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Abstract. In this paper, a class of symmetric cubic planar piecewise polynomial systems
are presented, which have two symmetric centers corresponding to two period annuli.
By perturbation and considering piecewise first order Melnikov function, we show the
existence of 18 limit cycles (not small-amplitude limit cycles) with the configuration
(9, 9) bifurcating from the two period annuli and 22 small-amplitude limit cycles with
the configuration (11, 11), respectively.
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1 Introduction

During the past sixty years, many problems arising from mechanics, electrical engineering
and automatic control are described by non-smooth systems in [1, 2, 9]. Piecewise systems, a
class of non-smooth systems which have different definitions for the vector fields in different
regions divided by lines or curves, have attracted much attention due to their complex dy-
namic phenomena and wide applications. Usually, a planar piecewise system with two zones
has the form

(ẋ, ẏ) =

Z+(x, y), h(x, y) > 0,

Z−(x, y), h(x, y) < 0,

where Z±(x, y) are analytic functions in {(x, y) : ±h(x, y) ≥ 0} respectively, and h(x, y) is a
continuous function.

Similar to the planar smooth systems, a natural and important topic in the qualitative
theory of planar piecewise systems is to find the number and configuration of limit cy-
cles. Moreover, the piecewise systems can exhibit more complex dynamic behaviors than
the classical smooth systems. For instance, in contrast to non-existence of the limit cycle in
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planar linear systems, the piecewise linear ones can possess limit cycles, one is referred to
[4, 10, 14, 15, 17, 18, 22] for details.

Below we give a brief introduction to the piecewise quadratic and cubic systems. For
piecewise quadratic system, da Cruz et al. in [8] recently constructed a system with at least
16 limit cycles. For more stories, one can see [5, 21] and references therein. For piecewise
cubic systems, only a small amount of work has been done recently, see [11, 13, 16, 19, 23] for
example. In [16] Llibre et al. obtained 12 limit cycles bifurcating from a period annulus of
some cubic system under piecewise cubic perturbation. Later, a piecewise cubic system with
15 limit cycles was constructed by Li et al. [19]. Recently, Guo et al. considered in [13] a class
of Z2-equivariant piecewise cubic systems with two centers at (−1, 0) and (1, 0), and showed
by computing the Lyapunov quantities that there exist 18 small-amplitude limit cycles with
configuration (9, 9). Here by configuration (9, 9), we mean that 9 limit cycles surround (1, 0)
and the remaining ones surround (−1, 0), simultaneously. Yu et al. in [23] also obtained the
existence of 18 small-amplitude limit cycles by computing the Lyapunov quantities in a planar
piecewise cubic polynomial system. Note that the difference between them is that the authors
in [23] obtained 18 limit cycles bifurcating from the two symmetric foci, and each of them
will present 9 limit cycles. Of course, the calculations in [13, 23] have high techniques, as they
involves nonlinear equations. In [11], Gouveia and Torregrosa got, also by computing the
Lyapunov quantities through the parallelization algorithm, 24 crossing small-amplitude limit
cycles emerging from a piecewise cubic polynomial center at the cost of quite complicated
computations. Very recently, an improvement in the number of crossing limit cycles in the
cubic family is obtained by Gouveia and Torregrosa in [12], where the calculations are also
based on the parallelization algorithm.

Motivated by [13, 23] in which two symmetrical nests are considered simultaneously, this
paper is devoted to investigating limit cycles bifurcating from piecewise cubic polynomial
system with two symmetric centers, each of which corresponds to a period annulus full of
closed orbits. In detail, we focus on the following piecewise cubic polynomial system{

H+(x, y) = Ψ+(x) + Φ+(y), x > 0,

H−(x, y) = Ψ−(x) + Φ−(y), x < 0,
(1.1)

where Ψ±(x) and Φ±(y) are quartic polynomials such that Φ±(y) = Φ±(−y). Concretely,
system (1.1) has form

(ẋ, ẏ) =

{(
a1y + a2y3, a3 + a4x + a5x2 + a6x3) , x > 0,(
b1y + b2y3, b3 + b4x + b5x2 + b6x3) , x < 0,

(1.2)

where ai and bi, i = 1, . . . , 6, are real coefficients. Without loss of generality, assume that
system (1.2) has two symmetric centers at (0,±1) which yield

a1 = −a2, b1 = −b2, a3 = b3 = 0, a1a4 > 0, b1b4 > 0.

