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Hrushovski’s amalgamation construction can be used to join a collection of
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characterize when each of these situations occurs.
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Chapter 1

Introduction

1.1 Introduction

The study of random graphs, initiated by Erdös and Renyi, has more recently

been examined from a logical viewpoint, notably in papers of Shelah, Spencer, and

Baldwin ([11], [1]). In particular, for the graphs G(n, n−α), which are graphs of size

n with the the probability that any two vertices form an edge being given by n−α,

Shelah and Spencer proved the following 0-1 law: If α is irrational in (0, 1) then

for σ any sentence in the language of graphs, limn→∞ Pr[G(n, n−α) |= σ] is 0 or

1. Thus, for a fixed such α the almost sure theory, denoted Tα, is complete. More

recently, Laskowksi has given a Π2 axiomatization for Tα (see [10]).

It was later noticed by Baldwin and Shelah [1] that models of the resulting

theory could be obtained via Hrushovski’s amalgamation construction. This pro-

ceeds by amalgamating a class of finite structures in a way which is determined

by a notion of “strong substructure”. The latter is in turn often determined by a

pre-dimension function, which in the current context limits the proportion of new

edges to new vertices in a strong extension.

Arguably, the crucial observation in the connection between the probabilistic

and model-theoretic approaches is that the probability of extensions of a given graph

occurring is determined by precisely such a function. Specifically, if a given graph A
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almost surely occurs as a subgraph of G(n, n−α) in the limit; then A almost surely

extends to a copy of the extension B in the limit if and only if |B\A|−αe(B/A) ≥ 0,

where e(B/A) denotes the number of edges in AB that aren’t in A.

This paper examines that case that α is rational from a model-theoretic per-

spective. We note that there is no 0 − 1 law in this case, but the model theoretic

construction can be generalized to the rational case. Also note that for α irrational

the expression |B \ A| − αe(B/a) is always strictly positive or strictly negative,

while for rational α this expression can be 0. In effect, we are left with two ways to

generalize the irrational case - we can either demand that the expression be strictly

positive or else we can merely require that it be non-negative. We will see that each

approach leads to vastly different model-theoretic properties - in the latter case we

will have a single well behaved theory while the former gives rise to uncountably

many undecidable theories.

We will examine these approaches by looking at different kinds of limits. It will

turn out that these two approach largely suffice to characterize the behavior that

can result from taking any ultraproduct
∏

U Mαn
with U any ultrafilter, αn ∈ (0, 1)

irrational, and Mαn
a model of Tαn .

We will also examine the analogues of Laskowksi’s Π2 axioms for the rational

case and will show that their completeness is equivalent to the model theory of the

appropriate structure being “tame”.
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1.2 Notation

For the purposes of this thesis, we will restrict our attention to classes of

graphs. In particular, we work in the language of graphs, although the results

should easily generalize to arbitrary relational structures. We will denote the single

binary relation of our language by E(x, y).

We will denote A ∪ B simply by AB, and will write A ⊆ω M to indicate that

A is a finite substructure of M . For any finite graph A, we will implicitly fix an

enumeration of A and denote it’s quantifier free type by ∆A(x̄).

1.3 Hrushovski Constructions

Hrushovski’s amalgamation construction proceeds by joining together a collec-

tion of finite structures K in accordance with some notion of strong substructure ≤.

It was introduced by Hrushovski in [6, 7] to create stable structures with “exotic”

geometries. Good expositions of the construction can be found in [2], [14], and [9].

Our notion of strong substructure will be based on a predimension function:

Definition 1.3.1. For a class of finite structures K, closed under substructure and

isomorphism, a predimension function on K is a real-valued function δ : K → R≥0

satisfying:

1. δ is total on K, and if A,A′ ∈ K satisfy A ≃ A′, then δ(A) = δ(A′)

2. δ(∅) = 0

3. (Submodularity) For A,B elements of K embedded in a common structure,
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we have that δ(AB) ≤ δ(A) + δ(B) − δ(A ∩ B).

Given δ a predimension on K, for any A,B ∈ K we define the relative predi-

mension of A over B as δ(A/B) := δ(AB) − δ(B).

Convention 1.3.2. We will work throughout with pairs (K,≤) where K is a class

of finite structures and ≤ is a strong substructure relation on K × K, satisfying:

1. K is closed under substructures and isomorphisms

2. For A ∈ K, ∅ ≤ A

3. For A ≤ B from K, we have A ∩ C ≤ B ∩ C for every C ∈ K.

4. ≤ is preserved under isomorphisms: for A ≤ B and A ≃ A′, B ≃ B′ we have

A′ ≤ B′.

For A,B ∈ K, if A ≤ B then we will say that A is strong (or closed) in B.

We will want to talk about structures whose finite substructures are members

of K. The basic definition is:

Definition 1.3.3. For any structure M , it’s age is the set of all finite structures

which are embeddable in M . We will denote it by Age(M).

We then extend the notion of strong substructure to apply to potentially infi-

nite structures.

Definition 1.3.4. For A ⊆ M with Age(M) ⊆ K, we say A ≤ M just in case

A ≤ AX for every X ⊆ω M .
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The axioms (1) - (3) guarantee the existence of a well-defined closure operation.

In classical contexts, the predimension function was chosen to determine certain

properties of the geometry generated by this closure (e.g., non-trivial, non-locally-

modular). An analysis of this geometry generally yields good information about the

model theory of the associated generic.

Definition 1.3.5. For any M with Age(M) ⊆ K, taking the intersection of all

A′ ⊆ M satisfying A ⊆ A′ ≤ M yields a unique minimal superset of A which is

strong in M . This will be denoted by clM(A).

An embedding f : A →֒ B so that f(A) ≤ B is called a strong embedding.

In order to proceed with the construction, we must be able to amalgamate finite

structures in a coherent way. The basic definition is:

Definition 1.3.6. For A,B,C ∈ K, if A ≤ B and f : A →֒ C is strong implies

that there is a D ∈ K so that C ≤ D and a strong embedding g : B →֒ D so that

g(A) = f(A), then we will call (K,≤) an amalgamation class. We will call D an

amalgam of B and C over A. Diagramatically, we want the following to commute:

B ² o

g

≤

ÃÃ
@@

@@
@@

@

A
/

² i

≤
??~~~~~~~

² o

≤

f

ÂÂ
@@

@@
@@

@ D

C
/

² ≤

i

>>~~~~~~~

A special kind of amalgamation involves no extraneous relations between the

amalgamated structures:

Definition 1.3.7. Suppose A,B,C are elements of K with A = B ∩ C, and let D
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be the structure whose universe is BC and whose relations are precisely those of B

and those of C. Then we will denote D by B ⊕A C.

If (K,≤) is an amalgamation class in which B ⊕A C is an amalgam of B and

C over A, then we will call B ⊕A C the free amalgam of B and C over A and say

that (K,≤) is a free amalgamation class.

Such classes often have nice combinatorial properties. A stronger form of

amalgamation occurs when A is not necessarily closed in C. This will play a crucial

role in what follows.

Definition 1.3.8. Suppose that (K,≤) is a free amalgamation class and for A,B,C

with B ∩ C = A, and A ≤ B we have B ⊕A C ∈ K and C ≤ B ⊕A C, then we say

that (K,≤) is a full amalgamation class. Full amalgamation is equivalent to the

commutativity of the following diagram:

B µ r

i

⊆

$$
HHHHHHHHH

A
/

² i

≤
??ÄÄÄÄÄÄÄÄ

² o

⊆

i

ÂÂ
??

??
??

??
B ⊕A C

C
,

¯
≤

i

::vvvvvvvvv

For any amalgamation class satisfying (1) - (3) of 1.3.2, we can inductively

amalgamate all finite structures in K together in imitation of the Fräıssé construc-

tion (see [5]; the joint embedding property comes from amalgamation and having

∅ ≤ A for A ∈ K). The resulting structure is called the (K,≤)-generic; it is unique

up to isomorphism and is characterized by three properties.

Definition 1.3.9. The (K,≤)-generic G is the unique (up to isomorphism) struc-

ture satisfying:
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1. Age(G) ⊆ K

2. For A,B ∈ K with A ≤ B and f : A →֒ G a strong embedding, f extends to

a strong embedding g : B →֒ G.

3. For A ⊆ω G, clG(A) is finite.

1.3.1 Shelah-Spencer Graphs

The specific classes of finite graphs we will be concerned with will be generated

by predimension functions which force strong extensions to be relatively sparse - i.e.

the ratio of new edges to new vertices will be bounded. Specifically, for a graph

A, let e(A) denote the number of edges in A. For A,B, finite graphs contained

in a common extension, let e(A,B) denote the number of edges from vertices in

A to vertices in B \ A, and let e(B/A) denote e(B \ A) + e(B \ A,A). Then for

α ∈ [0, 2], let δα(A) = |A| − αe(A) and let δα(B/A) = δα(AB) − δα(A); note that

δα(B/A) = |B \ A| − αe(B/A). We then say A ≤α B if and only δ(B′/A) ≥ 0 for

every B′ ⊆ω B. Then define Kα as the class {A : ∅ ≤α A, |A| < ℵ0 }.

It is shown in [2] that (Kα,≤α) so defined is a full amalgamation class. When

α is irrational in (0, 1) the (Kα,≤α)-generic will be called the Shelah-Spencer graph

of weight α - these graphs have been extensively studied in [11, 12, 1, 2, 10]. These

graphs display good model-theoretic behavior. In particular, they are all stable

and axiomatized by the ∀∃ schemes Sα defined below. They are also models of

the almost-sure theories Tα studied by Shelah and Spencer and discussed in the

introduction.
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Our study of analogues of this construction will proceed by studying various

forms of limits of the irrationally weighted graphs. We note some basic facts about

relations between the notions of sparsity.

Lemma 1.3.10. For any A ⊆ B and α0 ≥ α1:

1. If δα0(B/A) ≥ 0 then δα1(B/A) ≥ 0.

2. If A ≤α0 B then A ≤α1 B.

Proof. We have δα0(B/A) = |B \ A| − α0e(B/A) which is clearly at most |B \ A| −

α1e(B/A) = δα1(B/A). Both statements follow immediately.

Thus, for finite A ⊆ B, the set {α : A ≤α B } is a sub-interval of [0, β] for

some β. We determine this interval with:

Lemma 1.3.11. For finite graphs A ⊆ B define h∗(A,B) to be sup{α : δα(B/A) ≥

0, α ≤ 2}. Also let h(A,B) := sup{α : A ≤α B,α ≤ 2}. Note that if e(B/A) = 0

then h∗(A,B) = h(A,B) = 2. Otherwise

1. h∗(A,B) = |B\A|
e(B/A)

. In particular, h∗(A,B) is rational and is max{α : δα(B/A) ≥

0}

2. h(A,B) = minH:A⊆H⊆B{h
∗(A,H)}.

In particular, h(A,B) is rational and for any α ∈ [0, 2], we have A ≤α B if and

only α ∈ [0, h(A,B)]

Proof. We have δα(B/A) ≥ 0 iff |B \ A| − α(e(B/A)) ≥ 0 iff α ≤ |B\A|
e(B/A)

. Both

statements follow immediately.
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We will work frequently with the class defined in the following lemma.

Definition 1.3.12. For r ∈ [0, 2], let (K+
r ,4r) be defined by

1. For finite A ⊆ B, A 4r B iff A ≤β B for some β > r.

2. K+
r = {H|∅ 4r H}

Note that K+
r = {H : H ∈ Kr ∧ (δr(H) > 0 ∨ H = ∅) } and for H 6= ∅, H ∈ K+

r if

and only if h(H) > r.

Lemma 1.3.13. (K+
r ,4r) is a full amalgamation class.

Proof. Let A ≤ B0, B1 for A,Bi ∈ K. Then there exist β0, β1 greater than r so

that A ≤β0 B0 and A ≤β1 B1. Let β = min(β0, β1); then we have A ≤β B0, B1 and

by free amalgamation in ≤β we have C = B1 ⊕A B2 witnesses the amalgamation

property. The same reasoning establishes fullness.

If H ∈ K+
r , we have that ∅ ≤β H for some β > r; this implies that r < h(H).

Conversely, if r < h(H), then ∅ ≤β H for some β > r, so that ∅ 4r H.

It is worth noting that for α irrational, 4α is the same as ≤α, and K+
α = Kα.

The following properties of δα and (Kα,≤α) are well-known and discussed in, e.g.,

[14], [8], [2], [10]:

Lemma 1.3.14. Fix α in [0, 2] Then for A,Ai, B,Bi, C ∈ Kα:

1. If B ∩ C = A0 with A ⊆ A0, then δα(B ⊕A0 C/B) ≤ δα(C/A). Furthermore,

equality holds when A = A0.

2. (Linearity)If D = B1 ⊕A B2 ⊕A . . .⊕A Bn then δα(D/A) =
∑

1≤i≤n δα(Bi/A).

9



3. (Submodularity) If A and B are embedded in a common superstructure, we

have that δ(AB) ≤ δ(A) + δ(B) − δ(A ∩ B).

4. A ≤α A

5. If A ≤α B, then A ⊆ B

6. If A ≤α B and B ≤α C, then A ≤α C

7. ∅ ≤α A

8. Kα is closed under substructure and isomorphism

9. If A ≤α B then A ∩ C ≤α B ∩ C.

Furthermore, it is clear that (1) - (8) hold for structures taken from K+
α and 4α as

well. In particular, both (K,≤α) and (K+
α,4α) satisfy the conditions in Convention

1.3.2.

We show that (9) also holds for (K+
r ,4r):

Lemma 1.3.15. Fix r rational in [0, 2]. If A 4r B for A,B ∈ K+
r , then for C ∈ K+

r

we have A ∩ C 4r B ∩ C.

Proof. Let X be any subset of B∩C containing A∩C. By submodularity, δr(X/A∩

C) ≥ δr(X/A). Since A 4r B, we have that A 4r AX, so that the latter term is

> 0 unless AX = A, in which case X = A ∩ C.

The following definition is from [14]:
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Definition 1.3.16. Let A,B be any two sub-graphs of a common extension. Then

the base of B over A, denoted BA, is the set of all vertices in A which have an edge

to some vertex in B \ A.

Definition 1.3.17. A pair of structures (A,B) is said to be minimal if A 6≤ B

but A ≤ AX for any proper subset X ( B. If (A,B) is a minimal pair such that

BA = A then we say that (A,B) is biminimal.

Notation 1.3.18. If {Bi : i ∈ I } is a set of structures which are pairwise disjoint

over some A, then ⊕i∈I(Bi/A) denotes the free amalgam of all the Bi over A. If

each Bi has base Xi ⊆ A, then we write ⊕i∈I(Bi/A
Xi)) to denote this.

Lemma 1.3.19. For any β ∈ [0, 1]: δβ(B/A) = δβ(B/BA)

Proof. Note that δβ(B/A) = |B \A|−β(e(B \A)+ e(B \A,A)) = |B \A|−β(e(B \

A) + e(B,BA)) = δ(B/BA).

Definition 1.3.20. The amalgamation class (K,≤) has the granularity property if

for any positive m ∈ ω there is some positive real number Gr(m) so that for any

A ∈ K, if B is an extension of A with |B \ A| < m and δ(B/A) < 0, we have

δ(B/A) ≤ −Gr(m).

For α ∈ (0, 1) irrational, it is shown in [10] and [2] that (Kα,≤α) has the

granularity property. It is clear for rational α = p
q
. For m ∈ ω let Gr(m) := 1/q

where α = p
q
.

Definition 1.3.21. For any amalgamation class (K,≤), the sentences S(K,≤) say

that for M |= S(K,≤):

11



• Existential axioms stating that Age(M) ⊆ K

• ∀∃ axioms stating that for A ⊆ω M and A ≤ B, A extends to an embedding

of B into M

When K = {A : ∅ ≤ A } then we will write S(K,≤) simply as S≤. When we

further have that ≤ is ≤α as defined above, we will denote S≤α
by Sα.

It is shown in both [10] and [8] that for irrational α the complete theory of the

(Kα,≤α) is axiomatized by Sα.

It will often be useful to talk about locally closed sets and local closures:

Definition 1.3.22. For m ∈ ω, α ∈ [0, 2]:

• A ≤m
α B means that for any X ⊆ B with |X| < m, A ≤α AX.

• If there is a unique minimal superset A′ of A so that A′ ≤m
α B, then we will

denote A′ by clmB (A).

It is shown in Lemma 3.17 of [2] that clm(A) is well defined for structures M

with Age(M) ⊆ Kα; the same argument also applies to M with Age(M) ⊆ K+
α

For r ∈ [0, 2] rational, we will also want to talk about the notion of semi-

genericity, as introduced in [1]. This is a local approximation of genericity, and is

defined by: For every m ∈ ω and finite A 4r B, if A ⊆ M then A can be extended in

M to B′, a copy of B over A satisfying clmM(B′) = B′ ⊕A clmM(A). Unlike genericity,

this is a first-order notion:

Definition 1.3.23. Let r be any rational in [0, 1]. For A,B ∈ K+
r with A 4r B

and m ∈ ω, let ψm
A,B(x̄, ȳ) be the formula ∀z1 . . . zm

∨

C∆C(x̄ȳz̄) where C ranges
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over m-ary extensions of B which satisfy either B 4r C or CB ⊆ A, and the

enumeration is chosen so that ∆C(x̄ȳz̄) =⇒ x̄ ⊆ A. Then we define Σr to be the

extension of S4r
obtained by adding, for each A 4r B and m ∈ ω, the sentence:

∀x̄[∆A(x̄) → ∃ȳ
(
∆B(x̄ȳ) ∧ ψm

A,B(x̄ȳ)
)
].

