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Recently, face recognition based on video has gained wide interest especially

due to its role in surveillance systems. Video-based recognition has superior ad-

vantages over image-based recognition because a video contains image sequences as

well as temporal information. However, surveillance videos are generally of low-

resolution and contain faces mostly in non-frontal poses.

We propose a multi-view, video-based face recognition algorithm using the

Bayesian inference framework. This method represents an appearance of each sub-

ject by a complex nonlinear appearance manifold expressed as a collection of simpler

pose manifolds and the connections, represented by transition probabilities, among

them. A Bayesian inference formulation is introduced to utilize the temporal in-

formation in the video via the transition probabilities among pose manifolds. The

Bayesian inference formulation realizes video-based face recognition by progressively

accumulating the recognition confidences in frames. The accumulation step possibly

enables to solve face recognition problems in low-resolution videos, and the progres-



sive characteristic is especially useful for a real-time processing. Furthermore, this

face recognition framework has another characteristic that does not require pro-

cessing all frames in a video if enough recognition confidence is accumulated in an

intermediate frame. This characteristic gives an advantage over batch methods in

terms of a computational efficiency.

Furthermore, we propose a simultaneous multi-view face tracking and recogni-

tion algorithm. Conventionally, face recognition in a video is performed in tracking-

then-recognition scenario that extracts the best facial image patch in the tracking

and then recognizes the identity of the facial image. Simultaneous face tracking and

recognition works in a different fashion, by handling both tracking and recognition

simultaneously. Particle filter is a technique for implementing a Bayesian infer-

ence filter by Monte Carlo simulation, which has gained prevalence in the visual

tracking literature since the Condensation algorithm was introduced. Since we have

proposed a video-based face recognition algorithm based on the Bayesian inference

framework, it is easy to integrate the particle filter tracker and our proposed recog-

nition method into one, using the particle filter for both tracking and recognition

simultaneously. This simultaneous framework utilizes the temporal information in a

video for not only tracking but also recognition by modeling the dynamics of facial

poses. Although the time series formulation remains more general, only the facial

pose dynamics is utilized for recognition in this thesis.
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Chapter 1

Introduction

For decades human face recognition has been an active topic in the field of

object recognition. Many algorithms have been proposed to deal with image-based

recognition where both the training and test set consist of still face images. Recently,

face recognition based on video has gained wide interest especially due to its role in

surveillance systems. Video-based recognition has superior advantages over image-

based recognition because a video contains image sequences as well as temporal

information. However, surveillance videos are generally of low-resolution and contain

faces mostly in non-frontal poses. This thesis provides a solution to video-based face

recognition.

In Chapter 2, we present a review of still-image based face recognition. The

study of still-image based face recognition provides knowledge of several feature ex-

traction methods and their probabilistic models which can also be utilized in video-

based face recognition. Subspace methods are pattern recognition techniques widely

invoked in various face recognition approaches. Well-known appearance-based recog-

nition schemes utilize principal component analysis (PCA). In this chapter, the

“Eigenface” [74], the face-specific subspace (FSS) [70], the probabilistic density es-

timation in eigenspaces [53], [54], and the intrapesonal/extrapersonal subspace [52],

[51], [49] are reviewed. In addition, we review the “Fisherface” method [3] which is

1



often compared with the “Eigenface” method.

In Chapter 3, we present a historical review of video-based face recognition al-

gorithms, and propose a new video-based face recognition algorithm using Bayesian

inference. Motivated by the previous work [43], this method represents an appear-

ance manifold of each subject by a complex nonlinear appearance manifold express

as a collection of simpler pose manifolds and the connections among them. We

express the simpler pose manifolds as linear PCA subspaces, and perform similar-

ity measurements between images and the PCA subspaces using the probabilistic

density estimation in eigenspaces method [53] reviewed in Chapter 2. The Bayesian

inference formulation realizes video-based face recognition by progressively accu-

mulating the recognition results in frames, and enables to solve face recognition

problems with high accuracy in low-resolution videos.

In Chapter 4, we review variants of Bayesian inference filter such as the Kalman

filter, the grid-based filter, and the particle filter. The Kalman filter and the grid-

based filter solve optimal solutions in limited situations. Often, such limitations

do not hold, so we use approximation strategies to the optimal solution using the

particle filters. Particle filter is a technique for implementing a Bayesian inference

filter by Monte Carlo simulation, which has gained popularity in the visual tracking

literature since the Condensation algorithm was introduced.

In Chapter 5, we propose a simultaneous multi-view face tracking and recog-

nition algorithm using particle filtering. Since we have proposed a video-based face

recognition algorithm which works in the Bayesian inference framework, it is easy to

integrate the particle filter tracker and the proposed recognition method into one,

2



using the particle filter for both tracking and recognition simultaneously. Unlike

the previous work [82], the proposed framework utilizes the temporal information

in a video for not only tracking but also recognition by modeling the dynamics of

facial poses. We also discuss and propose an adaptive particle filtering framework

for the simultaneous tracking and recognition problem. This simultaneous multi-

view framework successfully tracks multi-view faces in low-resolution videos and

concurrently achieves accurate face recognition.

In Chapter 6, we provide conclusions and suggestions for future study.
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Chapter 2

Review of Still Image-Based Face Recognition

As one of the most successful applications of image analysis and understand-

ing, face recognition has received significant attention and has been an active topic

for decades. Face recognition technologies have a variety of potential applications in

public security, law enforcement, and commerce, such as mug-shot database match-

ing, identity authentication from credit cards or driver licenses, access control, infor-

mation security, and intelligent surveillance. In addition, there are many emerging

fields that can benefit from face recognition technology, such as the new genera-

tion intelligent human-compute interfaces and e-services, including e-home, tele-

shopping, and tele-banking. Related research activities have significantly increased

over the past decades [65], [12], [16], [81].

During the nineties, geometric feature-based methods and template matching

methods used to be popular technologies, which were compared by Brunelli and

Poggio [12]. They concluded that template matching outperforms the geometric

feature-based ones. Therefore, since the 1990s, appearance-based methods have

been investigated, from which two categories of face recognition technology have

evolved: holistic appearance feature-based and analytic local feature-based. Popular

methods belonging to the former paradigm include eigenface [74], Fisherface [3],

[24], Probabilistic and Bayesian matching and Active Shape/Appearance Models

4



(ASM/AAM); [42], [17], [23]. Local feature analysis (LFA) [59] and Elastic Bunch

Graph Matching (EBGM) [78] are typical examples of the latter category. LFA

has been used in successful commercial face recognition system known as FaceIt by

Visionics Corp. Support Vector Machines (SVM) have also been successfully applied

to face recognition [28]. FERET evaluation has provided extensive comparisons of

these algorithms [63], as well as several evaluation protocols for face recognition

systems. Subsequently, FRVT 2000 [8], 2002 [62], 2006 [64], and FRGC [61] efforts

have established a rich history of evaluating face recognition algorithms.

Now we briefly describe eigenface [74], Fisherface [3], the face-specific subspace

(FSS) [70], probabilistic density estimation in eigenspaces [53], [54], and intrapes-

onal/extrapersonal subspace [52], [51], [49] methods. In addition, we offer further

analyses on the intrapersonal subspace.

2.1 Eigenfaces

The eigenface method is based on linearly projecting the image space to a

low dimensional feature space [71], [74], [75]. The eigenface method, which uses

principal components analysis (PCA) for dimensionality reduction, yields projection

directions that minimize the total mean square error in reconstruction.

Let us consider a set of N sample images {x1, x2, . . . , xN} taking values in an

D-dimensional image space, and assume that each image belongs to one of c classes

{X1, X2, . . . , Xc}. Let us also consider a linear transformation mapping the original

D-dimensional image space into an M-dimensional feature space, where M < D.

5



The new feature vectors yj ∈ R
M are defined by the following linear transformation:

yj = W Txj j = 1, 2, . . . , N (2.1)

where W ∈ R
D×M is a matrix with orthonormal columns.

If the total scatter matrix ST is defined as

ST =

N
∑

j=1

(xj − µ)(xj − µ)T (2.2)

where µ ∈ R
D is the mean image of all samples, then after applying the linear

transformationW T , the scatter of the transformed feature vectors {y1, y2, . . . , yN}

is W TSTW . In PCA, the projection Wopt is chosen to maximize the determinant of

the total scatter matrix of the projected samples, i.e.,

Wopt = arg max
W

|W TSTW | (2.3)

= [w1w2 ... wM ] (2.4)

where {wi|i = 1, 2, . . . , M} is the set of D-dimensional eigenvectors of ST corre-

sponding to the M largest eigenvalues {λi|i = 1, 2, . . . , M} [22], i.e.,

STwi = λiwi, i = 1, 2, · · · ,M. (2.5)

Since these eigenvectors have the same dimension as the original images, they

are referred to as Eigenpictures in [71] or eigenfaces in [74], [75]. Classification is then

performed using a nearest neighbor classifier in the reduced feature space consisting

of coefficients that result from projecting the face images onto eigenvectors.
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2.2 Fisherfaces

Since the learning set is labeled, it makes sense to use this information to

build a more reliable method for reducing the dimensionality of the feature space.

Fisherface method uses a class specific linear method, Fisher’s Linear Discriminant

(FLD) [25], for dimensionality reduction and simple classifiers in the reduced feature

space. This method selects W in [16] in such a way that the ratio of the between-

class scatter and the within class scatter is maximized.

Again, let us consider a set of N sample images {x1, x2, . . . , xN} taking

values in an D-dimensional image space, and assume that each image belongs to

one of c classes {X1, X2, . . . , Xc}. Let the between-class scatter matrix be defined

as

SB =

c
∑

k=1

Nk(µk − µ)(µk − µ)T (2.6)

and the within-class scatter matrix be defined as

SW =

c
∑

k=1

∑

xj∈Xk

(xj − µk)(xj − µk)
T (2.7)

where µk is the mean image of class Xk, Nk is the number of samples in class Xk,

and µ is the mean image of all samples. If SW is nonsingular, the optimal projection

Wopt is chosen as the matrix with orthonormal columns which maximizes the ratio

of the determinant of the between-class scatter matrix of the projected samples to

the determinant of the within-class scatter matrix of the projected samples, i.e.,

Wopt = arg max
W

|W TSBW |
|W TSWW |

= [w1w2 ... wM ] (2.8)
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where {wi|i = 1, 2, . . . , M} is the set of generalized eigenvectors of SB and SW

corresponding to the M largest generalized eigenvalues {λi|i = 1, 2, . . . , M}, i.e.,

SBwi = λiSWwi, i = 1, 2, . . . ,M. (2.9)

Note that there are at most c− 1 nonzero generalized eigenvalues, and so an upper

bound on M is c− 1, where c is the number of classes. See [21].

To illustrate the benefits of class specific linear projection, a low dimensional

analogue to the classification problem in which the samples from each class lie near a

linear subspace is shown. Figure 2.1 is a comparison of PCA and FLD for a two-class

problem in which the samples from each class are randomly perturbed in a direction

perpendicular to a linear subspace. For this example, N = 20, D = 2, and M = 1.

So, the samples from each class lie near a line passing through the origin in the 2D

feature space. Both PCA and FLD have been used to project the points from 2D

down to 1D. Comparing the two projections in the figure, PCA actually smears the

classes together so that they are no longer linearly separable in the projected space.

It is clear that, although PCA achieves larger total scatter, FLD achieves greater

between-class scatter, and, consequently, classification is improved.

In the face recognition problem, one is confronted with the difficulty that the

within-class scatter matrix SW ∈ R
D×D is always singular. This stems from the fact

that the rank of SW is at most N − c, and, in general, the number of images in the

learning set N is much smaller than the number of pixels in each image D. This

means that it is possible to choose the matrix W such that the within-class scatter

of the projected samples can be made exactly zero.
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Figure 2.1: A comparison of principal component analysis (PCA) and Fisher’s linear

discriminant (FLD) for a two class problem where data for each class lies near a

linear subspace [3].

In order to overcome the complication due to a singular SW , an alternative

to the criterion in (2.8) was proposed [3]. This method, named Fisherfaces, avoids

this problem by projecting the image set to a lower dimensional space so that the

resulting within-class scatter matrix SW is nonsingular. This is achieved by using

PCA to reduce the dimension of the feature space to N − c, and then applying the

standard FLD defined (2.8) to reduce the dimension to c− 1. More formally, Wopt

is given by

W T
opt = W T

fldW
T
pca (2.10)

where

Wpca = arg max
W

|W TSTW | (2.11)
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Wfld = arg max
W

|W TW T
pcaSBWpcaW |

|W TW T
pcaSWWpcaW | (2.12)

Note that the optimization for Wpca is performed over D × (N − c) matrices with

orthonormal columns, while the optimization for Wfld is performed over (N−c)×M

matrices with orthonormal columns. In computing Wpca, we have thrown away only

the smallest c− 1 principal components.

2.3 Face-Specific Subspace (FSS)

The eigenface method applies PCA for “all” face images to construct a low

dimensional face subspace, and discrimination of identities is performed based on

Euclidean distance in the PCA subspace using the nearest neighbor classifier. A

well-known fact of the PCA that it is optimal in the sense of minimizing the mean

squared error (MMSE), that is, the PCA extracts the most expressive features of

faces. However, the most expression features do not mean that they are also the

most discriminative features for identity discrimination.

Therefore, many efforts to seek good features for discrimination have been done

using Fisherfaces based on LDA. However, the LDA gives the optimal Bayesian dis-

crimination in which data in each class is distributed on Gaussian with the same

covariance, which is not true in general. To overcome the problem, Shan et al. [70]

introduced a method which models each identity face with an identity specific PCA

subspace named a “face-specific subspace” (FSS), and exploits distance from the

PCA subspace, i.e., the reconstruction error as a dissimilarity measure for identifi-

cation.
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2.3.1 Observations on Eigenfaces

An experiment to illustrate the effects of eigenfaces is now presented. The

PCA is applied to “all” face images and the obtained eigenfaces are shown in Figure

2.2. Two new images where one is a face image and another is a non-face image

are projected into the face PCA subspace once and reconstructed back into the full

space. These images are shown in Figure 2.3.

As shown in Figure 2.3, the reconstructed image of the non-face image is not

similar to the original non-face image, i.e., the reconstruction error is large. This

fact tells us that the PCA subspace trained for “all” face images would rather be

used for discrimination of face and non-face images. This motivates us that for

discrimination of identities, we should train a PCA subspace for images of each face

identity, and identify a person by finding the minimum distance from the identity

specific PCA subspaces, i.e., face-specific subspace (FSS).

Figure 2.2: The eigenfaces trained for facial pictures taken from the ORL face

dataset [66]. The left-most eigenface is the most principal one.

2.3.2 Construction of FSS

In this section, a procedure for constructing FSS is described. Let FSS be

{Ωk|k = 1, 2, . . . , c} where c is the number of classes to be recognized. The basis
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(a) (b) (c) (d)

Figure 2.3: (a) The input face image [66]. (b) The input non-face image taken from

[77]. (c) The reconstructed image of the face image (d) The reconstructed image

of the non-face image. The difference between the original non-face image and its

reconstructed image is large.

functions in Karhunen-loeve Transform for kth face class are obtained by solving

the eigenvalue problem

Λk = ΦT
kΣkΦk (2.13)

where Σk is the covariance matrix of the kth face data, Λk is the diagonal matrix of

eigenvalues of Σk in the descendant order, and Φk is the corresponding eigenvector

matrix. In PCA, a partial KLT is performed to identify the largest-eigenvalue

eigenvectors and obtain a principal component feature vector yk = (ΦMk

k )T x̃k, where

x̃k = x − xk is the mean-normalized image vector and ΦMk

k is a submatrix of Φk

containing the principal eigenvectors. To sum up, the kth FSS is represented as a

4-tuple by

Ωk = (Λk,Φk,xk,Mk) (2.14)

In practice, Mk is set to be identical in all identities, i.e., Mk = M, ∀k to provide

fairness.
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2.3.3 Identify Faces in FSS

In this section, how to identify a face identity using the FSS is illustrated. In

a partial KL expansion, the residual reconstruction error or the distance from the

kth subspace is defined as

d(x,Ωk) =

D
∑

i=Mk+1

y2
ki = ||x̃k||2 −

Mk
∑

i=1

y2
ki (2.15)

and can be easily computed from the first Mk principal components and the L2-

norm of the mean-normalized image x̃k. Typically Mk is identical in all classes, i.e.,

Mk = M ∀k to achieve fairness.

