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Facial aging, a new dimension that has recently been added to the problem of
face recognition, poses interesting theoretical and practical challenges to the research
community . How do humans perceive age ? What constitutes an age-invariant
signature for faces ? How do we model facial growth across different ages ? How
does facial aging effects impact recognition performance ? This thesis provides a
thorough overview of the problem of facial aging and addresses the aforementioned
questions.

We propose a craniofacial growth model that characterizes growth related
shape variations observed in human faces during formative years (0 - 18 yrs). The
craniofacial growth model draws inspiration from the ‘revised’ cardioidal strain
transformation model proposed in psychophysics and further, incorporates age-based
anthropometric evidences collected on facial growth during formative years. Iden-
tifying a set of fiducial features on faces, we characterize facial growth by means of
growth parameters estimated on the fiducial features. We illustrate how the growth
related transformations observed on facial proportions can be studied by means of
linear and non-linear equations in facial growth parameters, which subsequently
help in computing the growth parameters. The proposed growth model implicitly
accounts for factors such as gender, ethnicity, the individual’s age group etc. Pre-
dicting one’s appearance across ages, performing face verification across ages etc.
are some of the intended applications of the model.

Next, we propose a two-fold approach towards modeling facial aging in adults.
Firstly, we develop a shape transformation model that is formulated as a physically-
based parametric muscle model that captures the subtle deformations facial features
undergo with age. The model implicitly accounts for the physical properties and
geometric orientations of the individual facial muscles. Next, we develop an image
gradient based texture transformation function that characterizes facial wrinkles
and other skin artifacts often observed during different ages. Facial growth statis-
tics (both in terms of shape and texture) play a crucial role in developing the
aforementioned transformation models. From a database that comprises of pairs of



age separated face images of many individuals, we extract age-based facial measure-
ments across key fiducial features and further, study textural variations across ages.
We present experimental results that illustrate the applications of the proposed fa-
cial aging model in tasks such as face verification and facial appearance prediction
across aging.

How sensitive are face verification systems to facial aging effects ? How does
age progression affect the similarity between a pair of face images of an individ-
ual ? We develop a Bayesian age difference classifier that classifies face images of
individuals based on age differences and performs face verification across age pro-
gression. Further, we study the similarity of faces across age progression. Since
age separated face images invariably differ in illumination and pose, we propose
pre-processing methods for minimizing such variations. Experimental results using
a database comprising of pairs of face images that were retrieved from the passports
of 465 individuals are presented. The verification system for faces separated by as
many as 9 years, attains an equal error rate of 8.5%.



CHARACTERIZATION AND CLASSIFICATION
OF FACES ACROSS AGE PROGRESSION

by

Narayanan Ramanathan

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2004

Advisory Committee:
Dr. Rama Chellappa, Chair/Advisor
Dr. P.S. Krishnaprasad
Dr. Prakash Narayan
Dr. Larry Davis
Dr. Amitabh Varshney



c© Copyright by
Narayanan Ramanathan

2004



DEDICATION

To Sudha, Amma and Appa.

ii



Acknowledgments

I would like thank my advisor Dr. Rama Chellappa for all his guidance and

continued support all through my life at graduate school. He was a great source

of inspiration without whom my journey in graduate school would not have been

as memorable. I am greatly indebted to him for having provided me with financial

assistance all through my degree. I would like to thank him wholeheartedly for

having sent me to many conferences and workshops which helped significantly in

expanding my horizon in the area of research. In addition, I would like to thank

him for having provided me with an opportunity to be a teaching assistant for his

course on Pattern Recognition.

I would like to thank Dr. Amit K. Roy Chowdhury for his guidance on the

HID project and the National Geographic project. The many discussions I had with

him played a crucial role in initiating me into research. I would like to thank Dr.

David Jacobs for the discussions we have had on my thesis. I would like to thank Dr.

Krishnaprasad, Dr. Prakash Narayan, Dr. Larry Davis and Dr. Amitabh Varshney

for serving on my defense committee. Their suggestions and remarks played a crucial

role in refining my thesis. I would like to thank Mr. Phil Horvitz from Apptis Inc.

for having provided the ‘Horvitz Fellowship’.

The years I spent at graduate school would not have been as lively and as

invigorating without the company of my labmates, Gaurav Aggarwal and Ashok

Veeraraghavan. The innumerable discussions I have had with them greatly helped

me in making advances on my thesis. I would also like to thank Aravind Sun-

iii



daresan, Aswin Sankaranarayanan, Jagan Sankaranarayanan, Sameer Shirdonkar,

Haibin Ling, Kevin Zhou, Naresh Cuntoor, Amit Kale, Amit Agrawal, Mahesh

Ramachandran, Yang Ran and my other fellow CFAR graduate students for the

memorable years I happened to spend at A.V.Williams. My heartfelt thanks to my

roommates Prasanth, Somashekar, Shiv Naga, Raghav Kashyap, Indrajith, Arunesh

Mishra and Harish for their inimitable support and friendship.

I would like to thank Dr. Nikhil Gagvani (CTO, Cernium) for his constant

support and guidance. Chipotle and Noodles & Company deserve a special mention.

They fed me well for the most part of my graduate life. Finally, I would like to

express my heartfelt gratitude to my wife, Sudha, for all her support all through

the thick and thin. I dedicate this thesis to her.

iv



Table of Contents

List of Tables vii

List of Figures ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions made in the thesis . . . . . . . . . . . . . . . . . . . . 4

2 Literature Survey 6
2.1 Contributions from Human Perception and Psychophysics . . . . . . 6
2.2 Contributions from Computer Vision . . . . . . . . . . . . . . . . . . 13

2.2.1 Age Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Computational Models for Age Progression . . . . . . . . . . . 22
2.2.3 Face verification across age progression . . . . . . . . . . . . . 25

2.3 Aging Databases and Growth Related Data . . . . . . . . . . . . . . 26
2.3.1 The MORPH Database . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 FG-NET Aging Database . . . . . . . . . . . . . . . . . . . . 27
2.3.3 FERET Database . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.4 Face Anthropometry . . . . . . . . . . . . . . . . . . . . . . . 30

3 Modeling facial aging during formative years 33
3.1 Craniofacial Growth Model . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Face Anthropometry . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Model Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Step I : Identifying the Origin of Reference . . . . . . . . . . . 43
3.2.2 Step II : Computing Facial Growth Parameters . . . . . . . . 45
3.2.3 Step III : Interpolation of growth parameters . . . . . . . . . . 49
3.2.4 Personalized Growth Model . . . . . . . . . . . . . . . . . . . 51
3.2.5 Computational complexity . . . . . . . . . . . . . . . . . . . . 55

3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.1 Accuracy in facial feature matches across age progression . . . 56
3.3.2 Appearance prediction across ages . . . . . . . . . . . . . . . . 60
3.3.3 Face recognition across age progression . . . . . . . . . . . . . 60

3.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Modeling Facial Aging in Adults 67
4.1 Shape Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1.1 Parametric muscle model . . . . . . . . . . . . . . . . . . . . . 69
4.1.2 Facial Growth Statistics . . . . . . . . . . . . . . . . . . . . . 74
4.1.3 Model Computation . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Texture Transformation . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

v



4.3.1 Face recognition across ages . . . . . . . . . . . . . . . . . . . 82
4.3.2 Appearance Prediction . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Discussions and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 85

5 Face Verification across Age Progression 91
5.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Frontal Face Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3 Illumination Compensation . . . . . . . . . . . . . . . . . . . . . . . . 98
5.4 Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4.1 Bayesian Framework . . . . . . . . . . . . . . . . . . . . . . . 106
5.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 110

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6 Conclusions and Future Work 122
6.1 Conclustions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2 Future Work : Familiarity in Face Recognition . . . . . . . . . . . . . 124

6.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 125
6.2.2 Preliminary Experiments . . . . . . . . . . . . . . . . . . . . . 126
6.2.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Bibliography 131

vi



List of Tables

2.1 Geometric transformations that were studied under the context of
craniofacial growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 First set of geometric transformations that were studied under the
context of craniofacial growth . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Second set of growth ratings that were assigned to different transfor-
mation functions in Mark et al. [1] . . . . . . . . . . . . . . . . . . . 13

2.4 Some Contributions from Psychophysics, Human Perception, Physi-
ology, Paleontology etc. in the topic of Facial Aging . . . . . . . . . . 15

2.5 Additional Contributions from Psychophysics, Human Perception,
Physiology, Paleontology etc. in the topic of Facial Aging . . . . . . . 16

2.6 A summary of contributions from computer vision in the topic of
facial aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 A summary of computer vision approaches : Based on the problem
addressed for different age groups . . . . . . . . . . . . . . . . . . . . 19

2.8 A summary of computer vision approaches : Based on the problem
addressed for different age groups . . . . . . . . . . . . . . . . . . . . 20

2.9 Databases that were used for the task of age estimation . . . . . . . . 23

2.10 MORPH Database : Age based Data . . . . . . . . . . . . . . . . . . 28

2.11 MORPH Database : Ethnicity based data . . . . . . . . . . . . . . . 29

3.1 Age transformation models . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Average mismatch in fiducial feature upon transformation . . . . . . 64

3.3 Recognition results (%) before and after age transformation . . . . . 66

5.1 Database of Passport Images . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Facial Similarity Scores : Set I corresponds to full faces and Set II
corresponds to half-faces faces. . . . . . . . . . . . . . . . . . . . . . . 118

5.3 The overall results of the Bayesian Age-difference Classifier . . . . . 119

5.4 Classification results on Non-Variate images pairs . . . . . . . . . . . 120

vii



5.5 Classification results on images pairs with facial expressions . . . . . 120

5.6 Classification results on images pairs with glasses . . . . . . . . . . . 120

5.7 Classification results on images pairs with facial hair . . . . . . . . . 120

5.8 Similarity Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

viii



List of Figures

1.1 A compilation of multiple images of an individual taken during dif-
ferent ages. The images were collected from the FG-NET aging
database. [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Morphological changes that are induced on biological forms (human,
in the case above) as a result of applying coordinate transformations
is illustrated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Transformation functions that were proposed to model craniofacial
growth : The ‘revised’ cardioidal strain transformation was observed
to be most effective in performing the task.) . . . . . . . . . . . . . . 10

2.3 An illustration of the effects of applying different transformation func-
tions on ‘profile faces’. An illustration of this nature originally ap-
peared in [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 The effects of inducing wrinkles and facial creases on 3D caricatures of
human faces is illustrated. Sub-figure (i) corresponds to the original
3D Face. Sub-figures (ii), (iii) and (iv) correspond to the 3D faces
that were generated upon exaggerating facial crease. The illustration
has been derived from [3] and has been included with due permission
from the authors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 (a) An illustration of the ‘Composite faces’ that were constructed for
four age groups (b) An illustration of the age-based shape transfor-
mation approach proposed by [4] and [5]. (The above illustration was
derived from [5] and has been published with permission from the
authors) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Sample images from the MORPH Database and the FG-NET Database 30

2.7 (a) Sample measurements extracted across fiducial features desig-
nated by ‘n’ and ‘sn’ from ages 0 to 18 years on boys and girls are
illustrated (Appears in [6]). (b) An illustration of the different facial
features that are studied in anthropometric studies . . . . . . . . . . 32

3.1 Age separated face images of children (from the FG-Net database [2] 34

3.2 (a) Pressure distribution within a fluid filled spherical object is illus-
trated. (b) Facial growth simulated on the profile of a child’s face
using the ‘revised’ cardioidal strain transformations. An illustration
similar to the one above originally appeared in [7] . . . . . . . . . . . 36

ix



3.3 Age transformation results obtained by applying the ‘revised’ car-
dioidal strain transformation on real-life face images of two individu-
als (8 years and 13 years of age respectively). The growth parameters
chosen for each of the 8 instances were (i) k = 0.06 (ii) k = 0.12 (iii)
k = 0.18 (iv) k = 0.21 (v) k = 0.06 (vi) k = 0.12 (vii) k = 0.18 (viii)
k = 0.27. The original images belong to the FG-Net aging database [2]. 38

3.4 The 24 facial landmarks identified on frontal faces and the differ-
ent facial measurements that were used in developing the model are
illustrated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 The radial and angular coordinates of fiducial features are plotted
across different ages. They were derived from the facial measurements
that were provided by Farkas [6]. . . . . . . . . . . . . . . . . . . . . 41

3.6 (i) Prototype faces for different ages and the flow of facial features
across age are illustrated (ii) The origin of reference computed from
age-based facial measurements from boys and girls are illustrated. . . 45

3.7 An illustration of the different aspect ratios observed in faces belong-
ing to the same age (15 years). The deviation parameters (εh, εv)
corresponding to each of the different aspect ratios of faces are men-
tioned. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.8 Generic growth model vs Personalized growth model . . . . . . . . . 59

3.9 Age transformation results on different individual. (The original im-
ages shown above were taken from the FG-Net database [8].) . . . . . 65

3.10 Age transformation results on different individual. (The original im-
ages shown above were taken from the FG-Net database [8].) . . . . . 66

4.1 (i) Configuration of different facial muscles is illustrated. M01, M02
. . . etc. correspond to the muscle tags and I, II and III correspond
to the muscle types (ii) The points of origin and insertion of different
facial muscles are illustrated. . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Linear muscle model : Points (a) and (b) correspond to the points
of origin and points of insertion. (ii) Sheet muscle (points (d,e) and
(a,b,c) correspond to the points of origin and points of insertion)
(iii) Sphincter muscle (typically, the features along the horizontal
axis correspond to the points of origin and those along the periphery
correspond to the points of insertion) . . . . . . . . . . . . . . . . . . 72

4.3 Sheet muscle (points (d,e) and (a,b,c) correspond to the points of
origin and points of insertion) . . . . . . . . . . . . . . . . . . . . . . 73

x



4.4 Sphincter muscle (typically, the features along the horizontal axis
correspond to the points of origin and those along the periphery cor-
respond to the points of insertion) . . . . . . . . . . . . . . . . . . . . 74

4.5 The figure illustrates the distribution of pressure on different facial
muscles such as (i) Levator labii superioris (M04), Zygomaticus minor
(M05) and Zygomaticus major (M06) (ii) Orbicularis Orbis (M16)
(iii) Frontalis (M01) . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 The 48 facial features and their correspondences with facial muscles
are illustrated (the muscle tags M01, M02 etc. follow the nomenclature
from fig. 4.1(i)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.7 An illustration of the overlap observed on sheet muscles . . . . . . . . 77

4.8 Sample facial wrinkle patterns as observed over four facial regions
namely (i) Forehead region(ii) Eye-burrow region(iii) Nasal region
(iv) Lower chin region are illustrated . . . . . . . . . . . . . . . . . . 81

4.9 The figure illustrates the wrinkle pattern changes learnt from indi-
viduals belonging to the age group 50 - 60 yrs. The illustration was
obtained by adding the image gradient differences that were learnt
from age separated image pairs with a zeros intensity image and sub-
sequently invoking Poisson image reconstruction [9]. . . . . . . . . . . 83

4.10 An overview of the proposed facial aging model : Facial shape vari-
ations induced for the cases of weight-gain and weight-loss are illus-
trated. Further, the effects of gradient transformations in inducing
textural variations are illustrated as well. . . . . . . . . . . . . . . . . 87

4.11 Aged images generated from a single image as part of the face verifi-
cation experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.12 True positive rate vs. False negative rate, when age separation is
lesser than 9 years. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.13 True positive rate vs. False negative rate, when age separation is 9
years or greater. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.14 Appearance prediction across ages : The 2nd column illustrates the
shape transformation results for the three types of weight-change
across ages. The 3rd, 4th and 5th columns illustrate the textural vari-
ations induced on the shape transformed image, using image gradient
transformations that correspond to ‘subtle’, ‘moderate’ and ‘strong’
wrinkles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xi



5.1 A few sample age separated images of individuals retrieved from their
passports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Recovery of frontal faces : Images in the top and the bottom row
illustrate the recovery of frontal faces from non-frontal faces with a
yaw = -15 degrees and yaw = +15 degrees respectively. . . . . . . . . 98

5.3 Images of an individual under each of nine different illumination con-
ditions from the PIE dataset [11]. With images from each of fi, i
∈ 02, 03, ...22 as the gallery and images from fj, j6=i as the probe, a
round-robin recognition experiment was performed . . . . . . . . . . 100

5.4 Evaluation of Half-faces : Rank 1 recognition score using Eigenfaces
on Full faces and Half-faces. . . . . . . . . . . . . . . . . . . . . . . . 101

5.5 Facial similarity experiment : Images of an individual taken under
different illumination conditions and their corresponding half-faces
with better illumination . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.6 Half-faces selection criterion : Green - Optimal Mean Intensity Curve;
Red - Mean Intensity Curve from the right half of the face; Blue -
Mean Intensity Curve from the mirror reflected left half of the face.
Some of the images from the AR Face database [12] were used for
illustration purposes . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.7 Average difference images from the intra-personal (under each of the
four age-difference categories) and extra-personal classes. . . . . . . . 106

5.8 An Overview of the Bayesian Age-Difference Classifier . . . . . . . . 110

5.9 Face verification results : ROC curve . . . . . . . . . . . . . . . . . . 112

5.10 Facial similarity across time : Distribution of Similarity scores across
age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1 Familiarity in face recognition : Let S1(G,P ) and S2(G,P ) corre-
spond to the similarity scores obtained from the gallery image G and
the probe image P with and without incorporating the notion of fa-
miliarity. In the ideal scenario, S1(G,P ) > S2(G,P ), when G and
P correspond to the images of the same individual and S1(G,P ) <
S2(G,P ), when they correspond to the images of different individ-
uals. In other words, the ROC curves obtained from the familiar
face recognition system should be better than that obtained from the
regular system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

xii



6.2 The 21 illumination conditions from the PIE dataset are illustrated
above. Different combinations of the 10 highlighted illumination con-
ditions were used to create the training set for the LDA classifer. . . . 128

6.3 The ‘n-Training set’ (2 ≤ n ≤ 10) that generalizes best across all the
21 illumination conditions are illustrated. . . . . . . . . . . . . . . . . 129

6.4 The ‘n-Training set’ (2 ≤ n ≤ 10) that generalizes best across all the
21 illumination conditions are illustrated. . . . . . . . . . . . . . . . . 130

xiii



Chapter 1

Introduction

Human faces comprise a special class of 3D objects that have long been of

interest to computer vision and psychophysics communities. Apart from playing

a crucial role in human identification, human faces convey a significant amount of

information on one’s age, gender, ethnicity, his / her emotional state etc. Over the

past decade, researchers from computer vision and psychophysics have contributed

significantly towards a better understanding of the perception of human faces and

towards developing computational models that help characterize facial appearances.

Apart from the numerous holistic and feature based approaches that have been

proposed towards face recognition from 2-D images, many algorithms have been

proposed for face recognition from video and from 3-D scans of human faces. Zhao

et al. [13] provide a qualitative analysis of the different face recognition algorithms.

Decades of dedicated research coupled with the standardization of face recognition

algorithms through evaluation methodologies such as FERET [14,15] and FRVT [16]

have enhanced the commercial significance of face recognition systems.