We note that Σr is Π3 and will be satisfied by the (K+
r ,4r)-generic (by full

amalgamation: cl(A) 4r cl(A) ⊕clm(A) B, so the latter embeds strongly into the

generic). We also note that the equivalent axioms are satisfied by the (Kα,≤α)-

generics for irrational α, but since these are axiomatized by Sα, we simply define

Σα to be Sα (as a notational convenience).

1.3.2 0-Extensions

Our main results will be that the model theory of the rationally weighted

analogues of the Shelah-Spencer graphs is wild. This wildness is introduced by non-

trivial extensions of relative pre-dimension 0. Such extensions will be part of the

base set’s closure - the possible types of these closures are thereby greatly increased,

to the point that the resulting structure will often be undecidable.

The existence of such extensions will be based on the following notion. The

term was coined in [8] and reflects a similar idea in [10].

Definition 1.3.24. An amalgamation class (K,≤) which is defined by a delta func-

tion δ is said to have the approximating extension property, or AEP, if for any A ∈ K

and A ≤ B, given m ∈ ω and ǫ > 0 there is some C ∈ K which extends B and

satisfies:
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1. A ≤ C

2. δ(C/A) < ǫ

3. B ≤m C

Ikeda et al. show that (Kβ,≤β) has AEP for any β ∈ (0, 1]. We note that

for rational r, AEP gives us that for any structure A ≤ B as above, there is a C

as above with pre-dimension 0. We call such an extension a 0-extension; if (A,C) is

additionally a minimal pair we will call C a minimal 0-extension. Similarly, if (A,C)

is biminimal we call C a biminimal 0-extension. The remainder of this section will

be occupied with showing that such extensions exist. In doing so, we make heavy

use of the machinery developed in [8].

Definition 1.3.25. Fix r ∈ (0, 1] rational. For s a real number with 0 ≤ s ≤ 2 we

say that (E, a, b) is an s-component if E ∈ Kr, a, b ∈ E and for non-empty X ⊆ E:

• δr(X) ≥ 1 if { a, b } 6⊆ X

• δr(X) ≥ s if { a, b } ⊆ X

• δr(E) = s

If, in addition, we have that δ(X) = s implies X = E whenever { a, b } ⊆ X, then we

say that (E, a, b) is a minimal s-component. Any s-component contains a minimal

s-component.

We will adopt the convention in this paper that all components are proper -

that is there is no edge between a and b. It is shown in [8] that proper components

exist. Specifically, we have:
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Lemma 1.3.26. Let r = p
q
, and let t = 1

q
.

• There exist minimal 1 + t and 1 − t components

• For 1 ≤ s, t ≤ 2 and s + t − 1 ≤ 2, if (E0, a, b) and (E1, b, c) are respectively

s- and t-components, then (E0 ⊕b E1) is an s + t − 1-component.

Given a minimal u-component (D, d0, d1), we define a chain of m copies of

D as (Dm−1, d0, dm), where D0 is isomorphic to D, and given Di we let Di+1 :=

Di ⊕di+1
Di+1 where (Di+1, di+1, di+2) is isomorphic to (D, d0, d1).

Lemma 1.3.27. Let (E, e0, ek) be a chain of k copies of a minimal (1−t)-component,

let (F l, f l, gl) be a chain of
⌈

q
2

⌉
copies of a minimal (1 + t)-component, and let

(F r, f r, gr) be a chain of
⌊

q
2

⌋
copies of a minimal (1 + t)-component. Then:

1. (F l, f l, gl) is a minimal (1 +
⌈

q
2

⌉
t)-component.

2. (F r, f r, gr) is a minimal (1 +
⌊

q
2

⌋
t)-component.

3. For any subset X ⊆ E, δ(X) ≥ 1−kt and equality holds if and only if X = E.

Proof. That the first two are components of the required pre-dimension follows from

Lemma 1.3.26. Let (D, d0, d1) be a minimal (1 + t) or (1− t) componenet; we show

by indcution that if (Dk, d0, dk) is a chain of k copies of D, then for X ⊆ D,

δ(X) ≥ 1 ± kt with equality holding exactly when X = D. For k = 1 this is just

the definition of a minimal component. Otherwise, let Dk+1 = Dk ⊕dk
D′ where

(D′, dk, dk+1) is isomorphic to (D, d0, d1). If X ⊆ Dk or X ⊆ D′, then the result is

immediate from induction. Otherwise, let Xk = X ∩Dk and let X ′ = X ∩D′. Then
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X = Xk ⊕dk
X ′, and δ(X) = δ(Xk)+ δ(X ′)−1 ≥ (1±kt)+(1± t)−1 = 1± (k +1)t

as desired.

We would like to use the above to construct biminimal 0-extensions. We first

note the following special case:

Remark 1.3.28. If A ∈ Kr is a singleton , then let B = Ab for some b with an edge

from A to b. Let C be an extension of B which is a 0-extension of A. In their proof

of AEP for this class, Ikeda, Kikyo, and Tsuboi gave a construction of C which

satisfied CA = CB. Therefore taking a subset C ′ of C so that (A,C ′) is minimal

gives a biminimal pair.

Proposition 1.3.29. Let r ∈ (0, 1) be rational. Then for A ∈ Kr there is some

C ∈ Kr so that (A,C) is a biminimal 0-extension1.

Proof. Let |A| = n; by the previous remark we may assume that n > 1. Extend A

to a structure B which consists of n unrelated points, each with an edge to a unique

vertex of A. For any b ∈ B, δr(b/A) = 1 − r; then 1 − r = kt for some k ∈ ω, and

δr(B/A) = nkt.

Let (E, e0, ek), (F l, f l, gl), and (F r, f r, gr) be as defined in Lemma 1.3.27. We

define C as follows. For i < n, let (Ei, xi, yi) be a copy of (E, e0, ek), let (F l
i , yi, bi)

be a copy of (F l, f l, gl), and let (F r
i , bi, xi+1) be a copy of (F r

i , f r, gr). We adopt

the convention that for i ≤ n − 1, i′ = i + 1 if i < n − 1 and 0 otherwise. Then let

C0 := E1 ⊕y1 F l
1, and for i < n − 1, let Ci′ := Ci ⊕bi′

F r
i′ ⊕xi′′

Ei′′ ⊕yi′′
F l

i′′ . Finally,

1It would probably be fairly straightforward to strengthen this result to obtain a proper

strengthening of the original AEP
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we let C := Cn−1 ⊕b0,x1 F r
0 . The idea is that C forms a circle of structures with the

“negative” copies of E “buffered” by the “positive” copies of F l and F r.

We need to show that C ∈ Kr and that (A,C) is a biminimal 0-extension. Let

X be an arbitrary subset of C \A, and let B0 = BX . Then we show that δr(X) > 0

and that δr(X/A) ≥ 0 with equality exactly when X = C \ A. Note that by the

linearity of δr, we may assume that X is connected.

We will calculate δ(X/X∩B). Let m = |X∩B| and define Wi := (X ∩ F r
i )⊕xi

(X ∩ Ei) ⊕yi

(
X ∩ F l

i′

)
. For each i, δ(Wi/bibi′) is given by

δ(X ∩ F r
i /bi) + δ(X ∩ Ei/xiyi) + δ(X ∩ F l

i′/bi′)

The bounds on each term depend on {xi, yi } ∩ X. The first term is at least

⌊
q
2

⌋
t if xi ∈ X and strictly greater than 0 otherwise. Similarly the last term is either

at least
⌈

q
2

⌉
t for yi ∈ X or else strictly greater than 0. We also have that the middle

term is at least −1−kt. Combining this information (and using connectedness), we

have

δ(Wi/bibi′) ≥







−1 − kt if X ∩ {xi, yi } = ∅ and X ∩ { bi, bi′ } = ∅

0 if X ∩ {xi, yi } = ∅ and X ∩ { bi, bi′ } 6= ∅

⌊
q
2

⌋
t − kt if X ∩ {xi, yi } = {xi }

⌈
q
2

⌉
t − kt if X ∩ {xi, yi } = { yi }

−kt if X ∩ {xi, yi } = {xi, yi }

(⋆)

with equality holding in the last case exactly when Wi = F r
i ⊕xi

Ei ⊕yi
F l

i′ . We also

have that δ(Wi/bi) ≥
⌈

q
2

⌉
t − kt and δ(Wi/bi′) ≥

⌊
q
2

⌋
t − kt.
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For m = 0, we then have that δ(X) ≥ δ(W0/b0b1) + δ(b0b1) ≥ 1 − kt = r > 0.

We also have that δ(X/A) = δ(X) > 0.

For 0 < m < n, if
⌊

q
2

⌋
t − kt < 0, we have:

δ(X/X ∩ B) = δ(Wn−1/b0) + δ(Wm−1/bm−1) +
m−2∑

i=0

δ(Wi/bibi′)

≥ (
⌈q

2

⌉

t − kt) + (
⌊q

2

⌋

t − kt) − (m − 1)kt

= 1 − 2kt − mkt + kt

= 1 − mkt − kt

= r − mkt

We have δ(X) = δ(X/X ∩ B) + δ(X ∩ B) ≥ (r − mkt) + m = r + mr > 0. Also,

δ(X/A) = δ(AX/XA) = δ(X/X ∩B) + δ(X ∩B/A) ≥ (r −mkt) + mkt = r > 0. If

⌊
q
2

⌋
t− kt > 0, then δ(X) ≥ m− (m− 1)kt > mr > 0 and δ(X/A) ≥ −(m− 1)kt +

mkt > mr > 0.

For m = n, we have δ(X/X ∩ B) =
∑n−1

i=0 δ(Wi/bibi′) =
∑n−2

i=0 δ(Wi/bibi′) +

δ(Wn−1/bn−1b0). Applying (⋆), we have that δ(X/X∩B) ≥ (n−1)(−kt)−kt = −nkt.

Then δ(X) ≥ −nkt + n = nr > 0 and δ(X/A) ≥ −nkt + nkt = 0, with equality

holding only if every Wi is F r
i ⊕xi

Ei ⊕yi
F l

i′ . Thus (A,C) is a biminimal pair, as

desired.
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Chapter 2

Up and Down

In this chapter we will study ultraproducts
∏

U Mαn
for {αn } a sequence

converging to a rational r ∈ (0, 1) and Mαn
a model of Σαn

. We will see that the

theory of the ultraproduct is either ω-stable or undecidable, depending on whether

the sequence can be thought of as converging upward or downward.

2.1 Going Up

Let {αn} be a sequence converging to some rational r ∈ (0, 1) which is bounded

above by r. Let Mαn
be any model of Σαn

, let U be any non-principal ultrafilter and

let Mr be the ultraproduct
∏

U Mαn
. Then we will show that Mr is elementarily

equivalent to the (Kr,≤r) generic.

Lemma 2.1.1. The following statements hold of Mr:

1. The age of Mr is precisely the set of finite graphs G satisfying δr(H) ≥ 0 for

every H ⊆ G. That is, Age(Mr) = Kr.

2. For every A ⊆ω Mr, if A ≤r Mr and A ≤r B, then B embeds strongly into

Mr over A.

3. For A ⊆ω Mr and A ≤r B, A extends to an embedding of B into Mr

In particular, Mr |= Sr
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Proof. For all three items, we note that for A ⊆ B, if h = h(A,B) then A ≤r B iff

r ∈ [0, h] iff αn ∈ [0, h] for every n.

To show (1) we note that, by ÃLoś, Mr |= ∃x̄∆A(x̄) iff Mαn
|= ∃x̄∆A(x̄) for co-

finitely many n. For a given n, Mαn
|= ∃x̄∆A(x̄) iff αn ∈ [0, h(A)], so Mr |= ∃x̄∆A(x̄)

iff there is some N so that αn ∈ [0, h] for n > N . Since {αn } is bounded above by

r, we must have r ∈ [0, h]

For (2) consider the type p(ȳ) over A consisting of the following schema:

• ∆B(Aȳ)

• For each k ∈ ω, the formula ek:

∀z1 . . . zku(z̄) →
∨

i
∆Ck

i
(Aȳz̄)

Where the ∆Ck
i

enumerate the diagrams of strong extensions of B of size k

and u(z̄) states that all the zi are distinct.

We show that p is finitely satisfiable and hence consistent; the ω1-saturation of Mr

will then guarantee that it is realized. Since A ≤r B, we have that A ≤αn
B for all

n. Since A ≤r Mr, we have that A↾Mαn
≤k

r Mαn
for cofinitely many n. Then, by

our choice of Mαn
, A↾Mαn

extends to a k-strong copy of B in Mαn
. This copy will

witness any finite subset of p that contains no el for l > k.

To show (3), we apply ÃLoś’s theorem. Suppose A ⊆ω Mr and A ≤r B; let

h = h(A,B). Since A ≤r B, we must have r ∈ (0, h]. Therefore A ≤αn
B for

every n ∈ ω, so Mαn
models that every copy of A extends to a copy of B; thus the

ultraproduct does as well by ÃLoś.
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We will need the following:

Definition 2.1.2. For m ∈ ω:

• An m-chain over a finite subset A is a sequence of extensions Bi with B0 = A,

Bi ⊆ Bi+1, Bi 6≤ Bi+1, and |Bi+1 \ Bi| < m.

• Xm(A) is the set of all B such that B is the final element of some m-chain

over A. It is worth noting that the relation B ∈ Xm(A) is equivalent to the

notion of A being intrinsic in B, used in [2] and [1].

• The class (K,≤) has bounded m-closures if there is a function t : ω × ω → ω

which is monotone increasing in both arguments and such that: for M any

model with Age(M) ⊆ K, if A ⊆ω M , then for any m ∈ ω and B ∈ Xm(A),

there are at most t(|A|, |B|) copies of B which embed into M over A.

A theory T is said to be near model complete if every formula is equivalent

to a boolean combination of existential formulae mod T . A model is near model

complete if it’s theory is.

Definition 2.1.3. An amalgamation class (K,≤) is good if it satisfies all of the

following:

• (K,≤) is a full amalgamation class

• There is a predimension function δ so that A ≤ B is given by δ(B′/A) ≥ 0 for

every B′ ⊆ω B

• (K,≤) has the granularity property, satisfies AEP, and has bounded m-

closures.
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We extract the following theorem from [10]:

Main Theorem 2.1.1. Let (K,≤) be a good amalgamation class, and let M |= S≤.

Then the theory of M is nearly model complete and is axiomatized by S≤.

We will make use of the following theorem, paraphrased from [1]:

Theorem 2.1.4. Let (K,≤) be any full amalgamation class which satisfies the con-

clusions of Lemma 1.3.14 and has bounded m-closures. Then the (K,≤)-generic is

near model complete.

(Proof of Main Theorem). It is shown in [8] that for any good amalgamation class,

S≤ is complete. By Theorem 2.1.4 we have that S≤ is near model complete, since it

is the theory of the generic.

Note that this is slightly stronger than the individual results in either Baldwin-

Shelah ([1]) or Ikeda, Kikyo, and Tsuboi ([8]): Baldwin Shelah show near model

completeness of a Π3 theory, while the latter authors show the axiomatization by

S≤ but don’t show near model completeness.

Corollary 2.1.5. Let T = Th(Mr), then T is nearly model complete and is axiom-

atized by Sr.

Proof. We need only show that (Kr,≤r) is a good amalgamation class. It has

free amalgamations: for A ≤r B1, A ≤r B2, let D = B1 ⊕A B2. For any subset

D′ = B′
1 ⊕A B′

2, we have δr(D
′/A) = δr(B

′
1/A) + δr(B

′
2/A), and both terms are

non-negative by hypothesis. For full amalgamation, we note that δr(B ⊕A C) =

δr(B)+ δr(C)− δr(A) = δr(B/A)+ δr(C) which must be positive by the hypotheses.
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AEP for (K,≤r) is shown in Proposition 3.11 of [8]

Boundedness of m-closures comes from the rationality of r: if r = p/q, then

any extension of B of A which is not strong satisfies δr(B/A) ≤ −1
q
. Therefore A

can have at most δ(A)q copies of B which embed over it in M , so we simply let

t(|A|, |B|) := max{A′:|A′|=|A| } δr(A
′)q.

The following is Theorem 3.34 of [2]:

Theorem 2.1.6. The theory of the (Kr,≤r)-generic is ω-stable.

2.2 Coming Down

In this section we consider a decreasing sequence { an } which converges to

some rational r ∈ (0, 1). We want to examine the theory of the ultraproduct Mr :=

∏

U Mαn
, where U is any non-principal ultrafilter and Mαn

is a model of Σαn
. We

will see that any such ultraproduct satisfies Σr, but that Σr is far from complete.

