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The algebraic approach to physical theories provides a general frame-

work encompassing both classical and quantum mechanics. Accordingly, by

looking at the behaviour of the relevant algebras of observables one can inves-

tigate structural and conceptual differences between the theories. Interesting

foundational questions can be formulated algebraically and their answers are

then given in a mathematically compelling way. My dissertation focuses on

some philosophical issues concerning entanglement and quantum information

as they arise in the algebraic. These two concepts are connected in that one

can exploit the non-local character of quantum theory to construct protocols

of information theory which are not realized in the classical world.



I first introduce the basic concepts of the algebraic formalism, by review-

ing von Neumann’s work on the mathematical foundations of quantum theo-

ries. After presenting the reasons why von Neumann abandoned the standard

Hilbert space formulation in favour of the algebraic approach, I show how

his axiomatic program remained a mathematical ”utopia” in mathematical

physics.

The Bayesian interpretation of quantum mechanics is grounded in information-

theoretical considerations. I take on some specific problems concerning the

extension of Bayesian statistical inference in infinite dimensional Hilbert

space. I demonstrate that the failure of a stability condition, formulated as

a rationality constraint for classical Bayesian conditional probabilities, does

not undermine the Bayesian interpretation of quantum probabilities. I then

provide a solution to the problem of Bayesian noncommutative statistical

inference in general probability spaces. Furthermore, I propose a deriva-

tion of the a priori probability state in quantum mechanics from symmetry

considerations.

Finally, Algebraic Quantum Field Theory offers a rigorous axiomatization

of quantum field theory, namely the synthesis of quantum mechanics and spe-

cial relativity. In such a framework one can raise the question of whether

or not quantum correlations are made stronger by adding relativistic con-

straints. I argue that entanglement is more robust in the relativistic context



than in ordinary quantum theory. In particular, I show how to generalize

the claim that entanglement across space-like separated regions of Minkowski

spacetime would persist, no matter how one acts locally.
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Chapter 1

Introduction

Mathematics and theoretical physics have actually a good deal

in common. ... [T]he attitude that theoretical physics does not

explain phenomena, but only classifies and correlates, is today

accepted by most theoretical physicists. This means that the

criterion of success for such a theory is simply whether it can,

by a simple and elegant classifying and correlating scheme, cover

very many phenomena, which without this scheme would seem

complicated and heterogeneous, and whether the scheme even

covers phenomena which were not considered or even not known

at the time when the scheme was evolved. (These two latter

statements express, of course, the unifying and the predicting

power of a theory.) Now this criterion, as set forth here, is clearly
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to a great extent of an aesthetical nature. For this reason it is

very closely akin to the mathematical criteria of success, which,

as you shall see, are almost entirely aesthetical. [von Neumann

(1947)]

Mathematics is one of the richest and most outstanding human intellectual

activities. Despite its character of abstractness, it is successfully applied to a

large number of empirical sciences. The fact that its conceptual foundations

are not entirely understood makes this success somewhat amazing. Galileo’s

metaphor that Nature is a book written in the language of mathematics may

not be taken too seriously. That is, one may not believe in the ontological

claim that the world has a fundamentally mathematical structure. Yet, it is

true that without grasping, and perhaps mastering, the mathematical lan-

guage that structures our best scientific theories one is doomed to wander

“in a dark labyrinth”, as Galileo himself put it.

Theoretical physics is the branch of science where mathematics finds its

chief applications. Theoretical models describing empirical phenomena are

built by using sophisticated mathematical procedures. Mathematical terms

are associated with physical entities. The quantitative aspect of the formu-

las thus obtained enables one to make predictions that can then be tested

by experiments. Moreover, the availability of a common language offers a
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unifying framework for the treatment of different phenomena. In particu-

lar, it puts one in a position to merge various physical theories. Differently

than pure mathematics, though, theoretical physics ought not to abstract

completely from the empirical context. The unifying and predictive stages

typically come after experimental physics has raised a problem. Only in this

way one may hope to attain any achievement in the discipline.

To be sure, not all the mathematical terms appearing in a theory cor-

respond to physical quantities. A non-trivial part of the formalism has a

mere connecting function. However, the more one proceeds in the process

of abstraction, the harder it gets to identify the terms which have a gen-

uine physical counterpart. It may be seen as a philosophical problem for the

foundations of physics to interpreting the mathematical symbols of a theory.

Furthermore, the unification of different theories does not reduce to a purely

technical procedure, but it requires merging the different (possibly heteroge-

neous) concepts underlying each theory as well. Philosophy of physics is thus

concerned with the issue of providing a consistent conceptual interpretation

of physical theories and their mutual relations.

John von Neumann was one of the greatest mathematicians of the last

century. He made substantial contributions to theoretical physics, especially

in quantum mechanics. His work on foundations of physics is often referred

to as an example for the mathematical treatment of philosophical problems
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arising in the physical sciences. Far from taking an intransigent attitude

toward the demand of mathematical rigor in physics, he actually regarded

technical and conceptual difficulties of theoretical physics as an inspirational

source for his work as a mathematician. As he emphasized in a paper titled

The Mathematician which he wrote in 1947, where he compared the method

of pure mathematics with that of the empirical sciences, “[s]ome of the best

inspirations of modern mathematics (I believe, the best ones) clearly origi-

nated in the natural sciences”. The construction of von Neumann algebras

theory, which is a branch of operator algebras theory, is a paradigmatic case.

In fact, he developed the algebraic formalism to provide a general framework

for quantum theories.

The algebraic approach to physical theories is nowadays a well-developed

area of modern theoretical physics. The algebraic formulation encompasses

both classical and quantum mechanics. Thus, it represent a powerful tool

to investigate structural and conceptual differences between the theories. It

also yields a neat treatment of quantum systems in infinite dimensions. Inter-

esting foundational questions can thus be formulated algebraically and their

answers are then given in a compelling mathematical way. This explains the

growing interest of philosophers of physics toward algebraic physical theories.

Furthermore, the algebraic formalism offers a clean and rigorous axioma-

tization of quantum field theory, that is the synthesis of quantum mechanics
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and special relativity, avoiding the usual approximations of the standard for-

mulation that lead to divergences. The price to pay for formal precision is

that one somehow loses a direct connection to the physical scenario, but all

the relevant properties of micro-objects, whether these are (free) quantum

fields or elementary particles, can actually be reconstructed. As Rudolph

Haag, who is the prominent figure in Algebraic Quantum Field Theory, com-

mented in his seminal book Local Quantum Physics, the algebraic approach

does not provide a theory, but just a language. One of its remarkable virtues,

though, is the suggestive harmony between physical questions and mathemat-

ical structures that arises in such a framework.

The theory of von Neumann algebras and C*-algebras offers an

adequate language for the concise formulation of the principle of

locality in special relativistic quantum physics and tools for fur-

ther development of the physical theory. But more striking are

cases where the discussion of physical questions and the develop-

ment of a mathematical structure proceed in parallel, ignorant of

each other and motivated by completely disjoint objectives, till

some time the close ties between them are noticed and a mutu-

ally fruitful interaction between physicists and mathematicians

sets in. [Haag (1996), p.323]
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The purpose of this dissertation is to address some philosophical questions

arising in the algebraic approach. In particular, as the title indicates, I focus

on some issues concerning entanglement and information. The original part

of the work is based on a few papers that I have already published and some

others that are in preparation or under review.

The first chapter offers an overview of von Neumann’s work on the math-

ematical foundations of quantum theories. I show that his abandoning the

standard Hilbert space formalism of quantum mechanics, which he himself

originally worked out, in favor of the algebraic formulation was vindicated

by the search for a physically sound and intuitively satisfactory interpreta-

tion of the theory. In doing this, I also pinpoint the conceptual motivation

behind the technicalities involved in von Neumann algebras theory. As I ar-

gued in Valente (2008), von Neumann’s work on quantum foundations was

inspired by Hilbert’s Sixth Problem concerning the geometrical axiomatiza-

tion of physics: in his view geometry was so tied to logic that he ultimately

developed a logical interpretation of quantum probabilities. There I also

presented the reasons why his axiomatic program remained an “unsolved

problem” in mathematical physics. Specifically, I discussed the consequences

of a result by Huzimiro Araki, proving that no algebra with a tracial state

defined on it, such as the type II1 factors, which von Neumann regarded as

the proper limit of quantum mechanics in infinite dimensions, can support
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any (regular) representation of the canonical commutation relations.

A more rigorous introduction of the basic concepts of the algebraic ap-

proach is given in the second chapter. There I also discuss the philosophical

consequences of entanglement in quantum mechanics. The presence of en-

tangled states across separated physical systems is in fact responsible for the

non-local character of the theory. Then, I spell out the close connection be-

tween entanglement and quantum information. Specifically, the possibility

of long-distance correlations enables one to construct protocols of informa-

tion theory which are not realized in the classical world. Moreover, since

von Neumann algebras theory represents a non-commutative generalization

of classical probability theory, one can study the behaviour of quantum prob-

abilities in great detail and contrast it to the classical case. I conclude by

taking on some difficulties arising for the Bayesian interpretation of quantum

mechanics, which is grounded in information-theoretical considerations. In

particular, there are problems concerning the extension of Bayesian statisti-

cal inference in infinite dimensional Hilbert space. A stability condition for

Bayesian conditional probabilities, which Redei (1992, 1998) formulated as

a rationality constraint holding in classical probability theory, is shown to

fail in quantum mechanics. In Valente (2007) I demonstrated that Redei’s

argument does not apply to quantum theory and I provided a solution to the

problem of Bayesian noncommutative statistical inference arising from the
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violation of stability condition in general probability spaces. Moreover, in

Valente (2009) I propose a derivation of the a priori probability state from

symmetry considerations.

Finally, in the last chapter, I address a few philosophical problems of rel-

ativistic quantum mechanics. After introducing the axiomatics of Algebraic

Quantum Field Theory, I raise the question of whether or not quantum cor-

relations are made stronger by adding relativistic constraints. I first show

that, despite the local structure of the relevant algebras, locality is maximally

violated by quantum field systems. Then, I demonstrate that entanglement

is more robust in the relativistic context than in ordinary quantum theory.

In particular, there is a sense in which entangled states across space-like

separated regions of Minkowski spacetime would persist, no matter how one

acts locally. In fact, Clifton and Halvorson (2001) proved that one cannot

destroy entanglement between type III factors by performing any local op-

eration. I offer a generalization of their result and then argue that, contrary

to what Clifton and Halvorson claim, the persistence of entanglement is not

peculiar only to local algebras. Furthermore, I present a result I obtained

with Miklos Redei which shows that, due to the local character of local op-

erations, AQFT fares better than non-relativistic quantum mechanics in a

field-theoretic paradigm proposed by Einstein in his 1948 Dialectica paper.
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Chapter 2

John von Neumann’s

Mathematical “Utopia” in

Quantum Theory

In 1954 John von Neumann was invited to give a lecture on “Unsolved Prob-

lems in Mathematics” at the International Congress of Mathematicians held

in Amsterdam (September 2-9). From an historical point of view, the type-

script recording the talk constitutes a fundamental document of his late con-

ception of quantum mechanics since it offers the last presentation of the ideas

he developed after his celebrated 1932 book on the mathematical foundations

of the theory. Under explicit request of the Committee of the Congress, von
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Neumann’s address had the same character as the famous lecture David

Hilbert gave to the second International Congress of Mathematicians that

took place in Paris in 1900, in which he presented a list of twenty-three un-

solved problems in all areas of pure and applied mathematics; solving such

open questions was expected to contribute to progress in mathematical sci-

ence. In particular the Sixth Problem, concerning the geometrical treatment

of axioms in physics, had great influence on von Neumann’s work in mathe-

matical physics:

Mathematical Treatment of the Axioms of Physics. The investi-

gations on the foundations of geometry suggest the problem: To

treat in the same manner, by means of axioms, those physical

sciences in which already today mathematics plays an important

part; in the first rank are the theory of probabilities and mechan-

ics. [Hilbert (1900)]

As Hilbert put it, by investigating the foundations of geometry one would

get a model for the axiomatization of those physical disciplines in which

mathematics plays a prominent role, especially mechanics and the calculus

of probability. Von Neumann’s aim was just to formulate a geometrical

axiomatisation of quantum theories in the spirit of Hilbert.
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During his lecture von Neumann discussed operator theory and its con-

nections with quantum mechanics and noncommutative probability theory,

pinpointing a number of unsolved problems. In his view geometry was so tied

to logic that he ultimately outlined a logical interpretation of quantum prob-

abilities. The core idea of his program is that probability is invariant under

the symmetries of the logical structure of the theory. This is tantamount to

a formal calculus in which logic and probability arise simultaneously. The

problem that exercised von Neumann then was to construct a geometrical

characterization of the whole theory of logic, probability and quantum me-

chanics, which could be derived from a suitable set of axioms.

Importantly, geometry plays a two-fold role in the foundations of the

theory. On the one hand, it offers a model for how to carry out the axiomati-

zation of quantum mechanics. On the other hand, projective and continuous

geometries provide a framework for the formal structure of the theory. How-

ever, as I shall argue, this notion of geometry has nothing to do with, and

indeed for von Neumann one should keep it sharply separated from, any

spatial considerations. As he himself finally admitted, he never managed to

set down the sought-after axiomatic formulation in a way that he felt satis-

factory. Furthermore, the conceptual details of the logical interpretation of

quantum mechanics are scattered in a number of papers (some unfinished)

rather than presented in a systematic picture. A reconstruction of such ideas
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can be found in Bub (1961a, 1961b), who first quoted the typescript, and, in

a more extensive way, in Redei (1996, 1998, 1999, 2001).

The first part of this chapter recalls the main reasons why von Neumann

abandoned Hilbert space in favor of the type II1 factor, a particular sort of

von Neumann algebra, as the “proper limit” of quantum theories in infinite

dimensions. In particular, section 1.1.3. is also meant to provide a conceptual

introduction of the mathematical details of the algebraic approach, which will

be recovered in a more rigorous way in the next chapter. The crucial aspects

of his unified theory of quantum logic and quantum probability, as well as

its inheritance from Hilbert’s Sixth problem, are then discussed in detail in

section 2. In section 3, by following Valente (2008), I explain in what sense

it remained an unsolved problem in mathematical physics. I also supply

evidence for the claim that von Neumann intended to complete his project

by including information theory and by extending the algebraic treatment

to relativistic quantum field theory. These two topics, and their connection

to entanglement, will be then developed independently from von Neumann’s

work in chapter 2 and chapter 3, respectively.

Von Neumann’s appealing to the type II1 factor as the proper mathemat-

ical arena for quantum mechanics has been criticized on many grounds. Yet,

no argument was supplied that demonstrates that such an algebraic structure

cannot, in principle, recover quantum theory. Certainly, in practice, physics
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never really departed from the Hilbert space formalism. A comment by the

mathematical physicist Huzihiro Araki (1990) is particularly evocative:

... a specific example provided by type II von Neumann algebras

[the type II1 factor] seemed to be a (mathematical) Utopia for

quantum calculus, i.e. calculus of unbounded operators. [Araki

(1990), p.119]

Araki has recently produced an unpublished result which appears to chal-

lenge the suitability of factors of type II1 to support any representation of

the Canonical Commutation Relations1. This would prove that what von

Neumann was after is indeed a mathematical “utopia” in quantum theory. I

take this up in the last section of the chapter.

1I am grateful to Prof. Araki for kindly letting me use the result. I also wish to thank

Miklos Redei for showing me the hand-written paper containing the proof that Prof.Araki

first passed to him during the Von Neumann Centennial Conference held in Budapest in

2003.
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2.1 Rise and Fall of Hilbert Space

2.1.1 The axiomatic method: prolegomena to Hilbert

space quantum mechanics

The Hilbert space formalism of quantum mechanics was formulated in his

1932 seminal book on the mathematical foundations of the theory (von Neu-

mann (1932)), that followed a series of three papers that he published in 1927

(von Neumann (1927a, 1927b, 1927c)). Some of the basic ideas developed

there are to be traced back to a paper he published in 1926 together with

Nordheim and Hilbert, summarizing a series of lectures on quantum theory

which Hilbert himself gave in Göttingen in the same year. Two aspects of

this joint work are particularly relevant to von Neumann’s subsequent devel-

opment of quantum mechanics, both at a technical and at a conceptual level.

On the one hand, the three authors proposed a quite interesting discussion

of the axiomatic method in physics in the spirit of the Sixth Problem. On

the other one, they emphasized the crucial role of probability in quantum

mechanics and connected it with the axioms of the theory.

Hilbert, Nordheim and von Neumann distinguished the axiomatic ap-

proach adopted in the physical sciences from the sort of axiomatics that is

peculiar of formal systems and languages. The former in fact requires a

14



less strict way of axiomatizing than the latter. Accordingly, there are three

components characterizing the structure of any physical theory. One first

formulates a set of semi-formal requirements, the physical axioms, which are

empirically grounded and capture the observational content of the theory. A

mathematical description of the physical quantities involved in the axioms is

then given by the formalism, the so-called analytic machinery of the theory.

Finally, the physical axioms and the analytic machinery are connected by the

physical interpretation. Ideally, one should specify the physical requirements

in a such a way that the quantities occurring in the formalism are unam-

biguously fixed. Geometry would provide the model for such a complete

axiomatization.

In particular, as quantum-mechanical observations provide the ground

only for probabilistic statements, probability is taken as the primitive concept

in the axiomatization of quantum theory. The following passage by Hilbert,

Nordheim and von Neumann (1926) makes this point explicit.

The way leading to this theory is the following: one formulates

certain physical requirements concerning these probabilities, re-

quirements that are plausible on the basis of our experiences and

developments and which entail certain relations between these

probabilities. Then one searches for a simple analytic machinery
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in which quantities appear that satisfy exactly these relations.

This analytic machinery and the quantities occurring in it re-

ceive a physical interpretation on the basis of the physical re-

quirements. The aim is to formulate the physical requirements in

a way that is complete enough to determine the analytic machin-

ery unambiguously. This way is then the way of axiomatising, as

this had been carried out in geometry, for instance. The relations

between geometric shapes such as point, line, plane are described

by axioms, and then it is shown that these relations are satis-

fied by an analytic machinery, namely, linear equations. Thereby

one can deduce geometric theorems from properties of the linear

equations. [Hilbert, Nordheim and von Neumann (1926), p.105,

translated in Redei and Stöltzer (2006)]

Nevertheless, in the practice of science the analytic machinery is usually

conjectured (and uniquely determined) before a complete axiomatics is laid

down. In fact, it is by interpreting the formalism that one identifies the basic

physical relations of the theory. To establish a set of axioms rich enough is

thus the task of the physical interpretation, that is where, quite contrary to

formal axiomatics, “a certain freedom and arbitrariness” is actually allowed

in mathematical physics. Redei and Stöltzer (2006) defined this attitude as
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opportunistic soft axiomatization and claim that it characterized von Neu-

mann’s work in quantum foundations.

In the case of quantum mechanics, the formal quantities ought to corre-

spond to probabilistic assignments. As I will show later on in the chapter, in

von Neumann’s view, the axiomatic machinery of quantum mechanics was

given in the framework of operator theory, generalizing Hilbert space. Al-

legedly, the physical interpretation advocated by the axiomatic method was

the logical interpretation of quantum probabilities. Such an approach was

indeed at the bottom of von Neumann’s construction, and eventually of his

abandonment as well, of Hilbert space quantum mechanics.

In the Hilbert-Nordheim-von Neumann paper, quantum-mechanical prob-

abilities have the form of probability densities for the distribution of values

of physical quantities. That is, the probability that the quantity A takes

its value x in the interval [a, b] provided that the quantity B has value y is

found by integrating the probability density w(x, y, A, B) with respect to dx,

i.e.
∫ b
a w(x, y, A, B)dx. Importantly, the authors referred to w as the “rela-

tive” probability density in the sense that it is not normalized. The problem,

which they themselves felt quite uneasy with, is that computing the probabil-

ity for a physical quantity to have value x provided that the same quantity

has value y requires employing the Dirac function (so that w is given by

δ(x− y)), which von Neumann regarded as an illegitimate mathematical en-
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tity. To avoid appealing to such an “improper” function, he developed what

later became the standard Hilbert space formalism of quantum mechanics.

Let us conclude this section by recalling the basic definition of Hilbert

space. That is a linear vector space with complex coefficients equipped with

a scalar product 〈·|·〉. The latter associates a complex number to any pair

of elements of the space and induces a norm ||η|| defined by the relation

||η||2 = 〈η, η〉 for any vector η of the space. The dimension dim(H) =

n of a Hilbert space H is determined by the maximal number of linearly

independent2 vectors in it. If n < ∞, then the space is finite dimensional and

we denote it by Hn; if, instead, n = ∞, then the space is infinite dimensional

and we denote it byH. The Hilbert space is also required to be complete with

respect to the norm induced by the scalar product, in the sense that every

Cauchy sequence of elements of H converges in norm to a vector belonging

to H itself. Moreover, the Hilbert space is said to be separable just in case

there exists a countable dense set of vectors in it (an assumption that von

Neumann made throughout his 1932 book).

Any vector ψ of Hilbert space, whether finite or infinite dimensional, can

then be associated with the state of a quantum system. The observables in

the theory are selfadjoint operators defined on H. This guarantees that the

2A finite or infinite sequence of vectors ηn is called linearly independent if Σnλnηn = 0

implies λn = 0 for all n.
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spectrum, namely the set of possible values which an observable is bound

to take by the properties of the system, is a subset of the real numbers.

Importantly, measured values of observables are independent of the specific

state of the system. In quantum mechanics, the preparation of the system in

a state ψ does not determine which value a given observable A would take

in that state; however, it fixes a unique expectation value 〈ψ|Aψ〉 by means

of the scalar product. A special class of observables are the projections on

Hilbert space. A projection P is an idempotent linear self-adjoint operator

acting on H. That is, it enjoys the property P 2 = P . This means that

the projections of the lattice P(H) are physical quantities which can possess

only two values, namely 0 and 1. Hence, they are particularly suitable to

represent any experiment that yields a yes/no result.

2.1.2 The derivation of quantum probabilities via sta-

tistical inference

Redei and Stöltzer (2006) reconstructed the earlier work that von Neumann

pursued alone on the mathematical foundations of the theory on the basis of

the three components of the axiomatic scheme proposed by Hilbert, Nord-

heim and von Neumann. Here, I spell out the relevant details of their analysis

to show how probability was, once again, the central notion in the axiomati-
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zation of quantum mechanics. Quantum probabilities are actually regarded

as conditional probabilities. Illustrating this fact within Hilbert space hints

at the structural role of geometry in von Neumann’s approach: indeed, it

does not only offer a model for the axiomatic treatment of quantum theory,

but it supplies an actual framework for its formalism.