While today’s face recognition systems perform commendably well in con-

trolled environments, there is a notable drop in their performance in uncontrolled

environments. Factors such as illumination variations, pose variations, facial ex-

pressions, facial occlusions etc. affect recognition performance significantly. Zhao
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et al. [13] discuss the effects of non-uniform illumination and pose variations on

face recognition. [17], [18], [19], [20], [21], [22], [23], [24] are some of the notable

approaches proposed towards recognizing faces across illumination and pose vari-

ations. Facial Action Coding systems [25] has contributed significantly towards

facial expression characterization. [26], [27], [28], [29] propose approaches towards

recognizing facial expressions from face images.

In recent years, a new dimension has been added to the problem of face recog-

nition. Age as an attribute related to human faces is being increasingly studied and

there has been a growing interest in problems such as face recognition across ages,

automatic age estimation from face images, appearance prediction across ages etc.

Some of the motivations behind working on the problem of facial aging are listed

below.

1.1 Motivation

Characterizing the progressive, but subtle variations in facial appearances as

humans age has many significant implications. Some of the interesting applications

of studying age progression in human faces are discussed below.

• Developing face recognition systems that are robust to age progression would

enable the successful deployment of face recognition systems in public places.

Such systems would be highly beneficial to homeland security applications.

Further, developing systems that verify face images across age progression

would annul the necessity of periodically updating large face databases with

2



more recent images.

• Since different individuals age differently, developing automatic age progres-

sion systems that could predict the many different ways a person could have

aged would have a significant impact in finding missing individuals.

• Ethological studies have revealed that the perceived age of an individual sig-

nificantly affects the type and amount of behavior directed towards him/her

by other individuals. Hence, building systems that could reliably estimate

the age of individuals, would be useful for developing human-robot interaction

systems and human-computer interaction systems.

• Changes in facial appearances have a significant psychosocial impact on an in-

dividual [30]. Studies related to craniofacial growth are bound to help surgeons

and orthodontists in treating disfigurements and deformities in faces.

1.2 Problem Statement

From a computer vision perspective, facial aging offers many an exciting chal-

lenges. Figure 1.1 illustrates the face images of an individual taken during different

ages, from infancy until the later stages of adulthood. The figure illustrates the

many forms by which facial aging effects are manifested across ages. The different

forms of manifestations could be described as (a) rapid increase in facial size and

a loss in facial fat during infancy (b) a gradual, but well pronounced, increase in

facial size during teenage years (c) subtle changes in facial shape during adulthood
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Figure 1.1: A compilation of multiple images of an individual taken during different

ages. The images were collected from the FG-NET aging database. [2]

(d) the appearance of facial wrinkles during the later stages of adulthood (e) Hair

growth or hair loss etc.

1.3 Contributions made in this thesis

Providing formal characterizations to such facial appearance variations and

improving the performance of face recognition systems when presented with age

separated face images of individuals are the primary focuses of this thesis. In this

thesis

• We propose a facial growth model that characterize facial characterizes growth

related shape variations commonly observed during formative years. The

model draws inspiration from the certain facial growth models that were stud-

ied in psychophysics and further, incorporates age-based anthropometric mea-

surements in characterizing facial appearances.
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• Next, we propose a physically based model that characterizes the shape and

textural variations that are observed in adult faces as a result of aging. We

propose a facial muscle model that helps characterize the drift in facial features

commonly observed in adulthood. We also propose methods to characterize

facial textural variations such as wrinkles and other skin artifacts.

• We propose a subspace-based approach towards performing face verification

across age progression. We also illustrate how the proposed approach could

be used to estimate the age separation between a pair of age separated face

images of an individual.

Chapter 2 provides an in-depth account of the previous work on the topic of

facial aging. Chapters 3 and 4 detail computational approaches towards character-

izing facial aging effects during formative years and during adulthood respectively.

Chapter 5 addresses the problem of verifying one’s identity from his or her age sepa-

rated face images. Chapter 6 illustrates some of my intended future in a topic quite

related to this thesis.
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Chapter 2

Literature Survey

Human perception studies reveal that attributes derived from one’s appearance

such as one’s emotional state, attractiveness, perceived age etc. tend to significantly

influence interpersonal behavior [31]. Hence, for many decades human faces have

been closely studied in computer vision and psychophysics with the objective of

characterizing the many factors that induce appearance variations and subsequently

unearthing information pertaining to an individual from his / her varying facial

appearances. This chapter provides a thorough analysis on problems related to

facial aging and further offers a complete account on the many research initiatives

pertaining this problem.

We discuss some of the interesting studies performed on the topic of facial

aging in Psychophysics and Human Perception and in Computer Vision focusing

on problems such as age estimation, facial appearance modeling, face verification

across aging etc. Finally, the chapter introduces some of the face databases that

provide age separated face images of individuals.

2.1 Contributions from Human Perception and Psychophysics

The ability of humans to perceive age-related changes in facial appearances

and their readiness in judging the relative age differences even from sparse repre-

6



sentations of faces such as ‘schematic faces’, prompted numerous researchers from

human perception and psychophysics to study the natural phenomenon of facial

aging. D’arcy Thompson’s study of morphogenesis [32] played a critical role in un-

derstanding the morphological changes associated with growth in biological forms.

Thompson based his study of morphogenesis on identifying the constraints (forces)

that biological forms were subjected to and in understanding their role in maintain-

ing the structural and physiological integrity of biological forms despite the morpho-

logical changes. He embedded biological forms within a coordinate framework and

employed coordinate transformations in studying different morphogenetic events.

The graphic depictions of such morphogenetic events that he presented, highlighted

the effects of natural constraints on the global morphology of organisms. Figure 2.1

illustrates the morphological changes induced on a human skull image as a result of

coordinate transformations.

In the 1970s, there was considerable interest in experimental psychology in the

topic of event perception. Events invariably involved change and hence, event per-

ception studies sought to analyze the patterns of change in characterizing events.

Delineating the perceptual information specific to a class of events and knowing

apriori the external environment where the events occur were identified as critical

aspects of event perception. Robert Shaw studied facial growth as an event percep-

tion problem [33] as against those who believed facial growth to be a problem of

cognition. Shaw sought to identify the transformational invariants and structural

invariants that are associated with facial growth, with the objective of identifying

the factors that were responsible for similar patterns of change each time the event
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Figure 2.1: Morphological changes that are induced on biological forms (human, in

the case above) as a result of applying coordinate transformations is illustrated.

was manifested. He observed that the structural invariants associated with facial

growth were responsible for preserving the identity of individuals over the course of

facial growth.

Drawing inspiration from Thompson’s work, Shaw et al. [33] sought to identify

mathematical transformations that help characterize the facial growth event. They

discovered two transformations that could be applied on the outer contour of faces

in the ‘profile view’ namely,
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• Cardioidal strain : Stretches the face downward and outward

• Affine shear : When applied in the right proportion, introduces a protrusion

in the jaw and a backward slant in the forehead

Pittenger and Shaw [34] revisited the above approach and investigated the relative

importance of three force configurations namely, the shear forces, the strain forces

and the radial forces in inducing facial growth. Observers were asked to identify

the age-level of facial profiles that were altered by different force configurations.

They observed that the age-level estimates from facial profiles altered by ‘cardioidal

strain’ forces (which implicitly incorporates the radial force component) were far

more consistent than that altered by ’shear forces’ and proposed that ‘cardioidal

strain’ transformation were effective in characterizing morphological changes in the

human cranium as a result of growth. Fig. 2.2 illustrates the effects of applying

combinations of strain transformations and shear transformations on profile faces.

Todd et al. [7] proposed the hydrostatic model, also called as the ‘revised’ car-

dioidal strain transformation model to characterize facial growth. Drawing analogies

between human head growth and the modeling of a fluid-filled spherical object with

pressure, they performed a hydrostatic analysis of the effects of gravity on a growing

head. Their approach was based on the notion that a biological structure remodeled

in accordance with the amount and direction of forces the structure was subjected

to.

Mark et al. [1] hypothesized that the perceptual information associated with

any recognizable style of change were contained in the geometric invariants asso-
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Figure 2.2: Transformation functions that were proposed to model craniofacial

growth : The ‘revised’ cardioidal strain transformation was observed to be most

effective in performing the task.)

.

ciated with the event. They sought to identify the geometric invariants that are

characteristic of growth, the invariants that were common to the myriad of struc-

tures that could be recognized as growing. Three geometric invariants were identified

in relation to facial growth, namely

• Type I : The angular coordinates of features being preserved

• Type II : Bilateral symmetry about the vertical axis being preserved

• Type III : Continuity of all contours and their directions of curvature being

preserved
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Mark et al. [1] further hypothesized that for any transformation to be identified

as that which induces growth related changes, the aforementioned attributes had

to be preserved across transformation. Delineation of such invariants provided a

framework for selecting different transformation functions for study in perceptual

tests related to facial growth. Table 2.1 and Table 2.2 illustrate the mathematical

form of some of the transformation functions that were studied as being relevant to

facial growth and further illustrates which geometric invariants (discussed above)

are preserved by each transformation function.

Table 2.1: Geometric transformations that were studied under the context of cran-

iofacial growth

Transformation function Mathematical Form
Invariants

I II III

Rigid Rotation θt+1 = θt + φ × × X

(polar coordinates) Rt+1 = Rt

Reflected Shear Yt+1 = Yt × X X

(Cartesian coordinates) Xt+1 = Xt + kYt ( Xt
|Xt|)

Affine Shear Yt+1 = Yt × X X

(Cartesian coordinates) Xt+1 = Xt + kYt

Spiral strain θt+1 = θt X X X

(polar coordinates) Rt+1 = Rt(1 + k|θt|)

Table 2.3 illustrates the growth ratings that were recorded for each transfor-
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Table 2.2: First set of geometric transformations that were studied under the context

of craniofacial growth

Transformation function Mathematical Form
Invariants

I II III

Cardioidal strain θt+1 = θt X X X

(polar coordinates) Rt+1 = Rt(1− k cos(θt))

Revised Cardioidal Strain θt+1 = θt X X X

(polar coordinates) Rt+1 = Rt(1 + k(1− cos(θt)))

mation function. The growth ratings, which originally appeared in [1] were compiled

as described below : Subjects were provided with pairs of face profiles with each

pair reflecting the transformation induced by each function. The growth ratings

were computed by taking the mean of the scores that were assigned to each trans-

formation function. To give a perspective of the scale of such ratings : The growth

ratings that were assigned for ‘Actual Growth’ (the case when the pair of face pro-

files actually were retrieved from growing faces) and that for ‘No Change’ (the case

where the pair of face profiles were identical) were 3.8 and 0.1 respectively. Figure

2.3 illustrates the effects of four of the transformation functions that were studied in

relation to facial growth. Table 2.4 and Table 2.5 summarize some of the other con-

tributions in this topic from Psychophysics, Human Perception and related fields.

A concise account of the above mentioned studies is provided in Pittenger [35] and

Mark [36].
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Table 2.3: Second set of growth ratings that were assigned to different transforma-

tion functions in Mark et al. [1]

Transformation function Growth Rating

Rigid Rotation 0.05

Reflected Shear 0.3

Affine Shear 0.8

Spiral strain 3.0

Cardioidal strain 3.6

Revised Cardioidal Strain -NA-

2.2 Contributions from Computer Vision

In recent years, there has been a growing interest in the computer vision

community in addressing the many problems related to facial aging such as : age

estimation, appearance modeling, face recognition / verification across ages etc.

From a computer vision perspective, the problem of facial aging can be described

as follows :

• Shape vs. Texture : Facial aging can be described as a problem of character-

izing facial shape and facial texture as functions of time. Since aging effects

induce progressive variations in facial appearances, models characterizing the

same need to account for the temporal nature of the induced variations.
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Figure 2.3: An illustration of the effects of applying different transformation func-

tions on ‘profile faces’. An illustration of this nature originally appeared in [1].

• Feature selection : Developing facial growth models or building characteriza-

tions of facial aging begins with identifying the appropriate form of data that

provide a fair description of the event. The data could be individual-specific or

population-specific. Fiducial features (2D or 3D) extracted from age separated

faces, 2D facial imagery or 3D facial scans extracted from individuals across

different ages, face anthropometric measurements extracted from a population
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Table 2.4: Some Contributions from Psychophysics, Human Perception, Physiology,

Paleontology etc. in the topic of Facial Aging

Reference Summary of contributions

Provided a detailed account of neonatal growth and

Enlow [37] observed disproportionate changes in the dimensions

of the head and the face, across growth.

Developed explicit procedures to infer a detailed

Gerasimov structure of human faces from their bare skulls.

[38] His accurate reconstructions led to the hypothesis that

bone growth was largely controlled by the soft-tissue

Interestingly, observed that the cardioidal strain

Pittenger transformation was effective in altering the perceived

and Shaw [39] age of cartoon drawings of monkeys, birds, dogs and

inanimate objects such as the ‘Volkswagen’ beetle.

etc. are some of forms of data that can help characterize facial growth.

• Factors : Apart from biological factors such as bone growth, loss in elasticity

of facial muscles, facial fat atrophy etc., numerous other factors such as one’s

ethnicity, gender, dietary habits and climatic conditions have been shown to

contribute to facial aging effects [6] . Further, facial appearances get altered

with increase in age due to factors such as loss of hair. Hence, the proposed

15



Table 2.5: Additional Contributions from Psychophysics, Human Perception, Phys-

iology, Paleontology etc. in the topic of Facial Aging

Reference Summary of contributions

Age estimates were obtained from faces whose shape and degree of

Mark et al. skin wrinkling were changed. Both the variables affected the

[40] perceived age of faces.

Mark and Extended the 2D cardioidal strain transformation model into 3D and

Todd [41] demonstrated its effectiveness in characterizing facial growth in 3D

Bruce et al. Observed that a subject’s sensitivity to cardioidal strain related

[42] changes in 3D faces were comparable, when viewed in pairs of

Applied a facial caricaturing algorithm on 3D faces. Noted that an

O’Toole et al. exaggeration or a de-emphasis of facial creases, increased or decreased

[3], [43] the perceived age of faces respectively. Fig. 2.4 illustrates the same.

characterization of facial aging effects should ideally account for the multiple

factors that have been identified to induce aging effects.

Table 2.6 summarizes computer vision approaches towards facial aging based

on the nature of the approach. Table 2.7 and Table 2.8 summarize them based on

the problem that was addressed for different age groups. In subsequent sections, we

provide a concise account of each of of the contributions mentioned in Table 2.6.
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Figure 2.4: The effects of inducing wrinkles and facial creases on 3D caricatures

of human faces is illustrated. Sub-figure (i) corresponds to the original 3D Face.

Sub-figures (ii), (iii) and (iv) correspond to the 3D faces that were generated upon

exaggerating facial crease. The illustration has been derived from [3] and has been

included with due permission from the authors.

2.2.1 Age Estimation

Age estimation techniques were often based on shape-based cues and texture-

based cues that were extracted from faces. While feature-based approaches used

anthropometric distances extracted from different facial regions in estimating one’s

age, holistic approaches typically adopted subspace methods to reduce the dimen-

sionality of faces and subsequently used regression techniques to estimate one’s age

from his or her face images.
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Table 2.6: A summary of contributions from computer vision in the topic of facial

aging

Approach Reference(s)

Subspace based Lanitis et al. [44], [45], Geng et al. [46], [47]

Fu et al. [48], Guo et al. [49]

Model based Suo et al. [50], Unsang et al. [51]

Machine Learning Gandhi and Levine [52], Ling et al. [53]

Yang and Ai [54]

Image / Feature driven Kwon and Lobo [55], Burt and Perrett [4]

Tiddeman et al. [5], Biswas et al. [56]

Kwon and Lobo [55] proposed an age classification approach that identifies

the age group a face image belongs to, based on the anthropometry of the face

and the density of its wrinkles. They considered three age groups in their study,

namely, that of infants, young adults and senior adults. Observing that the lower

and upper halves of faces grow at different rates during formative years, [7], they

used ratios of facial measurements in distinguishing images of infants from those

of adults. They identified 6 ratios (eye-eye : eye-nose, eye-eye : eye-mouth etc.)

for their study. Further, they proposed the use of snakelets [59] in characterizing

facial wrinkle density in predesignated facial regions, which was used to classify the

images of young adults from that of senior adults.
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Table 2.7: A summary of computer vision approaches : Based on the problem

addressed for different age groups

Reference Objective Age group

Kwon and da Lobo Age based classification Infants, young adults and

[55], [57] and senior adults

Burt and Perrett Age transformation, Adults

[4] Age perception

Wu et al. [58] Age transformation Adults

O’Toole et al. [3] Age perception Adults

Tiddeman et al. [5] Age transformation, 20 yrs - 60 yrs

Age perception

Lanitis et al. [44] Age transformation, 0 yrs - 30 yrs

Face recognition across age

Adopting the Active Appearance Model (AAM) [60] approach, Lanitis et al.

[44], [45] devised a combined shape and intensity model to represent face images.

Face images were represented by means of model parameters, which are nothing but

the principal components from the eigenspaces that correspond to facial shape and

facial intensity. They proposed the following approaches to estimate one’s age from

such low-dimensional representations of faces. Let the model parameters of faces be

designated as b.
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Table 2.8: A summary of computer vision approaches : Based on the problem

addressed for different age groups

Reference Objective Age group

Lanitis et al. [45] Age based classification 0 yrs - 30 yrs

of face images

Gandhi [52] Age transformation 15 yrs and above

Age estimation

Geng et al. [47] Age estimation All ages

Suo et al. [50] Age transformation Adults

• Regression functions : Modeling age as a function of the model parameters b,

age = f(b), they modeled f as linear, quadratic and cubic functions. The age

of an unknown face was estimated using the identified function f .

• Age-based Distribution functions : Identifying a distribution function for the

model parameters corresponding to each age, the age of unknown faces is es-

timated by means of the Mahanalobis distance computed between the model

parameters of the unknown face and the centroid of the age-based distribution

functions.

• Neural Networks : Supervised and unsupervised neural networks were built
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on the model parameters to estimate one’s age from face images.

Geng et al. [46], [47] proposed the ‘Aging pattern subspace : AGES’ approach

to perform age estimation from face images. Defining the ‘aging pattern’ as a se-

quence of personal face images ordered in time, AGES is designed to characterize

the temporal nature of the underlying data and thereby capture the appearance

variations commonly observed in aging faces. Since obtaining a ‘complete aging

pattern’ for each individual is difficult (the case when an individual’s face images

are available for all the ages of interest), they developed the ‘aging pattern subspace’

drawing inspiration from methods that develop an eigenspace [61] using incomplete

data (data with missing features). Upon developing the subspace, the aging pat-

tern and the age of a previously unseen face is determined by the projection in the

subspace that best reconstructs the face.

Fu and Huang [48] construct a low-dimensional manifold from a set of age-

separated face images using different manifold learning approaches such as LPP (Lo-

cality Preserving Projections), OLPP (Orthogonal Locality Preserving Projections),

CEA (Conformal Embedding Analysis) etc., and use linear and quadratic regression

functions on the low-dimensional feature vectors from the respective manifolds, in

estimating the age of a face. Along very similar lines, Guo et al. [49] adopt the

manifold learning approach and use Support Vector Regression [61] to estimate the

age from the low-dimensional representation of faces. They report that local adjust-

ments made on the regression result lead to improved accuracy in age estimation.
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Yang and Ai [54] proposed a learning-based approach towards classifying face

images based on their age group. They used the LBP (Local Binary Pattern) [62] as

an image operator and extracted the LBP histogram which was subsequently used

for texture characterization. Adopting the AdaBoost technique [61], they identified

a sequence of local features which when combined into a strong classifier performs

the task of age classification successfully.