In fact, we will see that it has continuum many completions, and that the theory of

the ultraproduct is not even recursively axiomatizable.

Fix r throughout the rest of this section; we will work with the class (K+
r ,4r).

We will show that any model of Σr interprets Robinson’s R and is thus essentially

undecidable. We will also show that the (K+
r ,4r)-generic and any Mr (indepen-

dently of the sequence chosen or the ultrafilter) are models of Σr.

Our key proposition states that relative to a finite subset of a model of Σr,

finite relations are definable; this generalizes a similar result in [12]. Recall that

[M ]n denotes the subsets of M with cardinality precisely n.
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Proposition 2.2.1 (Definability of Finite Relations). Let M |= Σr. For any n ∈ ω,

there is a predicate R(x0, . . . , xn−1; v) and an m ∈ ω so that for any R0 ⊆ω [M ]n

and S with ∪R0 ⊆ S ⊆ω M , there is some v ∈ M so that R(S; v) = R0; that is, for

ā ∈ Sn, M |= R(ā; v) if and only if ā ∈ R0 (where we view ā as a set rather than a

tuple). We will denote the relation R(·; v) by Rv.

Proof. Enumerate R0 as { ā′
i : i < N }. Let zā be a graph with n + 1 vertices and

no edges. Fix U a biminimal extension of zā, and note that for every i < N there is

a graph zāiUi, in which āi is isomorphic to ā′
i and Ui is a copy of U over zāi (that

is, the internal structure of ā′
i is irrelevant). Let S ′ be an isomorphic copy of S in

which the image of each ā′
i is āi, let z be a new vertex with no edge to any āi, and

let W be
⊕

i<N

(Ui/āiz) with Ui chosen as in the previous sentence.

We will show that W embeds strongly into M over ∪R0. Let β(ū, ū′) state

that ū is a permutation of ū′ or else that ū ∩ ū′ = ∅. Then let R(x̄; v) be

∃ū
∨

σ∆U(vσ(x̄)ū) ∧ [∀ū, ū′∆U(vσ(x̄)ū) → β(ū, ū′)] where σ runs over permutations

of x̄, we will see that Rv is precisely as required.

We show that
⋃

i<N āi 4r W , via the following sequence of calculations, which

hold for every i < N :

āi 4r z (2.1)

āi 4r Ui and z 4 Ui (2.2)

āi 4r zUi (2.3)

∪i<N āi 4r W (2.4)

(2.1) is immediate since v is unrelated to āi - it has relative pre-dimension 1.
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To prove (2.2), note that for any A ⊆ Ui \ āi, with z ∈ A, we have δ(A/āi) =

δ(A/āiz)+δ(āiz/āi). By the definition of U , δ(A/āiz) ≥ 0; we also have δ(āiz/āi) =

1, so δ(A/āi) > 0. If z 6∈ A, then by submodularity we have that δ(A/āi) ≥

δ(A/zāi), and we just showed the latter to be positive.

Similarly, if āi ⊆ A then δ(A/z) = δ(A/āiz) + δ(āiz/z). The first term is non-

negative since Ui is a 0-extension and the second term is equal to δ(āi) > 0 since z

is unrelated and ā ⊆ M . If āi 6⊆ A then δ(A/z) ≥ δ(A/āiz) by sub-modularity, and

the latter is positive by the previous sentence.

To show (2.3), let A be any subset of zUi. Then if z 6∈ A the result is immediate

by (2.2); if z ∈ A we have δ(A/āi) = δ(A/āiz) + δ(āiz/āi) which must be positive

since āiz ≤r A and āi 4 āiz.

For (2.4), we first note that for fixed j, āj 4 W . In fact, for A ⊆ W \ āj, we

have

δ(A/āj) = |A \ āj| − re(A/āj)

= |A \ āj| − r

(

e(Ujz ∩ A/āj) +
∑

i6=j

e(Ujz ∩ A)

)

= |Ujz ∩ A \ āj| − re(Ujz ∩ A/āj) +
∑

i6=j

|Ui ∩ A| − re(Uiz ∩ A)

= |Ujz ∩ A \ āj| − re(Ujz ∩ A/āj) +
∑

i6=j

|Uiz ∩ A \ z| − re(Uiz ∩ A)

= |Ujz ∩ A \ āj| − re(Ujz ∩ A/āj)+

∑

i6=j

(

|Uiz ∩ A \ z| − r(e(Uiz ∩ A \ z) + e(Uiz ∩ A, z))
)

= δ(A ∩ Ujz/āj) +
∑

i6=j

δ(A ∩ Uiz/z)
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Each term is positive by (2.2).

Let X = ∪i<N āi. Then note that for any U ′ ( Ui\Xz, Xz 4 U ′. We calculate:

δ(U ′/Xz) = |U ′| − r[e(U ′) + e(U ′, z) + e(U ′, X)]

= |U ′| − r[e(U ′) + e(U ′, z) + e(U ′, āi)]

= δ(U ′/āiz)

Since āiz 4 U ′, we have Xz 4 U ′.

Finally, we show that X 4 A for A any subset of W . We consider two cases.

If z ∈ A, then

δ(A/X) = δ(A/Xz) + δ(Xz/X)

Since z is unrelated to X, we have δ(Xz/X) = 1. Note that δ(A/Xz) = δ(A \

{ z }/Xz) =
∑

i δ(A ∩ Ui/Xz), which is positive by the previous paragraph unless

A \ { z } =
⋃

i<N Ui, in which case it is zero. In either case δ(A/X) ≥ 1.

If z 6∈ A, then

δ(A/X) = δ(⊕i<NA ∩ Ui/X)

=
∑

i<N

δ(A ∩ Ui/X)

=
∑

i<N

δ(A ∩ Ui/(A ∩ Ui)
X)

=
∑

i<N

δ(A ∩ Ui/āi)

Since āi 4 Ui, each term of the displayed sum is positive, and X 4 A.

Let m > |U \ ā|. By the semi-genericity of M , there is a W ′ which is an

embedding of W into M over ∪R0 satisfying clm(W ′) = clm(∪R0)⊕∪R0 W ′. Letting

26



z′ be the image of z in W ′, it is clear that M |= Rz(ā) for any ā ∈ R0. Conversely,

suppose that M |= Rz(ā) for ā ∈ Sn. Then for some permutation σ and some tuple

ū′ in M , zσ(ā)ū′ satisfies ∆U . Thus δr(u
′/zσ(ā)) = 0, so that ū′ ⊆ clm(W ′). We

also have that M |= E(z, u0) for some u0 ∈ ū′ by biminimality. Semigenericity

yields that u0 ∈ clm(∪R0) or u0 ∈ W ′. In the former case, we contradict that

clm(W ′) = clm(∪R0)⊕∪R0 W ′ since z ∈ W ′ \∪R0. Thus the latter case holds, and u0

is part of some realization of U already in W ′. Since such realizations are pairwise

disjoint over zS, we must have ū′ ⊆ W ′ and ā ∈ R0.

Corollary 2.2.2. Let M be as above and consider definable S, T ⊆ M . Suppose

D(x, y; ā) and E(x, y; b̄) are definable classes of equivalence relations on S(M) and

T (M) respectively. Let Dā and Eb̄ respectively denote the equivalence relations

D(·, ·; ā) and E(·, ·; b̄). Also, n(Dā), n(Eb̄) will denote the number of Dā (respec-

tively Eb̄) equivalence classes in S (respectively T ). If n(Dā) and n(Eb̄) are both

finite, then for any v and Rv(x0, x1) as in the representation lemma, we can define

the following sentences on v, uniformly in ā and b̄:

1. FDā
(v) states that Rv represents a function with domain S/Dā.

2. I(v) states that Rv represents an injection.

3. SEb̄
(v) states that Rv represents a surjection on Eb̄ classes.

4. JDā,Eb̄
(v) states that Rv represents a relation between Dā classes and Eb̄ classes.

As a consequence, if each Dā-class and each Eb̄-class is finite, we get:

• n(Dā) < n(Eb̄) is first order
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• n(Dā) = n(Eb̄) is first order

• Given a definable R ⊆ M and a definable equivalence relation C(x, y, c̄) on R,

the relation n(Dā)n(Eb̄) = n(Cc̄) is first order definable (uniformly in ā, b̄, c̄)

Proof.

FDā
(v) :=∀x ∈ S ∃x′ ∈ S [Dā(x, x′) ∧ ∃!y ∈ T Rv(x

′, y)]∧

∀x′ ∈ S[Dā(x, x′) ∧ ∃yRv(x
′, y) → x = x′]

I(v) :=∀x0, x1 ∈ S [∃y ∈ TRv(x0, y) ∧ Rv(x1, y) → x0 = x1]

SEb̄
(v) :=∀y ∈ T ∃y′ ∈ T [∃x ∈ S Rv(x, y′) ∧ Eb̄(y, y′)]

JDā,Eb̄
:=∀x0x1[∃y0y1Rv(x0, y0) ∧ Rv(x1, y1) ∧ Dā(x0, x1) → x0 = x1]∧

∀y0y1[∃x0x1Rv(x0, y0) ∧ Rv(x1, y1) ∧ Eb̄(y0, y1) → y0 = y1]

Given these, n(Dā) < n(Eb̄) can be written as saying that there is some v so

that Rv is defined on Dā and Eb̄ classes, and is an injective function which is not

surjective. That is, we write ∃vJDā,Eb̄
(v) ∧ FDā

(v) ∧ I(v) ∧ ¬SEb̄
(v). Such a v will

exist for finite Dā, Eb̄-classes by the previous proposition.

Saying n(Dā) = n(Eb̄) can be accomplished by writing ∃vJDā,Eb̄
(v)∧FDā

(v)∧

I(v) ∧ SEb̄
(v).

To encode that n(Dā)n(Eb̄) = n(Cc̄), we create an equivalence relation with

exactly n(Dā)n(Eb̄) and apply the previous paragraph. Thus, we let π(v) be

JDā,Eb̄
(v) ∧ ∀x ∈ S ∀y ∈ T [∃x′ ∈ S Dā(x, x′) ∧ ∃y′ ∈ TEb̄(y, y′) ∧ Rv(x

′, y′)]

(i.e., π says that Rv relates every Dā class to every Eb̄ class). Let Ev(u0, u1) :=
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∃ū[∃xy∆U(vxyū)] ∧ u0 ∈ ū ∧ u1 ∈ ū (i.e. u0 and u1 are in the same copy of U over

some vxyū). Then we write n(Dā)n(Eb̄) = n(Cc̄) as ∃vπ(v) ∧ “n(Ev) = n(Cc̄)”.

This will be enough to show that any model of Σr interprets R, which we now

define.

Definition 2.2.3. Let LR, the language of arithmetic, be given by Lnl
R = {+, ·,≤

, 0, 1 }. Let ηs represent the term ‘1 + · · · + 1′
︸ ︷︷ ︸

s times

. Then Robinson’s R is given by the

following axiom schemes, for every s, t ∈ ω:

1. ηs + ηt = ηs+t

2. (ηs) · (ηt) = ηst

3. ηs 6= ηt for s 6= t

4. ∀x, x ≤ ηs → x = η0 ∨ . . . ∨ x = ηs

5. ∀x, x ≤ ηs ∨ ηs ≤ x

Theorem 2.2.4. Let M |= Σr. Then M recursively interprets a model (ω′, +, ·,≤

, 0, 1) of Robinson’s R.

Proof. Fix A ∈ K and choose any B so that (A,B) is a 0-extension. We will equate

natural numbers with the number of disjoint copies of B over A. Define ω′(x̄)

as ∆A(x̄) ∧ ∀ȳ1∀ȳ2

[(
∆B(x̄ȳ1) ∧ ∆B(x̄ȳ2)

)
→

(
ȳ1 ∩ ȳ2 = ∅ ∨

∨

σσ(ȳ1) = ȳ2

)]
where

σ ranges over all permutations of ȳ1 and = is interpreted in the obvious way.
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Different representations of natural numbers will be equated if they represent

the same number. To define this, we will define an equivalence relation which

equates elements of the same realization of B over A. We then equate elements of

ω′ which have the same number of classes under this relation. Specifically, we define

E(u0, u1; x̄) (alternatively, Ex̄(u0, u1)) to be

ω′(x̄) ∧ ∃b̄∆B(x̄b̄) ∧ u0 ∈ b̄ ∧ u1 ∈ b̄

. We then define =′
ω (x̄, ȳ) as ω′(x̄) ∧ ω′(ȳ) ∧ “n(Ex̄) = n(Eȳ)”.

To define addition, first let EA(u, v; x̄, ȳ) be

ω′(x̄) ∧ ω′(ȳ) ∧ ∃b̄(∆B(x̄b̄) ∨ ∆B(ȳb̄)) ∧ u ∈ b̄ ∧ v ∈ b̄

We then define addition as A(x̄, ȳ, z̄) := “n(EA
x̄ȳ) = n(Ez̄)”. Similar, we the graph

of multiplication M(x̄, ȳ, z̄) will be given by “n(Ex̄)n(Eȳ) = n(Ez̄).

Zero and one are defined in the obvious way: zero is ω′(x̄)∧¬∃w̄∆B(x̄w̄) while

one is ω′(x̄)∧∃!w̄∆B(x̄w̄). The order ≤ is definable within the interpretation: x ≤ y

is interpreted as ∃z[ω′(z) ∧ x + z = y]

It is clear that this defines a recursive interpretation of R

Corollary 2.2.5. Σr is essentially undecidable.

Proof. It is shown in Part II, Theorem 9 of [13] that R is essentially undecidable.

Tarski shows that essentially undecidability is transferred by interpretations in Part

I, Theorem 7. Although his notion of an interpretation is syntactic, the same argu-

ment goes through: let M |= Σr and let (ω′, +·,≤, 0, 1) interpret R as guaranteed
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by the theorem. Let f be a recursive map from LR sentences to L sentences which is

determined by the interpretation. Then, given an LR sentence σ, ω′ |= σ if and only

if M |= f(σ). Thus a decision procedure for Th(M) would decide Th(ω′, +·,≤, 0, 1)

as well, contradicting the essential undecidability of Σr.

Remark 2.2.6. It is worth noting that while the interpreted model will satisfy Robin-

son’s Q when M is the generic, this is not generally true. In particular, for the

ultraproducts
∏

U Mαn
with {αn } a sequence of decreasing irrationals converging

to r and Mαn
the Shelah-Spencer graph of weight αn, it will be definable in each

Mαn
that there is a maximal number of realizations of B over A. This definition

will carry over to the ultraproduct, and the order type of the interpreted (ω′,≤) will

have a copy of ω∗ (ω reversed) as a tail.

Corollary 2.2.7. Let Mr denote the ultraproduct
∏

U Mαn
, where U is any non-

principal ultrafilter, {αn } converges to r ∈ (0, 1) and is bounded below by r, and

Mαn
is a model of Σαn

. Then both the (K+
r ,4r)-generic and Mr model Σr; thus they

have essentially undecidable theories.

Proof. That the (K+
r ,4r)-generic models Σr was shown in the first section of this

paper, we thus restrict our attention to Mr. Note that for any finite graph A,

Mr |= ∃x̄∆A(x̄) if and only if Mαn
|= ∃x̄∆A(x̄) for cofinitely many n. For any given

αn, Mαn
|= ∃x̄∆A(x̄) exactly when αn < h(A). If h(A) > r, then by the convergence

of { an }, cofinitely many Mαn
will model ∃x̄∆A(x̄) - thus Mr will as well.

If A 4r B, then by definition we have that h(A,B) > r. Then for αn <

h(A,B), we have Gαn
|= ∀x̄∆A(x̄) → ∃ȳ∆B(x̄ȳ). By convergence, this is true for
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cofinitely many αn, so that it is true in the ultraproduct as well.

Finally, we show that Mr is semi-generic. Let A ⊆ω M with A 4r B, let ā

enumerate A. Recall that we defined a formula ψm
A,B(āȳ) which states that ȳ is a

copy of B over A and clm(ȳ) = ȳ ⊕ā clm(ā) (see Definition 1.3.23). We will show

that Mr |= ∃ȳ∆B(āȳ) ∧ ψm
A,B(āȳ) by an appeal to ÃLoś’ Theorem. We note that if

X 4r Y , then X 4r+ǫ Y for ǫ sufficiently small. Thus we can choose ǫ so that

A 4r+ǫ B and the C which appear in ψm
A,B are also in the corresponding formula for

r + ǫ semi-genericity (because there are only finitely many possible candidates for

C - any minimal such will have negative predimension at r + ǫ and will thus appear

in the appropriate formula; if a minimal C appears for all r + ǫ with ǫ sufficiently

small, then it must have relative pre-dimension at most 0 and thus appears.).

2.2.1 Approximations

In this subsection, we establish an approximate version of the representation

theorem for α close to r and use it to fully represent some relations.

Lemma 2.2.8. For A ⊆ B, δr+ǫ(B/A) = δr(B/A) − ǫe(B/A)

Proof.