Next, by the transformations (x, y, t)→
(√

a1
2a4

x, y, 1√
2a1a4

t
)

and (x, y, t)→
(√

b1
2b4

x, y, 1√
2b1b4

t
)

for x > 0 and x < 0, respectively, the system (1.2) becomes

(ẋ, ẏ) =


(

y(1− y2),
1
2

x + āx2 + c̄x3
)

, x > 0,(
y(1− y2),

1
2

x + b̄x2 + d̄x3
)

, x < 0,
(1.3)
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where ā = a5
2a4

√
a1

2a4
, c̄ = a1a6

4a2
4

, b̄ = b5
2b4

√
b1

2b4
, and d̄ = b1b6

4b2
4

. Under piecewise cubic polynomial
perturbation, we consider

(ẋ, ẏ) =


(

y(1− y2) + ε f+(x, y),
1
2

x + āx2 + c̄x3 + εg+(x, y)
)

, x > 0,(
y(1− y2) + ε f−(x, y),

1
2

x + b̄x2 + d̄x3 + εg−(x, y)
)

, x < 0,
(1.4)

where f+(x, y) = ∑3
i+j=0 aijxiyj, f−(x, y) = ∑3

i+j=0 cijxiyj, g+(x, y) = ∑3
i+j=0 bijxiyj, g−(x, y) =

∑3
i+j=0 dijxiyj.

To investigate the number of the limit cycles bifurcating from the two period annuli, we
will apply the first order Melnikov function, also known as the Abelian integral, rather than
the Lyapunov quantities to reduce the computation. One of our two main results is stated as
follows.

Theorem 1.1. For sufficiently small |ε| > 0, there exists a system of the form (1.4) possessing at least
18 limit cycles with configuration (9, 9).

Note that 18 limit cycles in Theorem 1.1 obtained by the first order Melnikov function and
Lemma 2.2 are no longer small-amplitude, which differs from the conclusions of 18 small-
amplitude limit cycles in [13, 23].

The following result states the existence of 22 small-amplitude limit cycles (near the cen-
ters) with configuration (11, 11), which improves the results in [13, 23]. Although 22 small-
amplitude limit cycles is not as good as previous results in [11,12], this is new and good from
the point of view of simultaneity.

Theorem 1.2. For sufficiently small |ε| > 0, there exists a system of the form (1.4) possessing at least
22 small-amplitude limit cycles with configuration (11, 11).

The rest of this paper is organized as follows. In section 2, we will introduce the piecewise
first order Melnikov function firstly. Meanwhile, some lemmas which will be applied to prove
our main theorems are presented. Section 3 is devoted to the proofs of Theorems 1.1 and 1.2.

2 Preliminary results

In this section, we introduce the piecewise first order Melnikov function. For this we need the
following result from the work of Liu and Han [20] in which the authors studied system

(ẋ, ẏ) =

{
(H+

y (x, y) + ε f+(x, y),−H+
x (x, y) + εg+(x, y)) x > 0,

(H−y (x, y) + ε f−(x, y),−H−x (x, y) + εg−(x, y)) x < 0,
(2.1)

where f±(x, y), g±(x, y), H±(x, y) are analytic functions and suppose the following two as-
sumptions H1 and H2 hold.

H1. There exists an open interval (α, β), and two points A(h) = (0, r(h)), C(h) = (0, r̃(h)),
where r(h) 6= r̃(h). For h ∈ (α, β), we have H+(A(h)) = H+(C(h)) = h, H−(A(h)) =
H−(C(h)).
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Figure 2.1: The graph shows the structure of H1 and H2.

H2. When x > 0, system (2.1)|ε=0 has an orbital arc Γ+
h starting from A(h) and ending at

C(h) defined by H+(x, y) = h. When x ≤ 0, system (2.1)|ε=0 has an orbital arc Γ−h
starting from C(h) and ending at A(h) defined by H−(x, y) = H−(A(h)), as illustrated
in Figure 2.1.

