
ABSTRACT

Title of dissertation: RANDOM ROUTING AND
CONCENTRATION IN
QUANTUM SWITCHING NETWORKS

Rahul Ratan, Doctor of Philosophy, 2008

Dissertation directed by: Professor A. Yavuz Oruç
Department of Electrical and
Computer Engineering

Flexible distribution of data in the form of quantum bits or qubits among spa-

tially separated entities is an essential component of envisioned scalable quantum

computing architectures. Accordingly, we consider the problem of dynamically

permuting groups of quantum bits, i.e., qubit packets, using networks of reconfig-

urable quantum switches.

We demonstrate and then explore the equivalence between the quantum pro-

cess of creation of packet superpositions and the process of randomly routing pack-

ets in the corresponding classical network. In particular, we consider an n × n

Baseline network for which we explicitly relate the pairwise input-output routing

probabilities in the classical random routing scenario to the probability amplitudes

of the individual packet patterns superposed in the quantum output state.

We then analyze the effect of using quantum random routing on a classically

non-blocking configuration like the Beneš network. We prove that for an n × n

quantum Beneš network, any input packet assignment with no output contention

is probabilistically self-routable. In particular, we prove that with random routing

on the first (log n− 1) stages and bit controlled self-routing on the last log n stages

of a quantum Beneš network, the output packet pattern corresponding to routing

with no blocking is always present in the output quantum state with a non-zero

probability. We give a lower bound on the probability of observing such patterns

on measurement at the output and identify a class of 2n−1 permutation patterns for

which this bound is equal to 1, i.e., for all the permutation patterns in this class the

following is true: in every pattern in the quantum output assignment all the valid

input packets are present at their correct output addresses.

In the second part of this thesis we give the complete design of quantum sparse

crossbar concentrators. Sparse crossbar concentrators are rectangular grids of sim-

ple 2× 2 switches or crosspoints, with the switches arranged such that any k in-

puts can be connected to some k outputs. We give the design of the quantum

crosspoints for such concentrators and devise a self-routing method to concentrate

quantum packets. Our main result is a rigorous proof that certain crossbar struc-

tures, namely, the fat-slim and banded quantum crossbars allow, without blocking,

the realization of all concentration patterns with self-routing.

In the last part we consider the scenario in which quantum packets are queued

at the inputs to an n × n quantum non-blocking switch. We assume that each

packet is a superposition of m classical packets. Under the assumption of uniform

traffic, i.e., any output is equally likely to be accessed by a packet at an input we

find the minimum value of m such that the output quantum state contains at least

one packet pattern in which no two packets contend for the same output. Our cal-

culations show that for m = 9 the probability of a non-contending output pattern

occurring in the quantum output is greater than 0.99 for all n up to 64.

RANDOM ROUTING AND CONCENTRATION
IN QUANTUM SWITCHING NETWORKS

by

Rahul Ratan

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2008

Advisory Committee:
Professor A. Yavuz Oruç, Chair/Advisor
Professor Richard La
Professor Prakash Narayan
Professor Robert Newcomb
Professor G. W. Stewart, Dean’s Representative

© Copyright by
Rahul Ratan

2008

Acknowledgments

It is said that that all great labor is 99% perspiration and 1% inspiration. This

page is an attempt to give credit where it is due for that intangible but all important

1% portion of my endeavour. First of all I am deeply indebted to my adviser Prof.

Yavuz Oruç for his constant support and encouragement through the course of my

graduate studies. He has not only been an academic adviser but a mentor to me in

spheres of life unrelated to my intellectual journey. Thank you sir for all that you

have done. I am also thankful to the other members of my Dissertation committee:

Prof. Newcomb, Prof. Narayan, Prof. La and Prof. Stewart for devoting time

towards my cause.

A person is measured by his friends and the company he/she keeps. I have

been fortunate to have friends who meet and far exceed any standard of measure-

ment. They have all made my journey as a graduate student an unforgettable and

life-affirming experience. Special thanks are due to my fellow researcher Manish

Shukla for all the discussions related to research and otherwise in which he was

never selfish in sharing any knowledge. My other close friends and room mates at

University of Maryland who will always be fondly remembered: Gunjan Sharma,

Sudarshana Koushik, Archana Anibha, Ravi Tandon, Anuj Rawat, Shaju John, Ra-

jagopal, Srikanth, Pavan Turaga, Abhinav Gupta, Swati Jarial, Vishal, Abhishek,

Rakesh, all of you have enriched me greatly with your friendship and thought-

fulness. I also want to acknowledge my former wing-mates from IIT Kanpur

who have maintained and nurtured the wonderful relationship we forged in our

ii

younger days.

In my parents I have an unwavering foundation of support which I can always

rely and count upon. They have provided the bedrock on which my life stands, I

can never repay their debt. I will always treasure their patience and willingness

to let me discover my own path in life. My elder sister, Swati, has also been a

wellspring of constant love and encouragement. Both she and her husband Jyothis

have welcomed me unreservedly whenever I have called on them. I cannot thank

them enough for loving me unconditionally.

iii

Table of Contents

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Quantum Circuits . 7

1.1.1 Qubits . 8
1.1.2 Quantum Gates . 10
1.1.3 Quantum Copy and Switch Gates 14

1.2 Switching Networks . 16

2 Quantum Switching Networks and Random Routing 20
2.1 Definitions . 20

2.1.1 Quantum Packet . 20
2.1.2 Quantum Assignment . 21
2.1.3 Quantum Non-Blocking Networks 23
2.1.4 Quantum Random Routing . 25

2.2 Random Routing on Quantum Baseline Network 30
2.2.1 The n× n Baseline Network . 31
2.2.2 Random Routing: Problem Definition 33

2.2.2.1 Symmetric Case . 34
2.2.2.2 General Case . 37

2.2.3 Admissible Permutation Patterns 38
2.3 Quantum Beneš Network . 41

2.3.1 Randomizing and Self-Routing Quantum Switches 45
2.3.2 Output State . 47
2.3.3 Lee’s Routing Algorithm . 48

2.3.3.1 Routing Control for SN1 49
2.3.3.2 Routing Control for SN2 51

2.3.4 Routing with Arbitrary Switch Settings 53
2.3.5 Output Quantum Assignment for the Beneš Network 58

3 Self-Routing Quantum Sparse Crossbar Concentrators 63
3.1 Overview . 63
3.2 Definitions . 67
3.3 Classical Sparse Crossbar Concentrators 70
3.4 Quantum Sparse Crossbar Concentrators 71
3.5 Self-Routing Quantum Crosspoints . 75

3.5.1 The Self-Routing Scheme . 78
3.6 Self-Routing on Quantum Sparse Crossbar Concentrators 82

3.6.1 Notation . 83
3.6.2 Self-Routing Fat-Slim QSC(n, m) 87
3.6.3 Self-Routing Banded QSC(n, m) 91

iv

3.7 An Example . 102
3.8 Output for Capacity Exceeding Input Patterns 105
3.9 Restoring Auxiliary Control Quantum Bits 105
3.10 Cost Analysis . 108

3.10.1 Gate Count . 108
3.10.2 Routing Delay . 109

3.11 Conclusion . 110

4 Bounds on Size of Input Quantum Assignment 111
4.1 Problem Statement . 112
4.2 Some Results . 116

5 Conclusions and Future Work 118
5.1 Random Routing in Quantum Switching Networks 118
5.2 Self-Routing Quantum Sparse Crossbar Concentrators 119
5.3 Bounds on Size of Input Quantum Assignment 120
5.4 Future Work . 120

Bibliography 123

v

List of Tables

3.1 Input-output mapping for a quantum crosspoint. 77

4.1 Lower bound on ρ(n, m). 117

vi

List of Figures

1.1 Hadamard gate. 10

1.2 Controlled-not gates. 13

1.3 Switch gate. 15

1.4 Beneš network. 17

1.5 Self-routing and contention in Baseline network [20]. 18

2.1 Random routing on a 4× 4 quantum network. 26

2.2 n× n Baseline network (recursive structure). 31

2.3 8× 8 Baseline network. 32

2.4 The 16× 4 frame. 40

2.5 Frames and permutation matrices. 41

2.6 n× n Beneš network (recursive structure). 42

2.7 8× 8 Beneš network. 42

2.8 A quotient partition realized on a set of switches. 50

2.9 Routing on 8× 8 Beneš network using Lee’s algorithm. 52

2.10 Structure of Beneš network (proof for Theorem 2.4). 56

3.1 Classical sparse crossbar concentrators. 72

3.2 Numbering of inputs and outputs in an n×m quantum sparse cross-
bar network. 74

3.3 Circuit for the quantum crosspoint. 76

3.4 Self-routing fat-slim quantum sparse crossbar concentrator, QSC(5, 3). 79

3.5 Output matching yi for input xi. 84

3.6 Conflict in self-routing. 86

3.7 Partitions of fat-slim crossbar. 87

vii

3.8 Partitions of banded sparse crossbar concentrator. 91

3.9 Self-Routing on fat-slim QSC(5, 3). 103

3.10 Circuit for restoring the control quantum bit c. 106

3.11 A Banded QSC(5,3) with additions for restoring the auxiliary control
quantum bits. 107

viii

Chapter 1

Introduction

Quantum computation and its related field of quantum information science are re-

cent areas of research which have rapidly gained in prominence from their origins

around three decades ago. Originally conceived as a means to simulate quantum

mechanical systems [1], which are hard to model on conventional or classical com-

puters, the quantum computation and information processing models have led to

discovery of a large body of fundamental results which have spawned new ar-

eas of application of quantum mechanical principles like quantum cryptography

and quantum error correcting codes [2, 3]. The uniqueness or power of quan-

tum systems surprisingly comes from the inherent randomness of quantum enti-

ties and the non-local interactions between them. These properties as manifested

in the form of quantum parallelism and entanglement have been used in finding

efficient solutions for classically intractable problems. The interest in this area re-

ceived a major boost with the discovery of some seminal algorithms which have

demonstrated that quantum systems can be used to solve interesting exponen-

tial complexity problems with speedups that are impossible in classical comput-

ing. The two most famous examples include Shor’s polynomial time algorithm for

finding prime factors of a composite number [4] and Grover’s search algorithm

that can search an unstructured database with n elements in O(
√

n) time steps.

1

Other more recent examples include adiabatic solution of optimization problems

[5], Pell’s equation [6] and Gauss sums [7].

Mirroring the advances on the theoretical front, practical implementation of

quantum information processing systems has also garnered a lot of attention. Early

stage quantum computers have utilized many different technologies for perform-

ing computation: trapped ions and molecules in solution [8], Josephson junctions

[9], photons [10], bulk spin NMR [11] and phosphorous impurities in silicon [12].

Of these proposals, only those building on a solid-state platform are expected to

provide the scalability required to achieve a useful computational substrate. Sev-

eral recent promising proposals for large scale quantum computer architectures

based on solid-state silicon are a step in this direction [9, 12]. As quantum systems

are scaled up and the number of components grows transporting quantum data

becomes a critical requirement. This issue of quantum data transport has been rec-

ognized as a particularly critical requirement in upcoming silicon-based quantum

computing technologies [13, 14].

Spatially distributed components introduce the need for quantum wires over

which quantum data can be transmitted but building quantum wires and transfer-

ring quantum bits (qubits) is a non-trivial operation as, in general, quantum bits

cannot be copied, which is a consequence of the no-cloning theorem [15]. Propos-

als for building quantum wires in solid state technologies include the quantum

swapping and teleportation based architectures in [13, 14, 16]. The high cost of

such wires implies that the O(n2) wires needed to interconnect n quantum devices

can be a major bottleneck in implementing quantum systems.

2

This cost can be greatly reduced by using efficient switching network designs.

The basic premise of this idea is to use arrangements of reconfigurable switches

with input quantum bits on their own quantum wires and then route them to

the required destination. These switches are represented using quantum circuits

composed of quantum gates. In addition to reducing wire count, reconfigurable

quantum switches can form integral parts of the quantum data distribution sys-

tem in envisioned architectures for scalable quantum computing. For example,

in the Quantum Logic Array (QLA) microarchitecture proposed in [17], the high-

level quantum computer structure consists of logical qubits connected with a pro-

grammable communication network in which integrated switch islands are used

to redirect quantum data from nearby logical qubits.

The first design of a network for permuting individual quantum bits was given

by Tsai and Kuo [18]. They gave a method to map a decomposition of any given

permutation in terms of disjoint cycles and transpositions onto a quantum switch

circuit which realizes that particular permutation. Since the circuit realizes only

one permutation, it needs to be made anew for any new permutation to be realized.

The first quantum switch network using reconfigurable switches to route groups

of quantum bits (which comprise quantum bit packets) was given by Shukla et. al.

in [19, 20]. This quantum network can permute quantum information packets be-

tween its n inputs and n outputs. It was shown that this network realizes nn/2 per-

mutations and can be used to resolve blocking when transmitting classical packets

by creating a superposition of packets whenever they contend for the same wire

in the network. This phenomenon reflects the give-and-take between quantum

3

and classical switch designs. While on the one hand classical structures can re-

duce the wire count for quantum systems, on the other hand, quantum properties

like superposition or quantum parallelism can be harnessed to address classical

problems like blocking when switching is done in the quantum domain. Recently,

Cheng and Wang [21] have proposed a quantum merge sorting based network that

can route all n! permutations using O(n log3 n) gates. Switching network configu-

rations suitable for quantum networks have also been identified [22].

Quantum computation exploits the ability for a single quantum bit, a qubit,

which can be implemented by the polarization states of a photon or the spin of a

single atom, to exist in a superposition of the binary “0” and “1” states. With n

qubits a quantum computer can be in 2n unique states at any given time. These

states can be inter-correlated such that a single logic gate can act on all possible 2n

states at once. This is the source of quantum parallelism.

In classical switching networks packet assignments from the n inputs to the

n outputs can only be issued one assignment at a time even though they can be

overlapped by pipelining them. For quantum networks on the other hand, packets

are composed of quantum bits and they can represent a superposition of many

possible assignment patterns of packets that may be routed through the network

all at once as a consequence of quantum parallelism. It is this parallel aspect of

routing in quantum networks that we analyze in this thesis.

In the first part of this thesis we analyze the output state of quantum switch

networks which are used to realize ordered connections when superpositions of

packets are created in a controlled fashion at the internal switches in the network.

4

We first define the concepts of quantum packets, quantum assignments and non-

blocking networks in terms of superpositions. For any quantum switch configura-

tion we show the equivalence between the quantum process of creation of packet

superpositions and the process of randomly routing packets in the correspond-

ing classical network. In particular, we give the example of the Baseline network,

where we use the regular connection structure and the self-routing property of this

network to explicitly relate the pairwise input-output routing probabilities in the

classical random routing scenario to the probability amplitudes of the individual

packet patterns superposed in the quantum output state.

We then analyze the effect of using quantum random routing on a classically

non-blocking configuration like the Beneš network. We prove that for a n × n

quantum Beneš network, n = 2p, any input packet assignment with no output

contention is probabilistically self-routable. In particular, we prove that given

any non-contending input assignment pattern with random routing on the first

log2 n− 1 stages and bit controlled self-routing on the last log2 n stages of a quan-

tum Beneš network, there exist in the quantum output assignment patterns with

non-zero probability amplitude, in which, all the valid input packets are present at

their correct output addresses. Additionally, we give a lower bound on the proba-

bility of observing such patterns at the outputs upon measurement.

We also identify a class of permutation patterns for which this bound is equal

to 1, i.e., for all the permutation patterns in this class the following is true: in every

pattern in the quantum output assignment all the valid input packets are present

at their correct output addresses.

5

In the second part of this thesis we give the complete design of quantum sparse

crossbar concentrators. Concentrators are connectors used to realize unordered

connections, i.e., the concentration function is defined with respect to connecting

a subset of inputs to some subset of outputs with the matchings within the sub-

sets being irrelevant. Sparse crossbar concentrators are m × n rectangular grids

of simple 2× 2 switches or crosspoints, with the switches arranged such that any

k ≤ n inputs can be connected to some k ≤ m ≤ n outputs. The ordering of the

connections within the sets is not important. The minimum crosspoint count for

such structures is (n−m + 1)m [23]. Optimal arrangements of crosspoints which

meet this lower bound and allow concentration are also well-known [24, 25].

A concentrator, in general, is a rectangular structure in which the number of in-

puts, n, is not equal to the number of outputs, m. This implies that the input-output

mappings are not reversible. This is a problem for quantum implementation as all

quantum operations are reversible. Our first contribution is a method to make a

sparse crossbar concentrator square so that it can be implemented in the quantum

domain using quantum switches or crosspoints. We then present a method to self-

route packets on such concentrators which greatly simplifies routing and makes a

quantum implementation more feasible as no classical external control is required.

Our main result is a rigorous proof that certain crossbar structures, namely, the

fat-slim and banded quantum crossbars allow, without blocking, the realization of

all valid concentration patterns when self-routing is done.

In the last part we consider the scenario in which quantum packets are queued

at the inputs to an n × n quantum non-blocking switch. We assume that each

6

packet is a superposition of m classical packets. m is a parameter of the quan-

tum system which we want to optimize. Under the assumption of uniform traffic,

i.e., any output is equally likely to be accessed by a packet at an input we find

the minimum value of m such that the output quantum state contains at least one

packet pattern in which no two packets contend for the same output. Our calcu-

lations show that this value is insensitive to variations in n, indeed, for m = 9 the

probability of a non-contending output pattern occurring in the quantum output

is greater than 0.99 for all n upto 64.

The rest of the dissertation is organized as follows: in Section 1.1 and Section 1.2

we give brief introductions to quantum circuits and switching networks respec-

tively. Chapter 2 contains results related to random routing on quantum Baseline

and quantum Beneš networks. In Chapter 3 we give the design of quantum sparse

crossbar concentrators. Chapter 4 gives the bounds on size of superpositions on in-

put quantum packets for non-blocking networks. Chapter 5 relates the conclusions

and future work.

1.1 Quantum Circuits

In this section we give a brief description of basic concepts related to quantum in-

formation, quantum circuits and the quantum gates which are used to manipulate

such information.

7

1.1.1 Qubits

The indivisible unit of classical information is the bit: an object that can take either

one of two values: 0 or 1. The corresponding unit of quantum information is the

quantum bit or qubit. Unlike a classical bit a qubit can take values which are in

some sense a combination of the values 0 and 1, i.e., it can be simultaneously be

both 0 and 1. Formally, a qubit’s state is represented as a unit vector in a two-

dimensional complex Hilbert space and can be expressed as:

|ψ〉 = α |0〉+ β |1〉 , |α|2 + |β|2 = 1; α, β ∈ C (1.1)

The vectors |0〉 and |1〉 constitute an orthonormal basis for this space. These two

vectors are referred to as the computational basis vectors. We can perform a mea-

surement that projects the state of this qubit onto the computational basis, i.e., the

measurement projects |ψ〉 onto the basis {|0〉 , |1〉}. The outcome of the measure-

ment is not deterministic— the probability that we observe the result to be |0〉 is

|α|2 and the probability that we observe the result to be |1〉 is |β|2. α and β are

referred to as the probability amplitudes of the states |0〉 and |1〉 respectively.

The state of an n-qubit system can be expressed as a vector in a complex Hilbert

space of dimension 2n. This 2n-dimensional space is a tensor product of the n two-

dimensional spaces representing individual qubits. The orthonormal basis for this

space can be chosen as the states in which each qubit has a definite value, either |0〉

or |1〉. A general normalized vector representing an n-qubit state can be expanded

in this basis as

8

|ψ〉 = α0 |00 · · · 00〉+ α1 |00 · · · 01〉+ · · ·+ α2n−2 |11 · · · 10〉+ α2n−1 |11 · · · 11〉

=
2n−1

∑
i=0

αi |i〉 (1.2)

where we have associated with each string the number that it represents in binary

notation, ranging in value from 0 to 2n − 1. Here the αi’s are complex numbers

satisfying ∑i|αi|2 = 1. A measurement of all n qubits by projection of each onto

the {|0〉 , |1〉} basis, yields the outcome |i〉 with probability |αi|2 [26]. The state of a

multiple qubit system is given by the tensor product of the individual state vectors.

For example, the combined state of the system of two qubits ψ1 and ψ2 where the

states of the two qubits are |ψ1〉 = 1√
2
|0〉+ 1√

2
|1〉 and |ψ2〉 = 1

2 |0〉+
√

3
2 |1〉 is given

by the tensor product:

|ψ1〉 ⊗ |ψ2〉 =
(

1√
2
|0〉+ 1√

2
|1〉
)
⊗
(

1
2
|0〉+

√
3

2
|1〉
)

⇒ |ψ1〉 |ψ2〉 =
1√
8
(|0〉 ⊗ |0〉) +

√
3√
8
(|0〉 ⊗ |1〉) +

1√
8
(|1〉 ⊗ |0〉) +

√
3√
8
(|1〉 ⊗ |1〉)

=
1√
8
(|0〉 |0〉) +

√
3√
8
(|0〉 |1〉) +

1√
8
(|1〉 |0〉) +

√
3√
8
(|1〉 |1〉)

=
1√
8
|00〉+

√
3√
8
|01〉+ 1√

8
|10〉+

√
3√
8
|11〉 (1.3)

where⊗ denotes the tensor product, and we use the convention |x〉⊗ |y〉 = |x〉 |y〉.

Further, if |x〉 and |y〉 are basis state vectors then |x〉 |y〉 = |xy〉.

This concept of the probabilistic projection of a combined state onto one or the

other basis vectors on measurement captures the basic principle of quantum theory

which posits that the act of acquiring information about the state of a physical

system inevitably disturbs the state of the system. The trade-off between acquiring

9

|0〉 → 1√
2
(|0〉+ |1〉)

|1〉 → 1√
2
(|0〉 − |1〉)

H

Figure 1.1: Hadamard gate.

information and creating a disturbance is related to quantum randomness. It is

because the outcome of a measurement has a random element that we are unable

to infer the initial state of the system from the measurement alone.

1.1.2 Quantum Gates

The state of qubits is transformed using quantum gates and circuits composed of

such gates. The quantum gate formalism was first proposed by Deutsch [27]. A

quantum gate is a linear, unitary transformation on the space of qubit state vec-

tors. The unitary nature of these transformations implies that quantum gates are

reversible, i.e., given the state of qubits at the output of a gate, the input state can be

uniquely determined. The unitarity also implies that the gates preserve the norm

of the input state which amounts to preserving probability. These requirements of

reversibility and norm preservation are basic axioms of quantum theory. An exam-

ple of a single qubit gate is the Hadamard gate, H, (Figure 1.1) which transforms

the basis vectors |0〉 and |1〉 as

|0〉 H−→ 1√
2
(|0〉+ |1〉), |1〉 H−→ 1√

2
(|0〉 − |1〉) (1.4)

10

In the above mapping we say that the basis vectors |0〉 and |1〉 are put in an

equal superposition by the Hadamard gate as after transformation the probabil-

ity of observing either of the basis vectors at the output is equal to 1/2. Thus, the

Hadamard gate can be considered a quantum randomizer which takes a 0 or 1 bit

and transforms it so that the output is either 0 or 1 with probability 1/2 [28].

A gate is completely specified by the mapping it performs on the basis vec-

tors as all the rest of the input states can be represented as vectors which are a

linear combination of these basis vectors. In the case of the Hadamard gate this

means that an input qubit in the general state α |0〉+ β |1〉 would be transformed

to α√
2
(|0〉+ |1〉) + β√

2
(|0〉 − |1〉) = α+β√

2
|0〉+ α−β√

2
|1〉.

An n-bit quantum circuit can simultaneously act on all the 2n components of

the input state and transform them according to some specified mapping at once.