The analytic machinery of the theory is identified with the set of all self-

adjoint operators acting on a Hilbert space H. Two physical axioms require

expectation values of physical quantities to be both linear and positive. The

physical interpretation then associates the operators A,B, ... with the phys-

ical quantities a, b, ..., so that the operator αA + βB + ... represents the

physical quantity αa + βb + ... for any complex number α, β, ... and, given

any function f , the operator f(A) represents the physical quantity f(a). It

follows that the expectation values are of the form E(a) = Tr(WA), with

the positive, linear mapping W being the (unnormalized) statistical operator.

Accordingly, general probability statements can be written as

φ(PA
d′ ) = Tr(WPA

d′ ) (2.1)

where the spectral projection PA
d′ corresponds to the event that the value of

A lies in the Borel set d′ of the real line.

At the initial stage of his work on quantum foundations, von Neumann
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regarded quantum probabilities as relative frequencies. Indeed, the statistical

operator W is interpreted as describing the statistical ensemble E of systems

upon which one computes the occurrences of the event PA
d′ . Then, based on

the recognition that quantum-mechanical probabilities are conditional proba-

bilities, he developed the framework of noncommutative statistical inference.

If a measurement has shown that the physical quantity B takes its value

in the Borel set d, the (unnormalized) probability of the event PA
d′ reads

Tr(PB
d PA

d′ ), which derives from formula (2.1) when the statistical ensemble

is associated with the spectral projection PB
d of B.

Yet, there still remained the problem of accounting for the case in which

no particular event is specified. For this case, he made the assumption of

an elementary unordered ensemble. That is, an ensemble of systems E of

which one does not have any specific knowledge, as it reflects the idea that

“all possible states are in the highest possible degree of equilibrium, and

no measuring action can alter this” (von Neumann (1932), p.346). So, its

statistical operator is naturally associated with the identity operator, that is

W = I; hence the a priori probability of the event PA
d′ is Tr(IPA

d′ ) = Tr(PA
d′ ).

All the systems of which one knows more are then obtained from the a priori

ensemble by selection, namely by collecting those elements for which a certain

property holds.

In footnote 156 of the Mathematical Foundations of Quantum Mechan-
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ics von Neumann explicitly advocates von Mises’ frequency interpretation

of probability. He identifies his notion of quantum mechanical ensembles of

systems with von Mises’ notion of Kollectiv, which is a mathematical ab-

straction comprising an infinite sequence of trials. The axiom of convergence

assures that, as a sequence of trials is extended, the proportion of favorable

outcomes, i.e. number of occurrences of the property, tends toward a defi-

nite mathematical limit. The probability of a certain property in a Kollectiv

would thus amount to the limiting relative frequency of the occurrence of

such a property in the Kollectiv. Yet, to define probabilities as frequencies,

one also needs the axiom of randomness which requires that the limiting

value is the same for every possible subsequence of trials chosen by a rule

of place selection within the sequence. In other words, the outcomes must

be “randomly” distributed. The concept of randomness is quite controver-

sial, though: as von Mises (1928) himself admitted, not all the procedures of

selecting a subsequence within the sequence are acceptable.

A probability space admits a frequency interpretation if there exists a sin-

gle, fixed statistical ensemble, say E = {s1, s2, ..., sN}, such that one can al-

ways check and decide unambiguously without altering the ensemble whether

a certain property A belongs or not to any element si of E . Accordingly, the

probability of A is p(A) = limN→∞
](A)
N

, where ](A) denotes the number of

times A occurs in the ensemble. In particular, the following relation must
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holds

p(A ∪B) + p(A ∩B) = p(A) + p(B) (2.2)

which is called strong additivity. Von Neumann insisted that quantum-

mechanical probabilities ought to satisfy such a property.

Notice that the frequentist requirement that the operation of checking

a property does not alter the ensemble seems to be in patent conflict with

quantum mechanics, where performing a measurement always disturbs the

measured system, and hence the ensemble itself. Von Neumann tried to

get round such conceptual difficulty by arguing that, even if non-commuting

quantities cannot be measured simultaneously, their probability distribution

in a single ensemble can be computed with arbitrary accuracy when the

number N of elements in the ensemble is sufficiently large. His reasoning

hinges on the fact that in order to account for the distribution of values

of a quantity R one does not need to perform a statistical analysis on the

whole ensemble of N elements, but it is sufficient to limit the investigation

to any subset of M < N elements, say {s1, s2, ..., sM}, provided that M is

still large (but very small with respect to N). Consequently, only a fraction

M/N of the ensemble is actually affected by the measurement and thus,

when N is sufficiently large, the effect can be neglected. Analogously, one

can conceive the statistics of the measurement of another quantity, say S,
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in the sub-ensemble {sM+1, sM+2, ..., s2M}, where M < N . So, even if R

and S are not compatible, they can be measured simultaneously on different

systems without disturbing each other; moreover, given that 2M < N is

sufficiently small, these measurements change the ensemble {s1, s2, ..., sM} in

which they are performed only by an arbitrarily small amount. Nonetheless,

Redei (2001) stressed that von Neumann’s argument implicitly relies on the

doubtful notion of randomness, as it makes the assumption that the relative

frequency of each quantity is the same when computed in the whole ensemble

and in an arbitrary sub-ensemble.

Conceptual difficulties concerning the frequency interpretation of quan-

tum probabilities apart, the derivation of quantum-mechanical probability

statements via statistical inference confirms the strict connection of quan-

tum mechanics and probability theory. One better appreciates the fact that

quantum measurements can be regarded as conditionalizing probability by

focusing on the finite-dimensional case. Let us consider an observable with

discrete spectrum. For instance, B =
∑

i λiP
B
i =

∑
i λi|ψi〉〈ψi|, with the

index i running from 1 to n. The one-dimensional spectral projections PB
i

map onto the closed subspaces of Hn spanned by the eigenvectors |ψi〉 and

the λi denote the corresponding eigenvalues.

In particular, one can perform a measurement represented by the single

projection PB
i that is tantamount to asking whether or not the physical
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quantity B takes on the real value λi. The transition to the new quantum

state is prescribed by the so-called von Neumann-Lüders rule

W −→ W ′ =
PB

i WPB
i

Tr(PB
i WPB

i )

In case one does not have any specific knowledge before the measurement,

the statistical operator W would coincide with the identity I. Then, from

the above formula one immediately obtains W ′ = PB
i .

Suppose the system is in a pure state φ. The probability of finding the

system in the state ψi is thus given by

Tr(PB
i |φ〉〈φ|) = Tr(|ψi〉〈ψi|φ〉〈φ|)

= Tr(〈ψi|φ〉〈φ|ψi〉)

= |〈ψi|φ〉|2

which is the square of the cosine of the angle, say θ, between the two vectors.

In other words, from a purely geometrical point of view, quantum-mechanical

transition probabilities correspond to angles.

The Hilbert space formalism of quantum mechanics nicely illustrates the

geometrical meaning of probabilities:

... geometrically speaking, it would be quite sufficient to say that

what one has postulated is that the concept of an angle should
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apply there. The elegant way to state it is that one talks not

about the angle but about the cosine and actually not about

the cosine but about the inner product of two vectors. So a

Hilbert space is defined by the existence of the inner product.

[von Neumann (1954), p.232]

The inner product is thus the crucial element in the formal machinery of

Hilbert space, as it enables the latter to be a suitable mathematical arena

for quantum probabilities. That explains von Neumann’s emphasis on this

concept, which he maintained in the subsequent work on the foundations of

quantum theory as well. As we shall see, operator theory deals with linear

operations on a Hilbert space. What the space of all operators inherits from

H is, together with the vector state structure, just the existence of an inner

product.

2.1.3 The pathological behaviour of Hilbert space

As we pointed out, for von Neumann, operators of physical meaning are sup-

posed to be self-adjoint. Yet, if selfadjoint operators act on Hilbert space,

one runs into trouble when dealing with unbounded operators, such as po-

sition and momentum, because they cannot be defined everywhere on H.

Recall that an operator is unbounded if its norm induced by the inner prod-
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uct exceeds all finite bounds. Conversely, an operator A is bounded if and

only if there exists a positive finite number N such that ||Aψ|| ≤ N ||ψ|| for

all ψ ∈ H. It is a consequence of the Hellinger-Toeplitz theorem that the

domain of definition of self-adjoint unbounded operators cannot comprise the

entire Hilbert space, but it must be restricted to a dense subset of the latter.

The impossibility of defining fundamental physical quantities on H has

an even more dramatic consequence, since the Canonical Commutation Re-

lations (CCRs) expressed in terms of position P and momentum Q cannot

be defined everywhere either.

The quite decisive phenomena is that the two operators which

play a fundamental role in quantum mechanics, namely those

which stand for the basic mechanical concepts for a coordinate

and for its conjugate momentum, had to satisfy a certain alge-

braic condition of which it is quite easy to show that it can never

be satisfied by bounded operators. I mean the Heisenberg com-

mutation relation which I will write down

PQ−QP = iI (2.3)

P and Q are the two operators in question, i is a number: it

is the imaginary unit and I stands for the unit operator... The
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relation, of course, expresses the non-commutative of P and Q but

expresses a good deal more. It is not at all difficult to show that

bounded operators can never satisfy this relation. [von Neumann

(1954), p.233]

While the problem with the domain of definition of unbounded operators was

still open in the 1932 work, a solution to this second problem was found in the

theorem of uniqueness of the Schrödinger representation of the CCRs, which

von Neumann established in 1931 by refining a previous result by Stone.

Incidentally, that also established the extent to which the two competing

versions of quantum theory appeared in the late 1920s, namely Schrödinger’s

wave mechanics and Heisenberg’s matrix mechanics, are equivalent.

Specifically, one gets rid of the unboundness of the operator PQ − QP

(namely the left hand side of (2.3)) by rewriting position and momentum in

terms of the corresponding unitary, and hence bounded, Weyl operators. In

fact, Stone’s theorem assures that, if A is a (possibly unbounded) selfadjoint

operator, then, given a real number t, the strongly continuous map t −→ eitA

defines a one-parameter family of unitary operators. Accordingly, P and Q

are the infinitesimal generators of the unitaries U(a) = eiaP and V (a) =

eibQ, respectively. The Heisenberg’s Canonical Commutation Relation thus

becomes:
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U(a)V (b) = eiabV (b)U(a) (2.4)

Notice that such a formula proves an irreducible representation of the CCRs if

the only subspaces of Hilbert space which are left invariant by U(a)
⋃

V (b) are

{0} and H itself3. Then, the Canonical Commutation Relations can actually

be defined on all H. The price to pay, though, is that now one has to assume

that Hilbert space is infinite-dimensional. Appealing to infinite dimensions

marked another crucial difference with respect to the Hilbert-Nordheim-von

Neumann formulation of quantum theory, where Hilbert space was spanned

by an orthonormal basis of only finitely many vectors. This, in turn, gave

rise to a deeper physical pathology of Hilbert space quantum mechanics than

the use of the Dirac function. Indeed, infinite probabilities appear in the

theory.

Recall that von Neumann derived quantum-mechanical probability state-

ments via statistical inference. Within that framework, the finiteness of

probability is guaranteed just if one requires the statistical operator W to

be normalized. Nonetheless, the identity operator I is not normalized at all.

Therefore, the a priori probability, being the trace of any projection acting

3Von Neumann actually recast the Weyl form of the CCRs by means of the two param-

eter family S(a, b) = e(− 1
2 ab)U(a)V (b), but we do not need to go into the mathematical

details of his proof here.
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on infinite-dimensional Hilbert space, would be infinite. For instance, if the

Borel set d′ contains parts of the continuous spectrum of the observable A,

the a priori probability of PA
d′ computed by the formula Tr(PA

d′ ) does not

yield a finite value.

Von Neumann regarded probability assignments failing to be finite as an

unacceptable fact for a physical theory. The pathological behaviour of prob-

abilities in infinite dimensions, as well as the fact that unbounded operators

are not defined everywhere, eventually induced von Neumann to abandon

the Hilbert space formalism and to look elsewhere to find the proper math-

ematical arena of quantum theory. In the “Rings of Operators” (1936), von

Neumann, together with Murray, discovered algebraic structures of operators

that are not tied to Hilbert space, in which the above difficulties are avoided

if certain suitable requirements of topological closure are satisfied. Dixmier

later on proposed to call such structures von Neumann algebras.

2.1.4 The “proper limit” of quantum mechanics in in-

finite dimensions

The idea behind Murray and von Neumann’s theory of rings of operators was

the search for subsystems of operators retaining the same algebraic proper-

ties as the system of all operators. Hence, they found plausible that any
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ring of systems ought to be at least closed under addition, multiplication

and subtraction, so that it forms an algebra. Moreover, some appropriate

topology should be demanded in order to characterize the ring. Accordingly,

one defines a von Neumann algebra M as a subalgebra of the space of all

bounded operators on Hilbert space B(H) which is closed under the strong

(and weak) operator topology4.

An alternative, purely algebraic, definition can be given on the basis of

von Neumann’s double commutant theorem. The commutant of an algebra

amounts to the set of all operators commuting with each element of the

algebra. To put it technically, given any set of operators N , its commutant

is the set N ′ ≡ {Q ∈ B(H)|QR = RQ, ∀R ∈ N}. The double commutant

theorem states that M is a von Neumann algebra if and only if it coincides

with its double commutant, that is M = M′′. Von Neumann’s own words

help one illustrate the meaning of this mathematical result (in the following

quote S plays the same role as M in our discussion).

One has a heuristic feeling that S, if it is at all reasonably closed

in some reasonable sense, ought to be the same as S ′′. In other

words, any sensible concept of algebraic topological closure should

have this property that, if an operator A commutes with every-

4M must be also provided with the unit operator I. It is *-closed in the sense it

contains the adjoint of each of its elements.
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thing that commutes with all S, then A should be obtainable

from S algebraically, in other words, if S is a closed ring, then

A should belong to it: S should be equal to S ′′. [von Neumann

(1954), p.238]

From the double commutant theorem, it follows as a corollary that a von

Neumann algebra is generated by its projection lattice P(M) in the sense

that M≡ P(M)′′. So, one can get insight into the structure of the algebra

itself by looking at its lattice structure.

Such a close connection between the projection lattice and the struc-

ture of its containing algebra was employed by Murray and von Neumann

to construct a concept of dimensionality in terms of classes of equivalence

of projections. The relevant notion would arise just as the Cantorean con-

cept of equivalent cardinality emerged in number theory. This intuition was

the basis for their classification of von Neumann algebras. Actually, von

Neumann’s aim was to work out a non-classical analogue of Cantor’s set the-

ory. By identifying the a priori probability with the dimension function of

the projection lattice, he could then develop a noncommutative probability

theory arising as the generalization of classical probability spaces.

We now spell out the details of this project. Let us begin with the no-

tion of equivalence. To determine that two projections in the algebra are
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equivalent is to establish an isomorphism between the corresponding closed

linear subspaces of Hilbert space. That can be carried out by means of an

operator in the algebra representing a rotation. However, some care must be

taken when choosing such an operator. Consider the set of operators in the

commutant M′ of M representing all the rotations of the space which leave

the elements of M fixed. Such unitary operators map each closed linear sub-

space whose projection is in M onto, and only onto, itself. To the contrary,

as the algebra is non-commutative, the rotations of M do not commute with

all the elements of M; thus, in general, they do not belong to M′. As a con-

sequence, they could well transform a closed linear set in M into something

else. This motivates the following definition: A, B ∈ P(M) are equivalent

relative to M, i.e. A ∼ B, if there exists an operator V ∈ M which maps

isometrically from the subspace A onto the subspace B and takes its comple-

ment, namely the subspace A⊥, into zero. In other words, V is required to be

a partial isometry (that is an operator such that V ∗V = A and V V ∗ = B).

Provably, the relation ∼ is an equivalence relation in P(M), which Mur-

ray and von Neumann called dimension. It actually resembles Cantor’s no-

tion of cardinality in set theory, although the definition of the latter is more

general in that it deals with all sets rather than just with closed linear sub-

sets. Accordingly, one can introduce classes of equivalence, formed by those

elements of P(M) which project to subspaces having equal relative dimen-
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sion. Let us denote the set of equivalence classes as P(M)∼. With the aid of

∼ one can also define a partial order relation ¹ in P(M), which plays a cru-

cial role in the classification of von Neumann algebras: A ¹ B if there exists

a projection B′ ≤ B such that A ∼ B′. This corresponds to the intuition

that, relative to M, the dimension of A is not greater than the dimension of

B.

At this point a lot of technical complications can be avoided by focusing on

the so-called factors (“simple rings” in Murray and von Neumann’s original

terminology). These are the simplest algebraic structures out of which any

other von Neumann algebra can be constructed. Accordingly, in order to

classify von Neumann algebras, one would just need to specify different types

of factors. A factor von Neumann algebra M is such that its center, namely

the intersection of the algebra and its commutant, consists only of complex

multiples of the identity, that is M∩M′ = {λI}. Conceptually, this means

that factors are so non-commutative that they contain no operator, except

for (the complex multiples of) the identity, which commutes with all other

elements of the algebra. Then, if M is a factor, P(M)∼ turns out to be

totally ordered with respect to ¹, that is for any A and B either A ¹ B or

B ¹ A5. It follows that any isomorphism between factors preserves the order

5This actually follows from the “Comparison theorem”, according to which, given two

projections A and B, there is a Z ∈ P(M) ∩ P(M)′′ such that ZAZ ¹ ZBZ and (I −
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and the lattice structure, therefore two factors cannot be isomorphic unless

the order types of the corresponding P(M)∼ are the same.

The classification of von Neumann algebras by factor types is finally com-

pleted by defining in a rigorous manner a dimension function on the lattice

of projections of a factor M. That is a map d : P(M) −→ [0,∞] (unique

up to multiplication by a constant) satisfying the following properties:

(i) d(A) = 0 if and only if A = 0

(ii) If A ⊥ B, then d(A + B) = d(A) + d(B)

(iii) d(A) < ∞ if and only if A is a finite projection6

(iv) d(A) = d(B) if and only if A ∼ B

(v) d(A) ≤ d(B) if and only if A ¹ B

(vi) d(A ∨B) + d(A ∧B) = d(A) + d(B)

Z)A(I − Z) ¹ (I − Z)B(I − Z). The name of the theorem is justified in the sense that

any two elements of P(M) can be cut by a projection commuting with every element of

M into two pieces that one can compare in the ordering ¹. Now, if Z, which belongs to

M′, is a complex multiple of the identity operator, P(M)∼ is in fact totally ordered with

respect to ¹.
6A projection is finite in the case it is not equivalent to any proper subprojection of

itself, i.e. A ∼ B ≤ A implies A = B.
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Such a function always exists for a factor. Also, since it is an algebraic invari-

ant, its range proves the same for isomorphic factors. In particular, property

(iv) shows that d is constant on the equivalence classes of P(M), hence it

can be regarded as a function on them. The order type of the range of d

thus traces the order type of P(M)∼. Murray and von Neumann then deter-

mined all the possible ranges of the dimension functions of factors, identifying

five principle types. The following quotation emphasizes the parallelism of

Murray and von Neumann’s dimension theory and Cantor’s theory of alephs.

One can prove most of the Cantoreal properties of finite and in-

finite, and, finally, one can prove that given a Hilbert space and

a ring in it, a simple ring in it, either all linear sets except the

null set are infinite (in which case this concept of alephs gives

you nothing new), or else the dimensions, the equivalence classes,

behave exactly like numbers and there are two qualitatively dif-

ferent cases. The dimensions either behave like integers, or else

they behave like all real numbers. There are two subcases, namely

there is either a finite top or there is not. [von Neumann (1954),

p.240]

Accordingly, if d takes on integer values, one obtains factors of type I :

when its range is finite, i.e. {1, ..., n}, the factors are of type In; when it is
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infinite, i.e. {1, ...,∞}, the factors are of type I∞. Any type I factor von

Neumann algebra is isomorphic to Hilbert space quantum mechanics. The

algebra B(Hn) of bounded operators acting on a finite n-dimensional Hilbert

space is an example of the type In, whereas the algebra B(H) of bounded

operators acting on infinite dimensional Hilbert space is an example of the

type I∞. However, if d does not take on integer values, there arise von

Neumann algebras which do not correspond to any Hilbert space and exhibit

quite different properties. If its range is continuous, the factors are of type

II: when there is a bounded limit, d maps (up to a suitable renormalization)

onto the unit interval [0, 1] of the real line and the factors are of type II1;

otherwise, if the dimensionality is not finite, the factors are of type II∞.

Finally, in the case the dimensionality takes on only zero or infinite values

(i.e. d ranges over {0,∞}), one obtains configurations of type III.

As the lattice of projections of a von Neumann algebra corresponds to a

non-commutative space of events, the dimension function can be associated

with the a priori probability. The more so because property (vi) of d is

tantamount to the strong additivity requirement for a frequentist interpre-

tation of probabilities, which von Neumann insisted on. This offers another

way to see how probability assignments in quantum mechanics always yield

finite values for Hn, as opposed to the case of infinite-dimensional Hilbert

space, where the dimensionality, and thus the a priori probability, may well
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be infinite.

Von Neumann particularly liked the type II1 case because there is defined

a normalized dimension function d despite its lattice containing an infinite

number of projections. Hence, probabilities are bound to be finite, as any

physical theory would require. Furthermore, the type II1 factors are well-

behaved from the point of view of unbounded operators. Indeed,

although there are plenty of unbounded operators here, one can

show that any finite number of them, in fact any countable num-

ber of them, are simultaneously defined on an everywhere dense

set; one can prove that one can indulge in operations like adding

and multiplying operators and one never gets into any difficulty

whatever. The whole symbolic calculus goes through. [von Neu-

mann (1954), p.240]

That is, contrary to the situation in Hilbert space, unbounded operators are

not only contained in such an algebraic structure, but they are also defined

in a common (everywhere dense) domain, so that they themselves can form

an algebra. These reasons motivated von Neumann to regard the II1 factor

as the “proper limit” of quantum mechanics in infinite dimensions.

At the core of the algebraic program there was the study of the lattice of

projections of the algebra. Von Neumann in fact realized that focusing on
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the selfadjoint part of an abstract operator algebra (that is, Jordan algebras

theory), in which he was interested at the beginning, was less insightful than

the investigation of its lattice-theoretic structure. How this approach was

also motivated by logical considerations will be discussed in the next section.

It will be shown, furthermore, that the nice features of type II1 factors, as

well as the pathological behaviour of Hilbert space, can be understood from

a logico-geometrical perspective too.

2.2 The Logical Interpretation of Quantum

Mechanics

2.2.1 The geometrical structure of quantum logic

In 1936 von Neumann, together with Birkhoff, produced a paper titled “The

Logic of Quantum Mechanics”, which marks the official birth of quantum

logic. The purpose of their work was to demonstrate that

the propositional calculus of quantum mechanics has the same

structure as an abstract projective geometry. [Birkhoff and von

Neumann (1936)]

Accordingly, the basic concepts of quantum logic ought to retain the struc-

tural features of a projective geometry, that are defined by means of inter-
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sections and unions of the fundamental geometrical elements built up from

points, lines and planes. That this is a peculiar aspect of quantum mechan-

ics emerges in contrast to the classical case, where there is a correspondence

between logic and set theory.