Table 2.9 lists the different databases on which age estimation results were

reported.

2.2.2 Computational Models for Age Progression

Modeling facial appearances across different ages amounts to building compu-

tational models for facial aging that account for a multitude of factors such as (i)

age group (ii) gender (iii) ethnicity (iv) weight loss / gain etc.

Burt and Perrett’s [4] focusing on age-related visual cues associated with faces,

offered many insights into the task of modeling facial aging in adults. Considering

face images from 7 age groups [20-24 years, 25-29 years, . . . and 50-54 years], they

identified a set of fiducial features from every face image in order to characterize

the facial shape. By averaging the shape and skin color (in RGB space) from face

images belonging to the same age group, they created composite faces for each age

group. They observed that by incorporating the differences between composite faces

(in both shape and skin-color) from different age groups onto real face images, the

perceived age of the transformed face images increased. Interestingly, the averaging
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Table 2.9: Databases that were used for the task of age estimation

References Database

Kwon and da Lobo A private database comprising of 47

[55] images of infants and adults

Lanitis et al. [44] FG-NET Aging Database [2]

330 images in the age range

0 to 35 years.

Geng et al. [47] FG-NET Aging Database [2]

Fu and Huang [48] (i) FG-NET Aging Database [2]

Guo et al. [49] (ii) UIUC-IFP-Y Aging Database

A private database comprising of

8000 images of 1600 individuals

Yang and Ai [54] FERET Database [14], PIE Database [11]

operation involved in creating the composite faces was observed to smoothen facial

creases and result in composite faces appearing younger than those from their own

age groups.

Tiddeman et al. [5] extended the above study and incorporated wavelet based

methods for prototyping facial textures and subsequently, creating the composite

faces for different age groups. A locally weighted measure of edge strength in small

regions was used to retain the edges in composite faces leading to better age trans-
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Figure 2.5: (a) An illustration of the ‘Composite faces’ that were constructed for

four age groups (b) An illustration of the age-based shape transformation approach

proposed by [4] and [5]. (The above illustration was derived from [5] and has been

published with permission from the authors)

formation in a manner identical to that described in [4]. Figure 2.5 illustrates the

composite faces that were created for different age groups and further illustrates the

age-based shape transformation approach prescribed by [4] and [5].

Suo et al. [50] adopted the multi-resolution grammatical face model proposed

in [63] and augmented the model with age and hair features. Faces are represented

by means of And-Or graphs, where the ‘And-nodes’ correspond to the course to fine

representation of faces and the ‘Or-nodes’ correspond to the alternative configura-
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tions in facial components in each resolution. Facial aging was modeled by means

of a dynamic Markov process on the And-Or graph representation. They create

a dictionary of different facial components and regions across five age groups (20-

30 years, 30-40 years, 40-50 years, 50-60 years and 60-70 years). The transitional

probabilities comprised in the dynamic model are computed by means of ‘geometric

distances’ and ‘photometric distances’ computed between facial components from

different age groups. The following attributes related to facial aging are accounted

for, in three different resolutions of the face image.

• Global appearance variations in facial shape, hair style, skin color etc. are

addressed at the lowest resolution.

• Deformations in facial components are addressed in the next resolution.

• Finally, finer aspects such as wrinkles, skin pigments etc. are accounted for in

the highest resolution.

2.2.3 Face verification across age progression

On a broad scale, the different methods that were proposed to perform face

verification across ages can be classified as ‘generative’ and ‘non-generative’ in na-

ture. Verification methods under the former category, typically introduce appear-

ance transformations on one of the test images to reduce the facial appearance

difference due to age separation. Generative approaches typically involve a compu-

tational model for facial aging which is subsequently employed for a face verification

task. The face recognition / verification tasks are described in Lanitis et al. [44].
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On the other hand, non-generative approaches derive an age-invariant signa-

ture from faces and use the same to perform face verification across age progression.

The approaches proposed by Ling et al. [53] and Biswas et al. [56] fall under the

latter category. Ling et al. [53] proposed an face operator derived based on the im-

age gradient orientations derived from multiple resolutions and used Support Vector

Machines [61] to perform face verification across ages. They offered insight into why

image gradient orientations tend to be robust to appearance changes introduced as

a result of facial aging.

Biswas et al. [56] proposed coherency in facial feature drifts across ages as a

measure to perform face verification across ages. Their approach is based on the

idea that while facial feature drifts observed across age separated face images of the

same individual follow a coherent drift pattern, the same might not be true for age

separated face images of two different individuals. Since fiducial features extracted

on the outer contour tend to be very sensitive to head pose variations, they limited

their study to fiducial features that were derived from interior facial regions.

2.3 Aging Databases and Growth Related Data

Over the years, numerous face databases [64] have been collected to help study

the different problems related to face recognition. Given the difficulty in compiling

face datasets that comprise of age-separated face images, there are very few publicly

available datasets that specifically address facial aging in comparison to the datasets

that address other problems in face recognition. There are three publicly available
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databases that comprise of age separated face image samples namely, the MORPH

Database [65], [66], the FG-NET Aging Database [2] and the FERET Database [14].

Here, we provide a concise account on each of the three databases, in relation to

facial aging.

2.3.1 The MORPH Database

The MORPH Database comprises face images of adults taken during different

ages. The database has been organized into two albums : ‘MORPH Album 1’ and

‘MORPH Album 2’. ‘MORPH Album 1’ comprises of 1690 digitized images of 515

individuals in the age range 15 − 68 years. ‘MORPH Album 2’ comprises of 15204

images of nearly 4000 individuals. Apart from the face images, the database also

provides meta-information that is critical for the task of studying age progression

such as age, sex, ethnicity, height and weight. Table 2.10 provides a quick overview

of the MORPH database.

2.3.2 FG-NET Aging Database

The FG-NET (Face and Gesture Recognition Research Network) aging database

[2] comprises of 1002 images of 82 subjects (6 − 18 images per subject) in the age

range 0−69 years. The database also provides 68 landmark features that were iden-

tified manually, on all the face images. In addition, the following meta-information

is available for all the images in the dataset namely : image size, age, gender, specta-

cles, hat, mustache, beard, horizontal pose and vertical pose. Since the images were
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Table 2.10: MORPH Database : Age based Data

MORPH Album 1

Gender Age Group # Samples

<18 18-29 30-39 40-49 50+ #1 #2 #3 #4+

Male 142 803 345 93 22 519 289 67 9

Female 15 182 70 18 0 105 58 13 2

MORPH Album 2

Gender Age Group # Samples

<18 18-29 30-39 40-49 50+ #1 #2 #3 #4+

Male 0 29 5371 5679 1905 3440 1954 1192 2958

Female 0 4 964 1017 235 599 322 200 500

retrieved from real-life albums of different subjects, aspects such as illumination,

head pose, facial expressions etc. are uncontrolled in this dataset. Nevertheless,

this database is the only publicly available resource that provides quite a few age

separated face images of individuals in the age range 0 − 18 years. Further, the

database also has adult face images.
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Table 2.11: MORPH Database : Ethnicity based data

Gender MORPH Album 1 MORPH Album 2

AA C O AA C O

Male 1037 365 3 10283 2650 51

Female 216 69 0 1665 550 5

2.3.3 FERET Database

The FERET Database [14], a comprehensive database that addresses multiple

problems related to face recognition such as illumination variations, pose variations,

facial expressions etc., also comprises of a few hundred age separated face images

of subjects (the age separation amounting to 18 months or more). The FERET

dataset, pertaining to facial aging, can be described as below :

• Gallery-set : Comprises of 1196 images

• Duplicate I Probe-set : Comprises of 722 images of subjects whose gallery

match was taken 0− 1031 days beforehand.

• Duplicate II Probe-set : Comprises of 234 images of subjects whose gallery

match was taken 540− 1031 days beforehand.
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Figure 2.6: Sample images from the MORPH Database and the FG-NET Database

2.3.4 Face Anthropometry

Face anthropometry, the science of measuring sizes and proportions on human

faces, has the potential to play a crucial role in developing facial aging models.

Such studies provide a quantitative description of the craniofacial complex at dif-

ferent ages and hence, provide a plethora of options for learning based approaches

to be adopted to characterize facial aging. Face anthropometric studies provide

dense measurements taken between key landmarks on human faces across different

ages and have played a critical role in surgical procedures employed on the faces of
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growing children [67]. Farkas [6] provides a comprehensive overview of face anthro-

pometry and its many significant applications. He defines face anthropometry in

terms of measurements taken from 57 carefully selected landmarks on human faces

spread across 6 regions in the craniofacial complex (head, face, orbits, nose, lips

and mouth, ear). The facial measurements are of three kinds : (i) projective mea-

surements (shortest distance between two landmarks)(ii) tangential measurements

(distance between two landmarks measured along the skin surface) (iii) angular

measurements. Figure 2.7
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Figure 2.7: (a) Sample measurements extracted across fiducial features designated

by ‘n’ and ‘sn’ from ages 0 to 18 years on boys and girls are illustrated (Appears

in [6]). (b) An illustration of the different facial features that are studied in anthro-

pometric studies
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Chapter 3

Modeling facial aging during formative years

Developing computational models that help emulate humans in their remark-

able ability in recognizing faces, despite the many different facial appearance vari-

ations, has been one of the primary objectives of studies related to human facial

analysis. Computational models that characterize facial appearances should ideally

account for factors that are inherent to human faces such as (i) the 3D structure of

human faces (ii) the reflective properties of facial skin (iii) the degrees of freedom

associated with different facial features that result in local deformations (iv) the

bilateral symmetry in the configuration of facial features etc. In addition, scene-

centric attributes as illumination, head-pose and other external sources of variations

such as facial occlusions, facial hair need to be taken into account. The focus of

this chapter is in proposing a facial aging model that characterizes growth related

changes observed in one’s facial appearance as a result of aging, during formative

years (0 - 18 years).

Facial aging effects are manifested in different forms in different ages. During

formative years, they are predominantly manifested in the form of facial shape vari-

ations and during adulthood, as a combination of gradual variations in facial shape

and texture. Factors such as gender, ethnicity, age group etc. are often attributed

to playing a significant role in affecting facial growth. Since textural variations tend
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to be subtle during formative years, the proposed model primarily addresses shape

variations that are characteristic of aging faces in their formative years. Predicting

the appearance of children across ages and improving the performance of face ver-

ification systems on age-separated face images of children are some of the model’s

intended applications. Fig. 3.1 shows examples of age separated face images of

individuals from the FG-Net aging database [8].

Figure 3.1: Age separated face images of children (from the FG-Net database [2]

Apart from the regular challenges encountered in performing recognition on

adult face images, recognizing children from their face images is posed with an added

complication : age separated face images of children differ in their physical sizes.

Hence, the preprocessing approaches that are typically applied on adult faces to re-

duce mis-alignment of features such as aligning the pair of eyes, the facial mid-axis

etc. cannot be adopted to align age separated face images of children. Developing

computational models that characterize the facial shape variations during forma-

tive years is crucial to successfully perform face verification / recognition on age
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separated face images of children.

The following section provides an overview of the craniofacial growth model

and highlights the importance of incorporating age-based anthropometric face mea-

surements in developing the model. In subsequent sections, we discuss face an-

thropometry in relation to studying age progression in human faces and provide a

mathematical framework for computing the craniofacial growth model, respectively.

Further, we detail the experiments results and discuss some of the strengths and

limitations of the proposed craniofacial growth model.

3.1 Craniofacial Growth Model

We propose a craniofacial growth model that draws inspiration from the ‘re-

vised’ cardioidal strain transformation model proposed by Todd et al. [7]. Re-

introducing the ‘revised’ cardioidal strain transformation model discussed in the

previous chapter, the model is mathematically expressed as :

P t0
i ∝ Rt0

i (1− cos(θt0i )) (3.1)

Rt1
i = Rt0

i [1 + kt0t1i (1− cos(θt0i ))]

θt1i = θt0i (3.2)

where P t0
i denotes the pressure (directed radially outward) applied at the i’th fiducial

feature on the surface of the spherical object at age t0 yrs, (Rt0
i , θt0i ) and (Rt1

i ,

θt1i ) denote the angular co-ordinates of the i’th fiducial feature at t0 yrs and t1

yrs respectively and kt0t1i denotes a growth related constant. The model assumes
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knowledge of the origin of reference for the transformation model. Fig. 3.2(a)

illustrates the pressure distribution within a fluid filled spherical object. Fig. 3.2(b)

illustrates the different face profiles that were generated upon applying the ‘revised’

cardioidal strain transformation on face profiles of children. With an increase in

the value of parameter ‘k’, one can observe an increase in the perceived age of the

resultant face profiles.

Figure 3.2: (a) Pressure distribution within a fluid filled spherical object is illus-

trated. (b) Facial growth simulated on the profile of a child’s face using the ‘revised’

cardioidal strain transformations. An illustration similar to the one above originally

appeared in [7]

Interestingly, the three geometric invariants that were identified by Mark et al.

[1] as those characteristic of objects undergoing growth, are well preserved in objects

undergoing transformations induced by the ‘revised’ cardioidal strain transformation
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model. Re-examining the geometric invariants in relevance to the ‘revised’ cardioidal

strain transformation model, we observe the following.

• Angular coordinates of the fiducial features on an object are preserved : The

pressure applied on fiducial features are directed radially outward, hence pre-

serving their angular coordinates.

• Bilateral symmetry about the vertical axis is maintained : The pressure dis-

tribution being bilaterally symmetric about the vertical axis preserves the

bilateral symmetry of objects upon transformation.

• Continuity of object contours is preserved : In the proposed model, the pres-

sure distribution changes gradually throughout the object and hence continuity

of object contours is preserved.

But, directly employing the afore-mentioned age transformational model on

frontal face images reveals some of the short comings of the model. Fig. 3.3 illus-

trates the face images obtained by applying the ‘revised’ cardioidal strain transfor-

mation model. In each of the two instances illustrated in fig. 3.3, we observe that

while the age transformation is perceivable in the initial few transformations, the

aspect ratio of faces obtained for large age transformations seem unnatural. For

large values of k, which essentially implies larger age transformations, the aspect

ratios between different regions of the transformed faces were less preserved. Face

anthropometric studies report that different facial regions reach maturation at dif-

ferent years and hence a few facial features change relatively less when compared to

other facial features, as age increases.
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Figure 3.3: Age transformation results obtained by applying the ‘revised’ cardioidal

strain transformation on real-life face images of two individuals (8 years and 13 years

of age respectively). The growth parameters chosen for each of the 8 instances were

(i) k = 0.06 (ii) k = 0.12 (iii) k = 0.18 (iv) k = 0.21 (v) k = 0.06 (vi) k = 0.12

(vii) k = 0.18 (viii) k = 0.27. The original images belong to the FG-Net aging

database [2].

Some of the factors that need to be taken into consideration while developing

the model are :

• Facial growth rates at different ages : Face anthropometric studies [6] provide

considerable evidences on the different growth rates observed over different fa-

cial features across years. Different facial features attain saturation in growth

at different stages and hence, facial growth models should implicitly account

for such variabilities. Growth parameters designated as kt0t1i in eq. 3.1 play a
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crucial role in controlling the amount of growth observed over the i’th fiducial

feature from ages t0 years to t1 years and hence, identifying the growth pa-

rameters for each fiducial feature across different age transformations is crucial

towards the success of the model.

• Gender-based and ethinicity-based facial growth rates : Again, face anthro-

pometric studies have proven that facial growth rates depend heavily on the

individual’s gender and ethinicity. Hence, accounting for such factors is a

crucial aspect in developing facial growth models.

We use age-based anthropometric data (in the form of measurements extracted

across different features) in developing the proposed facial growth model.

3.1.1 Face Anthropometry

Face anthropometric studies provide a quantitative description of the cranio-

facial complex by means of measurements taken between key landmarks on human

faces across ages and are often used in characterizing normal and abnormal fa-

cial growth. Facial measurements collected across individuals from the same ethnic

background and gender across different ages, provide significant information on facial

growth patterns that are commonly observed on individuals from the. We incorpo-

rate such evidences on facial growth in computing the facial growth parameters and

hence, implicitly account for factors such as gender, ethnicity, adolescence etc. that

affect facial growth. Face anthropometry has been successfully used in computer

graphics applications by DeCarlo et al. [68] in developing geometric models for hu-
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man faces and by Kahler [69] in simulating growth on human head models. Next,

we elaborate the nature of face anthropometric data that was used in our approach

towards developing a craniofacial growth model.

Figure 3.4: The 24 facial landmarks identified on frontal faces and the different

facial measurements that were used in developing the model are illustrated.

Farkas [6], [67] identifies a set of facial landmarks that can be reliably lo-

cated on human faces (both from real-life faces and frontal / profile face images)

and extracts facial measurements across different landmarks on Caucasian faces

(male/female) belonging to ages 1 - 18 years. For each of the ages 1 to 18 years, fa-

cial measurements were extracted from 50 subjects (of the same gender and ethinic
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origin) and the means and standard deviations across such measurements are tabu-

lated in [6]. Facial measurements extracted across landmarks are generally of three

kinds : (i) projective measurements (shortest distance between two landmarks) (ii)

tangential measurements (distance between two landmarks measured along the skin

surface) (iii) angular measurements. For the proposed application, we select 24 facial

landmarks that can be reliably located on frontal faces and use a set of projective

measurements extracted across these landmarks to characterize facial growth. Fig.

3.4 illustrates the 24 landmarks and the relevant facial measurements that are used

in our study. The radial and angular coordinates of different facial landmarks across

ages are illustrated in Fig. 3.5, below.

Figure 3.5: The radial and angular coordinates of fiducial features are plotted across

different ages. They were derived from the facial measurements that were provided

by Farkas [6].

Facial proportion index, defined as the ratio of a pair of facial measurements,

is a commonly adopted metric in analyzing facial growth [67]. Clinical studies
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related to craniofacial disorders are said to identify a set of facial proportion indices

while studying abnormalities in facial growth. Further, an inherent advantage of

using facial proportion indices in our application is that the unknown scale factor

from an individual’s face images can be discounted while studying the variations

in facial measurements across ages. We identify 52 such facial proportion indices

in developing the craniofacial growth model. Some of the proportion indices that

were used are listed here :(i) Facial index ( n−gn
zy−zy ) (ii) Mandibular index ( sto−gn

go−go ) (iii)

Intercanthal index ( en−en
ex−ex ) (iv) Orbital width index ( ex−en

en−en) (v) Eye fissure index

( ps−pi
ex−en) (vi) Nasal index (al−al

n−sn) etc.

