal of help. I could rather easily start with Plato and spend hundreds of pages in gushing gratitude, but will limit my thanks to more immediate sources.

My deepest thanks are due to my advisor, Chris Laskowski. It was a great honor to discuss mathematics with such a penetrating mind, and I would often gain more insight into a problem after an hour in his office than I'd get from a full week of solitary contemplation. I've also learned a great deal from Chris's interactions with his students. I have always found him to be friendly, encouraging, and possessed of great humor and patience. His lectures have been well-paced, clear, and fun. While I cannot hope to match his mathematical talent, I do hope to emulate the way he shares it

I have spent many enjoyable hours studying Dr. Kueker's notes on logic and attending his classes. I would like to thank him for providing such an enticing introduction to the subject, and for his friendly encouragement throughout my time in grad school. I would also like to thank Bill Idsardi for his inspiring class on cognitive science. I got a taste for a discipline that draws on all of my serious interests, and hope to pursue it in greater depth one day. I would like to thank Dr. Lopez-Escobar and Dr. Gasarch for taking the time out of their schedules to sit on my dissertation committee.

Dr. John Goodrick has been very generous to me in giving advice and proofreading (in detail) my job application materials, which were much improved for his
efforts. He also taught a wonderful course on geometric stability theory, a topic I'd had a long desire to study.

My wife Jessica has been a source of tremendous encouragement and support. While not a mathematician, she has a deep understanding of the creative process and provided me with much needed perspective on the ups and downs of doing research. She has constantly reminded me to do math because I enjoy it, and not to gratify my ego. As with the rest of my life, her presence has been invaluable.

I have had the great privilege of growing up in a house where serious ideas were deemed an appropriate topic of conversation, and there is no question that without this I would never have seen the pursuit of a purely academic degree as valuable. I am therefore very grateful to all the members of my family for providing me with such a rich and stimulating start to life.

I also have to acknowledge the immense courage and inspiration I drew from Lodro Sangpo, my friend and mentor at Gampo Abbey. Sangpo was an exemplary monastic, who encouraged my passion for learning and showed by example that living deeply does not preclude intellectual engagement.

A number of my fellow students have made my time at Maryland much more stimulating and enjoyable. Chief among these are Somantikka Datta, Nadarajasundaram Ganesh, Greggo Johnson, Hunter Johnson, Joanna Pressley, and Chris Shaw. Thank you all for your friendship.

Finally, I would like to thank all the members of the math department who received no mention in [3]. They have made everything much more interesting.

Table of Contents

List of Tables vi
List of Figures vii
1 Introduction 1
1.1 Introduction 1
1.2 Notation 3
1.3 Hrushovski Constructions 3
1.3.1 Shelah-Spencer Graphs 7
1.3.2 0-Extensions 13
2 Up and Down 19
2.1 Going Up 19
2.2 Coming Down 23
2.2.1 Approximations 32
2.2.2 Completions 36
2.3 General Ultraproducts 42
3 Tirthikas 46
3.1 Behavior for $r>1$ 48
3.2 Behavior for $r=1$ 49
3.3 Summary 56
4 Other Properties 58
4.1 Connectedness 58
4.2 Other Models of S_{r} 58
4.3 Direct Limits 62
4.4 Independence 66
4.5 Quantifier Elimination 69
5 Summary 86
Bibliography 87

List of Tables
5.1 Summary of results 86

List of Figures

4.1 Construction of G_{3}^{i} 72
4.2 Construction of G_{n}^{\imath} 73

Chapter 1

Introduction

1.1 Introduction

The study of random graphs, initiated by Erdös and Renyi, has more recently been examined from a logical viewpoint, notably in papers of Shelah, Spencer, and Baldwin ([11], [1]). In particular, for the graphs $G\left(n, n^{-\alpha}\right)$, which are graphs of size n with the the probability that any two vertices form an edge being given by $n^{-\alpha}$, Shelah and Spencer proved the following 0-1 law: If α is irrational in $(0,1)$ then for σ any sentence in the language of graphs, $\lim _{n \rightarrow \infty} \operatorname{Pr}\left[G\left(n, n^{-\alpha}\right) \models \sigma\right]$ is 0 or 1. Thus, for a fixed such α the almost sure theory, denoted T^{α}, is complete. More recently, Laskowksi has given a Π_{2} axiomatization for T^{α} (see [10]).

It was later noticed by Baldwin and Shelah [1] that models of the resulting theory could be obtained via Hrushovski's amalgamation construction. This proceeds by amalgamating a class of finite structures in a way which is determined by a notion of "strong substructure". The latter is in turn often determined by a pre-dimension function, which in the current context limits the proportion of new edges to new vertices in a strong extension.

Arguably, the crucial observation in the connection between the probabilistic and model-theoretic approaches is that the probability of extensions of a given graph occurring is determined by precisely such a function. Specifically, if a given graph A
almost surely occurs as a subgraph of $G\left(n, n^{-\alpha}\right)$ in the limit; then A almost surely extends to a copy of the extension B in the limit if and only if $|B \backslash A|-\alpha e(B / A) \geq 0$, where $e(B / A)$ denotes the number of edges in $A B$ that aren't in A.

This paper examines that case that α is rational from a model-theoretic perspective. We note that there is no $0-1$ law in this case, but the model theoretic construction can be generalized to the rational case. Also note that for α irrational the expression $|B \backslash A|-\alpha e(B / a)$ is always strictly positive or strictly negative, while for rational α this expression can be 0 . In effect, we are left with two ways to generalize the irrational case - we can either demand that the expression be strictly positive or else we can merely require that it be non-negative. We will see that each approach leads to vastly different model-theoretic properties - in the latter case we will have a single well behaved theory while the former gives rise to uncountably many undecidable theories.

We will examine these approaches by looking at different kinds of limits. It will turn out that these two approach largely suffice to characterize the behavior that can result from taking any ultraproduct $\prod_{\mathcal{U}} M_{\alpha_{n}}$ with \mathcal{U} any ultrafilter, $\alpha_{n} \in(0,1)$ irrational, and $M_{\alpha_{n}}$ a model of $T^{\alpha_{n}}$.

We will also examine the analogues of Laskowksi's Π_{2} axioms for the rational case and will show that their completeness is equivalent to the model theory of the appropriate structure being "tame".

1.2 Notation

For the purposes of this thesis, we will restrict our attention to classes of graphs. In particular, we work in the language of graphs, although the results should easily generalize to arbitrary relational structures. We will denote the single binary relation of our language by $E(x, y)$.

We will denote $A \cup B$ simply by $A B$, and will write $A \subseteq_{\omega} M$ to indicate that A is a finite substructure of M. For any finite graph A, we will implicitly fix an enumeration of A and denote it's quantifier free type by $\Delta_{A}(\bar{x})$.

1.3 Hrushovski Constructions

Hrushovski's amalgamation construction proceeds by joining together a collection of finite structures \mathbf{K} in accordance with some notion of strong substructure \leq. It was introduced by Hrushovski in $[6,7]$ to create stable structures with "exotic" geometries. Good expositions of the construction can be found in [2], [14], and [9]. Our notion of strong substructure will be based on a predimension function:

Definition 1.3.1. For a class of finite structures K, closed under substructure and isomorphism, a predimension function on \mathbf{K} is a real-valued function $\delta: \mathbf{K} \rightarrow \mathbf{R}^{\geq 0}$ satisfying:

1. δ is total on \mathbf{K}, and if $A, A^{\prime} \in \mathbf{K}$ satisfy $A \simeq A^{\prime}$, then $\delta(A)=\delta\left(A^{\prime}\right)$
2. $\delta(\varnothing)=0$
3. (Submodularity) For A, B elements of \mathbf{K} embedded in a common structure,
we have that $\delta(A B) \leq \delta(A)+\delta(B)-\delta(A \cap B)$.

Given δ a predimension on \mathbf{K}, for any $A, B \in \mathbf{K}$ we define the relative predimension of A over B as $\delta(A / B):=\delta(A B)-\delta(B)$.

Convention 1.3.2. We will work throughout with pairs (\mathbf{K}, \leq) where \mathbf{K} is a class of finite structures and \leq is a strong substructure relation on $\mathbf{K} \times \mathbf{K}$, satisfying:

1. \mathbf{K} is closed under substructures and isomorphisms
2. For $A \in \mathbf{K}, \varnothing \leq A$
3. For $A \leq B$ from \mathbf{K}, we have $A \cap C \leq B \cap C$ for every $C \in \mathbf{K}$.
4. \leq is preserved under isomorphisms: for $A \leq B$ and $A \simeq A^{\prime}, B \simeq B^{\prime}$ we have $A^{\prime} \leq B^{\prime}$.

For $A, B \in \mathbf{K}$, if $A \leq B$ then we will say that A is strong (or closed) in B.

We will want to talk about structures whose finite substructures are members of \mathbf{K}. The basic definition is:

Definition 1.3.3. For any structure M, it's age is the set of all finite structures which are embeddable in M. We will denote it by $\operatorname{Age}(M)$.

We then extend the notion of strong substructure to apply to potentially infinite structures.

Definition 1.3.4. For $A \subseteq M$ with $\operatorname{Age}(M) \subseteq \mathbf{K}$, we say $A \leq M$ just in case $A \leq A X$ for every $X \subseteq_{\omega} M$.

The axioms (1) - (3) guarantee the existence of a well-defined closure operation. In classical contexts, the predimension function was chosen to determine certain properties of the geometry generated by this closure (e.g., non-trivial, non-locallymodular). An analysis of this geometry generally yields good information about the model theory of the associated generic.

Definition 1.3.5. For any M with $\operatorname{Age}(M) \subseteq \mathbf{K}$, taking the intersection of all $A^{\prime} \subseteq M$ satisfying $A \subseteq A^{\prime} \leq M$ yields a unique minimal superset of A which is strong in M. This will be denoted by $\mathrm{cl}_{M}(A)$.

An embedding $f: A \hookrightarrow B$ so that $f(A) \leq B$ is called a strong embedding. In order to proceed with the construction, we must be able to amalgamate finite structures in a coherent way. The basic definition is:

Definition 1.3.6. For $A, B, C \in \mathbf{K}$, if $A \leq B$ and $f: A \hookrightarrow C$ is strong implies that there is a $D \in \mathbf{K}$ so that $C \leq D$ and a strong embedding $g: B \hookrightarrow D$ so that $g(A)=f(A)$, then we will call (\mathbf{K}, \leq) an amalgamation class. We will call D an amalgam of B and C over A. Diagramatically, we want the following to commute:

A special kind of amalgamation involves no extraneous relations between the amalgamated structures:

Definition 1.3.7. Suppose A, B, C are elements of \mathbf{K} with $A=B \cap C$, and let D
be the structure whose universe is $B C$ and whose relations are precisely those of B and those of C. Then we will denote D by $B \oplus_{A} C$.

If (\mathbf{K}, \leq) is an amalgamation class in which $B \oplus_{A} C$ is an amalgam of B and C over A, then we will call $B \oplus_{A} C$ the free amalgam of B and C over A and say that (\mathbf{K}, \leq) is a free amalgamation class.

Such classes often have nice combinatorial properties. A stronger form of amalgamation occurs when A is not necessarily closed in C. This will play a crucial role in what follows.

Definition 1.3.8. Suppose that (\mathbf{K}, \leq) is a free amalgamation class and for A, B, C with $B \cap C=A$, and $A \leq B$ we have $B \oplus_{A} C \in \mathbf{K}$ and $C \leq B \oplus_{A} C$, then we say that (\mathbf{K}, \leq) is a full amalgamation class. Full amalgamation is equivalent to the commutativity of the following diagram:

For any amalgamation class satisfying (1) - (3) of 1.3.2, we can inductively amalgamate all finite structures in \mathbf{K} together in imitation of the Fraïssé construction (see [5]; the joint embedding property comes from amalgamation and having $\varnothing \leq A$ for $A \in \mathbf{K})$. The resulting structure is called the (\mathbf{K}, \leq)-generic; it is unique up to isomorphism and is characterized by three properties.

Definition 1.3.9. The (\mathbf{K}, \leq)-generic G is the unique (up to isomorphism) structure satisfying:

1. Age $(G) \subseteq \mathbf{K}$
2. For $A, B \in \mathbf{K}$ with $A \leq B$ and $f: A \hookrightarrow G$ a strong embedding, f extends to a strong embedding $g: B \hookrightarrow G$.
3. For $A \subseteq_{\omega} G, \operatorname{cl}_{G}(A)$ is finite.

1.3.1 Shelah-Spencer Graphs

The specific classes of finite graphs we will be concerned with will be generated by predimension functions which force strong extensions to be relatively sparse - i.e. the ratio of new edges to new vertices will be bounded. Specifically, for a graph A, let $e(A)$ denote the number of edges in A. For A, B, finite graphs contained in a common extension, let $e(A, B)$ denote the number of edges from vertices in A to vertices in $B \backslash A$, and let $e(B / A)$ denote $e(B \backslash A)+e(B \backslash A, A)$. Then for $\alpha \in[0,2]$, let $\delta_{\alpha}(A)=|A|-\alpha e(A)$ and let $\delta_{\alpha}(B / A)=\delta_{\alpha}(A B)-\delta_{\alpha}(A)$; note that $\delta_{\alpha}(B / A)=|B \backslash A|-\alpha e(B / A)$. We then say $A \leq{ }_{\alpha} B$ if and only $\delta\left(B^{\prime} / A\right) \geq 0$ for every $B^{\prime} \subseteq_{\omega} B$. Then define \mathbf{K}_{α} as the class $\left\{A: \varnothing \leq_{\alpha} A,|A|<\aleph_{0}\right\}$.

It is shown in [2] that $\left(\mathbf{K}_{\alpha}, \leq_{\alpha}\right)$ so defined is a full amalgamation class. When α is irrational in $(0,1)$ the $\left(\mathbf{K}_{\alpha}, \leq_{\alpha}\right)$-generic will be called the Shelah-Spencer graph of weight α - these graphs have been extensively studied in $[11,12,1,2,10]$. These graphs display good model-theoretic behavior. In particular, they are all stable and axiomatized by the $\forall \exists$ schemes S_{α} defined below. They are also models of the almost-sure theories T^{α} studied by Shelah and Spencer and discussed in the introduction.

Our study of analogues of this construction will proceed by studying various forms of limits of the irrationally weighted graphs. We note some basic facts about relations between the notions of sparsity.

Lemma 1.3.10. For any $A \subseteq B$ and $\alpha_{0} \geq \alpha_{1}$:

1. If $\delta_{\alpha_{0}}(B / A) \geq 0$ then $\delta_{\alpha_{1}}(B / A) \geq 0$.
2. If $A \leq{ }_{\alpha_{0}} B$ then $A \leq \alpha_{1} B$.

Proof. We have $\delta_{\alpha_{0}}(B / A)=|B \backslash A|-\alpha_{0} e(B / A)$ which is clearly at most $|B \backslash A|-$ $\alpha_{1} e(B / A)=\delta_{\alpha_{1}}(B / A)$. Both statements follow immediately.

Thus, for finite $A \subseteq B$, the set $\left\{\alpha: A \leq_{\alpha} B\right\}$ is a sub-interval of $[0, \beta]$ for some β. We determine this interval with:

Lemma 1.3.11. For finite graphs $A \subseteq B$ define $h^{*}(A, B)$ to be $\sup \left\{\alpha: \delta_{\alpha}(B / A) \geq\right.$ $0, \alpha \leq 2\}$. Also let $h(A, B):=\sup \left\{\alpha: A \leq{ }_{\alpha} B, \alpha \leq 2\right\}$. Note that if $e(B / A)=0$ then $h^{*}(A, B)=h(A, B)=2$. Otherwise

1. $h^{*}(A, B)=\frac{|B \backslash A|}{e(B / A)}$. In particular, $h^{*}(A, B)$ is rational and is $\max \left\{\alpha: \delta_{\alpha}(B / A) \geq\right.$ $0\}$
2. $h(A, B)=\min _{H: A \subseteq H \subseteq B}\left\{h^{*}(A, H)\right\}$.

In particular, $h(A, B)$ is rational and for any $\alpha \in[0,2]$, we have $A \leq_{\alpha} B$ if and only $\alpha \in[0, h(A, B)]$

Proof. We have $\delta_{\alpha}(B / A) \geq 0$ iff $|B \backslash A|-\alpha(e(B / A)) \geq 0$ iff $\alpha \leq \frac{|B \backslash A|}{e(B / A)}$. Both statements follow immediately.

We will work frequently with the class defined in the following lemma.

Definition 1.3.12. For $r \in[0,2]$, let $\left(\mathbf{K}_{r}^{+}, \preccurlyeq_{r}\right)$ be defined by

1. For finite $A \subseteq B, A \preccurlyeq_{r} B$ iff $A \leq_{\beta} B$ for some $\beta>r$.
2. $\mathbf{K}_{r}^{+}=\left\{H \mid \varnothing \preccurlyeq_{r} H\right\}$

Note that $\mathbf{K}_{r}^{+}=\left\{H: H \in \mathbf{K}_{r} \wedge\left(\delta_{r}(H)>0 \vee H=\varnothing\right)\right\}$ and for $H \neq \varnothing, H \in \mathbf{K}_{r}^{+}$if and only if $h(H)>r$.

Lemma 1.3.13. $\left(\mathbf{K}_{r}^{+}, \preccurlyeq_{r}\right)$ is a full amalgamation class.

Proof. Let $A \leq B_{0}, B_{1}$ for $A, B_{i} \in \mathbf{K}$. Then there exist β_{0}, β_{1} greater than r so that $A \leq_{\beta_{0}} B_{0}$ and $A \leq_{\beta_{1}} B_{1}$. Let $\beta=\min \left(\beta_{0}, \beta_{1}\right)$; then we have $A \leq_{\beta} B_{0}, B_{1}$ and by free amalgamation in \leq_{β} we have $C=B_{1} \oplus_{A} B_{2}$ witnesses the amalgamation property. The same reasoning establishes fullness.

If $H \in \mathbf{K}_{r}^{+}$, we have that $\varnothing \leq_{\beta} H$ for some $\beta>r$; this implies that $r<h(H)$. Conversely, if $r<h(H)$, then $\varnothing \leq_{\beta} H$ for some $\beta>r$, so that $\varnothing \preccurlyeq_{r} H$.

It is worth noting that for α irrational, \preccurlyeq_{α} is the same as \leq_{α}, and $\mathbf{K}_{\alpha}^{+}=\mathbf{K}_{\alpha}$. The following properties of δ_{α} and $\left(\mathbf{K}_{\alpha}, \leq_{\alpha}\right)$ are well-known and discussed in, e.g., [14], [8], [2], [10]:

Lemma 1.3.14. Fix α in $[0,2]$ Then for $A, A_{i}, B, B_{i}, C \in \mathbf{K}_{\alpha}$:

1. If $B \cap C=A_{0}$ with $A \subseteq A_{0}$, then $\delta_{\alpha}\left(B \oplus_{A_{0}} C / B\right) \leq \delta_{\alpha}(C / A)$. Furthermore, equality holds when $A=A_{0}$.
2. (Linearity)If $D=B_{1} \oplus_{A} B_{2} \oplus_{A} \ldots \oplus_{A} B_{n}$ then $\delta_{\alpha}(D / A)=\sum_{1 \leq i \leq n} \delta_{\alpha}\left(B_{i} / A\right)$.
3. (Submodularity) If A and B are embedded in a common superstructure, we have that $\delta(A B) \leq \delta(A)+\delta(B)-\delta(A \cap B)$.
4. $A \leq{ }_{\alpha} A$
5. If $A \leq{ }_{\alpha} B$, then $A \subseteq B$
6. If $A \leq_{\alpha} B$ and $B \leq{ }_{\alpha} C$, then $A \leq{ }_{\alpha} C$
7. $\varnothing \leq{ }_{\alpha} A$
8. \mathbf{K}_{α} is closed under substructure and isomorphism
9. If $A \leq_{\alpha} B$ then $A \cap C \leq{ }_{\alpha} B \cap C$.

Furthermore, it is clear that (1) - (8) hold for structures taken from \mathbf{K}_{α}^{+}and \preccurlyeq_{α} as well. In particular, both $\left(\mathbf{K}, \leq_{\alpha}\right)$ and $\left(\mathbf{K}_{\alpha}^{+}, \preccurlyeq{ }_{\alpha}\right)$ satisfy the conditions in Convention 1.3.2.

We show that (9) also holds for $\left(\mathbf{K}_{r}^{+}, \preccurlyeq_{r}\right)$:

Lemma 1.3.15. Fix r rational in $[0,2]$. If $A \npreccurlyeq_{r} B$ for $A, B \in \mathbf{K}_{r}^{+}$, then for $C \in \mathbf{K}_{r}^{+}$ we have $A \cap C \npreccurlyeq r B \cap C$.

Proof. Let X be any subset of $B \cap C$ containing $A \cap C$. By submodularity, $\delta_{r}(X / A \cap$ $C) \geq \delta_{r}(X / A)$. Since $A \preccurlyeq_{r} B$, we have that $A \preccurlyeq_{r} A X$, so that the latter term is >0 unless $A X=A$, in which case $X=A \cap C$.

The following definition is from [14]:

Definition 1.3.16. Let A, B be any two sub-graphs of a common extension. Then the base of B over A, denoted B^{A}, is the set of all vertices in A which have an edge to some vertex in $B \backslash A$.

Definition 1.3.17. A pair of structures (A, B) is said to be minimal if $A \not \leq B$ but $A \leq A X$ for any proper subset $X \subsetneq B$. If (A, B) is a minimal pair such that $B^{A}=A$ then we say that (A, B) is biminimal.

Notation 1.3.18. If $\left\{B_{i}: i \in I\right\}$ is a set of structures which are pairwise disjoint over some A, then $\oplus_{i \in I}\left(B_{i} / A\right)$ denotes the free amalgam of all the B_{i} over A. If each B_{i} has base $X_{i} \subseteq A$, then we write $\left.\oplus_{i \in I}\left(B_{i} / A^{X_{i}}\right)\right)$ to denote this.

Lemma 1.3.19. For any $\beta \in[0,1]: \delta_{\beta}(B / A)=\delta_{\beta}\left(B / B^{A}\right)$

Proof. Note that $\delta_{\beta}(B / A)=|B \backslash A|-\beta(e(B \backslash A)+e(B \backslash A, A))=|B \backslash A|-\beta(e(B \backslash$ $\left.A)+e\left(B, B^{A}\right)\right)=\delta\left(B / B^{A}\right)$.

Definition 1.3.20. The amalgamation class (\mathbf{K}, \leq) has the granularity property if for any positive $m \in \omega$ there is some positive real number $\operatorname{Gr}(m)$ so that for any $A \in \mathbf{K}$, if B is an extension of A with $|B \backslash A|<m$ and $\delta(B / A)<0$, we have $\delta(B / A) \leq-G r(m)$.

For $\alpha \in(0,1)$ irrational, it is shown in [10] and [2] that $\left(\mathbf{K}_{\alpha}, \leq_{\alpha}\right)$ has the granularity property. It is clear for rational $\alpha=\frac{p}{q}$. For $m \in \omega$ let $\operatorname{Gr}(m):=1 / q$ where $\alpha=\frac{p}{q}$.

Definition 1.3.21. For any amalgamation class (\mathbf{K}, \leq), the sentences $S_{(\mathbf{K}, \leq)}$ say that for $M \models S_{(\mathbf{K}, \leq)}$:

- Existential axioms stating that Age $(M) \subseteq \mathbf{K}$
- $\forall \exists$ axioms stating that for $A \subseteq_{\omega} M$ and $A \leq B, A$ extends to an embedding of B into M

When $\mathbf{K}=\{A: \varnothing \leq A\}$ then we will write $S_{(\mathbf{K}, \leq)}$ simply as S_{\leq}. When we further have that \leq is \leq_{α} as defined above, we will denote $S_{\leq_{\alpha}}$ by S_{α}.

It is shown in both [10] and [8] that for irrational α the complete theory of the $\left(\mathbf{K}_{\alpha}, \leq_{\alpha}\right)$ is axiomatized by S_{α}.

It will often be useful to talk about locally closed sets and local closures:

Definition 1.3.22. For $m \in \omega, \alpha \in[0,2]$:

- $A \leq_{\alpha}^{m} B$ means that for any $X \subseteq B$ with $|X|<m, A \leq{ }_{\alpha} A X$.
- If there is a unique minimal superset A^{\prime} of A so that $A^{\prime} \leq_{\alpha}^{m} B$, then we will denote A^{\prime} by $\operatorname{cl}_{B}^{m}(A)$.

It is shown in Lemma 3.17 of [2] that $\mathrm{cl}^{m}(A)$ is well defined for structures M with $\operatorname{Age}(M) \subseteq \mathbf{K}_{\alpha}$; the same argument also applies to M with $\operatorname{Age}(M) \subseteq \mathbf{K}_{\alpha}^{+}$

For $r \in[0,2]$ rational, we will also want to talk about the notion of semigenericity, as introduced in [1]. This is a local approximation of genericity, and is defined by: For every $m \in \omega$ and finite $A \preccurlyeq_{r} B$, if $A \subseteq M$ then A can be extended in M to B^{\prime}, a copy of B over A satisfying $\operatorname{cl}_{M}^{m}\left(B^{\prime}\right)=B^{\prime} \oplus_{A} \mathrm{cl}_{M}^{m}(A)$. Unlike genericity, this is a first-order notion:

Definition 1.3.23. Let r be any rational in $[0,1]$. For $A, B \in \mathbf{K}_{r}^{+}$with $A \not{ }_{r} B$ and $m \in \omega$, let $\psi_{A, B}^{m}(\bar{x}, \bar{y})$ be the formula $\forall z_{1} \ldots z_{m} \bigvee_{C} \Delta_{C}(\bar{x} \bar{y} \bar{z})$ where C ranges
over m-ary extensions of B which satisfy either $B \preccurlyeq_{r} C$ or $C^{B} \subseteq A$, and the enumeration is chosen so that $\Delta_{C}(\bar{x} \bar{y} \bar{z}) \Longrightarrow \bar{x} \subseteq A$. Then we define Σ_{r} to be the extension of $S_{\preccurlyeq_{r}}$ obtained by adding, for each $A \npreccurlyeq_{r} B$ and $m \in \omega$, the sentence: $\forall \bar{x}\left[\Delta_{A}(\bar{x}) \rightarrow \exists \bar{y}\left(\Delta_{B}(\bar{x} \bar{y}) \wedge \psi_{A, B}^{m}(\bar{x} \bar{y})\right)\right]$.