In classical mechanics the states of a system are represented by points in

the phase-space Σ. In particular, for a one point particle, any pure state,

namely a state providing a maximal piece of information about the system,

can be captured by a sequence of six real numbers 〈r1, ..., r6〉, where the first

three numbers correspond to the position-coordinates and last three ones

correspond to the momentum-coordinates. Ascribing probabilities to physi-

cal events means assigning weights to single points. In fact, the structure of

classical events can be described in terms of set theory, so that probabilistic

statements are captured by measure-theoretic concepts. A probability func-

tion is then defined as a normalized measure over the Boolean algebra of

subsets of Σ. However, there exist an infinite number of such classical prob-

ability functions that one can introduce over the phase-space. This means,

among other things, that in classical mechanics probability is not uniquely

determined by logic.

In quantum mechanics the phase-space is replaced by a Hilbert space. The

pure states represented by vectors of H cannot be parametrized by points

of Σ. If follows that one is not entitled to predict with certainty the result
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of an experiment, even when being provided with a complete mathematical

description of a physical system. As it turns out, classical set theory is

not a suitable framework for quantum logic. The set-theoretical structure

is replaced by a geometrical framework. In fact, in a projective geometry

quantum-mechanical probabilities are fully defined.

[A]s soon as you have introduced into the projective geometry

the ordinary machinery of logics, you must have introduced the

concept of orthogonality. This actually is rigorously true and any

axiomatic elaboration of the subject bears it out. So in order

to have logics you need in this set a projective geometry with a

concept of orthogonality in it.

In order to have probability all you need is a concept of all angles,

I mean angles other than 90◦. Now it is perfectly true that in a

geometry, as soon as you can define the right angle, you can define

all angles. [von Neumann (1954), p.244]

Once an element of the projective geometry is specified together with its

orthogonal complement, that is once a statement of quantum logic is given

together with its negation, one can immediately introduce a transition prob-

ability. Furthermore, as opposed to the classical case, such a probability

function is uniquely determined. Indeed, any automorphism of the logic
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which leaves orthogonality intact leaves any angle between vectors invariant

too.

Yet, classically the probability measures are defined independently of

whether one is dealing with a finite or an infinite set. To the contrary, in

quantum mechanics there is no obvious way to extend the above procedure

to infinite dimensions. As we explain in the rest of the section, von Neu-

mann maintained that the generalization of projective geometries cannot be

carried out in infinite-dimensional Hilbert space, but requires a continuous-

dimensional structure which proves isomorphic to II1 factors von Neumann

algebra.

Birkhoff and von Neumann’s axiomatization began from the recognition

that, in any physical model, it makes sense to ask whether a system S pos-

sesses a certain property or not. Pure states allow one to answer precisely,

namely by yes or no, to such a question. The logical structure of a physi-

cal theory, then, hinges on the notion of experimental propositions about S,

which assert that a given physical quantity takes on a certain value. Accord-

ingly, an experimental proposition is associated with the collection of all the

pure states for which it holds, that form a subset of the phase-space of the

theory.

In classical mechanics the mathematical representatives of experimental

propositions amount to the subsets of Σ. The inclusion relation ⊆ between

42



the elements of the power set P(Σ) is the analogue in set theory of the

notion of logical implication in classical logic. Moreover, one can define the

operations of intersection ∩, union ∪ and relative complement −, which are

regarded as the set-theoretical counterparts of the classical logical connectives

and, or and not, respectively.

In order to identify the mathematical representatives of the experimental

propositions in quantum mechanics, Birkhoff and von Neumann resorted to

a characteristic feature of the formalism of the theory which is not shared

by the classical case. That is the principle of superposition. According to it,

any linear combination of pure states gives rise to a new pure state. Suppose

that some pure states ψi, where i = 1, 2, ..., verify a certain proposition, then

their linear combination ψ =
∑

i ciψi (with complex coefficients ci 6= 0) is

a pure state verifying the same proposition. It follows that the mathemat-

ical representative of any experimental proposition is required to be closed

under finite and infinite linear combinations. Therefore, it corresponds to a

closed linear subspace of Hilbert space. In the last analysis, since there is

an isomorphism between projections and closed linear subspaces of H, the

non-boolean algebra of quantum logic is provided by the projection lattice

P(H).

The basic logical notions and operations between experimental proposi-

tions are then defined on this framework. There is a relation of inclusion
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of closed linear subspaces of Hilbert space that naturally characterizes the

logical implication. Also, the intersection of two closed subspaces is again a

closed subspace, hence the logical connective and is represented by the set

theoretical intersection, like in the classical case. Yet, the analogy to classi-

cal logic does not hold for the disjunction. In fact, the union of two closed

subspaces is not a closed subspace. Instead, one needs to take the supremum

of two closed subspaces, that is the smallest closed subspace including both

of them, as the representative of the logical connective or.

Furthermore, the set theoretical complement of a closed subspace is not

a closed subspace of Hilbert space either. Thus, it cannot define the logical

negation at all. Birkhoff and von Neumann constructed the negative of a

quantum-mechanical experimental proposition as the orthogonal complement

of the mathematical representative of the proposition itself. Specifically, the

orthogonal complement X⊥ of a subspace X of Hilbert space is the set of all

vectors which are orthogonal to all the vectors forming X. That is

X⊥ ≡ {ψ ∈ H|〈ψ, φ〉 = 0,∀φ ∈ X}

So, the concept of orthogonality is defined just in terms of the inner product.

As transition probabilities are related to the angles between vectors, this ac-

tually illustrates the idea contained in the above quote by von Neumann that

probabilities in quantum mechanics are (uniquely) determined by specifying
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a logical statement and its negation.

The lattice-theoretic characterization of the logic of quantum propositions

makes its connection with geometry more rigorous. In fact, one can show that

the lattice of all linear subspaces of a (finite dimensional) linear space, say

V , constitutes a projective geometry. In particular, the atoms of the lattice,

namely the one dimensional subspaces of V , correspond to the points of the

projective geometry. Let us recall the definition of a lattice to show how

quantum logic ties to noncommutative probability theory.

Lattice theory was first formulated and developed by Birkhoff. The spaces

of events of both classical and quantum mechanics can be viewed as two

particular cases of the lattice structure. A lattice is a partially ordered set

(L,≤), namely a set L in which a partial order ≤ is defined. For any two

elements A and B in the lattice there exist the “least upper bound” denoted

by A∨B and the “greatest lower bound” denoted by A∧B. If any subset in L

has a greatest lower bound and a least upper bound, the lattice is said to be

complete7. An important lattice-theoretic concept is orthocomplementation.

That is a map A 7→ A⊥ such that the following conditions hold for every

A ∈ L: (i)(A⊥)⊥ = A, (ii) if A ≤ B, then B⊥ ≤ A⊥, (iii) A ∨ A⊥ = I, (iv)

A ∧ A⊥ = 0. If L is equipped with such a map, then the lattice is called

7Moreover, a lattice is atomic if for every B ∈ L there exists an element A (called

atom) such that A ≤ B implies B = A or A = 0.
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orthocomplemented.

A Boolean algebra, namely the lattice of classical propositions, enjoys

distributivity in the sense that the equation

A ∨ (B ∧ C) = (A ∨B) ∧ (A ∨ C)

holds for every element A,B,C. Such a property actually fails for the lattice

of projections on Hilbert space, in case the latter is at least two dimensional.

Thus, the lattice of quantum logic is not distributive. Instead, it can be

proved that P(H) satisfies only a weaker condition, namely orthomodular-

ity8, which is expressed by the relation

if A ≤ B and A⊥ ≤ C then A ∨ (B ∧ C) = (A ∨B) ∧ (A ∨ C)

However, if Hilbert space is finite-dimensional, the following property

called modularity, which is weaker than distributivity but stronger than or-

thomodularity, holds for any projection of the lattice

if A ≤ B then A ∨ (B ∧ C) = (A ∨B) ∧ (A ∨ C)

Although they were fully aware that modularity is violated by the projections

of infinite-dimensional Hilbert space, Birkhoff and von Neumann regarded it

8According to Kalmbach (1983), it was K. Husimi that first formulated the notion of

orthomodularity in 1937; anyway, it is not clear whether such property of the Hilbert space

was actually known to von Neumann.
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as an essential condition for the logic of quantum propositions. There is a

two-fold justification for insisting on such an assumption.

On the one hand, it has a methodological underpinning in the axiomatic

method. Indeed, Birkhoff and von Neumann explicitly invoked Hankel’s prin-

ciple of “perseverance of formal laws” that applies to limiting procedures. Ac-

cordingly, an appropriate axiomatization of a formal system would require

that crucial properties which are present in finite dimensions are preserved

when taking the limit. Since modularity is satisfied by any projection act-

ing on Hn, it seems reasonable to demand that the projection lattice ought

to be modular in infinite dimensions too. As a result, Hilbert space proves

unsuitable for the purpose of constructing quantum logic.

On the other hand, from a structural point of view, modularity is advo-

cated by Birkhoff and von Neumann because its presence “is closely related

to the existence of an ’a priori thermo-dynamic weight of states’ ” [Birkhoff

and von Neumann (1936)]. To explain this fact, we need to introduce the

dimension function of a lattice. That is a map d : L −→ [0,∞] satisfying the

properties:

(i) d(A) < d(B) if A < B

(ii) d(A ∨B) + d(A ∧B) = d(A) + d(B)
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Provably, the lattice L is modular only if d < ∞. As in the theory of

dimensionality of von Neumann algebras, the dimension function is identified

with the a priori probability. Therefore, the failure of modularity implies

that the latter cannot be finite, thus confirming the pathological behaviour

of probabilities in infinite-dimensional Hilbert space quantum mechanics.

Footnote 23 of the “Logics of Quantum Mechanics” hints at a continuous-

dimensional model as a better candidate than Hilbert space to extend the

propositional calculus of the theory in infinite dimensions. The sought-after

generalization of projective geometries was achieved by von Neumann (1936)

in the framework of continuous geometries, which are (complete) ortho-

complemented lattices satisfying modularity9. A continuous dimensionality

is actually constructed on these structures by means of an equivalence rela-

tion, in analogy to the work on the “Rings of Operators”.

Given any A ∈ L, its complement Ac is an element of the lattice such that

A∨Ac = 0 and A∧Ac = I. Then, two elements of L are called perspective just

in case they have the same complement. It was von Neumann’s exceptional

mathematical achievement to demonstrate that the relation of perspectivity

is not only reflexive and symmetric, but also transitive. The geometrical

classes of equivalence thus obtained in the lattice behave just like the real

9Such lattices are also continuous in the sense that, given a subset S of L, for every

A ∈ L, (i) A ∧ (
∨

S∈S S) =
∨

S∈S(A ∧ S), (ii) A ∨ (
∧

S∈S S) =
∧

S∈S(A ∨ S)
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numbers. The correspondence with factors is enforced by the requirement

of irreducibility. L is said to be irreducible if its center, namely the set of

elements having a unique complement in L, consists only of 0 and 1. Any

irreducible continuous geometry is thus a factor and determines a unique

dimension function d ranging over the interval [0, 1] of the real line. Finally,

continuous geometries can be proven to be all isomorphic to the projection

lattices of type II1 factors, as well as of type In factors. Remarkably, no

appeal to Hilbert space is made at all. The extension of quantum logic to

infinite dimensions is derived from purely geometrical considerations.

2.2.2 Strict- and Probability- Logic

From the point of view of operator theory, the abandonment of the Hilbert

space formalism in favor of a theory of finite dimensionality corresponded to a

switch from the “vectorial-spatial” approach to the algebraic approach. The

following passage, taken from a letter that von Neumann wrote to Birkhoff

during the period in which they were working together on the paper on

quantum logic, well summaries the development of his attitude in the math-

ematical foundations of quantum theory.

I would like to make a confession which may seem immoral:

I do not believe absolutely in Hilbert space any more. After
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all Hilbert-space (as far as quantum-mechanical things are con-

cerned) was obtained by generalizing Euclidean space, footing on

the principle of “conserving the validity of formal rules”. This is

very clear, if you consider the axiomatic-geometric definition of

Hilbert-space... Thus Hilbert-space is the straightforward gener-

alization of Euclidean space, in one considers the vectors as the

essential notions.

Now we begin to believe that it is not the vectors which matter,

but the lattice all linear (closed) subspaces.

... But if we wish to generalize the lattice of all linear closed

subspaces from a Euclidean space to infinitely many dimensions,

then one does not obtain Hilbert space, but that configuration,

which Murray and I called “case II1”. [von Neumann (1935),

Letter to Birkhoff, in Redei (2005)]

Under this approach, physical states are no more represented by vectors of

Hilbert space. Vector states now reduce to derived quantities. The primitives

of quantum theory are instead the closed linear subspaces of a linear vector

space (not necessarilyH). They are the mathematical representatives of what

von Neumann called, with somewhat odd terminology, “physical qualities”.

If the space is n-dimensional, a state is a point in the corresponding n −
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1-dimensional projective geometry. A physical quality would then be any

subset of the latter. As von Neumann put it, the “physically significant”

physical qualities are those which can be associated with a linear subspace

of the projective geometry; all the others are just “hypothetical”, since no

experiment could adequately describe them.

Although this suggests how the concept of physical qualities would be

formalized, it does not clarify in what sense they should be the primitive,

“phenomenological given”, notion of quantum theory. His correspondence

with Birkhoff supplies some details of what an operational definition of the

concept may look like. Accordingly, a physical quality S is described by a

two-stage procedure, comprising the measurement of a certain physical quan-

tity, represented by a self-adjoint operator, and a subsequent computation

determining either one of a pair of values, say “yes” and “no”. An individ-

ual physical system Γ possesses the quality S just in case performing the

above procedure would yield a positive result with certainty. In addition, Γ

should not be affected by the experiment, that is its state should not change.

Von Neumann refrained from characterizing the latter requirement in terms

of entropy-free measurements “because all matters concerning entropy are

somewhat controversial” (November 6, 1935, p.53). It is true, however, that

quantum measurements which leave the state of the system unchanged are

quite special circumstances. As a consequence, it does not seem that his def-
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inition can be carried out in the general case at all. The lack of generality is

hardly acceptable if physical qualities ought to be the primitives of quantum

theory.

Be that as it may, it should be clear at this point that the emphasis

on linear closed subspaces, rather than on the vectors of Hilbert space, as

the fundamental concepts of quantum mechanics had a logico-geometrical,

as well as an algebraic, underpinning10. There remains now to show how

the program of deriving the probabilistic structure of quantum theory from

continuous geometries was completed. The document that expresses most

compellingly von Neumann’s logical interpretation of quantum probabilities

is an unfinished manuscript titled “Quantum Logics (Strict- and Probability-

Logics)” that he wrote about 1937.

The aim of this work was to provide a mathematical description of the

physical world by spelling out the general logical structure which underlies

various physical theories. In analogy to the logic of quantum mechanics, the

logical system L is restricted to the propositional calculus and has a direct

10Actually von Neumann gave a definition of physical qualities in terms of classes of

equivalence of experimental propositions too. By means of the partial order ≤ one deter-

mines an equivalence relation ∼ on the lattice L, whereby a ∼ b if and only if a ≤ b and

b ≤ a. Logically equivalent projections correspond to the same experimental proposition,

and hence represent the same physical quality.
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appeal to the experimental ground.

Let S be a physical system, or rather the mathematical model of

a physical system, to which we wish to apply logics (sic). The

system L of logics is then the set of all statements a, b, c, ... which

can be made concerning S. Such a statement is always one con-

cerning the outcome of a certain measurement, which is to be

performed on S. [von Neumann (1937)]

Two fundamental logical notions are defined on the lattice L: the relation

of implication ≤ and the operation of negation ¬. Specifically, a ≤ b means

that, in the case that measuring a on S has shown a to be true, then measur-

ing b on S immediately after a will show b to be true with absolute certainty.

The experimental proposition ¬a, instead, describes the same measurement

as a, where the negation obtains if the result of the measurement yields “no”

rather than “yes”. One can then derive conjunction and disjuction by taking

the multiplication ab and the addition a + b as the greatest lower bound and

the least upper bound of a and b, respectively. Von Neumann uses the term

strict logic[s] to refer to a lattice L with this structure.

On the other hand, physical theories deal with probabilistic statements

about the outcomes of measurements. So, applying L to physical reality de-

mands a further constraint, concerning probability, which enriches the struc-
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ture of L. In fact, for any reasonable mathematical model of the system S

(or, in von Neumann’s words, “for any well defined state of our knowledge

concerning the mathematical description of physical reality”) a probability

function p(a, b) does exist. Given a real number θ ∈ [0, 1], the transition

probability p(a, b) = θ has the following meaning: if measuring a on S has

shown a to be true, then measuring b on S immediately after a will show b to

be true with probability equal to θ. Von Neumann called probability logic[s]

the structure that L acquires when being equipped with the real number

valued function p(a, b).

Interestingly, the impossibility of regarding probability statements of the

form p(a, b) = θ as frequency statements led von Neumann to give up the

frequency interpretation of probabilities, as the following quotation shows.

This view, the so-called “frequency theory of probability” has been

brilliantly upheld and expounded by R. V. Mises. This view, how-

ever, is not acceptable to us, at least not in the present “logical”

context. [von Neumann (1937)]

According to the frequentist account, one considers a sequence of identical

copies of a physical system S, that is an ensemble E = {s1, s2, ..., sN}, with

N being a large number. Measuring the quantity a on each copy of the

system collects those M elements of E in which a are true. The procedure
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of statistical inference is then completed by measuring the quantity b im-

mediately after a, which selects the sub-ensemble of E composed by the M ′

copies of S in which a and b are both found true. As a result, the statement

p(a, b) = θ could be interpreted in terms of relative frequencies only by stip-

ulating that the limit of the ratio of M ′ and M equals the number θ ∈ [0, 1]

when N tends to infinity. Yet, von Neumann objected that, from a strict

mathematical point of view, the expression M ′
M
−→ θ is not a well-defined

convergent-statement. Indeed, requiring the limit of relative frequencies to

exist for N → ∞ makes sense only if one is dealing with infinite ensem-

bles. Accordingly, one would extend the physical terminology to the ideal

situation involving an infinite sequence of systems; however, as he observed,

“we are not prepared to carry out such an extension at this stage”. In the

last analysis, von Neumann gave up the frequency interpretation of quantum

probabilities due to its inconsistency with the logical (lattice-theoretic) ap-

proach to quantum mechanics11. As the previous argument suggests though,

this did not imply the abandonment of the ensemble characterization of the

theory.

11Redei (2003) pointed out another inconsistency between the frequentist and the log-

ical account lying in the fact that it is not clear how von Neumann could interpret the

experimental proposition A ∧B expressing the joint occurrance of two events in terms of

relative frequencies in the case A and B are not simultaneously decidable.
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One can demonstrate that the system of strict logic is a part of the system

of probability logic. In fact, for 0 ≤ θ ≤ 1, the implication and the negation

can be defined by means of the transition probability function. If a is true,

by taking the relations p(a, b) = 1 and a ≤ b as equivalent, the fact that

b is true with probability one is tantamount to b being true with absolute

certainty. On the other hand, one can indirectly define the negation from the

equivalence of the relations p(a, b) = 0 and a ≤ ¬b: for any u 6= 0, ¬a is the

unique element c of L such that p(u, c) = 1 (i.e. u ≤ c) implies p(u,¬a) = 0

(i.e. u ≤ ¬a) and vice versa.

The converse, however, is not true. When θ takes on the value 0 or the

value 1, the above equivalence relations allow one to describe p(a, b) = θ by

means of strict logic. Nevertheless, for 0 < θ < 1, this cannot be done at

all. For let us recall that statements of the form p(a, b) = θ are ill-defined

convergence-statements. They would make sense only as approximations of

limiting statements involving ensembles of infinite length. Carrying out such

an approximation via Bernoulli’s law of large numbers employes a probabilis-

tic argument. Hence logical terms cannot suffice to define p(a, b). This led

von Neumann to the conclusion that:

Probability logics cannot be reduced to strict logics, but constitute

an essentially wider system than the latter, and statements of the
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form p(a, b) = θ (0 ≤ θ ≤ 1) are perfectly new and sui generis

aspects of physical reality.

So probability logics appear as an essential extension of strict

logic. This view, the so-called “logical theory of probability”

is the foundation of J. N. Keynes’s work on this subject. [von

Neumann (1937)]

Quantum mechanics is a special case of the logic of a physical theory. The

remarkable fact about it, which is at the bottom of his logical interpretation

of quantum probabilities, is that in the lattice of quantum propositions the

probability logic does reduce to the strict logic. This was rigorously demon-

strated by von Neumann in the axiomatization of “Continuous geometries

with transition probability” (1936). The purpose of this manuscript was to

constrain an abstract system L to describe the structure of a physical model

retaining the features of quantum theories.

In the first chapter von Neumann formulated 13 axioms and provided

each of them with a phenomenological interpretation. Axioms I-V require

L to be an (ortho-)complemented modular lattice, with ≤ being the partial

ordering and a⊥ being the orthogonal complement of a ∈ L, so that its

elements a, b, c, ... are associated with physical events. Axioms VI-VIII define

a “transition probability from a to b” as a map p(a, b) on L, where a 6= 0.
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Then, Axiom IX and Axiom X reflect the conditions of completeness and

continuity12 respectively, whereas Axiom XI requires irreducibility. That

gives L the structure of a continuous geometry with a dimension function d.

Finally, Axiom XII fixes the transition probability function under any (≤,⊥)-

automorphism T of L and Axiom XIII guarantees the existence of such (≤

,⊥)-automorphisms of the lattice. This means that the transition probability

is given by the relation p(a, b) = p(Ta, Tb) for all the transformations T of L

onto itself that leaves the fundamental lattice operations invariant. It follows

(Theorem XIII ) that, whenever a ≥ b, the transition probability reads

p(a, b) =
d(b)

d(a)

which, since 0 ≤ d(b) ≤ d(a) ≤ 1, yields a numerical value θ comprised in the

interval [0, 1]. Any structure fulfilling this axiomatics is provably isomorphic

to finite von Neumann algebras. Thus, continuous geometries with transition

probability can only be type II1 factors.

The last two axioms characterizing continuous geometries with transition

probability capture the content of von Neumann’s logical interpretation of

quantum theories. They indeed show how the probabilities of the theory are

uniquely determined by the (geometrical) symmetries of the logic of quantum

12It was stressed that Axiom X is not necessary, since by Kaplansky’s theorem one can

show that continuity comes from Axioms I-IX along with Axiom XIII. For a critical review

of von Neumann’s axiomatization see Halperin (1961).
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propositions. This is, of course, a fundamental difference with respect to

other physical theories, in particular classical mechanics. In fact, differently

from the classical case, there exist isomorphisms of L onto itself which leave

the strict logic of quantum mechanics invariant. Since transition probabilities

are also fixed under such mappings, probability logic and strict logic actually

arise together.