3.2 Model Computation

This section details the computational aspects involved in developing the fa-

cial growth model. Two kinds of growth models are developed : (i) A ‘generic’

growth model that is learnt from ‘population-based’ facial growth patterns (ii) A

‘personalized’ growth model that is learnt upon incorporating individual specific fa-

cial attributes with the ‘population-based’ facial growth data, in the computational

process. The objective behind both the ‘generic’ growth model and the ‘personal-

ized’ growth model is to compute the facial growth parameters ki (eq. 3.1) across a

set of fiducial features (as illustrated in Fig. 3.4) and subsequently across the entire

facial region (face pixels).
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3.2.1 Step I : Identifying the Origin of Reference

The craniofacial growth model described in eq. 3.1 implicitly assumes knowl-

edge of its origin of reference. Hence, in order to successfully apply the model on

face images, identifying one on face images is critical. Let the rescaled facial mea-

surements be denoted as Ωi = (ω
(i)
1 , ω

(i)
2 , . . . , ω

(i)
N ) where i corresponds to the age

(1 ≤ i ≤ 18) and N corresponds to the number of facial measurements used in our

study. Prototype faces are built by identifying the coordinates of the 24 facial land-

marks for each of the ages : (Ωi 7→ (xi,yi), 1 ≤ i ≤ 18). Subsequently, the facial

feature drifts observed across different ages can be used to determine the optimal

origin of reference for the proposed craniofacial growth model. The following cues

help in identifying the origin of reference for the proposed model.

• The craniofacial growth model defined in eq. 3.2 is such that the facial features

with angular coordinates θ = 0 remain static and features with θ such that

|θ| ≤ ε, where ε is a small number, grow minimally. Further, from eq. 3.2

we observe that facial feature growth is directly proportional to the radial

coordinates of feature points.

• ‘Relative total increment’ (RTI(%)) is a measure that quantifies the growth

observed across different landmarks. It is defined as l18−l1
l1
× 100, where l1, l18

correspond to the facial measurements extracted across a pair of facial land-

marks at ages 1 and 18 years. Farkas [6] cites that the ‘relative total increment’

computed across landmarks ‘tr’ and ‘n’ (in the forehead region) is much less

than that computed across other pairs of facial landmarks.
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The above cues suggests that the origin of reference for the craniofacial growth model

should ideally be located between landmarks ‘tr’ and ‘n’ on the axis of bilateral

symmetry. Fig. 3.6(i) illustrates the prototype faces for ages 2 yrs, 5 yrs, 8 yrs, 12

yrs, 15 yrs and 18 yrs and further illustrates the flow of facial features with increase

in age.

The optimal origin of reference for the craniofacial growth model is estimated

as explained below. Let (xij, yij) correspond to the coordinates of the i’th feature

at age ’j’ years (1 ≤ i ≤ 24 , 1 ≤ j ≤ 18). Let (x0, y0) correspond to the origin

of reference for the growth model. y0 corresponds to the facial mid-axis and hence

is known a-priori. The origin of reference for the craniofacial growth model is to

be identified such that the growth constraints imposed on the radial and angular

coordinates of facial features are best accounted for. The growth constraints imposed

on the angular coordinates of facial features imply that the ‘x’ and ‘y’ coordinates

of facial features across age, follow a linear relationship. We compute x0 and mi,

1 ≤ i ≤ 24, the slopes of lines that best fit the facial feature coordinates across years

by solving the underlying least squares problem :

min
w.r.t mi, x0

{
m∑
i=1

n∑
j=1

(xij −mi(yij − y0)− x0)2} (3.3)

By solving the above problem, we observe that the optimal origin of reference for

the model is located between landmarks ‘tr’ and ‘n’ (on the forehead). The low

rates of growth observed on forehead regions for boys (11.8%) and girls (2.25%) [6]

further validate the above solution. Fig. 3.6(ii) illustrates the growth observed

over different facial features for boys and girls (using average measurements) and
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illustrates the located origin of reference.

Figure 3.6: (i) Prototype faces for different ages and the flow of facial features

across age are illustrated (ii) The origin of reference computed from age-based facial

measurements from boys and girls are illustrated.

3.2.2 Step II : Computing Facial Growth Parameters

Upon computing the origin of reference for the craniofacial growth model, the

facial landmarks for different ages are represented in polar coordinates ((xi,yi) ↔

(ri,Θi) where ‘i’ corresponds to the feature index and ‘j’ corresponds to the age in

years. Let the growth parameters corresponding to facial landmarks designated by
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[tr, n, sn, ls, sto, li, sl, gn, en, ex, ps, pi, zy, al, ch, go] be k = [k1, k2, · · · k16],

respectively. Assuming bilateral symmetry of faces, symmetric facial features share

the same growth parameters and hence the 24 facial features result in 16 unique

growth parameters. The 52 proportion indices that were discussed in the previ-

ous section, play a fundamental role in computing the facial growth parameters. By

studying the transformation in proportion indices from ages ‘u’ years to ‘v’ years, we

can compute the facial growth parameters corresponding to the specific age trans-

formation. The age-based proportion indices translate into linear and non-linear

equations in facial growth parameters. Proportion indices derived from facial mea-

surements that were extracted across facial features that lie on the same horizontal

or vertical axis, result in linear equations in the respective growth parameters and

those extracted across features that do not lie on the same horizontal or vertical

axis, result in non-linear equations in growth parameters.

For example, the age based transformation observed in the proportion index

n−gn
zy−zy on features ’n’, ’gn’ and ’zy’, for an age transformation from ‘u’ years to ‘v’

years, results in a linear equation in the relevant growth parameters. The following

equations illustrate the same. (Ru
n, θun, Ru

gn, θugn, Ru
zy, θ

u
zy and cv were derived from

the projective facial measurements provided in [6]).

(n gn)v
(zy zy)v

= cv ⇒
Rv
gn −Rv

n

2×Rv
zy × cos(θzy)

= cv ⇒ (3.4)

Ru
gn(1 + kgn(1− cos(θgn)))−Ru

n(1 + kn(1− cos(θn)))

= 2× cv × cos(θzy)×Ru
zy(1 + kzy(1− cos(θzy)))

(3.5)

⇒ α1kgn + α2kn + α3kzy = β1
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Similarly, the age based transformation observed in the proportion index sto−gn
gn−zy

on features ’sto’, ’gn’ and ’zy’, for an age transformation from ‘u’ years to ‘v’ years,

results in a non-linear equation in the relevant growth parameters, as illustrated

below. (Again, Ru
gn, θugn, Ru

sto, θ
u
sto, R

u
zy, θ

u
zy and dv were derived from the projective

facial measurements provided in [6]).

(sto gn)v
(gn zy)v

= dv ⇒

Rv
sto −Rv

gn√
(Rv

gn −Rv
zy × sin(θzy))

2 + (Rv
zy cos(θzy))

2
= dv ⇒

Ru
sto(1 + ksto(1− cos(θsto)))−Ru

gn(1 + kgn(1− cos(θgn))) =

{[Ru
gn(1 + kgn(1− cos(θgn)))−Ru

zy(1 + kzy(1− cos(θzy)))

× sin(θzy)]
2 + [Ru

zy(1 + kzy(1− cos(θzy))) cos(θzy)]
2)}

1
2 × dv

⇒ α1ksto + α2kgn + α3kzy + α4k
2
sto + α5k

2
gn

+ α6k
2
zy + α7kstokgn + α8kgnkzy = β2

Thus, the set of 52 proportion indices that were identified for our study, result

in a set of linear and non-linear equations on growth parameters solving which one

can identify the growth parameters for specific age transformations.

Let the constraints derived using proportion indices be denoted as r1(k) =

β1, r2(k) = β2, · · · , r52(k) = β52. The objective function f(k) that needs to be

minimized w.r.t k is defined as

f(k) =
1

2

52∑
i=1

(ri(k)− βi)2 (3.6)
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The following equations illustrate the constraints that were derived using different

facial proportion indices.

r1 :
[ n− gn
zy − zy

= c1

]
≡ α

(1)
1 k1 + α

(1)
2 k7 + α

(1)
3 k12 = β1

r2 :
[ al − al
ch− ch

= c2

]
≡ α

(2)
1 k13 + α

(2)
2 k14 = β2

r3 :
[ li− sl
sto− sl

= c3

]
≡ α

(3)
1 k4 + α

(3)
2 k5 + α

(3)
3 k6 = β3

r4 :
[sto− gn
gn− zy

= c4

]
≡ α

(4)
1 k4 + α

(4)
2 k7 + α

(4)
3 k2

4 + α
(4)
4 k2

7

+α
(4)
5 k12 + α

(4)
6 k2

12 + α
(4)
7 k4 k7 + α

(4)
8 k7 k12 = β4

(αij and βi are constants. ci is the proportion index value computed from the ra-

tios of mean values of facial measurements corresponding to the target age, which

were obtained from [6].) To compute the growth parameters k, we minimize the

objective function in an iterative fashion using the Levenberg-Marquardt non-linear

optimization algorithm [70]. We use the craniofacial growth model defined in eq.

3.2 to compute the initial estimate of the facial growth parameters. The initial esti-

mates are obtained using the age-based facial measurements provided for each facial

landmark, individually. The iterative step involved in the optimization process is

defined as

ki+1 = ki − (H + λdiag[H])−1∇f(ki)

∇f(ki) =
N∑
i=1

ri(k)∇ri(k)

where H corresponds to the Hessian matrix of f evaluated at ki. At the end of

each iteration, λ is updated as illustrated in [70]. Since, the computation of k
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discussed above is based on the average facial measurements tabulated in [6] and

does not involve facial measurements from test face images, such computations can

be performed offline.

On each of the test face images, we locate the 24 facial features illustrated

in fig. 3.4 in a semi-automatic manner. We adopt the face detection and feature

localization approach proposed by Moon et al. [71] to detect facial features. Facial

features such as eyes, mouth and the outer contour of the face are located by fitting

ellipses as proposed by Moon et al. [71]. This operation enables the location of

the following facial landmarks (tr, gn : forehead and chin), (en, ex, ps, pi : eyes)

and (ch, sto, ls, li : mouth). Other features designated as n, zy, go etc. do not

correspond to corners or edges on faces and hence were located manually. We enforce

bilateral symmetry while locating facial features. In our observation, minor errors

in feature localization do not affect the proposed method to compute facial growth

parameters.

3.2.3 Interpolation of growth parameters

Next, using the growth parameters computed over selected facial landmarks k,

we compute the growth parameters over the entire facial region. This is formulated

as a scattered data interpolation problem [72]. On a Cartesian coordinate system

defined over the face region, the growth parameters k = [k1, k2, · · · , kn] correspond

to parameters obtained at facial landmarks located in (x1, y1), (x2, y2), · · · , (xn, yn).
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Our objective is to find an interpolating function f : R2 → R such that

g(xi) = ki i = 1, . . . , n (3.7)

where xi = (xi, yi) and the thin-plate energy functional E, a measure of the amount

of ‘bending’ in the surface, is minimized. The thin-plate energy functional is defined

as

E =

∫ ∫
Ω

g2
xx(x) + 2g2

xy(x) + g2
xx(x)dx (3.8)

where Ω is the region of interest (face region, in our case). Using the method of

radial basis function, the interpolating function that minimizes the energy functional

can be shown to take the form

g(x) = c0 + c1x+ c2y +
n∑
i=1

λiφ(|x− xi|) (3.9)

where λi’s are real numbers, |.| is the Euclidean norm in R2 and the linear polyno-

mial c0 + c1x + c2y accounts for affine deformations in the system. We adopt the

thin plate splines functions defined as φ(x) = |x|2 log(|x|) as the basis functions.

As illustrated in [72], to remove affine contributions from the basis functions, we

introduce additional constraints
∑n

i=1 λi =
∑n

i=1 λixi =
∑n

i=1 λiyi = 0. Eqs. 3.7

and 3.9 coupled with the constraints above, results in the following linear system

of equations, the solution of which yields the interpolating function g. The linear

system of equations is
An×n Pn×3

PT
3×n 03×3




Λn×1

c3×1

 =

 k

0

 (3.10)
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where A is a matrix with entries Ai,j = φ(|xi−xj|) i, j = 1, . . . , n, P is a matrix with

rows (1, xi, yi), Λ = (λ1, · · · , λn)T and c = (c0, c1, c2)T . Thus, the growth parameters

computed at selected facial features using age based anthropometric data is used to

compute the growth parameters over the entire facial region. Upon computing the

facial growth parameters over the facial region, the craniofacial growth model can

be applied in a pixel-wise manner, to transform facial appearances.

The proposed transformation model can be used both to predict one’s facial

appearance in the coming years and to derive one’s appearance in the yesteryears.

The transformation models for both the kinds of transformations are illustrated in

table 3.1.

Table 3.1: Age transformation models

Age transformation Growth Model

From t0 years to t1 years Rt1
i = Rt0

i [1 + kt0t1i (1− cos(θt0i ))]

(t1 > t0) θt1i = θt0i

From t0 years to t1 years Rt1
i =

R
t0
i

[1+k
t1t0
i (1−cos(θ

t0
i ))]

(t1 < t0) θt1i = θt0i

3.2.4 Personalized Growth Model

The ‘generic’ growth model proposed above is built upon the average facial

measurements obtained across different ages. Hence, the facial growth parameters

kt0t1 that correspond to an age transformation from t0 years to t1 years, remain the
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same for all individuals irrespective of their facial geometries. Though the inter-

polation procedure in computing the facial growth parameter across all the ‘facial

pixels’ incorporates the individual facial geometries, the facial growth parameters

corresponding to the fiducial features remain the same across all individuals belong-

ing to the same gender and undergoing the same age transformations.

Different individuals have different facial aspect ratios. We propose a ‘per-

sonalized’ growth model that takes into account the individual’s facial aspect ratios

in the process of computing the facial growth parameters. Facial aspect ratios re-

flect attributes such as the ‘ovalness’ or the ‘flatness’ of individual faces. In order

to develop a quantitative characterization of an individual’s facial aspect ratio, we

study the deviations of horizontal and vertical measurements extracted from an in-

dividual’s face from that of an average face that corresponds to the same age as

that of the individual. Farkas [6] tabulates the first and the second order statis-

tics of different facial measurements extracted across ages. We derive quantitative

measures of one’s aspect ratio by means of two parameters (ε1, ε2), the deviations

corresponding to the horizontal and vertical measurements extracted from the face

respectively. Of the 23 facial measurements that constitute our study, we identify

10 facial measurements (6 horizontal measurements (en-en, ex-ex, go-go, zy-zy, al-

al, ch-ch) and 4 vertical measurements (tr-n, n-sn, sn-gn, sto-gn)) that are most

representative of facial dimensions, to compute the deviation measures. We make

the assumption that all the horizontal and vertical measurements exhibit similar

deviations respectively, from the average faces and hence limit our characterization

to a couple of deviation parameters. To reliably estimate the deviation measures,
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it is important to determine the scale differences between face images and average

faces. Fig. 3.7 illustrates the different aspect ratios faces belonging to the same age

(15 years, in the illustrated example) appear in.

Figure 3.7: An illustration of the different aspect ratios observed in faces belonging

to the same age (15 years). The deviation parameters (εh, εv) corresponding to each

of the different aspect ratios of faces are mentioned.

Let h = (m1,m2, . . . ,m6) correspond to the 6 horizontal measurements and

v = (m7,m8,m9,m10) correspond to the 4 vertical measurements extracted from an

individual’s face image. Let t0 correspond to the individual’s age. Let (µi, σi), i =

(1, 2, . . . , 10) correspond to the means and standard deviations of the 10 facial mea-

surements corresponding to age t0 (obtained from [6]). Let X = (s, ε1, ε2) denote the

scale factor and the deviation measures that are to be estimated from an individ-

ual’s face image. Each measurement can be expressed in terms of four parameters

: (mean, standard deviation, deviation measure and scale). For instance, the i’th

horizontal measurement hi can be expressed in terms of (µi, σi, ε1, s) as follows :

µhi + εhσhi = s× hi 1 ≤ i ≤ 6 (3.11)
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The 10 facial measurements lead to the following set of linear equations

m1 −σ1 0

m2 −σ2 0

...
...

m6 −σ6 0

m7 0 −σ7

...
...

m10 0 −σ10




s

ε1

ε2

 =



µ1

µ2

...

µ6

µ7

...

µ10


which is written as AX = b. We solve the the linear system above, by forumalating

the problem as a constrained least squares problem. We impose a non-negativity

constraint on the scale factor s and inequality constraints on each of the devia-

tion measures εi, 1 ≤ i ≤ 2, that constitute X. The optimal scale and deviation

parameters (X*) are estimated as follows :

X* = arg min
X

∣∣∣∣(AX− b)2
∣∣∣∣

s.t −αi ≤ εi ≤ αi

and min
j

µj − αjσj
mj

≤ s ≤ max
j

µj + αjσj
mj

where, αi corresponds to ‘n’ standard deviations away from the mean value (we set

αi = 4). We used the MATLAB function ‘lsqlin’ to solve the constrained linear least

squares problem mentioned above.

Upon computing the deviation measures from different facial regions, we rescale

the age-based anthropometric measurements tabulated in [6] and obtain facial mea-

surements that are more representative of the individual’s facial measurements at
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different ages.

3.2.5 Computational complexity

The nonlinear optimization process involved in computing the facial growth

parameters corresponding to fiducial features converges in roughly 50 iterations.

The thin plate spline interpolation process involved in computing the facial growth

parameters over the entire face results in a linear problem. On a Pentium 2.4GHz

processor, the MATLAB computations span a couple of minutes in performing age

transformation of a face image. The computational complexity involved in esti-

mating the facial growth parameters for the generic growth model can be reduced

considerably by using the underlying recursive formulation. Using the age-based

anthropometric data, we compute the growth parameters kt,t+1
i , where 1 ≤ t ≤ 17

and ‘i’ corresponds to a pixel on the face for different sets of aspect ratios, apriori.

The growth parameters kt0,t1i for any t0 and t1 such that 1 ≤ t0 < t1 ≤ 18, can be

computed as follows :

R
(y)
i = R

(y−1)
i (1 + k

(y−1,y)
i cos(θi))

= R
(y−2)
i (1 + k

(y−2,y−1)
i cos(θi))(1 + k

(y−1,y)
i cos(θi))

= · · ·

= R
(x)
i

y−1∏
j=x

(1 + k
(j,j+1)
i cos(θi)) ⇒

k
(x,y)
i =

∏y−1
j=x(1 + k

(j,j+1)
i cos(θi))− 1

cos(θi)
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3.3 Experimental Results

In this section we discuss the experiments that were performed on a database

of age separated face images using the proposed facial aging models. We performed

three experiments using the ‘generic’ and the ‘personalized’ facial growth models :

(i) Facial feature match accuracy across age progression (ii) Appearance prediction

across ages (iii) Face recognition across age progression. Age separated face images

from the FG-NET aging database were used in our experiments. Since the FG-

NET database comprises of real-life images of individuals taken across years, images

tend to differ significantly in factors such as illumination conditions, head pose,

facial expressions etc. apart from the ages at which the images were taken. Hence,

images with poor illumination conditions and non-frontal head pose orientations

were discarded. In effect, our database comprised on 286 pairs of age separated face

images of 133 individuals.

3.3.1 Accuracy in facial feature matches across age progression

One of the biggest challenges involved in performing face recognition on age

separated face images of children is being able to account for the inherent shape

transformations faces undergo during formative years. Since the drifts observed on

facial features are far from being uniform, trivial pre-processing approaches adopted

for adult faces such as eye-alignment, facial mid-axis alignment etc. do not suffice

in terms of reducing facial feature mismatches in the case of age separated images of

children. The following experiment performed on the age-based face prototypes that
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were reconstructed from the average facial measurements for different age groups [6]

illustrates the importance of developing facial aging models in reducing facial feature

mismatches between age separated face images.