The recognition task is performed in the nearest subspace sense: for a test

image x, the identity k∗ can be determined by finding by the subspace Ωk with

minimal distance to x, i.e.,

k∗ = arg min
k
d(x,Ωk) (2.16)

2.3.4 Practical Issue: Face Recognition from Single Example Image

Figure 2.4: Deriving multiple samples from single image [70].
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Typically, to learn a face subspace, multiple training example images are re-

quired. For a FSS, it means more than one example per face is needed to train

his/her FSS. But for some face recognition applications, such as mug shot match-

ing, suspect identification, etc., only few (often one) face image is available for each

subject involved; therefore, the FSS-based method cannot be applied to these prob-

lems directly. To solve this problem, multiple samples are derived from a single

example image.

The technique is based on the following two intuitive propositions [69]:

1. Proper geometric transforms, such as translation, rotation in image plane,

scale changes, etc., do not change the identity attribute of a face image.

2. Proper gray-level transforms, such as simulative directional lighting, man-

made noise, etc., do not change the identity attribute of a face image.

In this technique, two kinds of transforms are combined to derive tens of

training examples from a single example image, which are then fed into the FSS

learning procedure. Figure 2.4(c) illustrates some normalized “virtual” example

images derived from one face image as shown in Figure 2.4(a).

2.4 Density Estimation in Eigenspaces

Moghaddam and Pentland [53], [54] proposed an approach to automatic visual

learning based on density estimation. Instead of applying estimation techniques di-

rectly to the original high-dimensional space spanned by images, this method uses an

eigenspace decomposition to yield a computationally feasible estimate. Specifically,
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given a set of training images {xt}NT

t=1, from an object class Ω, this method estimates

the class membership or a likelihood function for this data, i.e., P (x|Ω). Here, we

examine a density estimation technique for visual learning of high-dimensional data

which is based on the assumption of a Gaussian distribution.

2.4.1 Principal Component Imagery

Given a set of m-by-n images {I t}NT

t=1, we can form a training set of vectors

{xt}, where x ∈ RD=mn, by lexicographic ordering of the pixel elements of each

image I t. The basis functions in a PCA are obtained by solving the eigenvalue

problem

Λ = ΦTΣΦ (2.17)

where Σ is the covariance matrix of the data, Φ is the eigenvector matrix of Σ and Λ

is the corresponding diagonal matrix of eigenvalues. A partial PCA is performed to

identify the largest-eigenvalue eigenvectors and obtain a principal component feature

vector y = ΦT
Mx̃, where x̃ = x − x is the mean-normalized image vector and ΦM is

a submatrix of Φ containing the principal eigenvectors. PCA can be seen as a linear

transformation y = I(x) : RD → RM which extracts a lower-dimensional sub-

space corresponding to the maximal eigenvalues. This corresponds to an orthogonal

decomposition of the vector space RD into two mutually exclusive and complemen-

tary subspaces: the principal subspace (or feature space) F = {Φi}Mi=1 containing the

principal components and its orthogonal complement F̄ = {Φi}Di=M+1, as illustrated

in Figure 2.5.
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Figure 2.5: The principal subspace F and its orthogonal complement F̄ for a Gaus-

sian density [53].

In a partial PCA expansion, the residual reconstruction error is defined as

ǫ2(x) =
D
∑

i=M+1

y2
i = ||x̃||2 −

M
∑

i=1

y2
i (2.18)

and can be easily computed from the first M principal components and the L2-

norm of the mean-normalized image x̃. Consequently the L2 norm of every element

x ∈ RD can be decomposed in terms of its projections in these two subspaces. We

refer to the component in the orthogonal subspace F as the “distance-from-feature-

space” (DFFS) which is a simple Euclidean distance and is equivalent to the residual

error ǫ2(x) in (2.18). The component of x which lies in the feature space F is referred

to as the “distance-in-feature-space” (DIFS) but is generally not a distance-based

norm, but can be interpreted in terms of the probability distribution of y in F .

2.4.2 Gaussian Densities

We begin by considering an optimal approach for estimating high-dimensional

Gaussian densities. We assume that we have (robustly) estimated the mean x and
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covariance Σ of the distribution from the given training set {xt}NT

t=1. Under this

assumption, the likelihood of a input pattern x is given by

P (x|Ω) =
exp[−1

2
(x − x)TΣ−1(x − x)]

(2π)D/2|Σ|1/2 (2.19)

The sufficient statistic for characterizing this likelihood is the Mahalanobis distance

d(x) = x̃TΣx̃−1 (2.20)

where x̃ = x − x. Using the eigenvectors and eigenvalues of Σ we can rewrite Σ−1

in the diagonalized form

d(x) = x̃TΣx̃−1

= x̃T [ΦΛ−1ΦT ]x̃ (2.21)

= yTΛ−1y

where y = ΦT x̃ are the new variables obtained by the change of coordinates. Because

of the diagonalized form, the Mahalanobis distance can also be expressed in terms

of the sum

d(x) =
D
∑

i=1

y2
i

λi
(2.22)

We now seek to estimate d(x) using only the M principal projections. Therefore,

we formulate an estimator for d(x) as follows

d̂(x) =

M
∑

i=1

y2
i

λi
+

1

ρ

[

D
∑

i=M+1

y2
i

]

=
M
∑

i=1

y2
i

λi
+

1

ρ
ǫ2(x) (2.23)

where the term in the brackets is the DFFS ǫ2(x), which as we have seen can

be computed using the first M principal components. We can therefore write the
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form of the likelihood estimate based on d̂(x) as the product of two marginal and

independent Gaussian densities

P̂ (x|Ω) =













exp

(

−1

2

M
∑

i=1

y2
i

λi

)

(2π)M/2
M
∏

i=1

λ
1/2
i

















exp
(

− ǫ2(x)
2ρ

)

(2πρ)(D−M)/2



 (2.24)

= PF (x|Ω)P̂F̄ (x|Ω) (2.25)

where PF (x|Ω) is the true marginal density in F-space and P̂F (x|Ω) is the estimated

marginal density in the orthogonal complement F̄ -space. The optimal value of

ρ can now be determined by minimizing a suitable cost function J(ρ). From an

information-theoretic point of view, this cost function could be the Kullback-Leibler

divergence between the true density P (x|Ω) and its estimate P̂ (x|Ω)

J(ρ) =

∫

P (x|Ω) log
P (x|Ω)

P̂ (x|Ω)
dx = E

[

log
P (x|Ω)

P̂ (x|Ω)

]

(2.26)

Using the diagonalized forms of the Mahalanobis distance d(x) and its estimate d̂(x)

and the fact that E[y2
i ] = λi, it can be easily shown that

J(ρ) =
1

2

D
∑

i=M+1

[

λi
ρ

− 1 + log
ρ

λi

]

(2.27)

The optimal weight ρ∗ can be then found by minimizing this cost function with

respect to ρ. Solving the equation
∂J

∂ρ
= 0 yields

ρ∗ =
1

D −M

D
∑

i=M+1

λi (2.28)

which is simply the arithmetic average of the eigenvalues in the orthogonal subspace

F̄ . In addition to its optimality, ρ∗ also results in an unbiased estimate of the
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Mahalanobis distance – i.e., E[d̂(x; ρ∗)] = E[d(x)]. What this derivation shows

is that once we select the M-dimensional principal subspace F (as indicated, for

example, by PCA), the optimal density estimate P̂ (x|Ω) has the form of (2.25) with

ρ given by (2.28).

This derivation of ρ is a special case of a more recent and general factor

analysis model, called Probabilistic PCA (PPCA), proposed by Tipping and Bishop

[12], In their formulation, the expression for ρ is the maximum likelihood solution of

a latent variable role as opposed to the minimal-divergence solution derived in [53],

For a more general expectation-maximization (EM) approach to factor analysis, the

reader is referred to [37].

Figure 2.6: The principal subspace F and its orthogonal complement F̄ for an

arbitrary density [53].

In actual practice, it often happens that all D eigenvalues are not available

because the number of training samples is fewer than the number of the feature

dimension plus one, i.e., NT ≤ D + 1. But, they can be estimated, for example,
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by fitting a nonlinear function to the available portion of the eigenvalue spectrum.

Fractal power law spectra of the form f(n) = ank where a and k are constants, are

thought to be typical of “natural” phenomenon and are a good fit to the decaying

nature of the eigenspectrum–see Figure 2.7.

Figure 2.7: A typical eigenvalue spectrum and its division onto the two orthogonal

subspaces [53].

2.5 Intrapersonal/Extrapersonal Subspace

Moghaddam et al. [52], [51], [49] proposed an intrapersonal/extrapersonal

classifier. This method examines the variations in the difference images of same

individuals to form an intrapersonal space, and the variations in the difference im-

ages of different individuals to form an extrapersonal space. The estimation of the

intrapersonal and the extrapersonal distributions is based on the assumption that

the intrapersonal distribution is Gaussian.

The input visual data (or equivalently its manifold representation) can form
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the basis for simple recognition strategies using Euclidean metrics or normalized

correlation. For example, in its simplest form, the similarity measure S(I1, I2) be-

tween two images I1 and I2 (or their manifold projections) can be set to be inversely

proportional to the norm ||I1 − I2|| which corresponds to a template-matching ap-

proach to recognition [12], [37]. Such a formulation suffers from a major drawback:

it does not exploit knowledge of which types of variations are critical (as opposed

to incidental) in expressing similarity. However, one can formulate a probabilistic

similarity measure which is based on the probability that the image intensity (or

equivalently manifold vector) differences, denoted by △ = I1 − I2, are characteristic

of typical variations in appearance of the same object. For example, for purposes

of face recognition, one can define two classes of facial image variations: intraper-

sonal variations ΩI (corresponding, for example, to different facial expressions of

the same individual) and extrapersonal variations ΩE (corresponding to variations

between different individuals).

The similarity measure S(△) can then be expressed in terms of the intraper-

sonal a posteriori probability given by Bayes rule:

S(△) = P (ΩI |△) =
P (△|ΩI)P (ΩI)

P (△|ΩI)P (ΩI) + P (△|ΩE)P (ΩE)
. (2.29)

The likelihoods P (△|ΩI) and P (△|ΩE) can be estimated by traditional means (given

enough training data) or, alternatively, with subspace density estimation techniques

[54], [50] when faced with very high-dimensional data or with data shortage (insuffi-

cient number of samples). Furthermore, the priors P (Ω) can be set to reflect specific

operating conditions (e.g., number of test images versus the size of the database) or
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other sources of a priori knowledge regarding the two images being matched.

This particular Bayesian formulation casts the standard face recognition task

(essentially an c-ary classification problem for c individuals) into a binary pattern

classification problem with ΩI and ΩE . This simpler problem is then solved using

the maximum a posteriori (MAP) rule–i.e., two images are determined to belong to

the same individual if

P (ΩI |△) > P (ΩE|△) or, equivalently, if S(△) >
1

2
. (2.30)

Alternatively, a simplified similarity measure based only on the ΩI likelihood

can be used. This maximum-likelihood (ML) similarity measure ignores extraper-

sonal variations altogether and is given by S ′(△) = P (△|ΩI). Typically, the ΩI

density in (2.29) carries the greater weight in modeling the posterior similarity used

for MAP recognition. The extrapersonal ΩE density serves a secondary role and its

accurate modeling is less critical. In the extreme case, by dropping the ΩE likelihood

in favor of a ML similarity, one obtains S ′(△), which typically suffers only a minor

deficit (3-4 percent) in accuracy as compared to S(△) [51].

2.5.1 Subspace Density Estimation

To deal with the inevitably high-dimensionality of △ (which is the same as that

of the images), we make use of the efficient density estimation method explained in

Section 2.4 which divides the vector space RD into two complementary subspaces as

shown in Figure 2.5 using an eigenspace decomposition. This method uses PCA to

obtain a principal subspace F whose principal components y can be used to form an
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optimal (minimal divergence) low-dimensional estimate of the complete likelihood

using only the first M principal components {y1, y2, y3, . . . , yM}, where M << D.

As derived in Section 2.4, the complete likelihood estimate can be written as

the product of two independent marginal Gaussian densities

P̂ (△|Ω) =













exp

(

−1

2

M
∑

i=1

y2
i

λi

)

(2π)M/2
M
∏

i=1

λ
1/2
i

















exp
(

− ǫ2(△)
2ρ

)

(2πρ)(D−M)/2



 (2.31)

= PF (△|Ω)P̂F̄ (△|Ω; ρ),

where PF (△|Ω) is the true marginal density in F, P̂F̄ (△|Ω; ρ) is the estimated

marginal density in the orthogonal complement F̄ , λi are the eigenvalues, yi are

the principal components, and ǫ2(△) is the PCA residual (reconstruction error).

The information-theoretic optimal value for the density parameter ρ is derived

by minimizing the Kullback-Leibler (KL) divergence and is found to be simply the

average of the F̄ eigenvalues

ρ =
1

D −M

D
∑

i=M+1

λi. (2.32)

Referring back to (2.29) we see that this approach requires two projections of

the difference vector △, from which likelihoods can be estimated for the Bayesian

similarity measure S(△). The projection steps are linear, while the posterior compu-

tation is nonlinear. Because of the double PCA projections required, this approach

has been called a dual eigenspace technique [54], [12], [51] in contrast to standard

PCA-based “eigenfaces” in Figure 2.8. Note the projection of the difference vec-

tor △ onto the “dual eigenfaces” (ΩI and ΩE) for computation of the posterior in
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(2.29). In the following section, we will show that in practice, each input vector

x will have two (precomputed) linear PCA projections yΦI
and yΦE

and that the

posterior similarity S(△) between any pair of vectors can be expressed in terms of

a pair of difference norms between their corresponding dual projections.

2.5.2 Efficient Similarity Computation

Consider a feature space of △ vectors, the differences between two images

(Ij and Ik). The two classes of interest in this space correspond to intrapersonal

and extrapersonal variations and each is modeled as a high-dimensional Gaussian

density as in (2.29). The densities are zero-mean since for each △ = Ij − Ik there

exists a △ = Ik − Ij.

P (△|ΩE) =
e

1
2
△T Σ−1

E
△

(2π)D/2|ΣE|1/2

(2.33)

P (△|ΩI) =
e

1
2
△T Σ−1

I
△

(2π)D/2|ΣI |1/2
.

By PCA, the Gaussians are known to only occupy a subspace of image space (face-

space) and, thus, only the top few eigenvectors of the Gaussian densities are relevant

for modeling. These densities are used to evaluate the similarity in (2.29). Comput-

ing S(△) involves first subtracting a candidate image Ij from a database entry Ik.

The resulting △ image is then projected onto the eigenvectors of the extrapersonal

Gaussian and also the eigenvectors of the intrapersonal Gaussian. The exponentials

are computed, normalized, and then combined as in (2.29). This operation is iter-
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Figure 2.8: Signal flow diagrams for computing similarity g between two images:

(a) Eigenface similarity and (b) Probabilistic similarity. The difference mage is

projected through both sets of (intra/extra) eigenfaces in order to obtain the two

likelihoods [52].

ated over all members of the database (many Ik images) until the maximum score

is found (i.e., the match). Thus, for large databases, such evaluations are expensive

and must be simplified by offline transformations.

To compute the likelihoods P (△|ΩI) and P (△|ΩE), one preprocess the Ik

images with whitening transformations. Each image is converted and stored as

a set of two whitened subspace coefficients, yΦI
for intrapersonal space and yΦE

for extrapersonal space (see (2.34)). Here, Λ and V are matrices of the largest
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eigenvalues and eigenvectors of ΣE or ΣI .

y
j
ΦI

= Λ
− 1

2
I VIIj y

j
ΦE

= Λ
− 1

2
E VEIj (2.34)

After this preprocessing, evaluating the Gaussians can be reduced to simple

Euclidean distances as in (2.35). Denominators are of course precomputed. These

likelihoods are evaluated and used to compute the MAP similarity S(△) in (2.29).