Von Neumann also proved that the dimension function d(a) = p(1, a),

namely the a priori probability, on the lattice of a continuous geometry

naturally extends to a unique trace τ on the algebra. The derivation of the

type II1 factor as the proper geometrical structure of events with a well-

behaved quantum-mechanical probability function was finally achieved. A

letter to Stone shows von Neumann’s deep excitement at such a discovery.

Recently, I could prove, that every abstract algebra in which a

trace can be defined (...) is isomorphic to a suitable ring M of

bounded operators in a Hilbert space H; and that this trace is

unique if and only ifM is a factor of class (In) and (II1) (...). The

notion still haunts me, that this may be applicable to quantum

theory: After all this means that one can enumerate all abstract

algebras which contain a uniquely determined probability-theory

- and while the complete matrix-rings of finite-dimensional Eu-
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clidean spaces are naturally such cases (In), the limiting case for

n →∞ is not (I∞), but (II1)!

What do you think about these things? I am very agreeably sur-

prised, because the pathology of unbounded operators did really

not look so, that one could expect such a dénoument- if this is a

dénoument ! [Von Neumann, Letter to Stone (1935), published in

Redei (2005)]

2.2.3 On the type II1 factor von Neumann algebra

In this section I review the behaviour of the type II1 factors as a mathemat-

ical arena for quantum mechanics and contrast it to Hilbert space in both

finite and infinite dimensions. The synoptic table below resumes some of the

analogies and the differences between factors of type In, type I∞ and type

II1 with respect to key features characterizing von Neumann’s logical inter-

pretation of quantum probabilities. The analysis is made in light of some

latest developments of the theory of von Neumann algebras.
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Type of factor von Neu-

mann algebra

In I∞ II1

Cardinality < ℵ0 ℵ0 ℵ1

Range of the dimension

function

{1, ..., n} {1, ...,∞} [0, 1]

Example B(Hn) B(H)
⊗

nM2

Projection lattice P(Hn) P(H) P(M)

Modularity
√ × √

Orthocomplementation
√ × √

Atomicity
√ √ ×

Continuous geometry
√ × √

A priori probability 1
n
Tr Tr τ

Finiteness
√ × √

Uniformity
√ √ ×

Unitary invariance
√ √ √

Strong additivity
√ × √

Noncommutative condi-

tional expectation

√ × √

The property of unitary invariance for the probability measures and the

(non-)existence of non-commutative conditional expectations will be dis-
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cussed in section 3.3., when addressing the Bayesian interpretation of quan-

tum mechanics. I already surveyed some other points appearing on the table,

such as the problem of finiteness of a priori probability on a factor and its

dependence on the dimension function of its projection lattice. Let us notice

here that the a priori probability on P(Hn) is defined as d(A) = 1
n
Tr(A)

for every projection A. One can normalize the trace by the factor 1
n

exactly

because the dimension function d is finite. The functional Tr is still defined

in the case of general Hilbert space H; yet, it cannot be normalized. To the

contrary, a unique finite trace, and thus a tracial state τ , exists on a type

II1 factor.

A property von Neumann particularly insisted on is strong additivity of

probabilities. In general, it requires that each (normal) state φ on P(M)

should satisfy the relation φ(A ∨ B) + φ(A ∧ B) = φ(A) + φ(B) for all

A,B ∈M. Petz and Zemanek (1988) proved that φ enjoys strong additivity

if and only if it is a tracial state. Thus, states on factors of type In and type

II1 naturally retain strong additivity. An explicit example of its failure in

the case a state is defined on the lattice of projections on infinite-dimensional

Hilbert space is offered by Szabo (2003).

A lattice theoretical property that the type II1 does not share with the

type In (and with the type I∞) is atomicity. Whereas the lattice of projec-

tions on Hilbert space is atomic, there are no atoms in P(M) if M is of
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type different than I. A projection A 6= 0 is an atom just in case there is no

non-zero projection A′ strictly less than A. Now, for any A belonging to the

lattice of a type II1 factor, one can always consider another element B of the

lattice such that d(B) = kd(A), where 0 < k < 1. So, there exists a non-zero

projection A′ strictly less than A which is equivalent to B, namely such that

d(A′) = d(B) = k. In other words, there cannot be any smallest (non-zero)

dimensional projection in the lattice. The loss of atomicity in the type II1

factor is the consequence of appealing to a continuous dimensionality, that

is a finite probability on a lattice comprising infinite projections.

Actually, requiring a finite trace over a non-finite lattice of projections

does also prevent the a priori probability from being uniform. Indeed, if all

elements of an infinite set of disjoint events were assigned the same positive

probability value, their sum would not be finite, and hence the probability

over the entire set could not be normalized. Hence, von Neumann’s require-

ment of finite physical probabilities is salvaged at the prize of giving up

uniformity.

These differences between the type In and the type II1 did not seem to

bother von Neumann. In fact, one should expect that not all the properties

holding in finite dimensions are maintained by the limiting procedure. Such

properties, however, should not be crucial for the foundations of the theory.

In particular, von Neumann did not regard atomicity as an indispensable
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property that the axiomatization of quantum mechanics should preserve un-

der the limit in infinite dimensions. That the lattice of a physical theory

does not need to contain atoms follows already from classical mechanics.

Specifically, requiring propositions about a classical system to be atomic

... is easily seen to be unrealistic; for example, how absurd it

would be to call an “experimental proposition”, the assertion

that the angular momentum (in radians per second) of the earth

around the sun was at a particular instant a rational number!

Actually, at least in statistics, it seems best to assume that it

is the Lebesgue-measurable subsets of a phase-space which corre-

spond to experimental propositions, two subsets being identified,

if their difference has Lebesgue-measure 0. [Birkhoff and von Neu-

mann (1936)]

This means that experimental propositions are not strictly represented by

Borel sets. They are instead represented by equivalence classes of sets hav-

ing the same Lebesgue measure, that restricts the number of “unrealistic”

elements which are contained in the class of all Borel sets. Importantly, the

lattice of such classes of equivalent sets are nonatomic. Incidentally, this is

the sense in which the a priori probability measure on a type II1 factor really

is the noncommutative generalization of the Lebesgue measure on classical
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spaces of events.

Interestingly, an example of type II1 factor, which was constructed by

Birkhoff von Neumann (1936), is the hyperfinite von Neumann algebra
⊗

nM2,

that is the n-fold (infinite) product of the matrix algebra M2 of 2-by-2 two

complex matrices by itself13. Such a structure describes the structure of a

lattice gas in the state of infinite temperature. Hence, examples of von Neu-

mann algebras of type II1 have been later on demonstrated to have physical

significance. This actually provides a counter-example to Jauch (1968), who

maintained, against von Neumann, that the lattice of events of a physical

theory needs to contain atoms, and thereby could not be a continuous geom-

etry.

2.3 The Unsolved Problem

2.3.1 Information, geometry and “pseudo-problems”

The reconstruction of von Neumann’s work on the mathematical foundations

of the theory that I offered so far highlights the connection between his logi-

cal interpretation of quantum probabilities and Hilbert’s Sixth Problem. On

the one hand, type II1 factors von Neumann algebras are obtained by the

axiomatization of those physical systems which are isomorphic to quantum

13See section XIV.1 in Takesaki (2003).
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mechanics. On the other hand, they retain the structure of continuous ge-

ometries with transition probability. Yet, at the end of his 1954 address, von

Neumann expressed his discontent toward mathematical models of this sort.

Apparently, he regarded the question of what algebraic structure should con-

stitute the proper arena of quantum theories still as an unsolved problem in

mathematical physics.

All the existing axiomatisations of this system are unsatisfactory

in this sense, that they bring in quite arbitrarily algebraic laws

which are not clearly related to anything that one believes to

be true or that one has observed in quantum theory to be true.

So, while one has very satisfactorily formalistic foundations of

projective geometry of some infinite generalizations of it, of gen-

eralizations of it including orthogonality, including angles, none

of them are derived from intuitively plausible first principles in

the manner in which axiomatizations in other areas are.

Now I think that in this point lies a very important complex

of open problems, about which one does not know well how to

formulate them now, but which are likely to give logics and the

whole dependent system of probability a new slam. [von Neu-

mann (1954), p.245]
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Understood in terms of von Neumann’s axiomatic method in physics, the pas-

sage suggests that the formal aspect of the axiomatization of the quantum

system of logic, geometry and probability, although it was fully developed in

infinite dimensions, was not satisfactorily connected to empirically grounded

physical axioms. The mathematical problem which von Neumann left un-

solved then was to derive the algebraic framework in such a way to derive a

complete axiomatics from purely quantum-mechanical facts.

During the almost twenty years going from the work on “Continuous

Geometries with Transition Probability” and the talk at the Congress of

International Mathematicians, Von Neumann did not succeed in construct-

ing the sought-after unified theory of logic and probability. On more than

one occasion though, he claimed that the implementation of such continuous

dimensional (quasi-)quantum mechanical systems could have been achieved

and that only contingent hindrances, such as his appointments in US in-

telligence in the Second World war, prevented him from accomplishing the

project.

In this section we outline possible directions in which von Neumann might

have intended to complete the axiomatization of his unified theory of logic,

probability and quantum mechanics. A hint is contained in a manuscript

displaying the plan of his lecture at the International Congress of Math-

ematicians. The last three points, which he did not actually manage to

67



address in the talk, reveal that he regarded information as a central concept

in the logical interpretation of quantum probabilities.

22. 4m14 Integration of logics and probability theory. “Quanti-

tative” aspects of logic. Simplest case: Information theory.

23. 3m Classical: Measure-volume estimates. Quantum: What

is it then?

24. 5m Inherent value of this integration. A “thermodynamical”

theory of logics-probability. Its value as an heuristic guide in

mathematics, etc. What will the role of the “quantum” approach

be? [von Neumann (1954), in Redei and Stöltzer (2001), p.248]

By “quantitative” aspect of logic he seems to mean logic with quantifiers.

In fact, the axiomatization of continuous geometries with transition proba-

bility was based on the propositional calculus. That is, the elements of the

projection lattice of type II1 factors are associated with elementary experi-

mental propositions. A logical interpretation of quantum theory would then

be completed by including a transcendental calculus of quantified statements.

Arguably, von Neumann had in mind extending the logical characterization

of physical theories to both strict- and probability logics with quantifiers15.

14The numbers followed by m indicates the number of minutes he intended to dedicate

to each point.
15As, von Neumann (1937) put it,
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Information theory was the simplest formulation of such quantified logics.

Yet, what the meaning of his alleged “thermodynamical” theory integrating

logic and probability ought to be, and what role information would then play

in it, is less easy to guess.

In his earlier work on the mathematical foundations of quantum me-

chanics he introduced an entropy function based on a gedanken experiment

formulated on the ground of thermodynamics. Given any statistical operator

W =
∑

i λi|ψi〉〈ψi|, the so-called von Neumann entropy is expressed by the

formula S(W ) = −k
∑

i λi log λi, where k is an additive constant. Whether

this quantity is really equivalent to thermodynamical entropy is still sub-

ject to debate (see Petz (2001) and Shenker and Hemmo (2006)). In any

case, although he never made such a connection explicitly, von Neumann

entropy is commonly interpreted as a measure of the amount of informa-

tion encapsulated in a quantum state. In fact, it generalizes the classical

Shannon entropy in that it reduces to the latter in the particular case in

Once the propositional calculus has been well established, the next task will

be to extend this elementary system of logics (i.e. the propositional calculus)

to a complete transcendental one (i.e. one with quantifiers)

Unfortunately, it did not expand this passage, nor there is actual evidence that he ever

attempted the alleged further step in the axiomatization of quantum logics.
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which the vector-states |ψi〉 are orthogonal16. S(W ) definitely increases if a

state change occurs due to a measurement (and remains constant otherwise).

Accordingly, measurements in quantum mechanics are typically irreversible

processes. This also suggests a patent analogy to the second law of thermo-

dynamics. Be that as it may, the huge development of quantum information

theory in the last fifty years certainly demonstrates how keen von Neumann’s

insight on mathematical physics was.

That information-theoretical considerations were relevant to his interpre-

tation of quantum theory may be inferred from a letter von Neumann wrote to

Schrödinger in 1936 too. Schrödinger worried that the instantaneous change

affecting the state of a quantum system when operating on another spatially

separated quantum system entangled with it would infringe on the relativis-

tic constraint of locality. In his letter, von Neumann argued that similar

statistical correlations between spatially separated systems occur in classical

mechanics as well, thus no special sort of action at distance is really involved

in the quantum case. As Redei (2005) pointed out, the underlying assump-

tion is that probabilities are degrees of ignorance. In other words, changes

of quantum states are not to be interpreted as physical changes, but are,

instead, changes of information. Von Neumann could then conclude that the

16Interestingly, Shannon himself acknowledged von Neumann for the suggestion of call-

ing entropy the information measure function which is named after him.

70



alleged incompatibility between quantum mechanics and special relativity is

just a “pseudo-problem”.

This terminology, as well as its connections to von Neumann’s conception

of geometry, is explained in a letter to Ortvay (March 29, 1939 ?). The

spatial description of processes connected to life, he wrote, can hold only

approximatively. Indeed, the geometrical localization of physical bodies is

possible only within certain limits. “Pseudo-problems” arise whenever one

tries to extend the spatial approximation beyond such limits. Examples of

“pseudo-problems” are the simultaneity of distant events in special relativity

or the impossibility of measuring position and momentum at the same time

in quantum mechanics. Some non-spatial description is therefore required

in order to account for non-localized processes. The case of the observer in

quantum mechanics illustrates this idea.

I have thought a great deal since last year about the nature

of “observer” in quantum mechanics. This is a kind of quasi-

psychological, auxiliary concept. I think I know how to describe

it in an abstract manner divested from its pseudo-psychological

complications, and this description gives a quite worthwhile in-

sight regarding how it might be possible to describe intellectual

processes (therefore ones essentially connected to life) in a non-
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geometrical manner (without locating them spatially). [von Neu-

mann (1939), in Redei (2005), p.201]

The observer is thought of as a non-geometrical concept, whose existence in

space is quite irrelevant to quantum mechanics. To avoid pseudo-problems

arising, the intellectual processes ascribed to the observer should not be de-

scribed in spatial terms. This does not imply that they must be described in

psychological terms though. Some other description is in fact available. Von

Neumann did not elaborate on this point further, except for suggesting that

transformation theory in quantum mechanics would provide the framework

for such a non-spatial description. Recall that quantum probabilities are de-

fined by invariance under the transformations of the logical structure onto

itself. Arguably, information theory offers a quantitative, non-psychological

account of intellectual processes of the observer, such as computation, that

integrates logic and probability.

The separation between spatial and non-spatial description bears on the

role of geometry in physics, and hence on Hilbert’s Sixth Problem. One can in

fact distinguish two senses of geometry coexisting in von Neumann’s program.

On the one hand, he refers to geometry as describing space and the objects

located in it. Physical processes taking place in space are in fact in need of

a (spatial) geometrical account. On the other hand, he appealed to (non-
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spatial) geometrical structures serving as a framework for the axiomatization

of quantum mechanics. Accordingly, projective and continuous geometries

are mere devices for computation, which have nothing to do with spatial

considerations.

This remark fits well with Redei’s (2005) analysis of von Neumann’s work

on quantum field theory. There are two distinct problems of infinity aris-

ing with the quantum treatment of electromagnetic fields: they diverge in

proximity of electric charges and they can be characterized only by infinite

number of degrees of freedom. The former is a spatial problem, which von

Neumann solved by quantizing space-time: singularities do not appear in a

discrete space as one cannot get arbitrarily close to point-like charges (see

letter to Dirac, January 27, 1934). The latter is a problem connected with the

mathematical description of the physical systems under investigation, which

does not depend on their spatial location at all. Its solution therefore is just

a matter of refining the computational methods required to treat quantum-

mechanical systems having infinite degrees of freedom. A systematic survey

of von Neumann’s ideas concerning the formalization of quantum electrody-

namics has not been done yet. On more than one occasion, he suggested

that his algebraic formulation of quantum mechanics could be extended to

the relativistic case too. As he wrote to Jordan,
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These continuous- but finite dimensional quantum mechanics can

be brought into a quite amusing relation with “second quantiza-

tion”. In view of the recent crunch in quantum mechanics of

elementary particles this possibility merits perhaps some more

attention. [von Neumann, (December 11, 1949), in Redei (2005),

p.151-152].

It remains to be demonstrated, though, whether any of the models for quan-

tum fields that he sketched would ultimately lead one to the factors of type

II1.

We shall see in the last chapter that, contrary to von Neumann’s ex-

pectations, a complete algebraic axiomatization of quantum field theory was

later on given within the framework type III factors. The primitive no-

tion of Algebraic Quantum Field Theory is the net of observable algebras

A(O) associated with any region O of Minkowski space. In this regard, it

is interesting to notice that the philosophical literature on the subject has

revived the issue of whether the Hilbert space formulation or the algebraic

formulation is more fundamental. The non-uniqueness of representations of

the CCRs for infinitely many degrees of freedom has a counterpart in the

existence of inequivalent GNS representations (π,H) of the relevant algebras
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in the Hilbert space17. Indeed, the net of algebras A(O) can be embedded

in H in many different ways. Ruetsche (2002) distinguishes two attitudes

one may take here, depending on whether any representation of the net of

algebras in Hilbert space is supposed to have ontological significance or not.

According to Algebraic Imperialism, the physical content of a quantum field

theory is fully encoded in the net of algebras. Hence, any representation

(π,H) may be at most an aid to calculation. Hilbert space Conservatorism,

instead, argues that the algebraic structure is not rich enough for the task.

In order to capture the physical content of a quantum field theory, one needs

to specify a particular representation of A(O) in H, which thus ought to

play a privileged ontological role. Hilbert space would then be restored as a

primitive of the theory.

2.3.2 Can the type II1 factors support any representa-

tion of the CCRs?

In the previous sections we discussed the reasons why von Neumann was still

unsatisfied with his latest work in quantum foundations. Other criticisms

have been raised against him. Just the fact that quantum physics never

really departed from Hilbert space would discourage one to take his proposal

17See section 2.1.1. for the notion of GNS representations of an algebra in the Hilbert

space.
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seriously. Yet, the problems with the generalization of quantum mechanics in

infinite dimensions that he entertained are genuine conceptual worries. Thus,

one may wonder whether factors von Neumann algebras of type II1 could,

at least in principle, represent a mathematical arena for quantum theory.

We now present a result by Huzimiro Araki which establishes that no

algebra with a finite trace on it can support any (regular) representation of

the Canonical Commutation Relations18. This implies, in particular, that

type II1 factors would be unsuitable for quantum-mechanical purposes, thus

proving von Neumann wrong. In reporting Araki’s proof below we remain as

faithful as possible to his original hand-written note, although we add some

brief explanation connecting the technical passages.

ARAKI’S PROOF

The proof begins by recasting the CCRs in terms of the Weyl

operators U(a) = eiaX and V (b) = eibP , representing X and P

respectively. Accordingly, [X, P ] = iI becomes

U(a)V (b) = e−iabV (b)U(a) (2.5)

To recover the CCRs, however, one should require U(a) and V (b)

18The content of such a result is first published in Valente (2008) with the relevant

discussion.
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to be differentiable on a dense domain, and hence at least con-

tinuous in a and b with respect to the strong operator topology.

For unitary operators, this is tantamount to requiring continuity

with respect to the weak operator topology.

Suppose that Φ is a tracial vector. Accordingly, one obtains

〈U(a)V (b)Φ, Φ〉 = 〈V (b)U(a)Φ, Φ〉 = eiab〈U(a)V (b)Φ, Φ〉 (2.6)

Comparing the left-hand side and the right-hand side of the pre-

vious equality yields

〈U(a)V (b)Φ, Φ〉 = 0 (2.7)

for 0 < ab < 2π. Weak continuity then implies

lim
a→0

lim
b→0
〈U(a)V (b)Φ, Φ〉 = 〈Φ, Φ〉 = 0 (2.8)

which finally shows that the tracial vector Φ must be null!

The upshot of the proof is that representations of the Canonical Com-

mutation Relations expressed by the Weyl operators U(a) and V (b) can be

constructed on a given algebra just in case Φ = 0. A tracial vector is an ele-

ment of Hilbert space generating a tracial state on the algebra via the inner
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product, in the sense that τ(A) = 〈AΦ, Φ〉 for any operator A. If Φ is null,

then τ is not defined. In other words, the relevant algebra cannot be a finite

factor von Neumann algebra, such as the type II1. Notice that formula (2.6)

is crucial in the proof. The first equality is justified by the property that a

trace is insensitive to non-commutativity: in fact, the order of U(a) and V (b)

does not affect the value of the inner product. The second equality, instead,

follows from plugging in the Weyl form of the CCRs; here, of course, the

order of the terms does matter. In other words, the formula expresses the

two requirements at the bottom of von Neumann’s abandonment of Hilbert

space, namely the existence of a finite a priori probability and the presence

of unbounded operators for which one can define the Canonical Commuta-

tion Relations. It is almost cruelly ironic that their combination leads to

Araki’s no go result. This would show not only that type II1 factors may

not be appropriate candidates for the mathematical foundations of quantum

mechanics, but also that there is a deep inconsistency within von Neumann’s

work itself.

Let us point out that the proof relies on the assumption of regularity

of the representations of the CCRs. Indeed, the double limit appearing in

the left-hand side of the last formula is what allows one to reduce (2.6) to

the inner product of Φ. That is guaranteed by the unitary operators being

weakly, equivalently strongly, continuous. So, the content of Araki’s result is
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really that an algebra on which a tracial state is defined cannot support any

regular representation of the Canonical Commutation Relations. If one gives

up continuity, though, one blocks his conclusion in the general case. Slawny

(1972) constructed an abstract C*-algebra (that is a more general structure

than a von Neumann algebra) on the basis of the existence and uniqueness

of type II1 factors and then showed that it supports non-regular, i.e. non

necessarily continuous, representations of the CCRs. What one may wonder,

then, is whether or not regularity can be dropped without losing any physical

meaning of the algebra at all.

Von Neumann’s 1931 proof of uniqueness of the Schrödinger represen-

tation of Heisenberg’s commutation relation, that we mentioned in section

2.1., relies on the assumption of regularity. A technical consequence of work-

ing with regular representations of the CCRs is that the underlying Hilbert

space is separable. Separability is a topological requirement of the space: H

is said to be separable if it contains a countable dense subset. Thus, giving

up regularity is tantamount to appealing to non-separable Hilbert space. A

generalization of the Stone-von Neumann theorem to non-regular representa-

tions of the CCRs was actually given by Cavallaro-Morchio-Strocchi (1999).

Consider the measure space (Γ, Ω, µ), with µ being a finitely additive

measure, and let U be an operator-valued function mapping from Γ onto the

lattice of projections on an Hilbert space. U is then measurable w.r.t. µ
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just in case there exists a sequence Un converging µ-almost everywhere to

it, that is just in case the set {x ∈ Γ : |Un(x) − U(x)| ≥ ε} has measure

zero in the limit as n →∞. In particular, weak measurability for U requires

that the complex-valued function 〈U(x)ψ, φ〉 defined on Γ is measurable for

any Hilbert space vector ψ, φ. Strong continuity of unitary operators follows

from U being weakly measurable and H being separable. Weak measur-

ability proves necessary, but not sufficient in order to obtain (irreducible)

representations of the CCRs. Hence, if one is willing to drop the separabil-

ity of Hilbert space, one needs to replace for it with some other topological

condition.