We note that Σ_{r} is Π_{3} and will be satisfied by the $\left(\mathbf{K}_{r}^{+}, \preccurlyeq_{r}\right)$-generic (by full amalgamation: $\operatorname{cl}(A) \preccurlyeq r^{\operatorname{cl}(A)} \oplus_{\mathrm{cl}^{m}(A)} B$, so the latter embeds strongly into the generic). We also note that the equivalent axioms are satisfied by the $\left(\mathbf{K}_{\alpha}, \leq_{\alpha}\right)$ generics for irrational α, but since these are axiomatized by S_{α}, we simply define Σ_{α} to be S_{α} (as a notational convenience).

1.3.2 0-Extensions

Our main results will be that the model theory of the rationally weighted analogues of the Shelah-Spencer graphs is wild. This wildness is introduced by nontrivial extensions of relative pre-dimension 0 . Such extensions will be part of the base set's closure - the possible types of these closures are thereby greatly increased, to the point that the resulting structure will often be undecidable.

The existence of such extensions will be based on the following notion. The term was coined in [8] and reflects a similar idea in [10].

Definition 1.3.24. An amalgamation class (\mathbf{K}, \leq) which is defined by a delta function δ is said to have the approximating extension property, or AEP, if for any $A \in \mathbf{K}$ and $A \leq B$, given $m \in \omega$ and $\epsilon>0$ there is some $C \in \mathbf{K}$ which extends B and satisfies:

1. $A \leq C$
2. $\delta(C / A)<\epsilon$
3. $B \leq^{m} C$

Ikeda et al. show that $\left(\mathbf{K}_{\beta}, \leq_{\beta}\right)$ has AEP for any $\beta \in(0,1]$. We note that for rational r, AEP gives us that for any structure $A \leq B$ as above, there is a C as above with pre-dimension 0 . We call such an extension a 0 -extension; if (A, C) is additionally a minimal pair we will call C a minimal 0-extension. Similarly, if (A, C) is biminimal we call C a biminimal 0 -extension. The remainder of this section will be occupied with showing that such extensions exist. In doing so, we make heavy use of the machinery developed in [8].

Definition 1.3.25. Fix $r \in(0,1]$ rational. For s a real number with $0 \leq s \leq 2$ we say that (E, a, b) is an s-component if $E \in \mathbf{K}_{r}, a, b \in E$ and for non-empty $X \subseteq E$:

- $\delta_{r}(X) \geq 1$ if $\{a, b\} \nsubseteq X$
- $\delta_{r}(X) \geq s$ if $\{a, b\} \subseteq X$
- $\delta_{r}(E)=s$

If, in addition, we have that $\delta(X)=s$ implies $X=E$ whenever $\{a, b\} \subseteq X$, then we say that (E, a, b) is a minimal s-component. Any s-component contains a minimal s-component.

We will adopt the convention in this paper that all components are proper that is there is no edge between a and b. It is shown in [8] that proper components exist. Specifically, we have:

Lemma 1.3.26. Let $r=\frac{p}{q}$, and let $t=\frac{1}{q}$.

- There exist minimal $1+t$ and $1-t$ components
- For $1 \leq s, t \leq 2$ and $s+t-1 \leq 2$, if $\left(E_{0}, a, b\right)$ and $\left(E_{1}, b, c\right)$ are respectively s - and t-components, then $\left(E_{0} \oplus_{b} E_{1}\right)$ is an $s+t$-1-component.

Given a minimal u-component $\left(D, d_{0}, d_{1}\right)$, we define a chain of m copies of D as $\left(D_{m-1}, d_{0}, d_{m}\right)$, where D_{0} is isomorphic to D, and given D_{i} we let $D_{i+1}:=$ $D_{i} \oplus_{d_{i+1}} D_{i+1}$ where $\left(D_{i+1}, d_{i+1}, d_{i+2}\right)$ is isomorphic to $\left(D, d_{0}, d_{1}\right)$.

Lemma 1.3.27. Let $\left(E, e_{0}, e_{k}\right)$ be a chain of k copies of a minimal ($1-t$)-component, let $\left(F^{l}, f^{l}, g^{l}\right)$ be a chain of $\left\lceil\frac{q}{2}\right\rceil$ copies of a minimal $(1+t)$-component, and let $\left(F^{r}, f^{r}, g^{r}\right)$ be a chain of $\left\lfloor\frac{q}{2}\right\rfloor$ copies of a minimal $(1+t)$-component. Then:

1. $\left(F^{l}, f^{l}, g^{l}\right)$ is a minimal $\left(1+\left\lceil\frac{q}{2}\right\rceil t\right)$-component.
2. $\left(F^{r}, f^{r}, g^{r}\right)$ is a minimal $\left(1+\left\lfloor\frac{q}{2}\right\rfloor t\right)$-component.
3. For any subset $X \subseteq E, \delta(X) \geq 1-k t$ and equality holds if and only if $X=E$.

Proof. That the first two are components of the required pre-dimension follows from Lemma 1.3.26. Let $\left(D, d_{0}, d_{1}\right)$ be a minimal $(1+t)$ or $(1-t)$ componenet; we show by indcution that if $\left(D_{k}, d_{0}, d_{k}\right)$ is a chain of k copies of D, then for $X \subseteq D$, $\delta(X) \geq 1 \pm k t$ with equality holding exactly when $X=D$. For $k=1$ this is just the definition of a minimal component. Otherwise, let $D_{k+1}=D_{k} \oplus_{d_{k}} D^{\prime}$ where ($D^{\prime}, d_{k}, d_{k+1}$) is isomorphic to $\left(D, d_{0}, d_{1}\right)$. If $X \subseteq D_{k}$ or $X \subseteq D^{\prime}$, then the result is immediate from induction. Otherwise, let $X_{k}=X \cap D_{k}$ and let $X^{\prime}=X \cap D^{\prime}$. Then
$X=X_{k} \oplus_{d_{k}} X^{\prime}$, and $\delta(X)=\delta\left(X_{k}\right)+\delta\left(X^{\prime}\right)-1 \geq(1 \pm k t)+(1 \pm t)-1=1 \pm(k+1) t$ as desired.

We would like to use the above to construct biminimal 0-extensions. We first note the following special case:

Remark 1.3.28. If $A \in \mathbf{K}_{r}$ is a singleton, then let $B=A b$ for some b with an edge from A to b. Let C be an extension of B which is a 0 -extension of A. In their proof of AEP for this class, Ikeda, Kikyo, and Tsuboi gave a construction of C which satisfied $C^{A}=C^{B}$. Therefore taking a subset C^{\prime} of C so that $\left(A, C^{\prime}\right)$ is minimal gives a biminimal pair.

Proposition 1.3.29. Let $r \in(0,1)$ be rational. Then for $A \in \mathbf{K}_{r}$ there is some $C \in \mathbf{K}_{r}$ so that (A, C) is a biminimal 0 -extension ${ }^{1}$.

Proof. Let $|A|=n$; by the previous remark we may assume that $n>1$. Extend A to a structure B which consists of n unrelated points, each with an edge to a unique vertex of A. For any $b \in B, \delta_{r}(b / A)=1-r$; then $1-r=k t$ for some $k \in \omega$, and $\delta_{r}(B / A)=n k t$.

Let $\left(E, e_{0}, e_{k}\right),\left(F^{l}, f^{l}, g^{l}\right)$, and $\left(F^{r}, f^{r}, g^{r}\right)$ be as defined in Lemma 1.3.27. We define C as follows. For $i<n$, let $\left(E_{i}, x_{i}, y_{i}\right)$ be a copy of $\left(E, e_{0}, e_{k}\right)$, let $\left(F_{i}^{l}, y_{i}, b_{i}\right)$ be a copy of $\left(F^{l}, f^{l}, g^{l}\right)$, and let $\left(F_{i}^{r}, b_{i}, x_{i+1}\right)$ be a copy of $\left(F_{i}^{r}, f^{r}, g^{r}\right)$. We adopt the convention that for $i \leq n-1, i^{\prime}=i+1$ if $i<n-1$ and 0 otherwise. Then let $C_{0}:=E_{1} \oplus_{y_{1}} F_{1}^{l}$, and for $i<n-1$, let $C_{i^{\prime}}:=C_{i} \oplus_{b_{i^{\prime}}} F_{i^{\prime}}^{r} \oplus_{x_{i^{\prime \prime}}} E_{i^{\prime \prime}} \oplus_{y_{i^{\prime \prime}}} F_{i^{\prime \prime}}^{l}$. Finally,

[^0]we let $C:=C_{n-1} \oplus_{b_{0}, x_{1}} F_{0}^{r}$. The idea is that C forms a circle of structures with the "negative" copies of E "buffered" by the "positive" copies of F^{l} and F^{r}.

We need to show that $C \in \mathbf{K}_{r}$ and that (A, C) is a biminimal 0-extension. Let X be an arbitrary subset of $C \backslash A$, and let $B_{0}=B^{X}$. Then we show that $\delta_{r}(X)>0$ and that $\delta_{r}(X / A) \geq 0$ with equality exactly when $X=C \backslash A$. Note that by the linearity of δ_{r}, we may assume that X is connected.

We will calculate $\delta(X / X \cap B)$. Let $m=|X \cap B|$ and define $W_{i}:=\left(X \cap F_{i}^{r}\right) \oplus_{x_{i}}$ $\left(X \cap E_{i}\right) \oplus_{y_{i}}\left(X \cap F_{i^{\prime}}^{l}\right)$. For each $i, \delta\left(W_{i} / b_{i} b_{i^{\prime}}\right)$ is given by

$$
\delta\left(X \cap F_{i}^{r} / b_{i}\right)+\delta\left(X \cap E_{i} / x_{i} y_{i}\right)+\delta\left(X \cap F_{i^{\prime}}^{l} / b_{i^{\prime}}\right)
$$

The bounds on each term depend on $\left\{x_{i}, y_{i}\right\} \cap X$. The first term is at least $\left\lfloor\frac{q}{2}\right\rfloor t$ if $x_{i} \in X$ and strictly greater than 0 otherwise. Similarly the last term is either at least $\left\lceil\frac{q}{2}\right\rceil t$ for $y_{i} \in X$ or else strictly greater than 0 . We also have that the middle term is at least $-1-k t$. Combining this information (and using connectedness), we have

$$
\delta\left(W_{i} / b_{i} b_{i^{\prime}}\right) \geq \begin{cases}-1-k t & \text { if } X \cap\left\{x_{i}, y_{i}\right\}=\varnothing \text { and } X \cap\left\{b_{i}, b_{i^{\prime}}\right\}=\varnothing \\ 0 & \text { if } X \cap\left\{x_{i}, y_{i}\right\}=\varnothing \text { and } X \cap\left\{b_{i}, b_{i^{\prime}}\right\} \neq \varnothing \\ \left\lfloor\frac{q}{2}\right\rfloor t-k t & \text { if } X \cap\left\{x_{i}, y_{i}\right\}=\left\{x_{i}\right\} \\ \left\lceil\frac{q}{2}\right\rceil t-k t & \text { if } X \cap\left\{x_{i}, y_{i}\right\}=\left\{y_{i}\right\} \\ -k t & \text { if } X \cap\left\{x_{i}, y_{i}\right\}=\left\{x_{i}, y_{i}\right\}\end{cases}
$$

with equality holding in the last case exactly when $W_{i}=F_{i}^{r} \oplus_{x_{i}} E_{i} \oplus_{y_{i}} F_{i^{\prime}}^{l}$. We also have that $\delta\left(W_{i} / b_{i}\right) \geq\left\lceil\frac{q}{2}\right\rceil t-k t$ and $\delta\left(W_{i} / b_{i^{\prime}}\right) \geq\left\lfloor\frac{q}{2}\right\rfloor t-k t$.

For $m=0$, we then have that $\delta(X) \geq \delta\left(W_{0} / b_{0} b_{1}\right)+\delta\left(b_{0} b_{1}\right) \geq 1-k t=r>0$. We also have that $\delta(X / A)=\delta(X)>0$.

For $0<m<n$, if $\left\lfloor\frac{q}{2}\right\rfloor t-k t<0$, we have:

$$
\begin{aligned}
\delta(X / X \cap B) & =\delta\left(W_{n-1} / b_{0}\right)+\delta\left(W_{m-1} / b_{m-1}\right)+\sum_{i=0}^{m-2} \delta\left(W_{i} / b_{i} b_{i^{\prime}}\right) \\
& \geq\left(\left\lceil\frac{q}{2}\right\rceil t-k t\right)+\left(\left\lfloor\frac{q}{2}\right\rfloor t-k t\right)-(m-1) k t \\
& =1-2 k t-m k t+k t \\
& =1-m k t-k t \\
& =r-m k t
\end{aligned}
$$

We have $\delta(X)=\delta(X / X \cap B)+\delta(X \cap B) \geq(r-m k t)+m=r+m r>0$. Also, $\delta(X / A)=\delta\left(A X / X^{A}\right)=\delta(X / X \cap B)+\delta(X \cap B / A) \geq(r-m k t)+m k t=r>0$. If $\left\lfloor\frac{q}{2}\right\rfloor t-k t>0$, then $\delta(X) \geq m-(m-1) k t>m r>0$ and $\delta(X / A) \geq-(m-1) k t+$ $m k t>m r>0$.

For $m=n$, we have $\delta(X / X \cap B)=\sum_{i=0}^{n-1} \delta\left(W_{i} / b_{i} b_{i^{\prime}}\right)=\sum_{i=0}^{n-2} \delta\left(W_{i} / b_{i} b_{i^{\prime}}\right)+$ $\delta\left(W_{n-1} / b_{n-1} b_{0}\right)$. Applying (\star), we have that $\delta(X / X \cap B) \geq(n-1)(-k t)-k t=-n k t$. Then $\delta(X) \geq-n k t+n=n r>0$ and $\delta(X / A) \geq-n k t+n k t=0$, with equality holding only if every W_{i} is $F_{i}^{r} \oplus_{x_{i}} E_{i} \oplus_{y_{i}} F_{i^{\prime}}^{l}$. Thus (A, C) is a biminimal pair, as desired.

Chapter 2

Up and Down

In this chapter we will study ultraproducts $\prod_{\mathcal{U}} M_{\alpha_{n}}$ for $\left\{\alpha_{n}\right\}$ a sequence converging to a rational $r \in(0,1)$ and $M_{\alpha_{n}}$ a model of $\Sigma_{\alpha_{n}}$. We will see that the theory of the ultraproduct is either ω-stable or undecidable, depending on whether the sequence can be thought of as converging upward or downward.

2.1 Going Up

Let $\left\{\alpha_{n}\right\}$ be a sequence converging to some rational $r \in(0,1)$ which is bounded above by r. Let $M_{\alpha_{n}}$ be any model of $\Sigma_{\alpha_{n}}$, let \mathcal{U} be any non-principal ultrafilter and let \mathbf{M}_{r} be the ultraproduct $\prod_{\mathcal{U}} M_{\alpha_{n}}$. Then we will show that \mathbf{M}_{r} is elementarily equivalent to the $\left(\mathbf{K}_{r}, \leq_{r}\right)$ generic.

Lemma 2.1.1. The following statements hold of \mathbf{M}_{r} :

1. The age of \mathbf{M}_{r} is precisely the set of finite graphs G satisfying $\delta_{r}(H) \geq 0$ for every $H \subseteq G$. That is, Age $\left(\mathbf{M}_{r}\right)=\mathbf{K}_{r}$.
2. For every $A \subseteq_{\omega} \mathbf{M}_{r}$, if $A \leq_{r} \mathbf{M}_{r}$ and $A \leq_{r} B$, then B embeds strongly into \mathbf{M}_{r} over A.
3. For $A \subseteq_{\omega} \mathbf{M}_{r}$ and $A \leq_{r} B, A$ extends to an embedding of B into \mathbf{M}_{r} In particular, $\mathbf{M}_{r} \models S_{r}$

Proof. For all three items, we note that for $A \subseteq B$, if $h=h(A, B)$ then $A \leq_{r} B$ iff $r \in[0, h]$ iff $\alpha_{n} \in[0, h]$ for every n.

To show (1) we note that, by Łoś, $\mathbf{M}_{r} \models \exists \bar{x} \Delta_{A}(\bar{x})$ iff $M_{\alpha_{n}} \models \exists \bar{x} \Delta_{A}(\bar{x})$ for cofinitely many n. For a given $n, M_{\alpha_{n}} \models \exists \bar{x} \Delta_{A}(\bar{x})$ iff $\alpha_{n} \in[0, h(A)]$, so $\mathbf{M}_{r} \models \exists \bar{x} \Delta_{A}(\bar{x})$ iff there is some N so that $\alpha_{n} \in[0, h]$ for $n>N$. Since $\left\{\alpha_{n}\right\}$ is bounded above by r, we must have $r \in[0, h]$

For (2) consider the type $p(\bar{y})$ over A consisting of the following schema:

- $\Delta_{B}(A \bar{y})$
- For each $k \in \omega$, the formula e_{k} :

$$
\forall z_{1} \ldots z_{k} u(\bar{z}) \rightarrow \bigvee_{i} \Delta_{C_{i}^{k}}(A \bar{y} \bar{z})
$$

Where the $\Delta_{C_{i}^{k}}$ enumerate the diagrams of strong extensions of B of size k and $u(\bar{z})$ states that all the z_{i} are distinct.

We show that p is finitely satisfiable and hence consistent; the ω_{1}-saturation of \mathbf{M}_{r} will then guarantee that it is realized. Since $A \leq_{r} B$, we have that $A \leq_{\alpha_{n}} B$ for all n. Since $A \leq_{r} \mathbf{M}_{r}$, we have that $A \upharpoonright M_{\alpha_{n}} \leq_{r}^{k} M_{\alpha_{n}}$ for cofinitely many n. Then, by our choice of $M_{\alpha_{n}}, A \upharpoonright M_{\alpha_{n}}$ extends to a k-strong copy of B in $M_{\alpha_{n}}$. This copy will witness any finite subset of p that contains no e_{l} for $l>k$.

To show (3), we apply Los's theorem. Suppose $A \subseteq_{\omega} \mathbf{M}_{r}$ and $A \leq_{r} B$; let $h=h(A, B)$. Since $A \leq_{r} B$, we must have $r \in(0, h]$. Therefore $A \leq_{\alpha_{n}} B$ for every $n \in \omega$, so $M_{\alpha_{n}}$ models that every copy of A extends to a copy of B; thus the ultraproduct does as well by Loś.

We will need the following:

Definition 2.1.2. For $m \in \omega$:

- An m-chain over a finite subset A is a sequence of extensions B_{i} with $B_{0}=A$, $B_{i} \subseteq B_{i+1}, B_{i} \not \leq B_{i+1}$, and $\left|B_{i+1} \backslash B_{i}\right|<m$.
- $X_{m}(A)$ is the set of all B such that B is the final element of some m-chain over A. It is worth noting that the relation $B \in X_{m}(A)$ is equivalent to the notion of A being intrinsic in B, used in [2] and [1].
- The class (\mathbf{K}, \leq) has bounded m-closures if there is a function $t: \omega \times \omega \rightarrow \omega$ which is monotone increasing in both arguments and such that: for M any model with $\operatorname{Age}(M) \subseteq \mathbf{K}$, if $A \subseteq_{\omega} M$, then for any $m \in \omega$ and $B \in X_{m}(A)$, there are at most $t(|A|,|B|)$ copies of B which embed into M over A.

A theory T is said to be near model complete if every formula is equivalent to a boolean combination of existential formulae mod T. A model is near model complete if it's theory is.

Definition 2.1.3. An amalgamation class (\mathbf{K}, \leq) is good if it satisfies all of the following:

- (\mathbf{K}, \leq) is a full amalgamation class
- There is a predimension function δ so that $A \leq B$ is given by $\delta\left(B^{\prime} / A\right) \geq 0$ for every $B^{\prime} \subseteq_{\omega} B$
- (K, \leq) has the granularity property, satisfies AEP, and has bounded mclosures.

We extract the following theorem from [10]:

Main Theorem 2.1.1. Let (\mathbf{K}, \leq) be a good amalgamation class, and let $M \models S_{\leq}$. Then the theory of M is nearly model complete and is axiomatized by S_{\leq}.

We will make use of the following theorem, paraphrased from [1]:

Theorem 2.1.4. Let (\mathbf{K}, \leq) be any full amalgamation class which satisfies the conclusions of Lemma 1.3.14 and has bounded m-closures. Then the (\mathbf{K}, \leq)-generic is near model complete.
(Proof of Main Theorem). It is shown in [8] that for any good amalgamation class, S_{\leq}is complete. By Theorem 2.1.4 we have that S_{\leq}is near model complete, since it is the theory of the generic.

Note that this is slightly stronger than the individual results in either BaldwinShelah ([1]) or Ikeda, Kikyo, and Tsuboi ([8]): Baldwin Shelah show near model completeness of a Π_{3} theory, while the latter authors show the axiomatization by S_{\leq}but don't show near model completeness.

Corollary 2.1.5. Let $T=\operatorname{Th}\left(\mathbf{M}_{r}\right)$, then T is nearly model complete and is axiomatized by S_{r}.

Proof. We need only show that $\left(\mathbf{K}_{r}, \leq_{r}\right)$ is a good amalgamation class. It has free amalgamations: for $A \leq_{r} B_{1}, A \leq_{r} B_{2}$, let $D=B_{1} \oplus_{A} B_{2}$. For any subset $D^{\prime}=B_{1}^{\prime} \oplus_{A} B_{2}^{\prime}$, we have $\delta_{r}\left(D^{\prime} / A\right)=\delta_{r}\left(B_{1}^{\prime} / A\right)+\delta_{r}\left(B_{2}^{\prime} / A\right)$, and both terms are non-negative by hypothesis. For full amalgamation, we note that $\delta_{r}\left(B \oplus_{A} C\right)=$ $\delta_{r}(B)+\delta_{r}(C)-\delta_{r}(A)=\delta_{r}(B / A)+\delta_{r}(C)$ which must be positive by the hypotheses.

AEP for $\left(\mathbf{K}, \leq_{r}\right)$ is shown in Proposition 3.11 of [8]
Boundedness of m-closures comes from the rationality of r : if $r=p / q$, then any extension of B of A which is not strong satisfies $\delta_{r}(B / A) \leq-\frac{1}{q}$. Therefore A can have at most $\delta(A) q$ copies of B which embed over it in M, so we simply let $t(|A|,|B|):=\max _{\left\{A^{\prime}:\left|A^{\prime}\right|=|A|\right\}} \delta_{r}\left(A^{\prime}\right) q$.

The following is Theorem 3.34 of [2]:

Theorem 2.1.6. The theory of the $\left(\mathbf{K}_{r}, \leq_{r}\right)$-generic is ω-stable.

2.2 Coming Down

In this section we consider a decreasing sequence $\left\{a_{n}\right\}$ which converges to some rational $r \in(0,1)$. We want to examine the theory of the ultraproduct $\mathbf{M}_{r}:=$ $\prod_{\mathcal{U}} M_{\alpha_{n}}$, where \mathcal{U} is any non-principal ultrafilter and $M_{\alpha_{n}}$ is a model of $\Sigma_{\alpha_{n}}$. We will see that any such ultraproduct satisfies Σ_{r}, but that Σ_{r} is far from complete. In fact, we will see that it has continuum many completions, and that the theory of the ultraproduct is not even recursively axiomatizable.

Fix r throughout the rest of this section; we will work with the class $\left(\mathbf{K}_{r}^{+}, \preccurlyeq_{r}\right)$. We will show that any model of Σ_{r} interprets Robinson's R and is thus essentially undecidable. We will also show that the $\left(\mathbf{K}_{r}^{+}, \preccurlyeq_{r}\right)$-generic and any \mathbf{M}_{r} (independently of the sequence chosen or the ultrafilter) are models of Σ_{r}.

Our key proposition states that relative to a finite subset of a model of Σ_{r}, finite relations are definable; this generalizes a similar result in [12]. Recall that $[M]^{n}$ denotes the subsets of M with cardinality precisely n.

Proposition 2.2.1 (Definability of Finite Relations). Let $M \models \Sigma_{r}$. For any $n \in \omega$, there is a predicate $R\left(x_{0}, \ldots, x_{n-1} ; v\right)$ and an $m \in \omega$ so that for any $R_{0} \subseteq_{\omega}[M]^{n}$ and S with $\cup R_{0} \subseteq S \subseteq_{\omega} M$, there is some $v \in M$ so that $R(S ; v)=R_{0}$; that is, for $\bar{a} \in S^{n}, M \models R(\bar{a} ; v)$ if and only if $\bar{a} \in R_{0}$ (where we view \bar{a} as a set rather than a tuple). We will denote the relation $R(\cdot ; v)$ by R_{v}.

Proof. Enumerate R_{0} as $\left\{\bar{a}_{i}^{\prime}: i<N\right\}$. Let $z \bar{a}$ be a graph with $n+1$ vertices and no edges. Fix U a biminimal extension of $z \bar{a}$, and note that for every $i<N$ there is a graph $z \bar{a}_{i} U_{i}$, in which \bar{a}_{i} is isomorphic to \bar{a}_{i}^{\prime} and U_{i} is a copy of U over $z \bar{a}_{i}$ (that is, the internal structure of \bar{a}_{i}^{\prime} is irrelevant). Let S^{\prime} be an isomorphic copy of S in which the image of each \bar{a}_{i}^{\prime} is \bar{a}_{i}, let z be a new vertex with no edge to any \bar{a}_{i}, and let W be $\bigoplus_{i<N}\left(U_{i} / \bar{a}_{i} z\right)$ with U_{i} chosen as in the previous sentence.