Then Liu and Han give the piecewise first order Melnikov function, also known as Abelian
integral, for (2.1) in [20] as follows.

Lemma 2.1. Under assumptions H1 and H2, for sufficiently small |ε| > 0, then

(1) the Abelian integral of system (2.1) can be expressed as

I(h)=
H+

y (A(h))

H−y (A(h))

(
H−y (C(h))

H+
y (C(h))

∫
Γ+

h

g+(x, y)dx− f+(x, y)dy+
∫

Γ−h
g−(x, y)dx− f−(x, y)dy

)
; (2.2)

(2) system (2.1) has a limit cycle near Γh∗ , if I(h) has a simple root h∗ (I(h∗) = 0, I′(h∗) 6= 0);

(3) system (2.1) has at least k limit cycles, if I(h) has k roots.

Applying Lemma 2.1 to consider the problem of limit cycles, a difficult and necessary
work is to estimate the number of roots of (2.2). For this purpose, a well-known result, see
Lemma 4.5 in [7], is presented as follows.

Lemma 2.2. Consider p + 1 linearly independent analytical functions fi : U ⊂ R → R, i =

0, 1, . . . , p.

(1) Given p arbitrary values xi ∈ U, i = 1, 2, . . . , p, there exist p + 1 constants Ci, i = 0, 1, . . . , p,
such that

f (x) :=
p

∑
i=0

Ci fi(x), (2.3)

is not the zero function and f (xi) = 0 for i = 1, 2, . . . , p.

(2) Furthermore, if there exists j ∈ {0, 1, . . . , p} such that f j |U has constant sign, it is possible to
get f (x) in (2.3) such that it has at least p simple roots in U.

If we consider small-amplitude limit cycles, the following lemma gives sufficient condi-
tions, see Lemma 3.2 in [5] and Theorem 2.1 in [6].
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Lemma 2.3. Suppose c = (c1, c2, . . . , cN), I(h) = ∑∞
i=0 Ai(c)hi where Ai(c∗) = 0, i = 0, 1, 2, . . . ,

N − 1, AN(c∗) 6= 0, and

rank
(

∂(A0(c), A1(c), . . . , AN−1(c))
∂(c1, c2, . . . , cN)

|c∗
)
= N,

then there exists (c1, c2, . . . , cN) such that I(h) can have N simple real positive roots near h = 0.

3 Proof of the main results

In this section, we will prove Theorem 1.1 and Theorem 1.2 by Lemma 2.2 and Lemma 2.3
respectively. For system (1.4)ε=0, there exists a first integral

H(x, y) =

{
H+(x, y) = 1

4 (y
2 − 1)2 + 1

4 x2(1 + 4
3 āx + c̄x2),

H−(x, y) = 1
4 (y

2 − 1)2 + 1
4 x2(1 + 4

3 b̄x + d̄x2).

Define Γ±hi = {(x, y) : H±(x, y) = h, 0 < h < 1
4}, i = 1, 2, which form two annuli corresponding

to two centers (0, 1) and (0,−1), respectively (see Figure 3.1). More precisely, Γ+
h1 ∪ Γ−h1 and

Γ+
h2 ∪ Γ−h2 are the closed orbits surrounding (0, 1) and (0,−1), respectively.

Figure 3.1: The phase graph of system (1.4)ε=0.

Since H+
y (x, y) = H−y (x, y), the Abelian integral (2.2) of the system (1.4) corresponding to

the two annuli can be written as

Ii(h) =
∫

Γ+
hi

g+(x, y)dx− f+(x, y)dy +
∫

Γ−hi

g−(x, y)dx− f−(x, y)dy, i = 1, 2, (3.1)

respectively. A direct computation for (3.1) yields the following result.

Lemma 3.1.