A weakly measurable operator-valued function U is also strongly measur-

able w.r.t. µ if U(x)ψ is µ-almost separably-valued for every element ψ of

a non-separable Hilbert space. To put it more technically, there must exist

Γ0 ⊂ Γ such that the collection of vectors {U(x)ψ ∈ H|x ∈ Γ/Γ0} is separable

and µ(Γ0) = 0. This means that, although there is no countably dense subset

of a non-separable H, there exists a set of vectors U(x)ψ which (modulo a

subset of Γ of null measure) is a separable subset of H. Accordingly, strong

measurability provides a sort of “local separability”. Non-regular represen-

tations can thus be recovered with the aid of measure-theoretical conditions.

Cavallaro, Morchio and Strocchi could then prove that strongly measurable,

not necessarily regular, representations of the Canonical Commutation Re-
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lations are well defined. Furthermore, the CCR algebras so constructed can

be implemented in actual models of quantum systems, hence proving that

non-separable Hilbert space quantum mechanics makes physical sense.

The question that remains to be answered in the light of Araki’s proof

reduces to an historical one: would von Neumann have been willing to drop

separability? In the 1932 book on the mathematical foundations of quantum

mechanics he explicitly appealed to the Hausdorff’s requirement of separa-

bility for topological spaces without providing any justification for such an

assumption. Later, his attitude became less rigid. In the 1954 talk he con-

cedes that separability is a “plausible but not terribly decisive” property of

H because, although it may constrain the mathematical study of quantum

systems in some cases, most of the times it “simply means that parts of the

space which could be handled separately anyhow, are singled out” [von Neu-

mann (1954), p.232]. A letter to Kaplansky (March 1, 1950) even hints at

some result that apparently he obtained on operator rings in non-separable

Hilbert spaces, but no further reference or explanation is provided. Arguably,

the theory of dimensionality for the corresponding algebraic structures would

contain a classification of continuous dimensions with the cardinality of the

continuum. In the last analysis, one could conclude, although von Neumann

was likely not aware of the devastating consequences of the assumption of

regular representations of the CCRs for the factors of type II1, he may well
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have been ready to give it up without affecting the conceptual cornerstones

of his program, in particular the quest for an a priori finite probability trace

and the treatment of unbounded operators.
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Chapter 3

Information and The Bayesian

Interpretation of Quantum

Probabilities

In this chapter I develop some of the ideas stemming from von Neumann’s

technical and conceptual work on quantum foundations. Section 3.1. is a

review of the main concepts of the algebraic approach, as they have been

refined during the last few decades. It should be intended as a mathematical

appendix for the rest of the dissertation. In particular, I spell out various

notions of independence between algebras that are employed in the study of

correlations between spatially and space-like separated physical systems.
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Long distance correlations acquire a special status in quantum mechan-

ics due to the presence of entanglement. In section 3.2.1, I introduce this

concept and explain how it represents the main point of departure of the

quantum formalism from the classical world. Entangled states are respon-

sible for the non-local behaviour of quantum systems, which has puzzled

physicists and philosophers of physics since the earlier formulation of the

theory. The peculiar kind of non-locality arising from entanglement takes

the form of the violation of the famous inequality derived by John Bell in

1964. The algebraic formulation of the locality condition from which Bell’s

inequality follows, as well as its decomposition into two distinct provisions,

namely parameter independence and outcome independence, is analyzed in

section 3.2.2.

The recent development of quantum information has shed new light on the

nature of entanglement. Quantum non-locality is now exploited as a resource

rather than regarded as a source of conceptual problems. In the quantum

world one can manipulate information in ways that classical protocols do not

allow one to do. This also motivates one to look at quantum foundations

from an information-theoretical perspective. A theorem by Clifton, Bub and

Halvorson (2003), which I discuss in section 3.2.3, is the basis of an axiomatic-

type approach that can actually be seen as the realization of von Neumann’s

project of appealing to information theory to derive the algebraic structure
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of quantum mechanics.

In the last part of the chapter I survey the Bayesian interpretation of

quantum mechanics, which relies on quantum information. Accordingly,

quantum states amount to states of information, or, more specifically, states

of rational belief of the observer. Quantum measurements provide new infor-

mation in light of which the observer updates her (subjective) probabilities.

The framework of statistical inference is thus particularly suitable to ac-

count for such a process. Yet, just as in the case of von Neumann’s quest for

the “proper limit” of quantum mechanics, the extension of non-commutative

statistical inference in infinite dimensional Hilbert space poses non-trivial

mathematical difficulties for a Bayesian interpretation of quantum probabil-

ities.

As we have seen, the choice of which properties of quantum theories of

finite degrees of freedom are to be preserved under the limit in infinite dimen-

sions is motivated by physical considerations, for example the requirement of

finite probabilities. In addition, there are some properties which depend on

any specific interpretation of quantum mechanics: in fact, different interpre-

tations of the theory would disagree on the set of properties to be regarded as

crucial. Physical constraints are strong, since their failure in infinite dimen-

sions means that the limit has no meaning at all. Conceptual constraints,

instead, are less strict. If they are not fulfilled, that is if some conceptual
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property is not preserved under the limit, one would be just entitled to con-

clude that such a property is not a crucial property of the theory. Then, any

interpretation requiring a non-preserved property would prove inconsistent

with quantum mechanics.

To put it in another way: one obtains no go results for any interpretation

of the theory if the limit cannot be carried out in such a way that any rele-

vant property holds. After showing in section 3.3.1. how quantum statistical

inference generalizes the Bayes conditionalization rule in von Neumann alge-

bras theory, which is the proper noncommutative probability theory, I reply

to an argument by Miklos Redei (1992, 1998) against the Bayesian interpre-

tation of quantum mechanics (section 3.3.3.). The claim is that a stability

condition, holding as a rational constraint for Bayesian noncommutative sta-

tistical inference in classical theory as well as in finite dimensions, fails in

infinite dimensional Hilbert space. In section 3.2.3, I discuss whether the a

priori probability state of a quantum observer can be derived by symmetry

considerations.
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3.1 The Algebraic Approach

3.1.1 Algebras of physical observables

In section 1.1.3. some basic concepts of von Neumann algebras were intro-

duced by spelling out the reasoning underlying von Neumann and Murray’s

work on “Rings of Operators”. Here I provide a more technical and general

discussion of the use of algebras of observables in physics. The algebraic for-

malism supplies a rigorous framework encompassing classical mechanics and

quantum mechanics, both relativistic and non-relativistic. This has the ad-

vantage that one gets insight into the structure of the theories, and hence one

is in a position to pinpoint crucial differences between them. Also, it yields a

powerful tool for the treatment of quantum mechanics in infinite dimensions.

In fact, one can extend in a natural way the description of observables with

discrete spectra, that is finite-dimensional Hilbert space, to the description

of observables with continuous spectra, that is infinite-dimensional Hilbert

space. Moreover, one can deal with systems with infinitely many degrees of

freedom, that is the case of quantum field theory.

The idea behind the algebraic approach is that it is not the observables,

but rather the algebras of observables that play a crucial role in the math-

ematical formulation of physical theories. Segal (1947) proposed that one

should take the C*-algebras of all bounded operators as the basic mathemat-
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ical entities with physical meaning. Recall that an algebra A is a Banach

algebra in case for, any two elements A and B, the norm defined on the al-

gebra is such that ||AB|| ≤ ||A||||B||. It is called involutive if there exists an

involution, namely a map ∗ from the algebra onto itself, with the following

properties:

1. (A∗)∗ = A

2. (AB)∗ = A∗B∗

3. ||A∗|| = ||A||

An abstract C*-algebra is defined without any reference to Hilbert space as

an involutive Banach algebraA, that enjoys the property ||AA∗|| = ||A||||A∗||

for every element A ∈ A.

Any abstract C*-algebra thus defined is provably isomorphic to a concrete

C*-algebra. The definition of the latter is actually given in terms of Hilbert

space. The set B(H) of all bounded operators acting on H is in fact a *-

algebra, that is an algebra where the involution ∗ corresponds to taking the

adjoint. Any subalgebra A ⊆ B(H) is a concrete C*-algebra which is closed

under the operator norm topology. The latter requires that, if the sequence

of operators {An} in A converges in norm to some operator A ∈ B(H), i.e.

||An − A|| −→ 0, then A ∈ A. The algebra is called unital if it contains the

identity transformation I on H. Here I always assume that A is unital.
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A state φ on the C*-algebra A is a continuous linear map from the algebra

into the complex numbers which is positive, namely φ(A∗A) ≥ 0, and normal-

ized, namely φ(I) = 1. Also, φ is said to be faithful just in case φ(AA∗) = 0

only if A = 0. In particular, a state is normal if it is ultraweakly continuous.

This means that φ satisfies the property that φ(
∑

n Pn) =
∑

n φ(Pn) for any

countable family of mutually orthogonal projections Pn in A, and hence it is

countably additive. It is well known that any normal state on B(H) is given

by φ(A) = Tr(ρA) for some unique density matrix ρ acting on H. Now,

every state on a general von Neumann algebra M is the restriction to M of

a state of B(H). It is also expressed by a trace Tr, but the density matrix is

no longer unique.

Given a state onA, one can construct a Hilbert space representation of the

algebra by means of the Gelfand-Naimark-Segal theorem, which establishes

an isomorphism between A and the set of bounded operators over some H.

That is, for any state φ, the GNS-construction determines a unique (up to

unitary equivalence) triple (Hφ, Ωφ, πφ), where Ωφ is a unit vector on the

Hilbert space Hφ and πφ is an isomorphism from A onto B(Hφ). Then, one

obtains

φ(A) = 〈Ωφ, πφ(A)Ωφ〉 (3.1)
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for any operator A in the algebra A and the set πφ(A)Hφ is dense in Hφ.

Von Neumann algebras are defined as special cases of C*-algebras. We

already saw that there are two equivalent definitions of a von Neumann M.

Algebraically, M coincides with its double commutant, that is M = M′′.

Topologically, a von Neumann algebra is required to be closed under the

strong operator topology, according to which, given the sequence of operators

{An} in M, if for all states Φ on H there exists some operator A ∈ B(H)

such that AnΦ −→ AΦ, then A ∈M. The strong operator topology and the

norm operator topology coincide in finite-dimensional Hilbert space; however,

the former is strictly stronger than the latter if H is infinite-dimensional.

Therefore, any von Neumann algebra is a C*-algebra, whereas the converse

is not true in general.

The classification of von Neumann factor algebras into five types, namely

In, I∞, II1, II∞ and III, which depends on the range of the dimension

function of their projection lattice can be extended to general von Neumann

algebras. Indeed, any von Neumann algebra can be decomposed into a direct

sum of factors. The differences between the various types of factors can

be characterized in terms of the nature of the projections they contain. A

projection P ∈M is said to be minimal just in case there is no subprojection

of P in the algebra. That implies that the projection is abelian too, that is

that the algebra PMP is commutative. Moreover, P is called infinite just in
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case there exists a projection P0 which is equivalent to P such that P0 < P ;

otherwise, P is called finite. Accordingly, von Neumann factor algebras are

classified as follows:

1. M is type I if it contains an abelian projection

2. M is type II if it contains a (non-zero) finite projection, but no abelian

projection

3. M is type III if it contains no finite projection and no abelian projec-

tion

Also, a von Neumann algebra is finite if the identity I is finite in M; oth-

erwise, the algebra is infinite. Examples of the former are the types In and

II1, whereas examples of the latter are the types I∞, II∞ and III. As it

was pointed out in section 2.2.3., the finiteness of a von Neumann algebra

coincides with the existence of a tracial state, namely a state τ such that

τ(AB) = τ(BA) for any A,B ∈ M. Importantly, the operation of taking

the commutant preserves the type. That is, if M is a von Neumann algebra

of type I (respectively, II and III), then M′ is type I (respectively, II and

III) too.

Some rules of composition for different types appeal to the tensor product

structure, which plays a crucial role in quantum theory. If M is type In and
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N is type Im, then the tensor product M⊗N is type Inm and acts on

the Hilbert space H⊗H generated by operators of the form M
⊗

N , where

M ∈M and N ∈ N . If one of the summands is type III, then, irrespective

of the type of the other one, M⊗N is type III. If none of the summands

is type III, but at least one is type II, then M⊗N is type II as well.

Also, any von Neumann algebra of type I is isomorphic to B(H)
⊗A with

A being commutative. Therefore all abelian algebras are type I, although

they cannot be factors, of course, since they coincide with their commutant,

and thus their center cannot be a multiple of the identity (unless they are

trivial).

Let us conclude by reviewing a few basic facts about the Tomita-Takesaki

modular theory, which is presented in Takesaki (2003), as it has remarkable

applications in mathematical physics. Specifically, it supplies the technical

basis for the sub-classification of von Neumann algebras of type III de-

veloped by Connes (1974), and it is therefore relevant to Algebraic Quan-

tum Field Theory. Moreover, the notion of modular automorphism group

is employed in Redei’s argument against the Bayesian interpretation of non-

commutative probabilities that I discuss and criticize in the last section of

this chapter.

Some preliminary definitions of a cycling and separating vector of Hilbert

space for an algebra should be recalled first. A vector Ω is cyclic for a C*-
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algebra A just in case the closed linear span of the set {AΩ|A ∈ A} coincides

with all Hilbert space H. It is separating for A just in case AΩ = 0 entails

that the operator A in the algebra is equal to 0. Under these assumptions

for Ω, one can introduce an operator S0 on H such that

S0AΩ = A∗Ω (3.2)

for any operator A belonging to the von Neumann algebra M. This operator

extends to a closed anti-linear operator S, whose polar decomposition reads

S = J∆
1
2 , where J is called modular conjugation J of the pair (M, Ω) and

∆ is called modular operator. The modular conjugation is an anti-unitary

operator, i.e. J2 yields the identity I and J = J∗, which has the effect of

transforming the algebra into its commutant by the relation JMJ = M′.

The modular operator, instead, is a positive operator, namely its spectrum

takes on only positive real values, such that ∆itM∆−it = M, where ∆it is

unitary for any value of the real parameter t. Accordingly, JΩ = Ω = ∆Ω.

Let ω denote the (faithful) normal state generated by Ω, namely ω(A) =

1
‖Ω‖2 〈Ω, AΩ〉. Then, the strongly continuous unitary group {∆it} induces a

one-parameter automorphism group expressed by

σω
t (A) = ∆itA∆−it (3.3)
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which is called modular automorphism group of M (relative to Ω). It follows

that ω is invariant under {σω
t }, in the sense that ω ◦ σω

t = ω. The spectrum

of ∆ offers a measure of the periodicity of the modular automorphism. In

fact, the smaller the spectrum, the closer σω
t is to the identity. The extreme

case obtains, for instance, when ω is a tracial state: the modular operator

corresponding to the latter takes on only the value 1.

Finally, one defines the modular spectrum ofM as the intersection S(M) =

⋂
sp∆ω over all faithful normal states ω ofM, with ∆ω being the correspond-

ing modular operator. S(M) is an algebraic invariant of M. This yields a

sub-classification of the type III factors in the following manner1:

1. M is type III0 if and only if S(M) = {0, 1}

2. M is type III1 if and only if S(M) = (0,∞)

3. M is type IIIλ with λ ∈ (0, 1) if and only if S(M) = {λn}⋃{0}

where the n in the last expression ranges through the integer numbers.

3.1.2 Noncommutative probability theory

In von Neumann’s development of the “Rings of Operators”, factors were con-

structed as a non-classical analogue of Cantor’s set theory. Von Neumann

1Actually, Connes’ classification employs the concept of the “period of the flow of

weights”, where the notion of a weight generalizes that of a state.
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algebras were then demonstrated to be a noncommutative generalization of

measure theory. In fact, just as set theory informs classical probability the-

ory, states defined on von Neumann algebras are regarded as the proper non-

commutative probabilities. This puts one in a position to extend classical

concepts of probability theory, such as central theorems of stochastic pro-

cesses and the problem of statistical inference, in a more general framework.

Accordingly, the behaviour of noncommutative probabilities with respect to

these concepts determines whether or not any interpretation of probability,

like the frequentist or the Bayesian, which is based on them would hold in

quantum theory.

Let us now show how classical probability theory is actually a special

case of von Neumann algebras theory. The triple (Γ, Ω, µ) is a finite measure

space comprising a σ-algebra Ω of subsets of a set Γ and µ is a finite measure

on Γ. This becomes a classical probability space if the measure is bounded

to take its values on the real unit interval, i.e. µ : Ω −→ [0, 1]. To such a

space there is associated the algebra L∞(Γ, Ω, µ) of all essentially bounded

complex-valued functions on Γ. That is indeed a commutative von Neumann

algebra acting on the Hilbert space L2(Γ, Ω, µ) of all square µ-integrable

complex-valued functions on Γ. Conversely, one can also prove that every

commutative von Neumann algebra associated to any measure space, which

is a direct sum of finite measure spaces, is isomorphic to L∞(Γ, Ω, µ).
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Physical applications of probability theory appeals to the concept of ran-

dom variables, which represent the observables of the theory. Classically,

these are real-valued functions f belonging to the algebra L∞(Γ, Ω, µ). A

particular class of random variables is given by the characteristic functions.

Specifically, χA(x) takes on the value 1 if x falls into the subset A and 0

otherwise. Probabilities are thus defined by

µ(A) =
∫

Γ
χA(x)dµ(x) (3.4)

Clearly, the characteristic functions amount to the projections in a commu-

tative von Neumann algebra. Then, the probability measure µ defines a

unique state φ on L∞(Γ, Ω, µ) by the relation φ(f) =
∫
Γ f(x)dµ(x). If µ is a

σ-additive measure, φ is a normal state.

A general noncommutative probability space is given by the triple (M,P(M), φ),

where the state φ assigns to each projection P in the lattice P(M) of the

von Neumann algebra M a real number in the interval [0, 1]. A normal state

thus determines a σ-additive probability measure on the noncommutative

space of events. Gleason’s theorem (1957) shows the converse of this fact for

Hilbert space quantum mechanics, when the dimension of H is greater than

2. A generalization of such a result was later on obtained for any von Neu-

mann algebra (see Maeda (1990) for a review): if M has no direct summand
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of type I2, then any (finitely and infinitely) additive probability measure

µ : P(M) −→ [0, 1] extends uniquely to a state on M.

In the next few sections I discuss some interesting differences between

commutative and noncommutative probability states, which have to do with

some notions of independence between algebras, the Bell inequality and the

(non-)existence of conditional expectations. These concepts actually prove

relevant for the philosophical investigation of algebraic quantum theories.

3.1.3 Types of independence between algebras

Since each physical system is associated with an algebra of observables, cor-

relations between distant systems can be studied by looking at the mutual

relations holding between the corresponding algebras. The type of indepen-

dence between the latter thus reflects the type of independence between two

systems. There are various notions of algebraic independence offered in the

literature that coincide in the classical case, but are in general quite different

for non-commutative algebras. Whether they hold or not is a consequence of

structural properties of the algebras as well as the existence of certain states

across them.

This section is meant to be an overview of the main types of independence

employed in quantum theory. The most basic mathematical formulation of
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independence is kinematical independence. Accordingly, two quantum sys-

tems are kinematically independent just in case any element of the algebra

associated with one system commutes with all the observables of the algebra

associated to the other one. Another definition captures the idea of statistical

independence. Accordingly, two quantum systems are statistically indepen-

dent just in case each can be prepared in any state, no matter how the other

system has been prepared.

Within such a qualitative distinction, one can proceed to supply the basic

definitions of the relevant notions of independence. In what follows, A1 and

A2 denote two C*-subalgebras of a C*-algebra A, on which there are defined

the states φ1 and φ2, respectively. Likewise, M1 and M2 denote two von

Neumann subalgebras of a von Neumann algebra M, on which there are

defined the states φ1 and φ2, respectively. Let us begin with C*-independence.

A1 and A2 are C*-independent if, for any φ1 and φ2, there is a

state φ on A such that

• φ(A) = φ1(A) for any A ∈ A1

• φ(B) = φ2(B) for any B ∈ A2

That is, the state of each system is given by the restriction of φ

to the corresponding sub-algebra of A.
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This means that the states φ1 and φ2 can be prepared in the same preparation

process. Hence, no preparation of states of A1 can exclude any preparation

of the system described by A2.

Analogously, one can introduce the notion of W*-independence in the

context of von Neumann algebras, although the states are here required to

be normal.

M1 and M2 are W*-independent if, for any φ1 and φ2, there is

a (normal) state φ on M such that

• φ(A) = φ1(A) for any A ∈M1

• φ(B) = φ2(B) for any B ∈M2

That is, the state of each system is given by the restriction of φ

to the corresponding sub-algebra of M.

A stronger notion of independence between von Neumann algebras, namely

W*-independence in the product sense is defined by placing a further con-

straint on the states.

M1 and M2 are W*-independent in the product sense if they

are W*-independent and there is a (normal) state φ on M that

extends both φ1 and φ2, that is
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φ(AB) = φ1(A)φ2(B) (3.5)

for all A ∈M1 and all B ∈M2.

Accordingly, the joint state φ is a product state2 across the pair (M1,M2).

Another notion of statistical independence formulated in the framework

of von Neumann algebras theory is strict locality. Notice that the following

relation is provably symmetric if M1 and M2 commute, although it is not

known yet whether this is also the case in general.

M1 and M2 are strictly local if, for any A ∈ P(M1) and for any

(normal) state φ2, there exists a (normal) state φ on M such that

• φ(A) = 1

• φ(B) = φ2(B) for any B ∈M2

The meaning of strict locality is that no preparation of any state of the

system described by the sub-algebra M2 can exclude the occurrence of any

probability of whatever event represented by an element of the projection

lattice of the other subalgebra M1. In fact, there exist states φ and ψ on

M, whose restrictions to M2 coincide with φ2, such that φ(I − A) = 1 and

2The notion of product and its connection with entanglement will be explained in detail

in section 3.2.1.
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ψ(A) = 1. Then, for any number λ ∈ [0, 1], one can always construct a

probability state ϕ that yields such a numeric value for A: i.e. ϕ(A) =

λψ(A) + (1− λ)φ(A) = λ.

If two von Neumann algebras are commuting, that is M1 ⊆M′
2, one can

also introduce the split property. Accordingly,

M1 and M2 are said to enjoy the split property if there exists a

type I factor B(H) such that

M1 ⊆ B(H) ⊆M′
2 (3.6)

Such a property will be particularly important in chapter 4, when discussing

the correlations between space-like separated systems in Algebraic Quantum

Field Theory.