We will show that W embeds strongly into M over $\cup R_{0}$. Let $\beta\left(\bar{u}, \bar{u}^{\prime}\right)$ state that \bar{u} is a permutation of \bar{u}^{\prime} or else that $\bar{u} \cap \bar{u}^{\prime}=\varnothing$. Then let $R(\bar{x} ; v)$ be $\exists \bar{u} \bigvee_{\sigma} \Delta_{U}(v \sigma(\bar{x}) \bar{u}) \wedge\left[\forall \bar{u}, \bar{u}^{\prime} \Delta_{U}(v \sigma(\bar{x}) \bar{u}) \rightarrow \beta\left(\bar{u}, \bar{u}^{\prime}\right)\right]$ where σ runs over permutations of \bar{x}, we will see that R_{v} is precisely as required.

We show that $\bigcup_{i<N} \bar{a}_{i} \preccurlyeq_{r} W$, via the following sequence of calculations, which hold for every $i<N$:

$$
\begin{gather*}
\bar{a}_{i} \preccurlyeq_{r} z \tag{2.1}\\
\bar{a}_{i} \preccurlyeq_{r} U_{i} \text { and } z \preccurlyeq U_{i} \tag{2.2}\\
\bar{a}_{i} \preccurlyeq_{r} z U_{i} \tag{2.3}\\
\cup_{i<N} \bar{a}_{i} \preccurlyeq_{r} W \tag{2.4}
\end{gather*}
$$

(2.1) is immediate since v is unrelated to \bar{a}_{i} - it has relative pre-dimension 1 .

To prove (2.2), note that for any $A \subseteq U_{i} \backslash \bar{a}_{i}$, with $z \in A$, we have $\delta\left(A / \bar{a}_{i}\right)=$ $\delta\left(A / \bar{a}_{i} z\right)+\delta\left(\bar{a}_{i} z / \bar{a}_{i}\right)$. By the definition of $U, \delta\left(A / \bar{a}_{i} z\right) \geq 0$; we also have $\delta\left(\bar{a}_{i} z / \bar{a}_{i}\right)=$ 1 , so $\delta\left(A / \bar{a}_{i}\right)>0$. If $z \notin A$, then by submodularity we have that $\delta\left(A / \bar{a}_{i}\right) \geq$ $\delta\left(A / z \bar{a}_{i}\right)$, and we just showed the latter to be positive.

Similarly, if $\bar{a}_{i} \subseteq A$ then $\delta(A / z)=\delta\left(A / \bar{a}_{i} z\right)+\delta\left(\bar{a}_{i} z / z\right)$. The first term is nonnegative since U_{i} is a 0 -extension and the second term is equal to $\delta\left(\bar{a}_{i}\right)>0$ since z is unrelated and $\bar{a} \subseteq M$. If $\bar{a}_{i} \nsubseteq A$ then $\delta(A / z) \geq \delta\left(A / \bar{a}_{i} z\right)$ by sub-modularity, and the latter is positive by the previous sentence.

To show (2.3), let A be any subset of $z U_{i}$. Then if $z \notin A$ the result is immediate by (2.2); if $z \in A$ we have $\delta\left(A / \bar{a}_{i}\right)=\delta\left(A / \bar{a}_{i} z\right)+\delta\left(\bar{a}_{i} z / \bar{a}_{i}\right)$ which must be positive since $\bar{a}_{i} z \leq_{r} A$ and $\bar{a}_{i} \preccurlyeq \bar{a}_{i} z$.

For (2.4), we first note that for fixed $j, \bar{a}_{j} \preccurlyeq W$. In fact, for $A \subseteq W \backslash \bar{a}_{j}$, we have

$$
\begin{aligned}
\delta\left(A / \bar{a}_{j}\right)= & \left|A \backslash \bar{a}_{j}\right|-r e\left(A / \bar{a}_{j}\right) \\
& =\left|A \backslash \bar{a}_{j}\right|-r\left(e\left(U_{j} z \cap A / \bar{a}_{j}\right)+\sum_{i \neq j} e\left(U_{j} z \cap A\right)\right) \\
= & \left|U_{j} z \cap A \backslash \bar{a}_{j}\right|-r e\left(U_{j} z \cap A / \bar{a}_{j}\right)+\sum_{i \neq j}\left|U_{i} \cap A\right|-r e\left(U_{i} z \cap A\right) \\
= & \left|U_{j} z \cap A \backslash \bar{a}_{j}\right|-r e\left(U_{j} z \cap A / \bar{a}_{j}\right)+\sum_{i \neq j}\left|U_{i} z \cap A \backslash z\right|-r e\left(U_{i} z \cap A\right) \\
= & \left|U_{j} z \cap A \backslash \bar{a}_{j}\right|-r e\left(U_{j} z \cap A / \bar{a}_{j}\right)+ \\
& \quad \sum_{i \neq j}\left(\left|U_{i} z \cap A \backslash z\right|-r\left(e\left(U_{i} z \cap A \backslash z\right)+e\left(U_{i} z \cap A, z\right)\right)\right) \\
= & \delta\left(A \cap U_{j} z / \bar{a}_{j}\right)+\sum_{i \neq j} \delta\left(A \cap U_{i} z / z\right)
\end{aligned}
$$

Each term is positive by (2.2).
Let $X=\cup_{i<N} \bar{a}_{i}$. Then note that for any $U^{\prime} \subsetneq U_{i} \backslash X z, X z \preccurlyeq U^{\prime}$. We calculate:

$$
\begin{aligned}
\delta\left(U^{\prime} / X z\right) & =\left|U^{\prime}\right|-r\left[e\left(U^{\prime}\right)+e\left(U^{\prime}, z\right)+e\left(U^{\prime}, X\right)\right] \\
& =\left|U^{\prime}\right|-r\left[e\left(U^{\prime}\right)+e\left(U^{\prime}, z\right)+e\left(U^{\prime}, \bar{a}_{i}\right)\right] \\
& =\delta\left(U^{\prime} / \bar{a}_{i} z\right)
\end{aligned}
$$

Since $\bar{a}_{i} z \preccurlyeq U^{\prime}$, we have $X z \preccurlyeq U^{\prime}$.
Finally, we show that $X \preccurlyeq A$ for A any subset of W. We consider two cases. If $z \in A$, then

$$
\delta(A / X)=\delta(A / X z)+\delta(X z / X)
$$

Since z is unrelated to X, we have $\delta(X z / X)=1$. Note that $\delta(A / X z)=\delta(A \backslash$ $\{z\} / X z)=\sum_{i} \delta\left(A \cap U_{i} / X z\right)$, which is positive by the previous paragraph unless $A \backslash\{z\}=\bigcup_{i<N} U_{i}$, in which case it is zero. In either case $\delta(A / X) \geq 1$.

If $z \notin A$, then

$$
\begin{aligned}
\delta(A / X) & =\delta\left(\oplus_{i<N} A \cap U_{i} / X\right) \\
& =\sum_{i<N} \delta\left(A \cap U_{i} / X\right) \\
& =\sum_{i<N} \delta\left(A \cap U_{i} /\left(A \cap U_{i}\right)^{X}\right) \\
& =\sum_{i<N} \delta\left(A \cap U_{i} / \bar{a}_{i}\right)
\end{aligned}
$$

Since $\bar{a}_{i} \preccurlyeq U_{i}$, each term of the displayed sum is positive, and $X \preccurlyeq A$.
Let $m>|U \backslash \bar{a}|$. By the semi-genericity of M, there is a W^{\prime} which is an embedding of W into M over $\cup R_{0}$ satisfying $\mathrm{cl}^{m}\left(W^{\prime}\right)=\mathrm{cl}^{m}\left(\cup R_{0}\right) \oplus \cup R_{0} W^{\prime}$. Letting
z^{\prime} be the image of z in W^{\prime}, it is clear that $M \models R_{z}(\bar{a})$ for any $\bar{a} \in R_{0}$. Conversely, suppose that $M \models R_{z}(\bar{a})$ for $\bar{a} \in S^{n}$. Then for some permutation σ and some tuple \bar{u}^{\prime} in $M, z \sigma(\bar{a}) \bar{u}^{\prime}$ satisfies Δ_{U}. Thus $\delta_{r}\left(u^{\prime} / z \sigma(\bar{a})\right)=0$, so that $\bar{u}^{\prime} \subseteq \mathrm{cl}^{m}\left(W^{\prime}\right)$. We also have that $M \models E\left(z, u_{0}\right)$ for some $u_{0} \in \bar{u}^{\prime}$ by biminimality. Semigenericity yields that $u_{0} \in \mathrm{cl}^{m}\left(\cup R_{0}\right)$ or $u_{0} \in W^{\prime}$. In the former case, we contradict that $\mathrm{cl}^{m}\left(W^{\prime}\right)=\mathrm{cl}^{m}\left(\cup R_{0}\right) \oplus \cup R_{0} W^{\prime}$ since $z \in W^{\prime} \backslash \cup R_{0}$. Thus the latter case holds, and u_{0} is part of some realization of U already in W^{\prime}. Since such realizations are pairwise disjoint over $z S$, we must have $\bar{u}^{\prime} \subseteq W^{\prime}$ and $\bar{a} \in R_{0}$.

Corollary 2.2.2. Let M be as above and consider definable $S, T \subseteq M$. Suppose $D(x, y ; \bar{a})$ and $E(x, y ; \bar{b})$ are definable classes of equivalence relations on $S(M)$ and $T(M)$ respectively. Let $D_{\bar{a}}$ and $E_{\bar{b}}$ respectively denote the equivalence relations $D(\cdot, \cdot ; \bar{a})$ and $E(\cdot, \cdot ; \bar{b})$. Also, $n\left(D_{\bar{a}}\right), n\left(E_{\bar{b}}\right)$ will denote the number of $D_{\bar{a}}$ (respectively $E_{\bar{b}}$) equivalence classes in S (respectively T). If $n\left(D_{\bar{a}}\right)$ and $n\left(E_{\bar{b}}\right)$ are both finite, then for any v and $R_{v}\left(x_{0}, x_{1}\right)$ as in the representation lemma, we can define the following sentences on v, uniformly in \bar{a} and \bar{b} :

1. $F_{D_{\bar{a}}}(v)$ states that R_{v} represents a function with domain $S / D_{\bar{a}}$.
2. $I(v)$ states that R_{v} represents an injection.
3. $S_{E_{\bar{b}}}(v)$ states that R_{v} represents a surjection on $E_{\bar{b}}$ classes.
4. $J_{D_{\bar{a}}, E_{\bar{b}}}(v)$ states that R_{v} represents a relation between $D_{\bar{a}}$ classes and $E_{\bar{b}}$ classes.

As a consequence, if each $D_{\bar{a}}$-class and each $E_{\bar{b}}$-class is finite, we get:

- $n\left(D_{\bar{a}}\right)<n\left(E_{\bar{b}}\right)$ is first order
- $n\left(D_{\bar{a}}\right)=n\left(E_{\bar{b}}\right)$ is first order
- Given a definable $R \subseteq M$ and a definable equivalence relation $C(x, y, \bar{c})$ on R, the relation $n\left(D_{\bar{a}}\right) n\left(E_{\bar{b}}\right)=n\left(C_{\bar{c}}\right)$ is first order definable (uniformly in $\bar{a}, \bar{b}, \bar{c}$)

Proof.

$$
\begin{aligned}
F_{D_{\bar{a}}}(v):= & \forall x \in S \exists x^{\prime} \in S\left[D_{\bar{a}}\left(x, x^{\prime}\right) \wedge \exists!y \in T R_{v}\left(x^{\prime}, y\right)\right] \wedge \\
& \forall x^{\prime} \in S\left[D_{\bar{a}}\left(x, x^{\prime}\right) \wedge \exists y R_{v}\left(x^{\prime}, y\right) \rightarrow x=x^{\prime}\right] \\
I(v):= & \forall x_{0}, x_{1} \in S\left[\exists y \in T R_{v}\left(x_{0}, y\right) \wedge R_{v}\left(x_{1}, y\right) \rightarrow x_{0}=x_{1}\right] \\
S_{E_{\bar{b}}}(v):= & \forall y \in T \exists y^{\prime} \in T\left[\exists x \in S R_{v}\left(x, y^{\prime}\right) \wedge E_{\bar{b}}\left(y, y^{\prime}\right)\right] \\
J_{D_{\bar{a}}, E_{\bar{b}}}:= & \forall x_{0} x_{1}\left[\exists y_{0} y_{1} R_{v}\left(x_{0}, y_{0}\right) \wedge R_{v}\left(x_{1}, y_{1}\right) \wedge D_{\bar{a}}\left(x_{0}, x_{1}\right) \rightarrow x_{0}=x_{1}\right] \wedge \\
& \forall y_{0} y_{1}\left[\exists x_{0} x_{1} R_{v}\left(x_{0}, y_{0}\right) \wedge R_{v}\left(x_{1}, y_{1}\right) \wedge E_{\bar{b}}\left(y_{0}, y_{1}\right) \rightarrow y_{0}=y_{1}\right]
\end{aligned}
$$

Given these, $n\left(D_{\bar{a}}\right)<n\left(E_{\bar{b}}\right)$ can be written as saying that there is some v so that R_{v} is defined on $D_{\bar{a}}$ and $E_{\bar{b}}$ classes, and is an injective function which is not surjective. That is, we write $\exists v J_{D_{\bar{a}}, E_{\bar{b}}}(v) \wedge F_{D_{\bar{a}}}(v) \wedge I(v) \wedge \neg S_{E_{\bar{b}}}(v)$. Such a v will exist for finite $D_{\bar{a}}, E_{\bar{b}}$-classes by the previous proposition.

Saying $n\left(D_{\bar{a}}\right)=n\left(E_{\bar{b}}\right)$ can be accomplished by writing $\exists v J_{D_{\bar{a}}, E_{\bar{b}}}(v) \wedge F_{D_{\bar{\alpha}}}(v) \wedge$ $I(v) \wedge S_{E_{\bar{b}}}(v)$.

To encode that $n\left(D_{\bar{a}}\right) n\left(E_{\bar{b}}\right)=n\left(C_{\bar{c}}\right)$, we create an equivalence relation with exactly $n\left(D_{\bar{a}}\right) n\left(E_{\bar{b}}\right)$ and apply the previous paragraph. Thus, we let $\pi(v)$ be

$$
J_{D_{\bar{a}}, E_{\bar{b}}}(v) \wedge \forall x \in S \forall y \in T\left[\exists x^{\prime} \in S D_{\bar{a}}\left(x, x^{\prime}\right) \wedge \exists y^{\prime} \in T E_{\bar{b}}\left(y, y^{\prime}\right) \wedge R_{v}\left(x^{\prime}, y^{\prime}\right)\right]
$$

(i.e., π says that R_{v} relates every $D_{\bar{a}}$ class to every $E_{\bar{b}}$ class). Let $E_{v}\left(u_{0}, u_{1}\right):=$
$\exists \bar{u}\left[\exists x y \Delta_{U}(v x y \bar{u})\right] \wedge u_{0} \in \bar{u} \wedge u_{1} \in \bar{u}$ (i.e. u_{0} and u_{1} are in the same copy of U over some $v x y \bar{u})$. Then we write $n\left(D_{\bar{a}}\right) n\left(E_{\bar{b}}\right)=n\left(C_{\bar{c}}\right)$ as $\exists v \pi(v) \wedge " n\left(E_{v}\right)=n\left(C_{\bar{c}}\right)$ ".

This will be enough to show that any model of Σ_{r} interprets R, which we now define.

Definition 2.2.3. Let L_{R}, the language of arithmetic, be given by $L_{R}^{\mathrm{nl}}=\{+, \cdot, \leq$ $, 0,1\}$. Let η_{s} represent the term ' $\underbrace{1+\cdots+1}_{s \text { times }}$ '. Then Robinson's R is given by the following axiom schemes, for every $s, t \in \omega$:

1. $\eta_{s}+\eta_{t}=\eta_{s+t}$
2. $\left(\eta_{s}\right) \cdot\left(\eta_{t}\right)=\eta_{s t}$
3. $\eta_{s} \neq \eta_{t}$ for $s \neq t$
4. $\forall x, x \leq \eta_{s} \rightarrow x=\eta_{0} \vee \ldots \vee x=\eta_{s}$
5. $\forall x, x \leq \eta_{s} \vee \eta_{s} \leq x$

Theorem 2.2.4. Let $M \models \Sigma_{r}$. Then M recursively interprets a model $\left(\omega^{\prime},+, \cdot, \leq\right.$, 0,1) of Robinson's R.

Proof. Fix $A \in \mathbf{K}$ and choose any B so that (A, B) is a 0 -extension. We will equate natural numbers with the number of disjoint copies of B over A. Define $\omega^{\prime}(\bar{x})$ as $\Delta_{A}(\bar{x}) \wedge \forall \bar{y}_{1} \forall \bar{y}_{2}\left[\left(\Delta_{B}\left(\bar{x} \bar{y}_{1}\right) \wedge \Delta_{B}\left(\bar{x} \bar{y}_{2}\right)\right) \rightarrow\left(\bar{y}_{1} \cap \bar{y}_{2}=\varnothing \vee \bigvee_{\sigma} \sigma\left(\bar{y}_{1}\right)=\bar{y}_{2}\right)\right]$ where σ ranges over all permutations of \bar{y}_{1} and $=$ is interpreted in the obvious way.

Different representations of natural numbers will be equated if they represent the same number. To define this, we will define an equivalence relation which equates elements of the same realization of B over A. We then equate elements of ω^{\prime} which have the same number of classes under this relation. Specifically, we define $E\left(u_{0}, u_{1} ; \bar{x}\right)$ (alternatively, $\left.E_{\bar{x}}\left(u_{0}, u_{1}\right)\right)$ to be

$$
\omega^{\prime}(\bar{x}) \wedge \exists \bar{b} \Delta_{B}(\bar{x} \bar{b}) \wedge u_{0} \in \bar{b} \wedge u_{1} \in \bar{b}
$$

. We then define $=_{\omega}^{\prime}(\bar{x}, \bar{y})$ as $\omega^{\prime}(\bar{x}) \wedge \omega^{\prime}(\bar{y}) \wedge$ " $n\left(E_{\bar{x}}\right)=n\left(E_{\bar{y}}\right)$ ".
To define addition, first let $E^{A}(u, v ; \bar{x}, \bar{y})$ be

$$
\omega^{\prime}(\bar{x}) \wedge \omega^{\prime}(\bar{y}) \wedge \exists \bar{b}\left(\Delta_{B}(\bar{x} \bar{b}) \vee \Delta_{B}(\bar{y} \bar{b})\right) \wedge u \in \bar{b} \wedge v \in \bar{b}
$$

We then define addition as $A(\bar{x}, \bar{y}, \bar{z}):=" n\left(E_{\bar{x} \bar{y}}^{A}\right)=n\left(E_{\bar{z}}\right)$ ". Similar, we the graph of multiplication $M(\bar{x}, \bar{y}, \bar{z})$ will be given by " $n\left(E_{\bar{x}}\right) n\left(E_{\bar{y}}\right)=n\left(E_{\bar{z}}\right)$.

Zero and one are defined in the obvious way: zero is $\omega^{\prime}(\bar{x}) \wedge \neg \exists \bar{w} \Delta_{B}(\bar{x} \bar{w})$ while one is $\omega^{\prime}(\bar{x}) \wedge \exists!\bar{w} \Delta_{B}(\bar{x} \bar{w})$. The order \leq is definable within the interpretation: $x \leq y$ is interpreted as $\exists z\left[\omega^{\prime}(z) \wedge x+z=y\right]$

It is clear that this defines a recursive interpretation of R

Corollary 2.2.5. Σ_{r} is essentially undecidable.

Proof. It is shown in Part II, Theorem 9 of [13] that R is essentially undecidable. Tarski shows that essentially undecidability is transferred by interpretations in Part I, Theorem 7. Although his notion of an interpretation is syntactic, the same argument goes through: let $M \models \Sigma_{r}$ and let $\left(\omega^{\prime},+\cdot, \leq, 0,1\right)$ interpret R as guaranteed
by the theorem. Let f be a recursive map from L_{R} sentences to L sentences which is determined by the interpretation. Then, given an L_{R} sentence $\sigma, \omega^{\prime} \models \sigma$ if and only if $M \models f(\sigma)$. Thus a decision procedure for $\operatorname{Th}(M)$ would decide $\operatorname{Th}\left(\omega^{\prime},+\cdot, \leq, 0,1\right)$ as well, contradicting the essential undecidability of Σ_{r}.

Remark 2.2.6. It is worth noting that while the interpreted model will satisfy Robinson's Q when M is the generic, this is not generally true. In particular, for the ultraproducts $\prod_{\mathcal{U}} M_{\alpha_{n}}$ with $\left\{\alpha_{n}\right\}$ a sequence of decreasing irrationals converging to r and $M_{\alpha_{n}}$ the Shelah-Spencer graph of weight α_{n}, it will be definable in each $M_{\alpha_{n}}$ that there is a maximal number of realizations of B over A. This definition will carry over to the ultraproduct, and the order type of the interpreted (ω^{\prime}, \leq) will have a copy of $\omega^{*}(\omega$ reversed $)$ as a tail.

Corollary 2.2.7. Let \mathbf{M}_{r} denote the ultraproduct $\prod_{\mathcal{U}} M_{\alpha_{n}}$, where \mathcal{U} is any nonprincipal ultrafilter, $\left\{\alpha_{n}\right\}$ converges to $r \in(0,1)$ and is bounded below by r, and $M_{\alpha_{n}}$ is a model of $\Sigma_{\alpha_{n}}$. Then both the $\left(\mathbf{K}_{r}^{+}, \preccurlyeq_{r}\right)$-generic and \mathbf{M}_{r} model Σ_{r}; thus they have essentially undecidable theories.

Proof. That the $\left(\mathbf{K}_{r}^{+}, \preccurlyeq_{r}\right)$-generic models Σ_{r} was shown in the first section of this paper, we thus restrict our attention to \mathbf{M}_{r}. Note that for any finite graph A, $\mathbf{M}_{r} \models \exists \bar{x} \Delta_{A}(\bar{x})$ if and only if $M_{\alpha_{n}} \models \exists \bar{x} \Delta_{A}(\bar{x})$ for cofinitely many n. For any given $\alpha_{n}, M_{\alpha_{n}} \models \exists \bar{x} \Delta_{A}(\bar{x})$ exactly when $\alpha_{n}<h(A)$. If $h(A)>r$, then by the convergence of $\left\{a_{n}\right\}$, cofinitely many $M_{\alpha_{n}}$ will model $\exists \bar{x} \Delta_{A}(\bar{x})$ - thus \mathbf{M}_{r} will as well.

If $A \not{ }_{r} B$, then by definition we have that $h(A, B)>r$. Then for $\alpha_{n}<$ $h(A, B)$, we have $G_{\alpha_{n}} \models \forall \bar{x} \Delta_{A}(\bar{x}) \rightarrow \exists \bar{y} \Delta_{B}(\bar{x} \bar{y})$. By convergence, this is true for
cofinitely many α_{n}, so that it is true in the ultraproduct as well.
Finally, we show that \mathbf{M}_{r} is semi-generic. Let $A \subseteq_{\omega} M$ with $A \preccurlyeq_{r} B$, let \bar{a} enumerate A. Recall that we defined a formula $\psi_{A, B}^{m}(\bar{a} \bar{y})$ which states that \bar{y} is a copy of B over A and $\operatorname{cl}^{m}(\bar{y})=\bar{y} \oplus_{\bar{a}} \operatorname{cl}^{m}(\bar{a})$ (see Definition 1.3.23). We will show that $\mathbf{M}_{r} \models \exists \bar{y} \Delta_{B}(\bar{a} \bar{y}) \wedge \psi_{A, B}^{m}(\bar{a} \bar{y})$ by an appeal to Loś' Theorem. We note that if $X \preccurlyeq_{r} Y$, then $X \preccurlyeq_{r+\epsilon} Y$ for ϵ sufficiently small. Thus we can choose ϵ so that $A \preccurlyeq_{r+\epsilon} B$ and the C which appear in $\psi_{A, B}^{m}$ are also in the corresponding formula for $r+\epsilon$ semi-genericity (because there are only finitely many possible candidates for C - any minimal such will have negative predimension at $r+\epsilon$ and will thus appear in the appropriate formula; if a minimal C appears for all $r+\epsilon$ with ϵ sufficiently small, then it must have relative pre-dimension at most 0 and thus appears.).

2.2.1 Approximations

In this subsection, we establish an approximate version of the representation theorem for α close to r and use it to fully represent some relations.

Lemma 2.2.8. For $A \subseteq B, \delta_{r+\epsilon}(B / A)=\delta_{r}(B / A)-\epsilon e(B / A)$

Proof.

$$
\begin{aligned}
\delta_{r+\epsilon}(B / A) & =|B \backslash A|-(r+\epsilon)(e(B / A) \\
& =\delta_{r}(B / A)-\epsilon e(B / A)
\end{aligned}
$$

Recall that in the proof of Lemma ?? we made use of a structure U which was a minimal 0 -extension of $\{\bar{s} v\}$ where \bar{s} is an n-tuple and v is an unrelated point.

For $k \in \omega$, we let $S_{k}:=\oplus_{1 \leq i \leq k} \bar{s}_{i}$ and $W_{k}:=v \cup \bigcup_{1 \leq i \leq k} U_{i}$ where each \bar{s}_{i} is isomorphic to \bar{s}, each U_{i} is isomorphic to U and extends \bar{s}_{i}.