This is the source of massive quantum parallelism. To make this more clear, suppose

we are interested in finding the properties of a function f (i) which takes the n-bit

binary string i as input. The table of values for f (i) is of size 2n and is clearly

infeasible to calculate for large n. But, with a quantum computer, U f that acts

according to

|i〉 |0〉
U f−→ |i〉 | f (i)〉 (1.5)

When we write any two qubit states side-by-side, it means we are taking a tensor

product, thus |i〉 |0〉 = |i〉 ⊗ |0〉. We can put the input register consisting of the

11

qubits corresponding to i in a superposed state similar to the one in Eqn. (1.2):

(1√
2
(|0〉+ |1〉)

)
⊗ · · · ⊗

(1√
2
(|0〉+ |1〉)

)
︸ ︷︷ ︸

n qubits

=
1

2n/2

2n−1

∑
i=0
|i〉 (1.6)

where we have taken the tensor product of the n qubits to get the complete state.

By computing f (i) only once, we can generate a state

1
2n/2

2n−1

∑
i=0
|i〉 |0〉

U f−→ 1
2n/2

2n−1

∑
i=0
|i〉 | f (i)〉 (1.7)

All the global properties of f are encoded in this state and can be extracted if an

efficient method is devised. This is the kind of massive parallelism Shor uses in his

famous factorization algorithm [4].

This same parallelism enables us to probabilistically combine packets in quan-

tum switching networks. The input to the quantum switching network can be a

superposition of multiple packet assignments, all of which are routed in parallel to

the outputs. The switching network operates in different switch configurations for

different packet assignments. We give a more detailed explanation of this concept

when we describe random routing on quantum switching networks.

Among gates which operate on multiple qubit inputs, the most common type

of gates used in quantum circuits are the controlled quantum gates. A controlled

gate’s function is determined by the state of some control qubits. In general, if

a gate performs the unitary transformation U : |x〉 → U |x〉, then the controlled

version of this gate, which becomes active when a control qubit, c, is in state |1〉,

does the following transformation

|x〉 U−→ U |x〉 =⇒ |0〉 |x〉 Controlled−U−−−−−−−→ |0〉 |x〉 , |1〉 |x〉 Controlled−U−−−−−−−→ |1〉U |x〉 (1.8)

12

Source |s〉

|s⊕ t〉

|s〉

|t〉Target

(a)

Target |x〉

|c0〉

|c1〉

|c0〉

|c1〉

|(c0 c̄1)⊕ x〉

Control

(b)

Figure 1.2: Controlled-not gates: (a) Controlled not gate (b) Controlled-controlled

not gate.

The simplest controlled gate is the controlled-not (CNOT) gate shown in Fig-

ure 1.2(a). The function of this gate is given by the mapping:

|s〉 |t〉 CNOT−−−→ |s〉 |s⊕ t〉 (1.9)

Here ⊕ denotes the XOR operation or modulo 2 addition, i.e., if y is a binary

variable then y⊕ 0 = y and y⊕ 1 = ȳ, where ȳ is the complement of y. Hence bit t

is inverted when s = 1 and remains unchanged when s = 0. This gate functions as

a NOT gate for the lower or target qubit when the control qubit is in state |1〉. The

controlled-controlled-not (CC-NOT) gate shown in Figure 1.2(b), with two control

qubits c0 and c1 performs the following transformation

|c0, c1, x〉 CC−NOT−−−−−−→ |c0, c1, (c0.c̄1 ⊕ x)〉 (1.10)

thus, it inverts x when c0 = 1 and c1 = 0. If a gate becomes active when a control

qubit is 1, then that is indicated by a solid circle, (for c0) and if a gate becomes

active when a control qubit is 0 then that is indicated by an open circle, (for c1).

The CC-NOT gate transforms the basis vectors |100〉 and |101〉 to |101〉 and |100〉

respectively and leaves all the remaining six basis vectors unchanged. The qubit

13

affected by the operation of a controlled gate is called the target qubit. If we ini-

tialize x to 0, then this gate can be viewed as a quantum comparator which sets the

output qubit to |1〉 when c0 < c1 and leaves it unchanged otherwise.

1.1.3 Quantum Copy and Switch Gates

Consider the CNOT gate shown in Figure 1.2(a). When t = 0 we see that the

mapping is of the form |s〉 |0〉 CNOT−−−→ |s〉 |s〉, thus a CNOT gate can also be viewed

as a copier which copies the upper or source qubit on to the lower or target qubit

when the target qubit is initialized to state |0〉. Note that this copy operation can

only be done when the upper qubit is in one of the two basis states: |0〉 or |1〉. For

a source qubit in the general state |ψ〉 = α |0〉+ β |1〉 the mapping is given by:

(α |0〉+ β |1〉)s |0〉t
CNOT−−−→ α |0〉s |0⊕ 0〉t + β |1〉s |1⊕ 0〉t

= α |0〉s |0〉t + β |1〉s |1〉t

= α |00〉st + β |11〉st (1.11)

Where we have used the linearity of quantum transformations. The output state is

either |00〉 with probability |α|2 or |11〉 with probability |β|2 and we have copied

0 and 1 bits to the target. Note that this is not equivalent to copying the com-

plete source qubit to the target qubit because such an operation would require the

following transformation:

(α |0〉+ β |1〉)s |0〉t → (α |0〉+ β |1〉)s ⊗ (α |0〉+ β |1〉)t

= α2 |00〉+ αβ |01〉+ αβ |10〉+ β2 |11〉

14

c

|y〉

|x〉

(a)

≡

c

|y〉

|x〉

c

|x〉

|y〉

(b)

Figure 1.3: Switch gate: (a) Controlled-swap or switch gate (b) Switch gate made

using CNOT gates.

It can be shown that this mapping is not unitary and hence cannot be done using

quantum gates [26]. Thus a general quantum state can not be copied or cloned,

this is known as the no-cloning theorem [15]. As a consequence of this theorem,

wires in quantum circuits cannot be fanned out or split.

The basic gate used to build quantum switching networks is the controlled

swap gate or switch gate, which is shown in Figure 1.3(a). A switch gate is a multi-

qubit gate which swaps two sets of qubits or quantum packets when a control

qubit c is |1〉 and passes them through unchanged otherwise [19, 20]. These two

states of the switch gate are referred to as the cross and through states respectively.

Thus, this gate can be used as a reconfigurable 2× 2 switch to route quantum bit

packets. The function of this gate can be represented as

|x〉 |y〉 |0〉c
Switch−−−−→

Through
|x〉 |y〉 |0〉c (1.12)

|x〉 |y〉 |1〉c
Switch−−−→
Cross

|y〉 |x〉 |1〉c (1.13)

where x and y are equal length binary strings. The thick lines in Figure 1.3(a) for

x and y indicate that there are multiple qubits on them. An implementation of the

15

switch gate with strings x and y of length 1, using two controlled-not (CNOT) and

one CC-NOT gate is shown in Figure 1.3(b). If x = x1x0 and y = y1y0 are strings

of length two, then the transformation done by the switch gate is given by:

|x1x0〉 |y1y0〉 |0〉c
Switch−−−−→

Through
|x1x0〉 |y1y0〉 |0〉c (1.14)

|x1x0〉 |y1y0〉 |1〉c
Switch−−−→
Cross

|y1y0〉 |x1x0〉 |1〉c (1.15)

1.2 Switching Networks

Switching networks are arrangements of small reconfigurable switches which can

be set dynamically to facilitate connections in parallel between a set of input enti-

ties and a set of output entities. A multistage switching network consists of mul-

tiple stages of smaller switches with each stage connected to the stages before and

after it with some fixed pattern of wires. The switches comprising a stage are not

ordinarily connected to each other. The most common types of networks are of

size 2p × 2p and are made using 2× 2 switches. Multi-stage networks have many

nice properties including constant path length and delay between any input and

output and modular scalable structure.

A switching network is said to be nonblocking if any permutation assignment

π : i→ π(i) can be realized between the inputs and outputs without any conflicts.

Thus, a nonblocking switching network can route all n! permutation maps with-

out any conflicts. Shannon [29] showed that any n× n nonblocking switch network

built using 2× 2 comparators has a minimum hardware cost of Ω(n log n). Clos

[30] gave the first fully nonblocking network which used unequal sized switches

16

n− 1

Beneš network

I
N
P
U
T
S

0

1

2

3

O
U
T
P
U
T
S

0

1

2

3

n− 1

n− 2

n− 1

n− 2

n/2× n/2
Beneš network

0

n− 1

0

n/2× n/2

Figure 1.4: Beneš network.

in a three stage structure. He was able to show that the Clos network has a cross-

point count of O(n3/2) which is lower than the O(n2) crosspoint count for a simple

crossbar. Other nonblocking networks include the Beneš network [31], the Cantor

switch [32] and generalized connectors [33]. The n × n Beneš is shown in Fig-

ure 1.4. As can be seen in the figure, this network is defined recursively, and thus

has 2 log n− 1 stages of switches with each stage consisting of n/2 switches from

top to bottom for a total of (n log n− n/2) 2× 2 switches.

In addition to the hardware cost, a major consideration for switching networks

is the path setup cost or the routing complexity. The routing complexity is deter-

mined by the time required to calculate the switch settings which realize any set

of connection requests. Nonblocking networks provide multiple paths between

input-output pairs so that if an internal link along one path between an input-

output pair gets blocked by another connection then another clear path can be

established. Usually, this multiplicity of internal paths and high hardware cost

implies that most routing algorithms for such networks are centralized, i.e., given

17

1001

0100
0101

0110

0111

0011

0010

0001
0000

1100
1101

1110

1111

1011

1010

1001
1000

0110

0111

Contention

Figure 1.5: Self-routing and contention in Baseline network [20].

a connection assignment an external entity with knowledge of the entire switch

state determines the switch settings. As a result many interconnection fabrics like

the Delta [34] and Banyan networks [35] have been designed which allow simple

decentralized routing.

In these networks the arrangement of the internal switches is such that the state

of a switch can be determined by using only the locally available information about

the destination addresses of the two input packets. The state of a switch is deter-

mined by a control bit or a routing bit. This routing bit is determined from the

bits in the destination addresses of the input packets. For example, in the Base-

line network shown in Figure 1.5 the control bit for a switch in the ith stage, ci

is the given by ci = ap−1−i, where ap−1ap−2 · · · a0 is the binary output address of

the input packet to this switch. If the control bit is 1 then the packet is routed to

18

the lower output and if the control bit is 0 then the packet is routed to the upper

output on the switch. This can be seen in Figure 1.5 for the packet with the output

address 1001. The control bit in the 0th stage is 1 so the packet gets routed to the

upper output of the switch in this stage, the control bit for stage 1 is 0 and so the

packet gets routed to the upper output of the switch and so on. This method of

bit controlled routing is called self-routing. Self-routing networks like the Baseline

network allow only a single unique path between any input-output pair and hence

may block when there is output contention among packets incident on the same

switch. Such a scenario is also shown in Figure 1.5. Hence, these are blocking net-

works. The permutation assignments for which blocking does not occur are called

admissible permutations. Any admissible permutation can be self-routed over a

network which allows bit controlled routing.

19

Chapter 2

Quantum Switching Networks and Random Routing

We define the concepts of quantum packets, quantum assignments, quantum non-

blocking networks and random routing on quantum networks by using superpo-

sitions. We then characterize the output state for random routing on a blocking

network, namely, the Baseline network. The output quantum state is also charac-

terized for the non-blocking Beneš network when some stages in it are randomly

routed.

2.1 Definitions

We define quantum packets, quantum assignments and the mapping performed

by certain quantum switching networks in this section. These definitions are based

on those given in [36, 37].

2.1.1 Quantum Packet

We assume that quantum packets composed of qubits are routed over a quantum

network. A quantum packet consists of a set of data qubits, a set of address qubits

and one additional qubit which we refer to as the routing qubit. Reversibility con-

siderations in quantum systems mean that unlike classical systems no connecting

wire or input/output line can remain empty. We use the routing qubit to overcome

20

this constraint, the routing qubit is set to |1〉 to indicate the presence of a quantum

packet and to |0〉 to indicate an empty wire or absence of a packet. A quantum

packet is defined below:

Definition 2.1. (Quantum packet) Let an input have m nd-bit packets, d0, . . . , dm−1.

If packet di is to be transmitted with probability pi to an output with na bit binary

address ai, then the source at this input feeds into the switching network a quantum

packet of the following form:

m−1

∑
i=0

αi |ri, ai, di〉 (2.1)

where |αi|2 = pi and ri = 1. We refer to the individual components of the quantum

packet, the bit strings |ri, ai, di〉 as classical packets. The routing bits in the classical

packets are ri. The length of the quantum packet is nd + na + 1 qubits.

If the input source has no packets to transmit then the empty line is indicated

by a single nd + na + 1-bit string in which the routing bit is set to 0, the other

nd + na bits can take arbitrary values. Note that we are only considering unicast

assignments, i.e., assignments in which each classical packet is addressed to at

most one output. This means that for an n× n network the length of the address

field, na, is equal to log n1 bits.

2.1.2 Quantum Assignment

An input assignment pattern for an n-input quantum network is a sequence of clas-

sical packets, each of which belongs to a quantum packet on the n inputs from top

1All logarithms are in base 2 unless stated otherwise.

21

to bottom. A quantum input assignment is a superposition of a set of assignment

patterns. An assignment pattern is called non-contending when no two classical

packets in the pattern are addressed to the same output. A quantum assignment is

non-contending when all of its assignment patterns are non-contending and contend-

ing otherwise. A non-contending assignment pattern is called a permutation assign-

ment pattern when every input is matched to some output and a sub-permutation

assignment pattern otherwise. These terms are formally defined as follows:

Definition 2.2. (Quantum assignment, assignment pattern) A quantum assignment

for an n× n quantum network is a superposition of a set of T assignment patterns

of the form:

T−1

∑
j=0

γj
∣∣(rj,0, aj,0, dj,0), · · · , (rj,n−1, aj,n−1, dj,n−1)

〉
(2.2)

where the assignment pattern
∣∣Pj
〉

=
∣∣(rj,0, aj,0, dj,0), · · · , (rj,n−1, aj,n−1, dj,n−1)

〉
con-

sists of n classical packets in which
∣∣(rj,i, aj,i, dj,i

〉
is the packet at input i, i =

0, . . . , n− 1. |γj|2 is the probability of the jth assignment pattern being realized and

∑T−1
j=0 |γj|2 = 1. Assignment pattern

∣∣Pj
〉

is non-contending if no two classical pack-

ets in it are addressed to the same output, i.e., aj,i 6= aj,k for every 0 ≤ i, k ≤ n− 1

for which rj,i = rj,k = 1. Assignment pattern
∣∣Pj
〉

is a permutation pattern or a

permutation if it is non-contending and rj,i = 1 for all 0 ≤ i ≤ n − 1 and a sub-

permutation pattern or a sub-permutation if it is non-contending and rj,i = 0 for

some i, 0 ≤ i ≤ n− 1.

Note that the output addresses in a permutation pattern form a permutation

on the numbers 0, . . . , n − 1, i.e., there is a permutation map π : i → π(i) such

22

that ai = π(i), 0 ≤ i ≤ n− 1. Also a sub-permutation pattern is a non-contending

pattern which is not a permutation.

A quantum assignment is a permutation (sub-permutation) assignment if all its

patterns are permutations (sub-permutations).

If the quantum packets at all the inputs are of the kind given in Eqn. (2.1) then

the quantum assignment can be expressed as a tensor product of the quantum

packets as follows:

n−1⊗
i=0

|Qi〉 =
n−1⊗
i=0

(
ti−1

∑
j=0

αij
∣∣rij, aij, dij

〉)
(2.3)

where |Qi〉 = ∑ti−1
j=0 αij

∣∣rij, aij, dij
〉

is the quantum packet on input i. The tensor

product in Eqn. (2.3) when expanded to a quantum assignment of the form in

Eqn. (2.2) contains ∏n−1
i=0 ti assignment patterns.

2.1.3 Quantum Non-Blocking Networks

An n × n network is called a non-blocking network if it can realize all non- con-

tending assignment patterns between its inputs and outputs. We extend this defi-

nition to quantum networks as follows:

Definition 2.3. (Quantum non-blocking network) An n-input, n-output quantum

switch network is called an n-quantum non-blocking network or n-QNN, if for any

non-contending assignment pattern |P〉 = |(r0, a0, d0), . . . , (rn−1, an−1, dn−1)〉 and

a finite number of auxiliary qubits, each of which is initialized to state |0〉, it does

23

the following transformation:

|P〉 |00 · · · 0〉aux
n−QNN−−−−→

∣∣(r′0, a′0, d′0), . . . , (r′n−1, a′n−1, d′n−1)
〉
|ΨP〉aux (2.4)

where for all j = 0, . . . , n− 1, d′j = di and r′j = 1 if there is a packet (ri, ai, di) in |P〉

such that ri = 1 and the output address of the packet at input i is equal to j, i.e.,

ai = j. If there is no packet addressed to output j then r′j = 0. A finite number of

auxiliary qubits are needed to ensure reversibility as many input patterns can get

mapped to the same output pattern. These qubits are transformed to some state

|ΨP〉.

If the quantum switching network is made using m smaller switches, then usu-

ally some fixed number of auxiliary qubits are needed per switch for a total of

O(m) auxiliary qubits. Due to linearity of quantum systems, an n-QNN can si-

multaneously realize all the patterns in a non-contending quantum assignment of

the kind given in Eqn. (2.2). For a non-contending pattern, the n-QNN does not

change the probability coefficients associated with an assignment pattern, it just

changes the ordering of the valid classical packets within it.

A quantum network that doesn’t perform the transformation given in Eqn. (2.4)

for every non-contending input pattern is said to be blocking. A blocking network

may still be able to realize such a transformation for a subset of non-contending

input patterns. The non-contending assignment patterns for which the transfor-

mation in Eqn. (2.4) is realized are said to be admissible. All n! permutation patterns

are admissible for an n-QNN.

In networks consisting of reconfigurable switches, the state of each individ-

24

ual switch can viewed as being determined by setting a bit, called the control bit.

When the value of the control bit is determined only by the local information avail-

able from the headers of the two input packets then the switches as well as the

network is said to be self-routing. So, in a self-routing network the control bit or

equivalently the switch state for any internal switch is a function of the destination

addresses and routing bits of the input packets only at that switch.

If a 2 × 2 switch has the classical packets |r0, a0, d0〉 and |r1, a1, d1〉 incident

on its upper and lower inputs respectively then the switch is self-routing if c =

f (r0, r1, a0, a1), where c is the control bit and f is a binary function of the bit strings

r0, r1, a0, and a1. The alternative to self-routing is centralized routing in which

switch settings are determined according to a centralized algorithm where, in gen-

eral, the control bit of one switch may be determined by the address and routing

bits at other switches. For quantum switching networks it is desirable to have self-

routing switches as centralized control would have to be implemented classically

resulting in greater overhead and slower speed.

2.1.4 Quantum Random Routing

We now describe the implementation of random routing of packets on quantum

networks via the generation of quantum superpositions. Consider a simple 4× 4

quantum network shown in Figure 2.1(b) which uses 2× 2 switches as shown in

Figure 2.1(a). The classical packet at input i is denoted by Qi = (ri, ai, di), 0 ≤

i ≤ 3. The Hadamard gate in each switch is used to put the control qubit c in an

25

|0〉 ci

Q2i

Q2i+1

H

(a) Randomizing switch, Si.

Q3

c1

Q0

Q1

Q2

Q3

0

0 1

0

Q0

Q3

Q2

Q1

1

Q1

Q0

Q2

Q3

0 1

Q1

Q0

Q3

Q2

1

|0〉

|0〉

S1

c0

S0

Q0

Q1

Q2

(b) Quantum output assignment.

Figure 2.1: Random routing on a 4× 4 quantum network.

equal superposition in order to randomize the output. The operation of switch Si,

i = 0, 1, is defined as follows:

|Q2i〉 |Q2i+1〉 |0〉ci

Si−−−−→
Through

|Q2i〉 |Q2i+1〉 |0〉ci
(2.5)

|Q2i〉 |Q2i+1〉 |1〉ci

Si−−−→
Cross

|Q2i+1〉 |Q2i〉 |1〉ci
(2.6)

where |Q2i〉 and |Q2i+1〉 are packets incident on the top and bottom input ports

respectively of switch Si. Therefore, Si is set to through state when ci is in state |0〉

and to cross state when ci is in state |1〉. In Si, the Hadamard gate, H, performs the

following transformation on the control qubit, ci which is initialized to state |0〉:

|0〉ci

H−→ 1√
2
|0〉ci

+
1√
2
|1〉ci

(2.7)

Using the linearity property of quantum systems, from Eqn. (2.5), Eqn. (2.6) and

Eqn. (2.7) the mapping performed by switch S0 is given by:

|Q0, Q1〉 |0〉c0

S0−→
H

1√
2

(
|Q0, Q1〉 |0〉c0

+ |Q1, Q0〉 |1〉c0

)
(2.8)

26

and the mapping performed by switch S1 is given by:

|Q2, Q3〉 |0〉c1

S1−→
H

1√
2

(
|Q2, Q3〉 |0〉c1

+ |Q3, Q2〉 |1〉c1

)
(2.9)

The tensor product of both the sides in Eqn. (2.8) and Eqn. (2.9) with the control

qubits rearranged so that they are grouped together at the end in the order c0, c1

gives the following overall mapping for this network:

|Q0, Q1, Q2, Q3〉 |00〉c
S0S1−−→

H

1
2
|Q0, Q1, Q2, Q3〉 |00〉c +

1
2
|Q0, Q1, Q3, Q2〉 |01〉c +

1
2
|Q1, Q0, Q2, Q3〉 |10〉c +

1
2
|Q1, Q0, Q3, Q2〉 |11〉c

(2.10)

The four patterns and the associated control qubits at the output are shown in

Figure 2.1(b) as the vertical grey columns. Recall that we defined each packet string

Qi to be of the form ri, ai, di where ai are address qubits. Random routing in the

switches does not make use of the address qubits ai, i = 0, . . . , 3, but we retain this

representation to maintain continuity. The output quantum assignment contains

four patterns each of which corresponds to a particular state of the network. We

define a network state as:

Definition 2.4 (Network State). The state of a switching network or network state is

a configuration of the network in which the constituent switches are set in specific

states (through or cross). For a quantum network in which the switches are config-

ured using auxiliary control qubits, the state of the auxiliary qubits at the output

corresponds to the network state. A network with m 2× 2 switches can have 2m

network states.

27

For example, the network state in which both the upper and lower switches are

set to cross state is indicated by the two control qubits for this pattern being in the

combined state |11〉. If the input is (Q0, Q1, Q2, Q3) then the output for the |11〉 net-

work state is (Q1, Q0, Q3, Q2). This network has a total of 22 = 4 states and the four

patterns in the quantum output assignment correspond to outputs obtained from

the switch configurations for these four states. Every configuration of the switches

in a network corresponds to the realization of some permutation map between the

inputs and the outputs and as a consequence every network state corresponds to

some input-output permutation mapping. The specific permutation map depends

on the interconnection structure and control settings of the individual switches.

For the above example, each network state corresponds to one particular value of

the bit string formed by the two control qubits, and we can index network states by

the number corresponding to this bit string, i.e., the four network states are 00, 01,

10 and 11. On measurement, one of the four patterns is observed with probability

equal to |1/2|2 = 1/4. Hence, the output quantum assignment in Eqn. (2.10) can

be seen as a probabilistic multiplexing of all the possible ways an input assignment

pattern can be routed on the network shown in Figure 2.1. The pattern probabili-

ties can be changed by creating unequal superpositions of the control qubits c0 and

c1 in the switches. This is explained in detail below.

Consider a randomizing quantum switch as shown in Figure 2.1(a) in which

instead of the Hadamard gate, H, we use a generalized Hadamard gate with pa-

28

rameter α, denoted by Hα, whose operation is defined by the transformations:

|0〉 Hα−→
√

1− α |0〉+
√

α |1〉 (2.11)

|1〉 Hα−→
√

α |0〉 −
√

1− α |1〉 (2.12)

Hence from Eqn. (2.11) we see that by acting on a control qubit for a 2× 2 switch

initialized to state |0〉, Hα can be used to generate a quantum output assignment in

which, on measurement, the output pattern corresponding to the cross state and

through state is observed with probability α and 1− α respectively. We call such a

switch a α–generalized randomizing switch. α = 1/2 corresponds to a switch with

a regular Hadamard gate, H, for randomization.