Let the fiducial features corresponding to ages 2 yrs, 5 yrs, 8 yrs, 12 yrs, 15 yrs,

18 yrs be designated as xu, u = 1, 2, . . . , 6. We apply two different transformations

on the fiducial features corresponding to the age-based face prototypes, with the ob-

jective of studying the best fiducial feature matches across different ages. The trans-

formation functions correspond to that proposed by the ‘generic’ craniofacial growth

model and a generic scale based transformation function and let the transformation

functions be designated as Tv
u and Svu respectively. ((u, v) ∈ (2, 5, 8, 12, 15, 18) corre-

spond to the base age and the target age). The scale based transformation function

aligns the eyes of facial prototypes (as typically performed on adult faces by most

face recognition algorithms). The fiducial features corresponding to a particular

facial prototype, xu for instance, are transformed into that corresponding to every

other facial prototype by applying both kinds of transformation functions. Under

each kind of transformation, xu undergoes five different transformations.

Tv
u(xu) = yvu v ∈ {2, 5, 8, 12, 15, 18} − {u}

Svu(xu) = zvu v ∈ {2, 5, 8, 12, 15, 18} − {u}

where yvu and zvu correspond to the fiducial features of the transformed prototypes

(from base age u→ target age v) induced by the ‘generic’ craniofacial growth model

and generic scale based transformation methods. We compute the Euclidean dis-

tance between the original and the transformed fiducial features for each age trans-
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formation. Let ξvu = 1
N
|yvu − xv| and ψvu = 1

N
|zvu − xv| be the Euclidean distances

computed in each of the transformations. Table 3.2 illustrates the distance measures

that were computed by repeating the above operations in a round-robin fashion.

We observe that the ‘generic’ craniofacial growth model performs consistently bet-

ter than the generic scale based transformation methods in aligning facial features

across age transformations.

Next, we performed a similar analysis on the image pairs that were selected

from the FG-NET aging database. Facial features were transformed from the base

age to the target age using three different transformations : (i) ‘generic’ craniofacial

growth based transformation (designated as Tv
u) (ii) personalized craniofacial growth

based transformation (designated as Rv
u) (iii) generic scale based transformation

(designated as Svu), where u and v correspond to the base age and the target age

respectively. Let the fiducial features corresponding to each image pair be addressed

as xi1 and xi2 respectively and let (ui, vi) , ui 6= vi, be their respective ages. (i =

1, 2, . . . , 286). Upon applying the transformation functions, we arrive at

Rvi
ui

(xi1) = yi1, Sviui(xi1) = zi1, Tvi
ui

(xi1) = wi1

where yi1, zi1, wi1 are the age transformed fiducial features under each transforma-

tion function. We compute the Euclidean distance between the age transformed fidu-

cial features and the original fiducial features (at the target age) and study the effec-

tiveness of the applied transformations in modeling facial growth. ρi = 1
N
|xi2−yi1|,

τi = 1
N

(|xi2 − zi1|), ψi = 1
N
|xi2 −wi1|, i = 1, 2, . . . , 286 correspond to the sets of eu-

clidean distances between fiducial features upon applying each model. We study the
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accuracy in facial feature matches for each of the following age difference categories

(1 ≤ A < 3, 3 ≤ A < 6, 6 ≤ A < 9, 9 ≤ A < 12, 12 ≤ A < 15, 15 ≤ A < 18) where

A corresponds to the intra-pair age difference. Fig. 3.8 displays the proportion of

image pairs under each age difference category where better feature matches were

obtained upon performing ‘generic’ and personalized craniofacial growth transfor-

mations as against generic scale based transformations. Fig. 3.8 illustrates that the

Figure 3.8: Generic growth model vs Personalized growth model

personalized growth model performs consistently better than the ‘generic’ growth

model under all the age difference categories. As expected, the age transformation

functions performed progressively better with increase in the intra-pair age separa-

tion.
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3.3.2 Appearance prediction across ages

The proposed craniofacial growth model finds direct applications in predicting

the appearances of children across different ages. Fig. 3.9 illustrates the original

age separated image pairs of different subjects and the age transformed face image

that was obtained using the ‘personalized’ growth model. Further, the facial growth

parameters corresponding to the specific age transformation on each subject are

illustrated, in the form of range maps. The varying intensities observed in the range

maps reflect the different growth rates observed across different facial features across

ages. One can identify certain gender-based facial growth patterns that are similar

across subjects undergoing a similar age transformation. For instance, one can

observe that while facial features along the outer contour of the face grow rapidly in

the initial few years, their growth rate reduces beyond 15 years of age. Further, fig.

3.10 illustrates multiple age transformed images that were obtained from a single

face image of two individuals. The growth parameters associated with each age

transformation are illustrated as well.

3.3.3 Face recognition across age progression

Next, for the face recognition experiment, we create the gallery and the probe

sets from the database such that the gallery set comprises of a single image per

individual and the probe set comprises of either single or multiple images per indi-

vidual. One of the challenges involved in recognizing face images of children across

age progression is to account for growth related shape variations in children’s faces.
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Most face recognition systems process face images as 2D vectors of fixed dimensions

M×N . Such a constraint if imposed on pairs of age separated face image of children,

would result in the face recognition system comparing pairs of face images with mis-

aligned facial features that were scaled without due considerations on facial growth.

Hence, to perform recognition across age separated face images of children, a better

approach to handle the differences in the size of faces would be to employ an age

transformation such that pairs of images that are to be compared are transformed

to the same ages and hence presumably have comparable sizes.

To highlight the importance of performing an age transformation on pairs of

age separated face images before performing face recognition across age progression,

we designed the following experiment. Let the images comprising the gallery set and

probe set be designated as G : {Gx1
1 , G

x2
2 , · · · , Gxm

m } and P : {P y1
1 , P y2

2 , · · · , P yn
n }

respectively. Let (x1, · · · , xm, y1, · · · , yn) correspond to the different ages of individ-

uals present in the gallery and the probe sets. Under the first setting, the images

in the gallery and the probe sets are scaled and cropped such that they are all of

dimensions M × N and the eyes are aligned across all images. Under the second

setting, given a probe image P yi
i , we perform an age transformation operation us-

ing the ‘generic’ growth model on all the gallery images and generated the gallery

images for age yi years. Finally, we repeat the same operation using the ‘person-

alized’ growth model. Such an operation is repeated for all the probe images P yi
i ,

i = 1 . . . n. Using eigenfaces [73], we perform face recognition under both the set-

tings. The recognition results tabulated in Table 3.3 show that better recognition

rates can be achieved when age transformation operations are performed on pairs
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of age separated face images of individuals before performing recognition. We ob-

served many age separated face images in our database to differ from one another

in factors such as illumination, head pose, facial expressions etc. apart from age

related variations and hence the rank 1 recognition scores are low.

3.4 Summary and Conclusions

We have proposed a craniofacial growth model that takes into account both

psychophysical evidences on how humans perceive age progression in faces and an-

thropometric evidences on facial growth. We have demonstrated the effectiveness

of the proposed model in predicting one’s appearance across age and in improving

recognition results across age separated face images of individuals. To discuss some

of the strengths and weaknesses of the proposed method :

• The craniofacial growth model that we propose is unique for each individual.

The personalized growth model accounts for different aspect ratios observed

in faces of different individuals of the same age.

• The model accounts for gender based differences in facial growth as it was

developed using anthropometric data pertaining to men and women separately.

The growth spurts observed during adolescense in boys and girls are well

captured by the proposed model.

• Further, the craniofacial growth model can be adapted to characterize facial

growth on people from different origins by using anthropometric data pertain-

ing to people from those origins. In this work, the anthropometric data used to
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develop the model was obtained from facial measurements taken on Caucasian

faces and hence, we expect our model to work better on Caucasian faces.

• The proposed approach lacks a textural model and does not account for tex-

tural variations across age. Hence facial hair and other commonly observed

textural variations in teenagers are not accounted for. Further, it does not

account for changes in the amount of fat tissue in the face. The model retains

‘baby fat’ and hence the age transformation results obtained on toddlers were

poor.
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Table 3.2: Average mismatch in fiducial feature upon transformation

Age 2 years 5 years 8 years 12 years 15 years 18 years

ξ2 ψ2 ξ5 ψ5 ξ8 ψ8 ξ12 ψ12 ξ15 ψ15 ξ18 ψ18

2 yrs - - 0.8 1.3 1.45 2.32 1.91 3.38 2.34 4.37 3.13 4.94

- - 0.95 1.8 1.35 2.34 1.65 3.89 1.55 3.68 2.2 3.84

5 yrs 0.68 1.16 - - 0.94 1.48 1.68 2.63 2.25 3.76 3.01 4.18

0.91 1.59 - - 1.54 1.43 1.75 2.39 1.44 2.59 2.14 2.58

8 yrs 1.36 1.94 0.93 1.39 - - 1.75 1.47 2.44 2.62 2.83 2.87

1.16 1.98 1.41 1.37 - - 0.78 1.58 0.54 1.39 0.95 1.53

12 yrs 1.64 2.69 1.51 2.34 1.56 1.39 - - 0.81 1.23 1.36 1.47

1.43 3.05 1.59 2.12 0.8 1.47 - - 0.7 1.23 0.92 1.06

15 yrs 1.85 3.22 1.79 3.1 1.88 2.32 0.73 1.14 - - 0.96 1.14

1.15 2.78 1.41 2.22 0.56 1.25 0.69 1.19 - - 0.75 0.91

18 yrs 2.38 3.56 2.42 3.38 2.27 2.47 1.22 1.34 0.78 1.1 - -

1.79 2.89 1.73 2.2 0.88 1.36 0.94 1.02 0.84 0.9 - -
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Figure 3.9: Age transformation results on different individual. (The original images

shown above were taken from the FG-Net database [8].)
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Figure 3.10: Age transformation results on different individual. (The original images

shown above were taken from the FG-Net database [8].)

Table 3.3: Recognition results (%) before and after age transformation

Approach Rank 1 Rank 5 Rank 10

No transformation 8 28 44

Age transformed [Generic] 15 37 58

Age transformed [Personalized] 16 37 58
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Chapter 4

Modeling Facial Aging in Adults

Perceiving human faces and modeling the distinctive features of human faces

that contribute most towards face recognition are some of the challenges faced by

computer vision and psychophysics researchers. While there has been considerable

interest in developing face recognition systems that are robust to pose variations,

facial expressions, illumination variations etc., the appearance variations induced as

a result of aging effects are rarely accounted for in such systems. In the previous

chapter, we had discussed a computational model that characterizes facial growth

during formative years. The focus of the proposed model was predominantly on

characterizing facial shape variations that are well pronounced in that age group.

Taking a step ahead, in this chapter we propose a computational model that char-

acterizes the shape and textural variations adult faces undergo with age. During

adulthood, facial aging effects induce subtle variations in facial shape and textural

variations in the form of facial creases and wrinkles with varying degrees of intensity.

The chapter is organized as described below: The following section details the

shape variation model. A physically based parametric muscle model for faces that

helps characterize the subtle shape variations adult faces undergo, across different

age groups is discussed in this section. The next section discusses a texture varia-

tion model that characterizes facial wrinkles across different age. The final section
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illustrates the experimental results obtained using the proposed facial aging model

and offers certain conclusions.

4.1 Shape Transformation

Facial shape variations due to aging are often observed by means of subtle

drifts in facial features and progressive variations in the shape of facial contours,

across ages. We propose a facial shape variation model that represents facial feature

deformations as that driven by the changing physical properties of the underlying

facial muscles. The model is based on the assumption that the degrees of freedom

associated with facial feature deformations are directly related to the physical prop-

erties and geometric orientations of the underlying facial muscles. Further, since

factors such as weight-loss or weight-gain across ages can influence facial feature

deformations, the proposed shape variation model has been formulated such that it

implicitly accounts for such external factors.

Drawing inspirations from the ‘revised’ cardioidal strain transformation model

[7] that was proposed to model the shape variations human faces (in profile views)

undergo during formative years (0 to 18 yrs), we propose a shape variation model

for adult faces that takes the following generic form :

x
(i)
t1 = x

(i)
t0 + k(i) [P

(i)
t0 ]

x
(4.1)

y
(i)
t1 = y

(i)
t0 + k(i) [P

(i)
t0 ]

y

where (x
(i)
t0 , y

(i)
t0 ) and (x

(i)
t1 , y

(i)
t1 ) correspond to the Cartesian coordinates of the i’th

facial feature at ages t0 and t1, k(i) corresponds to a facial growth parameter and
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[P
(i)
t0 ]

x
, [P

(i)
t0 ]

y
corresponds to the orthogonal components of the pressure applied on

the i’th facial feature at age t0. Developing the facial growth model using the above

formulation amounts to

• Identifying the growth related pressures applied on fiducial features ([P
(i)
t0 ]

x
, [P

(i)
t0 ]

y
)

: Attributing the facial feature drifts to the pressures applied by the under-

lying facial muscles, we develop a parametric muscle model for human faces

that helps identify the pressure distribution.

• Identifying the Cartesian coordinates of facial features at ages t0 and t1 : Facial

growth statistics collected in terms of facial measurements extracted across

different fiducial features across ages, helps identify the feature coordinates

across age transformation.

• Computing the facial growth parameters k(i) across all fiducial features

4.1.1 Parametric muscle model

We propose a physically based parametric muscle model for human faces that

implicitly accounts for the physical properties, geometric orientations and function-

alities of each of the individual facial muscles. Drawing inspiration from Waters’

muscle model [74], we identify three types of facial muscles namely (i) Linear muscles

(ii) Sheet muscles (iii) Sphincter muscles, based on their functionalities. Further,

we propose transformation models for each muscle type. The number of parameters

needed to completely specify the muscle configurations are much fewer in the pro-

posed model than that in Waters’ model [74] and its derived versions ( [75], [76]).
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Fig. 4.1 illustrates the 18 facial muscles that were identified in developing the model

and further illustrates the ‘point of origin’ and ‘point of insertion’ of each individual

muscle.

Figure 4.1: (i) Configuration of different facial muscles is illustrated. M01, M02 . . .

etc. correspond to the muscle tags and I, II and III correspond to the muscle types

(ii) The points of origin and insertion of different facial muscles are illustrated.

The following factors are to be taken into consideration while developing the

pressure models (i) Muscle functionality and gravitational forces : The proposed

pressure models reflect the muscle functionalities such as the ‘stretch’ operation and

the ‘contraction’ operation. The direction of applied pressure reflects the effects of

gravitational forces. (ii) Points of origin and insertion for each muscle: The degrees
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of freedom associated with muscle deformations are minimum at their points of

origin (fixed end) and maximum at their points of insertion (free end). Hence, the

deformations induced over a facial feature directly depends on the distance of the

facial feature from its point of origin of the underlying muscle. The transformation

models proposed on each muscle type is illustrated below.

1. Linear muscle (α, φ)

Linear muscles correspond to the ‘stretch operation’. As illustrated in fig. 4.2, lin-

ear muscles are described by their attributes namely, the muscle length (α) and the

muscle orientation w.r.t to the facial axis (φ). The farther a feature is from the

muscle’s point of origin, the greater the chances that the feature undergoes defor-

mation. Hence, the pressure is modeled such that : P (i) ∝ α(i). (αi is the distance

of the i’th from the point of origin). The corresponding shape transformation model

is described below :

x
(i)
t1 = x

(i)
t0 + k [α(i) sinφ]

y
(i)
t1 = y

(i)
t0 + k [α(i) cosφ]

2. Sheet muscle(α, φ, θ, ω)

Sheet muscles correspond to the ‘stretch operation’ as well. As described in fig.

4.3, sheet muscles are described by four of their attributes (muscle length, an-

gles subtended etc.). The pressure applied on a fiducial feature is modeled as

P (i) ∝ α(i) sec θ(i), the distance of the i’th feature from the point(s) of origin of
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Figure 4.2: Linear muscle model : Points (a) and (b) correspond to the points of

origin and points of insertion. (ii) Sheet muscle (points (d,e) and (a,b,c) correspond

to the points of origin and points of insertion) (iii) Sphincter muscle (typically, the

features along the horizontal axis correspond to the points of origin and those along

the periphery correspond to the points of insertion)

the underlying muscles. The shape transformation model is described below :

x
(i)
t1 = x

(i)
t0 + k [α(i) sec θ(i) sin(φ+ θ(i))]

y
(i)
t1 = y

(i)
t0 + k [α(i) sec θ(i) cos(φ+ θ(i))]

3. Sphincter muscle(α, β)

The sphincter muscle corresponds to the ‘contraction / expansion’ operation and is

described by two attributes. The pressure modeled as a function of the distance from
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Figure 4.3: Sheet muscle (points (d,e) and (a,b,c) correspond to the points of origin

and points of insertion)

the point of origin, P (i) ∝ r(i)(φ(i)) cosφ(i), is directed radially inward / outward.

Figure 4.4 refers

x
(i)
t1 = x

(i)
t0 + k [r(i)(φ(i)) cos2 φ(i)]

y
(i)
t1 = y

(i)
t0 + k [r(i)(φ(i)) cosφ(i) sinφ(i)]

Since facial muscle configurations are very well studied [77], the parameters

that define the muscle attributes such as the muscle size, its physical location, its

geometric orientation etc. are known apriori and only the facial growth parameter

needs to be estimated. Fig. 4.5 illustrates the pressure distribution as modeled on

different types of facial muscles. Next, we discuss the acquisition of facial growth

statistics that helps in computing the facial growth parameters for different age
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Figure 4.4: Sphincter muscle (typically, the features along the horizontal axis corre-

spond to the points of origin and those along the periphery correspond to the points

of insertion)

transformations.

4.1.2 Facial growth statistics

From a database that comprises of 1200 pairs of age separated face images

(predominantly Caucasian), we selected 50 pairs of face images each undergoing the

following age transformations (in years): 20′s → 30′s, 30′s → 40′s, 40′s → 50′s,

50′s → 60′s and 60′s → 70′s. The image pairs were compiled from the Passport

image database [78]. We selected 48 facial features from each image pair and ex-
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Figure 4.5: The figure illustrates the distribution of pressure on different facial

muscles such as (i) Levator labii superioris (M04), Zygomaticus minor (M05) and

Zygomaticus major (M06) (ii) Orbicularis Orbis (M16) (iii) Frontalis (M01)

tracted 44 projective measurements (21 horizontal measurements and 23 vertical

measurements) across the facial features. Dense facial measurements such as above

extracted across age transformation, implicitly capture facial growth patterns and

hence are crucial for the shape transformation model. Fig. 4.6 illustrates the 48

facial features that were used in our study. We analyze the intra-pair shape transfor-

mations from the perspective of weight-loss, weight-gain and weight-retention and

select the appropriate training sets for each case.