Euclidean distances are computed between the MI-dimensional yΦI
vectors, as well

as the ME-dimensional yΦE
vectors. Thus, roughly 2 × (ME + MI) arithmetic

operations are required for each similarity computation, avoiding repeated image

differencing and projections.

P (△|ΩI) = P (Ij − Ik|ΩI) =
e
−‖yj

ΦI
−yk

ΦI
‖2/2

(2π)D/2|ΣI |1/2

(2.35)

P (△|ΩE) = P (Ij − Ik|ΩE) =
e
−‖yj

ΦE
−yk

ΦE
‖2/2

(2π)D/2|ΣE|1/2
.

The ML similarity matching is even simpler since only the intrapersonal class is

evaluated, leading to the following modified form for the similarity measure

S ′(△) = P (△|ΩI) = −‖yjΦI
− ykΦI

‖2/2 (2.36)

by dropping the common denominator and taking log.

2.5.3 Recognition

Let us consider a set of NP prototype sample images {I1, I2, . . . , INP
}, and

assume that each image belongs to one of c class subsets {X1, X2, . . . , Xc}. The
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prototype sample images are possibly taken as all training sample images or a subset

of all training sample images. Recognition task is solved by finding the maximum

similarity between a test image I and all prototypes, i.e.,

k∗ = arg max
k

max
Ij∈Xk

S(I − Ij) (2.37)

or with ML similarity measure S ′(△)

k∗ = arg max
k

max
Ij∈Xk

S ′(I − Ij). (2.38)

as briefly described in Section 2.5.2. Although an efficient similarity computation

was introduced, this exhaustive matching is still computationally too expensive when

a large number of prototypes is used.

Therefore, one may solve the recognition task by finding the maximum simi-

larity between a test image I and a representative image Īk from class k, i.e.,

k∗ = arg max
k
S(I − Īk) (2.39)

or with ML similarity measure S ′(△)

k∗ = arg max
k

S ′(I − Īk). (2.40)

The representative image Īk could be taken manually or randomly from training

sample images of a class k, or could be an estimated mean image of a class k

obtained in the training sample images. Furthermore, one may use the MAP rule

introduced in (2.30) as a reject option, i.e.,

Reject I if S(I − Īk) <
1

2
for all k = 1, . . . , c. (2.41)

27



2.5.4 Practical Approaches to Form Subspace

In practice, one suffers from computational costs of training PCA for the

intrapersonal subspace and the extrapersonal subspace because of a huge number

of difference images created. Let Nk be the number of training images available for

identity k, and c be the number of identities. The possible number of intrapersonal

difference images, NI , is given by

NI =
c
∑

k=1

N2
k (2.42)

because there exists a △ = Ik − Ij for each △ = Ij − Ik and we count △ = Ij − Ij

also and the possible number of extrapersonal difference images, NE , is given by

NE = 2

c
∑

k=1

[

Nk

c
∑

i6=k

Ni

]

. (2.43)

For example, when Nk = 200 images are available for c = 20 identities (this is a

realistic number in a video database), NI = 800, 000 and NE = 30, 400, 000. If

we use 40 × 40 sized images and express one value by double data type (4 bytes)

in C language, the number of bytes required for a feature matrix used to form an

intrapersonal subspace is 800, 000 ∗ 40 ∗ 40 ∗ 4 = 5, 120, 000, 000 = 5.12GB. This is

extremely huge and intractable because a 32-bit CPU can allocate a memory space

upto 232 = 4.295GB. To overcome this problem, the authors of this thesis propose

following four different approaches:

1. Pick fewer number of samples Kk randomly or manually from the total Nk

samples,

2. Apply K-means algorithm for Nk samples and use the obtained Kk means,
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3. Use variants of incremental PCA algorithms [30], [31], [15], [10], [41] and

4. Create intrapersonal difference images in each class k by subtracting an esti-

mated mean image Īk from sample images such that NI =
∑c

k=1Nk.

Notice that the 4th approach is different with others because this approach does not

take combinations of sample images to create intrapesonal difference images, and

does not propose how to form an extrapersonal subspace.

We performed two experiments to compare these approaches in terms of recog-

nition using the intrapersonal similarity measure S ′(△) and these results are shown

in Figure 2.9 and Figure 2.10 using the cumulative match curves [63]. We used

subsets of images obtained from the Honda/UCSD video database [43]. We used 20

frontal facial images for each person in the 1st experiment (Figure 2.9), and vari-

ous number of images from 20 ∼ 30 for each person in the 2nd experiment (Figure

2.10). 20 ∼ 30 is not a huge number, therefore, we could compare these approaches

with the original approach which takes full difference images exhaustively. Each

image size was downsampled to 24× 24 and the number of feature dimensions were

reduced into 20 by projecting images onto eigenspaces. The number of subjects is

10. In both the random approach and the K-means approach, we chose Kk = 10 ∀k

out of 20 ∼ 30 images. Figure 2.9(a) and 2.10(a) show comparisons of these ap-

proaches with the classification method using all the training images as prototypes.

Figure 2.9(b) and 2.10(b) show comparisons of these approaches with the classifica-

tion method using estimated mean class images as prototypes. We did not plot the

experimental results using the 3rd incremental PCA approach because they resulted
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Figure 2.9: Comparisons of four intrapersonal approaches when the numbers of

training sample images in each class are the same, 20. The number of feature

dimensions used is 20. In both the random approach and the K-means approach, we

choseKk = 10 ∀k out of 20 images. (a) shows comparisons based on the classification

method using all the training images as prototypes. (b) shows comparisons based

on the classification method using estimated mean class images as prototypes.
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Figure 2.10: Comparisons of four intrapersonal approaches when the numbers of

training sample images in each class are varying from 20 ∼ 30. Other parameters

are the same as in the experiments shown in Figure 2.9.
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in the similar performances with the original exhaustive approach as we expected.

The 1st random approach performed worse than others in our experiments

although it would result in better than others sometimes because of its randomness.

The 2nd K-means approach achieved better results than the original exhaustive

approach (Figure 2.9) and similar results as the original exhaustive approach (Figure

2.10). The 4th mean subtraction approach achieved the exactly same results with

the original exhaustive approach (Figure 2.9), and achieved similar results with the

original exhaustive approach (Figure 2.10). Theoretically, the 4th mean subtraction

approach obtains identical PCA eigenvectors with the original exhaustive approach

when the number of samples in each class is the same as in the experiments shown

in Figure 2.9. The proof is written in Section 2.5.5. The classification method which

uses estimated mean class images as prototypes always performes worse than the

classification method which uses all training images as prototypes, but gave a decent

approximation.

2.5.5 Comparison with FSS

In this section, we describe a comparison between the intrapersonal subspace

and the face-specific subspaces (FSS). As the first step, we give a proof of the

following proposition.

Proposition. The mean subtraction approach described in Section 2.5.4 and the

original exhaustive approach for modeling an intrapesonal subspace achieves iden-

tical eigenvectors when the number of samples in each class is the same.

Proof. Let c be the number of classes, Nk be the total number of samples in a
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class k, and Iki be the ith column vectorized sample image in a class k. First, we

examine the total scatter matrix (2.2) S
(1)
T of difference images created in the mean

subtraction approach, i.e., difference images created by subtracting the empirical

mean µk from the training samples in each class k. Because the mean of the created

difference images is zero, S
(1)
T essentially forms a within-class scatter matrix (2.7)

and is given by

S
(1)
T =

c
∑

k=1

Nk
∑

i=1

(Iki − µk)(Iki − µk)
T

=
c
∑

k=1

Nk
∑

i=1

(Iki −
1

Nk

Nk
∑

j=1

Ikj)(Iki −
1

Nk

Nk
∑

j=1

Ikj)
T

=
c
∑

k=1

Nk
∑

i=1



IkiI
T
ki −

2

Nk
Iki

(

Nk
∑

j=1

Ikj

)T

+
1

N2
k

(

Nk
∑

j=1

Ikj

)(

Nk
∑

j=1

Ikj

)T




=
c
∑

k=1

Nk
∑

i=1

[

IkiI
T
ki −

2

Nk

Nk
∑

j=1

IkiI
T
kj +

1

N2
k

Nk
∑

ℓ=1

Nk
∑

j=1

IkℓI
T
kj

]

=

c
∑

k=1

[

Nk
∑

i=1

IkiI
T
ki −

2

Nk

Nk
∑

i=1

Nk
∑

j=1

IkiI
T
kj +

1

Nk

Nk
∑

ℓ=1

Nk
∑

j=1

IkℓI
T
kj

]

=

c
∑

k=1

[

Nk
∑

i=1

IkiI
T
ki −

1

Nk

Nk
∑

i=1

Nk
∑

j=1

IkiI
T
kj

]

. (2.44)

Next, we examine the total scatter matrix S
(2)
T of intrapersonal difference im-

ages created in the original exhaustive approach. Because the mean of the difference
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images is zero, the total scatter matrix S
(2)
T is given by

S
(2)
T =

c
∑

k=1

Nk
∑

i=1

Nk
∑

j=1

(Iki − Ikj)(Iki − Ikj)
T

=
c
∑

k=1

Nk
∑

i=1

Nk
∑

j=1

[

IkiI
T
ki − 2IkiI

T
kj + IkjI

T
kj

]

=

c
∑

k=1

Nk
∑

i=1

[

NkIkiI
T
ki − 2

Nk
∑

j=1

IkiI
T
kj +

Nk
∑

j=1

IkjI
T
kj

]

=

c
∑

k=1

[

Nk

Nk
∑

i=1

IkiI
T
ki − 2

Nk
∑

i=1

Nk
∑

j=1

IkiI
T
kj +Nk

Nk
∑

j=1

IkjI
T
kj

]

=

c
∑

k=1

[

2Nk

Nk
∑

i=1

IkiI
T
ki − 2

Nk
∑

i=1

Nk
∑

j=1

IkiI
T
kj

]

=

c
∑

k=1

2Nk

[

Nk
∑

i=1

IkiI
T
ki −

1

Nk

Nk
∑

i=1

Nk
∑

j=1

IkiI
T
kj

]

. (2.45)

From (2.44) and (2.45), if Nk = N ∀k,

S
(2)
T = 2NS

(1)
T . (2.46)

Since these scatter matrices are proportional each other, their eigenvectors obtained

by solving the eigensystem (2.5) are identical and their corresponding eigenvalues

are proportional each other with factor 2N.

Their recognition results using the ML similarity measure are also same be-

cause the proportionality of eigenvalues does not affect the magnitude relationship

of the ML similarity measure.

This investigation also tells that when the number of samples in each class

is identical, the intrapersonal subspace method chooses a projection matrix WI by

solving an optimization problem that maximizes the determinant of the within-class
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scatter matrix SW (2.7) of the projected samples, i.e.,

WI = arg max
W

|W TSWW | (2.47)

instead of maximizing the determinant of the total scatter matrix ST of the projected

samples as in PCA (2.4).

PCA is optimal in the sense of minimizing the mean squared error (MMSE),

which analytically means that PCA can model data distributed as Gaussian well.

The above analysis tells that the intrapersonal subspace method can model data

well if data in each class is distributed as Gaussian with the same covariance. In

contract, the FSS method introduced in Section 2.3 is more general and can model

data well even when data in each class is distributed as Gaussian with different

covariance. Therefore, we suggest modeling FSS rather than the intrapersonal sub-

space if sufficient number of data is available for each class. In this thesis, we use the

FSS model with the density estimation measure in eigenspaces described in Section

2.4.
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Chapter 3

Video-Based Face Recognition

3.1 Historical Review

For decades human face recognition has been an active topic in the field of

object recognition. Many algorithms have been proposed to deal with image-based

recognition where both the training and test sets consist of still face images. Re-

cently, face recognition based on video has become popular. Video-based recognition

has superior advantages over image-based recognition that the temporal and motion

information of faces can be utilized to facilitate the recognition task.

Zhou et al. [83] used particle filter for simultaneous face tracking and recog-

nition in video. Their recognition task was performed by creating many image

patches (particles for tracking states) in one frame and marginalizing joint proba-

bilities respect to these image patches. Turaga et al. [73] applied statistical analysis

on Stiefel and Grassmann manifolds for video-based face recognition. Edwards et

al. [23] proposed an adaptive framework for learning human identity by using the

motion information along the video sequence, which improves both face tracking

and recognition. Li et al. [44] presented a method to construct identity surfaces

using shape and texture models as well as kernel feature extraction algorithms. This

approach estimates pose angle first in order to select an appropriate shape model for

tracking and recognition, and video-based recognition is performed using a weighted
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temporal voting scheme. Liu et al. [46] learned temporal statistics of a face from a

video using adaptive Hidden Markov Models to perform video-based face recogni-

tion. Park et al. [58] proposed a 3D model-based face recognition in video. They

constructed a 3D face model from probe video image sequences, and compared it

with frontal faces in the gallery.

Lee et al. [43] proposed a probabilistic face recognition model in video which

utilizes temporal information to estimate the facial pose at the current frame. How-

ever, this method performs face recognition on a frame-by-frame basis, and did not

propose a method to perform face recognition on an entire video basis. We propose

a method to perform video-based face recognition using Bayesian inference. This

method propagates recognition results in the previous frames to the recognition at

the current frame, and realizes face recognition using the entire video basis.

In the following, we first give a description of the probabilistic appearance

manifold (PAM) method proposed by Lee et al. [43]. Then, we give a description

of our video-based face recognition method using Bayesian inference.

3.2 Video-Based Face Recognition using Probabilistic Appearance

Manifolds

Lee et al. [43] represents each registered person by a low-dimensional ap-

pearance manifold in the ambient image space. The complex nonlinear appearance

manifold is expressed as a collection of subsets (named pose manifolds), and the

connections among them. Each pose manifold is approximated by an affine plane.
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To construct this representation, exemplars are sampled from videos, and these ex-

emplars are clustered using a K-means algorithm; each cluster is represented as

a plane computed using principal component analysis. Connectivities between the

pose manifolds are modeled using the transition probabilities between images in each

of the pose manifold and learned from a training video sequences. A maximum a

posteriori formulation is presented for face recognition in test video sequences by in-

tegrating the likelihood that the input image comes from a particular pose manifold

and the transition probability to this pose manifold from the previous frame.

3.2.1 Probabilistic Appearance Manifolds

Consider a recognition problem with c objects where the images of an object

are acquired by varying the viewpoint. It is well understood that the set of images

of an object under varying viewing conditions can be treated as a low-dimensional

manifold in the image space as demonstrated in parametric appearance manifold

work [56] or view-based eigenspace approach [60]. The recognition task is straight-

forward if the appearance manifold Mk for each individual k is known: for a test

image I, the identity k∗ can be determined by finding the manifold Mk with minimal

“distance” to I, i.e.,

k∗ = arg min
k
dH(I,Mk). (3.1)

Here, dH denotes the L2-Hausdorff distance between the image I and Mk.

Let x ∈ Mk denote a point on a manifold Mk where dim(Mk) ≤ dim(I). Given

a point x ∈ Mk, let the corresponding reconstructed face image be denoted as Îx
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where dim(I) = dim(Îx). If x∗ is the point on Mk at minimal L2 distance to I, then

dH(I,Mk) = d(I, x∗) where d(·, ·) denotes the L2 distance. Alternatively, x∗ can be

regarded as the result of some nonlinear projection of I onto Mk.

Figure 3.1: Appearance manifold. A complex and nonlinear manifold can be ap-

proximated as the union of several simpler pose manifolds. Here, each pose manifold

is represented by a PCA plane [43].