The transformation due to random routing on a general quantum switching

network is given by:

Definition 2.5. (Random routing) Routing on an n × n quantum network done

using generalized randomizing switches corresponds to the following mapping

for an input assignment pattern |P〉 = |(r0, a0, d0), . . . , (rn−1, an−1, dn−1)〉

|P〉 |00 · · · 0〉aux
Random−−−−→
Routing

T−1

∑
j=0

γj
∣∣(rj,0, aj,0, dj,0), . . . , (rj,n−1, aj,n−1, dj,n−1)

〉
|ΨPj〉aux

(2.13)

where pattern
∣∣Pj
〉

= |(rj,0, aj,0, dj,0), . . . , (rj,n−1, aj,n−1, dj,n−1)〉 is the output corre-

sponding to the jth network state. The classical packets (rj,0, aj,0, dj,0), . . . , (rj,n−1

, aj,n−1, dj,n−1) are a reordered version of the input assignment pattern |P〉. |γj|2 is

the probability of the jth network state being realized. A fixed number of auxiliary

qubits initialized to state |0〉 are transformed to state |ΨPj〉aux for the jth network

29

state. There are a total of T assignment patterns in the output quantum assign-

ment. If the n× n network consists of m switches then we need m auxiliary qubits.

In random routing, the packets in a pattern are not routed according to the

address qubits ai in the packet header but by putting the internal switches in a

superposition of through and cross states. If the n× n network is composed of m

2× 2 switches then the maximum value of T above is 2m. For a permutation input

pattern, there can be a maximum of n! distinct assignment patterns in the quantum

output assignment.

If, in a network, there are multiple paths between input-output pairs then it is

possible that given an input assignment pattern |P〉, for two distinct network states

k and l, the corresponding output patterns |Pk〉 and |Pl〉 respectively, are the same.

Although the output assignment patterns may be the same, the network states k

and l are distinct, and hence, the associated auxiliary qubit states
∣∣ΨPk

〉
and

∣∣ΨPl

〉
are distinct and reversibility is maintained.

In the following sections we characterize the quantum output assignments for

random routing on a blocking network: the n× n quantum Baseline network and

also for a non-blocking network: the n× n quantum Beneš network.

2.2 Random Routing on Quantum Baseline Network

We characterize the output quantum assignment for random routing on a particu-

lar kind of self-routing multi-stage switching network called the Baseline network.

We use the connection structure and self-routing property of this network to char-

30

n− 1

Baseline network

O
U
T
P
U
T
S

0

1

2

3

I
N
P
U
T
S

n/2× n/2
Baseline network

0

1

n/2− 1

n− 1

n/2 + 1

n/2

0

n− 1

n− 2

n/2× n/2

Figure 2.2: n× n Baseline network (recursive structure).

acterize the quantum output when quantum packets are randomly routed in the

way described in Section 2.1.4. In particular, for an output assignment of the form

given in Eqn. (2.13) we give a method to derive values of the probability ampli-

tudes, γj, and characterize the set of permutation patterns superposed in the out-

put. We first introduce some notation and describe some useful properties of the

Baseline network.

2.2.1 The n× n Baseline Network

An n× n Baseline network, n = 2p, is constructed recursively using 2× 2 switches

as shown in Figure 2.2. This network is composed of a stage of n/2 switches con-

nected to two n/2× n/2 Baseline networks in an inverse shuffle pattern. The ex-

panded network is shown for n = 8 in Figure 2.3. The input ports, also the output

ports, of a network are numbered 0, . . . , n− 1, top to bottom. The n× n network

consists of log n = p stages of switches numbered 0, 1, . . . , p − 1 from the input

side to the output side. The switches in a stage are numbered 0, . . . , n/2− 1 from

31

3, 2

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

I
N
P
U
T
S

O
U
T
P
U
T
S

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Stage 0 21

0, 1

1, 0

2, 0

3, 0

0, 0

1, 1

2, 1

3, 1

0, 2

1, 2

2, 2

Figure 2.3: 8× 8 Baseline network.

top to bottom. Switch (i, k) is the ith switch in kth stage as seen in Figure 2.3.

The input ports and output ports to each stage are also numbered 0, . . . , n − 1

from top to bottom. For each stage, every input (respectively, output) port has

a unique and distinct index x, 0 ≤ x ≤ n − 1, which can be represented in bi-

nary form as xp−1 · · · x0 with xp−1 being the most significant bit (MSB). If out-

put port b of stage m is connected to input port a of stage m + 1 then the index

a is obtained by doing a circular right shift of 1 bit on the lower p − m bits of

bp−1 · · · b0, i.e., ap−1 · · · a0 = bp−1 · · · bp−mb0bp−m−1 · · · b1. The Baseline network is

blocking in nature as it cannot realize all permutation patterns, but it can be shown

that all admissible permutation patterns can be self-routed on it. Furthermore, in

every Baseline network, the path between any input and any output is unique,

therefore, the number of admissible permutations is equal to the total number of

network states which is equal to 2n/2 log n = nn/2. Packets can be self-routed in a

Baseline network as follows: Suppose the output addresses of the packets on the

32

upper and lower inputs of a 2 × 2 switch in the mth stage are binary numbers

ap−1ap−2 · · · a0 and bp−1bp−2 · · · b0 respectively. This switch is set in through state

if ap−m−1 = 0 and bp−m−1 = 1 and in cross state if ap−m−1 = 1 and bp−m−1 = 0.

When ap−m−1 = bp−m−1 there is a contention and one of the packets has to be

either dropped or buffered.

2.2.2 Random Routing: Problem Definition

Consider an n× n quantum Baseline network composed of generalized randomiz-

ing switches, where switch (i, k) is a αik–generalized randomizing switch. We give

a method to calculate the probability of observing the output pattern correspond-

ing to any network state j, i.e., |γj|2 in Eqn. (2.13), for this network. We state the

random routing problem formally as follows [38]:

Random Routing Problem: For an n× n Baseline network (n = 2p), given that switch

(i, k) is set in cross state with probability αik, i = 0, · · · , n/2− 1, k = 0, · · · , p− 1,

find the probability routing matrix P = {pab} of routing input a to output b for all

a, b = 0, · · · , n− 1.

This problem has a direct relation to finding the coefficients γj in Eqn. (2.13).

This relation is given by the following theorem:

Theorem 2.1. For an n× n quantum Baseline network, if network state j corresponds to

the admissible input-output permutation map π : i→ π(i), 0 ≤ i ≤ n− 1, then

|γj|2 =
n−1

∏
i=0

pi,π(i) (2.14)

33

Proof. In a Baseline network there is a unique path that connects every input-

output pair, thus every pattern in the output quantum assignment corresponds to

a unique admissible input-output mapping. Therefore, the probability of a pattern

being realized is equal to the product of individual path probabilities in the corre-

sponding input-output mapping. The unique path nature also implies that there is

one and only one network state for an output pattern and hence one network state

for the associated permutation map. The result follows.

Remark: We can calculate the right hand side of Eqn. (2.14) for any permutation π

but the γj coefficients exist only when π corresponds to an admissible permuta-

tion map. Thus, to completely determine the output quantum state of a randomly

routed Baseline network we need a method to find all the admissible permutations

π : i→ π(i). We do this later in Section 2.2.3.

2.2.2.1 Symmetric Case

We first attempt to solve the random routing problem for the symmetric case when

αik = α ∀ i, k. Consider an n× n (p-stage) Baseline network where n = 2p for some

positive integer p.

We know that there is a unique path connecting any input-output pair in this

network. Additionally, this path is realized by setting exactly p switches in either

through or cross states. Thus, there is a unique setting of p switches corresponding

to this path which realizes this connection. Assume that input a is routed ran-

domly to output b. It is clear from the preceding argument that the probability of

34

this event, denoted by pab, is equal to the probability of setting the p intermediate

switches in the appropriate combination of through and cross states to create the

unique a→ b path.

The Baseline network is self-routing and the switch settings are determined

from the bits in the output address in the following manner. Let a packet have

destination address b with binary representation bp−1bp−2 · · · b0. In the path fol-

lowed by this packet through the network, the switch in stage k routes this packet

to its lower output if bit bp−1−k = 1 and to its upper output if bp−1−k = 0. For any

switch in the Baseline network, the address of the output to which an input can

be connected immediately via a switch can differ from the input address in only

the least significant bit, e.g., in Figure 2.3 input 4 at stage 1 can connect only to

outputs 4 and 5, input 3 at stage 0 can connect only to inputs 2 and 3 etc. Thus, a

switch is set to a cross state in stage k if and only if bp−1−k is not equal to the least

significant bit of the input address at which this packet is present at stage k. It can

be shown [39] that this address is equal to bp−1bp−2 · · · bp−k ap−1 · · · ak+1ak for the

packet routed along the a → b path. Thus, for the path from input a to output b,

the switch at stage k is set in a cross state if and only if bp−1−k 6= ak, which is true

if and only if bp−1−k ⊕ ak = 1. This implies the following:

Proposition 2.1. In an 2p × 2p Baseline network, for the path from input a to output b,

the switch in stage k is in a cross state if and only if ak ⊕ bp−k−1 = 1, where ⊕ denotes

modulo 2 addition and k = 0, . . . , p− 1.

35

Hence, the number of switches, d, set in cross state along the a→ b path is

d =
p−1

∑
k=0

ak ⊕ bp−k−1 (2.15)

Notice that d is equal to the number of positions in which the corresponding bits

differ in the binary representations of b and ρ(a), where ρ is the bit reversal per-

mutation, i.e., ρ(ap−1 ap−2 · · · a1 a0) = a0 a1 · · · ap−2 ap−1. This is nothing but the

Hamming distance between b and ρ(a). Denoting the Hamming distance between

a and b by D(a‖b) we get

pab = αd(1− α)p−d = αD(ρ(a)‖b)(1− α)p−D(ρ(a)‖b) (2.16)

Where α is the probability of setting a switch in cross state. Thus, the matrix P =

{pab}, where pab = αD(ρ(a)‖b)(1− α)n−D(ρ(a)‖b), 0 ≤ a, b ≤ n− 1.

It is easy to show that the matrix thus formed is a probability or stochastic

matrix, i.e., the rows sum up to 1. In fact, we can show that P is symmetric and

hence it is doubly stochastic, i.e., both the rows and the columns sum up to 1.

Theorem 2.2. P is symmetric and doubly-stochastic.

Proof. For any p-bit number, x, there are exactly (p
k) p-bit binary strings that differ

from the p-bit binary representation of x in k places and hence their Hamming dis-

tance from x is k. Therefore, the sum of the probabilities in the row corresponding

to input with address x in P is

p−1

∑
k=0

pxk =
p

∑
k=0

(
p
k

)
αk(1− α)p−k = (1− α + α)p = 1 (2.17)

The same argument holds for the sum of entries for the column corresponding to

the output with address x. Hence, P is doubly stochastic.

36

Also, pab = αD(ρ(a)‖b)(1− α)p−D(ρ(a)‖b) and since D(ρ(a)‖b) = D(ρ(b)‖a) this

implies pab = pba, i.e., P is symmetric.

By adjusting the parameter α we can get different distributions for P. For exam-

ple, when α = 1, i.e., all switches are always put in cross state, we see that pab = 1

if D(ρ(a)‖b) = p and 0 otherwise. Thus, inputs are connected to the outputs with

addresses which have the maximum Hamming distance from their own bit re-

versed addresses. For α = 0, i.e., all switches are always put in through state, we

see that inputs are connected to the outputs which have 0 Hamming distance from

their bit reversed addresses, i.e., P corresponds to the bit reversal permutation.

2.2.2.2 General Case

We now generalize this routing scheme by setting each 2× 2 switch in cross state

with an arbitrary probability. Specifically, the ith switch in the kth stage is set in

cross state with probability αik, i = 0, · · · , n/2− 1 and k = 0, · · · , p− 1. We define

a bit sequence mp−1, · · · , m0 called the routing mask, where

ml = ap−1−l ⊕ bl ∀ l = 0, 1, · · · , p− 1 (2.18)

Thus, from Proposition 2.1, mp−l−1 = 1 if and only if the path from input a to

output b passes through a switch in cross state in stage l. Therefore, in this case,

pab =
p−1

∏
r=0

α
mp−r
irr (1− αirr)1−mp−r , 0 ≤ a, b ≤ n− 1 (2.19)

where the path from input a to output b passes through switch ir in stage r. At any

stage r, input port x is incident on switch (bx/2c, r), thus ir can be obtained from

37

the following equation:

ir =


⌊
(ap−1 · · · a1a0)/2

⌋
r = 0,

⌊
(bp−1 · · · bp−r ap−1 · · · ar+1ar)/2

⌋
r = 1, . . . , p− 1.

⇒ ir =


ap−1 · · · a1 r = 0,

bp−1 · · · bp−r ap−1 · · · ar+1 r = 1, . . . , p− 1.

(2.20)

The resulting routing matrix P obtained using equations Eqn. (2.18), Eqn. (2.19)

and Eqn. (2.20) is still doubly stochastic as all inputs have packets and the network

simply permutes them to the outputs, i.e., all outputs also have a packet with prob-

ability one. However, P is, in general, no longer symmetric.

As we proved earlier in Theorem 2.1, the coefficient, γj, of the output assign-

ment pattern for network state j is given by |γj|2 = ∏n−1
i=0 pi,π(i) when network

state j corresponds to the admissible input-output mapping π : i→ π(i). We now

give a characterization of all the admissible input-output permutation maps for

the Baseline network.

2.2.3 Admissible Permutation Patterns

The set of admissible permutation patterns for a quantum Baseline network were

characterized in [20] based on the concept of frames given by Çam [40] and bal-

anced matrices. In a nutshell, it was shown that, for any admissible permutation

pattern, certain sub-matrices of the n× p matrix in which row i is the binary ad-

dress of the output to which input i is routed are balanced. A 2k × k binary matrix

is called balanced when the 2k numbers whose binary representation is given by

38

the k-bit binary strings in the rows are all distinct, i.e., they form a permutation of

the numbers 0, 1, . . . , 2k − 1.

We now give a more detailed description of this concept. For an n × n Base-

line network and a permutation input assignment pattern let bi be the output ad-

dress to which packet at input i is routed and let the binary representation of bi be

bi,p−1, · · · , bi,0. Let S be an n× p binary matrix such that

S = {sij}, sij = bi,p−1−j , 0 ≤ i ≤ n− 1, 0 ≤ j ≤ p− 1 (2.21)

Define the following sub-matrices of S of size 2k+1 × (k + 1)

Rik(l, m) = {sxm : x = i · 2k+1 + l} (2.22)

where Rik(l, m) refers to the entry in row l and column m in Rik, 0 ≤ l ≤ 2k+1 −

1, 0 ≤ m ≤ k, 0 ≤ i ≤ 2p−k−1 − 1, 0 ≤ k ≤ p − 1. Let rik(l) be the number

whose binary representation is the k + 1-bit binary string in row l of Rik. Then the

following result holds [20]:

Theorem 2.3. A permutation input assignment pattern is admissible on an n× n, (n =

2p) Baseline network if and only if the 2k+1 numbers rik(l), l = 0, . . . , 2k+1 − 1, are all

distinct and this is true for all i, 0 ≤ i ≤ 2p−k−1 − 1 and k, 0 ≤ k ≤ p− 1.

The proof for this theorem was derived for characterizing the output state of

a quantum Baseline network with self-routing of packets to their desired destina-

tions, where superpositions are made when there is blocking at an internal switch.

We relate our formulation of Theorem 2.3 to the one given in [20]. A frame is

an n × p grid of the kind shown in Figure 2.4. In a frame, each rectangle of size

39

R1,2

R0,0

R1,0

R6,0

R7,0

R0,1

R3,1

R0,2

Figure 2.4: The 16× 4 frame.

2m × m corresponds to a unique subset Rik. For instance, all the 2× 1 rectangles

in column 0 of the frame in Figure 2.4 correspond to the sets R0,0, R1,0, . . . , R7,0, the

4× 2 rectangles to the sets R0,1, R1,1, R2,1, R3,1 etc. Figure 2.5(a) shows a binary per-

mutation matrix in a frame. We see in this figure that all the rows in any rectangle

are distinct, hence the permutation assignment corresponding to this binary ma-

trix is admissible on the 16× 16 Baseline network. Figure 2.5(b) shows a different

binary permutation over the same frame. In this case we see that rows 0 and 3 in

R1,1 and rows 2 and 3 in R2,1 are the same. Hence, the permutation assignment cor-

responding to this binary matrix is not admissible on the 16× 16 Baseline network.

Thus, from the two preceding sections the quantum assignment at the output of

the quantum Baseline network is of the form:

T−1

∑
j=0

γj

∣∣∣(rπ−1
j (0), aπ−1

j (0), dπ−1
j (0)), · · · , (rπ−1

j (n−1), aπ−1
j (n−1), dπ−1

j (n−1))
〉

(2.23)

where the jth network state corresponds to the permutation map πj in which input

40

1

1

0

0

1

1

0

0

1

1

0

0

1

0

1

1

0

0

0

1

1

0

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

1

0

0

1

1

1

0

0

0

0

1

0

1

0

1

0

1

0

1

0

0

1

1

1

0

(a) An admissible

permutation.

1

0

0

1

1

0

0

1

1

0

0

1

0

1

1

0

0

0

1

1

0

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

1

0

0

1

1

1

0

0

0

0

1

0

1

0

1

0

1

0

1

0

0

1

1

1

0

1

R1,1

R2,1

(b) A non-admissible permuta-

tion.

Figure 2.5: Frames and permutation matrices.

i is connected to output πj(i), 0 ≤ i ≤ n− 1. π−1
j is the inverse of such a permuta-

tion map. All such permutations, πj, are admissible and they satisfy the conditions

of Theorem 2.3 and the coefficients γj satisfy equation Eqn. (2.14).

2.3 Quantum Beneš Network

An n× n Beneš network (n = 2p), denoted by Bp, is defined recursively as shown

in Figure 2.6. It consists of two n/2× n/2 Beneš networks stacked one on top of

the other and surrounded by columns of n/2 2 × 2 switches on both sides [31].

The column on the input side is connected to next stage by an inverse shuffle con-

nection while the output side column is reached by a shuffle connection. The ex-

panded form of B3 is shown in Figure 2.7. Bp consists of 2p − 1 stages of 2× 2

41

n− 1

Beneš network

I
N
P
U
T
S

0

1

2

3

O
U
T
P
U
T
S

0

1

2

3

n− 1

n− 2

n− 1

n− 2

n/2× n/2
Beneš network

0

n− 1

0

n/2× n/2

Figure 2.6: n× n Beneš network (recursive structure).

3, 2

N
P
U
T
S

Stage 0 21 3 4

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0, 1

1, 0

2, 0

3, 0

0, 0

1, 1

2, 1

3, 1

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0, 3

1, 4

2, 4

3, 4

0, 4

1, 3

2, 3

3, 3

O
U
T
P
U
T
S

0, 2

1, 2

2, 2

I

Figure 2.7: 8× 8 Beneš network.

switches where stages 0 to p− 1 form a n× n Baseline network and stages p− 1

to 2p− 2 form an n× n inverse Baseline network. Similar to the Baseline network

the stages are numbered 0, . . . , 2p − 2 from left to right. The Beneš network is

non-blocking but the routing algorithms to determine switch settings for arbitrary

permutations are centralized. The well-known looping algorithm by Waksman

can route any permutation assignment in O(n log n) time [41]. Parallel algorithms

to determine switch settings require O(log2 n) or O(log4 n) time using n fully con-

nected or shuffle-exchange interconnected processors respectively [42, 43, 44]. Self-

42

routing algorithms—which route permutations by setting switches on-the-fly us-

ing only local information (source and destination addresses of the incident pack-

ets) at each switch in the Beneš network, were given by Nassimi and Sahni [45]

and by Raghavendra and Boppana [46]. In case of contention for an output link at

a switch Nassimi and Sahni’s algorithm gives priority to the packet at the upper

input port of the switch whereas Raghavendra and Boppana’s algorithm gives pri-

ority, based on some type of comparison operation, to the smaller of the two pack-

ets. These algorithms can pass only particular classes of permutations, namely, the

bit-permute-complement class and the linear complement class respectively.

For a quantum Beneš network we too consider a self-routing scheme, but it

differs from the classical algorithms in two significant ways. First, we use two

different kinds of switches to compose the Beneš network. All the switches in

the first log n− 1 stages are quantum randomizing switches of the kind shown in

Figure 2.1(a) while all the switches in the last log n stages are quantum self-routing

switches of the kind first introduced in [20]. Second, contentions are resolved in the

self-routing switches by using quantum superpositions. The quantum self-routing

switch performs the same transformation as a classical bit-controlled self-routing

switch when there is no contention for one of its output links. However, in the

case that a contention occurs, the quantum self-routing switch creates an output

consisting of a superposition of the two patterns corresponding to the through and

cross states. In each of the two patterns, the routing qubit of the classical packet at

the output for which there was contention is marked as zero.

Lee [47] proved that for any (2 log n− 1) stage network formed by the reduced

43

concatenation of two log n-stage n× n Banyan networks (the redundant last stage

of the first network is removed), any input permutation assignment can be routed

over the first log n − 1 stages (Network 1) such that the resulting permutation is

self-routable over the last log n stages (Network 2). The proof was constructive in

nature and gave a routing algorithm for Network 1. Since a Beneš network is a

reduced concatenation of Baseline and inverse Baseline networks (which are both

Banyan networks), this algorithm can be adapted for use over the Beneš network

as well. Lee gave such an algorithm in [48].

We use Lee’s result to prove that for an n× n quantum Beneš network, n = 2p,

any non-contending input assignment pattern is probabilistically self-routable. In

particular, we consider non-contending input assignment patterns with random

routing on the first log n − 1 stages and self-routing on the last log n stages of a

quantum Beneš network. For any such input assignment pattern, we prove that

in the quantum output assignment, there exist assignment patterns with non-zero

probability amplitude, in which all the valid input packets are present at their

correct output addresses. Additionally, we give a lower bound on the probability

of observing such patterns on measurement at the output.

We also identify a class of permutation patterns, for which this bound is equal

to 1, i.e., for all the permutation patterns in this class, the following is true: In every

pattern in the quantum output assignment, all the valid input packets are present

at their correct output addresses.

44

2.3.1 Randomizing and Self-Routing Quantum Switches

Consider an assignment pattern in which the packets |ru, au, du〉 and |rl, al, dl〉 are

incident on the upper and lower input lines of a 2× 2 quantum switch in the Beneš

network. If this switch is in stage j, 0 ≤ j ≤ p− 2, (the first log n− 1 stages) then it

is a randomizing switch, denoted by R, and does the following transformation:

|(ru, au, du), (rl, al, dl)〉 |0〉c
R−→ 1√

2
|(ru, au, du)(rl, al, dl)〉 |0〉c

+
1√
2
|(rl, al, dl), (ru, au, du)〉 |1〉c (2.24)

Note that the address qubits are not used to determine the output.

If the switch is in stage j, p− 1 ≤ j ≤ 2p− 2, then the switch, denoted by S, is

self-routing. The routing decision at S is made based on bits au,2p−2−j and al,2p−2−j

where au,p−1 · · · au,0 and al,p−1 · · · al,0 are the binary representations of au and al

respectively.