Ii(h) = − (a00 − c00)
∫

Γ+
hi

dy− (a01 − c01)
∫

Γ+
hi

ydy− (a02 − c02)
∫

Γ+
hi

y2dy− (a03 − c03)
∫

Γ+
hi

y3dy

−
∫

Γ+
hi

[
(a10 + b01)x + (a11 + 2b02)xy +

(
a20 +

1
2

b11

)
x2 +

(
a30 +

1
3

b21

)
x3

+ (a21 + b12)x2y +

(
a12 + 3b03

)
xy2
]

dy−
∫

Γ−hi

[(
c10 + d01

)
x + (c11 + 2d02)xy

+

(
c20 +

1
2

d11

)
x2 +

(
c30 +

1
3

d21

)
x3 + (c21 + d12)x2y + (c12 + 3d03)xy2

]
dy, i = 1, 2.
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In the proof of Lemma 3.1, we will impose∫
Γ+

hi

dy = −
∫

Γ−hi

dy,
∫

Γ+
hi

xmyndx = −
∫

Γ+
hi

n
m + 1

xm+1yn−1dy.

Since the proof is direct, we omit it. Furthermore, if we take the following hypothesis

(H) a01 − c01 = a03 − c03 = a11 + 2b02 = a21 + b12 = c11 + 2d02 = c21 + d12 = 0,

the Abelian integrals I1(h) and I2(h) will have the same expression defined as I(h). Define

J1(h)=
∫

Γ+
h1

dy, J2(h)=
∫

Γ+
h1

y2dy, J3(h)=
∫

Γ+
h1

xdy, J4(h)=
∫

Γ+
h1

x2dy, J5(h)=
∫

Γ+
h1

x3dy,

J6(h)=
∫

Γ+
h1

xy2dy, J7(h)=
∫

Γ−h1

xdy, J8(h)=
∫

Γ−h1

x2dy, J9(h)=
∫

Γ−h1

x3dy, J10(h)=
∫

Γ−h1

xy2dy.

Then we show the expression of I(h) as the following result.

Lemma 3.2. When the hypothesis (H) holds, then

I(h) = − (a00 − c00)J1(h)− (a02 − c02)J2(h)− (a10 + b01)J3(h)−
(

a20 +
1
2

b11

)
J4(h)

−
(

a30 +
1
3

b21

)
J5(h)− (a12 + 3b03)J6(h)− (c10 + d01)J7(h)−

(
c20 +

1
2

d11

)
J8(h)

−
(

c30 +
1
3

d21

)
J9(h)− (c12 + 3d03)J10(h).

Proof. Using symmetry, we have∫
Γ+

h1

xiyjdy = (−1)j
∫

Γ+
h2

xiyjdy,
∫

Γ−h1

xiyjdy = (−1)j
∫

Γ−h2

xiyjdy,

where 0 ≤ i + j ≤ 3. Combining Lemma 3.1 and hypothesis (H), we directly obtain that I1(h)
and I2(h) have the same expression I(h).

Proof of Theorem 1.1. For simplicity, we may take ā = 3
4 , b̄ = 6

4 , and c̄ = d̄ = 1, then

Γ+
h1 =

{
(x, y) :

1
4
(y2 − 1)2 +

1
4

x2(1 + x + x2) = h
}

,

and

Γ−h1 =

{
(x, y) :

1
4
(y2 − 1)2 +

1
4

x2(1 + 2x + x2) = h
}

,

where 0 < h < 1
4 .

From the proof of Lemma 3.2, it is easy to check that the coefficients of Ji(h), i = 1, 2, . . . , 10,
are arbitrary and J1(h) > 0 for all h ∈ (0, 1

4 ). By Lemma 2.2 and Theorem 2.1, we only need to
prove that Ji(h), i = 1, 2, . . . , 10, are linearly independent functions.

Let h = r2

4 . When 0 < h � 1, on Γ+
1h we apply the transformations x2(1 + x + x2) =

u2, (y2 − 1)2 = v2 with x > 0, y > 0, where u = r cos θ, v = r sin θ, θ ∈ (−π
2 , π