4.1.3 Model computation

Consider the facial shape transformations from age t0 years to t1 years. Let

the training set that was chosen for the experiment comprise of pairs of age sepa-

rated face images of individuals (from t0 years to t1 years) who underwent either
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Figure 4.6: The 48 facial features and their correspondences with facial muscles are

illustrated (the muscle tags M01, M02 etc. follow the nomenclature from fig. 4.1(i))

weight-gain or weight-loss across ages or who retained their weight across age trans-

formation. Let (x̄
(i)
t0 , ȳ

(i)
t0 ) and (x̄

(i)
t1 , ȳ

(i)
t1 ), 1 ≤ i ≤ 48 correspond to the Cartesian

coordinates of the 48 facial features on the average faces at ages t0 years and t1

years. Let Kt0t1 = [kt0t1(1), kt0t1(2), . . . , kt0t1(18)]T denote the growth parameter

corresponding to the 18 facial muscles. Developing the shape transformation model

amounts to computing Kt0t1 , given the average faces for t0 years and t1 years and

the pressure configurations. Since facial muscles overlap heavily on different facial

features, we model the deformations induced over a facial feature as a linear super-

position of the deformations induced by the individual facial muscles that act on

the facial feature. Figure 4.7 illustrates the overlap of sheet muscles.

Reformulating the shape transformation model, the deformations induced over

a facial feature ‘i’ from t0 yrs to t1 yrs, that is influenced by n facial muscles, the
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Figure 4.7: An illustration of the overlap observed on sheet muscles

indices of which are denoted as (m1,m2, . . . ,mn), is modeled as

x̄
(i)
t1 = x̄

(i)
t0 +

n∑
j=1

[kt0t1(mj) ξ
(i)
t0 (mj)] (4.2)

ȳ
(i)
t1 = ȳ

(i)
t0 +

n∑
j=1

[kt0t1(mj) ψ
(i)
t0 (mj)]

where 1 ≤ i ≤ 48 and (ξ
(i)
t0 (mj), ψ

(i)
t0 (mj)) = ([P

(i)
t0 (mj)]x, [P

(i)
t0 (mj)]y) correspond to

the orthogonal components of the pressure applied on facial feature ‘i’ by mj’th facial

muscle. Figure. 4.6(ii) illustrates the correspondences between the facial features

and the underlying facial muscles.

Anthropometric studies often characterize facial growth by means of ratios of

facial measurements (also addressed as proportion indices). An inherent advantage

of using proportion indices to characterize facial growth is that the scale factors

corresponding to face images are easily accounted for. In our study, a total of
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946 proportion indices are selected from the 44 facial measurements. Studying the

transformations corresponding to different proportion indices from t0 yrs to t1 yrs,

we arrive at a set of linear equations the solution of which helps determine the

growth parameters Kt0t1 .

Consider the transformations observed on the proportion index
d(15−16)

d(18−17)
(the

nasal index) from t0 yrs to t1 yrs, where d(i−j) corresponds to the facial measurement

extracted across features ‘i’ and ‘j’. From fig.4.6(ii), the correspondences between the

facial features and the indices of the facial muscles that influence them is determined

to be 15 ↔ (04, 14), 16 ↔ (04, 14), 17 ↔ (16) and 18 ↔ (11, 12). The resulting

transformation equation is[
d(15−16)

d(18−17)

]
t1

=

(
ȳ

(16)
t1 − ȳ(15)

t1

x̄
(17)
t1 − x̄

(18)
t1

)
= ct1 (4.3)

⇒ 2× [ȳ
(16)
t0 + kt0t1(4) ψ

(16)
t0 (4) + kt0t1(14) ψ

(16)
t0 (14)]

= ct1 × [ x̄
(17)
t0 − x̄

(18)
t0 + kt0t1(16) ξ

(17)
t0 (16) −

kt0t1(11) ξ
(18)
t0 (11) − kt0t1(12) ξ

(18)
t0 (12) ]

which results in the linear equation

λ5 kt0t1(5) + λ14 kt0t1(14) + λ16 kt0t1(16) +

λ11 kt0t1(11) + λ12 kt0t1(12) = θ

Thus, the transformations observed over the 946 proportion indices from t0

yrs to t1 yrs, result in a system of linear equations : Λ Kt0t1 = Θ, where Λ is

the coefficient matrix of size 946 × 18 and Θ = [θ1, θ2, . . . , θ946]T is the constant

matrix of size 946 × 1. The optimal growth parameters Kt0t1 are computed by
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solving the system of linear equations using the least squares approach : Kt0t1 =

arg minK ||Λ K −Θ||2.

Upon computing the growth parameters Kt0t1 corresponding to the 18 facial

muscles, we compute the flow of facial features [∆x̄t0t1 , ∆ȳt0t1 ] over the entire facial

region, between the average faces corresponding to ages t0 yrs and t1 yrs. Let

the average face corresponding to t0 years comprise of N pixels. Extracting the

correspondences between each facial pixel and the underlying facial muscles, the

flow of facial features between the average faces at t0 yrs and t1 yrs are computed

as

∆x̄
(i)
t0t1 =

n∑
j=1

[kt0t1(mj) ξ
(i)
t0 (mj)], i = [1, . . . , N ]

∆ȳ
(i)
t0t1 =

n∑
j=1

[kt0t1(mj) ψ
(i)
t0 (mj)], i = [1, . . . , N ]

(4.4)

Having modeled the shape transformation between average faces at t0 years and t1

years, we propose the following steps to induce shape transformations on test face

images, that reflect facial aging effects.

Let Ijt0 be the face image of the j’th individual belonging to age group t0 years.

Let (xjt0 ,y
j
t0) correspond to the coordinates of the Nj pixels on Ijt0 . Let (x

(i)
t0 , y

(i)
t0 )

j
,

1 ≤ i ≤ 48 correspond to the coordinates of the 48 fiducial features on Ijt0 . We

compute the warping function w : (R2 → R2) that warps the fiducial features on

the average face at age t0 years to that on the test face. (The warping function is

derived using the thin plate spline formulation for interpolation techniques).

w : (x̄
(i)
t0 , ȳ

(i)
t0 )→ (x

(i)
t0 , y

(i)
t0 )

j
, 1 ≤ i ≤ 48

The estimated warping function w is used to map the flow of facial features between

79



average faces (eq. 4.4) to that corresponding to the test face Ijt0 , which can be

subsequently used to induce shape variations in the test face.

[∆x̄t0t1 , ∆ȳt0t1 ] 7→ [∆xjt0t1 , ∆yjt0t1 ]

(x̂jt0 , ŷ
j
t0) = (xjt0 + ∆xjt0t1 ,y

j
t0 + ∆yjt0t1)

(4.5)

4.2 Texture Transformation

Textural variations observed in human faces with increase in age are often

perceived in the form of facial wrinkles, creases and other skin-artifacts. Often,

facial wrinkles observed on individuals belonging to the same age group, gender

and ethnicity tend to share structural similarities in aspects such as their locations,

orientations etc. In spite of such similarities, the density of facial wrinkles tends to

be highly subjective. From a modeling perspective, facial wrinkles and other forms

of textural variations observed in aging faces can be characterized on the image

domain by means of image gradients. In this subsection, we propose a texture

variation model that characterizes facial wrinkles and other related facial aging

effects, by means of image gradient transformation functions.

Let (I
(i)
t1 , I

(i)
t2 ), 1 ≤ i ≤ N correspond to pairs of age separated face images of N

individuals undergoing similar age transformations (t1 → t2). In order to study the

facial wrinkle variations across age transformation, we identify four facial regions

which tend to have a high propensity towards developing wrinkles, namely (i) the

forehead region (W1) (ii) the eye-burrow region (W2) (iii) the nasal region (W3) (iv)

the lower chin region (W4). Wn, 1 ≤ n ≤ 4 corresponds to the facial mask that

helps isolate the desired facial region. Figure 4.8 illustrates samples of facial wrinkle
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patterns observed over the four facial regions mentioned above.

Figure 4.8: Sample facial wrinkle patterns as observed over four facial regions namely

(i) Forehead region(ii) Eye-burrow region(iii) Nasal region (iv) Lower chin region are

illustrated

Next, we categorize the region-based facial wrinkle variations across age trans-

formation into one of the following three classes : (i) subtle wrinkle change (ii) mod-

erate wrinkle change and (iii) strong wrinkle change. This classification is performed

by studying the pixel-based differences in gradient magnitudes and orientations.

Let ∇I(i)
t1 and ∇I(i)

t2 correspond to the image gradients of the i’th image at t1
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and t2 years, 1 ≤ i ≤ N . Let us assume that all the N image pairs fall under the

same class of wrinkle variations (subtle / moderate / strong) (ie) all the N image

pairs underwent similar textural transformations from t1 years to t2 years. Given a

test image Jt1 at t1 years, the image gradients of which is ∇J t1 , we induce textural

variations by incorporating the region-based gradient differences that were learnt

from the set of training images discussed above.

∇J t2 = ∇J t1 +
1

N

N∑
i=1

4∑
n=1

Wn · (∇I(i)
t2 −∇I

(i)
t1 ) (4.6)

The transformed image Jt2 is obtained by solving the Poisson equation correspond-

ing to image reconstructions from gradient fields [9]. Figure 4.9 illustrates the subtle,

moderate and strong wrinkle pattern changes that were learnt from individuals be-

longing to the age group 50 - 60 years. Fig. 4.10 provides an overview of the

proposed facial aging model. The figure illustrates the muscle-model based facial

feature drifts that induce shape transformations for the cases of weight-gain and

weight-loss. Further, the figure illustrates the effects of image gradient transforma-

tions in inducing facial wrinkles.

4.3 Experiments

4.3.1 Face recognition across ages

On a database that comprises of 87 age separated image pairs of adults, we

conducted a face verification experiment. Let the younger of the two images cor-

respond to the gallery image ([G : g1, g2, . . . , g260]) and the older counterpart, the
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Figure 4.9: The figure illustrates the wrinkle pattern changes learnt from individuals

belonging to the age group 50 - 60 yrs. The illustration was obtained by adding the

image gradient differences that were learnt from age separated image pairs with a

zeros intensity image and subsequently invoking Poisson image reconstruction [9].

probe image ([P : p1, p2, . . . , p260]). The objective is to study the face verification

rates with and without applying the facial aging model. We divide the dataset into

two sets [(G1, P1), (G2, P2)] based on the age difference between the image pairs.

The first set [(G1, P1)] comprises of image pairs with an age separation lesser than

9 years. The second set [(G2, P2)] comprises of image pairs with an age separation

of 9 years or greater.

Since facial aging patterns depend quite significantly on one’s lifestyle, there

are many different ways an individual could have aged. Hence, we create nine aged

images for each of the gallery images and select that aged image that matches best

with the corresponding probe image. The nine aged images are created as explained

below : Given a gallery image (g1), we introduce 3 types of shape variations. The
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first corresponds to the weight-gain case, the second corresponds to the weight-loss

situation and the third corresponds to the weight-retention situation. On top of each

of the three types of shape variations, we introduce three types of facial wrinkles

(deep, moderate and subtle) that are commonly observed at the individual’s age .

Thus, for every gallery image g1, we create 9 images g1,1, g1,2, . . . , g1,9. Figure 4.11

illustrates the nine images that were created from a single gallery image.

Next, we create an eigenspace Ψ [73] using a set of 152 frontal and well

illuminated face images from FRGC [10]. We take projections of the original

gallery images, the newly generated gallery images and the probe images on the

eigenspace Ψ. Let the eigenspace projections for the N gallery images be de-

noted as u1,u2, . . . ,uN and let the projections for the probe images be denoted

as v1,v2, . . . ,vN . Let the projections obtained from the newly generated gallery

images be u1,1, . . . ,u1,9,u2,1 . . . ,uN,9. We compute the Euclidean distance between

the projection vectors in measuring their similarity.

When the facial aging model is not used while comparing the gallery images

and the probe images, the distance between gallery gi and probe pj is computed as

d1(i, j) = ||ui − vj||2. When the facial aging model is used, the distance between the

same gallery and probe is computed as d2(i, j) = mink ||ui,k − vj||2, 1 ≤ k ≤ 9. We

performed a face verification experiment using the distance matrices thus computed.

The results are illustrated in Figure 4.12 and Figure 4.13. It can be observed that

the facial aging model when employed on the second set of face images, the set which

corresponded to an age separation of 9 years or greater, results in better verification

results. For the image pairs from the first set, the set which comprised of image pairs
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separated by lesser than 9 years, the face verification results obtained by applying

the facial aging model were comparable to that obtained without applying the facial

aging model.

4.3.2 Appearance Prediction

Fig 4.14 illustrates the facial shape variations (for the cases of weight-gain,

weight-loss and weight-retention) across 6 individuals and further illustrates the

three types of textural variations (subtle, moderate, strong) that were induced on

the shape transformed face.

4.4 Discussions and Conclusions

The proposed facial aging model poses some unique advantages over other

similar methods.

• Facial growth statistics : Facial measurements extracted across different

facial features across ages provide considerable evidences on facial growth.

Computational models that are built using such ground-truth data on facial

aging implicitly account for the different rates of growth observed across ages.

• Gender, Ethnicity : The facial measurements were extracted from men and

women who were predominantly Caucasian. Hence, the model can account for

gender-based and ethnicity-based facial growth patterns.

• Weight loss/gain : We compute facial growth parameters for each of the

instances namely weight-loss / gain / retention separately and hence, account
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for this factor successfully.

• Alternate wrinkle patterns : The rates at which facial wrinkles are man-

ifested on individuals across different ages is often subjective. The proposed

texture variation model can be used to predict the different wrinkle patterns

that could have been observed on the individual.

In future, we wish to reduce the redundancy in the required facial features. The

proposed facial aging model cannot account for facial hair and hence cannot ad-

dress hair loss. With the advent of 3D measurements of growing adult faces (by

means of laser scans), the proposed shape transformation model can be adopted to

characterize facial aging effects in 3D.
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Figure 4.10: An overview of the proposed facial aging model : Facial shape variations

induced for the cases of weight-gain and weight-loss are illustrated. Further, the

effects of gradient transformations in inducing textural variations are illustrated as

well.
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Figure 4.11: Aged images generated from a single image as part of the face verifi-

cation experiment.
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Figure 4.12: True positive rate vs. False negative rate, when age separation is lesser

than 9 years.

Figure 4.13: True positive rate vs. False negative rate, when age separation is 9

years or greater.
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Figure 4.14: Appearance prediction across ages : The 2nd column illustrates the

shape transformation results for the three types of weight-change across ages. The

3rd, 4th and 5th columns illustrate the textural variations induced on the shape

transformed image, using image gradient transformations that correspond to ‘sub-

tle’, ‘moderate’ and ‘strong’ wrinkles.
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Chapter 5

Face Verification across Age Progression

Face recognition systems often encounter images of individuals taken from real-

life conditions where facial appearances are affected by the inter play of multiple

factors such as illumination, pose, facial expressions, age, occlusions etc. Hence, the

robustness to variations due to factors such as illumination, pose, facial expressions,

aging etc. is a significant metric in evaluating face recognition systems. In this

chapter, we propose a method to perform face verification across age progression.

5.1 Problem Statement

While face images have traditionally been used in identification documents

such as passports, driver’s licenses, voter ID etc., in recent years, face images are

being increasingly used as additional means of authentication in applications such as

credit/debit cards and in places of high security. Since faces undergo gradual varia-

tions due to aging, periodically updating face databases with more recent images of

subjects might be necessary for the success of face recognition systems. Since peri-

odic updating of such large databases would be a tedious task, a better alternative

would be to develop face recognition systems that verify the identity of individuals

from a pair of age separated face images. Understanding the role of age progression

in affecting the similarity between two face images of an individual is important in
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such tasks.

How similar is a pair of age separated face images of an individual ? How do

inherent changes in a human face due to aging, affect facial similarity ? Given a

pair of age separated face images of an individual, what is the confidence measure

associated with verifying his/her identity ? Our database comprises of pairs (younger

and most recent) of face images retrieved from the passports of 465 individuals.

Table 5.1 summarizes the database. The age span of individuals in our database is

20 years to 70 years. Fig. 5.1 shows a few sample images from our database.

Table 5.1: Database of Passport Images

Age Difference No: of image pairs

1-2 yrs 165

3-4 yrs 104

5-7 yrs 81

8-9 yrs 115

Though passport images are generally taken under controlled environments,

subtle variations in head pose tend to exist and hence face images are not strictly

frontal in pose. Further, we observed many instances where passport images were

taken under non-uniform illumination conditions. To study age progression in hu-

man faces, it is crucial to reduce variations due to factors such as head pose and
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Figure 5.1: A few sample age separated images of individuals retrieved from their

passports

illumination. In section II, we propose methods to recover a frontal face from non-

frontal face images and to circumvent non-uniform illumination on faces. In section

III, we build a Bayesian age-difference classifier that verifies the identity between a

pair of age separated face images and estimates the age difference between a pair of

face images. In section IV, we study the similarity of faces across age progression

and highlight some of the interesting results obtained using the proposed similarity
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measure. Section V discusses some directions for future work.

5.2 Frontal face recovery

In this subsection, we propose a method to recover the frontal face of an

individual from a non-frontal face image. Blanz and Vetter, in their seminal work

on 3D morphable models for faces [79], [18], estimate the 3D shape and texture of

faces from a single face image and perform face recognition across varying pose and

illumination. Our method draws inspiration from their work. But the computational

simplicity of our method coupled with the need for very little manual intervention,

if any, makes our approach more suitable to the recovery of frontal faces from non-

frontal passport images. Head pose orientations are generally described using three

angles, namely, pitch, yaw and roll. Though pose variations in passport images are

generally small, in our dataset we observed that the face orientations described by

the yaw angle were significantly different from that of frontal faces. Hence, we focus

on recovering the frontal face from face images where the yaw angle is non-trivial.

The method is trivially extendable to pose correction on rotations about the other

two axes. Our approach is described in detail, below.

Our training set comprises of 3D head scans of 100 faces. Let S1,S2,.....,S100

and T1,T2,......T100 be the corresponding shape and texture vectors extracted from the

3D head scans of the 100 faces. The shape vector S = (x1, y1, z1, ....., xN , yN , zN)T

represents the (x, y, z) co-ordinates of N vertices and the texture vector T = (t1, t2, ....tN)T

represents the gray scale intensities at the N corresponding vertices. Let Rθ corre-

94



spond to the rotation matrix for a yaw angle θ. The 3D faces are rotated by different

angles θ and the corresponding textures are extracted by appropriately mapping the

frontal face textures to faces rotated by such angles. Let f be the function that maps

frontal face textures to faces in different orientations and let T
(θ)
i , i = 1, 2, ..., 100

correspond to the texture of faces from the training set, rotated by a yaw angle θ.

T
(θ)
i , i = 1, 2, ..., 100 can be computed as below. In eq. (1), P corresponds to the

orthographic projection matrix.

s
(θ)
i = PRθSi (5.1)

T
(θ)
i = f(Ti, s

(θ)
i )

There exists an underlying correlation between the shape of a face and the

corresponding facial texture. Our approach is based on exploiting the underlying

correlation between the two attributes. We apply the principal component analysis

[80] on the texture {T (θ)}Ni=1 and shape vectors {Si}Ni=1 and construct their respective

eigenspaces. Let the eigenvectors of the texture space T(θ) and shape space S be

Φ(θ) = (φ
(θ)
1 , φ

(θ)
2 , ....., φ

(θ)
N ) and Ψ = (ψ1, ψ2, ....., ψN) respectively. By projecting the

shape and texture vectors at different orientations onto their respective eigenspaces,

we represent them by means of their principal components.