Probabilistically, (3.1) is the result of defining the conditional probability

p(k|I) as

p(k|I) =
1

Λ
exp

(−1

σ2
d2
H(I,Mk)

)

. (3.2)

where Λ is a normalization term, and for a given image I

k∗ = arg max
k

p(k|I). (3.3)

In order to implement this recognition scheme, one must be able to estimate the

projected point x∗ ∈ Mk, and then the image to model distance, dH(I,Mk), can be

computed for a given I and for each Mk. However, such distances can be computed

accurately only if Mk is known exactly. In our case, Mk is usually not known

and can only be approximated with samples. The main part of our algorithm is to

38



provide a probabilistic framework for estimating x∗ and dH(x∗, I). Note that if we

define the conditional probability pMk
(x|I) to be the probability that among points

on Mk, Îx∗ has the smallest L2-distance to I, then

dH(I,Mk) =

∫

Mk

d(x, I)pMk
(x|I)dx, (3.4)

and (3.1) is equivalent to

k∗ = arg min
k

∫

Mk

d(x, I)pMk
(x|I)dx. (3.5)

The above mentioned formulation shows that dH(I,Mk) can be viewed as

the expected distance between a single image frame I and a complex appearance

manifold Mk. Clearly, if Mk were fully known or well-approximated (e.g., described

by some algebraic equations), then pMk
(x|I) could be treated as a δ-function at the

set of points with minimal distance to I. When sufficiently many samples are drawn

from Mk, the expected distance d(I,Mk) will be a good approximation to the true

distance. The reason is that pMk
(x|I) in the integrand in (3.4) will approach a delta

function with its “energy” concentrated on the set of points with minimal distance

to I. In our case, Mk, at best, is approximated through a sparse set of samples,

and so we will model pMk
(x|I) with a Gaussian distribution.

Since the appearance manifold Mk is complex and nonlinear, it is reason-

able to decompose Mk into a collection of m simpler disjoint manifolds, Mk =

Ck1 ∪ · · · ∪ Ckm where Cki is called a pose manifold. Each pose manifold is further

approximated by an affine plane computed through principal component analysis

(called a PCA plane). We define the conditional probability p(Cki|I) for 1 ≤ i ≤ m
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Figure 3.2: Difficulty of frame-based recognition: The two solid curves denote two

different appearance manifolds, MA and MB It is difficult to reach a decision on the

identity from frame It−3 to frame It because these frames have smaller L2 distance

to appearance manifolds MA than MB. However, by looking at the sequence of

images It−6 . . . It+3, it is apparent that the sequence has most likely originated from

appearance manifold MB [43].

as the probability that Cki contains a point x with minimal distance to I for the

identity k. Since pMk
(x|I) =

∑m
i=1 p(C

ki|I)pCki(x|I), we have,

dH(I,Mk) =

∫

Mk

d(x, I)pMk
(x|I)dx

=
m
∑

i=1

p(Cki|I)
∫

Cki

dH(x, I)pCki(x|I)dx

=

m
∑

i=1

p(Cki|I)dH(I, Cki). (3.6)

The above equation shows that the expected distance d(I,Mk) can be also

treated as the average of expected distance between I and each pose manifold Cki

weighted by probabilities of each pose given the identity k and I. In addition, this

equation transforms the integral to a finite summation which is feasible to compute

numerically.
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For face recognition from video sequences, we can exploit temporal coherence

between consecutive image frames. As shown in Figure 3.2, the L2 norm may

occasionally be misleading during recognition. But if we consider previous frames

in an image sequence rather than just one, then the set of closest points x∗ will

trace a curve on a pose manifold. In our framework, this is embodied by the term

p(Cki|I) in (3.6). In Section 3.2.2, we will apply Bayesian inference to incorporate

temporal information to provide a better estimation of p(Cki|I), and thus dH(I,Mk)

to achieve better recognition performance.

3.2.2 Computing p(Cki
t |It)

For recognition from a video sequence, we need to estimate p(Cki
t |It) for each

i at time t. To incorporate temporal information, p(Cki
t |It) should be taken as the

joint conditional probability p(Cki
t |It, I0:t−1) where I0:t−1 denotes the frames from

the beginning up to time t − 1. We further assume It and I0:t−1 are independent

given Cki
t , as well as Cki

t and I0:t−1 are independent given Cki
t−1. Using Bayes’ rule

we have the following recursive formulation:

p(Cki
t |It, I0:t−1) = αp(It|Cki

t , I0:t−1)p(C
ki
t |I0:t−1)

= αp(It|Cki
t )

m
∑

j=1

p(Cki
t |Ckj

t−1, I0:t−1)p(C
kj
t−1|I0:t−1)

= αp(It|Cki
t )

m
∑

j=1

p(Cki
t |Ckj

t−1)p(C
kj
t−1|It−1, I0:t−2) (3.7)

where α is a normalization term to ensure
∑m

i=1 p(C
ki
t |It, I0:t−1) = 1.

The temporal dynamics of the video sequence is captured by the transition

probability between the manifolds, p(Cki
t |Ckj

t−1). Note that p(Cki
t |Ckj

t−1) is the proba-
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bility of xt ∈ Cki given xt−1 ∈ Ckj. For two consecutive frames It−1 and It, because

of temporal coherency, we expect that their projected points x∗t−1 and x∗t should have

small geodesic distance on M (See Figure 3.2). That is the transition probability

p(Cki
t |Ckj

t−1) is related implicitly to the geodesic distance between Cki and Ckj.

Figure 3.3: Dynamics among pose manifolds. The dynamics among the pose man-

ifolds are learned from training videos which describes the probability of moving

from one manifold to another at any time instance [43].

3.2.3 Learning Manifolds and Dynamics

For each person k, we collect at least one video sequence containing l consec-

utive images Sk = {I1, · · · Il}. We further assume that each training image is a

fair sample drawn from the appearance manifold Mk. There are three steps in the

algorithm. We first partition these samples into m disjoint subsets {Sk1, · · · Skm}.

For each collection Ski, we can consider it as containing points drawn from some

pose manifold Cki of Mk, and from the images in Ski, we construct a linear approx-

imation to the Cki of the true manifold Mk. After all the Cki have been computed,
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we estimate the transition probabilities p(Cki|Ckj) for i 6= j.

In the first step, we apply a K-means clustering algorithm to the set of images

in the video sequences. We initialize m seeds by finding m frames from the train-

ing videos with the largest L2 distance to each other. Then the general K-means

algorithm is used to assign images to the m clusters. As our goal in performing clus-

tering is to approximate the data set rather than to derive semantically meaningful

cluster centers, it is worth noting that the resulting clusters are no worse than twice

what the optimal center would be if they could be easily found [32].

Second, for each Ski we obtain a linear approximation of the underlying subset

Cki ⊂ Mk by computing a PCA plane Lki of fixed dimension for the images in Ski.

Since the PCA planes approximate appearance manifold Mi, their dimension is the

intrinsic dimension of M , and therefore all PCA planes Li have the same dimension.

Finally, the transition probability p(Cki|Ckj) is defined by counting the actual

transitions between different Si observed in the image sequence:

p(Cki|Ckj) =
1

Λ

l
∑

q=2

δ(Iq−1 ∈ Ski)δ(Iq ∈ Skj) (3.8)

where δ(Iq ∈ Skj) = 1 if Iq ∈ Skj and otherwise it is 0. The normalizing constant

Λki ensures that
m
∑

j=1

p(Cki|Ckj) = 1. (3.9)

where we set p(Cki|Cki) to a constant κ. A graphic representation of a transition

matrix with m = 5 learned from a training video is depicted in Figure 3.4.

With Cki and its linear approximation Lki defined, we can calculates p(I|Cki).

We can compute the L2 distances d̂ki = dH(I, Lki) from I to each Lki. We treat d̂ki as
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an estimate of the true distance from I to Cki, i.e., dH(I, Cki) = dH(I, Lki). p(I|Cki)

is defined as

p(I|Cki) =
1

Λk

exp

( −1

2 ∗ σ2
ki

d̂2
ki

)

(3.10)

with Λk =
∑m

i=1 exp
(

−1
2∗σ2

ki

d̂2
ki

)

. The variance σ2
ki is learned from the distribution of

the distances from the training image sets to Cki.

Figure 3.4: Graphic representation of a transition matrix learned from a training

video. In this example, the appearance manifold is approximated by 5 pose sub-

spaces. The reconstructed center image of each pose subspace is shown at the top

raw and column. The transition probability matrix is drawn by the 5 ×5 block

diagram. The brighter block means a higher transition probability. It is easy to see

that the frontal pose (pose 1) has higher probability to change to other poses; the

right pose (pose 2) has almost zero probability to directly change to the left pose

(pose 3) [43].
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3.2.4 Face Recognition from Video

Figure 3.5: Sample gallery videos used in the experiments. Note the pose variation

changed is rather large in this data set [43].

Given an image I from a video sequence, we compute for each person k the

distance dH(I,Mk) using (3.6). Note that p(Cki|I) has a temporal dependency, and

it is computed recursively using (3.7). Once all the dH(I,Mk) have been computed,

the posterior p(k|I) is computed by (3.2) with appropriate σ, and the human identity

is decided by (3.5).

It is also worth mentioning that the proposed framework exploits the temporal

coherence in the appearance of consecutive face images by integrating the manifold

transition at the previous and current time instance. For face recognition with

varying pose, our method ensures that the transitions between pose manifolds do

not occur arbitrarily but rather in a constrained order. For example the appearance

of one person’s face cannot change immediately from left profile to right profile in
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two consecutive frames, but rather it must pass through some intermediate pose

or orientation (See Figure 3.5). This process can also be considered as putting a

first order Markov process or finite state machine over a piecewise linear structure.

In contrast, simple temporal voting scheme has been commonly adopted in most

video-based face recognition methods [44] [68].

3.2.5 Recognizing Partially Occluded Faces

Similar to the formulation exploiting temporal information for recognition, the

same approach can be easily extended to deal with partial occlusion of a face by

considering the previous frame as prior information. The original formulation for

dH(Cki
t , It) treats every pixel in image It with equal weight assuming that there is

no occlusion anywhere in the image sequence. If we knew which pixels corresponded

to occlusions, we would put lower weights on those pixels

W
(1)
t = exp

( −1

2 ∗ σ2
(Îx∗ − It). ∗ (Îx∗ − It)

)

(3.11)

in the first iteration. Alliteratively, Wt can be iteratively updated based on W
(1)
t

and Î
(1)
x∗ (i.e., the reconstructed image based on W

(1)
t and dH(Mk∗,W

(1)
t . ∗ It))

W
(i+1)
t = exp

( −1

2 ∗ σ2
(Î

(i)
x∗ − It). ∗ (Î

(i)
x∗ − It)

)

(3.12)

until the difference between W
(i)
t and W

(i−1)
t is below a threshold value at the i-th

iteration.

Both the appearance manifold and mask information at previous frames are

utilized to estimate the current occlusion mask in the equations above. We first per-

form the weighted projection to find a reconstructed image using the corresponding

46



pose manifold and iteratively estimate the occlusion areas in the current frame.

Once we get an updated mask Wt in frame It by (3.11), we evaluate (3.6) for face

recognition by replacing dH(Cki
t , It) with dH(Cki

t ,Wt. ∗ It).

Figure 3.6 shows an example where a face is partially occluded by an object

(lower left). The reconstructed image using the corresponding pose manifold is

shown in the lower center. The updated mask is shown in the lower right where

the values have been thresholded –a dark pixel denotes a probability of occlusion.

Note that the updated mask matches the occluded region reasonably well. Note also

that the mask predicts that several pixels are occluded though in fact they are not.

This is caused by the disagreement between the input image and the reconstructed

image. Nevertheless, the regions that matter most for recognition (i.e., the central

face region and the occluded region) are weighted appropriately. Our experimental

results, presented in the next section, also demonstrate that the mask scheme is

effective in recognizing partially occluded faces.

Figure 3.6: Top row: (left) an unoccluded face image, (center) a reconstructed image

using corresponding pose manifold, and (right) a corresponding mask). Bottom row:

(left) a face image partially occluded by one hand, (center) a reconstructed image

using corresponding pose manifold, and (right) an updated mask.
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3.3 Video-Based Face Recognition in Bayesian Inference

Lee et al. [43] proposed a probabilistic face recognition model in video which

utilizes temporal information to estimate the facial pose at the current frame for

improving face recognition. However, this method performs face recognition on a

frame-by-frame basis, and they did not propose a method to perform face recognition

using entire video sequence. We propose a method to perform video-based face

recognition using entire video and Bayesian inference. This method propagates

recognition results in the previous frames to the recognition at the current frame,

and utilizes the temporal information in a video sequence to model dynamics of

facial poses.

This method represents an appearance manifold of each person by a complex

nonlinear appearance manifold expressed as a collection of subsets (named pose

manifolds) and the connectivity among them as in [43]. Facial images are parti-

tioned into m disjoint pose subsets manually and pose manifolds are constructed

and approximated by modeling the pose images by the PCA plane. The connec-

tivity between the pose manifolds is represented by transition probabilities between

pose subsets. It is modeled by discretizing the pose transition probabilities of facial

images in roll and pitch directions that are assumed to be distributed as Gaussian

when no prior knowledge about the test video is available. A Bayesian inference

formulation is presented to utilize the temporal information in the video, i.e., the

transition probabilities between pose manifolds and to accumulate the recognition

results. A maximum a posteriori is applied for face recognition after marginalizing
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the posterior probabilities of pose manifolds of a particular person.

3.3.1 Problem Formulation

Consider a recognition problem with c objects where the images of an object

are acquired by varying the viewpoint. Given a test set of temporal observation

image sequences {It, t = 0, 1, . . . , T − 1} where T is the number of frames, the

recognition task is straight-forward if the manifold Mk for each individual k is

known: identity k∗ can be determined by finding the most probable manifold Mk

that a given set of images I0:T−1 belongs to, i.e.,

k∗ = arg max
k

p(Mk|I0:T−1). (3.13)

where p(Mk|I0:T−1) denotes the probability that a given set of images I0:T−1 belongs

to the manifold Mk.

Figure 3.7: Appearance manifold. A complex and nonlinear manifold can be ap-

proximated as the union of several simpler pose manifolds; here, each pose manifold

is represented by a PCA plane.

Since the appearance manifold Mk is complex and nonlinear, it is reasonable

to decompose Mk into a collection of m simpler disjoint manifolds, Mk = Ck1 ∪
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· · · ∪ Ckm where Cki is called as a pose manifold and the pose manifolds {Cki, 1 ≤

k ≤ c} represent a corresponding pose in all c objects. Each pose manifold is further

approximated by an affine plane computed through principal component analysis

(called a PCA plane). We define the conditional probability p(Cki|I0:T−1) as the

probability that a set of images I0:T−1 belongs into Cki manifold where we have

p(Mk|I0:T−1) =
m
∑

i=1

p(Cki|I0:T−1). (3.14)

For recognition from a video sequence, we need to estimate p(Cki
t |I0:t) for each

i and k at time t. We assume It and I0:t−1 are independent given Cki
t , as well as

Cki
t and I0:t−1 are independent given Cki

t−1. Using Bayes’ rule we have the following

recursive formulation:

p(Cki
t |I0:t) = p(Cki

t |It, I0:t−1)

= αp(It|Cki
t , I0:t−1)p(C

ki
t |I0:t−1)

= αp(It|Cki
t )p(Cki

t |I0:t−1)

= αp(It|Cki
t )

m
∑

j=1

p(Cki
t , C

kj
t−1|I0:t−1)

= αp(It|Cki
t )

m
∑

j=1

p(Cki
t |Ckj

t−1, I0:t−1)p(C
kj
t−1|I0:t−1)

= αp(It|Cki
t )

m
∑

j=1

p(Cki
t |Ckj

t−1)p(C
kj
t−1|I0:t−1) (3.15)

where α is a normalization term to ensure
∑c

k=1

∑m
i=1 p(C

ki
t |I0:t) = 1. The initial

probabilities are assumed to be uniform, i.e., p(Cki
0 |I0:−1) = p(Cki

0 ) = 1
mc

. The

temporal dynamics of the video sequence is captured by the transition probability

between the pose manifolds, p(Cki
t |Ckj

t−1).
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3.3.2 Learning Manifolds

For each person k, collect a set of training images {Ikt}NT

t=1 and form a training

set of vectors {xkt}NT

t=1 where xk ∈ RD and D is the number of dimensions of

the vector, by lexicographic ordering of the pixel elements of each image Ikt. We

partition these samples into m facial pose disjoint subsets {Sk1, · · · , Skm} manually

so that subsets {Ski, 1 ≤ k ≤ c} are partitioned into the same facial pose. From

the images in Ski, we construct a linear PCA approximation Lki to the Cki of the

true manifold Mk. With Cki and its linear PCA approximation Lki defined, we can

define how p(I|Cki) can be calculated. Moghaddam et al. [53] proposed a method

for density estimation in eigenspaces.