The mutual relations between these notions of independence is not clear

in general. However, in case the algebras commute, and thus are statisti-

cally independent, it was demonstrated that the split property implies W*-

independence, that in turn implies C*-independence. Then, the latter can

be shown to be equivalent to the so-called Schlieder property.

M1 and M2 are said to satisfy the Schlieder property just in case

the non-zero projections P1 ∈ P(M1) and P2 ∈ P(M2) are such

that P1 ∧ P2 6= 0.
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Here the operation ∧ is defined on the projection lattice P(M): the projec-

tion P1 ∧ P2 thus formed maps onto the intersection of the closed subspaces

of Hilbert space onto which P1 and P2 project. Hence, the Schlieder property

is the analogue of classical logical independence.

3.2 Entanglement and Quantum Information

3.2.1 The “characteristic trait” of quantum mechanics

The formalism of quantum mechanics allows one to describe the joint state

of two (or more) spatially separated systems. A remarkable aspect of the

theory, that became evident to the physicists engaged in its foundations

already in the early 1930’s and has been a source of philosophical debate

since then, is the fact that quantum systems which physically interacted in

the past maintain some kind of strong correlation, no matter how far apart

they are displaced later on. This happens when the systems share a so-called

entangled state. Accordingly, the state of each sub-system of the composite

system would not be conceived as independent from the state of the other in

any obvious manner.

The presence of entanglement can be regarded, by echoing Schrödinger’s

words, as the “characteristic trait” of quantum mechanics, that distinguishes
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the latter from the classical case. Indeed, no correlation between classical

systems retains the same features as that of an entangled pair of quantum

particles. Entanglement is actually at the bottom of various conceptual puz-

zles, such as those arising from the Einstein-Podolsky-Rosen paradox and the

violation of the Bell’s inequality, which highlight the peculiar non-locality of

quantum theory. I will address the latter issue in the next section. Here I

discuss the interesting properties that the notion of entanglement exhibits in

itself.

The term entanglement was coined by Schrödinger, who was one of the

first to point out the radical novelty that this concept brought into physics:

When two systems, of which we know the states by their respec-

tive representatives, enter into temporary physical interaction due

to known forces between them, and when after a time of mutual

influence the systems separate again, then they can no longer be

described in the same way as before, viz. by endowing each of

them with a representative of its own. I would not call that one

but rather the characteristic trait of quantum mechanics, the one

that enforces its entire departure from classical lines of thought.

By the interaction the two representatives have become entan-

gled. [Schrödinger (1935), p. 555]
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It is the tensor product structure that enables one to account for the en-

tangled state describing the joint system generated by the interaction of the

sub-systems within the formalism of quantum mechanics, whereby the math-

ematical representatives of quantum states are the vectors of Hilbert space.

The tensor product allows one to put vector spaces together to form larger

vector spaces. In particular, the tensor product of Hilbert spaces is employed

whenever one deals with the union (or separation) of quantum systems. Sup-

pose one considers the set of all mutually commuting observables associated

with a system S1 as well as the set of all mutually commuting observables

associated with a system S2. Then any observable A1 in the first set ought

to commute with all the observables A2 of the second one, and conversely.

Moreover, each element of the two sets is an observable of the composite sys-

tem S1+S2. Such properties of the union of distinct systems are incorporated

in the mathematical description of quantum states.

Let H1 and H2 be the Hilbert spaces associated with systems S1 and

S2, respectively. Then, one can form their tensor product H1
⊗H2 which

describes the joint system. Its elements are linear combinations of the vector

ψ ⊗ υ, where ψ ∈ H1 and υ ∈ H2. One can also define a linear operator

A1 ⊗ A2 on the tensor product Hilbert space by the relation:

A1 ⊗ A2(Σiaiψi ⊗ υi) = ΣiaiA1ψi ⊗ A2υi (3.7)
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with ai being complex coefficients. The operator A1 on H1 corresponds to

the operator A1 ⊗ I acting on H1
⊗H2. Likewise, A2 on H2 corresponds to

the operator I ⊗ A2 on the joint Hilbert space.

Such a definition has a straightforward generalization. As a matter of

fact, given any finite number n of quantum systems, the tensor product can

be used to provide a representation of their joint system. The Hilbert space

H1
⊗

...
⊗Hn would thus yield a mathematical structure describing a multi-

particle system S1 + ... + Sn. Importantly, the tensor product of Hilbert

spaces is uniquely defined. This guarantees that the physical properties of

the compound system are entirely determined by the component sub-systems.

In particular, any projection on the tensor product Hilbert space corresponds

to a yes/no measurement performed on the joint system.

Yet, the tensor product structure does not entail that the state of the

compound system is uniquely determined by the states of the composite

systems. Entanglement is indeed the culprit. In quantum-mechanics a state

|ψ〉 of the n-particle system does not correspond, in general, to the product

of the n states ψi of the individual sub-systems. That is,

|ψ〉 6= |ψ1〉 ⊗ ...⊗ |ψn〉 (3.8)

Indeed, the superposition principle allows such a state to be a linear super-
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position |ψ〉 = Σinλin |in〉, where the complex parameters λin are eigenvalues

of the basis |in〉 = |i1〉⊗ ...⊗|in〉 of the total Hilbert space. In fact, it can be

decomposed in different (non-equivalent) ways depending on the orthogonal

bases available in the Hilbert space. Hence, just by looking at the general

state ψ a single vector state cannot be assigned to each particle.

It is true that one encounters many more linear superpositions than pure

states. One may hope, though, that at least in the particular circumstance in

which one deals with a pure state, that is a state of maximal knowledge, one

could fully determine the states of the subsystems. Remarkably, this is not

the case in quantum theory, as the following example illustrates. Let a bipar-

tite system be described by the tensor product Hilbert space H = H1
⊗H2,

with the Hilbert spaces associated each subsystem having dimension 2. A

possible joint state of two entangled particles is the singlet state

|ψ〉 =
1√
2
(| ↑〉1| ↓〉2 + | ↓1〉| ↑〉2) (3.9)

where the states | ↑〉i and | ↓〉i may represent the fact that the spin of the

particle (labeled by i = 1, 2) in a given direction is up and down, respectively.

Notice that the symbol of the tensor product is conveniently dropped. This

state is pure on the compound system. Nevertheless for each particle there is

equal probability 1
2

of having spin up or spin down. Thus, the state of each
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subsystem is not fully determined. As Schrödinger put it,

Another way of expressing the peculiar situation is: the best

possible knowledge of a whole does not necessarily include the

best possible knowledge of all its parts, even though they may be

entirely separate and therefore virtually capable of being “best

possibly known”, i.e., of possessing, each of them, a representative

of its own. The lack of knowledge is by no means due to the

interaction being insufficiently known - at least not in the way

that it could possibly be known more completely - it is due to the

interaction itself. [Schrödinger (1935), p. 555]

So, the fact that the individual states of spatially separated sub-systems shar-

ing a pure entangled state need not be pure is a consequence of the physical

interaction that originally entangled the systems. This is the peculiar as-

pect of quantum theory, as in classical mechanics maximal knowledge of the

physical setting allows one infer the states of the component subsystem from

their joints state. One then defines entanglement by contrast to classical

correlations.

Classically, the state of a composite system is given by a probability

measure µ on the product space Γ1 × Γ2 of the probability spaces of the

single subsystems, that is (Γ1, Σ1, µ1) and (Γ2, Σ2, µ2), respectively. Such a
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probability measure can be represented as a limit of convex combinations of

measures concentrated in one point. As the point measures on a product

space are product measures, any classical probability state on a joint (prod-

uct) space is the limit of convex combinations of product measures. This

suggests how to characterize classically correlated states.

An uncorrelated state of a composite quantum system described byH1
⊗H2

is given by a density matrix of the form ρ = ρ1⊗ρ2, with ρi being the density

matrix describing the state of each subsystem on the corresponding Hilbert

space Hi. The expectation value of any observable A1⊗A2 always factorizes,

that is

Tr(ρA1 ⊗ A2) = Tr(ρ · A1 ⊗ I)Tr(ρ · I ⊗ A2)

= Tr(ρ1A1)Tr(ρ2A2)

The classical multiplication rule for probabilities thus applies. Suppose that

the density matrix is written as ρ =
∑

i λiρ1i ⊗ ρ2i. The corresponding state

does not factorize, but it proves to be a convex combination of product

states. In fact, Tr(ρA1 ⊗ A2) =
∑

i λiTr(ρ1iA1)Tr(ρ2iA2). Any state whose

density matrix can be approximated (under some suitable topology) by den-

sity matrices of this form is said to be classically correlated. Accordingly,

the statistical properties of a quantum system can be reproduced by classical
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probabilities. Otherwise, if ρ is not approximated by any convex combination

of product states, the corresponding state is defined as an entangled state.

Such a definition can be recast in the general framework of von Neumann

algebras theory. Let us consider two commuting von Neumann algebras M

and N . The algebra of observables of the composite system is then given by

M ≡ M1
∨M2 = (M1

⋃M2)
′′. A joint state φ is a product state just in

case

φ(A1A2) = φ(A1)φ(A2) (3.10)

for any observable A1 ∈ M1 and A2 ∈ M2. That is the closest one can get

to the classical notion of mutual independence in a noncommutative setting.

Given M1 ≡ L∞(Γ1, Σ1, µ1) and M2 ≡ L∞(Γ2, Σ2, µ2), a state φ on the

joint algebra is associated with the measure µ on Γ1 × Γ2. If such a state

is a product state, then the random variables, i.e. the observables, of the

subsystems are mutually independent.

Under certain circumstances3, which are of physical relevance as they

involve many applications of quantum theory, the von Neumann algebra

M1
∨M2 proves equivalent to the tensor product of M1 and M2. The

3That is whenever there exists a normal conditional expectation T mapping from the

von Neumann algebra M1

∨M2 onto its von Neumann subalgebra M1. See section 3.

for a precise definition of noncommutative conditional expectation.
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algebra of observables of the compound system is thus modeled by the von

Neumann algebra M1
⊗M2 ⊂ B(H)

⊗B(H) ' B(H⊗H), with the sub-

algebra M1 being identified with the tensor product M1
⊗

I and the other

subalgebra M2 being identified with the tensor product I
⊗M2. A state φ

on M is called separable, or classically correlated, if it is a mixture of (nor-

mal) product states on M1
⊗M2. Otherwise, that is if it does not belong

to the closure of the convex hull of (normal) product states on M, the state

φ is entangled across (M1,M2).

Different notions of entanglement may be defined depending on what

topology one requires. According to the metric topology induced by the

norm on linear functionals, separable states ought to be the norm limit of

convex combinations of product states. According to the weak-* topology,

instead, they ought to be only the weak-* limit of convex combinations of

product states. Recall that the norm of a state φ on M is defined as ‖φ‖ =

sup{|φ(A)| : |A| < 1}. Two states φ1 and φ2 that are closed to each other in

norm, i.e. ‖φ1− φ2‖ −→ 0, dictate close expectation values uniformly for all

observables in the algebra. On the other hand, a sequence of states {φn} on

M converges to φ just in case φn(A) −→ φ(A) for all A ∈ M. As weak-*

convergence need not be uniform on all elements of M, it is weaker than

convergence in norm. Therefore, by requiring one to take the weak-* limit

of sets of states, rather than the norm limit, one obtains a stronger notion
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of entanglement.

The above quote also emphasizes that the characteristic features of en-

tangled states occur even if the subsystems are distinct and spatially sep-

arated from each other. In fact, quantum correlations can manifest them-

selves between distant systems, no matter how far apart they are displaced.

Schrödinger then pointed out some puzzling consequences of entanglement

that are closely related to Einstein’s philosophical worries about the foun-

dations of quantum mechanics, in particular those expressed in the famous

EPR paper he wrote with Podolsky and Rosen in 1935. There exist matching

correlations between both positions and momenta of two spatially separated

particles. Performing a measurement of, say, position on one particle allows

one to predict with certainty the outcome of a position measurement on the

other one, and the same is true if one performs any measurement of the

momentum observable. Quantum-mechanical measurements of position and

momentum are mutually exclusive, that is establishing position destroys the

correlation between the momenta of the two systems. Of course, one can

predict either position or momentum of the first system without interfering

with it

... and since system No.1, like a scholar in an examination, cannot

possibly know which of the two questions I am going to ask first:
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it so seems that our scholar is prepared to give the right answer to

the first question he is asked, anyhow. Therefore he must know

both answers; which is an amazing knowledge; quite irrespective

of the fact that after having given his first answer our scholar

is invariably so disconcerted or tired out, that all the following

answers are “wrong”. [Schrödinger (1935), p.559]

Moreover, since one can reconstruct all the properties of a (classical) physi-

cal system by specifying both the canonical conjugate dynamical quantities

position and momentum, the first “system-scholar”

... does not only know these two answers but a vast number

of others, and that with no mnemotechnical help whatsoever, at

least with none that we know of. [Schrödinger (1935), p.559]

The core idea of EPR is to exploit the fact that any measurement of

position on one particle disturbs its momentum correlations with the other

entangled particle and to conclude that the quantum state of the particle

pair is incomplete. Indeed, on the basis of the state of the compound sys-

tem one cannot assign labels to each individual particle that could determine

completely the correlated values of the outcomes of position and momentum

measurements. Such labels would amount to the common causes explaining

the correlations between the two particles in terms of their initial interaction.
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A simpler version of the argument involves measurements of spin on a bipar-

tite system S1 +S2 described by the singlet state expressed by formula (3.9),

which is in fact also called the EPR state. We know that it induces a mixed

state of spin up and spin down on each sub-system. Suppose such a state

represents a complete description of the state of the particle pair. Then, in

case a measurement of spin in a given direction performed on S2 reveals that

the particle has spin up, by the eigenvalue-eigenvector link one knows with

certainty that the state associated with S1 is the pure state | ↓〉. However, if

one assumes a locality principle, according to which no measurement on one

particle can cause any real change in the other particle, one must infer that

S1 had already spin down before performing the measurement on S2. This

implies, though, that the EPR state could not have been a complete descrip-

tion of the state of the two sub-systems. Hence, the quantum-mechanical

description of reality fails to be complete.

What Schrödinger found unsettling about entangled correlations is that

it seems that the state of the sub-system not subjected to any direct mea-

surement depends on what observations one arbitrarily decides to make on

the other sub-system. He actually claimed that in general, by suitably act-

ing on one part of an entangled pair, a sophisticated experimenter would be

able to drive the other part into any state she chooses. Let us consider the

vector Ψ describing the state of the composite system on H1 ⊗H2. By the
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biorthogonal decomposition it can be uniquely written as

|Ψ〉 =
∑

i

ai|αi〉 ⊗ |βi〉 (3.11)

where the set of unit vectors {|αi〉} and {|βi〉} represent orthogonal bases

in the respective Hilbert spaces. Such vectors can be viewed as eigenvectors

of some observables A and B that can be measured on each individual sub-

system. The state of S1 is the mixed state given by the density matrix

ρ1 =
∑

i |ai|2Pi, with the one-dimensional projectors Pi mapping onto the

subspace of H1 spanned by the corresponding ai. Suppose that one then

measures a different observable X on S2. The set of eigenvectors {|χk〉}

which are the eigenvectors associated with the eigenvalues λk of X spans the

Hilbert spaceH2. Accordingly, the vector states of system S1 are transformed

into the normalized, but not orthogonal vectors |α′k〉 =
∑

i aik|αi〉. Indeed,

any such a vector of H1 belongs to the range of the density matrix ρ1 as well.

The total state of the bipartite system takes the following form:

|Ψ′〉 =
∑

k

ωk|α′k〉]⊗ |χk〉 (3.12)

where the constants ωk depends on the basis selected by measuring X. If the

measurement on S2 yields the outcome λk, one ought to assign the vector

state α′k to the other sub-system. This means, according to Schrödinger, that
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by a suitable choice of χk one could “steer” the state of S1 into any state

lying in the range of ρ1 with a non-vanishing probability ‖ωk‖2. Furthermore,

in case all coefficients λi are distinct and non-zero, and hence the range of ρ1

coincides with H1, one would obtain any chosen mixture of quantum states.

However, Schrödinger’s argument does not show that the statistics of S1

can be changed at the whim of the experimenter. The term “steering” is

indeed a bit misleading. The state of S1 is a mixed state, which can be

expressed non-uniquely as different mixtures of pure states. The only thing

that one can do by means of an appropriate choice of observable is to correlate

the outcomes of a measurement on S2 with some specific mixture. Since

the outcome of such a measurement is random, and thus the experimenter

does not determine it, she cannot actually drive S1 into any particular state

that she chooses. In other words, by operating on a quantum system, the

experimenter has just the freedom to constrain the state of another spatially

separated entangled system to evolve in any arbitrary set of states. To be

sure, this is a remarkable non-local property of the quantum world due to

the presence of entanglement, which has no classical analogue.

Schrödinger associated the non-locality arising from the possibility of

“steering” with some sort of action at a distance between quantum systems,

which he did not find acceptable at all. If the systems are separated far

enough from each other, an experiment performed on one of them ought not
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to interfere with the other. This led him to doubt that entangled states are

actually instantiated in nature.

For it seems hard to imagine a complete separation, whilst the

system are still so close to each other, that, from a classical point

of view, their interaction could still be described as an unretarded

actio in distans. And ordinary quantum mechanics, on account

of its thoroughly unrelativistic character, really only deals with

the actio in distans case. The whole system (comprising in our

case both systems) has to be small enough to be able to neglect

the time that light takes across the system, compared with such

periods of the system as are essentially involved in the changes

that take place. [Schrödinger (1936), p. 451]

So, he conjectured that entanglement does not persist over long distances.

The physical systems S1 and S2 may share an entangled state only if their

distance is such that the amount of time which is required for a light sig-

nal to travel from one to the other is comparable to the characteristic time

periods of the changes occurring in the compound system. If their spatial

separation becomes large enough, the entanglement between the two systems

would spontaneously decay. Nevertheless, the persistence of entangled states

between spatially separated systems was later on demonstrated experimen-
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tally, for instance by Aspect et al. (1982).

Incidentally, notice that Schrödinger also predicted that, on the basis

of the non-local character of entangled correlations, any attempt to make

quantum mechanics relativistic is bound to fail.

Though in the mean time some progress seemed to have been

made in the way of coping with this condition (quantum electro-

dynamics), there now appears to be strong probability (as P.A.M.

Dirac has recently pointed out on a special occasion) that this

progress is futile. [Schrödinger (1936), p. 451]

Contrary to his expectations, though, quantum theory has been extended

to relativistic physics. As we shall see in the last chapter, quantum field

theory provides an empirically successful model of relativistic quantum me-

chanics. Ironically, it can even be shown that entanglement is more robust

in a relativistic context than in the ordinary case.

The peculiar form of non-locality characterizing quantum mechanics which

arises from the presence of entanglement is properly expressed in a theorem

by Bell (1964). Specifically, he derived an inequality from a locality condi-

tion which proves violated by certain quantum systems sharing an entangled

state. This is actually what marks the main difference between classical and

quantum correlations. I address this issue in the next section, where I cast
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Bell’s inequality in algebraic terms as well.

3.2.2 Bell-type non-locality: algebraically

The work by Bell (1964) can be regarded as an extension of the EPR ar-

gument. The content of the theorem he proved is that any realist physical

theory that agrees with all statistical predictions of quantum mechanics is

non-local in a specific sense. The underlying assumption of realism con-

sists in postulating that the quantum state is supplemented by some further

parameters in order to provide a complete description of reality. Such pa-

rameters would amount to the “hidden variables” of the theory. A Bell-type

experiment is modeled as follows. Two particles are prepared in an entangled

state described by the hidden variable λ and then move apart. Experimental

apparatuses are then set to perform measurements on each sub-system. The

model is local in the sense that the probabilities of joint outcomes factorize

into the probabilities of the outcomes for each individual particle. From such

an assumption of locality one derives a certain inequality, which is provably

violated by matching correlations between two-valued observables of the two

separated systems. What makes Bell’s argument more general than the EPR

case is that he considered correlations between different observables, not just

the same observable.
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In the algebraic framework the outcomes of an experiment are represented

by projectors of a C*-algebra. In general, the observables of a Bell-type

system are the elements of a C*-algebra A (with unit I) containing a pair

of commuting C*-subalgebras A1 and A2, which are associated with the two

subsystems. So, the outcomes of the measurements on each subsystem are

given the projectors E ∈ A1 and F ∈ A2, respectively. Rather than dealing

with projections, it is convenient to work with their self-adjoint contractions,

that is A := 2E − I and B := 2F − I. One thus obtains the observables

Ai ∈ A1 and Bj ∈ A2 with i, j = 1, 2. Accordingly, the assumption of locality

expressed by factorizability of joint probabilities reads

prλAiBj
(x, y) = prλAi

(x) · prλBj
(y) (3.13)

where x and y denote the results of Ai and Bj, respectively, and can take on

either the value +1 or the value −1.

Jarrett (1984) showed that such a condition is the conjunction of two

separated independence conditions on a single marginal probability. Specifi-

cally, one requires that the probability prλAi
is independent of the choice of

the quantity to be measured in the other wing; the other requires that the

probability of the outcomes of a measurement performed on one wing is sta-

tistically independent of the probability of any specific outcome obtained by

119



a measurement performed on the other wing. The first provision is expressed

by the relation

prλAi
(x) = prλAiBj

(x) := prλAiBj
(x, y = 1) + prλAiBj

(x, y = −1) (3.14)

and, by following Shimony’s (1986) terminology, it is called parameter inde-

pendence4. The second provision stating

prλAiBj(x, y) = prλAiBj(x) · prλAiBj(y) (3.16)

is instead called outcome independence.

Whether Jarrett’s decomposition of Bell’s locality condition gives any real

philosophical insight has been much debated. For instance, Maudlin (1994)

objects that such a distinction is not just useless, but actually misleading. On

the contrary, Howard (1985) argues that, whereas parameter independence

embodies the relativistic constraint of no superluminal signaling, one ought to

interpret outcome independence as a principle of spatio-temporal separability

underlying Einstein’s worries concerning quantum mechanics (in particular,

the EPR paradox). Accordingly, to avoid a possible conflict with Special

4There is of course a similar condition for Bj , that is

prλBj (y) = prλAiBj (y) := prλAiBj (x = 1, y) + prλAiBj (x = −1, y) (3.15)
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Relativity arising from the failure of the no signaling constraint, one ought

to maintain parameter independence. This would mean that the culprit in

the violation of Bell’s inequality is the failure of outcome independence.

Be that as it may, Butterfield (1995) demonstrated that the distinction

between parameter independence and outcome independence can be recast

in algebraic terms. The conceptual import of this formulation will become

explicit in the last chapter. In fact, Bell’s inequality does not hold in rela-

tivistic quantum mechanics either. Since Algebraic Quantum Field Theory

introduces relativistic locality, and thus parameter independence, as an ax-

iom, the failure of Bell-type locality must be entirely traced back to the

failure of outcome independence. Below I present the details of the algebraic

version of Jarrett’s decomposition of Bell’s inequality.