Lemma 2.2.9. There is an ϵ^{\prime} so that for $0<\epsilon<\epsilon^{\prime}$ we have that for $k \leq\left\lfloor\frac{1}{e(U / \bar{s})} \frac{1}{\epsilon}\right\rfloor$, $S_{k} \leq_{r+\epsilon} W_{k}$

Proof. We first calculate:

$$
\begin{aligned}
\delta_{r+\epsilon}\left(W_{k} / S_{k}\right) & =\delta_{r+\epsilon}\left(W_{k} / S_{k} v\right)+\delta_{r+\epsilon}\left(S_{k} v / S_{k}\right) \\
& =\delta_{r}\left(W_{k} / S_{k} v\right)-\epsilon e\left(W_{k} / S_{k} v\right)+1 \\
& =1-\epsilon k e(U / \bar{s} v)
\end{aligned}
$$

This is non-negative for $k \leq\left\lfloor\frac{1}{e(U / \bar{s} v)} \frac{1}{\epsilon}\right\rfloor$; we need to show we can make it hereditarily non-negative. We choose ϵ^{\prime} so that for $0<\epsilon<\epsilon^{\prime}$, we have:

1. $\bar{s} \leq_{r+\epsilon} v$
2. $\bar{s} \leq_{r+\epsilon} U$
3. $\bar{s} \leq_{r+\epsilon} v U$
4. $(\bar{s} v, U)$ is a $\leq_{r+\epsilon}$-minimal pair
(We can do this by the equivalent statements in the proof of Lemma ?? since for any A, B if $A \preccurlyeq_{r} B$ then there is some ϵ^{\prime} so that $A \leq_{r+\epsilon} B$ for $\left.0<\epsilon<\epsilon^{\prime}\right)$. Let W^{\prime} be a proper subset of W_{k}; we show that $\delta_{r+\epsilon}\left(W^{\prime} / S_{k}\right) \geq 0$

If $v \notin W^{\prime}$, then this is clear from 2) above since $\delta_{r+\epsilon}\left(W^{\prime} / S_{k}\right)=\sum_{1 \leq i \leq k} \delta_{r+\epsilon}\left(W^{\prime} \cap\right.$ $\left.U_{i} / \bar{s}_{i}\right)$.

If $v \in W^{\prime}$, we have $\delta_{r+\epsilon}\left(W^{\prime} / S_{k}\right)=\delta_{r+\epsilon}\left(W^{\prime} / S_{k} v\right)+\delta_{r+\epsilon}\left(S_{k} v / S_{k}\right)=1+$ $\delta_{r+\epsilon}\left(W^{\prime} / S_{k} v\right)$. Then $\delta_{r+\epsilon}\left(W^{\prime} / S_{k} v\right)=\sum_{1 \leq i \leq k} \delta_{r+\epsilon}\left(W^{\prime} \cap U_{i} / \overline{s_{i}} v\right)$. Since $(\bar{s} v, U)$ is a minimal pair, this sum is at least $\delta_{r+\epsilon}\left(W_{k} / S_{k} v\right)$. Therefore $\delta_{r+\epsilon}\left(W^{\prime} / S_{k}\right) \geq$ $\delta_{r+\epsilon}\left(W_{k} / S_{k}\right) \geq 0$

For $0<\epsilon<\epsilon^{\prime}$, let k_{ϵ} denote $\left\lfloor\frac{1}{e(U / \bar{s} v)} \frac{1}{\epsilon}\right\rfloor$ and let $G_{r+\epsilon}$ denote the $\left(K_{r+\epsilon}, \leq_{r+\epsilon)-}\right.$ generic. The following theorem and it's corollary generalize results in [12].

Theorem 2.2.10 (Approximate Representation). For any $n \in \omega$, let $R(\bar{x} ; v)$ denote the formula $\exists \bar{u} \bigvee_{\sigma} \Delta_{U}(v \sigma(\bar{x}) \bar{u})$ (where $|\bar{x}|=n$ and σ enumerates the permutations of \bar{x}). Then for $0<\epsilon<\epsilon^{\prime}$ and R_{0} any symmetric irreflexive n-ary relation on $G_{r+\epsilon}$ with at most k_{ϵ} realizations in $G_{r+\epsilon}$, there is some $v \in G_{r+\epsilon}$ so that $G_{r+\epsilon} \models R_{v}(\bar{x})$ if and only $R_{0}(\bar{x})$ holds.

Proof. Let $\bar{X}=\cup_{i<N} \bar{x}_{i}$ where the \bar{x}_{i} enumerate the \bar{x} on which R_{0} holds. Then for some $k \leq k_{\epsilon}, \bar{X} \simeq S_{k}$, and by the previous lemma $\bar{X} \leq_{r+\epsilon} W_{k}$. Let $Q^{\prime}=\operatorname{cl}_{G_{r+\epsilon}}(\bar{X}) ;$ then $W_{k}^{Q^{\prime}}=\bar{X}$, so that $Q^{\prime} \leq_{r+\epsilon} W_{k}$. So we must have that W_{k} embeds strongly into $G_{r+\epsilon}$ over Q^{\prime}, the image of v, say v^{\prime}, under this embedding satisfies $G_{r+\epsilon} \models R_{v^{\prime}}(\bar{x})$ if and only $R_{0}(\bar{x})$ holds.

Corollary 2.2.11. Consider definable $S, T \subseteq G_{r+\epsilon}$ for $0<\epsilon<\epsilon^{\prime}$. Suppose $D(x, y ; \bar{a})$ and $E(x, y ; \bar{b})$ are definable classes of equivalence relations on $S\left(G_{r+\epsilon}\right)$ and $T\left(G_{r+\epsilon}\right)$ respectively. Let $D_{\bar{a}}$ and $E_{\bar{b}}$ respectively denote the equivalence relations $D(\cdot, \cdot ; \bar{a})$ and $E(\cdot, \cdot ; \bar{b})$. Also, $n\left(D_{\bar{a}}\right), n\left(E_{\bar{b}}\right)$ will denote the number of $D_{\bar{a}}$
(respectively $E_{\bar{b}}$) equivalence classes in S (respectively $\left.T\right)$. If $n\left(D_{\bar{a}}\right)$ and $n\left(E_{\bar{b}}\right)$ are both less than k_{ϵ}, then for any v and $R_{v}\left(x_{0}, x_{1}\right)$ as in the representation lemma, we can define the following sentences on v, uniformly in \bar{a} and \bar{b} :

1. $F_{D_{\bar{a}}}(v)$ states that R_{v} is a function with domain $S / D_{\bar{a}}$.
2. $I(v)$ states that R_{v} is injective.
3. $S_{E_{\bar{b}}}(v)$ states that R_{v} is surjective on $E_{\bar{b}}$ classes.
4. $J_{D_{\bar{a}}, E_{\bar{b}}}(v)$ states that R_{v} is relation between $D_{\bar{a}}$ classes and $E_{\bar{b}}$ classes.

Let $T(\bar{y} ; \bar{z})$ be any formula and let $n_{\epsilon}\left(T_{\bar{z}}\right)$ denote the number of distinct $\bar{y} \subseteq G_{r+\epsilon}$ such that $G_{r+\epsilon} \equiv T(\bar{y} ; \bar{z})$. Suppose that there is some real number m so that for every ϵ with $0<\epsilon<\epsilon^{\prime}$ and every $\bar{z} \subseteq G_{r+\epsilon}$ we have $n_{\epsilon}\left(T_{\bar{z}}\right) \leq m\left(\frac{1}{\epsilon}\right)$. Then the following sentences on \bar{z} are uniformly definable in $G_{r+\epsilon}$ for such ϵ :

- $n_{\epsilon}\left(T_{\bar{z}}\right)$ is even.
- $n_{\epsilon}\left(T_{\bar{z}}\right)$ is maximal over all \bar{z}

Proof. The numbered formulae have the same definitions as before; the approximate representation theorem guarentees that they're valid for the prescribed ϵ.

Let $E_{\bar{z}}\left(y_{1}, y_{2}\right)$ be $\exists \bar{y} T(\bar{y} ; \bar{z}) \wedge y_{1} \in \bar{y} \wedge y_{2} \in \bar{y}$. Let $l=e(U / \bar{s} v) m+1$. Then we have that for ϵ sufficiently small, $l k_{\epsilon} \geq m \frac{1}{\epsilon} \geq n_{\epsilon}\left(T_{\bar{z}}\right)$. Replacing ϵ^{\prime} if necessary, we may assume that this holds.

Note that $n_{\epsilon}\left(T_{\bar{z}}\right)$ will be even exactly when we can partition it into two equicardinal sets, which will happen exactly when we can find l disjoint subsets of $T_{\bar{z}}$ which
can each be partitioned into two equicardinal sets (some of the subsets can be empty). Therefore we code that $n_{\epsilon}\left(T_{\bar{z}}\right)$ is even by saying there exists v_{1}, \ldots, v_{l} so that each $R_{v_{i}}$ is defined on $E_{\bar{z}}$-classes, the unions of the domain and range of each $R_{v_{i}}$ partition $T_{\bar{z}}$, and for each i, that $R_{v_{i}}$ is a bijection.

To say that $n_{\epsilon}\left(T_{\bar{z}}\right)$ is maximal, we want to encode that for any other \bar{z}^{\prime} there is a surjection $T_{\bar{z}} \rightarrow T_{\bar{z}^{\prime}}$. We again break this up into l different functions, and say that there exist v_{1}, \ldots, v_{l} so that each $R_{v_{i}}$ is a function on $T_{\bar{z}}$ and the union of the ranges of the $R_{v_{i}}$ is all of $T_{\bar{z}^{\prime}}$. Literally, we use the following sentence:

$$
\begin{gathered}
\exists v_{0} \ldots \exists v_{l-1} \forall \bar{y} T_{\bar{z}}(\bar{y}) \rightarrow \exists y_{1} \in \bar{y} \exists y_{2}, \bar{y}^{\prime} \\
{\left[T_{\bar{z}^{\prime}}\left(\bar{y}^{\prime}\right) \wedge y_{2} \in \bar{y} \wedge \bigvee_{i<l} R_{v_{i}}\left(y_{1}, y_{2}\right)\right] \wedge} \\
{\left[\forall y_{3} y_{3} \in \bar{y} \wedge \exists y_{4}, \bar{y}^{\prime}\left(T_{\bar{z}^{\prime}}(\bar{y}) \wedge \bigvee_{i<l} R_{v_{i}}\left(y_{3}, y_{4}\right) \rightarrow y_{3}=y_{1}\right)\right]} \\
\bigwedge \forall \bar{y}^{\prime} T_{\bar{z}^{\prime}}\left(\bar{y}^{\prime}\right) \rightarrow \exists y_{2} \in \bar{y}^{\prime} \exists y_{1}, \bar{y}^{\prime}\left[T_{\bar{z}}(\bar{y}) \wedge y_{1} \in \bar{y} \wedge \bigvee_{i<l} R_{v_{i}}\left(y_{1}, y_{2}\right)\right]
\end{gathered}
$$

2.2.2 Completions

We show in this subsection that Σ_{r} has continuum many completions and specify a set of formulae on which these differ. We first note that the number of completions comes from very quickly from essential undecidability.

Theorem 2.2.12. Σ_{r} has $2^{\aleph_{0}}$ completions.

Proof. We will define tree of completions T_{η} of Σ_{r} for $\eta \in 2^{\omega}$ such that each T_{η} is incomplete and essentially undecidable, and $T_{\eta \wedge 0}, T_{\eta \wedge 1}$ are pairwise inconsistent
extension of T_{η}. Let $T_{\varnothing}=\Sigma_{r}$. Having defined T_{η}, we note that by incompleteness there is a sentence σ so that $T_{\eta} \cup\{\sigma\}$ and $T_{\eta} \cup\{\neg \sigma\}$ are both consistent, hence essentially undecidable. We let $T_{\eta \wedge 0}$ denote the former and $T_{\eta \wedge 1}$ denote the latter.

The remainder of this subsection will be spent finding explicit families of sentences on which the completions differ. Throughout, G_{α} will denote the $\left(\mathbf{K}_{\alpha}, \leq_{\alpha}\right)$ generic for α irrational and the $\left(\mathbf{K}_{\alpha}^{+}, \preccurlyeq \alpha\right)$-generic otherwise. Let A be a pair of unrelated points and choose B so that (A, B) is a proper biminimal 0-extension. For $n \in \omega \backslash\{0,1\}$, let A_{n} denote a set of n unrelated points, labeled $a_{0} \ldots a_{n-1}$. We want to count the total number of copies of B over A_{n} for various n; this will enable us to define a countable set of sentences whose truth values can be indpendently specified in $G_{r+\epsilon}$ for ϵ close to 0 .

As a first step, we determine the maximal number of pariwise disjoint (over A_{n}) copies of B which will result in a structure with non-negative predimention $\delta_{r+\epsilon}$. If a structure D consists of A_{n} with a total of N disjoint over A_{n} copies of B then we compute:

$$
\begin{aligned}
\delta_{r+\epsilon}(D) & =\delta_{r+\epsilon}\left(A_{n}\right)+N \delta_{r+\epsilon}(B / A) \\
& =n+N\left(\delta_{r}(B / A)-\epsilon e(B / A)\right) \\
& =n-N \epsilon e(B / A)
\end{aligned}
$$

Thus we have that $\delta_{r+\epsilon}(D) \geq 0$ for $N \leq \frac{n}{\epsilon e(B / A)}$. Substituting $y=\frac{1}{\epsilon e(B / A)}$, we have that A_{n} can have no more than $\lfloor n y\rfloor$ copies of B over any model of Σ_{r}. We want to show that for y sufficiently large, A_{n} will have $\lfloor n y\rfloor$ copies of B in $G_{r+\epsilon}$.

Lemma 2.2.13. Fix $n \in \omega$, let $N:=\lfloor n y\rfloor$. For $m=\binom{n}{2}$, write $N=q m+r$ where $q=\left\lfloor\frac{N}{m}\right\rfloor$. Fix a bijection f from m to $\{(i, j): i<j<n\}$, and for any l let B^{l} be $\oplus_{j<l}\left(B_{j} / A\right)$ with B_{j} isomorphic to B. Finally, we define D_{n} by

$$
D_{n}:=\bigoplus_{k<m}\left(B^{l_{k}} / A_{n}^{a_{(k)}}\right)
$$

where $a_{(k)}:=\left\{a_{i}, a_{j}: f(k)=(i, j)\right\}$ and $l_{k}:=q+1$ if $k<r$ and is q otherwise.
Then there is a y^{\prime} so that for $y>y^{\prime}, \varnothing \leq_{r+\epsilon} D_{n}$, where $y=\frac{1}{\epsilon e(B / A)}$.

Proof. Choose y^{\prime} so that $A B \in \mathbf{K}_{r+\epsilon}$ for $y \geq y^{\prime}$; we then induct on n, increasing y^{\prime} as necessary.

For $n=2$, let X be any subset of D_{2}. We have that D_{2} is $\bigoplus_{i<\lfloor 2 y\rfloor}\left(B_{i} / A\right)$ where B_{i} is isomorphic to B. If X contains A then $X=\bigoplus_{i<\lfloor 2 y\rfloor}\left(X \cap B_{i} / A\right)$, and since (A, B) is a minimal 0 -extension, we have $\delta_{r+\epsilon}\left(X \cap B_{i} / A\right) \geq \delta_{r+\epsilon}(B / A)$. Therefore $\delta_{r+\epsilon}(X) \geq \delta_{r+\epsilon}\left(D_{2}\right) \geq 0$.

If not, we consider two subcases. If $X \cap A=\varnothing$, then we have that $\varnothing \preccurlyeq_{r} X$ so that $\delta_{r}(X)>0$. Since $\delta_{r+\epsilon}(X)=\delta_{r}(X)-\epsilon e(X)$, this quantity is also positive for ϵ sufficiently small. If necessary, increase y^{\prime} so that $\delta_{r+\epsilon}(X)$ is positive for all $y>y^{\prime}$ and every $X_{0} \subseteq B \backslash A$. Then for such ϵ, any $X \subseteq D_{2} \backslash A$ will have positive predimension in $\delta_{r+\epsilon}$.

In the final case, $X \cap A=\{a\}$ for some point in A. Let $B_{0}=B \backslash A$, and note that:

$$
\begin{equation*}
\delta_{r+\epsilon}(B / a)=\delta_{r}\left(B_{0} / a\right)-\epsilon\left(e\left(B_{0}\right)+e\left(B_{0}, a\right)\right) \tag{2.5}
\end{equation*}
$$

Letting $A=\left\{a, a^{\prime}\right\}$, we then calculate:

$$
\begin{aligned}
\delta_{r}\left(B_{0} / a\right) & =\delta_{r}\left(B_{0} a\right)-\delta_{r}(a)=\delta_{r}\left(B_{0} a\right)-1 \\
\delta_{r}\left(B_{0} a\right) & =\left|B_{0} a\right|-r\left(e\left(B_{0}\right)+e\left(B_{0}, a\right)\right) \\
\delta_{r}\left(B_{0} A\right) & =\left|B_{0} a a^{\prime}\right|-r\left(e\left(B_{0}\right)+e\left(B_{0}, a\right)+e\left(B_{0}, a^{\prime}\right)\right) \\
& =\left(\left|B_{0} a\right|+1\right)-r\left(e\left(B_{0}\right)+e\left(B_{0}, a\right)\right)-r e\left(B_{0}, a^{\prime}\right) \\
& =2
\end{aligned}
$$

We thus have $2-\delta_{r}\left(B_{0} a\right)=1-r e\left(B_{0}, a^{\prime}\right)$ so that $\delta_{r}\left(B_{0} a\right)=1+r e\left(B_{0}, a^{\prime}\right)$ and $\delta_{r}\left(B_{0} / a\right)=r e\left(B_{0}, a^{\prime}\right)$. Thus (2.5) becomes:

$$
\delta_{r+\epsilon}(B / a)=r e\left(B_{0}, a^{\prime}\right)-\epsilon\left(e\left(B_{0}\right)+e\left(B_{0}, a\right)\right)
$$

And this is clearly positive for ϵ sufficiently small. We can increase y^{\prime} large enough to guarentee this.

We have that $X=\oplus_{i}\left(X_{i} / a\right)$ where $X_{i}=X \cap B_{i}$. Therefore $\delta_{r+\epsilon}(X)=$ $\delta_{r+\epsilon}(a)+\sum_{i} \delta_{r+\epsilon}\left(X_{i} / a\right)=1+\sum_{i} \delta_{r+\epsilon}\left(X_{i} / a\right)$. We showed above that for y sufficiently large, $\delta_{r+\epsilon}\left(B_{i} / a\right)$ is positive. If $X_{i} \subsetneq B_{i}$, we note that $\delta_{r}\left(X_{i} / a\right) \geq \delta_{r}\left(X_{i} / A\right)>0$ since (A, B) is a \leq_{r}-minimal pair. Thus we have $\delta_{r+\epsilon}\left(X_{i} / a\right)>0$ for ϵ sufficiently small. Choose y^{\prime} large enough so that this is true for every X_{i} properly contained in B_{i} with $X_{i} \cap A=\{a\}$. Then for ϵ determined by $y \geq y^{\prime}$, we will have $\delta_{r+\epsilon}(X) \geq 0$. Thus we have that $\varnothing \leq_{\epsilon} D_{2}$ for y greater than y^{\prime}.

For the inductive step, let X be any subset of D_{n}, and consider two cases. If $A_{n} \subseteq X$, let $C:=D_{n} \backslash X$ and for each $k<m$, let $C_{k}:=C \cap B_{k}^{l}$ where l is q or $q+1$ depending on k. Then $\delta_{r+\epsilon}\left(D_{n} / A_{n}\right)=\delta_{r+\epsilon}\left(D_{n} / X\right)+\delta_{r+\epsilon}\left(X / A_{n}\right)$ so
that $\delta_{r+\epsilon}\left(X / A_{n}\right)=\delta_{r+\epsilon}\left(D_{n} / A_{n}\right)-\delta_{r+\epsilon}\left(D_{n} / X\right)$. I claim that $\delta_{r+\epsilon}\left(D_{n} / X\right)$ is nonpositive - since $\delta_{r+\epsilon}\left(D_{n} / A_{n}\right) \geq 0$ this will show that $\delta_{r+\epsilon}\left(X / A_{n}\right) \geq 0$ and hence that $\delta_{r+\epsilon}(X) \geq n$. Note that $D_{n}:=\oplus_{k}\left(C_{k} / X\right)$, so that $\delta_{r+\epsilon}\left(D_{n} / X\right)=\sum_{k} \delta_{r+\epsilon}\left(C_{k} / X\right)$. Also note that for each $k,\left(C_{k}\right)^{X}=X \cap a_{(k)} B_{k}$, so that

$$
\begin{aligned}
\delta_{r+\epsilon}\left(C_{k} / X\right) & =\delta_{r+\epsilon}\left(B_{k}^{l} /\left(B_{k}^{l} a_{(k)} \backslash C_{k}\right)\right) \\
& =\delta_{r+\epsilon}\left(\oplus_{i<l}\left(B_{i} \backslash C_{k} \cap B_{i}\right) / A\right) \\
& =\sum_{i<l} \delta_{r+\epsilon}\left(\left(B_{i} \backslash C_{k} \cap B_{i}\right) / A\right)
\end{aligned}
$$

Since (A, B) is a $\leq_{r+\epsilon}$-minimal pair, each term of the sum is at most 0 , which shows what we want.

If $A_{n} \nsubseteq X$, then let k be maximal such that $A_{k} \subseteq X$. We may assume without loss that X is connected. Note that X will then contain at most $\binom{k}{2}$ pairs of vertices with copies of B over them, each of which will have at most $\left\lceil\frac{\lfloor n y]}{\left.\frac{\binom{n}{2}}{}\right\rceil}\right]$ copies of B over it. By the inductive hypothesis, for y sufficiently large, we have that $\varnothing \leq_{r+\epsilon} D_{k}$. In D_{k}, each pair of vertices has at least $\left.\left\lfloor\frac{\lfloor k y\rfloor}{\binom{k}{2}}\right\rfloor\right\rfloor$ copies of B over it. So we want to find y sufficiently large that $\left\lfloor\frac{\lfloor k y\rfloor}{\binom{k}{2}}\right\rfloor \geq\left\lceil\frac{\lfloor n y\rfloor}{\binom{n}{2}}\right\rceil$. We calculate:

$$
\begin{aligned}
\left\lfloor\frac{\lfloor k y\rfloor}{\binom{k}{2}}\right\rfloor & \geq\left\lfloor\frac{2(k y-1)}{k(k-1)}\right\rfloor \\
& =\left\lfloor\frac{2 k y}{k(k-1)}-\frac{1}{k(k-1)}\right\rfloor \\
& =\left\lfloor\frac{2 y}{(k-1)}-\frac{1}{k(k-1)}\right\rfloor
\end{aligned}
$$

Also:

$$
\begin{aligned}
\left\lceil\frac{\lfloor n y\rfloor}{\binom{n}{2}}\right\rceil & \leq\left\lceil\frac{2 n y}{n(n-1)}\right\rceil \\
& =\left\lceil\frac{2 y}{(n-1)}\right\rceil
\end{aligned}
$$

We note that $\frac{2 y}{(k-1)}-\frac{1}{k(k-1)}$ is linear in y with slope $\frac{2}{k-1}$ and that $\frac{2 y}{(n-1)}$ is linear in y with slope $\frac{2}{n-1}$. Since $k<n$, the slope of the former is greater and it will eventually be large enough so that it's floor is always greater than the ceiling of the latter.

Corollary 2.2.14. Fix $n \in \omega$ and let y denote $\frac{1}{\epsilon e(B / A)}$. Then there is some y^{\prime} so that for $y>y^{\prime}$, there are exactly $\lfloor n y\rfloor$ pairwise disjoint copies of B over A_{n} in $G_{r+\epsilon}$.

For $|\bar{x}|=n,|\bar{y}|=\left|\bar{y}^{\prime}\right|=|B \backslash A|$; for $k \in \omega$ let \bar{x}_{k} denote the pair $\left(x_{i}, x_{j}\right)$ where $f(k)=(i, j)$. Then let $\Psi_{n}(\bar{y} ; \bar{x})$ be $\Delta_{A_{n}}(\bar{x}) \wedge \bigvee_{k<\binom{n}{2}} \Delta_{B}\left(\bar{x}_{k} \bar{y}\right) \wedge \forall \bar{y}^{\prime} \backslash \bigvee_{k<\binom{n}{2}} \Delta_{B}\left(\bar{x}_{k} \bar{y}^{\prime}\right) \rightarrow$ $\bar{y} \cap \bar{y}^{\prime}=\varnothing \vee \bigvee_{k<\binom{n}{2}} \bar{y} \cap \bar{y}^{\prime}=\bar{x}_{k} \vee \bigvee_{\sigma} \bar{y}^{\prime}=\sigma(\bar{y})$ where σ ranges over permuations of \bar{y}. By the results of the previous subsection, there is a sentence σ_{m} which holds in $G_{r+\epsilon}$ exactly when the maximal number of realizations of $\Psi_{2^{m}}$ is even for ϵ sufficiently close to 0 .

Fix $\eta \in 2^{\omega}$ such that $\sum_{m} \eta(m) 2^{-m}$ is irrational; we will define a sequence $\left\{\alpha_{i}: i \in \omega\right\}$ of irrationals converging down to r so that, eventually, $G_{\alpha_{i}} \models \sigma_{m}$ if and only if $\eta(m)=0$. Let I_{0} be the interval $(0,1)$ if $\eta(0)=0$ or the interval $(1,2)$ otherwise. Having defined I_{m} as (c, d), let I_{m+1} be defined as $\left(c, \frac{d}{2}\right)$ if $\eta(m+1)=0$ or the interval $\left(\frac{d}{2}, d\right)$ otherwise. If we let y_{0} be $\sum_{m} \eta(m) 2^{-m}$ then y_{0} is in every interval I_{m}; and $\cap_{m} I_{m}$ must equal $\left\{y_{0}\right\}$. Having defined y_{i}, let $y_{i+1}:=y_{i}+2$. Then
for y sufficiently large and any m, we have that in $G_{r+\epsilon}$, the maximal number of realization of $\Psi_{2^{m}}$ is $\left\lfloor 2^{m} y\right\rfloor$.

For $m, k \in \omega$ we note that $\left\lfloor 2^{m} y\right\rfloor=k$ on the interval $\left[2^{-m} k, 2^{-m}(k+1)\right]$. Therefore $\left\lfloor 2^{m} y\right\rfloor$ is even on the interval $\left(k 2^{-m},(k+1) 2^{-m}\right)$ exactly when k is even. Thus $\left\lfloor 2^{m} y\right\rfloor$ is even on I_{m} exactly when $\eta(m)=0$. Furthermore, this remains true in the intervals $2 l+I_{m}$. Since $\left\lfloor 2^{m} y\right\rfloor$ eventually represents the number of realizations of $\Psi_{2^{m}}$, we have that $G_{r+\epsilon}$ eventually models σ_{m} exactly when $\eta(m)=0$, for y defined as before.