δr+ǫ(B/A) = |B \ A| − (r + ǫ)(e(B/A)

= δr(B/A) − ǫe(B/A)
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Recall that in the proof of Lemma ?? we made use of a structure U which was

a minimal 0-extension of {s̄v} where s̄ is an n-tuple and v is an unrelated point.

For k ∈ ω, we let Sk := ⊕1≤i≤ks̄i and Wk := v ∪
⋃

1≤i≤k Ui where each s̄i is

isomorphic to s̄, each Ui is isomorphic to U and extends s̄i.

Lemma 2.2.9. There is an ǫ′ so that for 0 < ǫ < ǫ′ we have that for k ≤
⌊

1
e(U/s̄v)

1
ǫ

⌋

,

Sk ≤r+ǫ Wk

Proof. We first calculate:

δr+ǫ(Wk/Sk) = δr+ǫ(Wk/Skv) + δr+ǫ(Skv/Sk)

= δr(Wk/Skv) − ǫe(Wk/Skv) + 1

= 1 − ǫke(U/s̄v)

This is non-negative for k ≤
⌊

1
e(U/s̄v)

1
ǫ

⌋

; we need to show we can make it hereditarily

non-negative. We choose ǫ′ so that for 0 < ǫ < ǫ′, we have:

1. s̄ ≤r+ǫ v

2. s̄ ≤r+ǫ U

3. s̄ ≤r+ǫ vU

4. (s̄v, U) is a ≤r+ǫ-minimal pair

(We can do this by the equivalent statements in the proof of Lemma ?? since for

any A,B if A 4r B then there is some ǫ′ so that A ≤r+ǫ B for 0 < ǫ < ǫ′). Let W ′

be a proper subset of Wk; we show that δr+ǫ(W
′/Sk) ≥ 0
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If v 6∈ W ′, then this is clear from 2) above since δr+ǫ(W
′/Sk) =

∑

1≤i≤k δr+ǫ(W
′∩

Ui/s̄i).

If v ∈ W ′, we have δr+ǫ(W
′/Sk) = δr+ǫ(W

′/Skv) + δr+ǫ(Skv/Sk) = 1 +

δr+ǫ(W
′/Skv). Then δr+ǫ(W

′/Skv) =
∑

1≤i≤k δr+ǫ(W
′ ∩ Ui/s̄iv). Since (s̄v, U)

is a minimal pair, this sum is at least δr+ǫ(Wk/Skv). Therefore δr+ǫ(W
′/Sk) ≥

δr+ǫ(Wk/Sk) ≥ 0

For 0 < ǫ < ǫ′, let kǫ denote
⌊

1
e(U/s̄v)

1
ǫ

⌋

and let Gr+ǫ denote the (Kr+ǫ,≤r+ǫ)-

generic. The following theorem and it’s corollary generalize results in [12].

Theorem 2.2.10 (Approximate Representation). For any n ∈ ω, let R(x̄; v) denote

the formula ∃ū
∨

σ∆U(vσ(x̄)ū) (where |x̄| = n and σ enumerates the permutations

of x̄). Then for 0 < ǫ < ǫ′ and R0 any symmetric irreflexive n-ary relation on Gr+ǫ

with at most kǫ realizations in Gr+ǫ, there is some v ∈ Gr+ǫ so that Gr+ǫ |= Rv(x̄)

if and only R0(x̄) holds.

Proof. Let X̄ = ∪i<N x̄i where the x̄i enumerate the x̄ on which R0 holds. Then for

some k ≤ kǫ, X̄ ≃ Sk, and by the previous lemma X̄ ≤r+ǫ Wk. Let Q′ = clGr+ǫ
(X̄);

then WQ′

k = X̄, so that Q′ ≤r+ǫ Wk. So we must have that Wk embeds strongly into

Gr+ǫ over Q′, the image of v, say v′, under this embedding satisfies Gr+ǫ |= Rv′(x̄)

if and only R0(x̄) holds.

Corollary 2.2.11. Consider definable S, T ⊆ Gr+ǫ for 0 < ǫ < ǫ′. Suppose

D(x, y; ā) and E(x, y; b̄) are definable classes of equivalence relations on S(Gr+ǫ)

and T (Gr+ǫ) respectively. Let Dā and Eb̄ respectively denote the equivalence re-

lations D(·, ·; ā) and E(·, ·; b̄). Also, n(Dā), n(Eb̄) will denote the number of Dā
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(respectively Eb̄) equivalence classes in S (respectively T ). If n(Dā) and n(Eb̄) are

both less than kǫ, then for any v and Rv(x0, x1) as in the representation lemma, we

can define the following sentences on v, uniformly in ā and b̄:

1. FDā
(v) states that Rv is a function with domain S/Dā.

2. I(v) states that Rv is injective.

3. SEb̄
(v) states that Rv is surjective on Eb̄ classes.

4. JDā,Eb̄
(v) states that Rv is relation between Dā classes and Eb̄ classes.

Let T (ȳ; z̄) be any formula and let nǫ(Tz̄) denote the number of distinct ȳ ⊆ Gr+ǫ

such that Gr+ǫ |= T (ȳ; z̄). Suppose that there is some real number m so that for

every ǫ with 0 < ǫ < ǫ′ and every z̄ ⊆ Gr+ǫ we have nǫ(Tz̄) ≤ m(1
ǫ
). Then the

following sentences on z̄ are uniformly definable in Gr+ǫ for such ǫ:

• nǫ(Tz̄) is even.

• nǫ(Tz̄) is maximal over all z̄

Proof. The numbered formulae have the same definitions as before; the approximate

representation theorem guarentees that they’re valid for the prescribed ǫ.

Let Ez̄(y1, y2) be ∃ȳT (ȳ; z̄)∧ y1 ∈ ȳ ∧ y2 ∈ ȳ. Let l = e(U/s̄v)m + 1. Then we

have that for ǫ sufficiently small, lkǫ ≥ m1
ǫ
≥ nǫ(Tz̄). Replacing ǫ′ if necessary, we

may assume that this holds.

Note that nǫ(Tz̄) will be even exactly when we can partition it into two equicar-

dinal sets, which will happen exactly when we can find l disjoint subsets of Tz̄ which
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can each be partitioned into two equicardinal sets (some of the subsets can be

empty). Therefore we code that nǫ(Tz̄) is even by saying there exists v1, . . . , vl so

that each Rvi
is defined on Ez̄-classes, the unions of the domain and range of each

Rvi
partition Tz̄, and for each i, that Rvi

is a bijection.

To say that nǫ(Tz̄) is maximal, we want to encode that for any other z̄′ there

is a surjection Tz̄ → Tz̄′ . We again break this up into l different functions, and say

that there exist v1, . . . , vl so that each Rvi
is a function on Tz̄ and the union of the

ranges of the Rvi
is all of Tz̄′ . Literally, we use the following sentence:

∃v0 . . . ∃vl−1∀ȳTz̄(ȳ) → ∃y1 ∈ ȳ∃y2, ȳ
′

[

Tz̄′(ȳ
′) ∧ y2 ∈ ȳ ∧

∨

i<l
Rvi

(y1, y2)
]

∧

[

∀y3y3 ∈ ȳ ∧ ∃y4, ȳ
′
(

Tz̄′(ȳ) ∧
∨

i<l
Rvi

(y3, y4) → y3 = y1

)]

∧

∀ȳ′Tz̄′(ȳ
′) → ∃y2 ∈ ȳ′∃y1, ȳ

′
[

Tz̄(ȳ) ∧ y1 ∈ ȳ ∧
∨

i<l
Rvi

(y1, y2)
]

2.2.2 Completions

We show in this subsection that Σr has continuum many completions and

specify a set of formulae on which these differ. We first note that the number of

completions comes from very quickly from essential undecidability.

Theorem 2.2.12. Σr has 2ℵ0 completions.

Proof. We will define tree of completions Tη of Σr for η ∈ 2ω such that each Tη

is incomplete and essentially undecidable, and Tη∧0, Tη∧1 are pairwise inconsistent
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extension of Tη. Let T∅ = Σr. Having defined Tη, we note that by incompleteness

there is a sentence σ so that Tη ∪ {σ } and Tη ∪ {¬σ } are both consistent, hence

essentially undecidable. We let Tη∧0 denote the former and Tη∧1 denote the latter.

The remainder of this subsection will be spent finding explicit families of sen-

tences on which the completions differ. Throughout, Gα will denote the (Kα,≤α)-

generic for α irrational and the (K+
α,4α)-generic otherwise. Let A be a pair of

unrelated points and choose B so that (A,B) is a proper biminimal 0-extension.

For n ∈ ω \{ 0, 1 }, let An denote a set of n unrelated points, labeled a0 . . . an−1. We

want to count the total number of copies of B over An for various n; this will enable

us to define a countable set of sentences whose truth values can be indpendently

specified in Gr+ǫ for ǫ close to 0.

As a first step, we determine the maximal number of pariwise disjoint (over

An) copies of B which will result in a structure with non-negative predimention δr+ǫ.

If a structure D consists of An with a total of N disjoint over An copies of B then

we compute:

δr+ǫ(D) = δr+ǫ(An) + Nδr+ǫ(B/A)

= n + N(δr(B/A) − ǫe(B/A))

= n − Nǫe(B/A)

Thus we have that δr+ǫ(D) ≥ 0 for N ≤ n
ǫe(B/A)

. Substituting y = 1
ǫe(B/A)

, we have

that An can have no more than ⌊ny⌋ copies of B over any model of Σr. We want to

show that for y sufficiently large, An will have ⌊ny⌋ copies of B in Gr+ǫ.
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Lemma 2.2.13. Fix n ∈ ω, let N := ⌊ny⌋. For m =
(

n
2

)
, write N = qm + r where

q =
⌊

N
m

⌋
. Fix a bijection f from m to { (i, j) : i < j < n }, and for any l let Bl be

⊕j<l(Bj/A) with Bj isomorphic to B. Finally, we define Dn by

Dn :=
⊕

k<m

(
Blk/A

a(k)
n

)

where a(k) := { ai, aj : f(k) = (i, j) } and lk := q + 1 if k < r and is q otherwise.

Then there is a y′ so that for y > y′, ∅ ≤r+ǫ Dn, where y = 1
ǫe(B/A)

.

Proof. Choose y′ so that AB ∈ Kr+ǫ for y ≥ y′; we then induct on n, increasing y′

as necessary.

For n = 2, let X be any subset of D2. We have that D2 is
⊕

i<⌊2y⌋(Bi/A) where

Bi is isomorphic to B. If X contains A then X =
⊕

i<⌊2y⌋(X ∩ Bi/A), and since

(A,B) is a minimal 0-extension, we have δr+ǫ(X ∩ Bi/A) ≥ δr+ǫ(B/A). Therefore

δr+ǫ(X) ≥ δr+ǫ(D2) ≥ 0.

If not, we consider two subcases. If X ∩ A = ∅, then we have that ∅ 4r X

so that δr(X) > 0. Since δr+ǫ(X) = δr(X) − ǫe(X), this quantity is also positive

for ǫ sufficiently small. If necessary, increase y′ so that δr+ǫ(X) is positive for all

y > y′ and every X0 ⊆ B \ A. Then for such ǫ, any X ⊆ D2 \ A will have positive

predimension in δr+ǫ.

In the final case, X ∩A = { a } for some point in A. Let B0 = B \A, and note

that:

δr+ǫ(B/a) = δr(B0/a) − ǫ(e(B0) + e(B0, a)) (2.5)
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Letting A = { a, a′ }, we then calculate:

δr(B0/a) = δr(B0a) − δr(a) = δr(B0a) − 1

δr(B0a) = |B0a| − r(e(B0) + e(B0, a))

δr(B0A) = |B0aa′| − r(e(B0) + e(B0, a) + e(B0, a
′))

= (|B0a| + 1) − r(e(B0) + e(B0, a)) − re(B0, a
′)

= 2

We thus have 2 − δr(B0a) = 1 − re(B0, a
′) so that δr(B0a) = 1 + re(B0, a

′) and

δr(B0/a) = re(B0, a
′). Thus (2.5) becomes:

δr+ǫ(B/a) = re(B0, a
′) − ǫ(e(B0) + e(B0, a))

And this is clearly positive for ǫ sufficiently small. We can increase y′ large enough

to guarentee this.

We have that X = ⊕i(Xi/a) where Xi = X ∩ Bi. Therefore δr+ǫ(X) =

δr+ǫ(a)+
∑

i δr+ǫ(Xi/a) = 1+
∑

i δr+ǫ(Xi/a). We showed above that for y sufficiently

large, δr+ǫ(Bi/a) is positive. If Xi ( Bi, we note that δr(Xi/a) ≥ δr(Xi/A) > 0

since (A,B) is a ≤r-minimal pair. Thus we have δr+ǫ(Xi/a) > 0 for ǫ sufficiently

small. Choose y′ large enough so that this is true for every Xi properly contained in

Bi with Xi ∩A = { a }. Then for ǫ determined by y ≥ y′, we will have δr+ǫ(X) ≥ 0.

Thus we have that ∅ ≤ǫ D2 for y greater than y′.

For the inductive step, let X be any subset of Dn, and consider two cases.

If An ⊆ X, let C := Dn \ X and for each k < m, let Ck := C ∩ Bl
k where l

is q or q + 1 depending on k. Then δr+ǫ(Dn/An) = δr+ǫ(Dn/X) + δr+ǫ(X/An) so
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that δr+ǫ(X/An) = δr+ǫ(Dn/An) − δr+ǫ(Dn/X). I claim that δr+ǫ(Dn/X) is non-

positive - since δr+ǫ(Dn/An) ≥ 0 this will show that δr+ǫ(X/An) ≥ 0 and hence that

δr+ǫ(X) ≥ n. Note that Dn := ⊕k(Ck/X), so that δr+ǫ(Dn/X) =
∑

k δr+ǫ(Ck/X).

Also note that for each k, (Ck)
X = X ∩ a(k)Bk, so that

δr+ǫ(Ck/X) = δr+ǫ

(
Bl

k/(B
l
ka(k) \ Ck)

)

= δr+ǫ(⊕i<l (Bi \ Ck ∩ Bi)/A)

=
∑

i<l

δr+ǫ ((Bi \ Ck ∩ Bi)/A)

Since (A,B) is a ≤r+ǫ-minimal pair, each term of the sum is at most 0, which shows

what we want.

If An 6⊆ X, then let k be maximal such that Ak ⊆ X. We may assume without

loss that X is connected. Note that X will then contain at most
(

k
2

)
pairs of vertices

with copies of B over them, each of which will have at most

⌈

⌊ny⌋

(n

2)

⌉

copies of B over

it. By the inductive hypothesis, for y sufficiently large, we have that ∅ ≤r+ǫ Dk. In

Dk, each pair of vertices has at least

⌊

⌊ky⌋

(k

2)

⌋

copies of B over it. So we want to find

y sufficiently large that

⌊

⌊ky⌋

(k

2)

⌋

≥

⌈

⌊ny⌋

(n

2)

⌉

. We calculate:

⌊

⌊ky⌋
(

k
2

)

⌋

≥

⌊
2(ky − 1)

k(k − 1)

⌋

=

⌊
2ky

k(k − 1)
−

1

k(k − 1)

⌋

=

⌊
2y

(k − 1)
−

1

k(k − 1)

⌋
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Also:

⌈

⌊ny⌋
(

n
2

)

⌉

≤

⌈
2ny

n(n − 1)

⌉

=

⌈
2y

(n − 1)

⌉

We note that 2y
(k−1)

− 1
k(k−1)

is linear in y with slope 2
k−1

and that 2y
(n−1)

is linear

in y with slope 2
n−1

. Since k < n, the slope of the former is greater and it will

eventually be large enough so that it’s floor is always greater than the ceiling of the

latter.

Corollary 2.2.14. Fix n ∈ ω and let y denote 1
ǫ e(B/A)

. Then there is some y′ so

that for y > y′, there are exactly ⌊ny⌋ pairwise disjoint copies of B over An in Gr+ǫ.

For |x̄| = n, |ȳ| = |ȳ′| = |B \A|; for k ∈ ω let x̄k denote the pair (xi, xj) where

f(k) = (i, j). Then let Ψn(ȳ; x̄) be ∆An
(x̄)∧

∨

k<(n

2)
∆B(x̄kȳ)∧∀ȳ′[

∨

k<(n

2)
∆B(x̄kȳ

′) →

ȳ∩ ȳ′ = ∅∨
∨

k<(n

2)
ȳ∩ ȳ′ = x̄k ∨

∨

σȳ
′ = σ(ȳ) where σ ranges over permuations of ȳ.

By the results of the previous subsection, there is a sentence σm which holds in Gr+ǫ

exactly when the maximal number of realizations of Ψ2m is even for ǫ sufficiently

close to 0.

Fix η ∈ 2ω such that
∑

m η(m)2−m is irrational; we will define a sequence

{αi : i ∈ ω } of irrationals converging down to r so that, eventually, Gαi
|= σm if

and only if η(m) = 0. Let I0 be the interval (0, 1) if η(0) = 0 or the interval (1, 2)

otherwise. Having defined Im as (c, d), let Im+1 be defined as (c, d
2
) if η(m + 1) = 0

or the interval (d
2
, d) otherwise. If we let y0 be

∑

m η(m)2−m then y0 is in every

interval Im; and ∩mIm must equal { y0 }. Having defined yi, let yi+1 := yi +2. Then
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for y sufficiently large and any m, we have that in Gr+ǫ, the maximal number of

realization of Ψ2m is ⌊2my⌋.