The routing on S is done as follows: the input packet in which bit 2p− 2− j is

0 is routed to the upper output port and the input packet in which bit 2p− 2− j is

1 is routed to the upper output port. Thus, S is set in through state if au,2p−2−j =

0, al,2p−2−j = 1 and in cross state if au,2p−2−j = 1, al,2p−2−j = 0. If both these bits

are 0 then there is contention for the upper output port, and if both these bits are

1 then there is contention for the lower output port. We resolve the contention

by using quantum superposition. The transformation for S when both the input

packets are valid, i.e., ru = rl = 1, is given by:

45

|(1, au, du), (1, al, dl)〉 |0〉c |00〉aux

S−−−−→
Through

|(1, au, du), (1, al, dl)〉 |0〉c |00〉aux , au,2p−2−j = 0, al,2p−2−j = 1 (2.25)

S−−−→
Cross

|(1, al, dl), (1, au, du)〉 |1〉c |00〉aux , au,2p−2−j = 1, al,2p−2−j = 0 (2.26)

S−−−−−→
Superpose

1√
2
(|(1, au, du), (0, al, dl)〉 |0〉c + |(1, al, dl), (0, au, du)〉 |1〉c)⊗ |01〉aux ,

au,2p−2−j = 0, al,2p−2−j = 0

(2.27)

S−−−−−→
Superpose

1√
2
(|(0, au, du), (1, al, dl)〉 |0〉c + |(0, al, dl), (1, au, du)〉 |1〉c)⊗ |10〉aux ,

au,2p−2−j = 1, al,2p−2−j = 1

(2.28)

An explicit quantum circuit for S was given in [20]. The two auxiliary qubits are

required to set the routing bit on the packet at the non-contending output to zero in

case of output contention. Thus, we see from Eqns. (2.27) and (2.28) that, in the case

of contention for an output, a quantum assignment with two superposed patterns

is created at the outputs of the switch. One pattern corresponds to the output map

for the through state and the other for the cross state. In both the patterns, the

routing qubit for the packet at the non-contending output is set to zero.

46

2.3.2 Output State

The first p stages form a Baseline network which is a unique path network. Thus,

any configuration of switch settings, i.e., network state, corresponds to a unique

permutation of the packets in the input pattern. Classically, each switch can be set

in 2 states: either through or cross. In p− 1 stages, there are n(p− 1)/2 switches

and hence 2n(p−1)/2 possible network states with each network state correspond-

ing to a unique permutation map. This implies that, for an input assignment pat-

tern |P〉 = |(r0, a0, d0), · · · , (rn−1, an−1, dn−1)〉 and control qubits in state |0〉, the

quantum assignment at the output of the first p− 1 stages is of the following form:

T−1

∑
j=0

γj|Pj〉|ΨPj〉c

=
T−1

∑
j=0

2−n(p−1)/4|(rπ−1
j (0), aπ−1

j (0), dπ−1
j (0)), · · · , (rπ−1

j (n−1), aπ−1
j (n−1), dπ−1

j (n−1))〉|ΨPj〉c

(2.29)

where πj : i→ πj(i) is the permutation map corresponding to network state j and

π−1
j is the inverse permutation, i.e., π−1

j (i) is the input connected to output i in

πj. T = 2n(p−1)/2, is the total number of network states. ΨPj is an n(p− 1)/2-bit

binary string representing the control qubits of all the switches for network state j.

Every network state corresponds to a unique permutation map, hence no two πjs

are the same.

All the patterns
∣∣Pj
〉

are self-routed using bit control over stages p− 1, . . . , 2p−

2. Bit a2p−2−j is used as the control bit at stage j and the switch operation under

bit-controlled routing is given by Eqn. (2.25)–(2.28). Thus, if pattern
∣∣Pj
〉

passes

47

through the last p stages without contention then at the output the pattern result-

ing from
∣∣Pj
〉

has all the valid packets in
∣∣Pj
〉

correctly routed to their destination

output lines. If packets in a pattern encounter contention while being routed then

some of them have their routing bits marked as zero and hence the number of valid

packets at the output is lesser than the number of valid packets in
∣∣Pj
〉
. We now

give a brief discussion of Lee’s [47] routing algorithm for Beneš networks which

will be useful in showing some properties of the output assignment of the quan-

tum Beneš network.

2.3.3 Lee’s Routing Algorithm

Consider the n× n, Beneš network, Bp, n = 2p as a composition of two networks,

SN1 and SN2, where SN1 is the network formed by the first p − 1 stages and

SN2 is the network formed by the last p stages. Lee [47] proved that any input

permutation can be routed over SN1 stage-by-stage using a recursive partitioning

method for the packets such that the resulting permutation at the output of SN1

is admissible for SN2. Since all admissible permutations for the inverse Baseline

network are self-routable using bit control, this means that the permutation can be

self-routed without conflicts over SN2. The proof was constructive in nature and

hence a control algorithm for routing over SN1 was also given [48]. We give a short

description of this algorithm which is required to prove our subsequent results.

48

2.3.3.1 Routing Control for SN1

The routing control algorithm for SN1 to transform any arbitrary input permuta-

tion into an SN2 passable permutation is as follows:

1. Start at stage k = 0.

2. For stage k divide the 2p−1 switches into 2k contiguous blocks from top to

bottom, with each block containing 2p−1−k switches.

3. Consider one such block at stage k. At every input to this block calculate the

following quotient:

bb/2k+1c = bp−1 · · · bk+1 (2.30)

where b = bp−1bp−2 · · · b0 is the binary string representing the output ad-

dress of the packet at an input. Thus, a quotient at stage k is equal to integer

division of the address by 2k+1.

4. It can be shown that in each block there are exactly two inputs for which these

quotients are equal. Connect any one of these inputs to the upper output of

its 2× 2 switch and connect the other input to the lower output of its own

2× 2 switch.

5. Repeat this process for all such pairs of inputs in that block.

6. Repeat steps 3–5 for all the remaining blocks in stage k.

7. Increment k by one and if k < p− 2 go to step 2 else stop.

49

Permutation

1 (0)

6 (3)

7 (3)

5 (2)

2 (1)

0 (0)

3 (1)

4 (2)

(2)

(3)

(2)

(1)

(1)

(0)

(3)

(0)

5

7

4

3

2

0

6

1

III

IV

I

II

Quotient Quotient

Input

Figure 2.8: A quotient partition realized on a set of switches.

Using this algorithm the 2p−1−k inputs in a block are partitioned into two halves,

one assigned to the upper outputs, and one to the lower outputs of the internal

switches based on the quotient calculations of (2.30). Since one partition is done

per block, we have one partition in stage 0, two in stage 1 and so on till 2p−2 par-

titions in stage p− 2. This algorithm requires intra-stage communication between

switches and hence is not a self-routing algorithm. The time complexity of the

algorithm is O(n log n). Pipelining can reduce this cost to O(n). We explain the

process of performing a partition on a single block of four switches with an exam-

ple in Figure 2.8. The input permutation is the first column of numbers on the left,

i.e., {1, 6, 0, 2, 3, 4, 7, 5}. The quotients on integer division by 2, i.e., the integral por-

tion of division by 2, are written in parentheses. Switch I is set straight arbitrarily.

50

By doing this we missed quotient 3 for the upper output port. So we find another

quotient 3 which is the number 7 in switch II and set switch II straight. By doing

this we missed quotient 2 for the upper output port. So we connect switch III to

cross, and so on. A possible order in which switches are set is I, II, III, IV. Note that

quotients on the upper outputs (respectively, lower outputs) of the switches form

all distinct numbers from 0 to 3.

In this example we note that the partitioning process formed a single cycle

which included all the four switches. The setting of the first switch, in this case,

switch I, is arbitrary and hence, there are a total of two different settings for the

switches in this cycle which enable partitioning of the incoming connections. It

is possible that the number of cycles, k, is greater than one. In that case, the to-

tal number of switch configurations to achieve the partitioning based on quotient

calculations is equal to 2k.

2.3.3.2 Routing Control for SN2

The quotient partitioning based routing algorithm for SN1 outputs a permutation

which can be routed without conflicts over SN2. The routing on SN2 is bit con-

trolled. The control bit Ci for the ith stage of SN2, 0 ≤ i ≤ p− 1, (i.e., (p− 1 + i)th

stage of Bp) to realize any admissible permutation for SN2 without blocking is

given by: Ci = bp−1−i. If the control bit of the packet at the upper input is “0” and

the control bit of the packet at the lower input is “1”, the switch is set in a through

state. If it is “1” for the upper input and “0” for the lower input, the switch is set to

51

101

001

100

010

111

110

011

000

101

001

000

010

011

100

101

111

110

000

001

010

011

100

101

110

111

010

100

111

110

000

011

001

101

110

000

010

011

100

111

101

001
1

1

2

2

C0 C1 C2

b2b1b0 b2b1b0 b2b1b0b2b1b0 b2b1b0

1

1

1

1

SN1: Quotient Partition SN2: Bit Control

quotient = b2b1

0

quotient = b2

01 1 2

001

010

100

111

011

000

110

Figure 2.9: Routing on 8× 8 Beneš network using Lee’s algorithm.

cross. For all admissible permutations for an n× n inverse Baseline network (the

same as SN2) these two control bits at any internal switch are always unequal, i.e.,

they are never both “0” or both “1”, thus we can decide the control based on just

the control bit at the upper input. It is a well-known result that this choice for the

control bit realizes all admissible permutations, i.e., permutations which can pass

without conflict, on a n× n inverse Baseline network (the same as SN2) [39, 34]. An

example of this algorithm is shown in Figure 2.9 for the same permutation as was

shown in Figure 2.8. For stage 0 of SN1, we set the switches so that the quotients

given by bits b2b1 differ. For stage 1, we perform two partitions independently on

the two blocks of switches marked 1 and 2 to form four total partitions. The high-

lighted bits for SN1 show the bits used to calculate quotients at the inputs. SN2 is

bit controlled. The control bits are highlighted in Figure 2.9. For any partition on

52

a block of switches one switch can be set arbitrarily and thus are redundant, these

switches are shown by dashed lines in Figure 2.9.

2.3.4 Routing with Arbitrary Switch Settings

We use Lee’s algorithm to show that for any input permutation, there exist multi-

ple network states for SN1 which lead to an output which does not block over SN2.

In addition to this we will also prove that there is a class of input permutations for

which any network state on SN1 leads to a permutation output which does not

block over SN2. This means that for such input permutation assignments, we can

set the switches in SN1 arbitrarily and still get a permutation which is admissible

over SN2. We begin with the following lemma:

Lemma 2.1. Given any input permutation on an n× n Beneš network, there are at least

2n/2−1 distinct switch configurations or network states for SN1 such that the resulting

permutations are admissible over SN2.

Proof. In the routing algorithm for SN1, one switch per block is redundant as one

switch can be set arbitrarily. 2k quotient partitions are performed in stage k, 0 ≤

k ≤ p − 2. Thus a total of ∑
p−2
k=0 2k = 2p−1 − 1 = n/2 − 1 switches can be set

arbitrarily in SN1 such that the resulting permutation is passable through SN2.

Since each switch can be set in either of two states: through or cross, this implies

that the corresponding total number of network states for SN1 are 2n/2−1.

The redundancy of n/2− 1 switches in a Bp matches the result of Waksman for

an asymptotically minimum switch count for a rearrangeable network [41]. Note

53

that, for particular kinds of permutations, more than n/2− 1 switches in SN1 may

be set arbitrarily. Whenever, at a 2 × 2 switch, the quotients at both the inputs

are equal then according to the routing algorithm in Section 2.3.3.1 the switch can

be set in an arbitrary state, hence we can have more than n/2 − 1 switches set

arbitrarily.

Until now we have considered network states which for any input permuta-

tion, lead to routing in a non-blocking fashion. We now address a different prob-

lem: Identify a class of permutations for which all the switches in SN1 can be set

arbitrarily such that the resulting permutation can be passed without conflicts over

SN2.

Let the p-bit binary representation of a number x, 0 ≤ x ≤ 2p− 1, be xp−1 · · · x0.

The substrings of the binary string for x are represented as follows:

(x)b
a = xbxb−1 · · · xa+1xa, where 0 ≤ a ≤ b ≤ p− 1 (2.31)

For any two numbers x and y

(x)b
a = (y)b

a ⇒ xa = ya; xa+1 = ya+1; . . . ; xb = yb (2.32)

Also let π : i → π(i) be the input permutation to the Beneš network, i.e., input

i is to be routed to output π(i).

Theorem 2.4. Let π be an input permutation to the n× n Beneš network for which the

following conditions are true:

(i)p−1
k = (j)p−1

k ⇒ (π(i))p−1
k = (π(j))p−1

k , for all i 6= j and all 1 ≤ k ≤ p− 1

(2.33)

54

where 0 ≤ i, j ≤ n − 1, n = 2p, then for any arbitrary setting of the switches in SN1,

the permutation can be routed without any conflicts over SN2 using bit controlled self-

routing.

The total number of such permutations is equal to 2n−1.

Proof. Recall, that in the routing algorithm for SN1, a switch can be set arbitrarily

if the quotients of the output addresses at both the upper and lower inputs to a

switch are the same. If the output address tag of a packet is b = bp−1 · · · b1b0 then

in the partition calculation at stage k the quotient is bp−1 · · · bk+1. Thus a switch in

stage k of SN1 is set arbitrarily if the p− k− 1 most significant bits, bp−1 · · · bk+1,

are the same for the packets at the upper and lower inputs.

To prove this result we will proceed stage-by-stage, starting with stage k = 0.

k = 0: A switch in stage 0 is set arbitrarily if the bits bp−1 · · · b1 are equal for

both input packets. Thus the output addresses can be different only in b0. In Fig-

ure 2.10(a) we can see that the index of the inputs to a switch are of the form 2r and

2r + 1, i.e., they differ in only the least significant bit. Therefore if the switch input

indexes differ in only the last bit then the corresponding address tags also differ

in only the last bit, i.e., if (i)p−1
1 = (j)p−1

1 ⇒ (π(i))p−1
1 = (π(j))p−1

1 for all inputs

i 6= j then all the switches in stage 0 are set arbitrarily. There are 2n/2 · (n/2)! per-

mutations which satisfy this condition as at each switch we can choose the output

addresses in 2 ways and then rearrange these n/2 blocks of 2 numbers in (n/2)!

ways.

k = 1: Switches in a Beneš network form a “buddy” structure as seen in Fig-

55

Stage 0

2r + 1

2r

bp−1bp−2 · · · b1 b0

(a) k = 0.

Stage 1

Stage 0

4r

4r + 1

4r + 2

4r + 3

bp−1bp−2 · · · b2 b1b0

Buddy

bp−1bp−2 · · · b1 b0

Switches

(b) k = 1.

Stage 0

Stage 1 Stage 2

8r

8r + 1

8r + 2

bp−1bp−2 · · · b1b0 bp−1bp−2 · · · b2 b1b0

8r + 5

8r + 6

8r + 7

bp−1bp−2 · · · b3 b2b1b0

8r + 4

8r + 3

Buddy
Switches

Buddy
Switches

Buddy
Switches

Buddy

Switches

(c) k = 2.

Figure 2.10: Structure of Beneš network (proof for Theorem 2.4).

56

ure 2.10(b). Any two switches in stage s which share the same two parent switches

in stage s − 1 are called buddy switches. A switch in stage 1 is set arbitrarily

if the bits bp−1 · · · b2 are equal at both inputs. Also buddy switches in stage 1

share the same parents in stage 0, thus at all four inputs to the buddy parents

the bits bp−1 · · · b2 are the same. The indexes of the four inputs are of the form

4r, 4r + 1, 4r + 2, 4r + 3, i.e., the input indexes themselves share the n− 2 most sig-

nificant bits (MSBs). Combined with the condition for stage 0 this means that if

(i)p−1
l = (j)p−1

l ⇒ (π(i))p−1
l = (π(j))p−1

l for all inputs i 6= j and l = 1, 2 then

all the switches in stages 0 and 1 are set arbitrarily. There are 2n/2 · 2n/4 · (n/4)!

permutations which satisfy this condition. This is derived as follows: the input

permutation is divided into n/4 blocks of four numbers each, in which p− 2 MSBs

are the same. These blocks can be permuted in (n/4)! ways. In a block of four num-

bers, there are 2 blocks of two numbers which share p− 1 MSBs, these two blocks

can be rearranged in 2 ways for a total of 2n/4 ways to do so. There are two ways

to rearrange numbers in each block of 2 numbers and a total of n/2 such blocks for

a total of 2n/2 ways. Thus, the total number of permutations is 2n/2 · 2n/4 · (n/4)!.

k = 2: A switch at stage 2 is set arbitrarily if the bits bp−1 · · · b3 are equal at

both inputs. Using the buddy switch argument we can see that the four buddy

parent inputs to stage 1 share the same bits bp−1 · · · b3 and hence the eight inputs

to buddy parents in stage 0 also share the same bits bp−1 · · · b3. The indexes of

these 8 inputs are of the form 8r, 8r + 1, . . . , 8r + 7 (see Figure 2.10(c)) and hence

they share their p− 3 most significant bits. Thus, combining this result with those

for stages 0 and 1 we get: if (i)p−1
l = (j)p−1

l ⇒ (π(i))p−1
l = (π(j))p−1

l for all inputs

57

i 6= j and l = 1, 2, 3 then all the switches in stages 0, 1 and 2 are set arbitrarily.

Using reasoning similar to the the k = 2 case, the number of such permutations is

2n/2 · 2n/4 · 2n/8 · (n/8)!.

Continuing in this fashion until k = log n− 2 we get the conditions in Eqn. (2.33)

and the total number of permutations as

2n/2+n/4+···+n/(2log n−1) · (n/2log n−1)!

= 2n(1−2−(log n−1)) · (n · 2−(log n−1))!

= 2n(1−2/n) · (n · 2/n)!

= 2n−2 · 2! = 2n−1

An input permutation which satisfies the conditions in 2.4 is the identity per-

mutation, π(i) = i. We see that for this case the conditions in Eqn. (2.33) become:

(i)p−1
k = (j)p−1

k ⇒ (i)p−1
k = (j)p−1

k , which is trivially true. Another input permu-

tation for which Eqn. (2.33) holds is π(i) = i + n/2 mod n. Here π(i) and i differ

in only the most significant bit. This can be generalized: if π(i) corresponds to

the number obtained by complementing bits in i at some fixed positions, then π

satisfies the conditions in Eqn. (2.33).

2.3.5 Output Quantum Assignment for the Beneš Network

We now derive results about some properties of the output quantum assignment

for a quantum Beneš network in which packet routing is done using randomizing

switches and bit controlled self-routing switches as described in Section 2.3.1.

Let the input to the n × n quantum Beneš network be a permutation pattern

58

|P〉 = |(r0, a0, d0), · · · , (rn−1, an−1, dn−1)〉, where r0 = r1 = · · · = rn−1 = 1.

Then the output quantum assignment is of the form

T−1

∑
j=0

γj|Pj〉|ΨPj〉aux

=
T−1

∑
j=0

γj|(rj
0, aj

0, dj
0), · · · , (rj

n−1, aj
n−1, dj

n−1)〉|ΨPj〉aux (2.34)

where |Pj〉 = |(rj
0, aj

0, dj
0), · · · , (rj

n−1, aj
n−1, dj

n−1)〉 is the output assignment pattern

corresponding to network state j. If rj
i = 1, then aj

i = i, for all i and j, i.e., all valid

packets present in any pattern occur at their intended output destination. |ΨPj〉aux

is the state of the finite number of auxiliary and control qubits.

We are interested in the patterns at the output in which all the n valid classical

packets in the input assignment pattern are routed to their destination output lines.

Let

SP =
{
|Pj〉|ΨPj〉 : rj

i = 1, 0 ≤ i ≤ n− 1, 0 ≤ j ≤ T − 1
}

be the set of patterns in the output which correspond to routing without contention

for input permutation assignment pattern |P〉. In bit controlled self-routing on the

last log n stages, the routing bits are altered to zero only when contention occurs

(as shown in Eqn. (2.27) and Eqn. (2.28)), thus the patterns
∣∣Pj
〉

in SP encounter no

contention. Hence, the following is true:

|A〉 |ΨA〉 ∈ SP ⇔ |A〉 = |(1, 0, d0), (1, 1, d1), · · · , (1, n− 1, dn−1)〉 (2.35)

All packet patterns in SP are the same, and correspond to the permutation map

realized for input pattern |P〉. The elements of SP can only be distinguished from

the difference in the states of the auxiliary qubits. These auxiliary qubit states cor-

59

respond to switch configurations of the Beneš network for which the permutation

map is realized for all the n valid packets in |P〉.

Denote the cardinality of SP by |SP|. The following theorem follows as a direct

consequence of lemma 2.1:

Theorem 2.5. For any arbitrary input permutation pattern |P〉,

|SP| ≥ 2n/2−1 (2.36)

∑
j:|Pj〉∈SP

|γj|2 ≥ 2n−1/nn/2 (2.37)

Proof. The quantum assignment at the output of the randomly routed log n − 1

stages contains all permutation packet patterns corresponding to all the possible

states of these stages. Thus, from lemma 2.1 there are at least 2n/2−1 patterns which

can be passed without any contention in the last log n stages. Hence |SP| ≥ 2n/2−1.

The expression on the left in Eqn. (2.37) is the probability of observing, on mea-

surement at the output, a pattern with n valid packets. As shown in Eqn. (2.29)

there are a total of nn/2(log n−1) unique permutation assignment patterns in the

quantum output assignment after log n− 1 randomizing stages of the n× n Beneš

network, each of which has an equal probability of being observed. From the pre-

vious result we know that at least 2n/2−1 patterns at the output of the log n − 1

randomizing stages are passed without conflict over the last log n stages. In these

patterns all n packets are valid. Thus, the probability of these assignment pat-

terns being observed on measurement of the output quantum assignment is at

least 2n/2−1/2n/2(log n−1) = 2n−1/nn/2.

Theorem 2.5 holds for any arbitrary input permutation assignment. We identify

60

a class of input permutation assignment patterns for which the probability lower

bound in Theorem 2.5 is equal to 1.

We use the notation for binary strings defined in Eqns. (2.31) and (2.32) in the

theorem below.

Theorem 2.6. Let |P〉 = |(r0, a0, d0), · · · , (rn−1, an−1, dn−1)〉 be an input permutation

assignment pattern for which the following conditions are true:

(i)p−1
k = (j)p−1

k ⇒ (ai)
p−1
k = (aj)

p−1
k , ∀ i 6= j, 1 ≤ k ≤ p− 1 (2.38)

where 0 ≤ i, j ≤ n− 1, n = 2p, then

|SP| = 2n/2(log n−1) = (n/2)n/2 (2.39)

∑
l:|Pl〉∈SP

|γl|2 = 1 (2.40)

There are 2n−1 unique permutation maps i→ ai for which all the conditions in Eqn. (2.33)

are satisfied.

Proof. From Theorem 2.4 we get that for any permutation input pattern in which

the output addresses satisfy the conditions in Eqn. (2.38) any arbitrary configura-

tion of switches in the first log n− 1 stages will result in an output pattern which

can be routed without conflicts over the last log n stages. This implies that all

the permutation patterns corresponding to the 2n/2(log n−1) = (n/2)n/2 network

states are routed without conflicts in the last log n stages. Hence, Eqn. (2.39) and

Eqn. (2.40) follow.

Although we proved the above results assuming a permutation input assign-

ment pattern, they can be easily generalized to non-contending assignment pat-

61

terns. The only difference is that the conditions in Eqn. (2.38) have to hold only for

the inputs having valid packets.

62

Chapter 3

Self-Routing Quantum Sparse Crossbar Concentrators

3.1 Overview

An (n, m)-concentrator is a switching network with n inputs and m outputs, 1 ≤

m ≤ n in which any set of k inputs can be routed in parallel to some k outputs,

1 ≤ k ≤ m. Concentrators as connectors are used to realize unordered connections,

i.e., the specific input-output mapping within the k-sets mentioned above is not

relevant as long as the entire input set can be passed through to an equal number

of outputs. This is unlike routers or switches which enable ordered connections

in which the output to which an input is to be routed is specified beforehand.

This notion of concentration ties with matching sets in graphs. In graph theoretic

terms a concentrator can be defined as follows: a graph G with n input vertices

and m output vertices is called an (n, m)-concentrator, if every k of the n inputs,

1 ≤ k ≤ m, has a matching set among the m outputs of G. A matching can be

viewed as a set of edge-disjoint paths between inputs and outputs.