We let $x_{i}=r+\epsilon_{i}$, where $y_{i}=\frac{1}{\epsilon_{i} e(B / A)}$ and let \mathcal{U} be any non-principal ultrafilter, we then have that $\prod_{\mathcal{U}} G_{x_{i}} \models \sigma_{m}$ for every m. Since we have uncountably many choices for η, and since each such ultraproduct models Σ, we have that the latter has uncountably many completions.

2.3 General Ultraproducts

In previous sections we analyzed ultraproducts $\prod_{\mathcal{U}} M_{\alpha_{n}}$ for \mathcal{U} non-principal and $\left\{\alpha_{n}\right\}$ converging to r, bounded either above or below by r. In this section we work with arbitrary sequences and ultraproducts, and show that no new cases are introduced for the resulting model theory. The basic point is that given any sequence $\left\{\alpha_{n}\right\}$ on an interval and any ultrafilter \mathcal{U}, up to elementary equivalence the ultraproduct $\prod_{\mathcal{U}} M_{\alpha_{n}}$ looks like an ultraproduct taken over a sequence which is monotonic or constant.

We begin with the following:

Notation 2.3.1. Let \mathcal{U} be an ultrafilter on ω, let A be in \mathcal{U}. Fix a sequence $\left\{a_{n}\right.$: $n \in \omega\}$

1. \mathcal{U}_{A} will denote the set of subsets of A which are in \mathcal{U}.
2. $\left\{a_{n}\right\}^{A}$ will denote the subsequence $\left\{a_{n}: n \in A\right\}$

Remark 2.3.2. Note that for any $A \subseteq \omega$, we have $A \in \mathcal{U}$ if and only if $A \cap B \in \mathcal{U}$ for every $B \in U$: If $A \in \mathcal{U}$ and $B \in \mathcal{U}$, then $A \cap B \in \mathcal{U}$ since ultrafilters are closed under finite intersections. On the other hand, if $A \cap B \in \mathcal{U}$ for every $B \in \mathcal{U}$, then $A \in \mathcal{U}$ since $B=\omega$ is an element of \mathcal{U}.

There is a sense in which an ultrafilter will choose a unique limit in the current context:

Lemma 2.3.3. Let I be the interval $[b, c]$, let $m \in \omega$ and let $\left\{a_{n}\right\}$ be a sequence on I and let \mathcal{U} be an ultrafilter. Let $p_{0}=b$, and for $i \leq 2^{m}$ let $p_{i}=b+i\left(\frac{c-b}{2^{m}}\right)$. Then one of the following two statements holds:

- There is some $i \leq 2^{m}$ and some $A \in \mathcal{U}$ so that $\left\{a_{n}\right\}^{A}$ is constantly p_{i}
- There is some $i<2^{m}$ and some $A \in \mathcal{U}$ so that $\left\{a_{n}\right\}^{A}$ is contained in $\left[p_{i}, p_{i+1}\right]$ Proof. For $i<2^{m}$ let I_{i} denote the open interval $\left(p_{i}, p_{i+1}\right)$. Let $C_{i}:=\left\{n: a_{n} \in I_{i}\right\}$ and let $D_{i}:=\left\{n: a_{n}=p_{i}\right\}$. Then the C_{i} and D_{i} form a finite partition of ω, so that exactly one of them is an element of \mathcal{U}.

Corollary 2.3.4. There is a unique $\alpha \in I$ so that for every $A \in \mathcal{U}, \alpha$ is an accumulation point for $\left\{a_{n}\right\}^{A}$. Furthermore, for $M_{\alpha_{n}}$ chosen arbitrarily, there is
some subsequence $\left\{b_{n}\right\}$ of $\left\{a_{n}\right\}$ for which $\prod_{\mathcal{U}} M_{a_{n}} \equiv \prod_{\mathcal{U}} M_{b_{n}}$ and $\left\{b_{n}\right\}$ converges monotonically to α.

Proof. If there is some $m \in \omega$ such that for some $A \in \mathcal{U}$ we have $\left\{a_{n}\right\}^{A}$ is constantly p_{i} for one of the p_{i} associated with m, then let $\alpha=p_{i}$ and let the sequence be the constant sequence on p_{i}.

Otherwise, for each m let choose an interval C_{m} and an $A_{m} \in \mathcal{U}$ as in the second clause of the conclusion of the last lemma. Let r_{m} denote the right endpoint of this interval, then $\left\{r_{m}\right\}$ is a Cauchy sequence and must converge to some $\alpha \in I$. Letting $B_{\epsilon}(\alpha)$ denote the ϵ-ball around α, we note that if there is some $B \in \mathcal{U}$ and $\epsilon>0$ so that $\left\{a_{n}\right\}^{B}$ is disjoint from $B_{\epsilon}(\alpha)$, then choosing m so that $2^{-m}<\frac{\epsilon}{2}$ gives $C_{m} \subseteq B_{\epsilon}(\alpha)$ and $B \cap A_{m}=\varnothing$, a contradiction.

We partition ω with the three sets $P_{l}:=\left\{n: a_{n}<\alpha\right\}, P_{c}:=\left\{n: a_{n}=\alpha\right\}$, and $P_{r}:=\left\{n: a_{n}>\alpha\right\}$. Exactly one of these sets, call it P, is in \mathcal{U}. If $P=P_{c}$ we're done as before, otherwise enumerate $\operatorname{Th}\left(\prod_{\mathcal{U}} M_{a_{n}}\right)$ as $\left\{\sigma_{i}: i \in \omega\right\}$. Then for each i, let Q_{i} be the intersection of $\left\{n: M_{a_{n}} \models \sigma_{i}\right\}$ with P. By Loś, $Q_{i} \in \mathcal{U}$. For any i, define R_{i} to be $A_{i} \cap Q_{i}$, an element of \mathcal{U}. Then R_{i} will define a set of indices so that for $n \in R_{i},\left|a_{n}-\alpha\right|<2^{-i}$ and $M_{a_{n}} \models \sigma_{i}$. Also, for $i \in \omega$, let $D_{i}=R_{1} \cap \ldots \cap R_{i}$, so that D_{i} defines a set of indices n so that $n \in D_{i}$ implies that $\left|a_{n}-\alpha\right|<2^{-i}$ and for every $m \leq n, M_{a_{n}} \models \sigma_{m}$. Choose b_{1} to be any element of D_{1}. If b_{n} has been defined, let m be the least number for which $b_{n} \notin D_{m}$, and pick b_{n+1} to an arbitrary element of D_{m}. Then $\left\{b_{n}\right\}$ clearly converges monotonically to α. Note that for any $i, b_{n} \in Q_{i}$ for $n \geq i$. Thus cofinitely many $M_{b_{n}} \models \sigma_{i}$, which shows that any
ultraproduct of the $M_{b_{n}}$ over an ultrafilter is elementarily equivalent to $\prod_{\mathcal{U}} M_{a_{n}}$, since $\cup_{i}\left\{\sigma_{i}\right\}$ is complete.

Notation 2.3.5. The point α in the above theorem will be denoted by $\left\{a_{n}\right\}^{\mathcal{U}}$

Theorem 2.3.6. Let $\left\{\alpha_{n}: n \in \omega\right\}$ be any sequence in (0,1). Let $M_{\alpha_{n}} \models \Sigma_{\alpha_{n}}$. Let \mathcal{U} be any ultrafilter on ω. Then the following are equivalent:

1. $\prod_{\mathcal{U}} M_{\alpha_{n}}$ has a decidable theory.
2. There is some $\left\{b_{n}\right\}$ a monotonically increasing subsequence of $\left\{\alpha_{n}\right\}$ converging on r such that $\prod_{\mathcal{U}} M_{\alpha_{n}} \equiv \prod_{\mathcal{U}^{\prime}} M_{b_{n}}$
3. $\operatorname{Th}\left(\prod_{\mathcal{U}} M_{\alpha_{n}}\right)$ is the theory of the $\left(\mathbf{K}_{r}, \leq_{r}\right)$-generic.

Proof. Choose $\left\{b_{n}\right\}$ and α from Corollary 2.3 .4 so that $\left\{b_{n}\right\}$ converges monotonically to α and $\prod_{\mathcal{U}} M_{\alpha_{n}} \equiv \prod_{\mathcal{U}} M_{b_{n}}$. Then by the results of the previous section, if $\left\{b_{n}\right\}$ is not strictly increasing the resulting theory is an extension of Σ_{r}, which is undecidable. The equivalence of the three conditions is now immediate.

Chapter 3

Tirthikas ${ }^{1}$

So far, we have focused on rationals in $(0,1)$. This chapter will examine the behaviour of $S_{\preccurlyeq_{r}}$ for other rational values of r. The case $r=0$ is familiar:

Remark 3.0.7. The $\left(\mathbf{K}_{0}^{+}, \preccurlyeq_{0}\right)$-generic is precisely the Rado graph. Indeed, I claim that for any $A \subsetneq B, \delta_{\beta}(B / A)>0$ for some $\beta>0$. If $e(B)=e(A)$ then this is obvious, otherwise to ensure that $|B-A|-\beta(e(B)-e(A))>0$, we can choose any $\beta<\frac{|B-A|}{e(B)-e(A)}$, since the right hand side is always positive. Since there are only finitely many subgraphs between A and B, it follows that $A \npreccurlyeq_{0} B$ (choose β to be the minimum of the $\beta \mathrm{s}$ that work for each subset.) Thus the amalgamation class is simply the set of finite graphs and \preccurlyeq_{0} is simply substructure, so that the limit gives the random graph.

Intuitively, we can think of $\left(\mathbf{K}_{0}^{+}, \preccurlyeq_{0}\right)$ as trivializing the notion of \preccurlyeq in that it reduces to \subseteq. At the other extreme, for $r \geq 1$, the relation $A \not{ }_{r} B$ is trivialized in a different way - it expresses that A and $B \backslash A$ are in different components:

Lemma 3.0.8. For $r \geq 1$ and $A, B \in \mathbf{K}_{r}^{+}$, we have that $A \preccurlyeq_{r} B$ if and only if $e(B, A)=\varnothing$

Proof. Suppose $e(B, A)=\varnothing$. Then for $X \subseteq B \backslash A$, we have $\delta_{r}(X / A)=|X|-$

[^1]$r e(X, A)=|X|$ which is positive for non-empty X. If $e(B, A) \neq \varnothing$ choose $b \in B$ with an edge to some vertex in A. Then $\delta_{r}(A b / A)=1-r e(b, A) \leq 0$, which shows that $A \not{ }_{r} B$

Corollary 3.0.9. For $r \geq 1$ and $M \models S_{\preccurlyeq r}$, for any $A \subseteq_{\omega} M, \operatorname{cl}_{M}(A)=\operatorname{cl}_{M}^{m}(A)$ (for $m \geq 1$) and both are given by the union of the connected components of M containing a non-trivial subset of A.

Proof. Let A_{0} be a connected subset of A; we show that it's closure is the connected component of M containing A_{0}, which we denote by A_{1}. Choose $b \in A_{1}$ and let n denote the length of the shortest path from b to some element of A. If $n=0$ we have $b \in A_{0} \subseteq \operatorname{cl}\left(A_{0}\right)$. If $n=1$, we have by the above lemma that $A_{0} \not{ }_{r} A_{0} b$, so that $b \in \operatorname{cl}\left(A_{0}\right)$. Inducting on n, we get $A_{1} \subseteq \operatorname{cl}\left(A_{0}\right)$. The previous lemma give us that $A_{1} \preccurlyeq_{r} M$ if A_{1} is finite. For infinite A_{1}, choose finite $X \subseteq A_{1}$ and finite Y such that (X, Y) is a minimal pair. We have that $e(Y, X) \neq \varnothing$, so that some vertex in $Y \backslash X$ is in A_{1}. An induction on $|Y \backslash X|$ shows that $Y \subseteq A_{1}$.

Proposition 3.0.10. For $r \geq 1$, let $\left\{A_{i}: i \in \omega\right\}$ enumerate the connected elements of \mathbf{K}_{r}^{+}. Then the $\left(\mathbf{K}_{r}^{+}, \preccurlyeq_{r}\right)$-generic is equal to $\bigoplus_{i \in \omega} \oplus_{j<\omega} A_{i}$.

Proof. Let $G=\bigoplus_{i \in \omega} \oplus_{j<\omega} A_{i}$. It suffices to show that G satisfies the properties of a generic. It is clearly countable with age contained in \mathbf{K}_{r}^{+}. We show that if $A \preccurlyeq_{r} G$ and $A \preccurlyeq_{r} B$, then there is a strong embedding of B into G over A, for $A, B \in \mathbf{K}_{r}^{+}$.

Since $A \preccurlyeq_{r} B$, we have $e(A, B)=0$, and $B \backslash A$ is an element of \mathbf{K}_{r}^{+}since B is. Each connected component of $B \backslash A$ must embed strongly into G (i.e., as a connected component), hence $B \backslash A$ does as well.

Remark 3.0.11. It is worth noting that no cycles can appear in any of the generics: since an n-cycle has n vertices and n edges, it's pre-dimension with respect to δ_{r} for $r \geq 1$ will be non-positive.

The remainder of this chapter will be devoted to an analysis of the cases that $r>1$ and $r=1$

3.1 Behavior for $r>1$

For $1 \leq r<2$, the $\left(\mathbf{K}_{r}^{+}, \preccurlyeq_{r}\right)$-generic will be a countable forest of finite trees, while for $r \geq 2$ the generics becomes simply a countable collection of isolated points.

Lemma 3.1.1. For $r>1$, the connected elements of \mathbf{K}_{r}^{+}are finite trees with fewer than $\frac{r}{r-1}$ elements. In particular, for $r \geq 2$, the only connected element of \mathbf{K}_{r}^{+}is a singleton.

Proof. A tree A with n vertices will have $n-1$ edges, and thus $\delta_{r}(A)=n-r(n-1)=$ $n(1-r)+r$. This will be strictly positive when $n<\frac{r}{r-1}$. Since $n(1-r)+r$ is clearly strictly decreasing in n, we have that any tree satisfying $\delta_{r}(A)>0$ will be in \mathbf{K}_{r}^{+} and that these are precisely the connected components of \mathbf{K}_{r}^{+}

Proposition 3.1.2. For $r>1, S_{\preccurlyeq r}$ is complete and the $\left(\mathbf{K}_{r}^{+}, r\right)$-generic is ω categorical.

Proof. I claim that any model of $S_{\preccurlyeq r}$ has finite closures. If not, then there is some $M \models S_{\preccurlyeq r}$ and $a \in M$ which is contained in an infinite connected component. This contradicts that $\operatorname{Age}(M)=\mathbf{K}_{r}^{+}$. It is clear that for $A \preccurlyeq_{r} B$, any embedding of B into M over A will be strong. It follows that M is the generic.

3.2 Behavior for $r=1$

To analyze the model-theory of $\left(\mathbf{K}_{1}^{+}, \preccurlyeq{ }_{1}\right)$-generic, we first recall that each component consists of cycle-free graphs (i.e. trees without a named root) and introduce some ancillary definitions. Throughout, \mathbf{M} will denote a monster model of the theory of the $\left(\mathbf{K}_{1}^{+}, \preccurlyeq_{1}\right)$-generic.

Definition 3.2.1.

- For $A \subseteq \mathbf{M}, \operatorname{comp}(A)$ is the set of connected components of elements of A.
- For a, b in the same component, $\operatorname{path}(a, b)$ denotes the shortest path from a to b. Because \mathbf{M} is cycle-free, this is uniquely defined.
- For a, b as before, $\operatorname{dist}(a, b)$ represents the length of path (a, b).

We want to analyze dividing in \mathbf{M} and show that the theory of the generic is simple. The crux of the argument is to understand the action of the automorphism group of \mathbf{M}, the main case of which will involve automorphisms in a fixed component.

Definition 3.2.2. For a, b, c in the same component:

- $\boldsymbol{\Delta}_{c}$ is the tree which consists of $\operatorname{comp}(c)$ with c as the root.
- $\boldsymbol{\Delta}_{c}^{a}$ is the maximal subtree of $\boldsymbol{\Delta}_{c}$ which is rooted at a child of c (i.e. vertex of distance 1) and contains a. The root of this tree will be denoted as root $\left(\boldsymbol{\Delta}_{c}^{a}\right)$.
- For any set of vertices $\left\{b_{i}: i<N\right\}(N>1)$ in the same component as c, define meet ${ }_{c}\left(b_{0}, \ldots, b_{N-1}\right)$ to be the element of $\boldsymbol{\Delta}_{c}$ which is a common ancestor
of every element of $\left\{b_{i}\right\}$ and has the maximal distance from c among such common ancestors. Note that for tuples \bar{a}, \bar{b} with $\operatorname{comp}(\bar{a})=\operatorname{comp}(\bar{b})=$ $\operatorname{comp}(c)$, we have that $\operatorname{meet}_{c}(\bar{a}, \bar{b})=\operatorname{meet}_{c}\left(\operatorname{meet}_{c}(\bar{a}), \operatorname{meet}_{c}(\bar{b})\right)$.
- For $\left\{b_{i}\right\}$ as above, $\boldsymbol{\Delta}_{c}^{b_{0}, \ldots, b_{N-1}}$ is the subtree of $\boldsymbol{\Delta}_{c}$ which is rooted at $\operatorname{meet}_{c}\left(b_{0}, \ldots, b_{N-1}\right)$.

Dividing over the empty set is easily characterized:

Lemma 3.2.3. For $\bar{a}, \bar{b} \subseteq_{\omega} \mathbf{M}, \bar{a} \downarrow \bar{b}$ if and only if $\operatorname{comp}(\bar{a}) \cap \operatorname{comp}(\bar{b})=\varnothing$

Proof. Suppose that there are $a \in \bar{a}, b \in \bar{b}$ so that $\operatorname{comp}(a)=\operatorname{comp}(b)$. Let $\phi(x, b)$ state that $\operatorname{dist}(x, b)=\operatorname{dist}(a, b)$, and let $\left\{b_{i}: i \in \omega\right\}$ be of $\operatorname{tp}(b)$ with each b_{i} in a different component. Then $\left\{b_{i}\right\}$ witnesses that ϕ 2-divides. Define a sequence $\left\{\bar{b}_{i}\right\}$ by letting \bar{b}_{i} be the image of \bar{b} under an automorphism $b \mapsto b_{i}$. Then, if b is the k th element of \bar{b}, letting $\psi(\bar{x}, \bar{b})$ be $\phi\left(\bar{x}^{(k)}, b\right)$ (where $\bar{x}^{(k)}$ denotes the k th element of \bar{x}), we have that $\left\{\bar{b}_{i}\right\}$ witnesses the dividing of ψ over \varnothing

If $\operatorname{comp}(\bar{a}) \cap \operatorname{comp}(\bar{b})=\varnothing$, then for any $\left\{\bar{b}_{i}: i \in \omega\right\}$ of $\operatorname{tp}(\bar{b})$, there is some infinite I so that $\left\{b_{i}: i \in \omega\right\}$ are all in different components or all in the same component. Without loss, we may assume that $I=\omega$. In the first case, we can choose automorphisms $\bar{b} \mapsto \bar{b}_{i}$ which fix \bar{a}, so that $\operatorname{tp}(\bar{a} / \bar{b})$ does not divide over \varnothing. In the second case, we apply saturation to choose \bar{a}^{\prime} of $\operatorname{tp}(\bar{a})$ in a different component than every \bar{b}_{i}; this allows a choice of automorphisms $\bar{b} \mapsto \bar{b}_{i}$ which fix \bar{a}^{\prime}, so that $\bar{a}^{\prime} \models \cup_{i \in \omega, \phi(\bar{x}, \bar{b}) \in \operatorname{tp}(\bar{a} / \bar{b})} \phi\left(\bar{x}, \bar{b}_{i}\right)$ and $\operatorname{tp}(\bar{a} / \bar{b})$ does not divide.

Characterizing dividing over a non-empty base will rest on the following lemma:

Lemma 3.2.4. Fix $\sigma: \bar{x} \mapsto \bar{y}$ an automorphism over c, and let $z:=\operatorname{meet}_{c}(\bar{x} \bar{y}), z_{\bar{x}}:=$ $\operatorname{meet}_{c}(\bar{x}), z_{\bar{y}}:=\operatorname{meet}_{c}(\bar{y})$. Then $\sigma\left(\boldsymbol{\Delta}_{z}^{z_{\overline{\bar{x}}}}\right) \subseteq \boldsymbol{\Delta}_{z}^{z_{\bar{y}}}$.

Further, for any \bar{x}, \bar{y} with the same type over c, there is some $\sigma \in \operatorname{Aut}(\mathbf{M} / c)$ which maps $\boldsymbol{\Delta}_{z}^{z_{\bar{x}}}$ isomorphically onto $\boldsymbol{\Delta}_{z}^{z_{\bar{y}}}$ and fixes everything else (for $z, z_{\bar{x}}, z_{\bar{y}}$ defined as above).

Proof. Let z_{0} be the root of $\boldsymbol{\Delta}_{z}^{z_{\bar{x}}}$ so that $\boldsymbol{\Delta}_{z}^{z_{\bar{x}}}=\boldsymbol{\Delta}_{z_{0}}$; similarly let z_{1} be the root of $\boldsymbol{\Delta}_{c}^{z_{\bar{y}}}$. Note that z_{0} is definable over $\bar{x} c$, and that it's image under σ must be z_{1}. Let $k=\operatorname{dist}\left(c, z_{1}\right)$ and let $\phi(x, c)$ be the formula which says $\operatorname{dist}(x, c)>k$. Note that for $i \in 2$ we can define $\Delta_{z}^{z_{i}}$ as the set of all w for which the k th element of $\operatorname{path}(c, w)$ is z_{i} and $\operatorname{dist}(c, w) \geq \operatorname{dist}\left(c, z_{i}\right)$. Thus we must have $\sigma\left(\boldsymbol{\Delta}_{z_{0}}\right) \subseteq \boldsymbol{\Delta}_{z_{1}}$

For the second statement, we know that for some $\sigma \in \operatorname{Aut}(\mathbf{M} / c), \sigma: \bar{x} \mapsto \bar{y}$ since \mathbf{M} is homogeneous. Letting z_{0}, z_{1} be as before, a compactness argument shows that this can be chosen as an isomorphism from $\boldsymbol{\Delta}_{z_{0}}$ to $\boldsymbol{\Delta}_{z_{1}}$. Let τ be σ on $\boldsymbol{\Delta}_{z_{0}}$, σ^{-1} on $\boldsymbol{\Delta}_{z_{1}}$, and the identity everywhere else. Then τ is an automorphism: fixing a, b, we show that $E(a, b)$ if and only if $E(\tau(a), \tau(b))$. If a, b are both outside of $\boldsymbol{\Delta}_{z_{0}} \cup \boldsymbol{\Delta}_{z_{1}}$ or both in one subtree, this is clear. If a is outside the sub-trees but b is in one of them, then $E(a, b)$ implies that a is z (thus fixed by τ) and b is one of z_{0}, z_{1}, so that $\tau(b)$ is the other and $E(\tau(a), \tau(b))$ holds.

Lemma 3.2.5. For $\operatorname{comp}(a)=\operatorname{comp}(b)=\operatorname{comp}(c)$, we have $a \downarrow_{c} b$ if and only if the tree $\boldsymbol{\Delta}_{c}^{a b}$ has finitely many conjugates over c.

Proof. If $\boldsymbol{\Delta}_{c}^{a b}$ has only finitely many conjugates over c, then for $\left\{b_{i}: i \in \omega\right\}$ elements of $\operatorname{tp}(b / c)$, there is some conjugate $\boldsymbol{\Delta}^{\prime}$ of $\boldsymbol{\Delta}_{c}^{a b}$ which contains $\left\{b_{i}: i \in I\right\}$ for I an
infinite subset of ω. Let σ be an automorphism over c which maps $\boldsymbol{\Delta}_{c}^{a b}$ to $\boldsymbol{\Delta}^{\prime}$. Letting a^{\prime} be $\sigma(a), b^{\prime}$ be $\sigma(b)$ and $z=\operatorname{meet}\left(b_{i}: i \in \omega\right)$, Lemma 3.2.4 implies that there is an automorphism $b^{\prime} \mapsto b_{i}$ over c which fixes everything outside $\boldsymbol{\Delta}_{z}^{b^{\prime}}$. If a^{\prime} is in this tree, then we must have that $b=\operatorname{meet}_{c} a, b$, so that all $b_{i}=b$. In any case, for every i there is an automorphism $b^{\prime} \mapsto b_{i}$ which fixes a^{\prime}. Thus for any $\phi(x, b c) \in \operatorname{tp}(a / b c), \models \phi\left(a^{\prime}, b_{i} c\right)$, so that ϕ does not divide over c

If $\boldsymbol{\Delta}_{c}^{a, b}$ has infinitely many conjugates over c, let $\left\{b_{i}: i \in \omega\right\}$ be defined by choosing images of b in pairwise disjoint conjugates of $\boldsymbol{\Delta}_{c}^{a, b}$. We want $\phi(x, b c)$ to guarantee that any realization is in $\boldsymbol{\Delta}_{c}^{a, b}$. Let $d=\operatorname{dist}\left(c, \operatorname{root}\left(\boldsymbol{\Delta}_{c}^{a, b}\right)\right)$ and define $\phi(x, b c)$ as the conjunction of formulae asserting that $\operatorname{dist}(c, x)=\operatorname{dist}(c, a)$ and that the d th element of path (c, b) is also the d th element of path (c, x). Then ϕ 2-divides, since any realization of $\phi\left(x, b_{i} c\right) \wedge \phi\left(x, b_{j} c\right)$ would have to be an element of both disjoint conjugates of $\boldsymbol{\Delta}_{c}^{a, b}$.