The initial state of the pair of systems is captured by a fixed state φ on the

joint C*-algebra A. The locality condition required by Bell-type models is

retained by φ in a quite natural way if the sub-algebras A1 and A2 commute.

Schlieder (1968) in fact proved that two bounded self-adjoint operators A

and B acting on Hilbert space commute if and only if, for any partition {Ii}

of the spectrum of B, any state φ of A is such that

φ(A) =
∑

i

φ[
∫

i
dPλA

∫

i
dPλ] (3.17)
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where Pλ denote the projectors in the spectral resolution of B. This means

that one observable’s statistics is preserved under any measurement of the

other observable. That is a version of the so-called no-signaling theorem,

according to which instantaneous communication cannot be achieved between

space-like separated systems by means of operations enacted by the (non-

selective) Lüders rule.

To put it in another way, let us represent the fact that a measurement

of the contraction A of A1 has outcome x by the symbol Ax
i and, similarly,

the fact that a measurement of the contraction B of A2 has outcome y

by the symbol By
j . The joint probability is thus given by φ(Ax

i B
y
j ). So,

factorizability requires

φ(Ax
i B

y
j ) = φ(Ax

i ) · φ(By
j ) (3.18)

Then, the linearity of the state φ and the fact that the subalgebras possess a

common unit to which the outcomes of the measurements on each wing sum,

i.e.
∑

x Ax =
∑

y By = I, guarantee that single probabilities are independent

of what is measured in the other wing. Indeed, parameter independence can

be rewritten as

φ(Ax
i ) = φ[Ax

i (
∑
y

By
1)] = φ[Ax

i (
∑
y

By
2)] (3.19)
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That is, the marginal probability of outcome x for Ai in the context of mea-

suring Bj is obtained by summing out all the possible results of the latter.

On the other hand, outcome independence reads

φ(Ax
i B

y
j ) = φ[Ax

i (
∑
y

By
j )] · φ[(

∑
x

Ax
i )B

y
j ] (3.20)

hence the joint probabilities factorize into their marginals. That completes

the re-formulation of Jarrett’s decomposition of Bell’s inequality in the alge-

braic framework.

The algebraic form of Bell’s inequality was derived by Summers and

Werner (1985) and by Landau (1987). To achieve such a result, one first

defines the Bell correlation

β(φ,A1,A2) =
1

2
sup φ(A1(B1 + B2) + A2(B1 −B2)) (3.21)

where the supremum is taken over the observables Ai and Bj. Accord-

ingly, Bell’s inequality is expressed by the relation β(φ,A1,A2) ≤ 1. It

was demonstrated by Bell that maximal violation of such a bound, namely

β(φ,A1,A2) =
√

2, is attained in quantum mechanics. In particular, it oc-

curs in case the sub-algebras A1 and A2 contain copies of the two-by-two

complex Pauli spin matrices and the joint state φ is taken to be the singlet

state (3.9). This is actually archetypal in the sense that, for φ|A1 and φ|A2

123



faithful states, whenever maximal violation of Bell’s inequality is obtained

the operators A1, A2 and A3 ≡ − i
2
[A1, A2] are a realization of the Pauli

matrices in A1, and so are the Bj in A2.

Bell’s inequality is known to hold for classical correlations. Therefore,

classical mechanics is a local theory. This is not particularly surprising as

Bell’s inequality was indeed derived from a hypothesis of local hidden vari-

ables corresponding to a classical model for the probabilities expected in an

experiment such that considered by EPR. Pitowsky (1989) proved that the

satisfaction of Bell’s inequality is a necessary and sufficient condition for the

existence of probability distributions over a classical probability space re-

producing the relevant data. Yet, this is true only within the Hilbert space

formalism. In the more general algebraic framework, Bell’s inequality can

be satisfied by quantum-mechanical states as well. Specifically, the bound

β(φ,A1,A2) ≤ 1 for the Bell correlation is ensured by φ being a separa-

ble state, even though the algebras are non-commutative. As Bacciagaluppi

(1993) argues,

... Pitowsky’s results are not vindicating any correspondence be-

tween classicality and the Bell’s inequalities rather than in the

precise form he gave: as a matter of fact, it is just the correla-

tions that are classical. Indeed, the catch-phrase “Bell’s inequal-
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ities means that everything is classical” is wrong. Theorems ...

show that, contrary to the case of Hilbert space quantum me-

chanics, in algebraic quantum mechanics there are systems that

satisfy the Bell inequalities in all possible states, and nevertheless

are not entirely classical - indeed, one of the subsystems may be

completely quantum mechanical. [Bacciagaluppi (1993)]

In particular, Bacciagaluppi refers to a theorem by Raggio (1981), which

he himself further elaborates in his paper. Such a result establishes that

the following three conditions on two (general) C*-algebras A and B are

equivalent:

1. each state on the tensor product A⊗B is separable

2. A or B is commutative

3. each state on A⊗B satisfies the Bell’s inequality

As statement 2 emphasizes, existence of unentangled states, and thus satis-

faction of the Bell’s inequality, does not require both algebras to be commu-

tative. In fact, if at least one algebra is classical, then all the states across

A and B are separable.

Furthermore, one should stress that not any non-separable state of a com-

posite quantum system admits a description within the framework of local
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classical (hidden-variable) models. For Werner (1989) constructed examples

of not classically correlated states of a composite quantum system which sat-

isfy Bell-type inequality. Indeed, contrary to the case of entangled pure states

described by unit vectors of H1
⊗H2, it is not the case that all entangled

mixed states violates Bell’s inequality. In the last analysis, although entan-

glement is a necessary condition for Bell-type non-locality, it is not actually

sufficient.

It should be clear how many conceptual puzzles that entertain physicists

and philosophers of quantum mechanics are deeply rooted on the behaviour

of entangled states. Since the beginning of the 90’s, though, with the growing

interest in quantum information, attitudes have started to change. Rather

than a source of conceptual difficulties, entanglement has become a resource

to exploit. Here is how Popescu and Rohrlich describe the switch to the new

perspective in the introduction of their work “The Joy of Entanglement”:

... today, the EPR paradox is more paradoxical than ever and

generations of physicists have broken their heads over it.

Here we explain what makes entanglement so baffling and sur-

prising. But we do not break our heads over it; we take a more

positive approach to entanglement. After decades in which every-

one talked about entanglement but no one did anything about it,
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physicists have begun to do things with entanglement. [Popescu

and Rohrlich (1998)]

In the next sections of this chapter I review and discuss some attempts

to understand the foundation of quantum mechanics from an information-

theoretical point of view.

3.2.3 On the Clifton-Bub-Halvorson’s theorem

The attitude of quantum information theorists toward the basic concepts of

quantum mechanics is eminently pragmatic. They are in fact interested in

developing protocols in which the information encoded in the quantum states

can be used in some manner. Specifically, one now treats

... entanglement as a resource that allows us to teleport quantum

states and construct unbreakable codes, a resource that we can

extract, purify, distribute and consume. The applications of en-

tanglement lead us to develop new conceptual tools and to adapt

old ones - in particular, the concept of entropy. Like Carnot, we

face fundamental questions about how to use this resource most

efficiently, and the concept of entanglement helps us exploit en-

tanglement just as it helps us exploit energy efficiently. [Popescu

and Rohrlich (1998)]
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There is in fact a close connection between entropy and entanglement. For

two systems A1 and A2 sharing an entangled state represented by the den-

sity ρ, the von Neumann entropy SA1(ρ) = −TrρA1 ln ρA1 of system A1 varies

with the degree of its entanglement with A2. For instance, if ρ is a product

state then the relative von Neumann entropy is 0, whereas if the systems are

in a singlet state one has SA1(ρ) = ln 2. Specifically, the more entrenched

the entanglement between A1 and A2, the more disordered A1 becomes in

the sense that there will be several states available and the system’s prob-

abilities of occupying any such state will approach equality. Popescu and

Rohrlich (1997) also argued that, just as the second laws of thermodynamics

(where entropy in introduced) applied to Carnot’s heat cycle implies that

it is impossible to construct a perpetuum mobile, the impossibility of cre-

ating entanglement between two systems by acting locally on one of them

implies that the von Neumann entropy of either member of the pair yields

the (unique) measure of their entanglement when they share a pure state.

The analogy with thermodynamics can be put forward at the level of the

foundations of quantum theory too. Thermodynamics is in fact the paradigm

example of a class of theories that Einstein labeled “principle theories” as

opposed to “constructive theories”. Bub (2000) proposes to understand quan-

tum mechanics as a principle theory. The technical basis for this claim is a

theorem which he proved together with Clifton and Halvorson in 2001 (that
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is referred to as CBH theorem from the initials of the three authors), whereby

the structure of quantum mechanics is derived from information-theoretical

constraints, describing what one can or cannot do with information in the

quantum world.

The distinction between principle and constructive theories was intro-

duced by Einstein in an article written in 1919 for the issue of the London

Times published on November 28. That article illustrates how he arrived at

the formulation of his theories of relativity.

We can distinguish various kinds of theories in physics. Most of

them are constructive. They attempt to build up a picture of

the more complex phenomena out of the materials of a relatively

simple formal scheme from which they start out. Thus the ki-

netic theory of gases seeks to reduce mechanical, thermal, and

diffusional processes to movements of molecules – i.e., to build

them up out of the hypothesis of molecular motion. When we

say that we have succeeded in understanding a group of natural

processes, we invariably mean that a constructive theory has been

found which covers the processes in question.

Along with this most important class of theories there exists a

second, which I will call ”principle-theories.” These employ the
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analytic, not the synthetic, method. The elements which form

their basis and starting-point are not hypothetically constructed

but empirically discovered ones, general characteristics of natural

processes, principles that give rise to mathematically formulated

criteria which the separate processes or the theoretical representa-

tions of them have to satisfy. Thus the science of thermodynamics

seeks by analytical means to deduce necessary conditions, which

separate events have to satisfy, from the universally experienced

fact that perpetual motion is impossible. [Einstein (1919)]

Einstein regarded constructive theories as providing a more fundamental ac-

count for physical phenomena than principle theories. As he himself admit-

ted, Einstein first looked for a constructive theory describing the properties

of matter and radiation, but he eventually gave up and proposed the special

theory of relativity in 1905 as a principle theory. An alternative constructive

theory would be Lorentz’s mechanical model of the electrodynamics of mov-

ing bodies, that derives the Lorentz transformations from some assumptions

about the transmission of molecular forces through the ether. Yet, Lorentz

theory is not acceptable in its original form.

As is well known, special relativity relies on two postulates. The first

is the equivalence of inertial frames for all physical theories and the second
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is the constancy of the velocity of light in all inertial frames. The struc-

ture of spacetime thus arises as Minkowski geometry. Remarkably, Einstein

characterizes the requirement of invariance of the laws of mechanics and elec-

tromagnetism under the Lorentz transformations from one inertial frame to

another as “a restrictive principle for natural laws, comparable to the restrict-

ing principle for the non-existence of the perpetuum mobile which underlies

thermodynamics” (Einstein (1949)). So, in analogy to the first and second

law of thermodynamics, one can construct a principle theory out of some

empirically justified and mathematically well formulated no go constraints.

Clifton, Bub and Halvorson’s purpose is to claim that quantum mechan-

ics is not a (constructive) mechanical theory of waves and particles in the

first place, but ought to be viewed as a (principle) theory about the impos-

sibility of information transfer. The structure of quantum theory, involving

both noncommutativity and nonlocality, is equivalent to three information

theoretical principles, that is (1) no signaling, (2) no cloning and (3) no

bit commitment. The CBH theorem is entirely derived within the general

framework of C*-algebras. Accordingly,,

1. the impossibility of superluminal information transfer between two

physical systems implies, and is implied by, the kinematic indepen-

dence of the algebras corresponding with the latter;
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2. the impossibility of perfectly broadcasting the information contained

in an unknown physical state implies, and is implied by, the non-

commutativity of the algebra associated with each system;

3. the impossibility of unconditionally secure bit commitment implies, and

is implied by5, the fact that spacelike separated physical systems occupy

(at least sometimes) entangled states.

The algebraic formalism allows one to appreciate that, if a physical theory is

characterized in terms of such constraints, then it cannot be classical. Hence,

the CBH theorem sets quantum mechanics apart from classical mechanics.

The above principles are in fact features of quantum information.

I explained in the previous section how the impossibility of superluminal

transfer of information from one system, say A1, to another physically distinct

system, say A2, is connected to the fact that the relevant C*-algebras A1

and A2 (which, as usual, are subalgebras of a larger C*-algebra A = A1
∨A2

describing the compound system A1 + A2) are kinematically independent.

Since this means that each observable in one algebra commutes with all the

elements of the other, no (non-selective) measurement performed on A1 can

convey any information to A2: the statistics of the latter remains invariant

5Actually, this implication was left unproven by Clifton, Bub and Halvorson (2003).

The derivation was completed by Halvorson (2004).
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in the sense that the expectation values for the outcomes of measurements

do not change.

Cloning is a special case of an information-theoretical protocol known as

broadcasting, according to which a ready state σ of system A2 and the state

ω of system A1 to be broadcast (that is the input pair), are transformed by

means of some measurement-operation to a new state φ on the joint algebra

A (that is the output pair), where the restriction of the latter state to the rele-

vant subalgebras, namely φ|A1 and φ|A2 , are both equivalent to ω. In cloning,

one just deals with pure states, and hence σ and ω are both transformed to

two copies of ω. Contrary to classical information theory, neither cloning nor

broadcasting are possible in elementary quantum mechanics. Indeed, a pair

of input pure states can be cloned if and only if they are orthogonal; more

generally, a pair of input mixed states can be (perfectly) broadcast if and

only if they are represented by mutually commuting density operators.

Therefore, as Clifton, Bub and Halvorson showed, if any two states of a

C*-algebra can be broadcast, then all pure states are orthogonal, and hence

the algebra must be commutative. This means that no cloning (and, more

generally, no broadcasting) is equivalent toA being non-commutative. As the

physical manifestation of non-commutativity is the quantum phenomenon of

interference, the information-theoretical counterpart of the latter is just the

impossibility of copying the information contained in an unknown quantum
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state. Equivalently, one may say that quantum states cannot be cloned by

means of any measurement-operation because the latter always disturbs the

state of a system on which they are performed.

It is interesting to point out that some important procedures of quantum

information, such as quantum teleportation, rely on no-cloning. Telepor-

tation, which was first proposed by Bennett et al. (1993), is one of most

striking phenomena arising from the quantum formalism as entanglement

assisted communication. Supposed two experimenters, Alice and Bob, lo-

cated in spatially separated sites can operate on distinct physical systems

sharing the singlet state (3.9). Alice receives another spin-particle system

prepared in an unknown quantum state χ = α| ↑〉+β| ↓〉 with complex coef-

ficients α and β. Alice measures an observable with four possible outcomes,

corresponding to the four Bell states, on the two particles in her possession.

The four outcomes of Alice’s measurement are correlated with four states of

Bob’s system, which turn out to be either the same as the unknown state

χ, or unitarily related to χ. If Alice sends the outcome of her measurement,

which amounts to two bits of classical information, to Bob, then Bob can re-

construct the state χ by either doing nothing or by performing an appropriate

unitary tranformation on his particle.

Notice, however, that the alleged teleportation is just seeming. First of

all, it is not matter, namely the particle, which is teleported, but just a
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quantum state. Furthermore, the trick is made possible by the fact that

Alice cannot clone the state χ. If measurements did not always change the

state of a quantum system, the particle entangled to Alice’s system may well

remain in the state χ. In such a case, once the above protocol is completed,

one would not be in a position to claim that teleportation was achieved at

all.

The last statement of the CBH theorem involves the no bit commitment

protocol, which supposedly guarantees entanglement maintenance over dis-

tance. In a bit commitment protocol Alice supplies an encoded bit to Bob as

a warrant for her commitment to either one of two values, say 0 and 1. The

amount of information available does not allow Bob to ascertain the value

of the bit at the initial stage. ’At a later opening stage Alice reveals her

commitment and communicates additional information to Bob. The addi-

tional information is required to be sufficient for Bob to be convinced that

Alice was not able to cheat, in the sense that the encoded bit could not

have been encoded in such a way that Alice was free to reveal either of the

values. Bennett and Brassard (1984) showed that by encoding 0 and 1 in

two quantum mechanical mixtures represented by the same density operator

ρ Alice can actually cheat by adopting an EPR-type strategy. Suppose she

prepares pairs of particles A1 and A2 in the same entangled state φ such that

φ|A2 = ρ. If she keeps one pair and sends the other to Bob, then she can
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reveal either bit at will by steering Bob’s particles into the desired mixture

by performing an appropriate measurement on her particle. Bob is not able

to detect the cheating strategy. This means that unconditionally secure bit

commitment is not possible in quantum mechanics.

Actually, unconditionally secure bit commitment is impossible for clas-

sical systems as well. Yet, the reason is quite different from the quantum

case, since the fact that the protocol is not secure depends on issues of com-

putational complexity. Classically, Alice’s commitment to either 0 and 1 is

equivalent to the truth of an exclusive disjunction. She can send the relevant

(encrypted) information to Bob only if such information is biased toward one

of the alternative disjuncts, but there is no principle of classical mechanics

which prevents him from extracting the information. On the contrary, what

makes it possible for Alice to cheat in quantum mechanics is the fact that,

pace Schrr̈odinger, remote steering is indeed possible.

What thwarts the possibility of using the ambiguity of mixtures in

this way to implement an unconditionally secure bit commitment

protocol is the existence of nonlocal entangled states between

Alice and Bob...

So what would allow unconditionally secure bit commitment in

a nonabelian theory is the absence of physically occupied nonlo-
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cal entangled states. One can therefore that take Schrödinger’s

remarks as relevant to the question of whether or not secure bit

comiitment is possible in our world. In effect, Schrödinger be-

lieves that we live in a quantum-like world in which secure bit

commitment is possible. [Clifton, Bub and Halvorson (2003)]

The theorem by Raggio and Bacciagaluppi that I spelled out in the pre-

vious section guarantees the possibility of entangled states if at least one

of the algebras is noncommutative, irrespective of whether or not the cor-

responding systems are spatially separated. Thus, since noncommutativity

follows from the no-cloning principle, the latter is sufficient to entail that

non-local entangled states exist. As a consequence, one may argue, appeal-

ing to no bit commitment in the context of the CBH theorem is not actually

necessary. It could be, though, that in a more general framework than the al-

gebraic setting, namely that of convex sets, the role of no bit commitment in

the derivation of quantum mechanics from information theoretical principles

could be actually restored6.

The work by Clifton, Bub and Halvorson makes explicit the structural

connections between information theory and the foundations of quantum

theory. Allegedly, the philosophical import of their theorem is that quantum

6See Barnum et al. (2008).
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mechanics is a theory about information. This view leads one to regard

quantum states as states of information, rather than complete descriptions of

states of affairs. A position that heavily relies on this attitude is the Bayesian

interpretation of quantum mechanics. I now address some problems arising

in the context of such an approach.

3.3 The Problem of Bayesian Statistical In-

ference

3.3.1 The noncommutative generalization of the Bayes

rule

According to the Bayesian interpretation of quantum mechanics (Caves,

Fuchs and Schack 2002, Pitowsky 2003), quantum states reflect the degrees

of belief of an observer, who is in turn conceived as an ideally rational agent.

Furthermore, one relies on the assumption that a quantum measurement is

tantamount to performing a Bayesian statistical inference. Supposedly, this

puts one in a position to elude the measurement problem, as the so-called

wave-function collapse would just reduce to a quantum analogue of the clas-

sical Bayes rule, whereby the agent-observer revises her degrees of belief on

the basis of the evidence acquired by performing a measurement.
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That is, quantum measurements are tantamount to Bayesian statistical

inferences. So, a necessary condition for any Bayesian interpretation of quan-

tum mechanics is the existence of a noncommutative conditionalization rule

generalizing the Bayes rule. This forces the probability states on B(H) to

retain certain properties. As von Neumann algebras theory represents the

proper non-commutative probability theory, one can recast some of these

properties in algebraic terms and see whether they hold in the quantum

case.

We saw in the first chapter that the problem of statistical inference in

quantum mechanics was first posed by von Neumann in his earlier works on

the mathematical foundation of quantum mechanics. Statistical inference

was required in order to derive the probability statements of the theory. As

he emphasized, it characterizes both classical and quantum theories.

If anterior measurements do not suffice to determine the present

state uniquely, then we may still be able to infer from those mea-

surements, under certain circumstances, with what probabilities

particular states are present. (Von Neumann 1932, 337)

Since measurements cannot determine quantum-mechanical states uniquely,

the problem of how to infer probabilities in quantum mechanics became com-

pelling to complete von Neumann’s mathematical formulation of the theory.
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Then, noncommutative statistical inference is required in the context of a

Bayesian interpretation of quantum probabilities as well. Redei (1989, 1992,

1998) set the problem within the algebraic framework. We now see how the

classical Bayes rule is fully generalized in von Neumann algebras theory.

Classically, the problem of Bayesian statistical inference can be formu-

lated as follows: how should a rational agent revise her a priori probability µ

about any event A ∈ Ω, on the basis of knowing the probability of some other

event? In the simplest case, when she happens to know that an event B has

occurred (that is, it is assigned probability 1), the Bayes rule establishes that

the conditional probability µ′, namely her revised degrees of belief, is given

by

µ′(A) ≡ µ(A ∩B)

µ(B)
(3.22)

One then considers the more general scenario in which the agent happens

to learn the probabilities of a set of events belonging to a subalgebra Ω0 of

Ω (rather than the probability of a single event). Recall that the probability

measure µ on Ω corresponds to the a priori state w on L∞(Γ, Ω, µ), so the

collection of probabilities the agent is presented with amount to the state w0

on the von Neumann subalgebra L∞(Γ, Ω0, µ0) of L∞(Γ, Ω, µ), with µ0 being

the restriction of µ to Ω0 (i.e. µ0 = µ|Ω0). Algebraically, the Bayesian recipe
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gives the conditional probability of any event in Ω/Ω0 by

w′(χA) ≡ w0(TχA) (3.23)

The mapping T from L∞(Γ, Ω, µ) onto L∞(Γ, Ω0, µ0) denotes the classical

conditional expectation.

Importantly, the Radon-Nykodym theorem guarantees that such a map

always exists and that it also preserves the a priori probability µ. In par-

ticular, when Ω0 is generated by a countable set of disjoint elements Bi, the

conditional expectation takes the form

T (χA) =
∑

i

µ(Bi ∩ A)

µ(Bi)
χBi

(3.24)

where one immediately recognizes the Bayes rule (Loeve 1962, 340).

The problem of noncommutative statistical inference as formulated by Re-

dei (1989, 1992, 1998) recasts the classical case completely in algebraic terms.

The agent’s a priori probability is a state φ on a general von Neumann alge-

bra M. Then, if she learns the probabilities of all the events belonging to the

von Neumann subalgebra M0 of M (with common unit), which are encap-

sulated in the probability state ψ0, the noncommutative conditionalization

rule is expressed by:
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φ′(A) = ψ0(TA) (3.25)

for any event A ∈ P(M), where T represents the noncommutative condi-

tional expectation mapping from M onto M0.