2 ). With the aid
of algebra-system Maple [3], we obtain

x = u− 1
2

u2 +
1
8

u3 +
1
2

u4 − 161
128

u5 +
3
2

u6 +
33

1024
u7 − 9

2
u8 +

350779
32768

u9 − 23
2

u10 + O(u11),

y = 1 +
1
2

v− 1
8

v2 +
1
16

v3 − 5
128

v4 +
7

256
v5 − 21

1024
v6 +

33
2048

v7 − 429
32768

v8 +
715

65536
v9

− 2431
262144

v10 + O(v11).
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Furthermore,

J1(h) =
∫

Γ+
h1

dy =
∫ π

2

− π
2

r cos θ
dy
dv
|v=r sin θ dθ = r +

1
8

r3 +
7

128
r5 +

33
1024

r7 +
715

32768
r9 + O(r11),

J2(h) = r− 1
24

r3 − 1
128

r5 − 3
1024

r7 − 143
98304

r9 + O(r11),

J3(h) =
1
4

πr2 − 1
3

r3 +
3
64

πr4 +
29

120
r5 − 191

1024
πr6 +

443
640

r7 − 82949
46080

r9 +
1382241
1048576

πr10 + O(r11),

J4(h) =
2
3

r3 − 3
16

πr4 +
19
60

r5 +
1
8

π r6 − 601
448

r7 +
4935
8192

πr8 − 3023
4608

r9 − 78477
65536

πr10 + O(r11),

J5(h) =
3
16

πr4 − 4
5

r5 +
3
16

πr6 +
29
70

r7 − 5655
8192

πr8 +
12317
3360

r9 − 47691
65536

πr10 + O(r11),

J6(h) =
1
4

πr2 − 1
3

r3 +
1
64

πr4 +
11
40

r5 − 203
1024

πr6 +
9167
13440

r7 +
115

16384
πr8 − 592951

322560
r9

+
1381233
1048576

πr10 + O(r11).

On Γ−h1, let x2(1 + 2x + x2) = u2, (y2 − 1)2 = v2 with x < 0 and y > 0, where u = r cos θ, v =

r sin θ, θ ∈ (π
2 , 3π

2 ). Similarly, we have

x = u− u2 + 2u3 − 5u4 + 14u5 − 42u6 + 132u7 − 429u8 + 1430u9 − 4862u10 + O(u11),

y = 1 +
1
2

v− 1
8

v2 +
1

16
v3 − 5

128
v4 +

7
256

v5 − 21
1024

v6 +
33

2048
v7 − 429

32768
v8 +

715
65536

v9

− 2431
262144

v10 + O(v11).

Furthermore,

J7(h) =
1
4

πr2 +
2
3

r3 +
51

128
πr4 +

163
60

r5 +
9091
4096

πr6 +
43363
2240

r7 +
4760595
262144

πr8 +
28250723
161280

r9

+
2963888949
16777216

πr10 + O(r11),

J8(h) = −
2
3

r3 − 3
8

π r4 − 163
60

r5 − 283
128

π r6 − 43363
2240

r7 − 297465
16384

π r8 − 28250723
161280

r9

− 46310061
262144

π r10 + O(r11),

J9(h) =
3
16

π r4 +
8
5

r5 +
363
256

π r6 +
451
35

r7 +
405465
32768

π r8 +
203683
1680

r9 +
64826685

524288
π r10 + O(r11),

J10(h) =
1
4

π r2 +
2
3

r3 +
47

128
π r4 +

53
20

r5 +
8923
4096

π r6 +
128689
6720

r7 +
4721575
262144

π r8 +
28071031
161280

r9

+
2948223621
16777216

π r10 + O(r11).

Define Ji(h) = ∑10
j=1 Ci,jrj +O(r10), i = 1, 2, . . . , 10, and C = (Ci,j)10×10, we obtain rank(C) = 10

which means Ji(h), i = 1, 2, . . . , 10, are linearly independent functions.
The proof is completed.

Next, we will apply Lemma 2.3 to prove that there exists a system of (1.4) with 22 small-
amplitude limit cycles. Here we will take ā = 3

4 a, b̄ = 3
4 b, and c̄ = d̄ = 1 for simplicity.