Lemma 3.2.6. Let \bar{c} be a finite tuple whose elements are in a single component. Let \bar{b}_{c} be a finite tuple satisfying $\operatorname{comp}\left(\bar{b}_{c}\right)=\operatorname{comp}(\bar{c})$ and that further there is a $c \in \bar{c}$ such that c is the closest element of $\operatorname{dcl}(\bar{c})$ to every $b \in \bar{b}$. For $\left\{\bar{b}_{i}: i \in \omega\right\}$ of $\operatorname{tp}\left(\bar{b}_{c} / c\right)$, there exist automorphisms $\sigma_{i}: \bar{b}_{c} \mapsto \bar{b}_{i}$ which are over \bar{c} (hence over $\operatorname{dcl}(\bar{c})$.

Proof. Let $z_{1}=\operatorname{meet}_{c}\left(\bar{b}_{c}\right), z_{2}=\operatorname{meet}_{c}\left(\bar{b}_{i}\right)$, and $z=\operatorname{meet}_{c}\left(z_{1}, z_{2}\right)$. By Lemma (3.2.4) we can choose σ_{i} to map $\boldsymbol{\Delta}_{z}^{z_{1}} \rightarrow \boldsymbol{\Delta}_{z}^{z_{2}}$ over c. . If there is some $c^{\prime} \in \operatorname{dcl}(\bar{c})$ so that $c^{\prime} \in \boldsymbol{\Delta}_{z}^{z_{1}}$, then for some $b \in \bar{b}_{c}$ we either have $c^{\prime} \in \operatorname{path}(b c)$ or $b \in \operatorname{path}\left(c c^{\prime}\right)$. The first case contradicts that c is the closest element of $\operatorname{dcl}(\bar{c})$ to b; in the second we have that $b \in \operatorname{dcl}(\bar{c})$ so that $c=b$. Also every σ_{i} must fix b, so that the σ_{i} can be
chosen to map $\boldsymbol{\Delta}_{w}^{w_{1}} \rightarrow \boldsymbol{\Delta}_{w}^{w_{2}}$ where $w_{1}=\operatorname{meet}_{c}\left(\bar{b}_{c} \backslash\{b\}\right)$, $w_{2}=\operatorname{meet}_{c}\left(\bar{b}_{i} \backslash\{b\}\right), w=$ $\operatorname{meet}_{c}\left(w_{1}, w_{2}\right)$. If there is some $c^{\prime \prime} \in \boldsymbol{\Delta}_{w}^{w_{1}} \cap \operatorname{dcl}(\bar{c})$ then there is some $b^{\prime} \in \bar{b}_{c} \backslash\{b\}$ for which $b^{\prime} \in \operatorname{path}\left(b, c^{\prime \prime}\right)$ or $c^{\prime \prime} \in \operatorname{path}\left(b, b^{\prime}\right)$. In the first case, $b^{\prime} \in \operatorname{dcl}(\bar{c})$, so that b^{\prime} is the closest element of $\operatorname{dcl}(\bar{c})$ to itself. In the second case, $c^{\prime \prime}$ is the closest element to b^{\prime} of $\operatorname{dcl}(\bar{c})$. Either way, we contradict that $b=c$ is the closest element of $\operatorname{dcl}(\bar{c})$ to b^{\prime}. Thus we may choose the σ_{i} over \bar{c}.

Lemma 3.2.7. Fix $\bar{a}, \bar{b}, \bar{c}$, and for $c \in \operatorname{dcl}(\bar{c})$, let \bar{a}_{c}, \bar{b}_{c} denote the subset of \bar{a} (respectively \bar{b}) which is closer to c than any other element of $\operatorname{dcl}(\bar{c})$. Similarly, let $\bar{a}_{\varnothing}, \bar{b}_{\varnothing}$ denote the subset of $\bar{a}($ resp. $\bar{b})$ satisfying $\operatorname{comp}\left(\bar{a}_{\varnothing}\right) \cap \operatorname{comp}(\bar{c})=\varnothing$. Then $\bar{a} \downarrow_{\bar{c}} \bar{b}$ if and only for every $c \in \operatorname{dcl}(\bar{c}) \cup\{\varnothing\}, \bar{a}_{c} \downarrow_{c} \bar{b}_{c}$.

Proof. First suppose that $\bar{a}_{c} \not \mathbb{X}_{c} \bar{b}_{c}$ for some $c \in \operatorname{dcl}(\bar{c})$. Choose $\left\{\bar{b}_{i}: i \in \omega\right\}$ of $\operatorname{tp}\left(\bar{b}_{c} / c\right)$ and $\phi\left(\bar{x}_{c}, \bar{b}_{c} c\right) \in \operatorname{tp}\left(\bar{a}_{c} / \bar{b}_{c} c\right)$ witnessing the dividing. Using Lemma 3.2.6, let $\bar{d}_{i}:=\sigma_{i}(\bar{b})$ for $\sigma_{i}: \bar{b}_{c} \mapsto \bar{b}_{i}$ over \bar{c}. Letting $\psi(\bar{x}, \bar{b} \bar{c}):=\phi\left(\bar{x}_{c}, \bar{b}_{c} c\right)$, where \bar{x}_{c} is given the obvious interpretation, we have that $\left\{\bar{b}_{i}\right\}$ and ψ witness that $\operatorname{tp}(\bar{a} / \bar{b} \bar{c})$ divides over \bar{c}.

For the other direction, let $\left\{\bar{b}_{i}\right\}$ be of $\operatorname{tp}(\bar{b} / \bar{c})$. Then, for each $c \in \bar{c}, \bar{b}_{i}^{(c)}$ is of $\operatorname{tp}\left(\bar{b}_{c} / c\right)$, and we showed that without loss of generality we can find automorphisms $\bar{b}_{c} \mapsto \bar{b}_{i}^{(c)}$ which fix some conjugate of \bar{a}_{c} and also fix $\operatorname{dcl}(\bar{c})$. Lemma 3.2.4 implies that for $c \in \operatorname{dcl} \bar{c}$, these can be chosen to fix all elements which do not have c as the closest element of $\operatorname{dcl}(\bar{c})$. Thus composing these maps will map $\bar{b} \mapsto \bar{b}_{i}$ and fix some conjugate of \bar{a}, showing that $\bar{a} \downarrow_{c} \bar{b}$.

Theorem 3.2.8. For any $\bar{a}, \bar{b}, \bar{c}, \bar{a} \downarrow_{\bar{c}} \bar{b}$ if and only if $\bar{b} \downarrow_{\bar{c}} \bar{a}$. Thus, T is simple.

Proof. The previous lemma shows that $\bar{a} \downarrow_{\bar{c}} \bar{b}$ if and only $\bar{a}_{c} \downarrow_{c} \bar{b}_{c}$ for every $c \in$ $\operatorname{dcl}(\bar{c}) \cup\{\varnothing\}$ which happens if and only if $a \downarrow_{c} b$ for $c \in \bar{c}, a \in \bar{a}, b \in \bar{b}$; i.e. if and only if $\boldsymbol{\Delta}_{c}^{a, b}$ has finitely many conjugates over c. This is clearly a symmetric condition, so that it implies that $b \downarrow_{c} a$ for all a, b, c and $\bar{b} \downarrow_{\bar{c}} \bar{a}$.

Counting types, we can show that T is actually stable (but not ω-stable).

Lemma 3.2.9. For any tree τ with root ρ and depth d, there is a tree $T^{0} \subseteq \omega^{d}$ which is elementarily equivalent to τ (where we interpret $E\left(\eta_{0}, \eta_{1}\right)$ in ω^{d} as holding exactly when $\eta_{1}=\eta_{0} \wedge k$ for some $k \in \omega$ or $\eta_{0}=\eta_{1} \wedge k$ for such a $\left.k\right)$.

Proof. Induct on d; the statement is clear if $d=0$. Let τ be a tree of depth $d+1$ with root ρ and consider the set $\left\{\mu_{\alpha}\right\}$ of subtrees rooted at children of ρ. By the inductive hypothesis, each of these is elementarily equivalent to a subtree of ω^{d}, say m_{α}. For $\eta \in \omega^{\leq d}$, let

$$
\kappa(\eta)= \begin{cases}\left|\left\{\alpha: m_{\alpha}=\eta\right\}\right| & \text { if }\left|\left\{\alpha: m_{\alpha}=\eta\right\}\right|<\omega \\ \aleph_{0} & \text { otherwise }\end{cases}
$$

. Then define T_{0} as $0 \wedge \bigwedge_{\eta \in \omega \leq d} \eta^{\kappa(\eta)}$.
Fix $k \in \omega$ and consider a k-round Ehrenfeucht-Fraïssé game on T and T^{0}. If the spoiler plays the root of either structure, the duplicator responds with the root of the other structure. Otherwise the spoiler plays in some m_{α} or an equivalent subtree η of ω^{d}. If either have already been chosen from, the duplicator continues with the strategy established by the inductive hypothesis. Otherwise, the duplicator initiates play in an un-played copy of the other structure, using the inductive hypothesis.

There will always be enough copies in either structure to do this by our choice of $\kappa(\eta)$.

Lemma 3.2.10. If T is rooted at ρ of depth ω, let T_{d} denote the maximal subtree of T rooted at ρ with depth d. Let T_{d}^{0} denote an elementarily equivalent tree in ω^{d} as guaranteed by the previous lemma. Noting that $T_{d}^{0} \subseteq T_{d+1}^{0}$, we let $T^{0}:=\cup_{d<\omega} T_{d}^{0}$. Then T^{0} is a tree in ω^{ω} which is elementarily equivalent to T.

Proof. Fix $k \in \omega$ and consider a k-round Ehrenfeucht-Fraïssé game on T and T^{0}.
If the spoiler picks from level d for $d \in \omega$, the duplicator plays by the strategy witnessing that $T_{d} \equiv T_{d}^{0}$ - by elementary equivalence this strategy can be chosen in a way that is compatible with any previous play.

Noting the any single connected component can be viewed as a tree of depth at most ω, we immediately get that the theory of the generic is small:

Corollary 3.2.11. There are at most $2^{\aleph_{0}} 1$-types over \varnothing consistent with the theory of the $\left(\mathbf{K}_{1}^{+}, \preccurlyeq_{1}\right)$-generic.

This allows to show that the theory of the $\left(\mathbf{K}_{1}^{+}, \preccurlyeq_{1}\right)$ is stable. We note that the \varnothing-type of any given connected component will be the type of a tree, and hence will be one of $2^{\aleph_{0}}$ possibilities.

Theorem 3.2.12. The theory of the $\left(\mathbf{K}_{1}^{+}, \preccurlyeq_{1}\right)$-generic is $2^{\aleph_{0}}$-stable.

Proof. Let M be a model of cardinality of $2^{\aleph_{0}}$; then M clearly realizes at most $2^{\aleph_{0}}$ types. We show that there are $2^{\aleph_{0}} 1$-types over M. Let $a \in \mathbf{M} \backslash M$, and consider
$\operatorname{tp}(a / M)$. If $\operatorname{comp}(a) \cap M=\varnothing$, then $\operatorname{tp}(a / M)$ is determined by $\operatorname{tp}(a / \varnothing)$, and hence is one of $2^{\aleph_{0}}$ possibilities.

If $\operatorname{comp}(a) \cap M \neq \varnothing$, $\operatorname{define} \operatorname{dist}(a, M)$ to be $\inf \{\operatorname{dist}(a, m): m \in M\}-$ this is clearly well-defined. I claim that there is a unique element $m \in M$ satisfying $\operatorname{dist}(a, M)=\operatorname{dist}(a, m)$. If $m \neq m^{\prime} \operatorname{satisfy} \operatorname{dist}(a, m)=\operatorname{dist}\left(a, m^{\prime}\right)$, let $n=\operatorname{meet}_{a}\left(m, m^{\prime}\right)$. Then n is definable over $m m^{\prime}$, and is hence an element of M. This implies that $\operatorname{dist}(a, n)<\operatorname{dist}(a, m)$, a contradiction.

Let $m \in M$ satisfy $\operatorname{dist}(a, m)=\operatorname{dist}(a, M)$. It is clear that $\operatorname{tp}(a / M)$ is determined by the type of $\boldsymbol{\Delta}_{m}^{a}$ and $\operatorname{tp}(m / M)$. Since there are $2^{\aleph_{0}}$ possibilities for such types, we have what we want.

3.3 Summary

In contrast to our results for $r \in(0,1)$, we have:

Theorem 3.3.1. For $r \geq 1$, the theory $S_{\preccurlyeq r}$ is complete. In particular, the theory of the $\left(\mathbf{K}_{r}^{+}, \preccurlyeq_{r}\right)$-generic is decidable.

Proof. For $r>1$, we already showed this in Lemma (3.1.2). For $r=1$, let $M \models S_{\preccurlyeq 1}$. Then we know that M consists of countably many copies of various trees. Then Lemma 3.2.10 shows that M is elementarily equivalent to the $\left(\mathbf{K}_{1}^{+}, \preccurlyeq_{1}\right)$-generic. Thus $S_{\preccurlyeq 1}$ is complete, and since it is clearly decidable we have what we want.

Corollary 3.3.2. Let $\left\{\alpha_{n}: n \in \omega\right\}$ be any sequence in $[0,2]$ and let $M_{\alpha_{n}} \models \Sigma_{\alpha_{n}}$. Let \mathcal{U} be any ultrafilter on ω. Then exactly one of the following holds of $\mathbf{M}:=\prod_{\mathcal{U}} M_{\alpha_{n}}$

1. $\left\{\alpha_{n}\right\}^{\mathcal{U}}=0$ and \mathbf{M} is elementarily equivalent to the Rado graph
2. $\left\{\alpha_{n}\right\}^{\boldsymbol{U}}=\alpha$ for irrational α, and \mathbf{M} is elementarily equivalent to the ShelahSpencer graph of weight α.
3. $\left\{\alpha_{n}\right\}^{\mathcal{U}}=r$ for rational $r \in(0,1], \mathbf{M}$ is equivalent to the $\left(\mathbf{K}_{r}, \leq_{r}\right)$ generic and has a decidable, ω-stable theory.
4. $\left\{\alpha_{n}\right\}^{\mathcal{U}}=r$ for rational $r \in(0,1), \mathbf{M}$ models Σ_{r} and has an undecidable theory.
5. $\left\{\alpha_{n}\right\}^{\mathcal{U}}=r$ for rational $r \in(1, \infty), \mathbf{M}$ is equivalent to the $\left(\mathbf{K}_{r}, \leq_{r}\right)$ generic and has a decidable, ω-categorical theory.
6. $\left\{\alpha_{n}\right\}^{\mathcal{U}}=1, \mathbf{M}$ is equivalent to the $\left(\mathbf{K}_{r}^{+}, \preccurlyeq r\right)$ generic and has a decidable, strictly stable theory.

Chapter 4

Other Properties

4.1 Connectedness

We show in this section that for $\alpha \in(0,1)$, both the $\left(\mathbf{K}_{\alpha}, \leq_{\alpha}\right)$-generic and the $\left(\mathbf{K}_{\alpha}^{+}, \preccurlyeq_{\alpha}\right)$ generic are connected. Choose any rational $r<\alpha$, and let C be a biminimal 0 -extension of a two point graph $\{a, b\}$. By biminimality, $a b C$ is connected. Also, for $X \subseteq C, \delta_{\alpha}(X / a b)=|a b X|-2-\alpha e(X / a b)>|a b X|-2-$ $r e(X / a b) \geq 0$. Letting G be either the $\left(\mathbf{K}_{\alpha}, \leq_{\alpha}\right)$-generic or the $\left(\mathbf{K}_{\alpha}^{+}, \preccurlyeq \alpha\right)$-generic, for any $a^{\prime}, b^{\prime} \in G$, there is a partial isomorphism $f: a b \mapsto a^{\prime} b^{\prime}$. By full amalgamation, f extends to an embedding of C into G over $a b$, which shows that any two points in G are in the same component.

Note that this is in stark contrast to the case for $r \geq 1$, where there are infinitely many components.

4.2 Other Models of S_{r}

We show in this section that for rational $r \in(0,1)$ it is easy to extend certain countable graphs G to models of S_{r}. In particular, we will use this to show that the $\left(\mathbf{K}_{r}^{+}, \preccurlyeq_{r}\right)$ generic is not AE axiomatizable, and that $S_{r} \nvdash \Sigma_{r}$.

Throughout, fix a rational $r \in(0,1)$.

Proposition 4.2.1. Let C be any countable graph with $\varnothing \preccurlyeq_{r} C$ and with finite closures (i.e. for finite $A \subset C$ there is a unique finite \bar{A} such that $A \subseteq \bar{A} \preccurlyeq_{r} C$). Then C can be extended to a graph M which is $\left(\mathbf{K}_{r}^{+}, \preccurlyeq_{r}\right)$-generic; furthermore, if $A \subseteq C$, then $\operatorname{cl}_{M}(A)=\operatorname{cl}_{C}(A)$.

Proof. We proceed by a modification of the construction of a generic structure. Enumerate the class \mathbf{K}_{R}^{+}as $\left\{G_{i}: i \in \omega\right\}$ and a decomposition of C as $C=\bigcup_{i} C_{i}$ where $C_{0}=\varnothing$ and $C_{i} \preccurlyeq_{r} C_{i+1}$ for every i. Also fix a bijection $\eta: \omega \times \omega \rightarrow \omega$. We will inductively construct a sequence of finite structures $M_{0} \subseteq M_{1} \subseteq \ldots \subseteq M_{n}$ with the following properties:

- $M_{n} \not{ }_{r} M_{n+1}$
- $\left|M_{n+1} \backslash M_{n}\right|<\omega$
- $C_{n} \preccurlyeq_{r} M_{n}$
- If $G_{i} \preccurlyeq_{r} M_{n}$ and $G_{i} \preccurlyeq_{r} H_{j}$ with $\eta(i, j)<n$ then G_{i} extends to a copy of $H_{j} \preccurlyeq_{r} M_{n+1}$

Begin by setting $M_{0}=C_{0}=\varnothing$. Given M_{n}, we show how to construct M_{n+1}. We begin by setting $D_{0}=C_{n+1} \oplus_{C_{n}} M_{n}$. Note that the amalgamation property gives us $C_{n+1} \preccurlyeq_{r} D_{0}$ and $M_{n} \preccurlyeq_{r} D_{0}$.

We now enumerate as $\left(A_{0}, B_{0}\right), \ldots,\left(A_{m}, B_{m}\right)$ all pairs $\left(A_{i}, B_{i}\right)$ such that $A_{i} \preccurlyeq_{r}$ $D_{0}, A_{i} \simeq G_{k}, B_{i} \simeq G_{l}$ with $G_{k} \preccurlyeq_{r} G_{l}$ and $\eta(k, l)<n$. For each $0 \leq i<m$ let $D_{i+1}=D_{i} \oplus_{A_{i}} B_{j}$, so that $D_{i} \preccurlyeq_{r} D_{i+1}$. We let $M_{n+1}=D_{m}$, and it is clear by induction that $M_{n} \preccurlyeq_{r} M_{n+1}$ and $C_{n+1} \preccurlyeq_{r} M_{n+1}$.

We show that $M=\cup_{i} M_{n}$ meets the required properties. First note that each D_{0} is an amalgamation over some C_{i}, so that $C \subseteq M$. It is clear that M has finite closures - if $A \subseteq_{\omega} M$ there is some n so that $A \subseteq M_{n}$; but each M_{n} is closed in M. Consider an embedding $f: A \hookrightarrow M$ and $A \preccurlyeq_{r} B$, again choose n so that $f(A) \subseteq M_{n}$. Then if $A \simeq G_{i}$ and $B \simeq G_{j}$, for $m=\max (n, \eta(i, j))$ we will have that some D_{i+1} is the amalgam of D_{i} with B over $f(A)$. Since each such $D_{i} \preccurlyeq_{r} M$, this copy of B is strong in M.

Finally, we show that for $A \subseteq C, \operatorname{cl}_{M}(A)=\operatorname{cl}_{C}(A)$. Fix such an A, and fix $n \in \omega$ minimal such that $A \subseteq C_{n}$.
if $A \subseteq C$, we can choose some n for which $A \subseteq C_{n}$. Then $A \preccurlyeq_{r} C_{n} \preccurlyeq_{r} M_{n} \preccurlyeq_{r}$ D_{0} as shown above; since $D_{0} \preccurlyeq_{r} M$ the result follows.

Lemma 4.2.2. Fix any graph C which satisfies $\varnothing \preccurlyeq_{r} C$. Then for any minimal pair (A, B) with $\delta_{r}(B / A)=0$ the structure C^{\prime} obtained from C by replacing finitely many instances of A with instances of B satisfies $\varnothing \preccurlyeq r r C^{\prime}$. Furthermore, if C has finite closures then so does C^{\prime}.

Proof. Let $A_{1} \ldots A_{n}$ be the copies of A which extend to copies of B, so that $C^{\prime}=$ $C \oplus_{A_{1}} B^{\prime} \oplus_{A_{2}} B^{\prime} \ldots \oplus_{A_{n}} B^{\prime}$, where $B^{\prime}=B \backslash A$ and we abuse notation and write $A \oplus_{C} B$ to indicate the free join of A and B over C, without requiring the $C \preccurlyeq_{r} A$ and $C \npreccurlyeq_{r} B$. Let X be any finite subset of C^{\prime}; then $X=C_{0} \oplus B_{1} \oplus \ldots \oplus B_{n}$, where $C_{0} \subset_{\omega} C$, and $B_{i} \subset A_{i} \oplus B^{\prime}$. Then $\delta_{r}(X)=\delta_{r}\left(C_{0}\right)+\sum_{1 \leq i \leq n} \delta_{r}\left(B_{i}\right)$. If $C_{0} \neq \varnothing$, then $\delta_{r}\left(C_{0}\right)>0$. Since each $B_{i} \preccurlyeq_{r} B$ and $\varnothing \preccurlyeq_{r} B$, we have $\delta\left(B_{i}\right)>0$ as desired.

We also show that X has a finite closure. Let $X^{\prime}=\operatorname{cl}_{C}\left(C_{0}\right)$. Then I claim that $Y=X^{\prime} \cup \oplus_{i<n, A_{i}} B^{\prime} \preccurlyeq_{r} C^{\prime}$. Let $X^{\prime} \subseteq Z \subseteq_{\omega} C^{\prime}$ - then $Z=C_{1} \cup \oplus B$ for some finite $C_{1} \subseteq C$. Then $\delta(Z / Y)=\delta\left(C_{1} / X^{\prime}\right)+\sum \delta(B / B)=\delta\left(C_{1} / X^{\prime}\right)>0$ since $X^{\prime} \preccurlyeq_{r} C$.

From this, we easily get:

Theorem 4.2.3. The theory of the $\left(\mathbf{K}_{r}^{+}, \preccurlyeq_{r}\right)$-generic is not $A E$-axiomatizable.

Proof. We fix a $\left(\mathbf{K}_{r}^{+}, \preccurlyeq_{r}\right)$-minimal pair (A, B) with $\delta(B / A)=0$ and a bijection $\eta: \omega \times \omega \rightarrow \omega$. Let M_{0} denote any generic structure and enumerate as $\left\{A_{0, i}: i \in \omega\right\}$ all distinct instances of A that occur in M_{0}. For any M_{n}, we define M_{n}^{\prime} by replacing each $A_{i, j}$ with a copy of B for $\eta(i, j)<n$. We then let M_{n+1} be a generic structure containing M_{n}^{\prime} as above. Since each M_{n} is generic, they all have the same theory. In particular, for every $n, M_{n} \models \neg\left[\forall \bar{x} \Delta_{A}(\bar{x}) \rightarrow \exists \bar{y} \Delta_{B}(\bar{x} \bar{y})\right]$. However, if we let $M=\cup_{n} M_{n}$ then $M \models \forall \bar{x} \Delta_{A}(\bar{x}) \rightarrow \exists \bar{y} \Delta_{B}(\bar{x} \bar{y})$. Therefore M has a different theory from the theory of the generic, showing that the latter theory does not have models closed under unions of chains.

Noting that M constructed in the proof of the previous theorem satisfies S_{r} but is not semi-generic (since $\varnothing \preccurlyeq r A$ but for $m>|B \backslash A|$, no embedding A^{\prime} of A into M will satisfy the required condition since $B \nsubseteq \operatorname{cl}^{m}(\varnothing)$ but $\left.B \subseteq \operatorname{cl}^{m}\left(A^{\prime}\right)\right)$

4.3 Direct Limits

We will show in this section that for rational $r \in(0,1)$, we can obtain the $\left(\mathbf{K}, \preccurlyeq_{r}\right)$-generic as a direct limit of a sequence of graphs $M_{\alpha_{n}}$ with α_{n} converging down to r.

We begin by noting that the irrational generics are totally ordered under strong embedding:

Lemma 4.3.1. Let $\alpha<\beta$ be irrational in $(0,1)$. Then $M_{\beta} \hookrightarrow M_{\alpha}$, and the image of the embedding is \leq_{α} strong. Furthermore, for $f_{0}: \bar{a} \mapsto \bar{b}$ a partial isomorphism of closed sets $\left(\bar{a} \leq_{\beta} M_{\beta}, \bar{b} \leq_{\alpha} M_{\alpha}\right)$, the embedding can be taken over f_{0}.

Proof. Write $M_{\beta}=\bigcup_{i} C_{i}$ with $C_{i} \leq_{\beta} C_{i+1}$ and $C_{0}=\bar{a}$ (if f_{0} is not specified, let $C_{0}=\varnothing$). We will show by induction on i that C_{i} embeds strongly into M_{α} via some f_{i}. If f_{i-1} has been defined, we have $\operatorname{im}\left(f_{i-1}\right) \leq_{\alpha} M_{\alpha}$, so by genericity f_{i-1} extends to a strong embedding of C_{i} into M_{α} over C_{i-1}. Our embedding will be $f=\bigcup_{i} f_{i}$.

We show that f is strong. Suppose (X, Y) is a minimal pair in M_{α} with $X \subseteq \operatorname{im} f$. Then choose n so that $X \subseteq \operatorname{im} f_{n}$: because f_{n} is a strong embedding, we must have $Y \subseteq \operatorname{im} f_{n}$.