A family of concentrators, called sparse crossbar concentrators, arises when the

concentrator graph G can be represented as a bipartite graph. Any such bipartite

graph G can be realized using a grid or matrix of crosspoints with m rows and n

columns where a crosspoint exists between column i and row j if there exists an

63

edge between input i and output j in the bipartite graph representation G.

Explicit sparse crossbar concentrator structures with theoretically minimum

cost or crosspoint count for any arbitrary values of n and m are well-known [24, 25].

We will design quantum concentrators based on such optimal designs to take ad-

vantage of their low cost and simple single stage structure.

We first give an interpretation of concentration in a quantum network. In a

classical concentrator network, packets for concentration are assigned at inputs

and these input packet assignments can be issued only one assignment at a time.

However, in a quantum concentrator, packets consist of quantum bits and thus

represent a superposition of assignment patterns of packets which can be concen-

trated all at once by such a network due to the principle of quantum parallelism.

This aspect is what distinguishes quantum concentrators from their classical coun-

terparts. For example, consider a concentrator in which three inputs, say X, Y and

Z, have packets which have to be concentrated. Suppose input X has 2 packets

represented as x1 and x2, input Y has one packet y1 and input Z has two packets

z1 and z2. Y generates a “pure” packet while X and Z generate quantum pack-

ets by creating a superposition of both their respective packets and all three input

sources then push their packets into a quantum concentrator. The outcome is that

all the four possible input packet patterns: (x1, y1, z1), (x1, y1, z2), (x2, y1, z1) and

(x2, y1, z2) are routed in parallel and the output is a superposition of four packet

patterns each of which corresponds to the output obtained by concentrating one of

the input packet patterns.

We use the optimal (n, m)-sparse crossbar concentrators described in [24] and

64

[25], known as the fat-slim and banded concentrators, as a basis for the design of

n×m quantum sparse crossbar concentrators which we refer to as QSC(n, m). In

the process of designing a QSC(n, m) we address some issues particular to quan-

tum systems. One such issue is the reversibility constraint of quantum informa-

tion processing. All quantum operations are inherently reversible in nature. This

notion of reversibility is exactly the same as that commonly understood for any

input-output mapping, i.e., given the output state of a quantum system, the corre-

sponding input state can be uniquely determined. A “rectangular” structure like

an (n, m)-sparse crossbar concentrator where the number of inputs, n, is not equal

to the number of outputs, m, is inherently non-reversible. We devise a way to make

(n, m)-crossbar concentrators “square” by using additional lines on the input and

output sides of such concentrators and ensuring that valid packets for concentra-

tion are routed only among the original n inputs and m outputs.

Additionally, in a crossbar concentrator a subset of inputs, say Is can, in gen-

eral, be matched to multiple subsets of outputs and a subset of outputs, sayOs can

be the matching for multiple input subsets. Even when Os is the only matching

for Is, there may be multiple settings for the internal crosspoints which realize this

matching. As a simple example, consider an (n, m)-concentrator in which a k-input

subset and a k output subset are interconnected by a k × k full crossbar, k ≤ m.

Also assume that the k inputs in the k-input subset are not connected to any other

outputs. Then obviously this k-input subset can be matched to only one output set

of size k but all possible k! one-to-one maps are possible.

Thus, to ensure reversibility a routing algorithm is needed to determine the

65

crosspoint settings which fix the output matching subset for a given input sub-

set. It is critical to have a self-routing algorithm for quantum concentration in

which the state of a crosspoint is determined by using only the local information

from the incoming packet headers. A centralized routing algorithm requires ex-

ternal control, which may not be feasible in quantum systems. Therefore even

though efficient centralized routing algorithms for optimal crossbar concentrators

with O(log n) delay for n tree-connected processors and O(n log n) delay for a sin-

gle processor are known [25], [49], they cannot be adopted for quantum concen-

trators. Another advantage of self-routing packets is that the control quantum

bits used to configure the crosspoint settings can be restored back to their original

states easily thus preventing loss of information due to decoherence. We first give

the design of quantum crosspoints which can be dynamically switched and then

we describe a self-routing scheme which can be implemented on sparse crossbars

built using our crosspoints. We prove the correctness of this scheme for fat-slim

and banded sparse crossbar structures by showing that any k-input subset, k ≤ m,

has a matching k-output subset and giving the specific input-output mapping for

that matching. We also show how to restore the control quantum bits for the quan-

tum crosspoints back to their original state.

The rest of this chapter is organized as follows. In Section 3.2 we define some

basic concepts related to quantum concentration. In Section 3.3 we give a brief

overview of classical sparse-crossbar concentrators and define the functionality of

quantum sparse-crossbar concentrators in Section 3.4. In Section 3.5 we present

the design of quantum sparse crossbar concentrators and describe a self-routing

66

algorithm for such concentrators. In Section 3.6 we prove the correctness of this

algorithm for the optimal banded and fat-slim quantum crossbar concentrators. In

Section 3.7 we give an example to elucidate the concentration process on a quan-

tum sparse crossbar concentrator. We address the issues of routing more than m

packets on an n, m-quantum crossbar concentrator in Section 3.8 and restoring the

state of auxiliary qubits to prevent decoherence in Section 3.9 respectively. The

cost analysis of the gate count and routing delay are covered in Section 3.10. Sec-

tion 3.11 concludes the chapter.

3.2 Definitions

We define quantum packets, quantum concentration assignments and the map-

ping performed by a quantum sparse crossbar concentrator in this section. Note

that in the rest of this chapter whenever we write |a〉, where a is a binary vari-

able, then this represents the state of a quantum bit. The binary variable itself is

indicated as a.

A concentrator can connect any k-subset of inputs to some k outputs. Since

the specific input-output map is not specified, no address bits are required in the

packet header. Thus, using the earlier notation, a quantum packet input to a con-

centrator can be represented in the following form:

m

∑
i=1

αi |ri, di〉 (3.1)

where |αi|2 = pi is the probability with which the nd-bit data packet di is to be

concentrated and the routing bit, ri, is set as ri = 1. The length of the quantum

67

packet is nd + 1 qubits. The individual components of the quantum packet, the bit

strings (ri, di) are the classical packets.

We refer to these strings as classical packets as they represent a basis state (with

no superposition) of the constituent qubits and any group of quantum bits in a

basis state are conceptually equivalent to a group of classical bits having the same

value.

As before, the absence of a quantum packet or an empty line is indicated by

setting the routing quantum bit to |0〉. There are no address bits in the packet, so

we can consider the data portion of the classical packet for the concentrator as a

combination of the address and data strings of a packet for a quantum switching

network as described in Eqn. (2.1).

If the input source has no packets to concentrate then the empty line is indicated

by a single nd + 1-bit string in which the routing bit is set to 0, the data bits can be

set to any arbitrary values.

An input concentration pattern for an n-input concentrator is a sequence of clas-

sical packets, each of which belongs to a quantum packet on the n inputs from

top to bottom. A quantum concentration assignment is a superposition of a set of

concentration patterns. We can define these terms formally as follows:

Definition 3.1 (Quantum concentration assignment). A quantum concentration as-

signment for an n-input concentrator is a superposition of a set of t concentration

patterns of the form:

t

∑
j=1

γj
∣∣(rj,1, dj,1), · · · , (rj,n, dj,n)

〉
(3.2)

68

where the concentration pattern
∣∣(rj,1, dj,1), · · · , (rj,n, dj,n)

〉
is comprised of n classical

packets in which (rj,i, dj,i) is the jth classical packet at input i. |γj|2 is the probability

of the jth concentration pattern being realized with ∑t
j=1|γj|2 = 1.

If the quantum packets at all the inputs are independent and of the kind given

in Eqn. (3.1) then the quantum assignment can be expressed as a tensor product of

the quantum packets as follows:

n⊗
i=1

|Qi〉 =
n⊗

i=1

(
ti

∑
j=1

αij
∣∣rij, dij

〉)
(3.3)

where |Qi〉 = ∑ti
j=1 αij

∣∣rij, dij
〉

is the quantum packet on input i. The tensor prod-

uct in Eqn. (3.3) expanded to a quantum concentration assignment of the form in

Eqn. (3.2) contains ∏n
i=1 ti concentration patterns.

As an example, consider three inputs indexed by 1, 2 and 3 having the quan-

tum packets: 1√
2
(|1, d11〉+ |1, d12〉), |1, d21〉 and 1√

3
|1, d31〉+

√
2√
3
|1, d32〉 respectively.

Then the quantum concentration assignment is given by:

1√
2

(|1, d11〉+ |1, d12〉)⊗ |1, d21〉 ⊗
(

1√
3
|1, d31〉+

√
2√
3
|1, d32〉

)
=

1√
6
|(1, d11), (1, d21), (1, d31)〉+

1√
3
|(1, d11), (1, d21), (1, d32)〉

+
1√
6
|(1, d12), (1, d21), (1, d31)〉+

1√
3
|(1, d12), (1, d21), (1, d32)〉 (3.4)

Thus, the quantum concentration assignment consists of a superposition of four

concentration patterns, two of which have a probability 1/3 and the other two a

probability 1/6 of being observed on measurement. A quantum concentrator can

route such patterns contained in the input quantum concentration assignment in

parallel.

69

3.3 Classical Sparse Crossbar Concentrators

An (n, m)-sparse crossbar network is a matrix of crosspoints or switches with m

rows and n columns. Each crosspoint acts as a simple 2× 2 switch which can either

swap the data on its two inputs onto its outputs or pass them through unchanged.

We refer to these two states of the crosspoint as the “cross” state and the “through”

state respectively.

An (n, m)-sparse crossbar concentrator is an (n, m)-sparse crossbar in which any

k inputs, k ≤ m, can be routed over non-intersecting paths to some k outputs. Any

sparse crossbar network is a concentrator if its crosspoint distribution is such that

the constraints of Hall’s theorem are satisfied. This theorem is stated below:

Hall’s Theorem [50]. Let O be a finite set and let Y1, Y2, . . . , Yr be arbitrary subsets of

O. There exist distinct elements yi ∈ Yi, 1 ≤ i ≤ r if and only if the union of any k of

Y1, Y2, . . . , Yr contains at least k elements.

Let the set O in the theorem denote the set of outputs of a sparse crossbar and

Y1, Y2, . . . , Yr represent the neighbor sets of some r inputs s1, s2, . . . , sr respectively,

i.e., Yi is the subset of outputs in O to which input si can be connected, 1 ≤ i ≤ r.

Then if the union of Y1, Y2, . . . , Yr contains at least r outputs for any choices of

s1, s2, . . . , sr in the input set, and any r, 1 ≤ r ≤ m, then Hall’s theorem implies that

the sparse crossbar is a concentrator.

Nakamura and Masson in [23] gave a lower bound of m(n−m + 1) crosspoints

on the crosspoint complexity, i.e., number of crosspoints, for (n, m)-sparse crossbar

concentrators by showing that each output needs to share crosspoints with at least

70

n−m + 1 inputs. Oruç et al. in [24] and [25] gave explicit crossbar structures of op-

timal concentrators which achieved this complexity bound for any n and m. They

used Hall’s theorem for distinct representatives to show that certain n×m sparse

crossbar structures with exactly m(n−m + 1) crosspoints can act as concentrators.

Two such optimal concentrators, the fat-slim and banded sparse crossbar con-

centrators, which we shall be using extensively, are shown in Figure 3.1. As seen in

Figure 3.1(a), in a fat-slim crossbar concentrator, the input columns can be divided

into a fat portion in which an input is connected to all outputs and a slim portion

in which an input is connected to only one output with all slim inputs being con-

nected to different outputs. In a banded crossbar concentrator (Figure 3.1(b)) all

the crosspoints form a transverse band in the middle. Note that in these sparse

crossbars each of the m outputs is connected to n−m + 1 inputs.

3.4 Quantum Sparse Crossbar Concentrators

An input concentration pattern for a concentrator is said to be capacity achieving if

no greater than m packets in the pattern have their routing bits equal to 1, where

m is the number of outputs of the concentrator. We call a quantum concentration

assignment capacity achieving if all of its concentration patterns are capacity achiev-

ing. Also, we refer to packets with routing bit set to 1 as valid packets.

A quantum sparse crossbar network is obtained from a classical crossbar net-

work by replacing the classical crosspoints by quantum crosspoints which can

switch quantum packets. A quantum crosspoint can be viewed as a configurable

71

INPUTS
n

m

O
U
T
P
U
T
S

(a) Classical fat-slim crossbar concentrator, n = 9, m = 5.

INPUTS
n

m

O
U
T
P
U
T
S

(b) Classical banded crossbar concentrator, n = 9, m = 5.

Figure 3.1: Classical sparse crossbar concentrators.

72

2× 2 switch which either swaps or passes through unchanged to its outputs the

two quantum packets incident at its inputs. Reversibility in quantum systems im-

plies, that for a quantum sparse crossbar, unlike a classical sparse crossbar, each

crosspoint needs to have qubits coming in on each of its two inputs and qubits

leaving on each of its outputs. As mentioned earlier in Section 2.1.1 an absence of

a packet or an empty wire is indicated by a quantum bit string with the routing

bit set to 0. Thus, in the quantum domain, for an n× m sparse crossbar network,

the m empty wires coming in from the left can be represented by blocks of quan-

tum bits in which the routing bit is set to 0. We can imagine m additional packet

sources at these wires which generate quantum bit blocks in which the routing bit

is always set to 0. The same reasoning can be applied to the n empty wires leaving

the sparse crossbar at the bottom. This means that they can be viewed as n addi-

tional outputs and if the sparse crossbar is a concentrator then the exiting quantum

bit strings on these outputs have their routing bits equal to 0 as long as the input

pattern is capacity achieving. This in effect creates a “square” (n + m)× (n + m)

crossbar network from a “rectangular” n×m network in which only the n inputs

(on the top) can get valid packets. If the sparse crossbar is a concentrator and the

input pattern is capacity achieving then all the valid packets are concentrated to

the m outputs on the right hand side. If we number the inputs on the top 1, . . . , n

from left to right, the inputs on the left n + 1, . . . , n + m from top to bottom, the

outputs on the right 1, . . . , m and outputs on the bottom m + 1, . . . , m + n as shown

in Figure 3.2 then:

73

n

n + 1

n + m

1

2

m

m + 2 m + nm + 1

INPUTS

OUTPUTS

1 2

Figure 3.2: Numbering of inputs and outputs in an n×m quantum sparse crossbar

network.

Definition 3.2 (QSC(n, m)). An n× m quantum sparse crossbar network (n ≥ m)

is called an (n, m)-quantum sparse crossbar concentrator or QSC(n, m) if, any capac-

ity achieving input pattern with k valid packets, where k ≤ m, is routed such

that these packets appear on some k of the first m outputs. That is, for a capac-

ity achieving input concentration pattern |P〉 = |(r1, d1) · · · (rn, dn)〉, a pattern

|(0, dn+1) · · · (0, dn+m)〉 of m packets each with routing qubit set to |0〉 and a set

of auxiliary qubits each of which is initialized to state |0〉, the following transfor-

mation occurs:

| (r1, d1) · · · (rn, dn)︸ ︷︷ ︸
|P〉: from top

〉| (0, dn+1) · · · (0, dn+m)︸ ︷︷ ︸
from left

〉 |00 · · · 0〉aux
QSC(n,m)−−−−−→

| (r′1, d′1) · · · (r′m, d′m)︸ ︷︷ ︸
on right

〉| (0, d′m+1) · · · (0, d′n+m)︸ ︷︷ ︸
bottom

〉 |ΨP〉aux (3.5)

where if R1 = {|ri, di〉 ∀ ri = 1}, 1 ≤ i ≤ n, is the set of valid input packets and

R2 = {|r′j, d′j〉 ∀ r′j = 1}, 1 ≤ j ≤ m, is the set of valid packets at the outputs then

R2 = R1. Here |00 · · · 0〉aux represents the state of a set of auxiliary qubits all of

74

which are in state |0〉.

In a crossbar network, a subset of inputs can potentially be matched to more

than one set of outputs. Moreover, even if an input set can be matched to only

one output set, it is possible that several one-to-one input-output maps within

these sets realize the matching. Therefore, some form of a routing algorithm is

needed to fix the matched output set and the input-output mapping for a capacity

achieving input pattern. If a quantum crosspoint is configured by using only the

information contained in the quantum packets incident on its inputs, then we call

such a quantum crosspoint as a self-routing crosspoint. A quantum sparse cross-

bar concentrator built using such crosspoints is called a self-routing quantum sparse

crossbar concentrator. Hence, a self-routing QSC(n, m) is a sparse crossbar network

built using self-routing quantum crosspoints which realizes all maps of the kind

given in Eqn. (3.5).

We describe such an algorithm in Section 3.5. The auxiliary qubits ensure re-

versible operation as their final state, |ΨP〉, encodes the state of the crossbar net-

work, i.e., the states of the internal crosspoints or equivalently the input-output

mapping.

3.5 Self-Routing Quantum Crosspoints

In this section we give the design of self-routing quantum crosspoints and a rout-

ing scheme for sparse crossbars composed of such crosspoints.

A self-routing n×m quantum sparse crossbar is derived from a classical sparse

75

r1

|0〉 |r2〉

d1

d2

d
′
1

r
′
2

r
′
1

d
′
2

r2

Figure 3.3: Circuit for the quantum crosspoint.

crossbar structure as follows: The crosspoints in the classical sparse crossbar are

replaced by quantum crosspoints, the circuit for which is given in Figure 3.3. Here

the upper input with packet |r1, d1〉 corresponds to the input line incident on a

crosspoint from the top and the lower input with packet |r2, d2〉 corresponds to

the input line coming in from the left. The data bit strings d1, d2 and the routing

bits r1, r2 are shown separately for clarity. Each crosspoint uses an auxiliary control

qubit initialized to state |0〉, which is then set according to the map in Table 3.1

and used to control the setting (“through” or “cross”) of the switch gate. When the

control qubit is set to state |1〉, the input packets get swapped and when the control

qubit is in state |0〉, the input packets go through unchanged. In the crosspoint

circuit the CNOT gate functions as a copier which sets the state of the control qubit

to |r2〉. This qubit is then used to control the two swap gates which switch r1, r2

and d1, d2 respectively.

Thus, the input-output mapping performed by the quantum crosspoint can be

represented as:

|r1, d1, 0, d2〉 |0〉
crosspoint−−−−−→
Through

|r1, d1, 0, d2〉 |0〉

76

Inputs Outputs

r2 r1 r′2 r′1 d′2 d′1 State

0 0 0 0 d2 d1 Through

0 1 0 1 d2 d1 Through

1 0 0 1 d1 d2 Cross

1 1 1 1 d1 d2 Cross

Table 3.1: Input-output mapping for a quantum crosspoint.

|r1, d1, 1, d2〉 |0〉
crosspoint−−−−−→

Cross
|1, d2, r1, d1〉 |1〉 (3.6)

We can see that the auxiliary control qubit is always set to state |r2〉, i.e., the packets

are swapped when the routing qubit of the packet coming in from the left (r2) is in

state |1〉 and go through unchanged when this qubit is in state |0〉. Although the

switch control is determined fully by just r2, we cannot use its corresponding qubit

by itself (without the auxiliary control qubit) to set the switch. This is because the

qubit for r2 is a part of the packet incident on the lower input and itself needs to be

switched along with that packet. So although this qubit can act as a control qubit

for all the rest of the qubits in the packet, it cannot be a control qubit for switching

itself. Also, we are not using r1 in the switch to determine the routing state, but

this bit is still relevant as eventually at the output of the concentrator valid packets

are identified by examining the routing bit values. Another reason to consider r1

is the fact that crosspoint switches are interconnected to form the crossbar, and

the packet from the upper input at one crosspoint switch may be incident at the

lower input of a switch in later stages. In this scenario the qubit corresponding

77

to r1 would be the auxiliary control for this later stage switch. As the state of

the quantum crosspoint is determined fully by just using the information about

the routing bits from the two input packets, the paths in the sparse crossbar are

determined in a self-routing fashion.

3.5.1 The Self-Routing Scheme

Starting from input 1, the routing of packets proceeds from top to bottom in a

column for an input and then to next higher numbered input in the next column.

The control qubit is not restored to its original state immediately, we give a method

to restore the control qubit at the output of the concentrator in Section 3.9.

Note that unlike in the classical case, all n inputs (plus the m additional inputs

from the left) have quantum bit strings incident on them. We distinguish the sub-

set of inputs having packets for concentration by the setting the routing qubits in

the headers of packets at these inputs to |1〉. A self-routing quantum concentrator

derived from a classical fat-slim (5, 3)-sparse crossbar concentrator is given in Fig-

ure 3.4. The square boxes in Figure 3.4 indicated by letters A–I are quantum cross-

points. In this concentrator valid packets (packets with routing bit 1) come only on

inputs 1–5, and if the input pattern is capacity achieving, they exit only on outputs

1–3. These inputs and outputs are indicated by arrows in the figure. In the process

of self-routing, the crosspoints are traversed from top to bottom in a column and

from left to right in a row. The crossbar in Figure 3.4(a) is redrawn in Figure 3.4(b)

to show the sequence in which the crosspoints are traversed during routing. Any

78

3

6

7

8

54 6 7 8

1 2 3 4 5

1

2

G

H

I

A

B

C

D

E

F

(a) Crossbar structure.

8

2

3

7

8

6

5

4

1

2

3

4

5

6

7

1

H

A
C

B

D

G

E

F

I

(b) Crosspoint sequence in routing.

3

3

4

6

8
2

7

6
1

5

4

1

2

7
8

5

C

D
I

B

G

F

H
A E

(c) Example for self-routing: Inputs 1, 4 and 5 are concentrated.

Figure 3.4: Self-routing fat-slim quantum sparse crossbar concentrator, QSC(5, 3).

79

sparse crossbar can be redrawn in this way if we rotate it counter-clockwise to

make the diagonal vertical and write down the sequence of crosspoints encoun-

tered as we traverse from left to right. As a result of this redrawing we can see that

all crosspoints lying on the diagonals which are oriented from top right to bottom

left in the original crossbar form one vertical stage in the rotated version, e.g., G,

E and H, F which lie on a diagonal in Figure 3.4(a) form independent stages in the

crossbar in Figure 3.4(b). Note that D, C and B also lie on a single diagonal but

since B and C are disjoint with each other and with D, they can be shifted from the

second stage to the first, as shown in Figure 3.4(c). Figure 3.4(c) is Figure 3.4(b)

with the inputs and outputs reordered to clearly show the planar and multi-stage

structure of the sparse crossbar.

We now give an example to elucidate the self-routing process. Consider an

input concentration pattern with valid packets at inputs 1, 4 and 5 for the crossbar

shown in Figure 3.4(c), i.e., only packets appearing at inputs 1, 4 and 5 have routing

bits set to 1. At all the other inputs the incident packets have routing bits set to 0.

At crosspoint A the upper input, i.e., input 4 has a valid packet and the lower

input has a packet with routing bit set to 0. Thus, this situation corresponds to the

r1 = 1, r2 = 0 case in Table 3.1 and A is set to pass the packets through unchanged.

Proceeding to the next stage, at crosspoint D, the routing bit of the packets at both

the lower and upper inputs is 1, hence D swaps its input packets onto its outputs.

Continuing in this way, the packet from input 1 takes the path A→D→G to output

1. Similarly the packets from input 4 and input 5 take the paths D→E→H and

G→H→I to outputs 2 and 3 respectively. The switch settings and the packet routes

80

are shown in Figure 3.4(c). The routes taken by the valid packets are shown by

solid lines while the routes taken by packets with routing bit equal to 0 are shown

by dashed lines. Note that the path lengths between all the inputs and outputs are

not equal, hence we need to introduce appropriate delay to make them all equal,

accordingly, all output lines are extended till the end. Output lines 4 and 6 are not

extended just to maintain clarity in the drawing but may be considered to extend

till the last output stage.