Proof of Theorem 1.2. Let

I(h) =
10

∑
j=1

k j Jj(h),
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where k j, j = 1, 2, . . . , 10, are arbitrary real constants.
By similar calculations used in Theorem 1.1, with the relation h = r2

4 , we get the Taylor
expansions of Ji(h), i = 1, 2, . . . , 10, with 12th-order r which yield

I(h) =
12

∑
i=0

Firi + O(r13) =
12

∑
i=0

2Fih
i
2 + O(h

13
2 ),

where

F0 = 0,

F1 = k1 + k2,

F2 =
1
4

π k3 +
1
4

π k6 +
1
4

π k7 +
1
4

π k10,

F3 =
1
8

k1 −
1
24

k2 −
1
3

ak3 +
2
3

k4 −
1
3

ak6 +
1
3

bk7 −
2
3

k8 +
1
3

bk10,

F4 =

(
− 9

128
π +

15
128

a2π

)
k3 −

3
16

π ak4 +
3

16
π k5 +

(
− 13

128
π +

15
128

a2π

)
k6

+

(
− 9

128
π +

15
128

b2π

)
k7 −

3
16

π bk8 +
3
16

π k9 +

(
− 13

128
π +

15
128

b2π

)
k10,

F5 =
7

128
k1 −

1
128

k2 +

(
− 8

15
a3 +

31
40

a
)

k3 +

(
− 29

60
+

4
5

a2
)

k4 −
4
5

ak5 +

(
− 8

15
a3 +

97
120

a
)

k6

+

(
8
15

b3 − 31
40

b
)

k7 +

(
− 4

5
b2 +

29
60

)
k8 +

4
5

bk9 +

(
8
15

b3 − 97
120

b
)

k10,

F6 =

(
571

4096
π − 1245

2048
a2π +

1155
4096

a4π

)
k3 +

(
− 105

256
π a3 +

137
256

π a
)

k4

+

(
− 57

256
π +

105
256

a2π

)
k5 +

(
563
4096

π − 1265
2048

a2π +
1155
4096

a4π

)
k6

+

(
571
4096

π − 1245
2048

b2π +
1155
4096

b4π

)
k7 +

(
− 105

256
π b3 +

137
256

π b
)

k8

+

(
− 57

256
π +

105
256

b2π

)
k9 +

(
563
4096

π − 1265
2048

b2π +
1155
4096

b4π

)
k10,

and Fi, i = 7, 8, 9, 10, 11, 12, are polynomials of a, b, and k j, j = 1, 2, . . . , 10, which are omitted
here because of the large scale.

Solving Fi = 0, i = 1, . . . , 9, we obtain k1, k3, k2, k4, k5, k6, k7, k8, k9 as follows.

k1 = − k2,

k3 = − k6 − k7 − k10,

k2 = 4k4 + (2a + 2b)k7 − 4k8 + (2a + 2b)k10,

k4 = − 1
24a

(
− 24k5 + 4k6 + (15a2 − 15b2)k7 + 24bk8 − 24k9 + (15a2 − 15b2 + 4)k10

)
,

k5 =

(
− 3

22
a2 +

1
6

)
k6 +

(
1
22

a4 +
15
22

a2b2 +
8

11
b3a− 53

88
a2 − 27

22
ba− 5

8
b2
)

k7

+

(
− 12

11
a2b− 12

11
b2a + a + b

)
k8 +

(
12
11

a2 +
12
11

ba− 1
)

k9

+

(
1
22

a4 +
15
22

a2b2 +
8

11
b3a− 69

88
a2 − 14

11
ba− 5

8
b2 +

1
6

)
k10,
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k6 =
1

16(9a2 − 22)

(
(103a4 + 390a2b2 − 2048ab3 − 2541b4 − 768a2 + 3456ab + 4224b2)k7

+ (−624a2b + 3072ab2 + 3696b3 − 2816a− 2816b)k8 + (624a2 − 3072ab− 3696b2)k9

+ (103a4 + 390a2b2 − 2048ab3 − 2541b4 − 872a2 + 3584ab + 4312b2 + 352)k10

)
,

k7 = − N7(a, b, k8, k9, k10)

3 M7(a, b)
, k8 = −N8(a, b, k9, k10)

6 M8(a, b)
, k9 = − k10 N9(a, b)

24 (a + b)2 M(a, b)
,

where M7, N7, M8, N8, N9, and M are polynomials of degree 7, 6, 10, 10, 14, and 10, respec-
tively. Substituting the above results into F10, F11, and F12, we have

F10 = − 21πk10

1048576M
(a2 − b2)P10(a, b), F11 =

k10

3465M
(a + b)P11(a, b),

F12 = − 21πk10

33554432M
(a2 − b2)P12(a, b),

where P10(a, b), P11(a, b), and P12(a, b) are polynomials of degree 12, 14, and 14 respectively.
Define

P = det
[

∂(F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11)

∂(k1, k3, k2, k4, k5, k6, k7, k8, k9, a, b)

]
.