This method uses PCA to obtain a principal subspace Lki whose principal com-

ponents yki can be used to form an optimal (minimal divergence) low-dimensional

estimate of the complete likelihood using only the first Mki principal components

{yki1, yki2, yki3, . . . , ykiMki
}, where Mki ≪ D. We define p(I|Cki) as the likelihood

density estimate P̂ (x|Lki) of a test image x in Lki which can be written as the

product of two independent marginal Gaussian densities, i.e.,

p(I|Cki) , P̂ (x|Lki) =















exp

(

−1

2

Mki
∑

ℓ=1

y2
kiℓ

λkiℓ

)

(2π)Mki/2

Mki
∏

ℓ=1

λ
1/2
kiℓ























exp

(

−1

2

ǫ2ki(x)

ρki

)

(2πρki)
(D−Mki)/2









(3.16)

where {λkiℓ}Mki

ℓ=1 are the eigenvalues of Lki, {ykiℓ}Mki

ℓ=1 are the principal components

in Lki, and ǫ2ki(x) is the PCA residual (reconstruction error) for Lki. The density

parameter ρki is derived by minimizing the Kullback-Leibler (KL) divergence and is
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found to be

ρki =
1

D −Mki

D
∑

ℓ=Mki+1

λkiℓ. (3.17)

In practice, Mki is set to be identical for all identities and poses, i.e., Mki =

M, ∀k and ∀i to provide fairness.

3.3.3 Modeling Dynamics

Figure 3.8: Examples of face images from front, left, right, up, and down pose sub-

sets. The curves represent the pose transition probabilities given the frontal face pose

which are distributed as Gaussians. The images are collected from Honda/UCSD

Video Database [43].

When no prior knowledge for dynamics in a probe video is available, we assume

that the transition probability between poses is independent from the identity k, and

further assume that the continuous conditional probabilities of pose transitions in
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both roll (up-down profile) and pitch (left-right profile) direction are distributed on

Gaussian densities and independent of each other, i.e.,

p(φxt |φxt−1) =
1√

2πσφx

exp

(

−(φxt − φxt−1)
2

2σ2
φx

)

, (3.18)

p(φyt |φyt−1) =
1√

2πσφy

exp

(

−(φyt − φyt−1)
2

2σ2
φy

)

, (3.19)

p(φxt , φ
y
t |φxt−1, φ

y
t−1) = p(φxt |φxt−1)p(φ

y
t |φyt−1) (3.20)

where φxt and φyt are the continuous roll and pitch rotation angles at time t, and σ2
φx

and σ2
φy are variances in the roll and pitch directions respectively.

We partition the joint set of continuous pose parameters (φx, φy) intom disjoint

facial pose subsets {P1, . . . ,Pm} and define the transition probability between pose

subsets as

p(P i
t |Pj

t−1) = α

∫

(φx
t ,φ

y
t )∈Pi

t

p(φxt , φ
y
t |φxt−1, φ

y
t−1 = φx

j

t−1, φ
y
j

t−1)d(φxt , φ
y
t ) (3.21)

where φx
j
and φy

j
are the center angles in the pose subset Pj for the roll and pitch di-

rections respectively and α is a normalization constant to ensure
∑m

i=1 p(P i
t |Pj

t−1) =

1. From the assumption that the transition probability between poses is independent

from the identity k, p(Cki
t |Ckj

t−1) is defined as

p(Cki
t |Ckj

t−1) = p(ωkt |ωkt−1,Pj
t−1)p(P i

t |ωkt−1,Pj
t−1)

= p(P i
t |Pj

t−1). (3.22)

where ω denotes an identity random variable and p(ωkt |ωkt−1,Pj
t−1) = p(ωkt |ωkt−1) = 1.

A graphic example of pose subsets where m = 5 and the pose transition probabilities

given the frontal face pose is illustrated in Figure 3.8.
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3.3.4 Face Recognition from Video

Given an image It from a video sequence, we compute for each person k the

likelihood probability p(It|Cki) using (3.16). The posterior probability p(Cki|I0:t)

is computed recursively by propagating results from previous frames using (3.15).

Once all the p(Cki|I0:t) is computed, the posterior p(Mk|I0:t) is computed using

(3.14).

We recursively repeat the above steps until the maximum identity confidence

exceeds a given confidence threshold τ , i.e, maxk p(Mk|I0:t) ≥ τ . Finally, the human

identity k∗ is determined by (3.13).

This method has four useful characteristics: (1) it utilizes temporal informa-

tion in a video, (2) it accumulates recognition results in frames, (3) it progressively

obtains the recognition confidence, and (4) it does not require to process all frames

in a video. The 2nd accumulation characteristic possibly enables to solve face recog-

nition problems in low-resolution videos. The 3rd progressive characteristic is useful

especially in a real-time processing because we do not need to wait to receive an en-

tire probe video before processing. The 4th characteristic results in a computational

efficiency over batch methods.

3.3.5 Experiments and Results

In this section, experimental results are given. We use the Honda/UCSD

video dataset [43] for experiments. The Honda/UCSD video dataset consists of

a set of 45 videos of 20 different people. Each individual in the database has at
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least two videos where each person moves in a different combination of 2-D and 3-D

rotation, expressions, and speed. Each video lasting for 20 seconds was recorded

in an indoor environments (with 30 color frames of 640 × 480 pixels per second).

We cropped facial image patches manually in the video as shown in Figure 3.9, and

then each image was downsampled to 20 × 20 pixels, to imitate the image quality in

surveillance systems. The pixels in each image were normalized to have zero mean

and unit variance.

Figure 3.9: Examples from Honda/UCSD video dataset [43]

3.3.5.1 Cropping Facial Images

To crop facial image patches in a image sequence manually fast, we have

created a software named imageclipper and the software is available online [67].

This software is useful not only for facial images but also for any kinds of images

and works under multi-platform (Windows and Linux). Using this software, we can

(1) open images in a directory sequentially, (2) open a video, frame by frame, (3)
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crop (save) an image patch and go to the next image by pressing one button, (4)

move and resize the rectangle region to crop by hotkeys or right mouse button, and

(5) rotate and shear deform, i.e., affine transform, the rectangle region. A snapshot

of the software is shown in Figure 3.10.

Figure 3.10: A snapshot of the software imageclipper

3.3.5.2 Semi-Automation of Pose Clustering

We need to partition a facial image sequence in a training video into differ-

ent pose subsets. In this experiment we partitioned the image set into the front,

left, right, up, and down pose subsets, i.e., m = 5 as in [43]. This partitioning

was performed semi-automatically using the K-means clustering method. In the

Honda/UCSD video dataset, 2-D appearance variations produced by pose varia-

tions are much higher than the one caused by illumination and facial expression

56



variations. Therefore, the unsupervised K-means clustering algorithm can partition

an image set into different pose clusters in most cases. Utilizing this characteris-

tic, we partitioned a facial image sequence by applying the K-means algorithm to

the raw image vectors, and then inspected the results manually. Examples in the

generated pose subsets are shown in Figure 3.11.

Figure 3.11: Examples in the pose subsets. The top row presents frontal faces, the

2nd top row presents left-profile faces, the middle row presents right-profile faces, the

2nd bottom row presents up-profile faces, and the bottom row presents the bottom-

profile faces. The left/right-up and left/right-down profile faces are included in the

left/right-profile subsets respectively. Images were resized to have a square size.

3.3.5.3 Confidence Update

Figure 3.12 presents a plot of the posterior probability p(Mk|I0:t) versus time t

for a test video. This experimental result shows a behavior of our proposed method
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such that the confidence in recognition is gradually increased as time proceeds.
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Figure 3.12: Posterior probability p(Mk|I0:t) against time t obtained by the pro-

posed algorithm. Notice that the confidence p(Mk|I0:t) is gradually increased as

time proceeds.

3.3.5.4 Good Choice of the Confidence Threshold

Our proposed face recognition algorithm can stop to process video frames at

time t when the posterior confidence p(Mk|I0:t) achieves a confidence threshold τ .

In this experiment we examine a good number of the confidence threshold τ . Figure

3.13(a) presents a plot of recognition rate versus τ , and Figure 3.13(b) presents a plot

of the average number of frames required to process and its standard deviation versus

τ . There exists 20 test videos, i.e., one video for each individual in the Honda/UCSD

dataset. We split each test video in every 150 frames, where the video originally

have 300 ∼ 500 frames, to increase the number of test videos. We downsampled

each facial image to 20× 20 and reduced the number of feature dimensions to 20 by
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projecting them onto PCA subspaces. Figure 3.13(a) shows that the recognition rate

increases as the confidence threshold increases. However, Figure 3.13(b) shows that

the number of frames required to process also increases as the confidence threshold

increases. The practical choice seems to be τ = 0.999 from this experiment.
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Figure 3.13: (a) Face recognition rate versus τ . (b) The average number of frames

required to process and its standard deviation versus τ . Each image size was 20×20

and these images were reduced into 20 dimensions by projecting onto PCA subspace.

Face recognition at τ = 0 tells a result using one image, i.e., a result of image-based

face recognition.

3.3.5.5 Face Recognition

Finally, the recognition results in the HONDA/UCSD test videos are presented

here. The facial image patches in the 20 training videos and 20 test videos, i.e., one

video for each individual respectively, were manually cropped, and the appearance

manifolds were trained using the facial images in the training videos. The number of
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test videos was increased to 78 by dividing the original test video sequence to have

150 frames, where original videos typically have 300 ∼ 500 frames. Each cropped

facial image was downsampled to 20 × 20 pixels and the pixels in each image were

normalized to have zero mean and unit variance. Each image was then projected

onto the PCA subspaces to reduce the number of feature dimension. The confidence

threshold τ = 0.999 was used. Figure 3.14 shows the cumulative match curves [63]

when 20 dimensional features were used. The recognition rate was about 92%.

We also applied a frame-by-frame strategy using the same appearance model and

likelihood measurement, and performed recognition in a video by temporal majority

voting. The recognition rate was 83% in this case. When 40 dimensional features

were used, our proposed algorithm achieved the 100% recognition rate by processing

37.95 frames on average.
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Figure 3.14: The cumulative matching score versus rank where the 1st rank shows

the recognition rate. 20 identities are in the database, and the number of test

videos is 78. The confidence threshold τ = 0.999 which processes 45.04 frames in

average was used. Each image size was 20×20 and these images were reduced to 20

dimensions by projecting onto PCA subspace. When 40 dimensional features were

used, 100% recognition rate was achieved.
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Chapter 4

Object Tracking using Bayesian Filtering

4.1 Introduction

Many problems require estimation of the state of a system that changes over

time, using a sequence of noisy measurements. In order to analyze and make infer-

ence about a dynamic system we need two models, a transition model describing

the evolution of the state {xk, k ∈ N} with time, and an observation model

relating the noisy measurements {zk, k ∈ N} to the state.

In Bayesian framework, all relevant information about {x0, x1, .., xk} given

observations up to and including time k, can be obtained from the posterior distri-

bution p(x0:k|z1:k). In many applications we are interested in recursively estimating

this distribution, and particularly the marginals, the so-called filtering distribution

p(xk|z1:k). This problem is known as the Bayesian filtering problem or the optimal

filtering problem [1].

A recursive filtering approach means that received data can be processed se-

quentially rather than in a batch mode, so that it is neither necessary to store the

complete data set nor to reprocess existing data if a new measurement becomes

available. Such a filter consists of essentially two stages: prediction and update.

The prediction stage uses the transition model to predict the state distribution for-

ward from one measurement time to the next. Since the state is usually subject to
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unknown disturbances (modeled as random noise), the prediction generally trans-

lates, deforms, and spreads the state distribution. The update operation uses the

latest measurement to modify the prediction distribution. This is achieved using

the Bayes theorem, which is a mechanism for updating knowledge about the target

state in the light of additional information from new data.

In the following, we give a description of the nonlinear tracking problem and

its optimal solutions. When certain constraints hold, this optimal solutions are

tractable. Often, the optimal solution is intractable so we take approximation strate-

gies to the optimal solution using particle filters.

4.2 Nonlinear Bayesian tracking

To define the problem of tracking, consider the evolution of the state sequence

{xk, k ∈ N} of a target given by

xk = fk(xk−1,vk−1), (4.1)

where fk(.) is a possibly nonlinear function of the state xk−1 and {vk, k ∈ N} is

an i.i.d. process noise sequence. The objective of tracking is to recursively estimate

the posterior distribution from measurements:

zk = hk(xk, nk), (4.2)

where hk(.) is a possibly nonlinear function, {vk, k ∈ N} is an i.i.d. measurement

noise sequence. In particular, we seek filtered estimates of the posterior based on

the set of all available measurements z1:k = {zi, i = 1, . . . , k}, up to time k.
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From a Bayesian perspective, the tracking problem is one of recursively calcu-

lating some degree of belief in the state xk at time k, given the data z1:k up to time

k. Thus, it is required to construct the probability density function (pdf) p(xk|z1:k).

It is assumed that the initial pdf p(x0|z0) ≡ p(x0), of the state vector, also known

as the prior, is available. Then, in principle, the pdf p(xk|z1:k) may be obtained

recursively in two stages: prediction and update.

Suppose that the required pdf p(xk−1|z1:k−1) at time k − 1 is available. The

prediction stage involves using the transition model (4.1) to obtain the prior pdf of

the state at time k via the Chapman-Kolmogorov equation [1]:

p(xk|z1:k−1) =

∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (4.3)

Note that a Markov process of order one p(xk|xk−1, z1:k−1) = p(xk|xk−1) has been

used. The probabilistic model of the state evolution, p(xk|xk−1), is defined by the

system equation (4.1) and the known statistics of vk−1.

At time step k, a measurement zk becomes available, and this may be used to

update the prior (update stage) via Bayes rule

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(4.4)

where the normalizing constant

p(zk|z1:k−1) =

∫

p(zk|xk)p(xk|z1:k−1)dxk (4.5)

depends on the likelihood function p(zk|xk) defined by the measurement model (4.2)

and the known statistics of nk. In the update stage, the measurement is used to

modify the prior density to obtain the required posterior density of the current state.

64



The recurrence relations (4.3) and (4.4) form the basis for the optimal Bayesian

solution 1. This recursive propagation of the posterior density is only a conceptual

solution in that, generally, it cannot be analytically determined. However, solutions

do exist for restrictive set of cases, including the Kalman filter and grid-based filters.

4.3 Optimal Algorithms

4.3.1 Kalman Filter

The Kalman filter [39] assumes that the posterior density at every time step

is Gaussian distributed and, hence, represented by a mean and covariance. If

p(xk−1|z1:k−1) is Gaussian, it can be shown that p(xk|z1:k) is also Gaussian, pro-

vided that some assumptions hold:

• vk−1 and nk are drawn from Gaussian distributions with known parameters.

• fk(xk−1, vk−1) is known, and is a linear function of xk−1 and vk−1.

• hk(xk, nk) is a known linear function of xk and nk.

That is, system equations (4.1) and (4.2) can be rewritten as:

xk = Fkxk−1 + vk−1 (4.6)

zk = Hkxk + nk (4.7)

1For clarity, the optimal Bayesian solution solves the problem of recursively calculating the

exact posterior density. An optimal algorithm is a method for deducing this solution.

65



where Fk and Hk are the known matrices that define the linear functions. The

covariances of vk−1 and nk are respectively Qk−1 and Rk. Here we consider the case

when vk−1 and nk have zero mean and are statistically independent. Note that the

system and measurement matrices Fk and Hk, as well as noise parameters Qk−1 and

Rk, are allowed to be time variant.

The Kalman filter algorithm, derived using (4.3) and (4.4), can then be viewed

as the following recursive relationship:

p(xk−1|z1:k−1) = N (xk−1 ; mk−1|k−1, Pk−1|k−1) (4.8)

p(xk|z1:k−1) = N (xk ; mk|k−1, Pk|k−1) (4.9)

p(xk|z1:k) = N (xk ; mk|k, Pk|k) (4.10)

where

mk|k−1 = Fkmk−1|k−1 (4.11)

Pk|k−1 = Qk−1 + FkPk−1|k−1F
T
k (4.12)

mk|k = mk|k−1 +Kk(zk −Hkmk|k−1) (4.13)

Pk|k = Pk|k−1 −KkHkPk|k−1 (4.14)

and where N (x;m,P ) is a Gaussian density with argument x, mean m and covari-

ance P and:

Sk = HkPk|k−1H
T
k +Rk, (4.15)

Kk = Pk|k−1H
T
k S

−1
k , (4.16)

are the covariance of the innovation term zk − Hkmk|k−1, and the Kalman gain,

respectively.
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This is the optimal solution to the tracking problem –if the (highly restrictive)

assumptions hold. The implication is that no algorithm can ever do better than a

Kalman filter in this linear Gaussian environment.