For m, k ∈ ω we note that ⌊2my⌋ = k on the interval [2−mk, 2−m(k+1)].Therefore

⌊2my⌋ is even on the interval (k2−m, (k+1)2−m) exactly when k is even. Thus ⌊2my⌋

is even on Im exactly when η(m) = 0. Furthermore, this remains true in the inter-

vals 2l + Im. Since ⌊2my⌋ eventually represents the number of realizations of Ψ2m ,

we have that Gr+ǫ eventually models σm exactly when η(m) = 0, for y defined as

before.

We let xi = r+ǫi, where yi = 1
ǫi e(B/A)

and let U be any non-principal ultrafilter,

we then have that
∏

U Gxi
|= σm for every m. Since we have uncountably many

choices for η, and since each such ultraproduct models Σ, we have that the latter

has uncountably many completions.

2.3 General Ultraproducts

In previous sections we analyzed ultraproducts
∏

U Mαn
for U non-principal

and {αn } converging to r, bounded either above or below by r. In this section

we work with arbitrary sequences and ultraproducts, and show that no new cases

are introduced for the resulting model theory. The basic point is that given any

sequence {αn } on an interval and any ultrafilter U , up to elementary equivalence

the ultraproduct
∏

U Mαn
looks like an ultraproduct taken over a sequence which is

monotonic or constant.

We begin with the following:
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Notation 2.3.1. Let U be an ultrafilter on ω, let A be in U . Fix a sequence { an :

n ∈ ω }

1. UA will denote the set of subsets of A which are in U .

2. { an }
A will denote the subsequence { an : n ∈ A }

Remark 2.3.2. Note that for any A ⊆ ω, we have A ∈ U if and only if A ∩ B ∈ U

for every B ∈ U : If A ∈ U and B ∈ U , then A ∩ B ∈ U since ultrafilters are closed

under finite intersections. On the other hand, if A ∩ B ∈ U for every B ∈ U , then

A ∈ U since B = ω is an element of U .

There is a sense in which an ultrafilter will choose a unique limit in the current

context:

Lemma 2.3.3. Let I be the interval [b, c], let m ∈ ω and let { an } be a sequence on

I and let U be an ultrafilter. Let p0 = b, and for i ≤ 2m let pi = b + i( c−b
2m ). Then

one of the following two statements holds:

• There is some i ≤ 2m and some A ∈ U so that { an }
A is constantly pi

• There is some i < 2m and some A ∈ U so that { an }
A is contained in [pi, pi+1]

Proof. For i < 2m let Ii denote the open interval (pi, pi+1). Let Ci := {n : an ∈ Ii }

and let Di := {n : an = pi }. Then the Ci and Di form a finite partition of ω, so

that exactly one of them is an element of U .

Corollary 2.3.4. There is a unique α ∈ I so that for every A ∈ U , α is an

accumulation point for { an }
A. Furthermore, for Mαn

chosen arbitrarily, there is
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some subsequence { bn } of { an } for which
∏

U Man
≡

∏

U Mbn
and { bn } converges

monotonically to α.

Proof. If there is some m ∈ ω such that for some A ∈ U we have { an }
A is constantly

pi for one of the pi associated with m, then let α = pi and let the sequence be the

constant sequence on pi.

Otherwise, for each m let choose an interval Cm and an Am ∈ U as in the

second clause of the conclusion of the last lemma. Let rm denote the right endpoint

of this interval, then { rm } is a Cauchy sequence and must converge to some α ∈ I.

Letting Bǫ(α) denote the ǫ-ball around α, we note that if there is some B ∈ U and

ǫ > 0 so that { an }
B is disjoint from Bǫ(α), then choosing m so that 2−m < ǫ

2
gives

Cm ⊆ Bǫ(α) and B ∩ Am = ∅, a contradiction.

We partition ω with the three sets Pl := {n : an < α }, Pc := {n : an = α },

and Pr := {n : an > α }. Exactly one of these sets, call it P , is in U . If P = Pc we’re

done as before, otherwise enumerate Th(
∏

U Man
) as {σi : i ∈ ω }. Then for each i,

let Qi be the intersection of {n : Man
|= σi } with P . By ÃLoś, Qi ∈ U . For any i,

define Ri to be Ai ∩Qi, an element of U . Then Ri will define a set of indices so that

for n ∈ Ri, |an − α| < 2−i and Man
|= σi. Also, for i ∈ ω, let Di = R1 ∩ . . . ∩ Ri,

so that Di defines a set of indices n so that n ∈ Di implies that |an − α| < 2−i and

for every m ≤ n, Man
|= σm. Choose b1 to be any element of D1. If bn has been

defined, let m be the least number for which bn 6∈ Dm, and pick bn+1 to an arbitrary

element of Dm. Then { bn } clearly converges monotonically to α. Note that for

any i, bn ∈ Qi for n ≥ i. Thus cofinitely many Mbn
|= σi, which shows that any
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ultraproduct of the Mbn
over an ultrafilter is elementarily equivalent to

∏

U Man
,

since ∪i{σi } is complete.

Notation 2.3.5. The point α in the above theorem will be denoted by { an }
U

Theorem 2.3.6. Let {αn : n ∈ ω } be any sequence in (0, 1). Let Mαn
|= Σαn

. Let

U be any ultrafilter on ω. Then the following are equivalent:

1.
∏

U Mαn
has a decidable theory.

2. There is some { bn } a monotonically increasing subsequence of {αn } converg-

ing on r such that
∏

U Mαn
≡

∏

U ′ Mbn

3. Th(
∏

U Mαn
) is the theory of the (Kr,≤r)-generic.

Proof. Choose { bn } and α from Corollary 2.3.4 so that { bn } converges monotoni-

cally to α and
∏

U Mαn
≡

∏

U Mbn
. Then by the results of the previous section, if

{ bn } is not strictly increasing the resulting theory is an extension of Σr, which is

undecidable. The equivalence of the three conditions is now immediate.
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Chapter 3

Tirthikas 1

So far, we have focused on rationals in (0, 1). This chapter will examine the

behaviour of S4r
for other rational values of r. The case r = 0 is familiar:

Remark 3.0.7. The (K+

0 ,40)-generic is precisely the Rado graph. Indeed, I claim

that for any A ( B, δβ(B/A) > 0 for some β > 0. If e(B) = e(A) then this is

obvious, otherwise to ensure that |B − A| − β(e(B) − e(A)) > 0, we can choose

any β < |B−A|
e(B)−e(A)

, since the right hand side is always positive. Since there are only

finitely many subgraphs between A and B, it follows that A 40 B (choose β to be

the minimum of the βs that work for each subset.) Thus the amalgamation class is

simply the set of finite graphs and 40 is simply substructure, so that the limit gives

the random graph.

Intuitively, we can think of (K+

0 ,40) as trivializing the notion of 4 in that it

reduces to ⊆. At the other extreme, for r ≥ 1, the relation A 4r B is trivialized in

a different way - it expresses that A and B \ A are in different components:

Lemma 3.0.8. For r ≥ 1 and A,B ∈ K+
r , we have that A 4r B if and only if

e(B,A) = ∅

Proof. Suppose e(B,A) = ∅. Then for X ⊆ B \ A, we have δr(X/A) = |X| −

1In Buddhist philosophy, a tirthika is someone with extreme beliefs. In this section, we examine

structures with extreme beliefs about the meaning of ∅ ≤ A and A ≤ B.
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re(X,A) = |X| which is positive for non-empty X. If e(B,A) 6= ∅ choose b ∈ B

with an edge to some vertex in A. Then δr(Ab/A) = 1 − re(b, A) ≤ 0, which shows

that A 64r B

Corollary 3.0.9. For r ≥ 1 and M |= S4r
, for any A ⊆ω M , clM(A) = clmM(A)

(for m ≥ 1) and both are given by the union of the connected components of M

containing a non-trivial subset of A.

Proof. Let A0 be a connected subset of A; we show that it’s closure is the connected

component of M containing A0, which we denote by A1. Choose b ∈ A1 and let n

denote the length of the shortest path from b to some element of A. If n = 0 we

have b ∈ A0 ⊆ cl(A0). If n = 1, we have by the above lemma that A0 64r A0b, so

that b ∈ cl(A0). Inducting on n, we get A1 ⊆ cl(A0). The previous lemma give us

that A1 4r M if A1 is finite. For infinite A1, choose finite X ⊆ A1 and finite Y such

that (X,Y ) is a minimal pair. We have that e(Y,X) 6= ∅, so that some vertex in

Y \ X is in A1. An induction on |Y \ X| shows that Y ⊆ A1.

Proposition 3.0.10. For r ≥ 1, let {Ai : i ∈ ω } enumerate the connected elements

of K+
r . Then the (K+

r ,4r)-generic is equal to
⊕

i∈ω ⊕j<ωAi.

Proof. Let G =
⊕

i∈ω ⊕j<ωAi. It suffices to show that G satisfies the properties of a

generic. It is clearly countable with age contained in K+
r . We show that if A 4r G

and A 4r B, then there is a strong embedding of B into G over A, for A,B ∈ K+
r .

Since A 4r B, we have e(A,B) = 0, and B \ A is an element of K+
r since

B is. Each connected component of B \ A must embed strongly into G (i.e., as a

connected component), hence B \ A does as well.
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Remark 3.0.11. It is worth noting that no cycles can appear in any of the generics:

since an n-cycle has n vertices and n edges, it’s pre-dimension with respect to δr for

r ≥ 1 will be non-positive.

The remainder of this chapter will be devoted to an analysis of the cases that

r > 1 and r = 1

3.1 Behavior for r > 1

For 1 ≤ r < 2, the (K+
r ,4r)-generic will be a countable forest of finite trees,

while for r ≥ 2 the generics becomes simply a countable collection of isolated points.

Lemma 3.1.1. For r > 1, the connected elements of K+
r are finite trees with fewer

than r
r−1

elements. In particular, for r ≥ 2, the only connected element of K+
r is a

singleton.

Proof. A tree A with n vertices will have n−1 edges, and thus δr(A) = n−r(n−1) =

n(1−r)+r. This will be strictly positive when n < r
r−1

. Since n(1−r)+r is clearly

strictly decreasing in n, we have that any tree satisfying δr(A) > 0 will be in K+
r

and that these are precisely the connected components of K+
r

Proposition 3.1.2. For r > 1, S4r
is complete and the (K+

r , r)-generic is ω-

categorical.

Proof. I claim that any model of S4r
has finite closures. If not, then there is some

M |= S4r
and a ∈ M which is contained in an infinite connected component. This

contradicts that Age(M) = K+
r . It is clear that for A 4r B, any embedding of B

into M over A will be strong. It follows that M is the generic.

48



3.2 Behavior for r = 1

To analyze the model-theory of (K+

1 ,41)-generic, we first recall that each com-

ponent consists of cycle-free graphs (i.e. trees without a named root) and introduce

some ancillary definitions. Throughout, M will denote a monster model of the

theory of the (K+

1 ,41)-generic.

Definition 3.2.1.

• For A ⊆ M, comp(A) is the set of connected components of elements of A.

• For a, b in the same component, path(a, b) denotes the shortest path from a

to b. Because M is cycle-free, this is uniquely defined.

• For a, b as before, dist(a, b) represents the length of path(a, b).

We want to analyze dividing in M and show that the theory of the generic is

simple. The crux of the argument is to understand the action of the automorphism

group of M, the main case of which will involve automorphisms in a fixed component.

Definition 3.2.2. For a, b, c in the same component:

• ∆c is the tree which consists of comp(c) with c as the root.

• ∆a
c is the maximal subtree of ∆c which is rooted at a child of c (i.e. vertex of

distance 1) and contains a. The root of this tree will be denoted as root(∆a
c).

• For any set of vertices { bi : i < N } (N > 1) in the same component as c,

define meetc(b0, . . . , bN−1) to be the element of ∆c which is a common ancestor
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of every element of { bi } and has the maximal distance from c among such

common ancestors. Note that for tuples ā, b̄ with comp(ā) = comp(b̄) =

comp(c), we have that meetc(ā, b̄) = meetc(meetc(ā), meetc(b̄)).

• For { bi } as above, ∆
b0,...,bN−1
c is the subtree of ∆c which is rooted at meetc(b0, . . . , bN−1).

Dividing over the empty set is easily characterized:

Lemma 3.2.3. For ā, b̄ ⊆ω M, ā |⌣ b̄ if and only if comp(ā) ∩ comp(b̄) = ∅

Proof. Suppose that there are a ∈ ā, b ∈ b̄ so that comp(a) = comp(b). Let φ(x, b)

state that dist(x, b) = dist(a, b), and let { bi : i ∈ ω } be of tp(b) with each bi in a

different component. Then { bi } witnesses that φ 2-divides. Define a sequence { b̄i }

by letting b̄i be the image of b̄ under an automorphism b 7→ bi. Then, if b is the kth

element of b̄, letting ψ(x̄, b̄) be φ(x̄(k), b) (where x̄(k) denotes the kth element of x̄),

we have that { b̄i } witnesses the dividing of ψ over ∅

If comp(ā) ∩ comp(b̄) = ∅, then for any { b̄i : i ∈ ω } of tp(b̄), there is some

infinite I so that { bi : i ∈ ω } are all in different components or all in the same

component. Without loss, we may assume that I = ω. In the first case, we can

choose automorphisms b̄ 7→ b̄i which fix ā, so that tp(ā/b̄) does not divide over ∅. In

the second case, we apply saturation to choose ā′ of tp(ā) in a different component

than every b̄i; this allows a choice of automorphisms b̄ 7→ b̄i which fix ā′, so that

ā′ |= ∪i∈ω,φ(x̄,b̄)∈tp(ā/b̄)φ(x̄, b̄i) and tp(ā/b̄) does not divide.

Characterizing dividing over a non-empty base will rest on the following lemma:
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Lemma 3.2.4. Fix σ : x̄ 7→ ȳ an automorphism over c, and let z := meetc(x̄ȳ), zx̄ :=

meetc(x̄), zȳ := meetc(ȳ). Then σ(∆zx̄
z ) ⊆ ∆

zȳ
z .

Further, for any x̄, ȳ with the same type over c, there is some σ ∈ Aut(M/c)

which maps ∆zx̄
z isomorphically onto ∆

zȳ
z and fixes everything else (for z, zx̄, zȳ

defined as above).

Proof. Let z0 be the root of ∆zx̄
z so that ∆zx̄

z = ∆z0 ; similarly let z1 be the root of

∆
zȳ
c . Note that z0 is definable over x̄c, and that it’s image under σ must be z1. Let

k = dist(c, z1) and let φ(x, c) be the formula which says dist(x, c) > k. Note that for

i ∈ 2 we can define ∆zi
z as the set of all w for which the kth element of path(c, w)

is zi and dist(c, w) ≥ dist(c, zi). Thus we must have σ(∆z0) ⊆ ∆z1

For the second statement, we know that for some σ ∈ Aut(M/c), σ : x̄ 7→ ȳ

since M is homogeneous. Letting z0, z1 be as before, a compactness argument shows

that this can be chosen as an isomorphism from ∆z0 to ∆z1 . Let τ be σ on ∆z0 ,

σ−1 on ∆z1 , and the identity everywhere else. Then τ is an automorphism: fixing

a, b, we show that E(a, b) if and only if E(τ(a), τ(b)). If a, b are both outside of

∆z0 ∪∆z1 or both in one subtree, this is clear. If a is outside the sub-trees but b

is in one of them, then E(a, b) implies that a is z (thus fixed by τ) and b is one of

z0, z1, so that τ(b) is the other and E(τ(a), τ(b)) holds.

Lemma 3.2.5. For comp(a) = comp(b) = comp(c), we have a |⌣c
b if and only if

the tree ∆ab
c has finitely many conjugates over c.

Proof. If ∆ab
c has only finitely many conjugates over c, then for { bi : i ∈ ω } elements

of tp(b/c), there is some conjugate ∆′ of ∆ab
c which contains { bi : i ∈ I } for I an
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infinite subset of ω. Let σ be an automorphism over c which maps ∆ab
c to ∆′.

Letting a′ be σ(a), b′ be σ(b) and z = meet(bi : i ∈ ω), Lemma 3.2.4 implies that

there is an automorphism b′ 7→ bi over c which fixes everything outside ∆b′

z . If a′

is in this tree, then we must have that b = meetc a, b, so that all bi = b. In any

case, for every i there is an automorphism b′ 7→ bi which fixes a′. Thus for any

φ(x, bc) ∈ tp(a/bc), |= φ(a′, bic), so that φ does not divide over c

If ∆a,b
c has infinitely many conjugates over c, let { bi : i ∈ ω } be defined by

choosing images of b in pairwise disjoint conjugates of ∆a,b
c . We want φ(x, bc) to

guarantee that any realization is in ∆a,b
c . Let d = dist(c, root(∆a,b

c )) and define

φ(x, bc) as the conjunction of formulae asserting that dist(c, x) = dist(c, a) and that

the dth element of path(c, b) is also the dth element of path(c, x). Then φ 2-divides,

since any realization of φ(x, bic) ∧ φ(x, bjc) would have to be an element of both

disjoint conjugates of ∆a,b
c .