When Fi = 0, i = 1, . . . , 9, we take k1, k3, k2, k4, k5, k6, k7, k8, and k9 into function P one by one.
Then we obtain

P =
π5k2

10(a + b)6

819261067214035353600
P̄(a, b)

M
,

where P̄(a, b) is a polynomial of degree 36.
Next, we prove the existence of a, b such that P10(a, b) = P11(a, b) = 0 and P12(a, b) ·

P̄(a, b) 6= 0 in three steps.
Firstly, we determine the common roots of P10(a, b) and P11(a, b). By the Maple built-in

command ‘RealRootIsolate’ where the width of the interval is less than or equal 1
215 , we have

R1 , {[[1.678741455, 1.678771973], [−0.9492201089,−0.9492201089]],

[[0.9492034912, 0.9492263794], [−1.678745722,−1.678745722]],

[[−0.9492263794,−0.9492034912], [1.678745722, 1.678745722]],

[[−1.678771973,−1.678741455], [0.9492201089, 0.9492201089]],

[[−1.901992798,−1.901976585], [−0.03034826851,−0.03034826851]],

[[−2.100128174,−2.100101471], [−0.8025713876,−0.8025713876]],

[[−2.040435791,−2.040405273], [−1.611435396,−1.611435396]],

[[−0.03036117554,−0.03033447266], [−1.901976879,−1.901976879]],

[[−1.611436844,−1.611415863], [−2.040434847,−2.040434847]],

[[−0.8025817871,−0.8025512695], [−2.100106852,−2.100106852]],

[[0.8025512695, 0.8025817871], [2.100106852, 2.100106852]],

[[1.611415863, 1.611436844], [2.040434847, 2.040434847]],

[[0.03033447266, 0.03036117554], [1.901976879, 1.901976879]],

[[2.040405273, 2.040435791], [1.611435396, 1.611435396]],

[[2.100101471, 2.100128174], [0.8025713876, 0.8025713876]],

[[1.901976585, 1.901992798], [0.03034826851, 0.03034826851]]},
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where the common roots are located.
Secondly, we estimate the common roots of P10(a, b), P11(a, b), and P12(a, b), and the com-

mon roots of P10(a, b), P11(a, b), and P̄(a, b). By Groebner Basis and the Maple built-in com-
mand ‘Basis’, we get

Basis([P10(a, b), P11(a, b), P12(a, b)], plex(a, b)) = Basis([P10(a, b), P11(a, b), P̄(a, b)], plex(a, b)),

and two polynomials P1(b) and P2(a, b) with degrees 44 and 43, respectively, which mean the
common roots of P10, P11, and P12 are the same as the common roots of P10, P11, and P̄(a, b)
and they are determined by the common roots of P1(b) and P2(a, b). Furthermore, we find the
intervals where the roots of P1(b) are located as follows

R2 ,{[−1.678746223,−1.678745270], [−0.9492206573,−0.9492197037],

[0.9492197037, 0.9492206573], [1.678745270, 1.678746223]}.

Thirdly, we take

(a∗, b∗) ∈ [[−1.901992798,−1.901976585], [−0.03034826851,−0.03034826851]],

which means a∗ ∈ [−1.901992798,−1.901976585], b∗ ∈ [−0.03034826851,−0.03034826851] with
b∗ /∈ R2. Then P10(a∗, b∗) = P11(a∗, b∗) = 0 and P12(a∗, b∗) · P̄(a∗, b∗) 6= 0. By the same method,
we can prove (a∗, b∗) such that M 6= 0 and Mi 6= 0, i = 7, 8. Furthermore, these properties
imply F10 = F11 = 0 and F12 · P 6= 0.

Finally, we can solve k∗9, . . . , k∗1 one by one, which combined with a∗ and b∗ imply Fi =

0, i = 1, 2, . . . , 11, and F12 · P 6= 0. According to Lemma 2.3, I(h) has 11 simple positive roots
near h = 0. By symmetry, the proof is completed.
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