The intuition behind the routing scheme is as follows: In the rotated crossbar

as shown in Figure 3.4(b) the upper and lower input lines to a switch correspond

to the lines coming in to the same switch from the top and left respectively in the

original unrotated version. Similarly the upper and lower outputs in the rotated

switches correspond to the lines going out to the right and bottom respectively in

the original unrotated switches. Hence, giving routing priority to the packet at

the lower input in a quantum crosspoint is equivalent to routing according to the

packet coming in from the left in the unrotated crossbar. If the routing bit of the

lower packet is 1 then the switch is set in a cross state, this is equivalent to passing

a valid packet coming in from the left to the right irrespective of the packet incident

from the top. Thus, once a valid packet is routed from the top to the right, it goes

through unimpeded to the end of the row, in other words, once an input is matched

to an output this decision remains unchanged for the subsequent duration of the

routing process. The crosspoint is set in a through state when the packet at the

lower input in the rotated switch has its routing bit equal to 0, this corresponds to a

turn from left to the bottom in the unrotated crossbar. This observation combined

81

with the previous argument means that in a column of the unrotated crossbar a

packet gets passed from top to bottom from one row to the next until it encounters

a crosspoint where the packet from the left has a routing bit set to 0.

This self-routing scheme can be used for any sparse crossbar structure, it is

not limited to concentrators. An interesting question to ask is whether all known

optimal sparse crossbar concentrator structures allow concentration when a self-

routing scheme of the form described above is used to route the packets. In the sub-

sequent sections we prove that while this is not true for all optimal sparse crossbar

concentrators, it holds for fat-slim and banded crossbars.

3.6 Self-Routing on Quantum Sparse Crossbar Concentrators

We prove that the self-routing scheme described in Section 3.5 concentrates pack-

ets up to the output capacity of the concentrator, for two families of sparse crossbar

structures, namely the fat-slim and banded crossbars. All the proofs are given for

a quantum input assignment consisting of a single concentration pattern. This is

sufficient as the linearity of quantum systems implies that, for any general input

quantum concentration assignment, these results apply to every concentration pat-

tern contained in its superposition and hence to the entire input assignment. We

first introduce some notation that will be used in the rest of the chapter.

82

3.6.1 Notation

For a quantum (n, m)-sparse crossbar network (n ≥ m) in which packets are routed

using our self-routing scheme, we use the following notation:

1. The set of inputs is denoted by I = {1, 2, . . . , n} and the output set by O =

{1, 2, . . . , m} where 1 ≤ m ≤ n.

2. The n×m adjacency matrix, A, is given by:

A = {aij} =


0, no crosspoint between input i and output j,

1, crosspoint between input i and output j.

3. Ai = {j : for all aij = 1, 1 ≤ i ≤ n}, is the neighbor set for input i, i.e., the set

of outputs which can be connected to input i.

4. Xr = {x1, x2, . . . , xr} is an ordered set of r distinct inputs, i.e., xi ∈ I , 1 ≤ i ≤

r, and x1 < x2 < · · · < xr for all r = 1, . . . , m.

5. Yr = {y1, y2, . . . , yr} is the set of outputs to which the inputs inXr are matched

using self-routing with output yi being matched to input xi, where, yi ∈ Axi ,

i = 1, . . . , r. If input xi can not be matched to any output then yi = ∅, the

empty set.

6. We denote subsets ofYr as follows: Y0 = ∅, the empty set, Yb = {y1, y2, . . . , yb},

and Y b
a = {ya, ya+1, . . . , yb}, ∀ a ≤ b ≤ r.

We now show that using the self-routing scheme described in Section 3.5, certain

families of sparse crossbar concentrators, namely fat-slim and banded crossbar

83

Input xi

Output yi

Z

Axi

Figure 3.5: Output matching yi for input xi.

concentrators can correctly route any capacity achieving input pattern.

Lemma 3.1. Let Z ⊆ O be the subset of outputs to which packets have already been

matched, using self-routing, before routing begins on input xi, 1 ≤ i ≤ r. Then, the

output yi, to which input xi is matched is given by

yi = min
z
{z ∈ Axi ∩ Z

′}

where Z ′ = O \ Z is the complement of the set Z .

Proof. All outputs which have been concentrated to (matched) before routing the

packet on input xi, (i.e., inZ) correspond to rows which have a packet with routing

bit r = 1 coming from the left on them. We know from the table for the auxiliary

qubit (Table 3.1) that all crosspoints in rows corresponding to setZ will be set to the

“cross” state, see Figure 3.5. This means that only a crosspoint from the set of rows

corresponding to Z ′ will be set to the “through” state. This in turn means yi ∈ Z ′.

Also, obviously, yi ∈ Axi . Thus, yi ∈ Axi ∩ Z ′. Since the routing process proceeds

84

from the top to bottom, i.e., in increasing order of row/output number, the lowest

numbered available output is matched. Hence, yi = minz{z ∈ Axi ∩ Z ′}.

Lemma 3.2. Let yi be the output to which input xi is matched, 1 ≤ i ≤ r. Then

yi = min
z
{z ∈ Axi ∩ (Yi−1)′}

Proof. As the routing of packets at inputs is initiated in increasing order of input

index from left to right, the packets at inputs x1, . . . , xi−1 are routed before routing

starts on input xi. Thus, the set of outputs matched before routing starts on input

xi is Yi−1. Substituting Z = Yi−1 in Lemma 3.1 we get the desired result.

Lemma 3.2 essentially asserts that, at any input, the first or lowest numbered

unmatched output is selected as a match for that input during self-routing. If an

input xi cannot be matched to any output in its neighbor set Axi then yi = ∅.

Lemma 3.3. If i 6= j and

yi = min
z
{z ∈ Axi ∩ (Yi−1)′} 6= ∅

yj = min
z
{z ∈ Axj ∩ (Yj−1)′} 6= ∅.

then yi 6= yj, 1 ≤ i, j ≤ r ≤ m.

Proof. Without loss of generality, assume i < j, then yi ∈ {y1, . . . , yj−1} = Yj−1.

Also yj = minz{z ∈ Axj ∩ (Yj−1)′} implies that yj ∈ (Yj−1)′. Hence, yi 6= yj.

Lemma 3.3 implies that the non-empty elements of Yr = {y1, . . . , yr} are all

distinct. Thus, if all the elements of Yr exist, i.e., they are non-empty, then Yr forms

a matching for the inputs in the setXr = {x1, . . . , xr}. Moreover, if such a matching

85

2

1

95 8764321

5
4
3

Figure 3.6: Conflict in self-routing.

exists for every r-input subset of a (n, m)-sparse crossbar network, r ≤ m, then the

network is an (n, m)-concentrator. From Lemma 3.2 the matching Yr corresponds

to the outputs chosen by self-routing, therefore, the concentrator thus obtained is

self-routable. The theorem below follows:

Theorem 3.1. An (n, m)-sparse crossbar network is a self-routing concentrator if

yi = min
z
{z ∈ Axi ∩ (Yi−1)′} 6= ∅

for all i = 1, . . . , r, and for every r-input ordered subset Xr = {x1, . . . , xr}, 1 ≤ r ≤ m.

A quantum concentrator derived by replacing classical crosspoints by quantum

crosspoints in a classical sparse crossbar concentrator is not always self-routable by

the algorithm described above. One such scenario is shown in Figure 3.6. For the

sparse crossbar in this figure the union of any k columns (or equivalently input

neighbor sets) contains crosspoints in least k distinct rows (or outputs) for all k =

1, . . . , 5, thus by Hall’s theorem it is a (9, 5)-concentrator. The set of inputs with

packets to be concentrated is given by X5 = {1, 3, 5, 6, 7}. The output to which an

input is matched by following the self-routing scheme is indicated by the shaded

crosspoints, therefore, input 1 is matched to output 1, input 3 to output 2 and

86

IF

Slim inputs Fat inputs

IS

Figure 3.7: Partitions of fat-slim crossbar.

so on. The crossed out crosspoints indicate the outputs to which an input is not

matched during self-routing. The matched outputs for the first four inputs in X5

form the set Y4 = {1, 2, 3, 4}. Thus for input 7 (which is the fifth input in X5) we

get y5 = minz {z ∈ A7 ∩ (Y4)′} = minz{z ∈ {1, 2, 3, 4} ∩ {5}} = ∅. Hence, this

concentrator can not self-route all input subsets using the algorithm we described.

We now show that fat-slim and banded sparse crossbar concentrators can self-

route by showing that for these concentrators Theorem 3.1 is always satisfied. As

part of the proofs we give explicit expressions for the input-output mapping real-

ized for concentration on these structures.

3.6.2 Self-Routing Fat-Slim QSC(n, m)

Definition 3.3 (Fat-Slim Crossbar). An (n, m)-sparse crossbar network is called fat-

slim if we can partition the input set I into two subsets: IS (slim inputs) and IF (fat

inputs) as shown in Figure 3.7 with neighbor sets for input i described as follows:

87

i ∈ IS ⇔ 1 ≤ i ≤ m; Ai = π(i) (3.7a)

i ∈ IF ⇔ m < i ≤ n; Ai = {1, . . . , m} = O (3.7b)

where π is a permutation on the elements of the set {1, . . . , m}.

Every fat-slim (n, m)-sparse crossbar is an optimal (n, m)-concentrator and has

m(n − m + 1) crosspoints [24]. We now show that any capacity achieving input

pattern can be self-routed on a fat-slim sparse crossbar concentrator.

Theorem 3.2. For the fat-slim QSC(n, m) let Xr = {x1, x2, . . . , xr} be any ordered r-

input subset where x1 < x2 < · · · < xr, ∀ r, 1 ≤ r ≤ m. Then, there exists an

output matching, Yr = {y1, y2, . . . , yr} for Xr obtained as result of self-routing the fat-

slim QSC(n, m), it is given by

yi =


π(xi), xi ∈ IS,

bi−(m−a), xi ∈ IF.

where B = {b1, . . . , ba} = ({π(xi) ∈ IS})′ such that b1 < b2 < · · · < ba, a = |B|,

i = 1, 2, . . . , r.

Proof. In the ordered r-input set Xr, let the first k (k ≤ r) inputs belong to the slim

section and the rest to the fat section.

If x1 ∈ IS, we get

y1 = min
z
{z ∈ Ax1 ∩ Y

′
0} (from Lemma 3.2)

= min
z
{z ∈ Ax1 ∩O} (as Y0 = ∅)

= min
z
{z ∈ Ax1} = π(x1) (from Eqn. (3.7a)) (3.8)

88

Hence, y1 6= ∅ and Y1 = {π(x1)} is the set of matched outputs after routing on

the first input.

Similarly for x2 ∈ IS we get

y2 = min
z
{z ∈ Ax2 ∩ (Y1)′} (from Lemma 3.2)

= min
z
{z ∈ {π(x2)} ∩ {y1}′} (from Eqn. (3.7a))

= min
z
{z ∈ {π(x2)} ∩ {π(x1)}′} (3.9)

= min
z
{z ∈ {π(x2)}} (as π(x1) 6= π(x2))

= π(x2) (3.10)

Continuing this way we get

Yk = {π(x1), π(x2), . . . , π(xk)} (3.11)

Xr is an ordered set of distinct inputs, which means that all the elements of Yk are

distinct and hence form a matching for the k slim inputs. If k = r then the proof is

complete, else

For input xk+1 ∈ IF we get

yk+1 = min
z
{z ∈ Axk+1 ∩ (Yk)′} (from Lemma 3.2)

= min
z
{z ∈ O ∩ {π(x1), . . . , π(xk)}′} (from Eqn. (3.11))

= min
z
{z ∈ {π(x1), . . . , π(xk)}′} (3.12)

Note |{π(x1), . . . , π(xk)}′| = m− k.

Let B = {b1, . . . , bm−k} where bi ∈ (Yk)′, i = 1, . . . , m− k, such that b1 < b2 <

· · · < bm−k. Thus, B is an ordered version of the set (Yk)′ = {π(x1), . . . , π(xk)}′

89

with elements arranged in increasing order of magnitude, |B| = m − k. From

Eqn. (3.12),

yk+1 = min
z
{z ∈ B} = b1

Also, k ≤ r ≤ m and if k = r = m, i.e., all the slim inputs are concentrated

then yk+1 = ∅ and Yk is the matching corresponding to the concentration. If

k < r then clearly yk+1 = b1 6= ∅ as then B 6= ∅. Thus Yk+1 = Yk ∪ {b1} =

{π(x1), . . . , π(xk), b1}. For input xk+2 ∈ IF we get

yk+2 = min
z
{z ∈ Axk+2 ∩ (Yk+1)′}

= min
z
{z ∈ O ∩ (Yk ∪ {b1})′}

= min
z
{z ∈ (Yk ∪ {b1})′}

= min
z
{z ∈ (Yk)′ ∩ {b1}′}

= min
z
{z ∈ B ∩ {b1}′}

= min
z
{z ∈ B \ {b1}}

= b2

Continuing in the same fashion we get Y r
k+1 = {b1, . . . , br−k}. Now, |B| = m− k,

i.e., k = m− |B|. Thus

yk+i = bi = b(k+i)−k

= bk+i−(m−|B|), i = 1, . . . , r− k

hence yi = bi−(m−a), i = k + 1, . . . , r, a = |B|.

Therefore, by Theorem 3.1 the fat-slim QSC(n, m) is self routing.

90

IU IT IL

(a) Partitions of banded crossbar, n = 9, m = 5, (n ≥

2m− 1).

ILIU IT

(b) Partitions of banded crossbar,

n = 6, m = 5, (m ≤ n < 2m− 1).

Figure 3.8: Partitions of banded sparse crossbar concentrator.

3.6.3 Self-Routing Banded QSC(n, m)

We show that for banded sparse crossbar concentrators our self-routing scheme

can find an r-output matching for any r input subset (r ≤ m).

Definition 3.4 (Banded Crossbar). An (n, m)-sparse crossbar is called banded if

the set of inputs, I , can be partitioned into three sets IU, IT and IL as shown in

Figure 3.8 with the corresponding neighbor sets for the inputs as follows:

If n ≥ 2m− 1 then:

i ∈ IU ⇔ 1 ≤ i ≤ m− 1; Ai = {1, 2, . . . , i} (3.13a)

i ∈ IT ⇔ m ≤ i ≤ n−m + 1; Ai = {1, 2, . . . , m} = O (3.13b)

i ∈ IL ⇔ n−m + 2 ≤ i ≤ n; Ai = {i− n + m, . . . , m} (3.13c)

If m ≤ n < 2m− 1 then:

i ∈ IU ⇔ 1 ≤ i ≤ n−m + 1; Ai = {1, 2, . . . i} (3.14a)

i ∈ IT ⇔ n−m + 2 ≤ i ≤ m− 1; Ai = {i− n + m, . . . , i} (3.14b)

91

i ∈ IL ⇔ m ≤ i ≤ n; Ai = {i− n + m, . . . , m} (3.14c)

Note that for n = 2m− 2, n− m + 2 = m > m− 1. Hence in this case, from

Eqn. (3.14b) IT does not exist, but this does not affect the proof below. Also, equa-

tions Eqn. (3.13a)-(3.14c) can be written more succinctly as:

Ai = {max(1, i− n + m), . . . , min(i, m)}, i = 1, . . . , n (3.15)

Every banded (n, m)-sparse crossbar is an optimal (n, m)-concentrator with m(n−

m + 1) crosspoints [25].

Theorem 3.3. For the banded QSC(n,m) let Xr = {x1, x2, . . . , xr} be any ordered r-

input subset where x1 < x2 < · · · < xr, ∀ r, 1 ≤ r ≤ m. Then, there exists an

output matching, Yr = {y1, y2, . . . , yr} forXr obtained as result of self-routing the banded

QSC(n, m), it is given by

if n ≥ 2m− 1

yi =


i, xi ∈ IU ∪ IT,

max(i, xi − n + m), xi ∈ IL.

if m ≤ n < 2m− 1

yi =


i, xi ∈ IU,

max(i, xi − n + m), xi ∈ IT ∪ IL.

where i = 1, 2, . . . , r.

Proof. In Xr let k1 inputs belong to IU, k2 inputs belong to IT and the rest r −

(k1 + k2) inputs belong to IL, i.e., {x1, . . . , xk1} ⊆ IU, {xk1+1, . . . , xk1+k2} ⊆ IT and

{xk1+k2+1, . . . , xr} ⊆ IU.

92

Case I: n ≥ 2m− 1

For input x1 ∈ IU:

y1 = min
z
{z ∈ Ax1 ∩ Y

′
0} (from Lemma 3.2)

= min
z
{z ∈ Ax1 ∩O} (as Y0 = ∅)

= min
z
{z ∈ Ax1}

= min
z
{z ∈ {1, 2, . . . , x1}} (from Eqn. (3.13a))

= 1

Similarly for x2 ∈ IU

y2 = min
z
{z ∈ Ax2 ∩ (Y1)′}

= min
z
{z ∈ {1, . . . , x2} ∩ {1}′}

= min
z
{z ∈ {2, . . . , x2}} = 2

Proceeding this way for all inputs in IU we get Yk1 = {1, 2, . . . , k1}.

For input xk1+1 ∈ IT:

yk1+1 = min
z
{z ∈ Axk1+1 ∩ (Yk1)

′} (from Lemma 3.2)

= min
z
{z ∈ {1, . . . , m} ∩ {1, . . . , k1}′} (from Eqn. (3.13b))

= min
z
{z ∈ {k1 + 1, . . . , m}} = k1 + 1

We can get similar results for all other inputs in IT. Thus, Yk1+k2 = {1, . . . , k1 + k2}.

For input xk1+k2+1 ∈ IL:

yk1+k2+1 = min
z
{z ∈ Axk1+k2+1 ∩ (Yk1+k2)

′}

93

= min
z
{z ∈ {xk1+k2+1 − n + m, . . . , m} ∩ {1, . . . , k1 + k2}′} (3.16)

= min
z
{z ∈ {xk1+k2+1 − n + m, . . . , m} ∩ {k1 + k2 + 1, . . . , m}}

= min
z
{z ∈ {max(xk1+k2+1 − n + m, k1 + k2 + 1), . . . , m}} (3.17)

= max(k1 + k2 + 1, xk1+k2+1 − n + m) (3.18)

where Eqn. (3.16) follows from Eqn. (3.13c) and Eqn. (3.17) follows from the fact

that we are taking the intersection of 2 sets both of which cover continuous inter-

vals of outputs up to output m. Eqn. (3.18) is obvious as the lower boundary of

the interval is smaller than the rest of the numbers in the interval. We now use

induction to prove the rest of the theorem.

Induction assumption:

yi = max(i, xi − n + m), for all i = k1 + k2 + 1, . . . , j− 1 where j ≤ r. (3.19)

Need to prove: yj = max(j, xj − n + m)

Proof for Induction: We have already proved the base case for i = k1 + k2 + 1. We

will first show that, for yi’s chosen according to Eqn. (3.19), yi−1 < yi.

Note yi−1 = max(i− 1, xi−1 − n + m) and yi = max(i, xi − n + m), thus we get

the following cases:

1. yi−1 = i− 1: We get the followings series of inequalities:

max(i, xi − n + m) ≥ i

⇒ yi ≥ i (as yi = max(i, xi − n + m))

> i− 1 = yi−1

94

2. yi−1 = xi−1 − n + m: We get the followings series of inequalities:

max(xi − n + m, i) ≥ xi − n + m

⇒ yi ≥ xi − n + m (as yi = max(i, xi − n + m))

> xi−1 − n + m = yi−1

Thus yi > yi−1, i = k1 + k2 + 2, . . . , j− 1.

We know that Yk1+k2 = {1, . . . , k1 + k2} is monotonically increasing, Y j−1
k1+k2+1

is monotonically increasing and

yk1+k2+1 = max(k1 + k2 + 1, xk1+k2+1 − n + m)) > k1 + k2 = yk1+k2

Thus Yj−1 = Yk1+k2 ∪ Y
j−1
k1+k2+1 is monotonically increasing, i.e., y1 < y2 < · · · <

yj−1.

By Lemma 3.2

yj = min
z
{z ∈ Axj ∩ (Yj−1)′} (3.20)

By induction assumption yj−1 = max(j− 1, xj−1 − n + m).

Case 1: yj−1 = xj−1 − n + m

By monotonicity of Yj−1 we get maxz(z ∈ Yj−1) = xj−1 − n + m. Thus

(Yj−1)′ = Z ∪ {xj−1 − n + m + 1, . . . , m}

where Z ⊆ {k1 + k2 + 1, . . . , xj−1 − n + m− 1}

95

Therefore,

Axj ∩ (Yj−1)′ = {xj − n + m, . . . , m} ∩
[
Z ∪ {xj−1 − n + m + 1, . . . , m}

]
= ∅ ∪ {xj − n + m, . . . , m} ∩ {xj−1 − n + m + 1, . . . , m}

= {(max(xj − n + m, xj−1 − n + m + 1)), . . . , m}

= {xj − n + m, . . . , m} (as xj ≥ xj−1 + 1) (3.21)

Substituting in Eqn. (3.20) we get

yj = min
z
{z ∈ {xj − n + m, . . . , m}}

= xj − n + m (3.22)

Now yj−1 = max(xj−1 − n + m, j− 1) = xj−1 − n + m. Thus

xj−1 − n + m ≥ j− 1

⇒ xj−1 − n + m + 1 ≥ j

⇒ xj − n + m ≥ j (as xj ≥ xj−1 + 1) (3.23)

From Eqns. (3.22) and (3.23)

yj = max(xj − n + m, j) (3.24)

Case 2: yj−1 = j− 1

Since Yj−1 is monotonically increasing, i.e., y1 < y2 < · · · < yj−1 and yj−1 =

j− 1

⇒ Yj−1 = {1, 2, . . . , j− 1}

⇒ (Yj−1)′ = {j, . . . , m}

96

Substituting in Eqn. (3.20) we get

yj = min
z
{{xj − n + m, . . . , m} ∩ {j, . . . , m}}

= min
z
{max(xj − n + m, j), . . . , m}

= max(xj − n + m, j) (3.25)

From Eqn. (3.24) and Eqn. (3.25) yj = max(xj − n + m, j) and proof for the induc-

tion is complete.

Case II: m ≤ n < 2m− 1

k1 inputs in S belong to IU, i.e., {x1, . . . , xk1} ⊆ IU.

For y1, . . . , yk1 the proof is exactly the same as for the case n ≥ 2m− 1 and we

get Yk1 = {1, 2, . . . , k1}.

The next k2 inputs in Xr belong to IT, i.e., {xk1+1, . . . , xk1+k2} ⊆ IT.

For yk1+1 we get

yk1+1 = min
z
{z ∈ Axk1+1 ∩ (Yk1)

′} (from Lemma 3.2)

= min
z
{z ∈ {xk1+1 − n + m, . . . , xk1+1} ∩ {1, . . . , k1}′}(from Eqn. (3.14b))

= min
z
{z ∈ {xk1+1 − n + m, . . . , xk1+1} ∩ {k1 + 1, . . . , m}}

Both the sets in the intersection contain a continuous series of outputs. Now obvi-

ously, xk1+1 ≤ m. Also, k1 + 1 ≤ xk1+1 as

k1 ≤ n−m + 1 from Eqn. (3.14a)

⇒ k1 + 1 ≤ n−m + 2

≤ xk1+1 (from Eqn. (3.14b))

97

Thus

yk1+1 = min
z
{z ∈ {max(k1 + 1, xk1+1 − n + m), . . . , xk1+1}}

= max(k1 + 1, xk1+1 − n + m)

We prove the output matches for the rest of the inputs in IT using induction.

Induction Assumption:

yi = max(i, xi − n + m), k1 + 1 ≤ i ≤ j− 1 where j ≤ k1 + k2 (3.26)

Need to prove: yj = max(j, xj − n + m).