Lemma 3.2.6. Let c̄ be a finite tuple whose elements are in a single component.

Let b̄c be a finite tuple satisfying comp(b̄c) = comp(c̄) and that further there is a

c ∈ c̄ such that c is the closest element of dcl(c̄) to every b ∈ b̄. For { b̄i : i ∈ ω } of

tp(b̄c/c), there exist automorphisms σi : b̄c 7→ b̄i which are over c̄ (hence over dcl(c̄).

Proof. Let z1 = meetc(b̄c), z2 = meetc(b̄i), and z = meetc(z1, z2). By Lemma (3.2.4)

we can choose σi to map ∆z1
z → ∆z2

z over c, . If there is some c′ ∈ dcl(c̄) so that

c′ ∈ ∆z1
z , then for some b ∈ b̄c we either have c′ ∈ path(bc) or b ∈ path(cc′). The

first case contradicts that c is the closest element of dcl(c̄) to b; in the second we

have that b ∈ dcl(c̄) so that c = b. Also every σi must fix b, so that the σi can be
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chosen to map ∆w1
w → ∆w2

w where w1 = meetc(b̄c \ {b}), w2 = meetc(b̄i \ {b}), w =

meetc(w1, w2). If there is some c′′ ∈ ∆w1
w ∩ dcl(c̄) then there is some b′ ∈ b̄c \ { b }

for which b′ ∈ path(b, c′′) or c′′ ∈ path(b, b′). In the first case, b′ ∈ dcl(c̄), so that b′

is the closest element of dcl(c̄) to itself. In the second case, c′′ is the closest element

to b′ of dcl(c̄). Either way, we contradict that b = c is the closest element of dcl(c̄)

to b′. Thus we may choose the σi over c̄.

Lemma 3.2.7. Fix ā, b̄, c̄, and for c ∈ dcl(c̄), let āc, b̄c denote the subset of ā (re-

spectively b̄) which is closer to c than any other element of dcl(c̄). Similarly, let

ā∅, b̄∅ denote the subset of ā (resp. b̄) satisfying comp(ā∅) ∩ comp(c̄) = ∅. Then

ā |⌣ c̄
b̄ if and only for every c ∈ dcl(c̄) ∪ {∅}, āc |⌣c

b̄c.

Proof. First suppose that āc 6 |⌣c
b̄c for some c ∈ dcl(c̄). Choose { b̄i : i ∈ ω } of

tp(b̄c/c) and φ(x̄c, b̄cc) ∈ tp(āc/b̄cc) witnessing the dividing. Using Lemma 3.2.6, let

d̄i := σi(b̄) for σi : b̄c 7→ b̄i over c̄. Letting ψ(x̄, b̄c̄) := φ(x̄c, b̄cc), where x̄c is given

the obvious interpretation, we have that { b̄i } and ψ witness that tp(ā/b̄c̄) divides

over c̄.

For the other direction, let { b̄i } be of tp(b̄/c̄). Then, for each c ∈ c̄, b̄
(c)
i is of

tp(b̄c/c), and we showed that without loss of generality we can find automorphisms

b̄c 7→ b̄
(c)
i which fix some conjugate of āc and also fix dcl(c̄) . Lemma 3.2.4 implies

that for c ∈ dcl c̄, these can be chosen to fix all elements which do not have c as the

closest element of dcl(c̄). Thus composing these maps will map b̄ 7→ b̄i and fix some

conjugate of ā, showing that ā |⌣c
b̄.

Theorem 3.2.8. For any ā, b̄, c̄, ā |⌣ c̄
b̄ if and only if b̄ |⌣ c̄

ā. Thus, T is simple.
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Proof. The previous lemma shows that ā |⌣ c̄
b̄ if and only āc |⌣c

b̄c for every c ∈

dcl(c̄) ∪ {∅ } which happens if and only if a |⌣c
b for c ∈ c̄, a ∈ ā, b ∈ b̄; i.e. if

and only if ∆a,b
c has finitely many conjugates over c. This is clearly a symmetric

condition, so that it implies that b |⌣c
a for all a, b, c and b̄ |⌣ c̄

ā.

Counting types, we can show that T is actually stable (but not ω-stable).

Lemma 3.2.9. For any tree τ with root ρ and depth d, there is a tree T 0 ⊆ ωd

which is elementarily equivalent to τ (where we interpret E(η0, η1) in ωd as holding

exactly when η1 = η0 ∧ k for some k ∈ ω or η0 = η1 ∧ k for such a k).

Proof. Induct on d; the statement is clear if d = 0. Let τ be a tree of depth d + 1

with root ρ and consider the set {µα } of subtrees rooted at children of ρ. By the

inductive hypothesis, each of these is elementarily equivalent to a subtree of ωd, say

mα. For η ∈ ω≤d, let

κ(η) =







|{α : mα = η }| if |{α : mα = η }| < ω

ℵ0 otherwise

. Then define T0 as 0 ∧
∧

η∈ω≤dηκ(η).

Fix k ∈ ω and consider a k-round Ehrenfeucht-Fräıssé game on T and T 0. If

the spoiler plays the root of either structure, the duplicator responds with the root of

the other structure. Otherwise the spoiler plays in some mα or an equivalent subtree

η of ωd. If either have already been chosen from, the duplicator continues with the

strategy established by the inductive hypothesis. Otherwise, the duplicator initiates

play in an un-played copy of the other structure, using the inductive hypothesis.
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There will always be enough copies in either structure to do this by our choice of

κ(η).

Lemma 3.2.10. If T is rooted at ρ of depth ω, let Td denote the maximal subtree

of T rooted at ρ with depth d. Let T 0
d denote an elementarily equivalent tree in ωd

as guaranteed by the previous lemma. Noting that T 0
d ⊆ T 0

d+1, we let T 0 := ∪d<ωT 0
d .

Then T 0 is a tree in ωω which is elementarily equivalent to T .

Proof. Fix k ∈ ω and consider a k-round Ehrenfeucht-Fräıssé game on T and T 0.

If the spoiler picks from level d for d ∈ ω, the duplicator plays by the strategy

witnessing that Td ≡ T 0
d - by elementary equivalence this strategy can be chosen in

a way that is compatible with any previous play.

Noting the any single connected component can be viewed as a tree of depth

at most ω, we immediately get that the theory of the generic is small:

Corollary 3.2.11. There are at most 2ℵ0 1-types over ∅ consistent with the theory

of the (K+

1 ,41)-generic.

This allows to show that the theory of the (K+

1 ,41) is stable. We note that

the ∅-type of any given connected component will be the type of a tree, and hence

will be one of 2ℵ0 possibilities.

Theorem 3.2.12. The theory of the (K+

1 ,41)-generic is 2ℵ0-stable.

Proof. Let M be a model of cardinality of 2ℵ0 ; then M clearly realizes at most 2ℵ0

types. We show that there are 2ℵ0 1-types over M . Let a ∈ M \ M , and consider
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tp(a/M). If comp(a)∩M = ∅, then tp(a/M) is determined by tp(a/∅), and hence

is one of 2ℵ0 possibilities.

If comp(a) ∩ M 6= ∅, define dist(a,M) to be inf{ dist(a,m) : m ∈ M } -

this is clearly well-defined. I claim that there is a unique element m ∈ M sat-

isfying dist(a,M) = dist(a,m). If m 6= m′ satisfy dist(a,m) = dist(a,m′), let

n = meeta(m,m′). Then n is definable over mm′, and is hence an element of M .

This implies that dist(a, n) < dist(a,m), a contradiction.

Let m ∈ M satisfy dist(a,m) = dist(a,M). It is clear that tp(a/M) is deter-

mined by the type of ∆a
m and tp(m/M). Since there are 2ℵ0 possibilities for such

types, we have what we want.

3.3 Summary

In contrast to our results for r ∈ (0, 1), we have:

Theorem 3.3.1. For r ≥ 1, the theory S4r
is complete. In particular, the theory

of the (K+
r ,4r)-generic is decidable.

Proof. For r > 1, we already showed this in Lemma (3.1.2). For r = 1, let M |= S41 .

Then we know that M consists of countably many copies of various trees. Then

Lemma 3.2.10 shows that M is elementarily equivalent to the (K+

1 ,41)-generic.

Thus S41 is complete, and since it is clearly decidable we have what we want.

Corollary 3.3.2. Let {αn : n ∈ ω } be any sequence in [0, 2] and let Mαn
|= Σαn

. Let

U be any ultrafilter on ω. Then exactly one of the following holds of M :=
∏

U Mαn

1. {αn }
U = 0 and M is elementarily equivalent to the Rado graph
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2. {αn }
U = α for irrational α, and M is elementarily equivalent to the Shelah-

Spencer graph of weight α.

3. {αn }
U = r for rational r ∈ (0, 1], M is equivalent to the (Kr,≤r) generic and

has a decidable, ω-stable theory.

4. {αn }
U = r for rational r ∈ (0, 1), M models Σr and has an undecidable

theory.

5. {αn }
U = r for rational r ∈ (1,∞), M is equivalent to the (Kr,≤r) generic

and has a decidable, ω-categorical theory.

6. {αn }
U = 1 , M is equivalent to the (K+

r ,4r) generic and has a decidable,

strictly stable theory.
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Chapter 4

Other Properties

4.1 Connectedness

We show in this section that for α ∈ (0, 1), both the (Kα,≤α)-generic and

the (K+
α,4α) generic are connected. Choose any rational r < α, and let C be

a biminimal 0-extension of a two point graph { a, b }. By biminimality, abC is

connected. Also, for X ⊆ C, δα(X/ab) = |abX| − 2 − αe(X/ab) > |abX| − 2 −

re(X/ab) ≥ 0. Letting G be either the (Kα,≤α)-generic or the (K+
α,4α)-generic,

for any a′, b′ ∈ G, there is a partial isomorphism f : ab 7→ a′b′. By full amalgamation,

f extends to an embedding of C into G over ab, which shows that any two points

in G are in the same component.

Note that this is in stark contrast to the case for r ≥ 1, where there are

infinitely many components.

4.2 Other Models of Sr

We show in this section that for rational r ∈ (0, 1) it is easy to extend certain

countable graphs G to models of Sr. In particular, we will use this to show that the

(K+
r ,4r) generic is not AE axiomatizable, and that Sr 0 Σr.

Throughout, fix a rational r ∈ (0, 1).
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Proposition 4.2.1. Let C be any countable graph with ∅ 4r C and with finite

closures (i.e. for finite A ⊂ C there is a unique finite Ā such that A ⊆ Ā 4r C).

Then C can be extended to a graph M which is (K+
r ,4r)-generic; furthermore, if

A ⊆ C, then clM(A) = clC(A).

Proof. We proceed by a modification of the construction of a generic structure.

Enumerate the class K+

R as {Gi : i ∈ ω} and a decomposition of C as C =
⋃

i Ci

where C0 = ∅ and Ci 4r Ci+1 for every i. Also fix a bijection η : ω × ω → ω. We

will inductively construct a sequence of finite structures M0 ⊆ M1 ⊆ . . . ⊆ Mn with

the following properties:

• Mn 4r Mn+1

• |Mn+1 \ Mn| < ω

• Cn 4r Mn

• If Gi 4r Mn and Gi 4r Hj with η(i, j) < n then Gi extends to a copy of

Hj 4r Mn+1

Begin by setting M0 = C0 = ∅. Given Mn, we show how to construct Mn+1.

We begin by setting D0 = Cn+1 ⊕Cn
Mn. Note that the amalgamation property

gives us Cn+1 4r D0 and Mn 4r D0.

We now enumerate as (A0, B0), . . . , (Am, Bm) all pairs (Ai, Bi) such that Ai 4r

D0, Ai ≃ Gk, Bi ≃ Gl with Gk 4r Gl and η(k, l) < n. For each 0 ≤ i < m let

Di+1 = Di ⊕Ai
Bj, so that Di 4r Di+1. We let Mn+1 = Dm, and it is clear by

induction that Mn 4r Mn+1 and Cn+1 4r Mn+1.
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We show that M = ∪iMn meets the required properties. First note that each

D0 is an amalgamation over some Ci, so that C ⊆ M . It is clear that M has finite

closures - if A ⊆ω M there is some n so that A ⊆ Mn; but each Mn is closed in M .

Consider an embedding f : A →֒ M and A 4r B, again choose n so that f(A) ⊆ Mn.

Then if A ≃ Gi and B ≃ Gj, for m = max(n, η(i, j)) we will have that some Di+1

is the amalgam of Di with B over f(A). Since each such Di 4r M , this copy of B

is strong in M .

Finally, we show that for A ⊆ C, clM(A) = clC(A). Fix such an A, and fix

n ∈ ω minimal such that A ⊆ Cn.

if A ⊆ C, we can choose some n for which A ⊆ Cn. Then A 4r Cn 4r Mn 4r

D0 as shown above; since D0 4r M the result follows.

Lemma 4.2.2. Fix any graph C which satisfies ∅ 4r C. Then for any minimal

pair (A,B) with δr(B/A) = 0 the structure C ′ obtained from C by replacing finitely

many instances of A with instances of B satisfies ∅ 4r C ′. Furthermore, if C has

finite closures then so does C ′.

Proof. Let A1 . . . An be the copies of A which extend to copies of B, so that C ′ =

C ⊕A1 B′ ⊕A2 B′ . . . ⊕An
B′, where B′ = B \ A and we abuse notation and write

A ⊕C B to indicate the free join of A and B over C, without requiring the C 4r A

and C 4r B. Let X be any finite subset of C ′; then X = C0 ⊕B1 ⊕ . . .⊕Bn, where

C0 ⊂ω C, and Bi ⊂ Ai ⊕ B′. Then δr(X) = δr(C0) +
∑

1≤i≤n δr(Bi). If C0 6= ∅,

then δr(C0) > 0. Since each Bi 4r B and ∅ 4r B, we have δ(Bi) > 0 as desired.
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We also show that X has a finite closure. Let X ′ = clC(C0). Then I claim that

Y = X ′ ∪ ⊕i<n,Ai
B′ 4r C ′. Let X ′ ⊆ Z ⊆ω C ′ - then Z = C1 ∪ ⊕B for some finite

C1 ⊆ C. Then δ(Z/Y ) = δ(C1/X
′) +

∑
δ(B/B) = δ(C1/X

′) > 0 since X ′ 4r C.

From this, we easily get:

Theorem 4.2.3. The theory of the (K+
r ,4r)-generic is not AE-axiomatizable.

Proof. We fix a (K+
r ,4r)-minimal pair (A,B) with δ(B/A) = 0 and a bijection

η : ω×ω → ω. Let M0 denote any generic structure and enumerate as {A0,i : i ∈ ω}

all distinct instances of A that occur in M0. For any Mn, we define M ′
n by replacing

each Ai,j with a copy of B for η(i, j) < n. We then let Mn+1 be a generic structure

containing M ′
n as above. Since each Mn is generic, they all have the same theory.

In particular, for every n, Mn |= ¬[∀x̄∆A(x̄) → ∃ȳ∆B(x̄ȳ)]. However, if we let

M = ∪nMn then M |= ∀x̄∆A(x̄) → ∃ȳ∆B(x̄ȳ). Therefore M has a different theory

from the theory of the generic, showing that the latter theory does not have models

closed under unions of chains.

Noting that M constructed in the proof of the previous theorem satisfies Sr

but is not semi-generic (since ∅ 4r A but for m > |B \ A|, no embedding A′ of A

into M will satisfy the required condition since B 6⊆ clm(∅) but B ⊆ clm(A′))
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4.3 Direct Limits

We will show in this section that for rational r ∈ (0, 1), we can obtain the

(K,4r)-generic as a direct limit of a sequence of graphs Mαn
with αn converging

down to r.

We begin by noting that the irrational generics are totally ordered under strong

embedding:

Lemma 4.3.1. Let α < β be irrational in (0, 1). Then Mβ →֒ Mα, and the image

of the embedding is ≤α strong. Furthermore, for f0 : ā 7→ b̄ a partial isomorphism

of closed sets (ā ≤β Mβ, b̄ ≤α Mα), the embedding can be taken over f0.

Proof. Write Mβ =
⋃

i Ci with Ci ≤β Ci+1 and C0 = ā (if f0 is not specified, let

C0 = ∅). We will show by induction on i that Ci embeds strongly into Mα via some

fi. If fi−1 has been defined, we have im(fi−1) ≤α Mα, so by genericity fi−1 extends

to a strong embedding of Ci into Mα over Ci−1. Our embedding will be f =
⋃

i fi.

We show that f is strong. Suppose (X,Y ) is a minimal pair in Mα with

X ⊆ im f . Then choose n so that X ⊆ im fn: because fn is a strong embedding, we

must have Y ⊆ im fn.