4.3.2 Grid-based Filter

Grid-based methods [1] provide the optimal recursion of the filtered density,

p(xk|z1:k), if the state space is discrete and consists of a finite number of states.

Suppose the state space at time k−1 consists of discrete states xik−1, i = 1, . . . , Ns.

For each state xik−1, let the conditional probability of that state, given measurements

up to time k−1 be denoted by wik−1|k−1, that is, Pr(xk−1 = xik−1|z1:k−1) = wik−1|k−1.

Then, the posterior pdf at k − 1 can be written as

p(xk−1|z1:k−1) =
Ns
∑

i=1

wik−1|k−1δ(xk−1 − xik−1) (4.17)

where δ(·) is the Dirac delta measure. Substitution of (4.17) into (4.3) and (4.4)

yields the prediction and update equations, respectively:

p(xk|z1:k−1) =

Ns
∑

i=1

wik|k−1δ(xk − xik) (4.18)

p(xk|z1:k) =
Ns
∑

i=1

wik|kδ(xk − xik) (4.19)

where

wik|k−1 ,

Ns
∑

j=1

wjk−1|k−1p(x
i
k|xjk−1), (4.20)

wik|k ,
wik|k−1p(zk|xik)

∑Ns

j=1w
j
k|k−1p(zk|x

j
k)

(4.21)
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The above assumes that p(xik|xjk−1) and p(zk|xik) are known, but does not constrain

the particular form of these discrete densities. Again, this is the optimal solution if

the assumptions hold.

4.4 Particle Filtering

4.4.1 Sequential Importance Sampling (SIS)

The Sequential Importance Sampling (SIS) particle filter algorithm is a Monte

Carlo (MC) method that forms the basis for most sequential MC filters developed

over the past decades [20]. The sequential MC (SMC) approach is known variously

as bootstrap filtering [27], the condensation algorithm [48], particle filtering [13],

interacting particle approximations [19], [55] and survival of the fittest [40]. It is a

technique for implementing a recursive Bayesian filter using MC simulations. The

key idea is to represent the required posterior density function by a set of random

samples with associated weights and to compute estimates based on these samples

and weights. As the number of samples becomes very large, this MC characteriza-

tion becomes an equivalent representation to the usual functional description of the

posterior pdf, and the SIS filter approaches the optimal Bayesian estimate.

In order to develop the details of the algorithm, let {xi0:k, wik}Ns

i=1 denote a

random measure that characterizes the posterior pdf p(x0:k|z1:k), where {xi0:k, i =

1, . . . , Ns} is a set of support points with associated weights {wik, i = 1, . . . , Ns},

and x0:k = {x0, x1, . . . , xk}, is the set of all states up to time k. The weights are

normalized such that
∑Ns

i=1w
i
k = 1. Then, the posterior density at time k can be
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approximated as:

p(x0:k|z1:k) ≈
Ns
∑

i=1

wikδ(x0:k − xi0:k). (4.22)

Therefore, we have a discrete weighted approximation to the true posterior,

p(x0:k|z1:k). The weights are chosen using the principle of Importance Sampling

[20]. This principle relies on the following assumptions. Suppose that p(x) ∝

π(x) is a probability density from which it is difficult to draw samples, but for

which π(x) can be evaluated (as well as p(x) up to proportionality). Also, let

xi ∼ q(x), i = 1, · · · , Ns be samples that are easily generated from a proposal q(.)

called an importance density. Then, a weighted approximation to the density p(.)

is given by

p(x) ≈
Ns
∑

i=1

wiδ(x − xi) (4.23)

where

wi ∝ π(xi)

q(xi)
(4.24)

is the normalized weight of the ith particle.

Therefore, if the samples xi0:k were drawn from an importance density q(x0:k|z0:k),

then the weights are defined to be:

wik ∝
p(xi0:k|z1:k)

q(xi0:k|z1:k)
. (4.25)

Returning to the sequential case, at each iteration, one could have samples

constituting an approximation to p(x0:k−1|z1:k−1) and it is required to approximate

p(x0:k|z1:k) with a new set of samples. If the importance density is chosen to factorize

such that

q(x0:k|z1:k) = q(xk|x0:k−1, z1:k)q(x0:k−1|z1:k−1), (4.26)
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then one can obtain samples xi0:k ∼ q(x0:k|z1:k) by augmenting each of the existing

samples xi0:k−1 with the new sample xik ∼ q(xk|x0:k−1, z1:k). To derive the weight

update equation, p(x0:k|z1:k) is first expressed in terms of p(x0:k−1|z1:k−1), p(zk|xk),

and p(xk|xk−1):

p(x0:k|z1:k) ∝ p(zk|xk)p(xk|xk−1)p(x0:k−1|z1:k−1). (4.27)

By substituting, the weight update equation can then be shown to be

wik ∝ wik−1

p(zk|xik)p(xik|xik−1)

q(xik|xi0:k−1, z1:k)
. (4.28)

Furthermore, if q(xk|x0:k−1, z1:k) = q(xk|xk−1, zk), then the importance den-

sity becomes only dependent on xk−1 and zk. This is useful in the common case

when only a filtered estimate of the posterior distribution is required at each time

step. In such scenarios, only xik need to be stored; therefore, one can discard the

path xi0:k and the history of observations. The modified weight becomes then

wik ∝ wik−1

p(zk|xik)p(xik|xik−1)

q(xik|xik−1, zk)
, (4.29)

and the posterior filtered density p(xk|z1:k) can be approximated as:

p(xk|z1:k) ≈
Ns
∑

i=1

wikδ(xk − xik) (4.30)

where the weights are defined in (4.29). It can be shown that as Ns → ∞ the

approximation approaches the true posterior density, p(xk|z1:k) [18]. The SIS algo-

rithm thus consists of recursive propagation of the weights and support points, as

each measurement is sequentially received.
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The state estimate x̂k can either be the minimum mean square error (MMSE)

estimate

x̂MMSE
k = E[xk|z1:k] ≈

Ns
∑

j=1

wikx
i
k (4.31)

or the maximum a posteriori (MAP) estimate

x̂MAP
k = arg max

xk

p(xk|z1:k) ≈ arg max
xi

k

wik (4.32)

or other forms based on p(xk|z1:k).

Degeneracy Problem

A common problem with the SIS particle filter is the degeneracy phenomenon,

where after a few iterations, all but one particle have negligible weight. It has been

shown that the variance of the importance weights can only increase over time and,

thus, it is impossible to avoid the degeneracy phenomenon. This degeneracy implies

that a large computational effort is devoted to update particles whose contribution to

the approximation is almost zero. A suitable measure of degeneracy of the algorithm

is the effective sample size Neff introduced in [45], and defined as

Neff =
Ns

1 + V ar(w∗i
k )

(4.33)

where w∗i
k = p(xik|z1:k)/q(x

i
k|xi1:k−1, zk), is referred to as the “true weight”. This

cannot be evaluated exactly, but an estimate N̂eff of Neff can be obtained by

N̂eff =
1

∑Ns

i=1(w
i
k)

2
(4.34)

where wik is the normalized weight obtained using (4.29). Notice that Neff ≤ Ns,

and a small Neff indicates severe degeneracy. Clearly, the degeneracy problem is
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undesirable. The brute force approach reduce this effect, uses a very large value

for Ns. Since this is often impractical, usually one relies on a technique called

Resampling described next.

4.4.2 Resampling

The basic idea of resampling is to eliminate particles that have small weights

and to concentrate on particles with large weights. The resampling step involves

generating a new set {xi∗k }Ns

i=1 by resampling (with replacement) Ns times from an

approximate discrete representation of p(xk|z1:k) given by

p(xk|z1:k) ≈
Ns
∑

i=1

wikδ(xk − xik). (4.35)

so that Pr(xi∗k = x
j
k) = wjk. The resulting sample is in fact an i.i.d. sample from the

discrete density above; therefore, the weights are now reset to wik = 1/Ns.

Although the resampling step reduces the effects of the degeneracy problem,

it introduces other practical problems. First, it limits the opportunity to parallelize

since all the particles must be combined. Second, the particles that have high weights

are, statistically, selected many times. This leads to a loss of diversity among the

particles as the resultant sample will contain many repeated points. This problem,

which is known as sample impoverishment, is severe in the case of small process

noise. In fact, for the case of very small process noise, all particles will collapse to

a single point within a few iterations.

The sequential importance sampling algorithm presented in Section 4.4.1 forms

the basis for most particle filters that have been developed so far. The various ver-
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sions of particle filters proposed in the literature can be regarded as special cases of

this general SIS algorithm. These special cases can be derived from the SIS algo-

rithm by an appropriate choice of importance sampling density and/or modification

of the resampling step. Below, one of these approach proposed in [27] is presented.

4.4.3 Sampling Importance Resampling

The Sampling Importance Resampling (SIR) Filter [27] is a Monte Carlo

method that can be applied to solve recursive Bayesian filtering problems. The

assumptions required to use the SIR filter are very weak. The state dynamics fk(·, ·)

and measurement functions hk(·, ·) need to be known, and it is required to be able

to sample realizations from the process noise distribution of vk−1 and from the prior

distribution p(xk|z1k−1). Finally, the likelihood function p(zk|xk) needs to be avail-

able for pointwise evaluation (at least up to proportionality). The SIR algorithm

can be easily derived from the SIS algorithm by an appropriate choice of: (i) The

importance density, where q(xk|xik−1, zk) is chosen to be the density p(xk|xik−1),

and (ii) Resampling step, which is to be applied at every time index.

The above choice of importance density implies that we need samples from

p(xk|xik−1). A sample xik ∼ p(xk|xik−1) can be created by first generating a process

noise sample vik−1, and setting xik = fk(x
i
k−1,v

i
k−1). For this particular choice of

importance density, it is evident that the weights are given by:

wik ∝ wik−1p(zk|xik). (4.36)

However, noting that resampling is applied at every time index, we have wik−1 =
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1/N ∀i; therefore

wik ∝ p(zk|xik). (4.37)

The weights given by the proportionality in (4.37) are normalized before the resam-

pling stage.

As the importance sampling density for the SIR filter is independent of mea-

surement zk, the state space is explored without any knowledge of the observations.

Therefore, this filter can be inefficient and sensitive to outliers2. Furthermore, as

resampling is applied at every iteration, this can result in rapid loss of diversity

in particles, that is a problem introduced as a sample impoverishment. However,

the SIR method does have the advantage that the importance weights are easily

evaluated, and that the importance density can be easily sampled.

4.5 Condensation

Sequential Monte Carlo algorithms have gained prevalence in the visual track-

ing literature due in part to the Condensation (Conditional Density propagation)

algorithm [34], which belongs to the class of SIR filters.

Spatio-temporal estimation has been dealt with thoroughly by Kalman filter-

ing in the relatively clutter-free case, in which p(xk|z1:k) can be modeled as Gaus-

sian. These solutions work poorly in clutter that causes the posterior density to be

multi-modal and, therefore, non-Gaussian. In the simple Gaussian case, the den-

sity function evolves as a Gaussian pulse that translates, spreads and is reinforced,

2In statistics, an outlier is a single observation far away from the rest of the data.
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remaining throughout Gaussian, as in Figure 4.1(a).

The random component of the dynamical model leads to spreading, increasing

uncertainty, while the deterministic component causes the density function to drift

bodily. The effect of an external observation zk is to superimpose a reactive effect

and, consequently, the density tends to peak in the vicinity of observations. In clut-

ter there are typically several competing observations, and these tend to encourage

a non-Gaussian state density (Figure 4.1(b)).

In Condensation the output of an iteration will be a weighted, time-stamped

sample-set, denoted {s(i)
k , i = 1, .., Ns}, with weights wik approximately rep-

resenting the conditional state-density p(xk|z1:k) at time k. Clearly the process

must begin with a prior density and the effective prior for time step k should be

p(xk|z1:k−1). This prior is, of course, multi-modal in general and no functional

representation of it is available. It is derived from the sample set representation

{s(i)
k−1, π

(i)
k−1, i = 1, 2, .., Ns} of p(xk−1|z1:k−1) the output from the previous time

step, to which the prediction

p(xk|y1:k−1) =

∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (4.38)

must then be applied. The iterative process, as applied to sample sets, is depicted

in Figure 4.2 and mirrors the continuous diffusion process in Figure 4.1(b). At the

top of the diagram, the output from time step k − 1 is the weighted sample set

{s(i)
k−1, w

(i)
k−1, i = 1, .., Ns}. The first operation, therefore, is to sample from the set,

with replacement, NS times, choosing a given element with probability wik−1.

Some elements, especially those with high weights, may be chosen several
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times, leading to identical copies of elements in the new set. Others with relatively

low weights, may not be chosen at all. Each element chosen from the new set is now

subjected to the predictive steps. The predictive step is random and identical ele-

ments now split because each one undergoes its own independent Brownian motion

step. At this stage, the sample set {ski } for the new time step has been generated,

but without its weights. Finally, the observation step is applied, generating weights

from the observation density to obtain the sample set representation of state density

for time k.

Figure 4.3 gives a synopsis of the algorithm in its original formulation [9].

4.5.1 ICondensation

The Condensation can be extended to incorporate the statistical technique

of Importance Sampling. Importance sampling offers a mathematically principled

way of directing search combining prediction information based on the previous

object position and motion with any additional knowledge available. In the standard

formulation of the Condensation algorithm (see Figure 4.3) positions of samples s
(n)
k

are fixed in the prediction stage using only the previous approximation of the state

density {s(n)
k , w

(n)
k } and the motion model p(xk|xk−1). The portions of state space

which are to be examined in the measurement stage are therefore determined before

any measurements are made. This is appropriate when the sample set approximation

to the state density is accurate. In principle as the state density evolves over time the

random nature of the motion model induces some non-zero probability everywhere in
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(a) Gaussian case

(b) Non-Gaussian case

Figure 4.1: Probability density propagation [34].
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Figure 4.2: Condensation Steps. One time-step in the Condensation algorithm [34].
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Iterate

From the “old” sample-set {s(n)
t−1, π

(n)
t−1, c

(n)
t−1, n = 1, . . . , N} at time-step t − 1,

construct a “new” sample-set {s(n)
t , π

(n)
t , c

(n)
t }, n = 1, . . . , N for time t. Construct

the nth of N new samples as follows:

1. Resample a sample s
′(n)
t as follows:

(a) generate a random number r ∈ [0, 1], uniformly distributed.

(b) find, by binary subdivision, the smallest j for which c
(j)
t−1 ≥ r

(c) set s
′(n)
t = s

(j)
t−1

2. Predict by sampling from

p(xt|xt−1 = s
′(n)
t )

to choose each s
(n)
t . For instance, in the case that the dynamics are governed

by a 1inear stochastic differential equation, the new sample value maybe gen-
erated as: s

(n)
t = As

(n)
t + Bw

(n)
t where w

(n)
t is a vector of standard normal

random variables, and BBT is the process noise covariance.

3. Measure and weight the new position in terms of the measured features zt :

π
(n)
t = p(zt|xt = s

(n)
t )

then normalise so that
∑

n π
(n)
t = 1 and store together with cumulative prob-

ability as (s
(n)
t , π

(n)
t , c

(n)
t ) where

c
(0)
t = 0, c

(n)
t = c

(n−1)
t + π

(n)
t (n = 1, . . . , N).

Once the N samples have been constructed: estimate, if desired, moments of the
tracked position at time-step t as

E [f(xt)] =

N
∑

n=1

π
(n)
t f(s

(n)
t )

obtaining, for instance, a mean position using f(x) = x.

Figure 4.3: Condensation Algorithm in its original formulation [34].