Proof : We have already proved the base case for i = k1 + 1. Similar to the case

for n ≥ 2m− 1 we can show yk1+1 < · · · < yj−1 as below:

By induction assumption yi = max(i, xi − n + m) and yi−1 = max(i− 1, xi−1 −

n + m), k1 + 1 < i < j. Comparing yi−1 and yi we get the following cases

1. yi−1 = i− 1: We get the followings series of inequalities:

max(i, xi − n + m) ≥ i

⇒ yi ≥ i (as yi = max(i, xi − n + m))

> i− 1 = yi−1

2. yi−1 = xi−1 − n + m: We get the followings series of inequalities:

max(xi − n + m, i) ≥ xi − n + m

⇒ yi ≥ xi − n + m (as yi = max(i, xi − n + m))

> xi−1 − n + m = yi−1

98

Hence, yk1+1 < · · · < yj−1. Also, Yk1 = {1, . . . , k1} and yk1+1 = max(k1 +

1, xk1+1 − n + m) > k1, hence y1 < y2 < · · · < yj−1.

By Lemma 3.2

yj = min
z
{z ∈ Axj ∩ (Yj−1)′} (3.27)

By induction assumption yj−1 = max(j− 1, xj−1 − n + m).

Case 1: yj−1 = xj−1 − n + m

Monotonicity ofYj−1 implies maxz(z ∈ Yj−1) = xj−1−n + m. Thus (Yj−1)′ =

Z ∪ {xj−1 − n + m + 1, . . . , m} where Z ⊆ {k1 + 1, . . . , xj−1 − n + m − 1}.

Then

Axj ∩ (Yj−1)′ = {xj − n + m, . . . , xj} ∩
[
Z ∪ {xj−1 − n + m + 1, . . . , m}

]
= ∅ ∪ {xj − n + m, . . . , xj} ∩ {xj−1 − n + m + 1, . . . , m}

= {max(xj − n + m, xj−1 − n + m + 1), . . . , xj}

= {xj − n + m, . . . , xj} (as xj ≥ xj−1 + 1) (3.28)

Substituting in Eqn. (3.27) we get

yj = min
z
{z ∈ {xj − n + m, . . . , xj}}

= xj − n + m (3.29)

Now yj−1 = max(xj−1 − n + m, j− 1) = xj−1 − n + m. Thus

xj−1 − n + m ≥ j− 1

⇒ xj−1 − n + m + 1 ≥ j

⇒ xj − n + m ≥ j (as xj ≥ xj−1 + 1) (3.30)

99

From Eqn. (3.29) and Eqn. (3.30)

yj = max(xj − n + m, j) (3.31)

Case 2: yj−1 = j− 1

As y1 < y2 < · · · < yj−1 and yj−1 = j− 1

⇒ Yj−1 = {1, 2, . . . , j− 1}

⇒ (Yj−1)′ = {j, . . . , m}

Substituting in Eqn. (3.27) we get

yj = min
z
{{xj − n + m, . . . , xj} ∩ {j, . . . , m}}

= min
z
{max(xj − n + m, j), . . . , xj}

= max(xj − n + m, j) (3.32)

From Eqn. (3.31) and Eqn. (3.32) yj = max(xj − n + m, j) and proof for the induc-

tion is complete.

For input xk1+k2+1 we get

yk1+k2+1 = min
z
{z ∈ Axk1+k2+1 ∩ (Yk1+k2)

′} (from Lemma 3.2)

= min
z
{z ∈ {xk1+k2+1 − n + m, . . . , m} ∩ (Yk1+k2)

′} (3.33)

As yk1+k2 = max(k1 + k2, xk1+k2 − n + m), we get the following two cases:

Case 1: yk1+k2 = k1 + k2. Since y1 < y2 < · · · < yk1+k2 , and yk1+k2 = k1 + k2

Yk1+k2 = {1, 2, . . . , k1 + k2}

⇒ (Yk1+k2)
′ = {k1 + k2 + 1, . . . , m} (3.34)

100

Substituting Eqn. (3.34) in Eqn. (3.33) we get

yk1+k2+1 = min
z
{z ∈ {xk1+k2+1 − n + m, . . . , m} ∩ {k1 + k2 + 1, . . . , m}}

= min
z
{z ∈ {max(xk1+k2+1 − n + m, k1 + k2 + 1), . . . , m}}

= max(xk1+k2+1 − n + m, k1 + k2 + 1) (3.35)

Case 2: yk1+k2 = xk1+k2 − n + m. Since y1 < · · · < yk1+k2 , maxz(z ∈ Yk1+k2) =

yk1+k2 = xk1+k2 − n + m. Thus

(Yk1+k2)
′ = Z ∪ {xk1+k2 − n + m + 1, . . . , m}

whereZ ⊆ {k1 + k2 + 1, . . . , xk1+k2−n + m− 1}. Substituting this in Eqn. (3.35)

we get

yk1+k2+1 = min
z
{z ∈ {xk1+k2+1 − n + m, . . . , m}∩

(Z ∪ {xk1+k2 − n + m + 1, . . . , m})}

= min
z
{z ∈ ∅ ∪ ({xk1+k2+1 − n + m, . . . , m}∩

{xk1+k2 − n + m + 1, . . . , m})}

= min
z
{z ∈ {max(xk1+k2 − n + m + 1, xk1+k2+1 − n + m), . . . , m}}

= max(xk1+k2 − n + m + 1, xk1+k2+1 − n + m)

= xk1+k2+1 − n + m (as xk1+k2+1 ≥ xk1+k2 + 1) (3.36)

Also,

xk1+k2+1 − n + m ≥ xk1+k2 + 1− n + m

= yk1+k2 + 1

≥ k1 + k2 + 1 (3.37)

101

where Eqn. (3.37) follows from the fact that yk1+k2 = max(xk1+k2−n + m, k1 +

k2). From Eqn. (3.36) and Eqn. (3.37)

yk1+k2+1 = max(k1 + k2 + 1, xk1+k2+1 − n + m)

We can now use an induction argument for rest of the inputs in IL similar to

the case for n ≥ 2m− 1 to show that

yi = max(i, xi − n + m), k1 + k2 + 1 ≤ i ≤ r

⇒ yi = max(i, xi − n + m), xi ∈ IL.

Thus, by Theorem 3.1 the banded QSC(n, m) is self-routing.

3.7 An Example

We give an example to illustrate self-routing on a fat-slim QSC(5, 3). This concen-

trator is shown in Figure 3.9. The quantum packets present at inputs 1, 3 and 4

are |Q1〉 = 1√
2
(|1, d11〉+ |1, d12〉), |Q3〉 = |1, d3〉 and |Q4〉 =

√
3

2 |1, d41〉+ 1
2 |1, d42〉

respectively. Inputs 2 and 5 do not have any packets. Inputs 6, 7 and 8 correspond

to the three dummy inputs on the left hand side from top to bottom. Thus, in this

case, the input quantum concentration assignment is given by

|Q1〉 ⊗ |0, d2〉 ⊗ |Q3〉 ⊗ |Q4〉 ⊗ |0, d5〉
8⊗

i=6

|0, di〉

=
(

1√
2
|1, d11〉+

1√
2
|1, d12〉

)
⊗ |0, d2〉 ⊗ |1, d3〉 ⊗

(√
3

2
|1, d41〉+

1
2
|1, d42〉

)

⊗ |0, d5〉 ⊗ |0, d6〉 ⊗ |0, d7〉 ⊗ |0, d8〉

102

|0〉

2 3 4 5
|Q1〉 |Q3〉 |Q4〉

1

2

3
√

3√
8

√
3√
8

1√
8

1√
8

Output Quantum
Assignment

8

7

6

√
3/
√

8

1/
√

8

1/
√

8
√

3/
√

8

7 8654

|0〉

|0〉

|1〉

|1〉

|0〉

|1〉

|1〉

|1〉

1

Input Quantum
Concentration
Assignment

d12 d41

d3d12 d42

d3

d11 d3 d41

d11 d3 d42

d41

d3

d42d42

d3

d12d11 d12

d41

d11

d3 d3

Figure 3.9: Self-Routing on fat-slim QSC(5, 3).

=
√

3
2
√

2
|(1, d11), (0, d2), (1, d3), (1, d41), (0, d5), (0, d6), (0, d7), (0, d8)〉

+
1

2
√

2
|(1, d11), (0, d2), (1, d3), (1, d42), (0, d5), (0, d6), (0, d7), (0, d8)〉

+
√

3
2
√

2
|(1, d12), (0, d2), (1, d3), (1, d41), (0, d5), (0, d6), (0, d7), (0, d8)〉

+
1

2
√

2
|(1, d12), (0, d2), (1, d3), (1, d42), (0, d5), (0, d6), (0, d7), (0, d8)〉

(3.38)

Thus, the input is a superposition of four concentration patterns with coefficients

√
3/
√

8, 1/
√

8,
√

3/
√

8 and 1/
√

8 respectively, shown by grey horizontal bars.

Since all four patterns are capacity achieving, the quantum assignment is also ca-

pacity achieving. The state of the crosspoints is also shown. The shaded cross-

points route the valid packets on inputs 1, 3 and 4. Measurement at the output

will result in one out of the four patterns shown at the output being observed with

103

probabilities 3/8, 1/8, 3/8 and 1/8 respectively. Therefore, data packets d11 and

d12 are observed on output 1 with probability 1/2. Data packet d3 is observed on

output 2 with probability 1 and data packets d41 and d42 are observed with prob-

ability 3/4 and 1/4 respectively on output 3. This output state can be explicitly

written as:
√

3
2
√

2
|(1, d11), (1, d3), (1, d41), (0, d6), (0, d8), (0, d7), (0, d2), (0, d5)〉

+
1

2
√

2
|(1, d11), (1, d3), (1, d42), (0, d6), (0, d8), (0, d7), (0, d2), (0, d5)〉

+
√

3
2
√

2
|(1, d12), (1, d3), (1, d41), (0, d6), (0, d8), (0, d7), (0, d2), (0, d5)〉

+
1

2
√

2
|(1, d12), (1, d3), (1, d42), (0, d6), (0, d8), (0, d7), (0, d2), (0, d5)〉

(3.39)

The packets in the concentration patterns are written in increasing order of out-

puts, with outputs 1–3 on the right and outputs 4–8 located on the bottom. The

dashed arrow shows the order in which the crosspoints are traversed during rout-

ing, and the crosspoints in one stage are indicated by the dotted diagonals. The

initial state of the auxiliary qubits (control qubits) is |000000000〉 which is a string

of nine zeros, each corresponding to one crosspoint in the crossbar. Recall that

control qubits are set to 1 for the cross state and to 0 for the through state. The

output state of the auxiliary qubits is indicated beside the crosspoints. Thus, the

output state of the auxiliary qubits is |000110111〉 where the bits are written in or-

der from top to bottom and left to right, e.g., the third crosspoint for input 4 is set

to a through state and this is the sixth crosspoint in traversal order, so the sixth bit

in the output state is 0.

104

3.8 Output for Capacity Exceeding Input Patterns

So far we have shown that in a fat-slim or banded QSC(n, m), self-routing can be

used to concentrate any capacity achieving input assignment pattern. We now

present the case when the input pattern exceeds the capacity of the crossbar.

For a self-routing QSC(n, m), consider a capacity exceeding input concentration

pattern with r, (r > m) valid packets. The ordered set of inputs with packets to con-

centrate is Xr = {x1, . . . , xm, xm+1, . . . , xr} = Xm ∪ X r
m+1 where Xm = {x1, . . . , xm}

and X r
m+1 = {xm+1, . . . , xr}. Since inputs are routed in increasing order, all inputs

in Xm are concentrated to the m outputs, i.e., Ym = {y1, . . . , ym} = O. For input

xm+1: ym+1 = minz{z ∈ Axm+1 ∩ (Ym)′} = minz{z ∈ Axm+1 ∩ ∅} = ∅. Similarly

for the other inputs in X r
m+1, the matching output is ∅, i.e., {ym+1, . . . , yr} = ∅. If

yi = ∅, then all crosspoints in the column for the corresponding input xi are set

to cross state and the packet comes out on the bottom, which is at output xi + m.

Hence, the m lowest numbered inputs are concentrated and the rest are connected

to corresponding output at the bottom.

3.9 Restoring Auxiliary Control Quantum Bits

Quantum information can be encoded in many different ways, such as the spin

component of basic particles like electrons or protons, or in the polarization of

photons. But, such particles can interact with the environment which leads to a

corruption of their quantum state, a process known as decoherence. Decoherence

can be viewed as a measurement of a superposed quantum state which collapses

105

r1

r2

|0〉 c

d1

d2

|0〉
|0〉

|0〉

Copy InverseCrosspoint
Switch Switch

b

a

Node

r
′
1

r
′
2

d
′
1

d
′
2

r1

r2

Figure 3.10: Circuit for restoring the control quantum bit c.

it to one of its basis states. This leads to a loss of information, but for a quantum

circuit, this information loss can be overcome if the ancillary quantum bits used

as control qubits are restored back to their original states, so that a corruption of

their state does not affect the observed quantum data. We now give a method to

restore the state of the auxiliary bits back to their original state, i.e., |0〉. For a single

quantum crosspoint we can restore the control quantum bit back to the state |0〉 as

shown in Figure 3.10. The mapping performed is:

|(r1, d1), (0, d2)〉 |0〉c |00〉ab
Crosspoint−−−−−→

Through
|(r1, d1), (0, d2)〉 |0〉c |00〉ab (3.40)

Copy−−→ |(r1, d1), (0, d2)〉 |0〉c |r10〉ab (3.41)

Inverse−−−−→ |(r1, d1), (0, d2)〉 |0〉c |r10〉ab (3.42)

|(r1, d1), (1, d2)〉 |0〉c |00〉ab
Crosspoint−−−−−→

Cross
|(1, d2), (r1, d1)〉 |1〉c |00〉ab (3.43)

Copy−−→ |(1, d2), (r1, d1)〉 |1〉c |1 r1〉ab (3.44)

Inverse−−−−→ |(r1, d2), (1, d1)〉 |0〉c |1 r1〉ab (3.45)

At the output of the quantum crosspoint the two CNOT gates in the copy circuit

106

copy the values of bits r1 and r2 onto a and b respectively. This can be seen in

Eqn. (3.41) and Eqn. (3.44). The inverse switch then does a controlled swap of the

two routing bits r1 and r2 before restoring c back to its original state as can be seen

in Eqn. (3.42) and Eqn. (3.45). Note that when the bit c is 0 at the output of the

quantum crosspoint switch then the restoring portion does not modify anything

(Eqns. (3.40)-(3.42)) as the corresponding auxiliary qubit is already in the state |0〉.

On measurement at the output we determine valid (not valid) packets by ob-

serving their associated routing bit as 1 (0). But note that on final measurement in

Figure 3.10, the routing bits may not correspond to the data part of their packets,

this is seen in Eqn. (3.45) where r1, d2 and 1, d1 are together instead of being 1, d2

and r1, d1. But the copying operation ensures that we have a copy of the correct

routing bits and can use these to distinguish the valid packets, for example, in

Eqn. (3.45) the correct values of the routing bits at the output are 1 for the upper

packet and r1 for the lower packet and these are present in the correct order, 1, r1,

on qubits a and b. Thus we can now consider a as the routing qubit for the packet

at the upper output and b as the routing qubit for the packet at the lower output.

This circuit restores the control qubit for a single crosspoint. For the entire

self-routing QSC we need a mirror image of the sparse crossbar concentrator con-

catenated with the QSC after the copying of the routing bits is done at the output

to restore the control qubits. This is shown in Figure 3.11. Only the routing qubits

are involved in restoring the state of the control qubits, hence only these qubits

are forwarded to the next stage after the QSC and are shown by dashed lines. The

dotted lines show the order of traversal of crosspoints and inverse switches.

107

Routing and
control qubits

Inverse switchCopy node

Figure 3.11: A Banded QSC(5,3) with additions for restoring the auxiliary control

quantum bits.

3.10 Cost Analysis

We now give the gate count and bounds on the delay for a self-routing QSC(n, m).

3.10.1 Gate Count

We need, per crosspoint, one multi-qubit switch gate for swapping the nd + 1 bit

packets and one CNOT gate for setting the auxiliary control bit. A switch gate for

swapping one quantum bit packets can be implemented using two CNOT gates

and one CCNOT gate. Hence, we need 2(nd + 1) CNOT and nd + 1 CCNOT gates

for the multi-qubit switch gate for a total of 2nd + 3 CNOT and nd + 1 CCNOT

gates per crosspoint. Therefore, each quantum concentrator design we presented

uses m(n−m + 1)(2nd + 3) CNOT gates, m(n−m + 1)(nd + 1) CCNOT gates and

m(n−m + 1) auxiliary quantum bits.

For the restoring stage there are m(n − m + 1) inverse switches and n + m

108

copy nodes. Each inverse switch has one switch gate for single qubits and one

CNOT gate, which sums up to three CNOT and one CCNOT gate. Each copy

node has two CNOT gates and two extra qubits. Thus the total cost for restoring

the control qubits is 3m(n − m + 1) + 2(n + m) CNOT gates, m(n − m + 1) CC-

NOT gates and 2(m + n) extra qubits. Therefore, the overall cost for a QSC(n, m)

is m(n−m + 1)(2nd + 6) + 2(n + m) CNOT gates, m(n−m + 1)(nd + 2) CCNOT

gates and m(n−m + 1) + 2(n + m) auxiliary quantum bits.

3.10.2 Routing Delay

The depth of a QSC(n, m) is given by the maximum possible number of crosspoints

between an input and an output. It is easy to see that the longest input-output path

is between input 1 and output m. For the fat-slim QSC(n, m), this path length is

(n−m + 1) + m− 1 = n crosspoints and for the banded QSC(n, m) the path length

is (n− m + 1) + (m− 1) + (m− 1) = n + m− 1 crosspoints. Hence the depth of

fat-slim QSC(n, m) is n and the depth of banded QSC(n, m) is n + m− 1. The time

required to self-route is upper bounded by the depth of the concentrator, thus,

self-routing on a fat-slim QSC(n, m) has O(n) delay and self-routing on a banded

QSC(n, m) has O(n + m) delay. The time required to self-route is upper bounded by

the depth of the concentrator, thus, self-routing on a fat-slim QSC(n, m) has O(n)

delay and self-routing on a banded QSC(n, m) has O(n + m) delay.

109

3.11 Conclusion

We defined the notion of quantum concentration, concentration patterns and quan-

tum crossbar concentrators. We designed self-routing crosspoints and self-routing

quantum crossbar concentrators. We proved that fat-slim and banded quantum

crossbar concentrators are self routing and thus suitable for quantum implemen-

tation. Finally we gave a method to restore the state of auxiliary control qubits to

prevent information loss due to decoherence.

In proving that fat-slim and banded crossbar concentrators are self-routable, we

assumed as input a quantum assignment consisting of a single pattern of classical

packets. Thus, this proves that classical fat-slim and banded crossbar concentrators

are self-routable too. Other sparse crossbar concentrator structures apart from fat-

slim and banded crossbars could be analyzed for self-routability. The density of

(n, m)-sparse crossbar concentrators amongst all n × m crossbars is known [51],

an interesting direction for further investigation would be to identify the class of

sparse crossbar concentrators which are self-routable and to quantify the size of

this class. In particular, it will be interesting to determine if there exist self-routing

regular sparse crossbar concentrators, i.e., those with fixed out-degree inputs and

in-degree outputs.

110

Chapter 4

Bounds on Size of Input Quantum Assignment

Classical switching is a two step process: scheduling of the incoming connection

requests and the subsequent routing of the scheduled requests over the switch-

ing fabric. Scheduling is used to select a set of packets at the inputs such that the

output addresses form a permutation, i.e., there is no contention for outputs. For

packet switching, the packets incident on the inputs are queued in buffers while

scheduling is done. A large number of scheduling algorithms have been devel-

oped which try to optimize different measures of switch performance like delay,

throughput, queue lengths etc. [52, 53, 54]. In the simplest case of first-in-first-

out (FIFO) service in the input queues, it is known that head of the line blocking

limits throughput to 58.6% [55]. It was also shown in [55] that throughput can be

increased by choosing a packet at random from among the first m packets, m > 1,

at the head of each input queue. The parameter m is a system variable which can

be optimized.

Now consider an n × n non-blocking quantum switching network which can

route all non-contending quantum input assignments. We assume that classical

packets come in at the inputs and get queued in quantum memory buffers which

can store the incoming qubit packets. In this scenario, the random selection of a

packet from among the first m classical packets is equivalent to creating a quantum

111

packet containing an equal superposition of the first m packets in the quantum

buffer at an input. The input quantum assignment then contains all the possible

patterns of n packets formed by choosing, at each input, one packet from the first

m packets. The probability of observing each of these input assignment patterns is

the same.

The non-blocking quantum network can route all non-contending assignment

patterns without blocking, therefore, on measurement at the output we will ob-

serve n valid packets with non-zero probability only if there is at least one per-

mutation assignment pattern present in the input quantum assignment. Thus, a

natural question to ask is how large should m be such that the input quantum as-

signment contains at least one permutation pattern. We give bounds on m assum-

ing the incoming traffic is uniform, i.e., a packet at input i is addressed to output j

with probability 1/n independent of i and j, 1 ≤ i, j ≤ n. These bounds are prob-

abilistic in the sense that for a given switch size n, we can calculate a minimum m

such that the probability of the input quantum assignment containing at least one

permutation assignment is greater than any arbitrary threshold value.

4.1 Problem Statement

We formulate the problem of finding a minimum value of m in terms of density

of certain matrices as follows. Let Anm = {aij} be a n× m matrix where aij is the

output address of the jth packet at input i, 1 ≤ i ≤ n, 1 ≤ j ≤ m and 1 ≤ aij ≤ n.

Let row i of Anm be denoted by Yi.

112

Remark 4.1 (SDR). The matrix Anm is said to have a system of distinct represen-

tatives (SDR), if a subset S = {s1, s2, . . . , sn} of n distinct elements can be chosen

from Anm such that si ∈ row i, i.e., si ∈ Yi, 1 ≤ i ≤ n. The set S is called the system

of distinct representatives (SDR).

The quantum input assignment formed by packets with the addresses as spec-

ified in Anm contains a permutation assignment pattern only if Anm has at least

one SDR. A SDR corresponds to the ordering of packets in a permutation pat-

tern. Since we are assuming uniform distribution on the output addresses, all the

nnm matrices are equally likely to occur and the density of n × m matrices with

distinct representatives for the rows gives the probability that the corresponding

quantum input assignment has a permutation assignment pattern. The following

well-known theorem for distinct representatives by Hall will be very useful in our

subsequent calculations

Hall’s Theorem [50]. Let O be a finite set and let Y1, Y2, . . . , Yr be arbitrary subsets of

O. There exist distinct elements yi ∈ Yi, 1 ≤ i ≤ r if and only if the union of any k of

Y1, Y2, . . . , Yr contains at least k elements.

Let O be the set formed by the elements of Anm and Y1, Y2, . . . , Yr represent the

sets of numbers in some r rows, s1, s2, . . . , sr respectively, i.e., Yi is the subset of out-

puts to which packets at input si are addressed. Then if the union of Y1, Y2, . . . , Yr

contains at least r outputs for any choices of s1, s2, . . . , sr in the input set, and any

r, 1 ≤ r ≤ n, then Hall’s theorem implies that the quantum assignment contains a

permutation pattern.

113

Let ρ(n, m) be the density of matrices for which distinct representatives for rows

exist. Then

Theorem 4.1.

ρ(n, m) ≤ n! S (n)
nm

nnm (4.1)

where

S (n)
nm =

1
n!

nm

∑
i=0

(−1)n−i
(

n
i

)
in (4.2)

is a Stirling number of the second kind and is equal to the number of ways an nm-set can

be partitioned into n distinct non-empty sets. The bound in Eqn. (4.1) holds with equality

for n = 2, therefore, ρ(2, m) = 1− 2−(2m−1).

Proof. Consider the set of nm elements {aij} partitioned into n subsets X1, . . . , Xn

such that xi ∈ Xi ⇒ xi = i, 1 ≤ i ≤ n. If Amn has a SDR then it can partitioned

into n such subsets so that none of the subsets is empty. Hence, the set of matrices

for which X1, X2, . . . , Xn are all non-empty contains the set of all matrices with

SDRs. There are S (n)
nm ways to partition a set of nm elements into n non-empty sets

when order is not considered [56]. Hence there are n! S (n)
nm distinct matrices which

can be partitioned into n non-empty subsets in the way described above. Since

all matrices Anm with an SDR are contained in this set of matrices, the bound in

Eqn. (4.1) follows.