Given a sequence {αn} of irrationals which montonically converge down to a

rational r, we can then define a limiting structure as follows. We essentially want

Nα to look like a union of all the structures Gαn
. The technical obstacle to writing

this is that while each generic embeds in the next, that next one won’t necessarily

be contained in the succeeding generic; there is no obvious way of of taking a union

of embeddings. We get the same idea via compactness.
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Consider a language L′ which adds a countable set of new constants indexed

by ω×ω - C := { c(i,j) : i, j ∈ ω }. For each n ∈ ω, let { am : m ∈ ω } enumerate the

elements of Gαn
, fix an embedding fn : Gαn

→֒ Gαn+1 , and define ∆n inductively as

follows. For n = 0, fix an enumeration { ai : i ∈ ω } of Gα0 and let ∆0 be the set of

sentences {R(c(0,i), c(0,j)) : Gα0 |= R(ai, aj) } ∪ {¬R(x(0,i), x(0,j)) : Gα0 |= ¬R(ai, aj).

Having defined ∆n, we fix an enumeration of Gαn+1 as { a(m,i) : m ≤ n + 1, i < ω }

so that im(fn) = { a(m,i) : m ≤ n+1, i < ω }. Letting ∆n+1 be {R(c(n+1,i), c(n+1,j)) :

Gαn+1 |= R(a(n+1,i), a(n+1,j)) } ∪ {¬R(c(n+1,i), c(n+1,j)) : Gα0 |= ¬R(a(n+1,i), a(n+1,j)),

it is clear that T := ∪n∆n is consistent - let Nr |= T .

We will frequently abuse notation and conflate Mαn
with it’s image in Nr. We

first note that the resulting structure does not depend on the sequence used:

Lemma 4.3.2. Let {αn : n ∈ ω } and { βn : n ∈ ω } be sequences which converge

monotonically down to r. Let N0
r and N1

r denote the respective limits. Then N0
r ≃

N1
r

Proof. We construct a back-and-forth system of partial isomorphisms { fi : i ∈ ω }

such that:

• f0 : ∅ → ∅

• For every i, fi : ā → b̄ and there is an mi so that ā ≤αmi
Mαmi

and b̄ ≤βmi
Mβmi

• If f = ∪ifi, then f is an isomorphism from N0
r to N1

r .

Suppose that fi : ā → b̄ has been defined and the i is even. Choose any

a ∈ N0
r \ ā, and choose m so that āa ⊆ Mαm

and choose mi+1 so that αmi+1
< βm
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and b̄ ⊆ Mβmi
. Let A = clMαmi

, then ā ≤αmi
Mαmi

implies that ā ≤αmi+1
Mαmi

, so

that ā ≤αmi+1
A, and the latter embeds strongly into Mβmi+1

over b̄ as desired.

The case for i odd is handled in exactly the same manner, except that the

closure of B in the appropriate generic is taken.

Lemma 4.3.3. The following hold of Nr:

1. Age(Nr) = {A : δr(A
′) > 0 for A′ ⊆ A } = K+

r

2. Nr has finite closures with respect to 4r.

Proof. Let A ⊆ω Nr; then there is some n some that A ⊆ Mαn
. Therefore δαn

(A′) ≥

0 for all A′ ⊆ A, so that δr(A
′) > 0 for such A′. Conversely, if some finite A satisfies

δr(A
′) > 0 for every A′ ⊆ A, then there is some β > α so that δβ(A′) ≥ 0 for such

A′. Therefore A will be in the age of Mαn
for all αn < β, so that A will be in the

age of Nr.

For finite closures, let A ⊆ Mαn
as before. Then A is contained in a finite

closed set in Mαn
; since Mαn

4r Nr, we have clMαn
(A) 4r Nr.

Remark 4.3.4. We note that although Mαn
≤αn+1 Mαn+1 , it is not the case that

Mαn
≤αn

Mαn+1 . Choose any A0 ∈ Kα0 closed in Mα0 and for each n ∈ ω define An

as follows. Choose qn rational in (αn+1, αn), and let Xn be a minimal 0-extension

of An with respect to qn. Then δαn
(Xn/An) < 0, while by minimality we have that

A ≤αn+1 Xn. Letting An+1 = AnXn, we have that An ≤αn+1 An+1 but An 6≤αn
An+1.

Thus, An+1 embeds strongly into Mαn+1 over An (but not in Mαn
since An is closed

in Mαn
), and An 6≤αn

An+1.
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The following lemma will imply that Nr is the (K+
r ,4r)-generic.

Lemma 4.3.5.

1. For any A ⊆ω Mαn
and m > n, clMαm

(A) ⊆ clMαn
(A)

2. For any A ⊆ω Mαn
, clNr

(A) ⊆ clMαn
(A)

3. For A ⊆ω Nr, there is some n so that clNr
(A) = clMan

(A)

Proof. For 1, we note that clGαn
(A) ≤αn

Mαn
implies that clGαn

(A) ≤αm
Mαn

. Since

Mαn
≤αm

Mαm
, we have that clGαn

(A) is ≤αm
-closed in Mαm

; thus clGαm
(A) must

be contained in it.

The exact same argument, replacing Mαm
with Nr and ≤αm

with 4r gives 2.

For 3, we note that by 1 the sequence { clMαn
(A) : n ∈ ω } is a descending

sequence of finite structures and must thus eventually be constant.

Corollary 4.3.6. Nr is isomorphic to the (K+
r ,4r)-generic

Proof. We know from Lemma 4.3.3 that that Nr has the age of the generic, and

has finite closures. It thus suffices to show that for any A 4r Nr, if A 4r B then

B embeds 4r-strongly into Nr over A. Fixing such an A, we have by the previous

lemma that A ≤αn
Mαn

for n sufficiently large. If A 4r B, then for n sufficiently

large, A ≤αn
B. Thus choosing n sufficiently large guarantees that B embeds ≤αn

strongly into Mαn
over A. Since Mαn

4r Nr, this copy of B will also be 4r-strong

in Nr.
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4.4 Independence

There is an intrinsic notion of dimension and independence associated with

generic structures generated by a pre-dimension function. In this section, we will

look at the behavior of this function in the context of (K+
r ,4r)-generics. We will

see that once again, the existence of 0-extensions will complicate the picture.

Fixing a generic model G, for any finite A ⊆ω G we define the dimension of A

by d(A) = δ(cl(A)) = inf{ δ(X) : A ⊆ X ⊆ω G }. This gives rise to a well-defined

notion of independence as follows (see [2, 14]):

Definition 4.4.1. • For A,B closed finite sets, A |⌣
d

A∩B
B if d(A/B) = d(A/A∩

B) and A ∩ B ⊆ cl(A ∩ B)

• For A,B arbitrary finite sets and C any set, A |⌣
d

C
B if d(A/BC) = d(A/B)

and cl(AC) ∩ cl(BC) ⊆ cl(C).

• For A,B,C arbitrary sets, A |⌣
d

C
B if A′ |⌣

d

C
B′ for every A′ ⊆ω A,B′ ⊆ω B.

For (K,≤r), we know that for closed A,B we have A |⌣
d

A∩B
B if and only if

AB = A ⊕A∩B B and AB is closed [2]. We get one and a half directions of this

equivalence for (K+
r ,4r):

Lemma 4.4.2. Let A,B be finite closed subsets of the (K+
r ,4r)-generic. If A |⌣

d

A∩B
B,

then AB = A ⊕A∩B B. If AB = A ⊕A∩B B and AB is closed, then A |⌣
d

A∩B
B.

Proof. If A |⌣
d

A∩B
B, we have d(AB/B) = d(A/B) = d(A/A ∩ B) = δ(A) − δ(A ∩

B) = δ(A/A ∩ B). If there is some a ∈ A \ B and b ∈ B \ A which are joined by
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an edge, then δ(AB/B) ≤ δ(A/A ∩ B) − r, so that δ(A/A ∩ B) ≥ δ(AB/B) + r ≥

d(AB/B) + r, contradicting that A 6 |⌣A∩B
B.

If AB = A ⊕A∩B B and AB is closed, then d(AB) = δ(AB) and d(A/B) =

δ(AB/B) = δ(A/A ∩ B) = d(A/A ∩ B) as desired.

Remark 4.4.3. Note that the (K+
r ,4r) generics will not in general satisfy that AB

is closed when A |⌣
d

A∩B
B. For r < 1, choose A0, B0 with A0 ∩B0 4r A0 ⊕A0∩B0 B0.

Choose C to be a bi-minimal 0-extension of A0B0, then C embeds strongly into the

generic, denote the respective images of A0, B0 by A,B. Then it is clear that AB

is not strong in the generic, since the image of C ensures a non-trivial closure. I

claim that A and B are strong in the generic, however. It suffices to show that

A 4r C - the argument for B is the same. For A ⊆ X ⊆ C, we have that δr(X/A) =

δr(X/X ∩ AB)+ δr(X ∩ AB/A). Then the former term is at least 0 by choice of C,

while the latter term is greater than 0 since A 4r AB.

On the other hand, for r ≥ 1 being closed means being connected, and we will

have AB closed whenever A |⌣
d

A∩B
B.

Finally, we note that for r = 1, |⌣
d-independence is coarser than forking-

independence. This again contrasts with the situation for the Shelah-Spencer graphs,

in which the two independence notions coincide [2].

Lemma 4.4.4. For r = 1, we have:

a) For any A ⊆ M, cl(A) is the union of the components of M which intersect

A.

b) For finite A ⊆ M, d(A) is the number of components of cl(A).
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c) The pseudo-geometry (M, cl) is trivial - i.e. for any A ⊆ M, cl(A) =
⋃

a∈A cl({ a }).

Proof. a) Consider a ∈ A, and let b be any element of the component of M con-

taining a. Then there is a finite path from a to b; this verices in this path give an

extension of non-positive pre-dimension, so that we must have b ∈ cl(a) ⊆ cl(A).

Conversely, let A′ be the union of the components of elements in A; we want to

show that A′ is closed. For finite X ⊆ A′, suppose that (X,Y ) is a minimal pair.

Then Y must be singleton and with at least one edge from Y to some vertex in

X. Therefore Y is in A′ as desired. b) We first note that for any finite A0 ⊆ M,

δr(A0) is r times the number of components of A0. To see this observe that a fixed

component of A0 cannot have any cycles since r = 1. Such a component must then

be a tree, which can be viewed as a 0-extension of it’s root, so that each component

has pre-dimension 1.

Let C1 . . . Cl be the distinct components of cl(A), and let Ai := Ci ∩ A. Note

that if Ai has two components X0, X1 then then there is some finite X ′ containing

X0∪X1 which is connected and contained in Ci. Let Xi be a finite graph connected

all the components of Ai, and let X = ∪Xi. Then δ(X) = l, so that we must have

d(A) ≤ l. It is clear from a) that any finite graph containing A must have at least l

components, so that d(A) = l

c) For any A, cl(A) =
⋃

Ci where the Ci enumerate the components that have

an element of A in them.

In [2], Baldwin and Shi ask whether or not finitely based theories without

finite closures exist. We answer in the affirmative:
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Lemma 4.4.5. The class (K+

1 ,41) is finitely based. That is, for every a ∈ M and

B ⊆ M, there is a finite C ⊆ B so that a |⌣
d

C
B.

Proof. Let C consist of a single representative of every component in A ∩ B. Then

we have to show that for finite B0 ⊆ B, d(A/B0C) = d(A/C) and AB0 ∩ AC ⊆ C̄.

Both of these are immediate from the previous lemma

4.5 Quantifier Elimination

In this section, we prove the following.

Theorem 4.5.1. For r rational in (0, 1], there is no k ∈ ω so that the theory of the

(K+
r ,4r) generic eliminates quantifiers to the level of Σk formulae.

We will show this by providing explicit counterexamples. In particular, for a

fixed k we will find two complete types p0 and p1 which will be consistent with T ,

the theory of the generic. These will differ on a Σk+1 formula but will be the same

when restricted to Σk formulae. We will construct the pi as complete types of a

certain graph - each type will say that this graph is embedded in a larger graph

which will witness the equivalence up to Σk formula and inequivalence on a Σk+1

formula.

We fix k for the remainder of this section.

We first define the graphs B1 . . . BN which will form the components of our

larger graphs. The crucial property of these is that for any n, Bn can extend to the

following distinctly:

• A copy of Bn−1 that itself extends to Bn−2
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• A copy of Bn−1 that omits Bn−2

Definition 4.5.2. Fix any N ∈ ω. For n < N , we define Bn as follows:

• We choose BN to be any graph in K+
r .

• Let AN be a 0-extension of BN

• Let BN−1 and AN−1 be disjoint (over AN) 0-extensions of AN with distinct

diagrams. We can ensure by defining BN−1, letting A′
N be the free join of of

BN−1 with |BN−1 \AN |+1 isolated vertices; AN will then be defined by using

AEP to get a 0-extension of AN containing A′
N .

• For n > 2, given An−1, we let Bn−2 and An−2 be disjoint (over An−1) 0-

extensions of AN . As above, we can guarantee that they have distinct dia-

grams.

In what follows we fix some odd N > 2k + 1. We will have occasion to speak

of attaching some graph G to some Bn contained in a graph H. This just means

generating the free amalgam G ⊕Bn
H.

Lemma 4.5.3. Let x̄N be a tuple with length |BN |. For n < N , let x̄n be a tuple of

length |Bn \ Bn+1|.

We inductively define the formula γN(x̄1x̄2 . . . x̄N) as follows:

• Let γ1(x̄2 . . . x̄N) denote ∆B2(x̄2 . . . x̄N) ∧ ∃x̄1∆B1(x̄1 . . . x̄N).

• Given γn, define γn+2(x̄n+3, . . . , xN) as ∆Bn+3(x̄n+3 . . . x̄N)∧∃x̄n+2∆Bn+2(x̄n+2 . . . x̄N)∧

¬∃x̄n+1γn(x̄n+1).
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Then γ2k+1 so defined is a Σk formula.

Proof. We proceed by induction on k. For k = 0, it is clear that γ1 is Σ1. Let

n = 2k+1; then changing the negative existential quantifier to a universal quantifier

in γn+2 yields:

∆Bn+3(· · · ) ∧ ∃x̄n+2∆Bn+2(· · · ) ∧ ∀x̄n+1¬γn(· · · )

By induction, γn is Σk, so ¬γn is Πk as is ∀x̄n+1¬γn(· · · ); thus ∃x̄n+2∆Bn+2(· · · )∧

∀x̄n+1¬γn(· · · ) is Σk+1

Definition 4.5.4. For odd n < N , define the graphs Cn, Dn, G0
n and G1

n by the

following recursion:

• C1 and D1 are both the empty graph.

• G0
1 consists of the graph of B2 attached to the graph of B1; while G1

1 consists

of the graph of B2.

• Cn consists of a copy of Bn which extends to ℵ0 copies of Bn−1 attached to

G1
n−2.

• Dn consists of a copy of Bn to which are attached:

– ℵ0 copies of Bn−1 attached to G0
n−2.

– ℵ0 copies of Bn−1 attached to G1
n−2.

• G0
n and G1

n are defined by:
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Figure 4.1: Construction of Gi
3
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Figure 4.2: Construction of Gi
n

73



– G0
n consists of the graph of Bn+1, to which is attached a single copy of

Bn attached to Cn and ℵ0 copies of Bn attached to Dn.

– G1
n consists of the graph of Bn+1 to which are attached ℵ0 copies of Bn

attached to Dn

For any finite m and i ∈ 2, we will denote by Gi
n,m the subgraph which is

obtained by replacing ℵ0 by m in the above construction.

We note that for any n, there is a natural embedding Cn →֒ Dn which is

surjective onto the copies of G1
n−2 in Dn.

Proposition 4.5.5. Let n = 2k + 1 for k ∈ ω. Let b̄ denote the vertices of Bn+1 in

G0
n and G1

n; then G0
n |= γn(b̄) and G1

n |= ¬γn(b̄).

We proceed by induction on k; the case k = 0 is clear. For k > 1, note

that γn(b̄) says that b̄ has the diagram of Bn+1 and extends to a copy of Bn which

extends to a copy of Bn−1 which does not extend to any model of γn−2. By induction,

G1
n−2 |= ¬γn−2, so Cn witnesses that G0

n |= γn. Also, ¬γn says that every copy of

Bn extends to some Bn−1 which does admit a realization of γn−2. Since every Bn

is attached to Dn, and each Dn has an extension to G0
n−2, the inductive hypothesis

shows that G1
n |= ¬γn.

We finish showing that these are the graphs we want in the next lemma.

Notation 4.5.6. For two structures A,B of the same signatures, we say A ≈l
k B if

the duplicator has a winning strategy for the l-round Ehrenfeucht-Fraisse game where

the spoiler is only allowed to change structures k times. Any omitted parameter will

be assumed to be |A|.
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If gclA(·) and gclB(·) are closure operators on A,B respectively, then we will

say that A ≈l
k B preserving closures if the partial isomorphism f constructed by

the duplicator at any stage can be taken to satisfy gclA(dom(f)) = dom(f) and

gclB(rng(f)) = rng(f). We will omit reference to the specific closure operators if

they clear.