T
(θ)
i = T̄ θ +

N∑
j=1

α
(θ)
ij φ

(θ)
j i ∈ (1, 2, .., N) (5.2)

Si = S̄ +
N∑
j=1

βijψj i ∈ (1, 2, .., N) (5.3)
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Hence each pair of texture and shape vector of a face [(T
(θ)
1 , S1), (T

(θ)
2 , S2), ......(T

(θ)
N , SN)]

is represented by its principal component vector pairs [(α
(θ)
1 , β

1
), (α

(θ)
2 , β

2
), .....(α

(θ)
N , β

N
)].

We assume that the principal components from the respective spaces are jointly

Gaussian and estimate the joint probability distribution p(αθ, β|θ).

Next, given a non-frontal color image I of an individual, we extract the face

region using statistical color models for skin detection [81]. Using a large number of

images on which skin and non-skin regions had been manually selected, we construct

skin and non-skin histogram models and design a Bayes classifier [80] to perform

skin detection. Let s[rgb] and n[rgb] are the pixel counts for skin and non-skin

histograms respectively and Ts and Tn, the total pixel counts in the skin and non-

skin histograms respectively. The probabilities are defined as

P (rgb|skin) =
s[rgb]

Ts
P (rgb| ∼ skin) =

n(rgb)

Tn
(5.4)

P (skin|rgb) =
P (rgb|skin)P (skin)

P (rgb)
(5.5)

The detected skin region in the input image serves as a cue to estimate the scale of

the input image. To estimate the head pose of the input image, we align the gray

scale input image Igray with an appropriately scaled average face T̄ θ about their nose

locations and compute the disparity between their edge maps Ie and T̄ θe respectively.

The orientation θ that minimizes the disparity between the edge maps serves as an

estimate of the head pose. Since head pose variations in passport images tend to be

small, we limit our search space to the range (-10 to +10) degrees.
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θ̃ = arg minθ
∥∥Ie − T̄ θe ∥∥ (5.6)

Having estimated the pose of the input image as θ̃, the input image is projected

on the texture space T(θ̃) spanned by Φ(θ̃) and the principal components on the

texture space are computed. The principal components on the shape space S are

subsequently estimated as illustrated below.

αθ̃I =
〈
Igray − T̄ θ,Φ(θ̃)

〉
(5.7)

β
I

= E(p(β|αθ̃I , θ̃)) (5.8)

Having estimated β
I
, we compute the 3D shape of the input face image and recover

the frontal face image.

SI = S̄ +
N∑
j=1

βI,jψj (5.9)

Ifrontal = f−1(Igray, PRθ̃SI) (5.10)

To illustrate the performance of our method, we generated non-frontal images

of four individuals from our training set at orientations -15 degrees and +15 de-

grees. For this experiment, the training set that was used to create the eigenspaces

comprised of shape and texture of the remaining 96 individuals from the original

training set. Fig. 5.2 shows the recovered frontal face images corresponding to

the four non-frontal faces. Accurate face localization is a key to the success of our

method. Since the eigenspaces for shape and texture can be computed off-line, the

method is computationally simple. The presence of dark glasses or facial hair affects
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pose estimation and hence affects the performance of our method.

Figure 5.2: Recovery of frontal faces : Images in the top and the bottom row

illustrate the recovery of frontal faces from non-frontal faces with a yaw = -15

degrees and yaw = +15 degrees respectively.

5.3 Illumination Compensation

While most face recognition systems perform commendably well on faces taken

under uniform illumination conditions, their performance drops when presented with

faces that were non-uniformly illuminated. Belhumeur et al. [82] discuss subspace

methods for face recognition and cite that ignoring the first few principal compo-

nents improves recognition performance in the presence of non-uniform illumina-

tion. Georghiades et al. [17] proposed the illumination cone model for face recogni-

tion. From a set of training images for each face, 3D models are reconstructed and
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subsequently used to create synthetic images of faces under different illumination

conditions and poses. The Lambertian surface approximation of faces enables the

illumination cone to be well-approximated by a low-dimensional linear subspace.

Basri and Jacobs [83] have shown that the set of images of a convex Lambertian

object under arbitrary illumination conditions can be approximated by a low di-

mensional linear subspace. They construct the spherical harmonic basis images for

faces and subsequently propose a simple scheme to perform face recognition. Lee

et al. [84] proposed an effective approximation to the basis images using nine single

light source images of a face and reported good recognition performance. Recently,

Aggarwal and Chellappa [23] proposed methods to perform face recognition in the

presence of multiple light sources.

However, most of these approaches need a set of training images for each sub-

ject or 3D scans of the subjects in the database. Real-life face images often contain

specular reflections and hence, do not strictly exhibit the properties of a Lambertian

surface. In the case of face images retrieved from passports, neither are multiple face

images per subject available nor are the face images free from specular reflections.

The non-uniformity in illumination in passport images is often due to imbalances

in the illumination on either sides of the face. Self-shadows and specular reflections

are some of the most common effects of uncontrolled illumination on faces. Given

the aforementioned constraints, we propose a simple approach towards circumvent-

ing non-uniform illumination in face images retrieved from passports. We assume

that faces are bilaterally symmetric and represent non-uniformly illuminated faces

with the better illuminated half and discard the poorly illuminated half. Bilateral
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symmetry of human faces has been used earlier in SFS problems [85]. Further, psy-

chophysical experiments conducted by Troje and Bulthoff [86] illustrate the role of

bilateral symmetry of human faces in recognizing faces across novel views. On the

contrary, Liu et al. [29] and Martinez [87] studied the asymmetries in either halves

of the human face and used the same for studying facial expressions.

Figure 5.3: Images of an individual under each of nine different illumination condi-

tions from the PIE dataset [11]. With images from each of fi, i ∈ 02, 03, ...22 as the

gallery and images from fj, j 6=i as the probe, a round-robin recognition experiment

was performed

From a recognition perspective, how effective is the assumption of bilateral

symmetry of human faces to circumvent non-uniform illumination across faces ? To

answer this question, we performed an eigenface based recognition experiment on the

PIE dataset [11]. The details of the experiments are as follows : Frontal faces of 68

individuals in 9 different illumination conditions ((f02, f03, f04, f05, f10, f13, f15, f16, f22)

under the PIE nomenclature) were selected. Face recognition is performed in a

round-robin fashion (fi comprises the gallery set and fj, i 6= j comprises the probe

set) and the performance of full-faces as against better illuminated half-faces was

studied. The eigenspaces for full-faces and half-faces were created using well illu-

minated frontal face images from the Yale Face Database B [17]. Table 5.4 reports

100



Figure 5.4: Evaluation of Half-faces : Rank 1 recognition score using Eigenfaces on

Full faces and Half-faces.

Half-faces vs Full faces a: Rank 1 recognition scores (%)

Gallery f02 f03 f04 f05 f10 f13 f15 f16 f22

f02 - c{97} 93{60} 38{29} 41{26} 29{4} 38{3} 35{3} 32{4}

f03 99{c} - c{c} 60{38} 62{41} 43{4} 41{3} 38{3} 46{3}

P f04 72{44} c{91} - c{84} 97{79} 56{4} 51{1} 40{1} 57{3}

r f05 29{12} 47{21} 99{41} - c{c} 50{6} 37{4} 26{1} 51{6}

o f10 26{10} 54{16} 97{49} c{c} - 56{6} 37{4} 18{4} 51{6}

b f13 21{3} 41{3} 51{7} 53{6} 65{7} - 97{68} 57{32} c{c}

e f15 44{3} 51{4} 51{4} 28{4} 26{4} 99{90} - 97{82} c{c}

s f16 46{3} 46{4} 32{4} 18{4} 22{4} 82{49} 99{96} - 90{65}

f22 29{3} 46{3} 54{4} 49{6} 37{7} 99{c} c{c} 66{47} -

Mean 46{22} 61{30} 72{54} 56{34} 56{34} 64{33} 63{35} 47{22} 66{36}

aScores within {} are rank 1 recognition scores using full faces. In the table, entry ’c’ corresponds

to 100% recognition rates
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the rank 1 recognition scores under both the settings. Figure 5.3 shows the face

images from each of the 9 illumination conditions. The non-trivial improvement in

recognition performance on experiments such as (f04 vs. f13), (f10 vs. f13) illustrate

the effectiveness of the proposed approach in challenging environments.

Figure 5.5: Facial similarity experiment : Images of an individual taken under

different illumination conditions and their corresponding half-faces with better illu-

mination

For the verification problem, we illustrate the significance of half-faces in com-

puting a similarity measure on images of an individual taken under varying illu-

mination conditions. Figure 5.5 displays the 12 test images of an individual and

their respective half-faces with better illumination. We create an eigenspace Φ us-

ing a large number of well illuminated frontal faces and an eigenspace Ω using their

half-faces. The full-faces and half-faces from the test set are projected on to their
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respective spaces. Defining a similarity measure between two images based on the

correlation between their eigenspace coefficients, we compute the similarity measure

between the first test image and the remaining 11 test images. The similarity scores

computed using full faces (Set I) and half-faces (Set II) are tabulated in Table 5.2.

On the image samples where one half of the face was better illuminated, half-faces

performed better.

Next, we define a criterion function towards the automatic selection of the

better half-faces from regular face images. Given I, a frontal face image of size m x

n we extract I1 and I2, the right half and the mirror reflected left half of I. Let X i

= [x1, x2, ....., xn/2] denote the column-wise mean intensity of Ii. The mean intensity

curve of Ii, X̄
(i)
MIC is defined as :

X̄
(i)
MIC =

(X(i) − X̄(i))

‖ X(i) − X̄(i) ‖
(5.11)

where X̄(i) denotes the mean of X(i) and ‖ . ‖ denotes the Euclidean norm. The

difference between the mean intensity curves of either halves of the face is a measure

of the disparity in the spread of illumination between the two halves of the face.

MICd = ‖ X̄(1)
MIC − X̄

(2)
MIC ‖ (5.12)

A low MICd indicates that the spread of illumination across either halves of the

face is comparable.

Next, using the above measure we compute the optimal mean intensity curve

for frontal face images. We compute the MICd on face images from a large gallery

of faces. If MICd < α, where α is a pre-defined threshold, then the face image is
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classified as optimally illuminated. From N such optimally illuminated face images,

we compute the optimal mean intensity curve as

X̄OptimalMIC ,
1

2N

N∑
i=1

(X̄
(1)
MICi

+ X̄
(2)
MICi

) (5.13)

The criterion function for the selection of the better half face is defined as

follows :

j = min
i=1,2

‖ X̄OptimalMIC − X̄(i)
MIC ‖ (5.14)

Iopt = Ij (5.15)

Figure 5.6: Half-faces selection criterion : Green - Optimal Mean Intensity Curve;

Red - Mean Intensity Curve from the right half of the face; Blue - Mean Intensity

Curve from the mirror reflected left half of the face. Some of the images from the

AR Face database [12] were used for illustration purposes

Figure 5.6 illustrates the mean intensity curves for both halves of faces under

different illumination conditions.

5.4 Classifier

In this section, we develop an age difference classifier designed primarily for

the purpose of establishing the identity between a pair of age separated face images
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and for estimating the age separation between the pair of face images. It has been

observed that while faces undergo significant variations in shape from infancy to

teenage years, they undergo considerably lesser variations in shape during adult-

hood. During adulthood, aging effects in faces are more commonly observed in the

form of textural variations such as wrinkles and other skin artifacts. Facial wrinkles

are primarily attributed to factors such as loss of skin elasticity (due to lesser pro-

duction of collagen), habitual facial expressions, effects of gravity on facial muscles,

over exposure to sun’s rays etc.

Since the database of passport images comprises of individuals in the age

range (20 years to 70 years), the age difference classifier is developed primarily to

verify adult face images across age progression. Hence, in our formulation the age-

difference based classification of face images is based on textural variations that

are commonly observed in faces due to aging. Across each pair of face images, we

compute the difference image by subtracting the more recent image from the older

image. The difference image, when computed between age separated images of

the same individual (intra-personal images), captures facial variations due to aging

effects. Intuitively, the difference images obtained from the intra-personal image

pairs (image pairs of the same individual) with lesser age separation would be less

exaggerated than that obtained from the intra-personal image pairs with larger

age separation. Further, one would expect the difference images obtained from

images belonging to different individuals (extra-personal images) to be different

from the ones obtained from intra-personal images due to the large mismatch in

facial features. Fig. 5.7 illustrates the average difference images computed from
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intra-personal images with an age separation of 1− 2 yrs, 3− 4 yrs, 5− 7 yrs,

8− 9 yrs and that computed from extra-personal images. The sagging of facial

features becomes prominent in the average difference images obtained from intra-

personal images as the age difference increases. Prior to classification of faces based

on age differences, we perform the pre-processing steps discussed in the previous

section to reduce variations due to pose and illumination.

Figure 5.7: Average difference images from the intra-personal (under each of the

four age-difference categories) and extra-personal classes.

5.4.1 Bayesian Framework

We propose a Bayesian age-difference classifier that is built on a probabilistic

eigenspaces framework [88]. The framework proposed in [88] was adopted primarily

to estimate complex density functions in high dimensional image spaces and subse-

quently to compute class conditional density functions. The classification of pairs

of face images based on their age-differences, consists of two stages. In the first

stage of classification, the identity between the pair of face images is established.

In the second stage, the pairs of age separated face images that were identified as
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intra-personal images are further classified based on their age differences.

Let ΩI denote the intra-personal space and let ΩE denote the extra-personal

space. Let I11, I12, I21, I22 ,. . ., IM1, IM2 be the set of N x 1 vectors formed by

the lexicographic ordering of pixels in each of the M pairs of half-faces. The intra-

personal image differences {xi}Mi=1 are obtained by the difference of individuals’ pairs

of half-faces.

xi = Ii1 − Ii2, 1 ≤ i ≤M (5.16)

The extra-personal image differences {zi}Mi=1 are obtained by the difference of half-

faces of different individuals.

zi = Ii1 − Ij2 , j 6= i, 1 ≤ i, j ≤M (5.17)

Firstly, from a set of intra-personal image differences {xi}Mi=1 ∈ ΩI we esti-

mate the likelihood function for the data P (xi|ΩI). We assume the intra-personal

difference images to be Gaussian distributed. Upon performing a Karhunen Loeve

Transform [89] on the training data we get the basis vectors {Φi}Ni=1 that span the

intra-personal space. But due to the high dimensionality of data such a computation

is infeasible. We perform PCA [80], and extract the k basis vectors {Φi}ki=1 that

capture 99% variance in the data. The space spanned by {Φi}ki=1 corresponds to the

principal subspace or the feature space F . The remaining basis vectors {Φi}Ni=k+1

span the orthogonal complement space or the error space F̄ . The likelihood function
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P (xi|ΩI) is estimated as

P (x|ΩI) =
exp(− 1

2
(x−x̄)TΣ−1(x−x̄))

(2π)N/2|Σ|1/2

=
exp(− 1

2

∑N
i=1

y2i
λi

)

(2π)N/2
∏N
i=1 λ

1/2
i

'

[
exp(− 1

2

∑k
i=1

y2i
λi

)

(2π)k/2
∏k
i=1 λ

1/2
i

]
.

[
exp (− ε

2(x)
2ρ

)

(2πρ)(N−M)/2

]
= PF (x|ΩI) . P̂F̄ (x|ΩI) (5.18)

where yi = ΦT
i (x − x̄) are the principal component feature vectors and λi are the

eigenvalues. The marginal density in the orthogonal complement space P̂F̄ (x|ΩI) is

estimated using the error in PCA reconstruction ε2(x) = ‖x̃2‖−
∑k

i=1 y
2
i and the esti-

mated variance along each dimension in the orthogonal subspace, ρ = 1
N−k

∑N
i=k+1 λi.

The sum
∑N

i=k+1 λi is estimated by fitting a cubic spline function on the computed

eigenvalues {λi}ki=1 and subsequently extrapolating the function.

Next, from a set of extra-personal image differences {zi}Mi=1 ∈ ΩE, we estimate

the likelihood function P (zi|ΩE). Adopting a similar approach as before, the extra-

personal space is decomposed into two complementary spaces : the feature space

and the error space. Since the assumption of Gaussian distribution of extra-personal

image differences may not hold, we adopt a parametric mixture model (mixture of

Gaussian) to estimate the marginal density in the feature space and follow a similar

approach to estimate the marginal density in the orthogonal complement space. We

estimate the likelihood for the data as

P̂ (z|ΩE) = P (y|Θ∗) . P̂F̄ (z|ΩE)
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where

P (y|Θ) =
Nc∑
i=1

wiN(y;µi,Σi) (5.19)

Θ∗ = argmax

[ M∏
i=1

P (yi|Θ)

]
(5.20)

N(y;µi,Σi) is Gaussian with parameters (µi,Σi) and wi correspond to the mixing

parameters such that
∑Nc

i=1 wi = 1. We solve the estimation problem using the

Expectation-Maximization algorithm [90].

During the first stage of classification, given a pair of age separated face images,

we extract the well illuminated half-faces I1 and I2 and compute the difference image

x = I1− I2. The a posteriori probability P (ΩI |x) is computed using the Bayes rule.

P (ΩI |x) =
P (x|ΩI)P (ΩI)

P (x|ΩI)P (ΩI) + P (x|ΩE)P (ΩE)
(5.21)

The classification of the image difference as intra-personal or extra-personal is based

on a maximum a posteriori (MAP) rule. For operational conditions, P (ΩI) and

P (ΩE) are set equal and the difference image x is classified as intra personal if

P (ΩI |x) > 1
2
.

The second stage of classification deals with classifying the intra-personal im-

age pairs into one of many age difference categories. For each of the four age-

difference categories (1 − 2 yrs, 3 − 4 yrs, 5 − 7 yrs and 8 − 9 yrs), we build the

intra-personal spaces denoted as Ω1 , Ω2 , Ω3 , Ω4. Next, from a set of age-difference

based intra-personal difference images we estimate the likelihood function P (x|Ωj),

j ∈ 1,2,3,4 for each of the four age-difference categories. Given a difference image x

that has been classified as intra-personal, we compute the a posteriori probability

P (Ωi|x) with i = 1, 2, 3, 4 as :
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Figure 5.8: An Overview of the Bayesian Age-Difference Classifier

P (Ωi|x) =
P (x|Ωi)P (Ωi)∑4
j=1 P (x|Ωj)P (Ωj)

(5.22)

Thus if P (Ωi|x) > P (Ωj|x) for all j 6= i , i, j = 1, 2, 3, 4, then Ωi is identified

to be the class to which the difference image x belongs. Figure 5.8 gives a complete

overview of the age-difference classifier.

5.4.2 Experimental Results

Using the above formulation, we performed classification experiments on the

passport database. We selected pairs of better illuminated half-faces of 200 indi-

viduals from the database. Using their intra-personal image differences, we created

the intra-personal space Ω. Computing the extra personal difference images (by

randomly selecting two images of different individuals from the 200 pairs of images)

we created the extra-personal space Ψ. We created two sets of image differences :

Set I comprised of intra-personal difference images computed from the half-faces of

465 image pairs from the database and Set II comprised of 465 extra-personal dif-

ference images computed by a random selection of half-faces of different individuals

from the database. The image pairs from Set I and Set II were classified as either
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intra-personal or extra-personal.