When n = 2, if two non-empty partitions exist then the corresponding matrix

114

definitely has an SDR and hence the bound in Eqn. (4.1) is tight. Hence

ρ(2, m) = 2 · S (2)
2m /22m (4.3)

= 2(22m−1 − 1)/22m = 1− 2−(2m−1) (4.4)

where we have used the fact that S (2)
n = 2n−1 − 1. This can be verified by direct

evaluation from Eqn. (4.2).

We now tighten the bounds on ρ(n, m) for n > 2 by using Hall’s theorem.

Theorem 4.2.

n! S (n)
nm −∑n−1

k=2 ∑k−1
l=1 ∑n

p=n−l (
n
k) (n

l) l! S (l)
mk p! S (p)

m(n−k)

nnm ≤ ρ(n, m) (4.5)

ρ(n, m) ≤
n! S (n)

nm −∑n−1
k=2 ∑k−1

l=1 n! (n
k) S

(l)
mk S

(n−l)
m(n−k)

nnm (4.6)

Proof. Consider all n × m matrices in which the union of some k rows contains

exactly l, l < k distinct numbers and the union of the rest of the n− k rows contains

only the remaining n − l distinct numbers. Clearly this class of matrices can be

partitioned into n non-empty sets X1, . . . , Xn, with set Xi consisting of all abc such

that abc = i. But as the union of some k rows contains less than k distinct elements,

by Hall’s theorem these matrices do not have a SDR. The number of such matrices

for fixed k and l, l < k is given by:

(
n
k

)(
n
l

)
l! S (l)

mk︸ ︷︷ ︸
I

(n− l)! S (n−l)
m(n−k)︸ ︷︷ ︸

I I

(4.7)

as we can choose k rows in (n
k) ways, l elements out of n in (n

l) ways and the term

marked as I is the total number of k×m sub-matrices which have l distinct entries

115

and the term marked I I is the number of (n − k) × m sub-matrices which have

n− l distinct entries. Summing up over all k and l we get

n−1

∑
k=2

k−1

∑
l=1

(
n
k

)(
n
l

)
l!S (l)

mk (n− l)!S (n−l)
(n−k)m (4.8)

=
n−1

∑
k=2

k−1

∑
l=1

n!
(

n
k

)
S (l)

mkS
(n−l)
(n−k)m (4.9)

hence, the upper bound in Eqn. (4.6) follows.

Now consider all n×m matrices in which the union of some k rows contains l

distinct elements l < k and the remaining n− l distinct elements appear at least once

in the rest of the n− k rows, i.e., their union contains at least n− l distinct entries.

These also violate the conditions of Hall’s theorem and hence do not contain an

SDR. The total number of such matrices for a fixed k and l is upper bounded by(
n
k

)(
n
l

)
l! S (l)

mk

n

∑
p=n−l

p! S (p)
m(n−k) (4.10)

this is an upper bound as we are over-counting matrices in the summation term

for index p. Summing up over all values of k and l we get the lower bound in

Eqn. (4.5).

4.2 Some Results

These bounds are close to each other and give a fairly good estimate of the density,

ρ. We can use these bounds to estimate, for a given switch size, n, the minimum

value of m at which the density exceeds a certain threshold, say η. Then we know

that, if the traffic is uniform, then with probability η, the output quantum assign-

ment contains a permutation pattern with all n valid packets. Note that the proba-

116

Superposition size, m

n 1 2 3 4 5 6 7 8 9

2 0.5 0.875 0.969 0.992 0.998 0.999 ' 1 ' 1 ' 1

4 0.094 0.556 0.863 0.958 0.987 0.996 0.999 ' 1 ' 1

8 0.002 0.053 0.674 0.889 0.962 0.987 0.995 0.998 0.999

16 ' 10−6 0.04 0.424 0.764 0.911 0.968 0.988 0.996 0.999

32 ' 10−13 0.03 0.17 0.563 0.816 0.930 0.974 0.991 0.997

64 ' 10−27 0.01 0.024 0.304 0.655 0.859 0.946 0.980 0.993

Table 4.1: Lower bound on ρ(n, m).

bility of observing this particular pattern on measurement will be dependent on its

associated probability amplitude. The minimum values ρ(n, m) calculated using

the lower bound in Eqn. (4.5) are given in Table 4.1. From these values it can be

seen that the density increases rapidly and saturates very quickly at around 0.99

for m = 9. Thus a quantum packet consisting of a superposition of nine classical

packets at the head of each input almost guarantees that the output quantum as-

signment of the quantum non-blocking network will have a permutation packet

pattern.

117

Chapter 5

Conclusions and Future Work

We have defined the concepts of quantum packets, quantum assignments, quan-

tum non-blocking networks and quantum concentrators.

5.1 Random Routing in Quantum Switching Networks

We have used the inherent random nature of quantum bits and the property of

quantum parallelism to identify that random routing on any quantum switch net-

work is equivalent to creating quantum superpositions of the input packets at the

outputs of the individual switches which constitute the network. We have char-

acterized the output state of the quantum Baseline network and shown an explicit

relation between routing probabilities and the amplitudes of the packet patterns in

the quantum output.

For classical 2n × 2n Beneš networks certain classes of permutations like the

bit-permute-complement class (BPCn) [45] and linear-complement class (LCn) [46]

can be self-routed without blocking, but any permutation not belonging to either of

these classes always encounters blocking if it is routed using bit-controlled routing.

For the quantum Beneš network we have shown that for any arbitrary permutation

input there is a finite non-zero probability that the output will correspond to pack-

ets being routed without blocking when packet routing is done using quantum

118

randomization and bit controlled routing. We have derived this result by utilizing

results implied by Lee’s routing algorithm for Beneš networks [48]. In addition to

the lower bound on the probability we have found a new class of permutations

for which this lower bound is equal to one. This implies that for any permuta-

tion pattern belonging to this class, all the packet patterns in the quantum output

correspond to routing without blocking over the Beneš network. For the classical

Beneš network this means that if an input permutation assignment belongs to the

newly discovered class then the switches in the first n− 1 stages can be set to any

arbitrary state and the resulting output is still self-routable over the last n stages.

5.2 Self-Routing Quantum Sparse Crossbar Concentrators

We have given the design of quantum sparse crossbar (n, m)-concentrators. These

concentrator structures are based on classical sparse crossbar concentrators where

the classical crosspoint switches are replaced by quantum crosspoints. Many pro-

posed quantum computing architectures are based on planar arrangement of solid-

state components [17] and the low crosspoint count and the planar structure of

such concentrators make them suitable for implementation in such architectures.

In quantum systems all operations need to be reversible and hence a “rectangular”

n×m structure can not be used. We have given a method to convert any “rectangu-

lar” crossbar into a “square” crossbar while preserving the concentration property.

Since classical control for quantum systems is slow and interaction with the envi-

ronment can lead to decoherence of the state of qubits, it is desirable that packets

119

on quantum switching networks are self-routed. Accordingly, we have given a

self-routing scheme for concentration on suitable quantum sparse crossbar struc-

tures. In particular, we have rigorously proved that using our scheme fat-slim and

banded sparse crossbars can self-route packets to realize any concentration pat-

tern. We also give a method to restore the auxiliary control qubits back to their

original state to prevent information loss due to decoherence.

5.3 Bounds on Size of Input Quantum Assignment

In the penultimate chapter we try to answer to following question in a meaningful

way: If m packets are superposed to create a quantum packet at every input to

an n × n quantum non-blocking network then how large should this value m be

to get good performance? We assume uniform distribution on the output desti-

nations and use the probability of getting a non-contending packet pattern in the

output quantum state as a measure of performance. For this criterion, we have

derived closed form upper and lower bounds by using combinatorial arguments

to calculate the density of matrices which contain distinct representatives for the

subsets defined by their rows. Numerical calculation of the bounds indicates that

m = 9 is sufficient to ensure a probability greater than 0.99 for all n upto at least 64.

5.4 Future Work

Some future directions of investigation based on this work are given below.

1. For quantum Beneš networks, we used randomization to show that such net-

120

works are probabilistically non-blocking for any arbitrary permutation input.

Lee’s algorithm allows routing without any blocking on such networks but

since it is not decentralized, it is not suitable for quantum switching net-

works. For 4 × 4 Beneš networks we have been able to design quantum

switches based on comparators which implement Lee’s algorithm in a de-

centralized fashion, i.e., we have the design of a fully non-blocking 4 × 4

quantum Beneš network. It will be interesting to investigate whether this ap-

proach can be used to get non-blocking switches for values of n larger than

four.

2. We have proved that fat-slim and banded crossbar structures are self-routab-

le and hence suitable for implementation in the quantum domain. Sparse

crossbar concentrator structures other than fat-slim and banded crossbars

could be analyzed for self-routability. An interesting direction for further

investigation would be to identify the class of sparse crossbar concentra-

tors which are self-routable and to quantify the size of this class. Our rout-

ing algorithm for these concentrators is biased towards the lower numbered

switches which get routing priority over higher numbered switches. Thus for

capacity exceeding input assignments the m lowest numbered input pack-

ets get concentrated. Methods to overcome this bias while maintaining self-

routability can be explored. An interesting option would be to create super-

positions at the internal crosspoints whenever there is a contention for an

output by two valid packets.

121

3. For the investigation into the bound on the number of superposed packets

in an input quantum packet we did not calculate the throughput of the non-

blocking switch. That is, for all the input packet patterns which have con-

tention, we did not calculate how many packets in the output pattern are

routed correctly to their desired output destinations. We expect the results to

mirror those for the classical case in which packets for routing are scheduled

at random from a window of fixed size at each input queue [55].

The primary goal of this dissertation has been to explore the possible relations

between classical packet switching networks and quantum computing. As part of

this exploration, we have determined that there is a close relation between random

routing and in classical packet switching and quantum superposition. This is turn

has led us to develop quantum switching network models by which such networks

can be methodically analyzed, designed and routed. Examples have been given to

show the power and utility of quantum switching network model in each case.

Yet, as is typically the case in any research, we conclude this work with more open

questions than the ones with which we had begun.

122

Bibliography

[1] R. P. Feynman, “Simulating physics with computers,” International Journal of Theoreti-
cal Physics, vol. 21, pp. 467–488, June 1982. 1

[2] P. W. Shor, “Scheme for reducing decoherence in quantum memory,” Physical Review
A, vol. 52, no. 4, pp. 2493–2496, 1995. 1

[3] C. H. Bennett, G. Brassard, and A. K. Ekert, “Quantum cryptography,” Scientific Amer-
ican, vol. 267, 1992. 1

[4] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer,” SIAM Review, vol. 41, no. 2, pp. 303–332, Jun 1999.
1, 12

[5] A. M. Childs, E. Farhi, and J. Preskill, “Robustness of adiabatic quantum computa-
tion,” Physical Review A, vol. 65, no. 1, Dec 2001. 2

[6] S. Hallgren, “Polynomial-time quantum algorithms for pell’s equation and the princi-
pal ideal problem,” in STOC ’02: Proceedings of the thiry-fourth annual ACM Symposium
on Theory of Computing. New York, NY, USA: ACM Press, 2002, pp. 653–658. 2

[7] W. van Dam and G. Seroussi. (2002) Efficient quantum algorithms for estimating
gauss sums. [Online]. Available: http://www.citebase.org/abstract?id=oai:arXiv.org:
quant-ph/0207131 2

[8] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, “Demonstra-
tion of a fundamental quantum logic gate,” Physical Review Letters, vol. 75, p. 4714,
1995. 2

[9] D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M. H.
Devoret, “Manipulating the quantum state of an electrical circuit,” Science, vol. 296,
p. 886, 2002. 2

[10] Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement
of conditional phase shifts for quantum logic,” Physical Review Letters, vol. 75, p. 4710,
1995. 2

[11] L. M. Vandersypen, M. Steffen, G. Breytta, C. S. Yannoni, R. Cleve, and I. L. Chuang,
“Experimental realization of order-finding with a quantum computer,” Physical Re-
view Letters, December 15 2000a. 2

[12] B. Kane, “A silicon-based nuclear spin quantum computer,” Nature, vol. 393, pp. 133–
137, 1998. 2

[13] D. Copsey, M. Oskin, F. Impens, T. Metodiev, A. Cross, F. T. Chong, I. L. Chuang, and
J. Kubiatowicz, “Toward a scalable, silicon-based quantum computing architecture,”
IEEE Journal Of Selected Topics in Quantum Electronics, vol. 9, no. 6, pp. 1552–1569,
Nov-Dec 2003. 2

123

http://www.citebase.org/abstract?id=oai:arXiv.org:quant-ph/0207131
http://www.citebase.org/abstract?id=oai:arXiv.org:quant-ph/0207131

[14] M. Oskin, F. T. Chong, I. L. Chuang, and J. Kubiatowicz, “Building quantum wires:
the long and the short of it,” in Computer Architecture, 2003. Proceedings. 30th Annual
International Symposium on, June 2003, pp. 374–385. 2

[15] W. Wootters and W. Zurek, “A single quantum cannot be cloned,” Nature, vol. 299,
pp. 802–803, 1982. 2, 15

[16] N. Isailovic, M. Whitney, Y. Patel, J. Kubiatowicz, D. Copsey, F. T. Chong, I. L. Chuang,
and M. Oskin, “Datapath and control for quantum wires,” ACM Transactions on Ar-
chitecture and Code Optimization, vol. 1, no. 1, pp. 34–61, 2004. 2

[17] T. S. Metodi, D. D. Thaker, and A. W. Cross, “A quantum logic array microarchitec-
ture: Scalable quantum data movement and computation,” in Proceedings of 38th An-
nual IEEE/ACM International Symposium on Microarchitecture, 2005. MICRO-38, Nov
2005, pp. 305–318. 3, 119

[18] I. M. Tsai and S.-Y. Kuo, “Digital switching in the quantum domain,” IEEE Transactions
on Nanotechnology, vol. 1, no. 3, pp. 154–164, 2002. 3

[19] M. K. Shukla, R. Ratan, and A. Y. Oruç, “A quantum self-routing packet switch,” in
Proceedings of the 38th Annual Conference on Information Sciences and Systems CISS’04,
Princeton, NJ, USA, March 2004, pp. 484–489. 3, 15

[20] ——, “The quantum baseline network,” in Proceedings of the 39th Annual Conference on
Information Sciences and Systems CISS’05, Johns Hopkins University, Baltimore, MD,
March 2005. vii, 3, 15, 18, 38, 39, 43, 46

[21] S. T. Cheng and C. Y. Wang, “Quantum switching and quantum merge sorting,” IEEE
Transactions on Circuits and Systems I: Regular Papers [see also IEEE Transactions on Cir-
cuits and Systems I: Fundamental Theory and Applications], vol. 53, no. 2, pp. 316–325,
Feb 2006. 4

[22] R. Ratan and A. Y. Oruç, “Quantum switching networks with classical routing,” in
Proceedings of the 41st Annual Conference on Information Sciences and Systems CISS’07,
Johns Hopkins University, Baltimore, MD, March 2007, pp. 789–793. 4

[23] S. Nakamura and G. M. Masson, “Lower bounds on crosspoints in concentrators,”
IEEE Transactions on Computers, vol. C-31, no. 12, pp. 1173–1179, 1982. 6, 70

[24] A. Yavuz Oruç and H. M. Huang, “Crosspoint complexity of sparse crossbar concen-
trators,” IEEE Transactions on Information Theory, vol. 42, no. 5, pp. 1466–1471, 1996. 6,
64, 71, 88

[25] W. Guo and A. Y. Oruç, “Regular sparse crossbar concentrators,” IEEE Transactions on
Computers, vol. 47, no. 3, pp. 363–368, 1998. 6, 64, 65, 66, 71, 92

[26] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information.
Cambridge University Press, September 2000. 9, 15

[27] D. Deutsch, “Quantum computational networks,” Proceedings of the Royal Society of
London. Series A, Mathematical and Physical Sciences, vol. 425, no. 1868, pp. 73–90, Sep.
8 1989. [Online]. Available: http://links.jstor.org/sici?sici=0080-4630%2819890908%
29425%3A1868%3C7%3%3AQCN%3E2.0.CO%3B2-5 10

124

http://links.jstor.org/sici?sici=0080-4630%2819890908%29425%3A1868%3C7% 3%3AQCN%3E2.0.CO%3B2-5
http://links.jstor.org/sici?sici=0080-4630%2819890908%29425%3A1868%3C7% 3%3AQCN%3E2.0.CO%3B2-5

[28] J. Preskill. (1998) Physics 229: Advanced mathematical methods of physics –
quantum computation and information. [Online]. Available: http://www.theory.
caltech.edu/people/preskill/ph229 11

[29] C. E. Shannon, “Memory requirements in a telephone exchange,” Bell System Technical
Journal, vol. 29, pp. 343–349, 1950. 16

[30] C. Clos, “A study of non-blocking switching networks,” Bell System Technical Journal,
vol. 32, no. 2, pp. 406–424, March 1953. 16

[31] V. E. Beneš, Mathematical Theory of Connecting Networks and Telephone Traffic. Aca-
demic Press, 1965. 17, 41

[32] D. G. Cantor, “On nonblocking switching networks,” Networks, vol. 1, pp. 367–377,
1971. 17

[33] C.-Y. Lee and A. Y. Oruç, “Design of efficient and easily routable generalized con-
nectors,” IEEE Transactions on Communications, vol. 43, no. 234, pp. 646–650, February
1995. 17

[34] J. H. Patel, “Performance of processor memory interconnections for multiprocessors,”
IEEE Transactions on Computers, vol. 30, no. 10, pp. 771–780, October 1981. 18, 52

[35] D. H. Lawrie, “Access and alignment of data in an array processor,” IEEE Transactions
on Computers, vol. 25, pp. 1145–1155, 1976. 18

[36] M. K. Shukla and A. Y. Oruç, “Multicasting in quantum networks,” 2008, working
Draft—To be submitted to IEEE Transactions on Computers. 20

[37] M. K. Shukla, “Quantum unicast and multicast switching networks,” Ph.D. disserta-
tion, University of Maryland, College Park, in preparation. 20

[38] R. Ratan, M. K. Shukla, and A. Y. Oruç, “On random routing and its application to
quantum interconnection networks,” in Proceedings of the 40th Annual Conference on
Information Sciences and Systems CISS’06, Princeton, NJ, USA, March 2006, pp. 1744–
1749. 33

[39] D. S. Parker, “Notes on shuffle/exchange-type switching networks,” in Interconnection
Networks for Multiprocessors and Multicomputers: Theory and Practice, A. Varma and
C. S. Raghavendra, Eds. IEEE Computer Society Press, 1994, ch. 4, pp. 124–133. 35,
52

[40] H. Çam, “Rearrangeability of (2n -1)-stage shuffle-exchange networks,” SIAM Journal
on Computing, vol. 32, no. 3, pp. 557–585, March 2003. 38

[41] A. Waksman, “A permutation network,” Journal of the ACM, vol. 15, no. 1, pp. 159–
163, 1968. 42, 53

[42] D. Nassimi and S. Sahni, “Parallel algorithms to set up the Benes permutation net-
work,” IEEE Transactions on Computers, vol. 31, pp. 148–154, 1982. 42

[43] C.-Y. Lee and A. Y. Oruç, “A fast parallel algorithm for routing unicast assignments
in Benes networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 6, no. 3,
pp. 329–334, 1995. 42

125

http://www.theory.caltech.edu/people/preskill/ph229
http://www.theory.caltech.edu/people/preskill/ph229

[44] G. F. Lev, N. Pippenger, and L. G. Valiant, “A fast parallel algorithm for routing in
permutation networks,” IEEE Transactions on Computers, vol. 30, no. 2, pp. 93–100,
1981. 42

[45] D. Nassimi and S. Sahni, “A self routing Benes network,” in ISCA ’80: Proceedings of
the 7th Annual Symposium on Computer Architecture. New York, NY, USA: ACM Press,
1980, pp. 190–195. 43, 118

[46] C. S. Raghavendra and R. V. Boppana, “On self-routing in Benes and shuffle-exchange
networks,” IEEE Transactions on Computers, vol. 40, no. 9, pp. 1057–1064, 1991. 43, 118

[47] K. Y. Lee, “On the rearrangeability of 2(log2 N) − 1 stage permutation networks,”
IEEE Transactions on Computers, vol. C-34, no. 5, pp. 412–425, May 1985. 43, 48

[48] ——, “A new Benes network control algorithm,” IEEE Transactions on Computers, vol.
C-36, no. 6, pp. 768–772, June 1987. 44, 48, 119

[49] W. Guo, “Design and optimization of switching fabrics for ATM networks and par-
allel computer systems,” Ph.D. dissertation, Dept. of Electrical Engg., University of
Maryland, College Park, MD, August 1996. 66

[50] P. Hall, “On representatives of subsets,” Journal of London Mathematical Society, pp.
134–151, 1935. 70, 113

[51] E. Günduzhan and A. Y. Oruç, “Structure and density of sparse crossbar concen-
trators,” in DIMACS Series in Discrete Mathematics and Computer Science, Advances in
Switching Networks, 1998, vol. 42, pp. 169–180. 110

[52] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achieving 100%
throughput in an input-queued switch,” IEEE Transactions on Communications, vol. 47,
no. 8, pp. 1260–1267, 1999. 111

[53] P. Giaccone, B. Prabhakar, and D. Shah, “Towards simple, high-performance sched-
ulers for high-aggregate bandwidth switches,” in INFOCOM 2002. Twenty-First An-
nual Joint Conference of the IEEE Computer and Communications Societies. Proceedings.
IEEE, vol. 3, 2002, pp. 1160–1169 vol.3. 111

[54] C. S. Chang, W. J. Chen, and H. Y. Huang, “Birkhoff-von neumann input buffered
crossbar switches,” in Proceedings of IEEE INFOCOM 2000, Tel Aviv, Israel, 2000, pp.
1614–1623. 111

[55] M. G. Hluchyj and M. J. Karol, “Queuing in high-performance packet switching,”
IEEE Journal on Selected Areas in Communications, vol. 6, no. 9, pp. 1587–1597, Dec.
1988. 111, 122

[56] M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical Functions. Wash-
ington D.C.: Courier Dover Publications, 1964, pp. 824–825. 114

126

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Quantum Circuits
	Qubits
	Quantum Gates
	Quantum Copy and Switch Gates

	Switching Networks

	Quantum Switching Networks and Random Routing
	Definitions
	Quantum Packet
	Quantum Assignment
	Quantum Non-Blocking Networks
	Quantum Random Routing

	Random Routing on Quantum Baseline Network
	The n x n Baseline Network
	Random Routing: Problem Definition
	Admissible Permutation Patterns

	Quantum Beneš Network
	Randomizing and Self-Routing Quantum Switches
	Output State
	Lee's Routing Algorithm
	Routing with Arbitrary Switch Settings
	Output Quantum Assignment for the Beneš Network

	Self-Routing Quantum Sparse Crossbar Concentrators
	Overview
	Definitions
	Classical Sparse Crossbar Concentrators
	Quantum Sparse Crossbar Concentrators
	Self-Routing Quantum Crosspoints
	The Self-Routing Scheme

	Self-Routing on Quantum Sparse Crossbar Concentrators
	Notation
	Self-Routing Fat-Slim QSC(n,m)
	Self-Routing Banded QSC(n,m)

	An Example
	Output for Capacity Exceeding Input Patterns
	Restoring Auxiliary Control Quantum Bits
	Cost Analysis
	Gate Count
	Routing Delay

	Conclusion

	Bounds on Size of Input Quantum Assignment
	Problem Statement
	Some Results

	Conclusions and Future Work
	Random Routing in Quantum Switching Networks
	Self-Routing Quantum Sparse Crossbar Concentrators
	Bounds on Size of Input Quantum Assignment
	Future Work

	Bibliography