Lemma 4.5.7. If gcl(·) refers to the natural closure for (Kr,≤r), then G0
2k+1 ≈k−1

G1
2k+1 preserving gcl

Proof. We play a modified Ehrenfeucht-Fräıssé game in which the spoiler can alter-

nate structures at most k − 1 times - we must show that the duplicator always has

a winning strategy in this case. When k = 1, we must show that G0
3 and G1

3 have

the same existential diagram. Note that the difference between them is that in G0
3,

B4 has an extension to B3 which only extends to copies of G1
1; whereas in G1

3 all

copies of B3 extend to both G1
1 and G0

1. In either case, the possible extensions are

the same.

To ease notation, let n = 2k + 1; we will construct a partial isomorphism

σ : G0
n → G1

n between 0-trees that the duplicator will use as her strategy. We begin

with the case in which the spoiler picks G0
n first.

Start by setting σ : Bn+1 7→ Bn+1. For any play of the spoiler’s in an “unused”

copy of Dn in G0
n, the duplicator chooses an unused copy of Dn in G1

n and extends

σ by mapping the first copy to the second.

When a play is made in Cn, we pick an unused copy D′ of Dn in G1
n and extend

σ by the natural embedding Cn →֒ D′. We then further extend σ by mapping all
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unused copies of Dn in G0
n onto all unused copies of Dn in G1

n. When this is done,

we have an isomorphism (G0
n \Cn) 7→ (G1

n \D′). The spoiler must now show that Cn

and D′ are different. As long as he plays from Cn, he must pick some copy of G1
n−2

to play from - these can be answered with the copies of G1
n−2 in D′. His only hope

then is to switch structures and choose from copies of G0
n−2 in D′. However, he now

has only k − 2 alternations left, and by the inductive hypothesis the duplicator has

a strategy by playing from new copies of G1
n−2.

If the spoiler starts by playing from G1
n, fix an embedding τ : G1

n →֒ G0
n and let

the duplicator play according to τ . The spoiler will have to switch structures; but

now he has k−2 alternations to show that G0
n \ rng(τ) is different from G1

n \dom(τ).

Since these are respectively isomorphic to G0
n and G1

n, we are reduced to the previous

case.

For the remainder of this section, we fix n = 2k + 1 and denote G0
n and G1

n

simply by G0 and G1. We want to use these graphs to show that T does not eliminate

quantifiers to the level of Σk formulae. There are two approaches we can take here.

The first is to use the following lemma.

Lemma 4.5.8. For i ∈ 2 and m ∈ ω, Gi
m ≈m Gi, preserving closures.

Proof. We build a strategy that plays a copy of some Bk at a time. Here are the

possibilities:

• If the spoiler plays an element of some unplayed Bk in Gi
m, then let l be the

maximal such that Bk is an extension of a copy of Bl that is already part of the
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strategy. Extend whatever embedding of Bl into Gi is given to an embedding

of Bk into Gi. If there already is such an extension defined, extend to a new

embedding - this can be done since there are infinitely many extensions of Bl

to Bk in Gi.

• If the spoiler plays an element of some unplayed Bk in Gi, then let l be the

maximal such that Bk is an extension of a copy of Bl that is already part of the

strategy. Extend whatever embedding of Bl into Gi is given to an embedding

of Bk into Gi. If there already is such an extension defined, extend to a new

embedding - this can be done since there are m extensions in Gi
m.

At this point, we have enough to prove our main theorem. For a fixed m,

we embed each Gi
m as a closed substructure of a generic Mi. Then we will have

(M0, BN) ≈m
k−1 (M1, BN) and we let p0 = tpM0

(BN) and p1 = tpM1
(BN).

We also develop another approach which involves working with the entirety of

the graphs in a suitable model of T . This gives rise to the following:

Definition 4.5.9. Let M be a graph with distinguished subgraph G 4r M ; let

gclG(·) be a closure operator on G. For finite A ⊆ M , We define the pseudo-closure

(relative to G, gclG) as follows:

• Let AM = cl(A) \ G

• Let AG be the minimal C satisfying:

– A ∩ G ⊆ C ⊆ G
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– For all finite X ⊆ M containing AMC with X ∩ G = C, AMC 4r X

– gclG(C) = C

• Let pcl(A) = AMAG.

For any N ⊆ M with A ⊆ N , we define the relative pseudo-closure pclN(A)

similarly:

• Let AN = clN(A) \ G

• Let AH be the minimal C satisfying:

– A ∩ G ⊆ C ⊆ G ∩ N

– For all finite X ⊆ N containing ANC with X ∩ G = C, ANC 4r X

– gclG(C) = C

• Let pclN(A) = ANAH .

In what follows, we will take gclG to be the closure in G with respect to

(Kr,≤r).

We will write A ≤p M to indicate that A = pcl(A) and similarly for A ≤p N .

Given this, we will say that (M,G) is (K+
r ,4r) pseudo-generic if:

1. For every finite A ⊆ M , A ∈ K

2. For every finite A ⊆ M , if A ≤p M and A 4r B′, then there is an extension

of A in M to B, a copy of B′ satisfying B ≤p M .

3. For every finite A ⊆ M , pcl(A) exists and is finite (we will say that M has

finite pseudo-closures). The pseudo-closure is here taken with respect to G
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Remark 4.5.10. Fix a finite A ⊆ M , with M pseudo generic. Then A ≤p M iff

AM = A \ G,AG = A ∩ G. Also, for N ⊆ M , we have A ≤p M iff AN = clN(A) \ G

and AH = A ∩ (G ∩ N).

Proof. Suppose A = pcl(A) = AMAG. By definition, AM is disjoint from G and AG

is contained in G; therefore A \ G = AMAG \ G = AM \ G = cl(A) \ G = AM and

AG = AMAG ∩ G.

Suppose AM = A \ G and AG = A ∩ G. Then AMAG = (A \ G)(A ∩ G) = A.

For the relativised version, we note that as above AN is disjoint from G ∩ N

and that AH is contained in G ∩ N , so the same argument works.

Remark 4.5.11. If A ≤p M and A ⊆ N ≤p M , then A ≤p N

Proof. It suffices to show that AN = A\(G∩N) and AH = A∩G∩N . By definition,

AN = clN(A) \ G. Since A ⊆ clN(A) ⊆ clM(A), we have A \ G ⊆ clN(A) \ G ⊆

clM(A) \ G. Since the outer terms are equal, we have AN = clN(A) \ G as desired.

In fact, we have more strongly that AN = AM

To show that AH = A ∩ G ∩ N , we first note that A ∩ G ∩ N = A ∩ G since

A ⊆ N . Then we want to show that AG = AH . We have AM = AN , so we know

that for any X ⊇ A with X ∩ G = A ∩ G, AMAG 4r X. Then ANAG 4r X; and

since this is the minimal possible AH satisfying AG = A ∩ G ⊆ AH , we must have

AG = AH .

Remark 4.5.12. In a pseudo generic M , given A ≤p M and B = pcl(Am) for m 6∈ G,

we have A 4r B.
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Proof. I claim that BG = AG - given this the definition of pseudo closures and

it’s finiteness will provide what we want. It suffices to show that for any finite

X ⊇ B, BMAG 4r X (since AG ⊆ BG, this will show that AG = BG). We have

that BM = cl(B) \G, so we have that BMG 4r XG by definition of closure. We set

V = (X \ G) ∩ AG - then intersection with V gives BMAG 4r X as desired.

Theorem 4.5.13. Suppose (M0, G0) and (M1, G1) are pseudo-generic structures

and that G0 ≈k G1 in a way that preserves pseudo closures. Then M0 ≈k M1,

preserving pseudo-closures.

Proof. Throughout, we construct a partial isomorphism M0 → M1, which we write

as f : (ḡ0, m̄0) 7→ (ḡ1, m̄1) where the ḡi represent the part of the structure in Gi

and the m̄i represent the rest of the partial isomorphism. We will further require

throughout that dom(f) ≤p M0 and rng(f) ≤p M1. At any stage, if the spoiler

plays from dom(f) or rng(f), the duplicator responds according to f . Otherwise:

• If the spoiler chooses an element of G0 or G1, then the duplicator responds

by extending f in accordance with the pseudo closure preserving strategy

witnessing G0 ≈k G1.

• If the spoiler chooses some m ∈ M0\G0, let C = dom(f) and let C ′ = pcl(Cm).

Then C ≤p M , so by finite pseudo-closures and the previous remark we have

that C 4r C ′. Then by pseudo-genericity, C ′ embeds into M1 as a pcl-closed

extension. We extend f by this embedding.

• If the spoiler chooses m ∈ M1 \ G1, the strategy is the symmetric version of

the previous case.
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We construct the appropriate pseudo-generics:

Theorem 4.5.14. Let G be a countable graph which can be written as G = ∪Gi with

Gi ≤r Gi+1 and G0 = ∅. Then G extends to an M so that (M,G) is pseudo-generic.

Proof. We proceed by a modification of the construction of a generic structure.

Enumerate the class K as {Hi : i ∈ ω} and a decomposition of G as G =
⋃

n Gn

where G0 = ∅, and for every n, Gn ≤r Fn+1 and (Gn, Gn+1) is a ≤r-minimal pair.

We will inductively construct a sequence of finite structures {Mn} with the following

properties:

• Mn ≤r Mn+1

• Cn ≤r Mn

• If A ≤r Mn and A 4r Hj with j < n then A extends to a copy of Hj ⊆ Mn+1

Begin by setting M0 = C0 = ∅. Given Mn, we show how to construct Mn+1.

We begin by setting Dn+1
0 = Cn+1 ⊕Cn

Mn. Note that the amalgamation property

gives us Cn+1 ≤r Dn+1
0 and Mn ≤r Dn+1

0 .

We now enumerate as (A0, B0), . . . , (Am, Bm) all pairs (Ai, Bi) such that Ai ≤r

Dn+1
0 , Ai 4r Bi, and Bi ≃ Hl with l < n. For each 0 4r i < m let Di+1 = Di⊕Ai

Bi,

so that Di 4r Di+1. We let Mn+1 = Dm, and it is clear by induction that Mn ≤r

Mn+1 and Cn+1 ≤r Mn+1.

We let M = ∪Mn and claim that (M,G) is then pseudo generic. We need to

show:
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1. G 4r M

2. Pseudo-closures exist and are finite.

3. If A ≤p M and A 4r B, then there is some B′ isomorphic to B such that

A ⊆ B′ ≤p M .

The bulk of the work is is contained in the following:

Claim 4.5.15. For any i,m such that Dm
i is defined, Dm

i ≤p M

Proof of claim: Let A = Dm
i ; we want to show that AM = A \ G and AG = A ∩ G.

Since this is clear for i = 0, we assume without loss that i > 0. For the first part,

we show that AG is closed; it will follow immediately that cl(A) ⊆ AG; so that

A \ G ⊆ cl(A) \ G ⊆ (AG) \ G = A \ G and thus that AM = A \ G. To show

AG is closed, we fix a minimal pair (X,Y ) with X ⊆ AG; then we must show that

Y ⊆ AG. Fix n ∈ ω minimal such that Y ⊆ Mn. Then we have:

X ⊆ Dm
i 4r Dm

i+1 4r · · · 4r Mm ≤r Dm+1
0 4r · · · 4r Mm+1 ≤r · · ·D

n
0 4r · · · 4r Mn

Since (X,Y ) is minimal, we have X 4r Dm
i ∩ Y unless Y ⊆ Dm

i . So without loss of

generality, X 4r Dm
i ∩ Y and intersecting with Y gives:

X 4r Dm
i ∩ Y 4r · · · 4r Mm ∩ Y ≤r Dm+1

0 ∩ Y 4r · · · 4r Mm+1 ∩ Y ≤r · · · 4r Y

Each step has pre-dimension non-decreasing. If it is ever increasing, we contradict

that δ(Y/X) ≤ 0; so at each step we must must have constant pre-dimension. In

particular, each instance of 4r must be an equality, and each instance of ≤r must

be a 0-extension. Thus for every m ≤ l < n, we have Dl
∗ ∩ Y = Ml ∩ Y and
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Ml ∩ Y ≤r Dl+1
0 ∩ Y where ∗ is i for l = m and 0 otherwise. We show by induction

on n − m that Y ⊆ AG. This is obvious for n − m = 0; if n − m = 1 we have

Y = Mn ∩ Y = Dn
0 ∩ Y = (Y ∩ Cn) ⊕Y ∩Cm

(Y ∩ Mm) = (Y ∩ Cn) ⊕Y ∩Cm
(Y ∩ Dm

i )

Since (Y ∩Dm
i ) ⊆ A and (Y ∩Cn), (Y ∩Cm) ⊆ G, we have Y ⊆ AG as desired. For

the inductive step, we have Y = Mn ∩Y = Dn
0 ∩Y = (Y ∩Cn)⊕Y ∩Cn−1 (Y ∩Mn−1).

By induction, (Y ∩ Mn−1) ⊆ AG and (Y ∩ Cn), (Y ∩ Cn−1) ⊆ G so Y ⊆ AG.

We must also show that for any finite X containing A with X ∩G = A∩G =

Cm, A 4r X. Choose n so that X ⊆ Mn, then write

A ⊆ Dm
i 4r Dm

i+1 4r · · · 4r Mm ≤r Dm+1
0 4r · · · 4r Mm+1 ≤r · · ·D

n
0 4r · · · 4r Mn

Intersecting with X gives:

A ⊆ Dm
i ∩X 4r Dm

i+1∩X 4r · · · 4r Mm∩X ≤r Dm+1
0 ∩X 4r · · · 4r Mm+1∩X · · · 4r X

Note that for each l ≥ m, we have Dl+1 ∩ X = (Cl+1 ∩ X) ⊕Cl∩X (Ml ∩ X). By

our assumption Cl+1 ∩ X = Cl ∩ X, so that Ml ∩ X = Dl+1 ∩ X. Therefore we can

replace every instance of ≤r in the above sequence with 4r.

Pseudo-genericity follows quickly from this.

Proof of (1): This is immediate from the proof of our claim: taking A = Cm for

any m we showed that CmG = G is closed.

Proof of (2). For any X ⊆ Mm; pcl(X) ⊆ Mm since Mm is pcl-closed.

Proof of (3): Fix A ≤p M and choose n so that A ⊆ Dn
0 . Then by remark (4.5.11),

we have A ≤p Dm
0 for every m ≥ n, which implies A ≤r Dm

0 by remark (4.5.12),
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so that eventually one of the Dm
j will be precisely the amalgamation of B′ over A.

Since each such is pcl closed, we are done.

Corollary 4.5.16. We have the following:

1. Let G be a countable graph which consists of a union of 0-extensions over some

finite G0 ⊆ G. Then each G extends to an M so that (M,G) is pseudo-generic.

2. Let G0, G1 be as defined in (4.5.4). Then each Gi extends to an Mi so that

(Mi, Gi) is pseudo-generic.

Our final step is to show that the pseudo-generics are models of T . We do so

with the following:

Theorem 4.5.17. For either pseduo-generic (Mi, Gi) constructed in (4.5.14) and

N a generic and l ∈ ω, we have Mi ≈
l N .

Proof. Fix l, the number of rounds. At each stage we construct a partial isomor-

phism f : (ḡ, m̄) 7→ (ḡ′, m̄′) where dom(f) ≤p Mi and rng(f) 4r N . If the spoiler

plays from the domain or range of f , then the duplicator plays according to f .

Otherwise:

• If the spoiler chooses some h ∈ Gi, then we fix a closed copy of Gi,l in N ; call

it H. For this and any future play in Gi, the duplicator plays according to the

strategy guaranteed in lemma (4.5.8).
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• If the spoiler chooses m ∈ Mi \ Gi, let C = pcl(dom(f)m). Then by pseudo

genericity, dom(f) 4r C and C embeds strongly into N over f . We extend f

by this embedding.

• For n ∈ N \ rng(f), we let C = cl(rng(f)n. Then rng(f) 4r C, so by pseudo-

genericity C embeds into M over f−1 with a pseudo-closed image. We then

extend f by (the inverse of) this embedding.
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Chapter 5

Summary

We summarize some of the model-theoretic properties of various generics in-

vestigated in this thesis and in [1, 10, 2, 12, 11]. Throughout, r+ refers to the

(K+
r ,4r)-generic, QE refers to the level of quantifier elimination, and AE refers to

the existence of a Π2 set of axioms.

For the QE column, “Σ0” refers to complete quantifier elimination, “NMC”

refers to “near model completeness”, and “N” means that there is no elimination to

the level of Σk formulae for any k ∈ ω.

Generic Weight ω-stable Stable Simple Decidable ω-Categorical Q.E. AE

0 N N Y Y Y Σ0 Y

Irrational α ∈ (0, 2) N Y Y Y N NMC Y

Rational r ∈ (0, 1) Y Y Y Y N NMC Y

Rational r+ ∈ (0, 1) N N N N N N N

Rational r ∈ [1, 2) Y Y Y Y Y NMC Y

Rational r+ = 1 N Y Y Y N N Y

Rational r+ ∈ (1, 2) Y Y Y Y Y Y Y

Arbitrary α ≥ 2 Y Y Y Y Y Y Y

Table 5.1: Summary of results
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