79



state space that the object is present at that point. With a sufficiently good sample

set approximation this would tend to cause all areas of state space to lie near some

samples so even motions which were extremely unlikely given the model would be

detected and could therefore be tracked. In practice, however, the finite nature of

the sample set approximation means that all of the samples will be concentrated near

the most likely object positions. There may be several such clusters corresponding

to multiple hypotheses but in general each cluster will be fairly localised, which

is precisely the behavior which permits an efficient discrete representation of high

dimensional state spaces. The result is that large areas of state space contain no

samples at all. In order to robustly track sudden movements the process noise of the

motion model must be artificially high thus increasing the extent of each predicted

cluster in state space. To populate these larger clusters with enough samples to

permit effective tracking the sample set size must be increased and the algorithm

therefore runs more slowly. Various techniques have been proposed to improve

the efficiency of the representation in random sampling filters [27]. Importance

sampling applies when auxiliary knowledge is available in the form of an importance

function q(x) describing which areas of state-space contain most information about

the posterior. Importance sampling can be applied in the context of Condensation

sampling and this extension is called ICondensation [35]. The idea is to concentrate

samples in those areas of state space by generating sample positions s
(n)
k from an

importance function q(xk). The desired effect is to avoid as far as possible generating

any samples which have low weights, since they are “wasted” as they provide a

negligible contribution to the posterior. A correction term f/q must be added to
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the sample weights giving:

w
(n)
k =

f(s
(n)
k )

q(x
(n)
k )

p(zk|xk = s
(n)
k ) (4.39)

where f(s
(n)
k ) = p(xk = s

(n)
k |z1k−1)

to compensate for the uneven distribution of sample positions. This correction term

ensures that, for large NS, importance sampling has no effect on the consistency of

the approximation. The effect of the correction ratio is to preserve the information

about motion coherence which is present in the dynamical model. Although the sam-

ples are positioned according to q(xk) the distribution approximated by {s(n)
k , w

(n)
k }

still generates p(xk|zk). Importance sampling is again intended to improve the effi-

ciency of the sample set representation but does not change the probabilistic model.
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Chapter 5

Simultaneous Multi-View Face Tracking and Recognition using

Particle Filtering

5.1 Introduction

Conventionally, face recognition in a video is performed in tracking-then-

recognition scenario that extracts the best facial image patch in the tracking stage

and then recognizes the given the facial image. The scenario handles uncertainties

in both tracking and recognition separately using different appearance models. Si-

multaneous face tracking and recognition works by handling both uncertainties in

tracking and recognition simultaneously using common appearance models. The

simultaneous tracking and recognition framework is shown to be an effective sce-

nario that improves both tracking and recognition accuracies over the tracking-then-

recognition scenario [83].

The Bayesian recursive filtering method, which estimates the state of a system

that changes over time, is often used for object tracking in the computer vision com-

munity. Early works [11], [2] used the Kalman filter for object tracking. Recently,

the particle filtering method which is also called as the sequential Monte Carlo

(SMC) algorithms have gained popularity in the visual tracking literature since the

Condensation algorithm [33] was introduced.

82



We use the Bayesian filtering framework to solve the tracking problem. For

recognition, we propose a video-based face recognition algorithm using the Bayesian

filtering framework in Section 3.3. Using the proposed video-based face recognition

algorithm, we can easily integrate the tracking and recognition methods into one

solving both problem simultaneously because both use the Bayesian filtering frame-

work. We use the particle filter to solve the simultaneous tracking and recognition

problem. In this simultaneous framework the temporal information in a video is

utilized not only for tracking but also for recognition because our proposed video-

based face recognition utilizes the temporal information to model the dynamics of

facial poses. Although the time series formulation is more general, only the facial

pose dynamics is utilized for recognition in this thesis.

5.2 Overview of Particle Filtering

Particle filtering [1] is a technique for implementing a recursive Bayesian filter

by Monte Carlo simulation to estimate the unknown state xt from a noisy collection

of observations z1:t = {z1, . . . , zt} arriving in a sequential fashion. A state space

model is often employed to accommodate such a time series. Two important com-

ponents of this approach are state transition and observation models whose most

general forms can be defined as follows:

State transition model : xt = ft(xt−1,vt) (5.1)

Observation model : zt = ht(xt,nt) (5.2)
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where vt−1 is the system noise, ft(·, ·) characterizes the kinematics, nt is the obser-

vation noise, and ht(·, ·) models the observer. The particle filter approximates the

posterior distribution p(xt|z1:t) by a set of weighted particles {x(j)
t , w

(j)
t }Ns

j=1 where

Ns is the number of particles, {x(j)
t }Ns

j=1 is a set of support states, and {w(j)
t }Ns

j=1 is a

set of associated weights that are normalized such that
∑Ns

j=1w
(j)
t = 1. The general

particle filter algorithm is written in Figure 5.1.

Initialize a sample set {x(j)
0 , 1}Ns

j=1 according to prior distribution p(x0).
For t = 1, 2, · · ·

Resample {x(j)
t−1, w

(j)
t−1} based on w

(j)
t−1 and obtain a new sample {x′(j)

t−1, 1} ∀j
Predict x

(j)
t by sampling from x

(j)
t = ft(x

′(j)
t−1,vt) ∀j

Measure and update weights from w
(j)
t = p(zt|x(j)

t ) ∀j
Normalize weights using w

(j)
t = w

(j)
t /

∑Ns

i=1w
(i)
t ∀j

End

Figure 5.1: General particle filter algorithm [1].

5.3 Simultaneous Framework

In the simultaneous tracking and recognition framework, the state vector xt

is composed of the identity state denoted by ωt and the other states denoted by st,

i.e., xt = {st, ωt}. The essence of the simultaneous framework is the computation of

the posterior probability p(st, ωt|z1:t), whose marginal posterior probability p(ωt|z1:t)

solves the recognition task.

In our framework, we further partition the state vector st into the 2D tracking

state vector θt and the appearance state vector ψt, i.e., xt = {st, ωt} = {θt, ψt, ωt}.

The 2D tracking state vector θt describes the location of the object in the 2D ob-
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served image that is used to extract an image patch displaying the object, and the

appearance state vector ψt describes the parameters used in modeling the appear-

ance.

Although the time series formulation is general, in this thesis, we set θt =

{xt, yt, sxt , syt , φzt} where xt and yt denote the central coordinate of the object in x-

coordinate and the y-coordinate (in terms of pixels) respectively, sxt and syt denote

the width and height of the object respectively, and φzt denotes the counterclockwise

rotation angle of the object in the observed 2D image at time t. φzt also expresses the

3D yaw rotation angle of the object. In addition we set ψt = {φxt , φyt } where φxt and

φyt denote 3D roll and pitch rotation angles of the object at time t. The video-based

face recognition algorithm described at Section 3.3 is used to solve a simultaneous

multi-view face tracking and recognition problem. As described in Section 3.3.2, the

roll and pitch rotation angles are used to model the appearance manifold.

5.4 Observation Model

The observation model is based on the appearance manifold described in Sec-

tion 3.3.2. This model approximates a complex and nonlinear manifold of a face as

the union of several simpler pose manifolds where each pose manifold is represented

by a PCA plane, and captures the temporal dynamics in the video sequence by the

transition probability between the pose manifolds as shown in Figure 5.2.

For the observation model, we first construct a linear PCA approximation

Lki to the pose manifold Cki of the true manifold Mk modeling a face of the
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Figure 5.2: Appearance manifold. A complex and nonlinear manifold can be ap-

proximated as the union of several simpler pose manifolds; here, each pose manifold

is represented by a PCA plane [43].

identity k where i denotes the discrete pose label, and the likelihood probabil-

ity p(I|Cki) of a test image I in Cki is used for an observation measurement.

The calculation of p(I|Cki) was described in Section 3.3.2. With Lki, its prin-

cipal components yki can be used to form an optimal (minimal divergence) low-

dimensional estimate of the complete pdf using only the first Mki principal compo-

nents {yki1, yki2, yki3, . . . , ykiMki
}, where Mki ≪ D and D is the number of feature

dimension. The p(I|Cki) is defined as the likelihood density estimate P̂ (I|Lki) which

can be written as the product of two independent marginal Gaussian densities, i.e.,

p(I|Cki) , P̂ (I|Lki) =















exp

(

−1

2

Mki
∑

ℓ=1

y2
kiℓ

λkiℓ

)

(2π)Mki/2

Mki
∏

ℓ=1

λ
1/2
kiℓ























exp

(

−1

2

ǫ2ki(I)

ρki

)

(2πρki)
(D−Mki)/2









(5.3)

where {λkiℓ}Mki

ℓ=1 are the eigenvalues of Lki, {ykiℓ}Mki

ℓ=1 are the principal components

in Lki, and ǫ2ki(I) is the PCA residual (reconstruction error) for Lki, and ρki is given
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by

ρki =
1

D −Mki

D
∑

ℓ=Mki+1

λkiℓ. (5.4)

In practice, Mki is set to be identical for all identities and poses, i.e., Mki =

M, ∀k and ∀i to provide fairness.

Finally, the likelihood function p(zt|xt) = p(zt|θt, ψt, ωt) which indicates the

likelihood probability that the hypothesized state xt gives rise to the observed data

is defined as

p(zt|θt, ψt, ωkt ) = p(It|Cki) (5.5)

where It = I(zt, θt) is the image patch sampled at the hypothesized tracking state

θt, k is the identity, and i is the discrete pose label given by i = g(ψ) where g(·)

is a discretizing function of the joint set of continuous pose parameter ψ = (φx, φy)

described in following.

5.4.1 Discretization of Poses

The observation model introduced in the previous section needs to discretize

the joint set of continuous pose parameter ψ = (φx, φy) into the discrete pose label

i. As described in 3.3.3, the joint set of continuous pose parameters (φx, φy) is

partitioned into m disjoint facial pose subsets {P1, · · · ,Pm}, thus the discretizing

function g(·) is defined as

g(ψt) , arg max
l
I(l)(ψt) (5.6)
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where I(l)(ψt) is an indicator function

I(l)(ψt) =















1 if (φxt , φ
y
t ) ∈ P l

0 otherwise

(5.7)

5.5 State Transition Model

The state transition model characterizes the dynamic behavior of states be-

tween frames. The state space equation describing the evolution of the state se-

quence {xt, t ∈ N} can be written in its general form as:

xt = ft(xt−1,vt) (5.8)

where ft(·) is a possibly nonlinear function of the state xt−1 and {vt, t ∈ N} is a

process noise sequence.

In practice, however, choosing an appropriate function f(·) is not an easy task

and depends on the particular situation in a video, thus an approximate model is

used. There are three types of approximations commonly found in the literature:

1. A fixed constant-velocity model with fixed noise variance as in [7, 6, 80, 83]:

xt = xt−1 + vt (5.9)

where vt has a fixed noise variance of the form vt = R0 ∗ v0 with R0 a fixed

constant measuring the extent of noise and v0 a standard normal random

variable/vector1. If R0 is small, it is very hard to model rapid movements;

1Consider the scalar case, for example. If vt is distributed as N(0, σ2), we can write vt = σv0,

where v0 is standard normal N(0, 1). This also applies to multivariate cases.
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if R0 is large, it is computationally inefficient, since many more particles are

needed to accommodate the large noise variance. These factors make such a

model ineffective. Therefore, an adaptive velocity model is needed.

2. An adaptive velocity model with fixed/adaptive noise variance as in [82]

xt = xt−1 + dxt + vt (5.10)

where dxt is a velocity state vector. In practice, the velocity is estimated as

d̂xt = xt−1 − xt−2 using a 1st order linear approximation [29, 38, 4, 47], thus

the (5.10) forms a special case of the 2nd order AR model:

xt = 2xt−1 − xt−2 + vt (5.11)

The 2nd order AR model was also used in [33].

3. Nth order AR model. North et al. [57] identified an Nth order AR transition

model from a training video. However, such a model may overfit the train-

ing data and may not necessarily succeed when presented with testing videos

containing objects arbitrarily moving at different times and places. Also, one

cannot always rely on the availability of training data.

We use both an adaptive velocity model and a fixed-constant velocity model

with adaptive noise variance. The framework and the modeling of the adaptive noise

variance is described in Section 5.6. We further assume that the noise is distributed

as independent Gaussian with zero mean. Please note that angle parameters are

in fact assumed to be distributed as “wrapped” Gaussian distribution so that φ ∈

[0, 360).
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5.5.1 Identity State Transition Model

As a special case, we assume that the identity state ωt does not change as time

proceeds, i.e., the identity state equation is given by

ωt = ωt−1. (5.12)

However, it often happens that one identity dominates identity states in all particles

after the resampling process because particles with the same identity have high

likelihood probabilities concurrently in observation measurements. This behavior

causes the simultaneous face tracking and recognition method to track faces using

a model of a fixed identity in succeeding frames. This results in improved tracking

especially when the identity estimation is correct, however, this may adversely affect

face recognition accuracy in succeeding frames and may also cause poor tracking

especially when the identity estimation is incorrect. Therefore, we propose to diffuse

identity states uniformly random with β% chances. Specifically, we diffuse identity

states uniformly random with 50% chances in our experiments.

5.6 Adaptive Particle Filter

The efficiency and accuracy of the particle filter depends on the number of

particles and noise variance in the state transition equation. We need large noise

variance to track rapid movements, and more particles are required to achieve ac-

curacy. Recently, several approaches have been introduced to adapt the number of

particles over time [82], [26], [72]. The adaptive approach in [26], [72] adjusts the

number of particles based on the likelihood of observations by generating particles

90



until the sum of the non-normalized likelihoods exceeds a pre-specified threshold.

Zhou et al. [82] proposed an algorithm to adapt noise variance based on the quality

of prediction, i.e., the residual error measurements of observations and adapt the

number of particles based on the adaptation of noise variance. We basically follow

the approach of Zhou et al. [82].

5.6.1 Measure of Prediction Quality

To adapt number of particle filters and noise variance, we first determine a

measure of prediction quality. We propose to determine the prediction quality εt by

the distances between an image and the observation models, which is defined by:

εt = min
j
d̂ki(It) = min

j

[

Mki
∑

ℓ=1

y2
kiℓ

λkiℓ
+
ǫ2ki(It)

ρki

]

. (5.13)

where It = I(zt, θ
(j)
t ) is the image patch sampled at the tracking state θ

(j)
t , i is

the discrete pose label given by i = g(ψ
(j)
t ), k is the identity given by k = ω

(j)
t .

The distance metric d̂ki(It) is sum of the distance-in-feature-space and the distance-

from-feature-space [53] between the image patch It and the PCA subspace Lki that

are calculated in (5.3).

5.6.2 Adaptive Noise

Zhou et al. [82] proposed an adaptive noise model based on the quality of

prediction. The adaptive noise is given by the form:

vt = Rtv0 (5.14)
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where Rt is a measure of the extent of noise and v0 is a standard Gaussian random

variable/vector. Following their work [82], we define Rt+1 by

Rt+1 = max(min(R0

√

εt/η, Rmax), Rmin) (5.15)

where Rmin is the lower bound to maintain a reasonable sample coverage, Rmax is the

upper bound to constrain the computational load, εt is a prediction error defined in

(5.13), and η is an acceptable prediction error threshold. The acceptable threshold

value η is determined by trial and error. We use the square root because εt is a

variance-type measure.

The meaning of such a choice is explained as follows: if the quality of prediction

is good, i.e., εt < η, we need noise with small variance to absorb the residual motion;

if the quality of prediction is poor, i.e., εt > η, we then need noise with large variance

to cover potentially large jumps in the motion state.

5.6.3 Adaptive Number of Particles

If the noise variance Rt is large, we need more particles, while, conversely,

fewer particles are needed for noise with small variance Rt. Based on the principle

of asymptotic relative efficiency (ARE) [14], we should adjust the particle number

Ns(t) in a similar fashion, i.e.

Ns(t) =
Ns(0)Rt

R0
(5.16)
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5.6.4 One Frame Iteration

Furthermore, we propose to iterate particle filtering in one frame until the si-

multaneous tracker achieves small enough prediction error εt, i.e., εt < η where η is

an acceptable prediction error determined by trial and error. This iteration adapts

the number of particles by resampling new particles and performing observation

measurements with different states in the same observation, and adapts noise vari-

ance by repeating the diffusion process. The inequality εt < η provides a verification

of that the tracking has succeeded. This verification process considerably improves

the tracking and recognition accuracy because it is often difficult for a tracker to

recover in succeeding frames when it has failed tracking objects once. Although this

iteration process attempts to adapt the number of samples and noise variance, still

using the adaptive noise model and adaptive number of particles in each iteration

is attractive.