Given a sequence $\left\{\alpha_{n}\right\}$ of irrationals which montonically converge down to a rational r, we can then define a limiting structure as follows. We essentially want N_{α} to look like a union of all the structures $G_{\alpha_{n}}$. The technical obstacle to writing this is that while each generic embeds in the next, that next one won't necessarily be contained in the succeeding generic; there is no obvious way of of taking a union of embeddings. We get the same idea via compactness.

Consider a language \mathcal{L}^{\prime} which adds a countable set of new constants indexed by $\omega \times \omega-C:=\left\{c_{(i, j)}: i, j \in \omega\right\}$. For each $n \in \omega$, let $\left\{a_{m}: m \in \omega\right\}$ enumerate the elements of $G_{\alpha_{n}}$, fix an embedding $f_{n}: G_{\alpha_{n}} \hookrightarrow G_{\alpha_{n+1}}$, and define Δ_{n} inductively as follows. For $n=0$, fix an enumeration $\left\{a_{i}: i \in \omega\right\}$ of $G_{\alpha_{0}}$ and let Δ_{0} be the set of sentences $\left\{R\left(c_{(0, i)}, c_{(0, j)}\right): G_{\alpha_{0}} \models R\left(a_{i}, a_{j}\right)\right\} \cup\left\{\neg R\left(x_{(0, i)}, x_{(0, j)}\right): G_{\alpha_{0}} \models \neg R\left(a_{i}, a_{j}\right)\right.$. Having defined Δ_{n}, we fix an enumeration of $G_{\alpha_{n+1}}$ as $\left\{a_{(m, i)}: m \leq n+1, i<\omega\right\}$ so that $\operatorname{im}\left(f_{n}\right)=\left\{a_{(m, i)}: m \leq n+1, i<\omega\right\}$. Letting Δ_{n+1} be $\left\{R\left(c_{(n+1, i)}, c_{(n+1, j)}\right)\right.$: $\left.G_{\alpha_{n+1}} \models R\left(a_{(n+1, i)}, a_{(n+1, j)}\right)\right\} \cup\left\{\neg R\left(c_{(n+1, i)}, c_{(n+1, j)}\right): G_{\alpha_{0}} \models \neg R\left(a_{(n+1, i)}, a_{(n+1, j)}\right)\right.$, it is clear that $T:=\cup_{n} \Delta_{n}$ is consistent - let $N_{r} \models T$.

We will frequently abuse notation and conflate $M_{\alpha_{n}}$ with it's image in N_{r}. We first note that the resulting structure does not depend on the sequence used:

Lemma 4.3.2. Let $\left\{\alpha_{n}: n \in \omega\right\}$ and $\left\{\beta_{n}: n \in \omega\right\}$ be sequences which converge monotonically down to r. Let N_{r}^{0} and N_{r}^{1} denote the respective limits. Then $N_{r}^{0} \simeq$ N_{r}^{1}

Proof. We construct a back-and-forth system of partial isomorphisms $\left\{f_{i}: i \in \omega\right\}$ such that:

- $f_{0}: \varnothing \rightarrow \varnothing$
- For every $i, f_{i}: \bar{a} \rightarrow \bar{b}$ and there is an m_{i} so that $\bar{a} \leq_{\alpha_{m_{i}}} M_{\alpha_{m_{i}}}$ and $\bar{b} \leq_{\beta_{m_{i}}} M_{\beta_{m_{i}}}$
- If $f=\cup_{i} f_{i}$, then f is an isomorphism from N_{r}^{0} to N_{r}^{1}.

Suppose that $f_{i}: \bar{a} \rightarrow \bar{b}$ has been defined and the i is even. Choose any $a \in N_{r}^{0} \backslash \bar{a}$, and choose m so that $\bar{a} a \subseteq M_{\alpha_{m}}$ and choose m_{i+1} so that $\alpha_{m_{i+1}}<\beta_{m}$
and $\bar{b} \subseteq M_{\beta_{m_{i}}}$. Let $A=\mathrm{cl}_{M_{\alpha_{m_{i}}}}$, then $\bar{a} \leq_{\alpha_{m_{i}}} M_{\alpha_{m_{i}}}$ implies that $\bar{a} \leq_{\alpha_{m_{i+1}}} M_{\alpha_{m_{i}}}$, so that $\bar{a} \leq_{\alpha_{m_{i+1}}} A$, and the latter embeds strongly into $M_{\beta_{m_{i+1}}}$ over \bar{b} as desired.

The case for i odd is handled in exactly the same manner, except that the closure of B in the appropriate generic is taken.

Lemma 4.3.3. The following hold of N_{r} :

1. Age $\left(N_{r}\right)=\left\{A: \delta_{r}\left(A^{\prime}\right)>0\right.$ for $\left.A^{\prime} \subseteq A\right\}=\mathbf{K}_{r}^{+}$
2. N_{r} has finite closures with respect to \preccurlyeq_{r}.

Proof. Let $A \subseteq_{\omega} N_{r}$; then there is some n some that $A \subseteq M_{\alpha_{n}}$. Therefore $\delta_{\alpha_{n}}\left(A^{\prime}\right) \geq$ 0 for all $A^{\prime} \subseteq A$, so that $\delta_{r}\left(A^{\prime}\right)>0$ for such A^{\prime}. Conversely, if some finite A satisfies $\delta_{r}\left(A^{\prime}\right)>0$ for every $A^{\prime} \subseteq A$, then there is some $\beta>\alpha$ so that $\delta_{\beta}\left(A^{\prime}\right) \geq 0$ for such A^{\prime}. Therefore A will be in the age of $M_{\alpha_{n}}$ for all $\alpha_{n}<\beta$, so that A will be in the age of N_{r}.

For finite closures, let $A \subseteq M_{\alpha_{n}}$ as before. Then A is contained in a finite closed set in $M_{\alpha_{n}}$; since $M_{\alpha_{n}} \not{ }_{r} N_{r}$, we have $\mathrm{cl}_{M_{\alpha_{n}}}(A) \preccurlyeq_{r} N_{r}$.

Remark 4.3.4. We note that although $M_{\alpha_{n}} \leq_{\alpha_{n+1}} M_{\alpha_{n+1}}$, it is not the case that $M_{\alpha_{n}} \leq{ }_{\alpha_{n}} M_{\alpha_{n+1}}$. Choose any $A_{0} \in \mathbf{K}_{\alpha_{0}}$ closed in $M_{\alpha_{0}}$ and for each $n \in \omega$ define A_{n} as follows. Choose q_{n} rational in $\left(\alpha_{n+1}, \alpha_{n}\right)$, and let X_{n} be a minimal 0-extension of A_{n} with respect to q_{n}. Then $\delta_{\alpha_{n}}\left(X_{n} / A_{n}\right)<0$, while by minimality we have that $A \leq \alpha_{\alpha_{n+1}} X_{n}$. Letting $A_{n+1}=A_{n} X_{n}$, we have that $A_{n} \leq_{\alpha_{n+1}} A_{n+1}$ but $A_{n} \mathbb{Z}_{\alpha_{n}} A_{n+1}$. Thus, A_{n+1} embeds strongly into $M_{\alpha_{n+1}}$ over A_{n} (but not in $M_{\alpha_{n}}$ since A_{n} is closed in $M_{\alpha_{n}}$), and $A_{n} \not \underbrace{}_{\alpha_{n}} A_{n+1}$.

The following lemma will imply that N_{r} is the $\left(\mathbf{K}_{r}^{+}, \preccurlyeq_{r}\right)$-generic.

Lemma 4.3.5.

1. For any $A \subseteq \subseteq_{\omega} M_{\alpha_{n}}$ and $m>n, \operatorname{cl}_{M_{\alpha_{m}}}(A) \subseteq \mathrm{cl}_{M_{\alpha_{n}}}(A)$
2. For any $A \subseteq \subseteq_{\omega} M_{\alpha_{n}}, \mathrm{cl}_{N_{r}}(A) \subseteq \mathrm{cl}_{M_{\alpha_{n}}}(A)$
3. For $A \subseteq_{\omega} N_{r}$, there is some n so that $\operatorname{cl}_{N_{r}}(A)=\operatorname{cl}_{M_{a_{n}}}(A)$

Proof. For 1, we note that $\mathrm{cl}_{G_{\alpha_{n}}}(A) \leq_{\alpha_{n}} M_{\alpha_{n}}$ implies that $\mathrm{cl}_{G_{\alpha_{n}}}(A) \leq_{\alpha_{m}} M_{\alpha_{n}}$. Since $M_{\alpha_{n}} \leq_{\alpha_{m}} M_{\alpha_{m}}$, we have that $\mathrm{cl}_{G_{\alpha_{n}}}(A)$ is $\leq_{\alpha_{m}}$-closed in $M_{\alpha_{m}}$; thus $\operatorname{cl}_{G_{\alpha_{m}}}(A)$ must be contained in it.

The exact same argument, replacing $M_{\alpha_{m}}$ with N_{r} and $\leq_{\alpha_{m}}$ with \preccurlyeq_{r} gives 2 .
For 3, we note that by 1 the sequence $\left\{\operatorname{cl}_{M_{\alpha_{n}}}(A): n \in \omega\right\}$ is a descending sequence of finite structures and must thus eventually be constant.

Corollary 4.3.6. N_{r} is isomorphic to the $\left(\mathbf{K}_{r}^{+}, \preccurlyeq_{r}\right)$-generic

Proof. We know from Lemma 4.3.3 that that N_{r} has the age of the generic, and has finite closures. It thus suffices to show that for any $A \preccurlyeq_{r} N_{r}$, if $A \npreccurlyeq_{r} B$ then B embeds \preccurlyeq_{r}-strongly into N_{r} over A. Fixing such an A, we have by the previous lemma that $A \leq_{\alpha_{n}} M_{\alpha_{n}}$ for n sufficiently large. If $A \not{ }_{r} B$, then for n sufficiently large, $A \leq \alpha_{\alpha_{n}} B$. Thus choosing n sufficiently large guarantees that B embeds $\leq_{\alpha_{n}}$ strongly into $M_{\alpha_{n}}$ over A. Since $M_{\alpha_{n}} \preccurlyeq_{r} N_{r}$, this copy of B will also be \preccurlyeq_{r}-strong in N_{r}.

4.4 Independence

There is an intrinsic notion of dimension and independence associated with generic structures generated by a pre-dimension function. In this section, we will look at the behavior of this function in the context of $\left(\mathbf{K}_{r}^{+}, \preccurlyeq_{r}\right)$-generics. We will see that once again, the existence of 0 -extensions will complicate the picture.

Fixing a generic model G, for any finite $A \subseteq_{\omega} G$ we define the dimension of A by $d(A)=\delta(\operatorname{cl}(A))=\inf \left\{\delta(X): A \subseteq X \subseteq_{\omega} G\right\}$. This gives rise to a well-defined notion of independence as follows (see [2, 14]):

Definition 4.4.1. - For A, B closed finite sets, $A \downarrow_{A \cap B}^{d} B$ if $d(A / B)=d(A / A \cap$ $B)$ and $A \cap B \subseteq \operatorname{cl}(A \cap B)$

- For A, B arbitrary finite sets and C any set, $A \downarrow_{C}^{d} B$ if $d(A / B C)=d(A / B)$ and $\operatorname{cl}(A C) \cap \operatorname{cl}(B C) \subseteq \operatorname{cl}(C)$.
- For A, B, C arbitrary sets, $A \downarrow_{C}^{d} B$ if $A^{\prime} \downarrow_{C}^{d} B^{\prime}$ for every $A^{\prime} \subseteq_{\omega} A, B^{\prime} \subseteq_{\omega} B$.

For $\left(\mathbf{K}, \leq_{r}\right)$, we know that for closed A, B we have $A \downarrow_{A \cap B}^{d} B$ if and only if $A B=A \oplus_{A \cap B} B$ and $A B$ is closed [2]. We get one and a half directions of this equivalence for $\left(\mathbf{K}_{r}^{+}, \preccurlyeq r_{r}\right)$:

Lemma 4.4.2. Let A, B be finite closed subsets of the $\left(\mathbf{K}_{r}^{+}, \preccurlyeq r r^{)}\right.$-generic. If $A \downarrow_{A \cap B}^{d} B$, then $A B=A \oplus_{A \cap B} B$. If $A B=A \oplus_{A \cap B} B$ and $A B$ is closed, then $A \downarrow_{A \cap B}^{d} B$.

Proof. If $A \downarrow_{A \cap B}^{d} B$, we have $d(A B / B)=d(A / B)=d(A / A \cap B)=\delta(A)-\delta(A \cap$ $B)=\delta(A / A \cap B)$. If there is some $a \in A \backslash B$ and $b \in B \backslash A$ which are joined by
an edge, then $\delta(A B / B) \leq \delta(A / A \cap B)-r$, so that $\delta(A / A \cap B) \geq \delta(A B / B)+r \geq$ $d(A B / B)+r$, contradicting that $A \mathbb{X}_{A \cap B} B$.

If $A B=A \oplus_{A \cap B} B$ and $A B$ is closed, then $d(A B)=\delta(A B)$ and $d(A / B)=$ $\delta(A B / B)=\delta(A / A \cap B)=d(A / A \cap B)$ as desired.

Remark 4.4.3. Note that the $\left(\mathbf{K}_{r}^{+}, \preccurlyeq_{r}\right)$ generics will not in general satisfy that $A B$ is closed when $A \downarrow_{A \cap B}^{d} B$. For $r<1$, choose A_{0}, B_{0} with $A_{0} \cap B_{0} \preccurlyeq_{r} A_{0} \oplus_{A_{0} \cap B_{0}} B_{0}$. Choose C to be a bi-minimal 0 -extension of $A_{0} B_{0}$, then C embeds strongly into the generic, denote the respective images of A_{0}, B_{0} by A, B. Then it is clear that $A B$ is not strong in the generic, since the image of C ensures a non-trivial closure. I claim that A and B are strong in the generic, however. It suffices to show that $A \npreccurlyeq_{r} C$ - the argument for B is the same. For $A \subseteq X \subseteq C$, we have that $\delta_{r}(X / A)=$ $\delta_{r}(X / X \cap A B)+\delta_{r}(X \cap A B / A)$. Then the former term is at least 0 by choice of C, while the latter term is greater than 0 since $A \npreccurlyeq_{r} A B$.

On the other hand, for $r \geq 1$ being closed means being connected, and we will have $A B$ closed whenever $A \downarrow_{A \cap B}^{d} B$.

Finally, we note that for $r=1, \downarrow^{d}$-independence is coarser than forkingindependence. This again contrasts with the situation for the Shelah-Spencer graphs, in which the two independence notions coincide [2].

Lemma 4.4.4. For $r=1$, we have:
a) For any $A \subseteq \mathbf{M}, \operatorname{cl}(A)$ is the union of the components of \mathbf{M} which intersect A.
b) For finite $A \subseteq \mathbf{M}, d(A)$ is the number of components of $\operatorname{cl}(A)$.
c) The pseudo-geometry $(\mathbf{M}, \mathrm{cl})$ is trivial - i.e. for any $A \subseteq \mathbf{M}, \operatorname{cl}(A)=\bigcup_{a \in A} \operatorname{cl}(\{a\})$.

Proof. a) Consider $a \in A$, and let b be any element of the component of \mathbf{M} containing a. Then there is a finite path from a to b; this verices in this path give an extension of non-positive pre-dimension, so that we must have $b \in \operatorname{cl}(a) \subseteq \operatorname{cl}(A)$. Conversely, let A^{\prime} be the union of the components of elements in A; we want to show that A^{\prime} is closed. For finite $X \subseteq A^{\prime}$, suppose that (X, Y) is a minimal pair. Then Y must be singleton and with at least one edge from Y to some vertex in X. Therefore Y is in A^{\prime} as desired. b) We first note that for any finite $A_{0} \subseteq \mathbf{M}$, $\delta_{r}\left(A_{0}\right)$ is r times the number of components of A_{0}. To see this observe that a fixed component of A_{0} cannot have any cycles since $r=1$. Such a component must then be a tree, which can be viewed as a 0 -extension of it's root, so that each component has pre-dimension 1.

Let $C_{1} \ldots C_{l}$ be the distinct components of $\operatorname{cl}(A)$, and let $A_{i}:=C_{i} \cap A$. Note that if A_{i} has two components X_{0}, X_{1} then then there is some finite X^{\prime} containing $X_{0} \cup X_{1}$ which is connected and contained in C_{i}. Let X_{i} be a finite graph connected all the components of A_{i}, and let $X=\cup X_{i}$. Then $\delta(X)=l$, so that we must have $d(A) \leq l$. It is clear from a) that any finite graph containing A must have at least l components, so that $d(A)=l$
c) For any $A, \operatorname{cl}(A)=\bigcup C_{i}$ where the C_{i} enumerate the components that have an element of A in them.

In [2], Baldwin and Shi ask whether or not finitely based theories without finite closures exist. We answer in the affirmative:

Lemma 4.4.5. The class $\left(\mathbf{K}_{1}^{+}, \preccurlyeq_{1}\right)$ is finitely based. That is, for every $a \in \mathbf{M}$ and $B \subseteq \mathbf{M}$, there is a finite $C \subseteq B$ so that $a \downarrow_{C}^{d} B$.

Proof. Let C consist of a single representative of every component in $A \cap B$. Then we have to show that for finite $B_{0} \subseteq B, d\left(A / B_{0} C\right)=d(A / C)$ and $\overline{A B_{0}} \cap \overline{A C} \subseteq \bar{C}$. Both of these are immediate from the previous lemma

4.5 Quantifier Elimination

In this section, we prove the following.

Theorem 4.5.1. For rational in $(0,1]$, there is no $k \in \omega$ so that the theory of the $\left(\mathbf{K}_{r}^{+}, \preccurlyeq_{r}\right)$ generic eliminates quantifiers to the level of $\boldsymbol{\Sigma}_{k}$ formulae.

We will show this by providing explicit counterexamples. In particular, for a fixed k we will find two complete types p_{0} and p_{1} which will be consistent with T, the theory of the generic. These will differ on a $\boldsymbol{\Sigma}_{k+1}$ formula but will be the same when restricted to $\boldsymbol{\Sigma}_{k}$ formulae. We will construct the p_{i} as complete types of a certain graph - each type will say that this graph is embedded in a larger graph which will witness the equivalence up to $\boldsymbol{\Sigma}_{k}$ formula and inequivalence on a $\boldsymbol{\Sigma}_{k+1}$ formula.

We fix k for the remainder of this section.
We first define the graphs $B_{1} \ldots B_{N}$ which will form the components of our larger graphs. The crucial property of these is that for any n, B_{n} can extend to the following distinctly:

- A copy of B_{n-1} that itself extends to B_{n-2}
- A copy of B_{n-1} that omits B_{n-2}

Definition 4.5.2. Fix any $N \in \omega$. For $n<N$, we define B_{n} as follows:

- We choose B_{N} to be any graph in \mathbf{K}_{r}^{+}.
- Let A_{N} be a 0 -extension of B_{N}
- Let B_{N-1} and A_{N-1} be disjoint (over A_{N}) 0 -extensions of A_{N} with distinct diagrams. We can ensure by defining B_{N-1}, letting A_{N}^{\prime} be the free join of of B_{N-1} with $\left|B_{N-1} \backslash A_{N}\right|+1$ isolated vertices; A_{N} will then be defined by using AEP to get a 0 -extension of A_{N} containing A_{N}^{\prime}.
- For $n>2$, given A_{n-1}, we let B_{n-2} and A_{n-2} be disjoint (over A_{n-1}) 0extensions of A_{N}. As above, we can guarantee that they have distinct diagrams.

In what follows we fix some odd $N>2 k+1$. We will have occasion to speak of attaching some graph G to some B_{n} contained in a graph H. This just means generating the free amalgam $G \oplus_{B_{n}} H$.

Lemma 4.5.3. Let \bar{x}_{N} be a tuple with length $\left|B_{N}\right|$. For $n<N$, let \bar{x}_{n} be a tuple of length $\left|B_{n} \backslash B_{n+1}\right|$.

We inductively define the formula $\gamma_{N}\left(\bar{x}_{1} \bar{x}_{2} \ldots \bar{x}_{N}\right)$ as follows:

- Let $\gamma_{1}\left(\bar{x}_{2} \ldots \bar{x}_{N}\right)$ denote $\Delta_{B_{2}}\left(\bar{x}_{2} \ldots \bar{x}_{N}\right) \wedge \exists \bar{x}_{1} \Delta_{B_{1}}\left(\bar{x}_{1} \ldots \bar{x}_{N}\right)$.
- Given γ_{n}, define $\gamma_{n+2}\left(\bar{x}_{n+3}, \ldots, x_{N}\right)$ as $\Delta_{B_{n+3}}\left(\bar{x}_{n+3} \ldots \bar{x}_{N}\right) \wedge \exists \bar{x}_{n+2} \Delta_{B_{n+2}}\left(\bar{x}_{n+2} \ldots \bar{x}_{N}\right) \wedge$ $\neg \exists \bar{x}_{n+1} \gamma_{n}\left(\bar{x}_{n+1}\right)$.

Then $\gamma_{2 k+1}$ so defined is a $\boldsymbol{\Sigma}_{k}$ formula.

Proof. We proceed by induction on k. For $k=0$, it is clear that γ_{1} is $\boldsymbol{\Sigma}_{1}$. Let $n=2 k+1$; then changing the negative existential quantifier to a universal quantifier in γ_{n+2} yields:

$$
\Delta_{B_{n+3}}(\cdots) \wedge \exists \bar{x}_{n+2} \Delta_{B_{n+2}}(\cdots) \wedge \forall \bar{x}_{n+1} \neg \gamma_{n}(\cdots)
$$

By induction, γ_{n} is $\boldsymbol{\Sigma}_{k}$, so $\neg \gamma_{n}$ is Π_{k} as is $\forall \bar{x}_{n+1} \neg \gamma_{n}(\cdots)$; thus $\exists \bar{x}_{n+2} \Delta_{B_{n+2}}(\cdots) \wedge$ $\forall \bar{x}_{n+1} \neg \gamma_{n}(\cdots)$ is $\boldsymbol{\Sigma}_{k+1}$

Definition 4.5.4. For odd $n<N$, define the graphs C_{n}, D_{n}, G_{n}^{0} and G_{n}^{1} by the following recursion:

- C_{1} and D_{1} are both the empty graph.
- G_{1}^{0} consists of the graph of B_{2} attached to the graph of B_{1}; while G_{1}^{1} consists of the graph of B_{2}.
- C_{n} consists of a copy of B_{n} which extends to \aleph_{0} copies of B_{n-1} attached to G_{n-2}^{1}.
- D_{n} consists of a copy of B_{n} to which are attached:
- \aleph_{0} copies of B_{n-1} attached to G_{n-2}^{0}.
- \aleph_{0} copies of B_{n-1} attached to G_{n-2}^{1}.
- G_{n}^{0} and G_{n}^{1} are defined by:
$\sigma_{1}^{0} 0 \quad \sigma_{B_{2}}^{B_{1}}$

$$
G_{1}^{\prime}:
$$

- B_{2}

$G_{3}^{\prime}:$

Figure 4.1: Construction of G_{3}^{i}

Figure 4.2: Construction of G_{n}^{i}

- G_{n}^{0} consists of the graph of B_{n+1}, to which is attached a single copy of B_{n} attached to C_{n} and \aleph_{0} copies of B_{n} attached to D_{n}.
- G_{n}^{1} consists of the graph of B_{n+1} to which are attached \aleph_{0} copies of B_{n} attached to D_{n}

For any finite m and $i \in 2$, we will denote by $G_{n, m}^{i}$ the subgraph which is obtained by replacing \aleph_{0} by m in the above construction.

We note that for any n, there is a natural embedding $C_{n} \hookrightarrow D_{n}$ which is surjective onto the copies of G_{n-2}^{1} in D_{n}.

Proposition 4.5.5. Let $n=2 k+1$ for $k \in \omega$. Let \bar{b} denote the vertices of B_{n+1} in G_{n}^{0} and G_{n}^{1}; then $G_{n}^{0} \models \gamma_{n}(\bar{b})$ and $G_{n}^{1} \models \neg \gamma_{n}(\bar{b})$.

We proceed by induction on k; the case $k=0$ is clear. For $k>1$, note that $\gamma_{n}(\bar{b})$ says that \bar{b} has the diagram of B_{n+1} and extends to a copy of B_{n} which extends to a copy of B_{n-1} which does not extend to any model of γ_{n-2}. By induction, $G_{n-2}^{1} \models \neg \gamma_{n-2}$, so C_{n} witnesses that $G_{n}^{0} \models \gamma_{n}$. Also, $\neg \gamma_{n}$ says that every copy of B_{n} extends to some B_{n-1} which does admit a realization of γ_{n-2}. Since every B_{n} is attached to D_{n}, and each D_{n} has an extension to G_{n-2}^{0}, the inductive hypothesis shows that $G_{n}^{1} \models \neg \gamma_{n}$.

We finish showing that these are the graphs we want in the next lemma.

Notation 4.5.6. For two structures A, B of the same signatures, we say $A \approx_{k}^{l} B$ if the duplicator has a winning strategy for the l-round Ehrenfeucht-Fraisse game where the spoiler is only allowed to change structures k times. Any omitted parameter will be assumed to be $|A|$.

If $\operatorname{gcl}_{A}(\cdot)$ and $\operatorname{gcl}_{B}(\cdot)$ are closure operators on A, B respectively, then we will say that $A \approx_{k}^{l} B$ preserving closures if the partial isomorphism f constructed by the duplicator at any stage can be taken to satisfy $\operatorname{gcl}_{A}(\operatorname{dom}(f))=\operatorname{dom}(f)$ and $\operatorname{gcl}_{B}(\operatorname{rng}(f))=\operatorname{rng}(f)$. We will omit reference to the specific closure operators if they clear.