During the second stage of classification, 50 pairs of half-face images from each

of the following age-difference categories 1−2 yrs, 3−4 yrs, 5−7 yrs and 8−9 yrs

were randomly selected and their corresponding difference image subspaces namely,

Ω1, Ω2, Ω3, Ω4, were created. The image pairs from Set I that were classified as intra-

personal were further classified into one of the four age-difference categories using the

formulation discussed previously. The classification experiment was repeated many

times using different sets of images from each age-difference category to create the

intra-personal spaces. The classification results are reported in Table 5.3 in the

form of percentage of images under each category that were classified into one of

the four classes. The means and the standard deviations of the classification results

generated from the many iterations are reported in table 5.3. The bold entries in

the table correspond to the percentage of image pairs that were correctly classified

to their age-difference category. The entries within parenthesis denote the standard

deviations.

The classification results can be summarized as follows :

• At the operating point, 99 % of the difference images from Set I were correctly

classified as intra-personal. 83 % of the difference images from Set II were cor-

rectly classified as extra-personal. It was observed that the image pairs from

Set I that were misclassified as extra-personal differed from each other signif-

icantly either in facial hair or glasses. Moreover, the average age difference

of intra-personal images that were misclassified was 7.4 years. The ROC plot
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in fig. 5.9 was generated by varying the thresholds adopted for classification.

The equal error rate is 8.5%.

Figure 5.9: Face verification results : ROC curve

• When the image pairs from Set I that were correctly classified as intra-personal

were classified further based on age-differences, it was observed that image

pairs with little variations due to factors such as facial expressions, glasses and

facial hair were more often classified correctly to their respective age-difference

category.

• Image pairs, that belong to the age difference categories 1− 2 yrs or 3− 4 yrs

or 5−7 yrs, with significant differences in facial hair or expressions or glasses,

were misclassified under the category 8 − 9 yrs. Since Ω4 was built using

images from the age difference category 8 − 9 yrs, it spans more intra pair
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variations than those compared with the other three age difference categories

and hence the above trend is observed.

To study the effects of external variations such as facial hair, glasses and facial

expressions on classification accuracy, images with such variations were identified

and classified separately. The images from the database were divided into four sets

- ones with differences in facial hair, differences in glasses, differences in facial ex-

pressions and finally, ones with little external variations (henceforth, addressed as

non-variate images). Those images with variations due to multiple external factors

were classified based on the most dominant factor that caused the variations. Clas-

sification results for non-variate images are reported in Table 5.4. The classification

results on images pairs with variations in facial expressions, glasses, facial hair are

reported in Tables 5.5, 5.6, 5.7 respectively.

• A comparison of the classification results in Table 5.3 and Table 5.4 highlights

the bias introduced by external factors such as facial hair, glasses and facial

expression on age-difference based classification. While classification results

improved in the age-difference categories 1-2 yrs, 3-4 yrs and 5-6 yrs on image

pairs with little variations, classification results in the 8-9 yrs category were

less accurate when compared to that obtained on the original image set.

• As observed in Tables 5.5, 5.6, 5.7, age-difference based classification suffers

heavily in the presence of factors such facial hair, glasses and facial expressions.

Since the variations induced by these factors mask variations due to aging

effects, image pairs with lower age-differences were more often classified into
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the age-difference category 8-9 yrs.

The eigenspace decomposition which forms an inherent part of the density

estimation process reduces computational complexities significantly. Further, since

the estimation of the class conditional density functions is an off-line process, the

real-time computations involved in classifying image pairs based on age differences

are simple.

We designed the following experiment to study how age progression affects the

measure of facial similarity. We created an eigenspace using 200 half-faces retrieved

from the database of passport images. The 465 pairs of half-faces were projected onto

the space of eigenfaces and were represented by the projections along the eigenfaces

that correspond to 95% of the variance. We adopt the similarity measure proposed

in section II. Since illumination and pose variations across each pair of half-faces is

minimal, the similarity score between each pair would be affected by factors such

as age progression, facial expression variations and occlusions due to facial hair and

glasses. We divided our database into two sets : the first set comprised of those

images where each pair of passport images had similar facial expressions and similar

occlusions if any, due to glasses and facial hair. The second set comprised of those

pairs of passport images where differences due to facial expressions or occlusions

due to glasses and facial hair were significant.

The distribution of similarity scores across the age-difference categories 1 −

2 yrs, 3− 4 yrs, 5− 7 yrs and 8− 9 yrs, is plotted in Figure 5.10. The statistical

variations in the similarity scores across each age-difference category and across each
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set of passport images are tabulated in Table 5.8.

Figure 5.10: Facial similarity across time : Distribution of Similarity scores across

age

• From Figure 5.10 we note that as the age difference between the pairs of images

increases, the proportion of images with high similarity scores decreases.

• While the distribution of similarity scores has a strong peak for category 1−

2yrs, it flattens out gradually as the age difference increases.

• From Table 5.8 we note that as the age difference increases, across both the

sets of images and across all the variations such as expressions, glasses and
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facial hair, the mean similarity score drops gradually and the variance of the

similarity scores increases.

• Within each age-difference category, we see a notable drop in similarity scores

when variations due to expressions and facial hair are more pronounced.

5.5 Conclusion

From a face recognition perspective, understanding the process of age progres-

sion in human faces is crucial towards the development of face recognition systems

that are robust to aging effects and in the successful deployment of such systems.

Some of the limitations one faces while addressing age progression in human faces :

• Human faces undergo complex variations due to aging. Modeling the complex

shape variations human faces undergo during one’s younger years or the tex-

tural variations that are observed during the later years is a very challenging

task. Apart from biological factors, since factors as diverse as ethnicity, cli-

matic conditions, food intake, mental stress etc. also contribute towards aging

effects, it is natural to expect different individuals to age differently.

• Manifestations of aging effects in human faces such as shape and textural

variations can be best understood using 3D scans of human heads. With 3D

head scans becoming increasingly available, we anticipate the development of

more robust methods to address age progression.

• Lack of databases of age progressed face images of individuals is another reason
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for lesser research on this topic. Only recently, the FG-Net aging database [2]

that contains real life images of many individuals across ages, has become

publicly available. Since real life images are often taken under uncontrolled

environments, the age separated images in this database differ significantly in

other aspects such as illumination and pose. Such external variations need to

be minimized before studying aging effects.

Our primary objective was to study the effects of age progression on facial

similarity measure and to develop systems that can perceive age separation between

a pair of images of an individual. The relatively well controlled environments under

which passport images are taken, make them ideally suited for studying the effects

of age progression in human faces. We presented a Bayesian age-difference classifier

that identifies the age separation between a pair of face images of an individual.

In our formulation, the difference images obtained from a pair of intra-personal

age separated face images formed the primary basis for classification. While the

characterization of the intra-personal difference images were based on their age-

differences, the age group to which the image pairs belonged to, were not considered

primarily due to lack of sufficient samples to characterize such variations for each

age group. While the method presented in this chapter is suitable to handle age

progression in adult face images, since it does not account for shape variations in

faces, it may not be effective for handling age progression in face images of children.

We also studied facial similarity across age progression and highlighted the role of

age progression in affecting similarity scores.
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Table 5.2: Facial Similarity Scores : Set I corresponds to full faces and Set II

corresponds to half-faces faces.

Similarity Score(I01, In)

Image Set I Set II Remark

I02 -0.43 0.33

I03 -0.13 0.79

I04 -0.44 0.81

I05 0.11 0.90 half-faces

I06 -0.45 0.77 in set II perform

I07 0.14 0.95 better

I08 -0.16 0.84

I09 -0.32 0.22

I10 -0.34 0.16

I11 0.58 0.49 No Distinct

I12 -0.48 -0.37 Advantage
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Table 5.3: The overall results of the Bayesian Age-difference Classifier

Type Class 1-2 yrs 3-4 yrs 5-7 yrs 8-9 yrs

Ω1 41.0 (1.1) 12.0 (6.9) 9.0 (5.0) 38.0 (7.2)

Original set Ω2 8.0 (5.0) 46.0 (5.6) 8.0 (4.9) 37.0 (9.2)

of images Ω3 10.0 (3.3) 8.0 (6.3) 53.0 (4.4) 28.0 (6.9)

Ω4 10.0 (2.3) 12.0 (7.3) 5.0 (5.4) 73.0 (8.2)
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Table 5.4: Classification results on Non-Variate images pairs

Type Class 1-2 yrs 3-4 yrs 5-7 yrs 8-9 yrs

Ω1 53.0 (3.8) 14.0 (2.3) 12.0 (5.0) 21.0 (7.2)

Images with Ω2 9.0 (3.0) 53.0 (4.0) 10.0 (6.1) 29.0 (8.0)

less external Ω3 11.0 (4.9) 8.0 (4.5) 62.0 (2.9) 19.0 (7.2)

variations Ω4 14.0 (4.3) 13.0 (6.5) 6.0 (6.1) 67.0 (8.9)

Table 5.5: Classification results on images pairs with facial expressions

Type Class 1-2 yrs 3-4 yrs 5-7 yrs 8-9 yrs

Images with Ω1 33.0 (2.7) 11.0 (14.3) 5.0 (4.9) 51.0 (13.5)

variations in Ω2 10.0 (10.0) 39.0 (9.3) 9.0 (5.7) 42.0 (12.2)

facial Ω3 13.0 (4.2) 6.0 (8.9) 57.0 (9.1) 24.0 (2.0)

expressions Ω4 8.0 (4.4) 12.0 (6.5) 6.0 (4.1) 74.0 (8.9)

Table 5.6: Classification results on images pairs with glasses

Type Class 1-2 yrs 3-4 yrs 5-7 yrs 8-9 yrs

Ω1 25.0 (1.9) 12.0 (10.5) 5.0 (9.9) 58.0 (11.9)

Images with Ω2 4.0 (5.2) 51.0 (7.6) 5.0 (6.7) 40.0 (6.7)

variations in Ω3 9.0 (3.1) 8.0 (9.1) 42.0 (6.4) 41.0 (10.6)

glasses Ω4 9.0 (2.9) 9.0 (10.3) 3.0 (7.2) 79.0 (11.3)

Table 5.7: Classification results on images pairs with facial hair

Type Class 1-2 yrs 3-4 yrs 5-7 yrs 8-9 yrs

Ω1 28.0 (4.6) 7.0 (12.9) 5.0 (7.5) 60.0 (18)

Images with Ω2 6.0 (8.2) 41.0 (9.0) 9.0 (5.2) 42.0 (10.7)

variations in Ω3 2.0 (2.8) 12.0 (15.9) 48.0 (6.3) 38.0 (12.1)

facial hair Ω4 5.0 (2.4) 11.0 (7.6) 4.0 (4.2) 80.0 (7.4)
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Table 5.8: Similarity Measure

Age Based Similarity Measure

Age Difference First Set Second Set

Expression Glasses Facial Hair

µ σ2 µ σ2 µ σ2 µ σ2

1-2 yrs 0.85 0.02 0.70 0.021 0.83 0.01 0.67 0.04

3-4 yrs 0.77 0.03 0.65 0.07 0.75 0.02 0.63 0.01

5-7 yrs 0.70 0.06 0.59 0.01 0.72 0.02 0.59 0.10

8-9 yrs 0.60 0.08 0.55 0.10 0.68 0.18 0.55 0.10
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The many interesting studies on facial aging have provided a good understand-

ing of the multifaceted problem and further have highlighted the many challenges

associated with the problem. Given the critical stage the problem has reached,

establishing a formal platform that enables the evaluation of different algorithms

is critical to the success of the problem. Creating a formal facial aging dataset,

identifying a set of aging-related challenge problems in varying levels of difficulty,

establishing formal evaluation protocols etc. are bound to formalize the solutions

proposed to the problem.

Unlike other problems in face recognition such as illumination variations, pose

variations, facial expressions etc., the temporal nature of the facial aging problem

introduces numerous challenges in creating a formal dataset for the problem. The

success of any learning-based method that is employed on facial aging, invariably

depends on how thoroughly the facial aging datasets represent the problem. In

other words, with multiple factors such as ethnicity, gender, age group etc. being

identified as factors that affect facial aging effects [91], it is critical that face datasets

assembled for this problem span the complete spectrum of the problem. In addition,

the faces that comprise the aging dataset should ideally be devoid of variations due
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to other factors such as illumination, head pose, facial expressions, occlusions etc.

Some of our recommendations for future work on this topic are listed below :

• From a practical standpoint, age estimation methods should focus on identi-

fying the age range that a face image belongs to rather than the actual age.

It will be interesting to study the contributions of shape-based features and

texture-based features in estimating the age of a face.

• Age-based anthropometric measurements have been shown to play a critical

role in modeling facial growth during formative years [92]. To the best of

our knowledge, similar such anthropometric data collected on adult faces is

not available easily. With the advent of such data, developing computational

models for facial aging during adulthood might be a more tractable task.

• An unusual problem that is often encountered (but ignored) while handling

face images of children, is the progressive change that is observed on their

facial sizes across years. Solutions that are proposed for facial aging during

formative years should implicitly account for the gradual change in feature

dimensions across ages. For instance, a typical preprocessing step that is

often used for adult images is that of aligning the face images using a set of

fiducial features such as eyes, nose, mouth etc. With intra-personal variations

in facial shape being subtle during adulthood, such a pre-processing step may

not directly affect different algorithms. The same may not be the case for face

images in the age-range 0 to 18 years.

• Faces being 3D objects, 3D facial aging methods need to be explored. Again,
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sufficient data in the form of laser scans obtained from many individuals across

different ages would significantly help model the shape variations in 3D that

are observed with increase in age.

6.2 Future Work : Familiarity in Face Recognition

Familiarity under the context of facial appearances has been an actively re-

searched topic in the fields of psychophysics, human perception and neurology

(prosopagnasia). From a face recognition perspective, familiarity of a human face

can be described as the ability to generalize across different appearances of the same

individual due to various factors using prior knowledge, which in turn helps in recog-

nizing the individual. Familiarity of faces could be described from two perspectives.

• Familiarity with individual-specific facial characteristics

• Familiarity with the facial characteristics of the class of human faces

Studies suggested that the recognition of a familiar face was often based upon

both the visual information and the broad semantic information, while the recog-

nition of an unfamiliar face was predominantly based on the visual information.

Bartlett et al. [93] studied the typicality of faces and suggested that distinctive

faces tend to gain more familiarity than typical faces. Bruce and Young [94] pro-

posed a functional architecture of face processing. They identified 7 distinct types

of information that are derived from known faces namely pictorial codes, structural

codes, visually derived semantic codes, identity specific semantic codes, name re-

lated codes, expression related codes and facial speech codes. They suggested that
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the recognition of familiar faces involves a match between the product of structural

encoding and the previously stored structural codes that describe the appearances

of familiar faces. Vokey and Read [95], [96] addressed the role of ‘typicality of a face’

(a subjective rating of the difficulty of picking a particular face out of a crowd) in

face recognition. They identified two orthogonal components of typicality namely

‘attractiveness and familiarity’ and ‘memorability’. Attractiveness and familiarity

were said to be context-free and structurally induced. Memorability of faces was

attributed to prior exposure.

Allinson et al. [97] proposed a connectionist model that uses self-organizing

maps in characterizing facial features in order to perform face recognition. They

address familiarity of faces by means of training samples (face images taken from

5 different poses). Uttal et al. [98], [99] suggested that information that underlies

discrimination of faces may reside mainly in the higher spatial frequencies and that

familiarity and memorability were attributes belonging to two different spatial fre-

quencies. Schwaninger et al. [100] and Sinha et al. [101] study the role of holistic

features as against local features contributing to the familiarity of faces.

6.2.1 Problem Statement

We wish to incorporate the notion of ‘familiarity’ in developing face recognition

systems. A system that is familiar with an individual’s facial characteristics should

ideally be able to override problems due to poor illumination, non-frontal pose, poor

image resolution etc. A system that is familiar with the characteristics of the class of
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human faces should ideally be able to decipher more information about an individual

such as gender, age group, the presence or absence of facial occlusions etc. from the

individual’s appearance. We illustrate our notion by means of the figure 6.1 below :

Figure 6.1: Familiarity in face recognition : Let S1(G,P ) and S2(G,P ) correspond to

the similarity scores obtained from the gallery image G and the probe image P with

and without incorporating the notion of familiarity. In the ideal scenario, S1(G,P ) >

S2(G,P ), when G and P correspond to the images of the same individual and

S1(G,P ) < S2(G,P ), when they correspond to the images of different individuals.

In other words, the ROC curves obtained from the familiar face recognition system

should be better than that obtained from the regular system.

6.2.2 Preliminary Experiments

The objective of this experiment was to develop a face recognition system that

generalizes well across different illumination conditions. Does incorporating a face

recognition system the ability to generalize across illumination changes amount to

increasing the size of the training set of face images ? How does the composition of
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the training set affect the system’s generalizing capability ? For our experiments, we

used the PIE dataset [11] and the LDA (Linear Discriminant Analysis) framework

for performing recognition.

The PIE dataset comprises of images of 68 individuals taken in 21 different

illumination conditions. Figure 6.2 illustrates the 21 illumination conditions. The

10 highlighted illumination conditions were chosen for our study. Our objective is

to identify the best combination of illumination conditions that when comprising

the training set, result in the best overall recognition performance, across images

from the 10 illumination conditions. Performing an exhaustive search on the 10

highlighted illumination conditions we identify the best ‘n-training set’ (2 ≤ n ≤ 10).

The initial observations were such that the training set that corresponds to the four

illumination conditions illustrated in figure 6.3 corresponded to the best training

set. Figure 6.4 illustrates the recognition rates that were obtained for each of the

training sets that were identified as the best ‘n-Training sets’.

6.2.3 Discussions

The above experiment illustrates that both over training and under training

can affect the generalizing ability of the recognition system. The best training set

was identified to be the face images that corresponded to four different illumina-

tion conditions. None of the four illumination conditions that comprised the best

‘4-Training Set’ corresponded to frontal illumination. It is to be studied if the illumi-

nation conditions that were identified as the ones that best help the face recognition
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Figure 6.2: The 21 illumination conditions from the PIE dataset are illustrated

above. Different combinations of the 10 highlighted illumination conditions were

used to create the training set for the LDA classifer.

system in generalizing across different illumination conditions, dependent on the

nature of the recognition algorithm.

Numerous interesting studies can be performed under the context of ‘famil-

iarity’ in face recognition. Can familiarity with an individual’s facial appearance

help in constructing a high resolution image of the individual from his or her low

resolution images ? Can familiarity with gender-based facial cues or age-based facial

cues help in reducing the search space for the right identity match ? How do we

build quantifying measures for the ‘typicality’ and ‘memorability’ of human faces ?

These are some of the topics that I would like to work on, in future.
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Figure 6.3: The ‘n-Training set’ (2 ≤ n ≤ 10) that generalizes best across all the 21

illumination conditions are illustrated.
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Figure 6.4: The ‘n-Training set’ (2 ≤ n ≤ 10) that generalizes best across all the 21

illumination conditions are illustrated.
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