Moreover, we propose to switch the state transition model from an adaptive

velocity model to a fixed-constant velocity model in this iteration because we use a

fixed time observation in this iteration. The previous state xt−1 should be retained

for use in the adaptive velocity model at the next frame. One may realize this

strategy by formulating the adaptive velocity model as









xt

xt−1









=









2xt−1 − xt−2 + vt

xt−1









=









2 −1

1 0

















xt−1

xt−2









+









vt

0









(5.17)
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and the fixed-constant velocity model as









xt+1

xt









=









xt + vt+1

xt−1









=









1 0

0 1

















xt

xt−1









+









vt+1

0









(5.18)

with an abuse of notation. In practice, one may limit the number of iterations in one

frame. A state estimation at time t such as estimation of a tracking state estimation

should be performed after this iteration step is done.

5.7 Face Recognition

The main objective of the simultaneous framework is face recognition. Face

recognition is performed using the maximum a posteriori (MAP) estimate as

k∗ = arg max
k

p(ωkt |z1:t). (5.19)

Therefore, our goal is to obtain the posterior probability p(ωkt |z1:t), which is in fact a

probability mass function (PMF) because ωt is a discrete random vector indicating

the person identity. Also, the joint posterior probability p(xt|z1:t) = p(st, ωt|z1:t) is

a mixed distribution.

Using particle filtering, the posterior pdf p(xt|z1:t) is approximated as

p(xt|z1:t) ≈
Ns
∑

j=1

w
(j)
t δ(xt − x

(j)
t ), equivalently, (5.20)

p(st, ωt|z1:t) ≈
Ns
∑

j=1

w
(j)
t δ(st − s

(j)
t )δ(ωt − ω

(j)
t ). (5.21)
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where δ(·) the Dirac delta function. The posterior probability p(ωkt |z1:t) is then

obtained by marginalizing the posterior probability p(st, ω
k
t |z1:t) respect to the state

st, i.e.,

p(ωkt |z1:t) =

∫

p(st, ω
k
t |z1:t)dst

≈
∫ Ns
∑

j=1

w
(j)
t δ(st − s

(j)
t )δ(ωkt − ω

(j)
t )dst

≈
Ns
∑

j=1

w
(j)
t δ(ωkt − ω

(j)
t ). (5.22)

As described in Section 3.3, we progressively process frames in a video un-

til the maximum identity confidence exceeds a given confidence threshold τ , i.e.,

maxk p(ω
k
t |z1:t) ≥ τ for the recognition purpose.

5.7.1 Facial Pose Estimation

Similarly, facial pose estimation is performed using the MAP estimate. The

discrete pose label i = g(ψ) is estimated as

i∗ = g(ψt)
∗ = arg max

g(ψt)
p(g(ψt)|z1:t) (5.23)

where the posterior probability p(g(ψt)|z1:t) is given by

p(g(ψt)|z1:t) ≈
Ns
∑

j=1

w
(j)
t δ(g(ψt) − g(ψ

(j)
t )) (5.24)

and g(·) denotes the discretizing function of the joint set of continuous pose param-

eter ψ = (φx, φy).

95



5.7.2 Tracking State Estimation

The simultaneous framework does not aim to estimate a particular tracking

state in a video sequence because face recognition, which is the main objective, is

performed simultaneously unlike the tracking-then-recognition framework. Yet, a

particular tracking state can also be estimated.

The tracking state estimation is exampled as the MAP estimate as

θ∗t = arg max
θt

p(θt|z1:t). (5.25)

The posterior pdf p(θt|z1:t) is obtained by marginalizing the posterior probability

p(θt, ψt, ωt|z1:t) with respect to the identity ωt and the appearance state ψt, where

it results in,

p(θt|z1:t) ≈
Ns
∑

j=1

w
(j)
t δ(θt − θ

(j)
t ). (5.26)

However, in practice the tracking particle states {θ(j)
t , j = 1, . . . , Ns} are varying

each other because {θ(j)
t , j = 1, . . . , Ns} are finite number of samples drawn from a

continuous random vector θt. Therefore, the posterior probability p(θt|z1:t) results

in and is further approximated as

p(θt|z1:t) ≈ w
(j)
t δ(θt − θ

(j)
t ), j = 1, . . . , Ns (5.27)

in practice. Therefore, we propose to obtain the MAP estimate as

θ∗t = θ
(j∗)
t where j∗ = arg max

j
w

(j)
t . (5.28)

5.8 Final Algorithm

Our algorithm is summarized in Figure 5.3.
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Initialize a sample set {x(j)
0 , 1}Ns(0)

j=1 according to prior distribution p(x0).

Initialize n = 1, R1 = R0, Ns(1) = Ns(0), and p(ωk0 |z0) = 1/c ∀k
For t = 1, 2, · · · , and maxk p(ω

k
n−1|z1:t−1) < τ

Set the state transition model to an adaptive velocity model.
Initialize εn = ∞ and iter = 0
While εn > η and iter + + < maxiter

Resample {x(j)
n−1, w

(j)
n−1}

Ns(n−1)

j=1 and obtain a new sample {x′(j)
n−1, 1}

Ns(n)

j=1

Predict x
(j)
n by sampling from x

(j)
n = fn(x

′(j)
n−1,vn) ∀j

Measure and update the weights from w
(j)
n = p(zt|x(j)

n ) ∀j
Normalize the weights using w

(j)
n = w

(j)
n /

∑Ns(n)

j=1 w
(j)
n ∀j

Update εn by (5.13)
Adapt the noise variance Rn+1 by (5.15)
Adapt the number of particles Ns(n+1) by (5.16)
Set the state transition model to a fixed constant-velocity model.
n+ +

End

Obtain p(ωkn−1|z1:t) ∀k by marginalizing weights (5.22)
Estimate pose (5.23) and tracking state (5.28) by MAP if needed.

End

Estimate identity (face recognition) by MAP (5.19)
where c indicates the number of identities, n indicates the index of iterations in
total, t indicates the time index, iter indicates the index of iterations in one frame,
maxiter indicates the maximum allowable number of iterations in one frame, τ is
the confidence threshold, and η is the acceptable prediction error threshold.

Figure 5.3: Proposed simultaneous tracking and recognition algorithm

5.9 Experimental Results

In this section, experimental results are provided. We use the Honda/UCSD

video dataset [43] for experiments as we have used in Section 3.3. The Honda/UCSD

video dataset consists of a set of 45 videos of 20 different people. Each individual in

the database has at least two videos as each person moves in a different combination

of 2-D and 3-D rotation, expressions, and speed. Each video was recorded in an

indoor environment and each one lasted for 20 seconds (with 30 color frames of 640

× 480 pixels per second).
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To train appearance manifolds, we manually cropped facial image patches and

classified into the front, left, right, up, down pose subsets. The examples are shown

in Figure 5.4. Then, we downsampled each image to 20 × 20 pixels, to imitate the

image quality in surveillance systems. The pixels in each image were normalized to

have zero mean and unit variance.

Figure 5.4: Examples of facial images in pose subsets. Images were resized to have a

square size. The top row presents frontal faces, the 2nd top row presents left-profile

faces, the middle row presents right-profile faces, the 2nd bottom row presents up-

profile faces, and the bottom row presents the bottom-profile faces. The left/right-

up and left/right-down profile faces are included in the left/right-profile subsets

respectively.
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5.9.1 Tracking Result

The tracking results in a test video having multi-view faces are presented.

Figure 5.5 presents tracking results for a video of identity 1. In Figure 5.5, all

particle configurations of tracking states are shown with white rectangles. Figure

5.6 presents tracking results for a video of identity 2, and Figure 5.7 presents tracking

results for the same video without the one frame iteration process. In Figure 5.6

and Figure 5.7, only the MAP estimate of a tracking state is shown with a white

rectangle. The comparison between Figure 5.6 and Figure 5.7 shows the effectiveness

of the one frame iteration process. In contrast to the tracking state φz, we assigned

large standard deviations to ψ = (φx, φy) such as 20◦ to allow possible transitions

between pose manifolds.

(a) frame 3 / front (b) frame 23 / right (c) frame 53 / left

(d) frame 93 / up (e) frame 104 / down

Figure 5.5: Tracking results showing all particles’ tracking states.
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(a) frame 4 / front (b) frame 39 / right (c) frame 68 / left

(d) frame 94 / up (e) frame 122 / down

Figure 5.6: Tracking results showing the maximum a posteriori estimate of the
tracking states.

(a) frame 4 (b) frame 32 (c) frame 33

(d) frame 34 (e) frame 35 (e) frame 39

Figure 5.7: Tracking results for the same video with Figure 5.6 without iterations in
one frame. The tracker lost a target face in the 35th frame (we can see symptoms
of failure from the 33rd frame), and could not recover. Iterations in one frame are
especially helpful for tracking such intermediate poses between two modeled poses,
i.e., front and right profile poses in this example.
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5.9.2 Tracking Performance Measure

We measure the performance of the tracking algorithm by comparing with the

ground truth. Let us denote the rectangle tracking state θ = (x, y, sx, sy, ψz) as

θ = (θ1, θ2, θ3, θ4, θ5). We define a dissimilarity measure of two rectangle regions as

d(θ̂, θ) =
5
∑

i=1

αi(θ̂i − θi)2. (5.29)

where θ̂ denotes the MAP estimate of the tracking state, θ denotes the ground truth,

αi denotes weights especially used to ensure a balance between the importance of the

angle parameter and the position parameter. Note that the angle difference must be

in [0, 180) because the angle parameter is a wrapped parameter. Figure 5.9 shows

a plot of tracking error versus time t for a test video of identity 2 with iterations

in one frame. We accomplished a correct identity recognition in this video. We

furthermore perfomed discrete pose estimation frame-by-frame in this video, and

achieved 94.32% correct rate. Figure 5.8 shows a comparison between simultaneous

trackers with and without iterations in one frame in terms of the tracking error. We

used αi = 1 ∀i in this experiment. From here, we always use iterations in one frame.

5.9.3 Identity Confidence Convergence

Figure 5.10(a) presents a plot of the posterior probability p(ωt|z1:t) versus time

t obtained by the proposed simultaneous tracking and recognition algorithm for a

test video. Figure 5.10(b) presents the same plot obtained by the tracking-then-

recognition scenario for the same video. The tracking results, i.e., the facial image

patches, were obtained manually, which is considered as the best object tracking
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Figure 5.8: The tracking error d(θ̂t, θt) versus time t. Tracking with iterations in
one frame version has less error than the tracking without iterations in one frame
version. In fact, the tracking without iterations failed to track a face from the 33rd
frame onwards as shown in 5.7.

Figure 5.9: The tracking error d(θ̂t, θt) versus time t. We accomplished a correct
identity recognition, and a correct discrete pose estimation rate of 94.32% perfomed
on frame-by-frame in this video.
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method. The video-based face recognition algorithm proposed in Section 3.3 was

used for face recognition. As shown in the two plots, the simultaneous scenario

achieved faster convergence . This is because of the marginalization of posterior

probability p(xt|z1:t) with respect to observations of many image patches in a video

frame.
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Figure 5.10: Posterior probability p(ωt|I0:t) versus time t. (a) Result of the simul-

taneous tracking and recognition. (b) Result of the tracking-then-recognition. The

probability confidence of the correct identity exceeded 0.999 at time t = 8 in the

simultaneous algorithm although it took t = 15 in the tracking-then-recognition

scenario.

5.9.4 Face Recognition

Finally, we performed a face recognition experiment for 20 test videos. We

initialized the simultaneous face tracking and recognition processes from frame num-
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bers, 0, 150, and 300 to increase the number of experiments. We achieved 78 exper-

iments using the original 20 test videos with 300 ∼ 500 frames. We downsampled

each video frame to 160×120 where the original size is 640×480 so that each facial

image patch has 20× 20 ∼ 30× 30 resolution in the video, which is considered as a

low resolution. There are 20 different subjects in the video dataset. We resized each

cropped facial image patch into 20 × 20 pixels and normalized the pixels in each

image to have zero mean and unit variance. Then, we projected the image feature

vector onto the PCA subspaces and reduced the number of dimension to 20. We

achieved 100% recognition rate by processing 8 frames of a video on the average.
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Chapter 5

Conclusions and Future Research Directions

5.1 Conclusions

In this work, we presented a simultaneous multi-view face tracking and recog-

nition algorithm using particle filtering. To utilize temporal information in a video

sequence for not only tracking but also recognition, a video-based face recognition

algorithm based on Bayesian inference was also proposed.

The proposed video-based face recognition method interprets temporal infor-

mation in a video as transition probabilities between facial poses. Compared to

the previous work [43], this Bayesian inference algorithm realized a face recognition

algorithm using the full video rather than in a frame-by-frame basis by progressively

accumulating the face recognition confidences in frames. Thanks to the accumula-

tion characteristic, the algorithm achieved a face recognition rate 100% even in low

resolution videos where each facial image has only 20× 20 resolution. Furthermore,

this face recognition framework has another useful characteristic in that it allows to

stop processing the frames in a video progressively at an itermediate frame if enough

recognition confidence is accumulated yet. This characteristic gives an advantage

over batch methods in terms of computational efficiency.

Then, the video-based face recognition algorithm based on Bayesian infer-

ence was tightly coupled with a face tracking algorithm which is also based on the
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Bayesian inference framework, and the face recognition problem was solved as a

simultaneous face tracking and recognition problem. To solve the Bayesian infer-

ence problem, the particle filtering method was used. Unlike [83], this simultaneous

framework utilized the temporal information in a video for not only tracking but

also recognition by modeling the dynamics of facial poses.

5.2 Future Works

Here, we briefly list some potential ideas to be explored in the context of face

tracking and recognition.

• Multi-View Face Detector. Although we used the adaptive noise variance

model to enlarge a searching range of a tracker, it was still difficult for the

tracker to continue tracking in successive frames when it has failed to track

objects once. In such case, re-initialization, i.e., detection is helpful. To

incorporate a detector in our multi-view supported tracker, we have to study

multi-view face detection methods, and investigate when the re-initialization

process should be triggered. We might propose to use the measure of prediction

error εt as one criterion to trigger the re-initialization process. We might

propose a face detection method which performs an exhaustive search with

the appearance models used in this thesis, however, it is computationally too

expensive and slow. We might use a fast multi-view face detection algorithm

proposed by Jones and Viola [36] which first estimates facial poses and then

rapidly detects faces in an image.
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• Rapid Simultaneous Face Tracking and Recognition. To exploit the

evidence accrual behavior of the proposed algorithm, which is especially useful

in real-time processing, rapid real-time feature extraction methods must be

investigated. Viola and Jones [76] introduced a rapid face detection algorithm

using Haar-like features. Using such features jointly with particle filtering,

we can possibly develop a fast simultaneous face tracking and recognition

algorithm. To do this, we have to study the following three central issues:

1. Probabilistic model of Haar-like features. To use the Haar-like

features in particle filtering, we have to provide a probabilistic model of

Haar-like features.

2. Face recognition using Haar-like features. To construct a rapid

simultaneous tracking and recognition framework, face recognition using

Haar-like features must be studied.

3. Feature selection method. Viola and Jones [76] originally used the

Adaboost algorithm to select discriminative features from the Haar-like

features for two-class problems, i.e., classification between face and non-

face. To select the Haar-like features for multi-class problem, we must

provide another feature selection method. Furthermore, the training

method developed by them requires considerable time, e.g., two weeks

to obtain a valid face detector. Developing a fast training framework

must be an interesting issue. For example, Wu [79] recently proposed

an asymmetric fast training for the Haar-like features using the Forward
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Feature Selection (FFS) method.

• Handling Illumination Variations Illumination variation has enormously

complex effects on the image of an object. The changes induced by illumination

variations are often larger than the differences between individuals. To achieve

a robust face recognition algorithm, illumination variations must be handled.

Soma et al. [5] proposed a method to estimate albedo, i.e., the fraction of light

that a surface point reflects when it is illuminated. Unlike image intensity,

albedo is invariant to changes in illumination conditions which makes it useful

for illumination-invariant matching of objects.
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