Lemma 4.5.7. If $\operatorname{gcl}(\cdot)$ refers to the natural closure for $\left(\mathbf{K}_{r}, \leq_{r}\right)$, then $G_{2 k+1}^{0} \approx_{k-1}$ $G_{2 k+1}^{1}$ preserving gcl

Proof. We play a modified Ehrenfeucht-Fraïssé game in which the spoiler can alternate structures at most $k-1$ times - we must show that the duplicator always has a winning strategy in this case. When $k=1$, we must show that G_{3}^{0} and G_{3}^{1} have the same existential diagram. Note that the difference between them is that in G_{3}^{0}, B_{4} has an extension to B_{3} which only extends to copies of G_{1}^{1}; whereas in G_{3}^{1} all copies of B_{3} extend to both G_{1}^{1} and G_{1}^{0}. In either case, the possible extensions are the same.

To ease notation, let $n=2 k+1$; we will construct a partial isomorphism $\sigma: G_{n}^{0} \rightarrow G_{n}^{1}$ between 0-trees that the duplicator will use as her strategy. We begin with the case in which the spoiler picks G_{n}^{0} first.

Start by setting $\sigma: B_{n+1} \mapsto B_{n+1}$. For any play of the spoiler's in an "unused" copy of D_{n} in G_{n}^{0}, the duplicator chooses an unused copy of D_{n} in G_{n}^{1} and extends σ by mapping the first copy to the second.

When a play is made in C_{n}, we pick an unused copy D^{\prime} of D_{n} in G_{n}^{1} and extend σ by the natural embedding $C_{n} \hookrightarrow D^{\prime}$. We then further extend σ by mapping all
unused copies of D_{n} in G_{n}^{0} onto all unused copies of D_{n} in G_{n}^{1}. When this is done, we have an isomorphism $\left(G_{n}^{0} \backslash C_{n}\right) \mapsto\left(G_{n}^{1} \backslash D^{\prime}\right)$. The spoiler must now show that C_{n} and D^{\prime} are different. As long as he plays from C_{n}, he must pick some copy of G_{n-2}^{1} to play from - these can be answered with the copies of G_{n-2}^{1} in D^{\prime}. His only hope then is to switch structures and choose from copies of G_{n-2}^{0} in D^{\prime}. However, he now has only $k-2$ alternations left, and by the inductive hypothesis the duplicator has a strategy by playing from new copies of G_{n-2}^{1}.

If the spoiler starts by playing from G_{n}^{1}, fix an embedding $\tau: G_{n}^{1} \hookrightarrow G_{n}^{0}$ and let the duplicator play according to τ. The spoiler will have to switch structures; but now he has $k-2$ alternations to show that $G_{n}^{0} \backslash \operatorname{rng}(\tau)$ is different from $G_{n}^{1} \backslash \operatorname{dom}(\tau)$. Since these are respectively isomorphic to G_{n}^{0} and G_{n}^{1}, we are reduced to the previous case.

For the remainder of this section, we fix $n=2 k+1$ and denote G_{n}^{0} and G_{n}^{1} simply by G_{0} and G_{1}. We want to use these graphs to show that T does not eliminate quantifiers to the level of $\boldsymbol{\Sigma}_{k}$ formulae. There are two approaches we can take here. The first is to use the following lemma.

Lemma 4.5.8. For $i \in 2$ and $m \in \omega, G_{m}^{i} \approx^{m} G^{i}$, preserving closures.

Proof. We build a strategy that plays a copy of some B_{k} at a time. Here are the possibilities:

- If the spoiler plays an element of some unplayed B_{k} in G_{m}^{i}, then let l be the maximal such that B_{k} is an extension of a copy of B_{l} that is already part of the
strategy. Extend whatever embedding of B_{l} into G^{i} is given to an embedding of B_{k} into G_{i}. If there already is such an extension defined, extend to a new embedding - this can be done since there are infinitely many extensions of B_{l} to B_{k} in G^{i}.
- If the spoiler plays an element of some unplayed B_{k} in G^{i}, then let l be the maximal such that B_{k} is an extension of a copy of B_{l} that is already part of the strategy. Extend whatever embedding of B_{l} into G^{i} is given to an embedding of B_{k} into G^{i}. If there already is such an extension defined, extend to a new embedding - this can be done since there are m extensions in G_{m}^{i}.

At this point, we have enough to prove our main theorem. For a fixed m, we embed each G_{m}^{i} as a closed substructure of a generic M_{i}. Then we will have $\left(M_{0}, B_{N}\right) \approx_{k-1}^{m}\left(M_{1}, B_{N}\right)$ and we let $p_{0}=\operatorname{tp}_{M_{0}}\left(B_{N}\right)$ and $p_{1}=\operatorname{tp}_{M_{1}}\left(B_{N}\right)$.

We also develop another approach which involves working with the entirety of the graphs in a suitable model of T. This gives rise to the following:

Definition 4.5.9. Let M be a graph with distinguished subgraph $G \preccurlyeq_{r} M$; let $\operatorname{gcl}_{G}(\cdot)$ be a closure operator on G. For finite $A \subseteq M$, We define the pseudo-closure (relative to G, gcl_{G}) as follows:

- Let $A_{M}=\operatorname{cl}(A) \backslash G$
- Let A_{G} be the minimal C satisfying:

$$
-A \cap G \subseteq C \subseteq G
$$

- For all finite $X \subseteq M$ containing $A_{M} C$ with $X \cap G=C, A_{M} C \preccurlyeq_{r} X$
$-\operatorname{gcl}_{G}(C)=C$
- Let $\operatorname{pcl}(A)=A_{M} A_{G}$.

For any $N \subseteq M$ with $A \subseteq N$, we define the relative pseudo-closure $\operatorname{pcl}_{N}(A)$ similarly:

- Let $A_{N}=\operatorname{cl}_{N}(A) \backslash G$
- Let A_{H} be the minimal C satisfying:
$-A \cap G \subseteq C \subseteq G \cap N$
- For all finite $X \subseteq N$ containing $A_{N} C$ with $X \cap G=C, A_{N} C \npreccurlyeq_{r} X$
$-\operatorname{gcl}_{G}(C)=C$
- Let $\operatorname{pcl}_{N}(A)=A_{N} A_{H}$.

In what follows, we will take gcl_{G} to be the closure in G with respect to $\left(\mathbf{K}_{r}, \leq_{r}\right)$.

We will write $A \leq_{p} M$ to indicate that $A=\operatorname{pcl}(A)$ and similarly for $A \leq_{p} N$.
Given this, we will say that (M, G) is $\left(\mathbf{K}_{r}^{+}, \preccurlyeq_{r}\right)$ pseudo-generic if:

1. For every finite $A \subseteq M, A \in \mathbf{K}$
2. For every finite $A \subseteq M$, if $A \leq_{p} M$ and $A \preccurlyeq_{r} B^{\prime}$, then there is an extension of A in M to B, a copy of B^{\prime} satisfying $B \leq_{p} M$.
3. For every finite $A \subseteq M, \operatorname{pcl}(A)$ exists and is finite (we will say that M has finite pseudo-closures). The pseudo-closure is here taken with respect to G

Remark 4.5.10. Fix a finite $A \subseteq M$, with M pseudo generic. Then $A \leq_{p} M$ iff $A_{M}=A \backslash G, A_{G}=A \cap G$. Also, for $N \subseteq M$, we have $A \leq_{p} M$ iff $A_{N}=\operatorname{cl}_{N}(A) \backslash G$ and $A_{H}=A \cap(G \cap N)$.

Proof. Suppose $A=\operatorname{pcl}(A)=A_{M} A_{G}$. By definition, A_{M} is disjoint from G and A_{G} is contained in G; therefore $A \backslash G=A_{M} A_{G} \backslash G=A_{M} \backslash G=\operatorname{cl}(A) \backslash G=A_{M}$ and $A_{G}=A_{M} A_{G} \cap G$.

Suppose $A_{M}=A \backslash G$ and $A_{G}=A \cap G$. Then $A_{M} A_{G}=(A \backslash G)(A \cap G)=A$.
For the relativised version, we note that as above A_{N} is disjoint from $G \cap N$ and that A_{H} is contained in $G \cap N$, so the same argument works.

Remark 4.5.11. If $A \leq_{p} M$ and $A \subseteq N \leq_{p} M$, then $A \leq_{p} N$

Proof. It suffices to show that $A_{N}=A \backslash(G \cap N)$ and $A_{H}=A \cap G \cap N$. By definition, $A_{N}=\operatorname{cl}_{N}(A) \backslash G$. Since $A \subseteq \operatorname{cl}_{N}(A) \subseteq \operatorname{cl}_{M}(A)$, we have $A \backslash G \subseteq \operatorname{cl}_{N}(A) \backslash G \subseteq$ $\mathrm{cl}_{M}(A) \backslash G$. Since the outer terms are equal, we have $A_{N}=\mathrm{cl}_{N}(A) \backslash G$ as desired. In fact, we have more strongly that $A_{N}=A_{M}$

To show that $A_{H}=A \cap G \cap N$, we first note that $A \cap G \cap N=A \cap G$ since $A \subseteq N$. Then we want to show that $A_{G}=A_{H}$. We have $A_{M}=A_{N}$, so we know that for any $X \supseteq A$ with $X \cap G=A \cap G, A_{M} A_{G} \preccurlyeq_{r} X$. Then $A_{N} A_{G} \preccurlyeq_{r} X$; and since this is the minimal possible A_{H} satisfying $A_{G}=A \cap G \subseteq A_{H}$, we must have $A_{G}=A_{H}$.

Remark 4.5.12. In a pseudo generic M, given $A \leq_{p} M$ and $B=\operatorname{pcl}(A m)$ for $m \notin G$, we have $A \preccurlyeq_{r} B$.

Proof. I claim that $B_{G}=A_{G}$ - given this the definition of pseudo closures and it's finiteness will provide what we want. It suffices to show that for any finite $X \supseteq B, B_{M} A_{G} \preccurlyeq_{r} X$ (since $A_{G} \subseteq B_{G}$, this will show that $A_{G}=B_{G}$). We have that $B_{M}=\operatorname{cl}(B) \backslash G$, so we have that $B_{M} G \preccurlyeq_{r} X G$ by definition of closure. We set $V=(X \backslash G) \cap A_{G}$ - then intersection with V gives $B_{M} A_{G} \not{ }_{r} X$ as desired.

Theorem 4.5.13. Suppose $\left(M_{0}, G_{0}\right)$ and $\left(M_{1}, G_{1}\right)$ are pseudo-generic structures and that $G_{0} \approx_{k} G_{1}$ in a way that preserves pseudo closures. Then $M_{0} \approx_{k} M_{1}$, preserving pseudo-closures.

Proof. Throughout, we construct a partial isomorphism $M_{0} \rightarrow M_{1}$, which we write as $f:\left(\bar{g}_{0}, \bar{m}_{0}\right) \mapsto\left(\bar{g}_{1}, \bar{m}_{1}\right)$ where the \bar{g}_{i} represent the part of the structure in G_{i} and the \bar{m}_{i} represent the rest of the partial isomorphism. We will further require throughout that $\operatorname{dom}(f) \leq_{p} M_{0}$ and $\operatorname{rng}(f) \leq_{p} M_{1}$. At any stage, if the spoiler plays from $\operatorname{dom}(f)$ or $\mathrm{rng}(f)$, the duplicator responds according to f. Otherwise:

- If the spoiler chooses an element of G_{0} or G_{1}, then the duplicator responds by extending f in accordance with the pseudo closure preserving strategy witnessing $G_{0} \approx_{k} G_{1}$.
- If the spoiler chooses some $m \in M_{0} \backslash G_{0}$, let $C=\operatorname{dom}(f)$ and let $C^{\prime}=\operatorname{pcl}(C m)$. Then $C \leq_{p} M$, so by finite pseudo-closures and the previous remark we have that $C \not{ }_{r} C^{\prime}$. Then by pseudo-genericity, C^{\prime} embeds into M_{1} as a pcl-closed extension. We extend f by this embedding.
- If the spoiler chooses $m \in M_{1} \backslash G_{1}$, the strategy is the symmetric version of the previous case.

We construct the appropriate pseudo-generics:

Theorem 4.5.14. Let G be a countable graph which can be written as $G=\cup G_{i}$ with $G_{i} \leq_{r} G_{i+1}$ and $G_{0}=\varnothing$. Then G extends to an M so that (M, G) is pseudo-generic. Proof. We proceed by a modification of the construction of a generic structure. Enumerate the class \mathbf{K} as $\left\{H_{i}: i \in \omega\right\}$ and a decomposition of G as $G=\bigcup_{n} G_{n}$ where $G_{0}=\varnothing$, and for every $n, G_{n} \leq_{r} F_{n+1}$ and $\left(G_{n}, G_{n+1}\right)$ is a \leq_{r}-minimal pair. We will inductively construct a sequence of finite structures $\left\{M_{n}\right\}$ with the following properties:

- $M_{n} \leq_{r} M_{n+1}$
- $C_{n} \leq_{r} M_{n}$
- If $A \leq_{r} M_{n}$ and $A \not{ }_{r} H_{j}$ with $j<n$ then A extends to a copy of $H_{j} \subseteq M_{n+1}$

Begin by setting $M_{0}=C_{0}=\varnothing$. Given M_{n}, we show how to construct M_{n+1}. We begin by setting $D_{0}^{n+1}=C_{n+1} \oplus_{C_{n}} M_{n}$. Note that the amalgamation property gives us $C_{n+1} \leq_{r} D_{0}^{n+1}$ and $M_{n} \leq_{r} D_{0}^{n+1}$.

We now enumerate as $\left(A_{0}, B_{0}\right), \ldots,\left(A_{m}, B_{m}\right)$ all pairs $\left(A_{i}, B_{i}\right)$ such that $A_{i} \leq_{r}$ $D_{0}^{n+1}, A_{i} \preccurlyeq_{r} B_{i}$, and $B_{i} \simeq H_{l}$ with $l<n$. For each $0 \preccurlyeq_{r} i<m$ let $D_{i+1}=D_{i} \oplus_{A_{i}} B_{i}$, so that $D_{i} \preccurlyeq_{r} D_{i+1}$. We let $M_{n+1}=D_{m}$, and it is clear by induction that $M_{n} \leq_{r}$ M_{n+1} and $C_{n+1} \leq_{r} M_{n+1}$.

We let $M=\cup M_{n}$ and claim that (M, G) is then pseudo generic. We need to show:

1. $G \preccurlyeq_{r} M$
2. Pseudo-closures exist and are finite.
3. If $A \leq_{p} M$ and $A \preccurlyeq_{r} B$, then there is some B^{\prime} isomorphic to B such that $A \subseteq B^{\prime} \leq_{p} M$.

The bulk of the work is is contained in the following:

Claim 4.5.15. For any i, m such that D_{i}^{m} is defined, $D_{i}^{m} \leq_{p} M$

Proof of claim: Let $A=D_{i}^{m}$; we want to show that $A_{M}=A \backslash G$ and $A_{G}=A \cap G$. Since this is clear for $i=0$, we assume without loss that $i>0$. For the first part, we show that $A G$ is closed; it will follow immediately that $\operatorname{cl}(A) \subseteq A G$; so that $A \backslash G \subseteq \operatorname{cl}(A) \backslash G \subseteq(A G) \backslash G=A \backslash G$ and thus that $A_{M}=A \backslash G$. To show $A G$ is closed, we fix a minimal pair (X, Y) with $X \subseteq A G$; then we must show that $Y \subseteq A G$. Fix $n \in \omega$ minimal such that $Y \subseteq M_{n}$. Then we have:

$$
X \subseteq D_{i}^{m} \preccurlyeq_{r} D_{i+1}^{m} \preccurlyeq_{r} \cdots \preccurlyeq_{r} M_{m} \leq_{r} D_{0}^{m+1} \preccurlyeq_{r} \cdots \preccurlyeq_{r} M_{m+1} \leq_{r} \cdots D_{0}^{n} \preccurlyeq_{r} \cdots \preccurlyeq_{r} M_{n}
$$

Since (X, Y) is minimal, we have $X \npreccurlyeq_{r} D_{i}^{m} \cap Y$ unless $Y \subseteq D_{i}^{m}$. So without loss of generality, $X \preccurlyeq_{r} D_{i}^{m} \cap Y$ and intersecting with Y gives:

$$
X \preccurlyeq_{r} D_{i}^{m} \cap Y \preccurlyeq_{r} \cdots \preccurlyeq_{r} M_{m} \cap Y \leq_{r} D_{0}^{m+1} \cap Y \preccurlyeq_{r} \cdots \preccurlyeq_{r} M_{m+1} \cap Y \leq_{r} \cdots \preccurlyeq_{r} Y
$$

Each step has pre-dimension non-decreasing. If it is ever increasing, we contradict that $\delta(Y / X) \leq 0$; so at each step we must must have constant pre-dimension. In particular, each instance of \preccurlyeq_{r} must be an equality, and each instance of \leq_{r} must be a 0 -extension. Thus for every $m \leq l<n$, we have $D_{*}^{l} \cap Y=M_{l} \cap Y$ and
$M_{l} \cap Y \leq_{r} D_{0}^{l+1} \cap Y$ where $*$ is i for $l=m$ and 0 otherwise. We show by induction on $n-m$ that $Y \subseteq A G$. This is obvious for $n-m=0$; if $n-m=1$ we have $Y=M_{n} \cap Y=D_{0}^{n} \cap Y=\left(Y \cap C_{n}\right) \oplus_{Y \cap C_{m}}\left(Y \cap M_{m}\right)=\left(Y \cap C_{n}\right) \oplus_{Y \cap C_{m}}\left(Y \cap D_{i}^{m}\right)$ Since $\left(Y \cap D_{i}^{m}\right) \subseteq A$ and $\left(Y \cap C_{n}\right),\left(Y \cap C_{m}\right) \subseteq G$, we have $Y \subseteq A G$ as desired. For the inductive step, we have $Y=M_{n} \cap Y=D_{0}^{n} \cap Y=\left(Y \cap C_{n}\right) \oplus_{Y \cap C_{n-1}}\left(Y \cap M_{n-1}\right)$. By induction, $\left(Y \cap M_{n-1}\right) \subseteq A G$ and $\left(Y \cap C_{n}\right),\left(Y \cap C_{n-1}\right) \subseteq G$ so $Y \subseteq A G$.

We must also show that for any finite X containing A with $X \cap G=A \cap G=$ $C_{m}, A \preccurlyeq_{r} X$. Choose n so that $X \subseteq M_{n}$, then write

$$
A \subseteq D_{i}^{m} \preccurlyeq_{r} D_{i+1}^{m} \preccurlyeq_{r} \cdots \preccurlyeq_{r} M_{m} \leq_{r} D_{0}^{m+1} \preccurlyeq_{r} \cdots \preccurlyeq_{r} M_{m+1} \leq_{r} \cdots D_{0}^{n} \preccurlyeq_{r} \cdots \preccurlyeq_{r} M_{n}
$$

Intersecting with X gives:
$A \subseteq D_{i}^{m} \cap X \preccurlyeq_{r} D_{i+1}^{m} \cap X \preccurlyeq_{r} \cdots \preccurlyeq_{r} M_{m} \cap X \leq_{r} D_{0}^{m+1} \cap X \preccurlyeq_{r} \cdots \preccurlyeq_{r} M_{m+1} \cap X \cdots \preccurlyeq_{r} X$

Note that for each $l \geq m$, we have $D^{l+1} \cap X=\left(C_{l+1} \cap X\right) \oplus_{C_{l} \cap X}\left(M_{l} \cap X\right)$. By our assumption $C_{l+1} \cap X=C_{l} \cap X$, so that $M_{l} \cap X=D^{l+1} \cap X$. Therefore we can replace every instance of \leq_{r} in the above sequence with \preccurlyeq_{r}.

Pseudo-genericity follows quickly from this.

Proof of (1): This is immediate from the proof of our claim: taking $A=C_{m}$ for any m we showed that $C_{m} G=G$ is closed.

Proof of (2). For any $X \subseteq M_{m} ; \operatorname{pcl}(X) \subseteq M_{m}$ since M_{m} is pcl-closed.

Proof of (3): Fix $A \leq_{p} M$ and choose n so that $A \subseteq D_{0}^{n}$. Then by remark (4.5.11), we have $A \leq_{p} D_{0}^{m}$ for every $m \geq n$, which implies $A \leq_{r} D_{0}^{m}$ by remark (4.5.12),
so that eventually one of the D_{j}^{m} will be precisely the amalgamation of B^{\prime} over A. Since each such is pcl closed, we are done.

Corollary 4.5.16. We have the following:

1. Let G be a countable graph which consists of a union of 0 -extensions over some finite $G_{0} \subseteq G$. Then each G extends to an M so that (M, G) is pseudo-generic.
2. Let G_{0}, G_{1} be as defined in (4.5.4). Then each G_{i} extends to an M_{i} so that $\left(M_{i}, G_{i}\right)$ is pseudo-generic.

Our final step is to show that the pseudo-generics are models of T. We do so with the following:

Theorem 4.5.17. For either pseduo-generic $\left(M_{i}, G_{i}\right)$ constructed in (4.5.14) and N a generic and $l \in \omega$, we have $M_{i} \approx^{l} N$.

Proof. Fix l, the number of rounds. At each stage we construct a partial isomorphism $f:(\bar{g}, \bar{m}) \mapsto\left(\bar{g}^{\prime}, \bar{m}^{\prime}\right)$ where $\operatorname{dom}(f) \leq_{p} M_{i}$ and $\operatorname{rng}(f) \preccurlyeq_{r} N$. If the spoiler plays from the domain or range of f, then the duplicator plays according to f. Otherwise:

- If the spoiler chooses some $h \in G_{i}$, then we fix a closed copy of $G_{i, l}$ in N; call it H. For this and any future play in G_{i}, the duplicator plays according to the strategy guaranteed in lemma (4.5.8).
- If the spoiler chooses $m \in M_{i} \backslash G_{i}$, let $C=\operatorname{pcl}(\operatorname{dom}(f) m)$. Then by pseudo genericity, $\operatorname{dom}(f) \preccurlyeq_{r} C$ and C embeds strongly into N over f. We extend f by this embedding.
- For $n \in N \backslash \operatorname{rng}(f)$, we let $C=\operatorname{cl}\left(\operatorname{rng}(f) n\right.$. Then $\operatorname{rng}(f) \preccurlyeq_{r} C$, so by pseudogenericity C embeds into M over f^{-1} with a pseudo-closed image. We then extend f by (the inverse of) this embedding.

Chapter 5

Summary

We summarize some of the model-theoretic properties of various generics investigated in this thesis and in $[1,10,2,12,11]$. Throughout, r^{+}refers to the $\left(\mathbf{K}_{r}^{+}, \preccurlyeq_{r}\right)$-generic, QE refers to the level of quantifier elimination, and AE refers to the existence of a Π_{2} set of axioms.

For the QE column, " $\boldsymbol{\Sigma}_{0}$ " refers to complete quantifier elimination, "NMC" refers to "near model completeness", and " N " means that there is no elimination to the level of $\boldsymbol{\Sigma}_{k}$ formulae for any $k \in \omega$.

Generic Weight	ω-stable	Stable	Simple	Decidable	ω-Categorical	Q.E.	AE
0	N	N	Y	Y	Y	Σ_{0}	Y
Irrational $\alpha \in(0,2)$	N	Y	Y	Y	N	NMC	Y
Rational $r \in(0,1)$	Y	Y	Y	Y	N	NMC	Y
Rational $r^{+} \in(0,1)$	N	N	N	N	N	N	N
Rational $r \in[1,2)$	Y	Y	Y	Y	Y	NMC	Y
Rational $r^{+}=1$	N	Y	Y	Y	N	N	Y
Rational $r^{+} \in(1,2)$	Y	Y	Y	Y	Y	Y	Y
Arbitrary $\alpha \geq 2$	Y	Y	Y	Y	Y	Y	Y

Table 5.1: Summary of results

Bibliography

[1] John T. Baldwin and Saharon Shelah, Randomness and semigenericity, Trans. Amer. Math. Soc. 349 (1997), no. 4, 1359-1376. MR MR1407480 (97j:03065)
[2] John T. Baldwin and Niandong Shi, Stable generic structures, Ann. Pure Appl. Logic 79 (1996), no. 1, 1-35. MR MR1390325 (97c:03103)
[3] Justin Brody, On the Model Theory of Random Graphs, Ph.D. thesis, University of Maryland, College Park, College Park, MD, USA, April 2009.
[4] B. Robin D. Stohr, Avoiding the closed order property, 2007.
[5] W. Hodges, Model Theory, Cambridge University Press, 1993.
[6] E. Hrushovski, A stable \aleph_{0}-categorical pseudoplane, preprint 249 (1988).
[7] Ehud Hrushovski, A new strongly minimal set, Ann. Pure Appl. Logic 62 (1993), no. 2, 147-166, Stability in model theory, III (Trento, 1991). MR MR1226304 (94d:03064)
[8] K. Ikeda, H. Kikyo, and A. Tsuboi, On generic structures with a strong amalgamation property.
[9] D. W. Kueker and M. C. Laskowski, On generic structures, Notre Dame J. Formal Logic 33 (1992), no. 2, 175-183. MR MR1167973 (93k:03032)
[10] Michael C. Laskowski, A simpler axiomatization of the Shelah-Spencer almost sure theories, Israel J. Math. 161 (2007), 157-186. MR MR2350161
[11] Saharon Shelah and Joel Spencer, Zero-one laws for sparse random graphs.
[12] Joel Spencer, The strange logic of random graphs, Algorithms and Combinatorics, vol. 22, Springer-Verlag, Berlin, 2001. MR MR1847951 (2003d:05196)
[13] Alfred Tarski, A. Mostowski, and R.M. Robinson, Undecidable Theories, NorthHolland, 1968.
[14] Frank O. Wagner, Relational structures and dimensions, Automorphisms of first-order structures, Oxford Sci. Publ., Oxford Univ. Press, New York, 1994, pp. 153-180. MR MR1325473

[^0]: ${ }^{1}$ It would probably be fairly straightforward to strengthen this result to obtain a proper strengthening of the original AEP

[^1]: ${ }^{1}$ In Buddhist philosophy, a tirthika is someone with extreme beliefs. In this section, we examine structures with extreme beliefs about the meaning of $\varnothing \leq A$ and $A \leq B$.