Let us apply the thus defined Bayesian recipe to the case of quantum mea-

surements. The agent-observer’s a priori probability is defined by a state φ

on the von Neumann algebra B(H). Performing a measurement provides the

evidence on the basis of which she revises her degrees of belief. Any measured

observable B generates the Boolean algebra comprising all the bounded op-

erators commuting with its spectral projections. This corresponds to a sub-

algebra B0 of B(H). Then, the quantum conditional expectation map would

depend on the details of the physical quantity which is measured.

For instance, suppose the measured observable has a discrete spectrum,

that is B =
∑

i λiPi (with i = 1, 2, ..., n), where Pi = |ψi〉〈ψi| denote the spec-

tral projections and λi the eigenvalues corresponding to the eigenvectors |ψi〉.

That immediately selects the Boolean algebra B0 ≡ {A0 ∈ B(Hn)|A0Pi =

PiA0}, with Hn being a finite n-dimensional Hilbert space. The conditional

expectation TB projecting any A ∈ B(Hn) onto an element TB(A) = A0 of

B0 is expressed by the quantum-mechanical Lüders rule
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TB(A) =
∑

i

PiAPi (3.26)

Accordingly, the conditional probability state determined by performing a

measurement of B reads φ′(A) = ψ0(T
BA). The claim that the Lüders rule

generalizes the classical Bayes rule to quantum mechanics in finite dimensions

was first put forward by Bub (1977).

To resume, the general problem of Bayesian statistical inference is char-

acterized as follows. Let the state φ on an arbitrary von Neumann algebra

M be the a priori probability of the agent. The evidence, namely the proba-

bilities of a set of events, which she is presented with is given by a state ψ0 on

a von Neumann subalgebra M0 of M. What is the conditional probability

state φ′, that is the extension of ψ0 to M?

The answer to such a question rests on the existence of a proper condi-

tional expectation in a two-fold sense:

1. conditional probabilities φ′ = ψ0 ◦ T exist on M only if a map T can

be defined

2. whether or not conditional probabilities obey rationality constraints

depends on the properties of such map T

We shall see in section 3.3.3. that the solution to the problem of Bayesian

noncommutative statistical inference is not at all straightforward. Difficult
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technical and philosophical issues in fact arise both at the level of quantum

mechanics and at the level of general probability spaces. Even before de-

termining how the agent should revise her degrees of belief on the basis of

certain evidence, though, one is needs to establish the probability she ascribes

to any event on the basis of no evidence. That is the a priori probability

state φ on M. This is the topic we address in the next section.

3.3.2 Can the a priori probability be derived from

symmetry considerations?

By definition, the a priori probability reflects the agent’s most natural prob-

ability assignment in those circumstances in which she does not have any

specific knowledge. From the point of view of a Bayesian interpretation of

quantum mechanics, that is tantamount to establishing what state φ on the

algebra B(H) of bounded operators acting on Hilbert space captures the

agent-observer’s degrees of belief before performing any measurement. In

particular, one may ask whether an a priori quantum state can be deter-

mined by the physical symmetries of quantum-mechanical systems and, if so,

whether such a state is actually unique. The analysis I offer in this section

is contained in Valente (2009).

The problem of determining the a priori probability has been debated
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at length since the eighteenth century, as Laplace provided a definition of

the (classical) probability of an event as the ratio of favourable cases to the

total number of equipossible cases. Specifically, whenever there is no evi-

dence favoring one possibility over another, equipossible cases are ascribed

equal probabilities: this is the principle of indifference. Several arguments

have been formulated against such a claim, which can be subsumed under

the family of so-called Bertrand’s paradoxes (Bertrand 1889). Accordingly,

unless some further constraint is specified, one cannot determine unambigu-

ously the a priori probability on the basis of the principle of indifference

alone.

The class of arguments leading to such a conclusion against the prin-

ciple of indifference has been investigated, among others, by van Fraassen

(1989). He provides the following example that well characterizes the family

of Bertrand’s paradoxes. Let us suppose that a factory produces iron cubes

whose edge length is ≤ 2 units, then one is asked for the probability that a

random cube has length ≤ 1. Now, if one assumes the length as parameter

the principle of indifference would led one to assign probability 1
2
; however if

one considers the area or even the volume, instead, the probability would be

1
4

or 1
8

respectively.

E.T. Jaynes (1968, 1973) observed that Bertrand’s paradox can be solved

by focusing on the geometrical symmetries in the problem. For instance, if
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one throws a fair dice, one would ascribe equal probability 1
6

to each of the

six faces: intuitively, the “fairness” of the dice implies that it is a perfectly

symmetric object, hence there is no evidence to favor one possibility on the

others. Thus, one can derive the a priori probability by invariance under the

group of symmetries characterizing the physical situation. In light of this,

Jaynes advocated a Bayesian interpretation of probability in physics, whereby

the agent’s a priori probability is uniquely determined by invariance under

the group of symmetries characterizing the physical problem. Specifically,

by relying on the basic desideratum that “in two problems where we have

the same prior information, we should assign the same prior probabilities”

[Jaynes (1968)], any rational agent is compelled to ascribe the same proba-

bility by the so-called principle of maximum entropy. Nonetheless, he ended

up proving that classical probability depends on the choice of the relevant

symmetry transformation, and hence it cannot be uniquely fixed. In fact,

when dealing with continuous parameter spaces, the results lack invariance

under changes of parameter.

However, one may expect that a physical theory with an intrinsic prob-

ability structure, such as quantum mechanics, can be so tightly constrained

that a symmetric a priori probability is naturally defined on it. Recall that in

the axiomatic treatment of “Continuous geometries with transition probabil-

ity” von Neumann showed that on the factors of type In and II1 a (transition)
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probability function is uniquely fixed by the symmetries of the projection

lattice. In fact, Axiom XII requires quantum probability to be invariant

under any automorphism of the lattice which leaves the logic of the theory

invariant too; on the other hand, Axiom XIII establishes the existence of

such automorphisms. The uniqueness of the probability function followed

by placing the latter constraint, which actually marks a structural difference

with respect to classical theories. As von Neumann himself commented,

It is worth emphasizing, that while these two kinds of logics have

been used in classical mechanics too, their connection there was

much looser. In particular there is no equivalent in the classical

case for our second mentioned connection (expressed by Axiom

XIII). [von Neumann (1936)]

Of course, as a special case of transition probabilities, the a priori probability

is also determined by the symmetries of the lattice of projections, if the von

Neumann algebras are of type In and type II1.

Let us see how such insight can be translated into more general algebraic

terms. The dimension function on the projection lattice of any finite factor

can be uniquely extended to a finite trace. So, the a priori probability state

on a type II1 factor M is a tracial state τ . That is just the unique state

which is fixed under all unitaries on the algebra. This implies that the a
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priori probability of any event A ∈ P(M) is defined by the property

τ(A) = τ(U∗AU) (3.27)

for all unitary operators U . Accordingly, as Redei (1998) pointed out, the

notion a priori acquires a precise physical meaning: it reflects the symmetry

of the system.

Since the physical symmetries of the system are generally ex-

pressed as representations of the symmetry group on the algebra

of observables by unitaries, the existence of a unique trace means

physically that the probability is determined uniquely as the only

(positive, linear) assignment of values [0, 1] to the events that

is invariant with respect to any conceivable symmetry. [Redei

(1998)]

To put it into the language of noncommutative probability theory, a sym-

metric a priori probability is defined in a general probability space (M, φ)

if and only if there exists a unique state on M which is invariant under the

group of unitaries U . That constrains φ to be a tracial state.

Then, in the framework of Hilbert space quantum mechanics, one must

determine whether a (possibly finite) trace which is invariant under the uni-

tary group can actually be defined in any von Neumann algebra factor of type
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I. From a Bayesian point of view, the presence of such a functional means

that the agent-observer’s degrees of belief would be consistently determined

by the natural symmetries of quantum-mechanical systems. Furthermore, its

uniqueness would compel different agent-observers to agree upon the same a

priori probability state.

One can easily check that the trace over Hilbert space is invariant under

unitaries. By definition any unitary operator satisfies the relation UU∗ = I.

When acting on Hilbert space, U leaves the angle between vectors (namely

the transition probability) invariant, in the sense that 〈ξ, η〉 = 〈ξ, Uη〉 for

any ξ, η ∈ H. Moreover, all symmetry transformations U∗(·)U map any

projection in P(H) onto another projection. As the trace is insensitive to

noncommutativity, namely Tr(AB) = Tr(BA) for all elements A and B in

the algebra of observables, for any projection PA
d in the lattice, one can write

Tr(IPA
d ) = Tr(UU∗PA

d ) = Tr(U∗PA
d U)

Then to obtain a probability state, Tr needs to be extended to a positive,

linear functional taking values in the unit interval [0, 1], which requires a

renormalization of the trace. If this can be done, the a priori probability of

any event is invariant under all unitaries U .

For instance, if Hilbert space is n-dimensional, the a priori probability

is given by τ = 1
n
Tr, which retains the sought-after symmetry property. In
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infinite dimensions the construction of Tr by unitaries can be carried out.

However, as we have emphasized a number of times, the trace on B(H) is not

finite, and hence it cannot be normalized. Therefore, the a priori probability

cannot be a tracial state. Indeed, no tracial state τ is defined on any von

Neumann algebra factor of type I∞. The failure of the symmetry property to

be preserved under the limit of Hilbert space quantum mechanics in infinite

dimensions would thus imply that the agent-observer’s a priori probability

cannot be determined by the physical symmetries of any quantum-mechanical

system.

So, the pathological behaviour of Hilbert space in infinite dimensions that

bothered von Neumann, namely the fact that the a priori probability can

be infinite, seems to pose some difficulty for a Bayesian interpretation of

quantum mechanics too. Yet, one may solve the problem by dropping the

assumption of normality of states, which is tantamount to the probabilities

being countably additive. In fact, if one drops the requirement that, for any

family of projection {Pi} of M, the relation

φ(
n∑

i

Pi) =
n∑

i

φ(Pi) (3.28)

holds for n, the state φ is no longer normal. If the above formula is not

satisfied for n = ∞, the states on M are just singular states, which entails

probabilities being only finitely additive. As a matter of fact, noncommu-
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tative probability spaces (M, φ) are defined also if φ is a singular state.

Diximier (1966) actually demonstrated that singular tracial states τ can be

defined on B(H).

The move of relaxing the assumption of countable additivity to circum-

vent conceptual problems in infinite dimension was also made by Halvorson

(2001). He proposes to appeal to singular states to solve some difficulties for

the ignorance interpretation of quantum mechanics which arise when mea-

suring continuous observables. His argument, though, hinges on the weak

claim that normal states are not necessary. From a Bayesian point of view,

instead, dropping normal states can be conceptually justified. In fact, de

Finetti (1974) rejected countable additivity as a crucial property for subjec-

tive probabilities, as it proves inconsistent with the requirement of equiprob-

ability, which he regarded as a more fundamental constraint. The latter

demands that any event is assigned the same non-zero probability. This

means that the probability distribution is uniform. However, if one considers

a countable set of events, the total probability cannot be normalized, since

the sum of the probabilities of all events would diverge. Therefore, insisting

on equiprobability forces the probability to be only finitely additive.

Although the symmetry property (3.27) can now be extended to infi-

nite dimensional Hilbert space quantum mechanics, if one assumes only sin-

gular states, a new conceptual problem arises. Indeed, one can also show
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that there exist more than one non-normal trace on B(H) (see Kadison and

Ringrose 1997). Hence, the a priori probability, despite being invariant un-

der all unitaries, is not uniquely defined by their symmetry group. From a

Bayesian point of view, one may interpret this result in the following way:

the a priori probability in quantum-mechanics is determined by the physical

symmetries of the system, but (unless some further constraint is added) the

agent-observer would still maintain a certain arbitrariness in her degrees of

belief, which she could associate with any different finite trace.

It should also be notice that the non-existence of unique tracial state

on B(H) undermines only a Bayesian interpretation of quantum mechanics

that relies on the existence of a symmetric a priori quantum probability.

Yet, it does not rule out a Bayesian interpretation of quantum probabilities

simpliciter. Indeed, one may advocate a more extreme form of subjectivism,

whereby the a priori probability is assigned arbitrarily by any individual

agent, rather than being uniquely determined for all possible agents by non-

subjective constraints. According to such a view, the agent-observer’s degrees

of belief before performing any measurement may well be represented by a

general state φ that does not need to be tracial. The only requirement is

that the degrees of belief of different agent-observers converge to the same

probability assignment in the long run, that is after repeating a measurement

for a sufficiently large number of times.
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Instead, some more compelling threat for any Bayesian interpretation

of quantum probabilities, whether mildly or radically subjectivist, would

come from the failure of conditional probability states φ′ to exist and to

satisfy constraints of rationality. As we discuss in detail now, this poses

serious problems for the solution of the general problem of noncommutative

statistical inference.

3.3.3 Placing constraints on quantum conditional prob-

abilities: against Redei’s stability condition

A necessary condition for quantum states to be interpreted as subjective

probabilities is the formal adequacy of the relationship between Bayesian

probability theory and the structure of quantum mechanics. Bayesianism

requires the agent’s degrees of belief to obey constraints of rationality. In

particular, such requirements are placed upon the noncommutative Bayes

rule which is supposed to represent any quantum measurement. Thus, the

failure of a rationality constraint in quantum mechanics would prove the

Bayesian interpretation of the theory inconsistent.

Redei (1992, 1998) formulated a stability condition as a rationality con-

straint characterizing Bayesian statistical inference. Acoordingly, a noncom-

mutative conditional expectation map is required to retain some specific
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mathematical property. He then showed that, although it is satisfied by

classical probabilities, the stability condition does not hold in quantum the-

ory. Hence, the Bayesian interpretation of quantum mechanics would be

inconsistent. More generally, this also questions the extension of Bayesian

probability theory to noncommutative spaces of events.

Specifically, Redei’s stability condition can be summed up as follows:

If, after the first statistical inference µ −→ µ′, a rational agent

revises her new degrees of belief µ′ on the basis of the same evi-

dence again, her newly revised degrees of belief µ′′ will not differ

from µ′

Arguably, a stability property really characterizes Bayesian statistical

inference. For, if µ′ 6= µ′′, then the agent would end up having different

degrees of belief in light of the same evidence; as a consequence, without

further information, she will be unable to decide rationally between µ′ and

µ′′, so either she “should choose one of them irrationally (for instance by

tossing a coin), in which case the chosen new degrees of belief could no

longer be considered as degrees of rational belief, or the agent’s degrees of

belief become undefined” (Redei 1992, 130). Moreover, the agent cannot

count on a third inference in order to decide between them, as her new

degrees of belief µ′′′ will be in general different from both µ′ and µ′′, thus
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increasing her frustration. In the final analysis, the stability condition seems

to place a rationality constraint on Bayesian probability theory.

For instance, the Bayes rule (3.22) trivially fulfills such property. In fact,

since µ′(B) = 1, one obtains

µ′′(A) =
µ′(A ∩B)

µ′(B)
= µ′(A ∩B) =

µ(A ∩B)

µ(B)
= µ′(A) (3.29)

Then, one is compelled to extend the stability condition to general probability

spaces. That is what Redei proposes to do by spelling out the mathematical

details.

Redei’s first step is to account for commutative statistical inferences,

wherein the agent happens to learn the probabilities of all the events in

the subalgebra Ω0 of Ω. Supposedly, this would retain a more general no-

tion of evidence: in fact, the agent is not presented with the probability of

a single event as in the previous case (in which the event B ∈ Ω, as it had

occurred, was assigned probability one), but rather with a whole set of prob-

abilities. Algebraically, this is captured by the probability state w0, namely

the restriction of the a priori state w to L∞(Γ, Ω0, µ0). Conditionalizing on

the basis of this evidence yields a conditional state w′ = w0 ◦ T , where the

conditional expectation T is applied to any event in the algebra L∞(Γ, Ω, µ).

Then, if the agent performs a second statistical inference, her newly revised

degrees of belief amount to the probability state w′′ = w0 ◦ T ◦ T . So, the
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stability condition claiming w′ = w′′ holds if and only if T = T 2. Classically,

such a property is always satisfied. In particular, the classical conditional

expectation is defined by the relation

∫

B
χAdµ =

∫

B
TχAdµ0 (3.30)

for any B ∈ Ω0. That shows that the map T acts as the identity in

L∞(Γ, Ω0, µ0); hence, it is a projection from L∞(Γ, Ω, µ) onto L∞(Γ, Ω0, µ0).

The second step in Redei’s generalization is to extend this result to non-

commutative probability theory, where the agent’s degrees of belief are prob-

ability states on a general von Neumann algebra M. Again the evidence is

conceived in the broad sense as a collection of probabilities: accordingly, the

agent is presented with a probability state ψ0 on any von Neumann subalge-

bra M0 of M. If she is presented with the same evidence again, that is with

the probabilities of all the events belonging to M0, the stability condition

requires that the agent’s newly revised degrees of belief remain the same,

that is φ′′ = φ′.

By analogy with the classical case, Redei argues that the property T =

T 2 of conditional expectation should be maintained in order for a rational

agent to perform stable statistical inferences. This constrains the map T

to be a projection of norm one from M onto M0. The proper conditional
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expectation for Bayesian statistical inference would then be a linear mapping

T : M→M0 with the following properties

• (i) T (A) ≥ A if A ≥ 0 (positivity)

• (ii) T (I) = I (unit preservation)

• (iii) φ(T (A)) = φ(A) for all A ∈M (φ-preservation)

• (iv) T (AT (B)) = T (A)T (B) for every A,B ∈M

That is also called a φ-preserving conditional expectation. Remarkably, for

A0 ∈ M0, property (iv) can be broken down into (iv′) T (AA0) = T (A)A0

and (iv′′) T (A0) = A0, which implies T = T 2.

Nonetheless, as Redei pointed out, norm-one projections rarely exist. In

particular, a φ-preserving conditional expectation cannot be defined in quan-

tum mechanics if the evidence is associated with any subalgebra of B(H) gen-

erated by a measurement. Therefore, the stability condition is violated in

general. The non-existence of norm-one projections in quantum mechanics

and, more generally, in any noncommutative space of events patently vio-

lates a rationality constraint for Bayesian statistical inference; furthermore,

it implies that conditional probability states are not always defined. As a

consequence, a proper noncommutative conditional expectation map would

not exist.
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Therefore, we can distinguish two problems stemming from Redei’s argu-

ment at different levels:

1. On the one hand, it undermines a Bayesian interpretation of quantum

mechanics, as quantum measurements cannot be described by a non-

commutative Bayes rule. That is a problem of philosophy of physics,

which arises when translating the algebraic formalism into the language

of the theory.

2. On the other one, it blocks the extension of Bayesian probability theory

to general spaces of events. Whether a proper conditional expectation

for noncommutative statistical inference can be defined is a genuine

question of philosophy of probability.

I first reject the conclusion in the first point and then, toward the end of

the section, I answer the second question. Let us now highlight some further

details of the argument, on which my subsequent discussion will be based.

In particular, the domain of existence of norm-one projections is estab-

lished by a theorem due to Takesaki. Specifically, given a von Neumann

algebra M, its von Neumann subalgebra M0 and a state φ on M,

Takesaki theorem (1972): a φ-conditional expectation T pro-

jecting fromM ontoM0 exists (and is known to be unique) if and
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only if M0 is invariant under the one-parameter automorphism

group σφ
t generated by φ.

The one-parameter automorphism group σφ
t , which is uniquely associated

with the a priori state φ, is taken by Redei to represent the dynamics on

M with respect to time t. So, according to the theorem, a necessary and

sufficient condition for a norm-one projection to exist is M0 being stable

under the dynamics, i.e. σφ
t (M0) = M0. That is a rather rare circumstance.

One should stress that interpreting the modular automorphism group as

a time-evolution may be a little inappropriate. Indeed, we know that it is

trivial if φ is tracial state. Hence, there is no actual evolution in time, as

σφ
t acts as the identity at any instant t. This would actually happen in

important physical cases, for instance when dealing with finite-dimensional

Hilbert space quantum mechanics. However, the introduction of a dynamics

allows one to make some further remarks.

Indeed, Redei is not explicit on how one should apply the conditionaliza-

tion rule the second time. He does not say at all how the agent is supposed to

update the conditional state φ′ = ψ0 ◦ T she previously obtained by revising

the original a priori state φ on the basis of knowing the probabilities of all

the events in M0. Arguably, a probability state ψ′0 on M0 is extended to a

state on M by the conditional expectation T , so that φ′′ = ψ′0 ◦ T . As the
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agent performs the second statistical inference at any time t after the first

statistical inference, the new evidence ψ′0 amounts to the probabilities of all

the events belonging to M0 at time t. That is ψ′0 = ψ0 ◦ σφ
t .

Importantly, the statement of the stability condition contains an implicit

requirement, namely that both the first and the second statistical inference

are carried out in light of the same evidence. So, in order to apply the sta-

bility condition, one has to assume ψ0 = ψ′0. This means that the given

probability state on the subalgebra M0 ought not to change under the mod-

ular automorphism group. I will demonstrate that such a requirement does

not hold in general in the quantum case, and hence, pace Redei, the stability

condition for Bayesian statistical inference cannot really fail there.

In finite-dimensional Hilbert space quantum mechanics one can easily

check that, if the a priori state φ on B(Hn) is given by a density matrix ρ

commuting with all spectral projections Pi of the discrete measured observ-

able B, the map TB defined by (3.26) is a φ-preserving conditional expec-

tation. Therefore, it fulfills the stability condition. Nonetheless, when the

physical qunatity B has a continuous spectrum, the Lüders rule cannot be

applied: indeed no eigenvector is associated with the spectral measures in the

continuum, hence there is no projection such as Pi = |ψi〉〈ψi|. In the infinite-

dimensional case the Boolean algebra onto which TB projects amounts to the

subalgebra B0 = {A0 ∈ B(H)|PB
d A0 = A0P

B
d } of B(H), where PB

d represents
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the possibility that the value of B lies in the Borel set d. A general ver-

sion of the Lüders rule would then require extending the sum to an integral.

Davies (1976, 60) proved that there is no way to define such an integral so

that it converges. More dramatically, he showed that a norm-one projection

TB : B(H) −→ B0 does not exist.

As a result, Redei claimed that the stability condition fails to hold in

quantum mechanics, and thus quantum states do not obey a rationality con-

straint. Moreover, as a conditional probability state φ′ = ψ0 ◦ TB cannot be

defined in general, the agent-observer would not even be able to revise her

degrees of belief on the basis of knowing the probabilities of all the events

of the form ’B has its value in the set d of real numbers’ (Redei 1992, 130).

Allegedly that proves the violation of a necessary condition for a Bayesian

interpretation of quantum mechanics, since quantum measurements could

not be regarded as Bayesian statistical inferences. Alternatively, one would

be left with the rather unsatisfactory claim that quantum states are degrees

of belief of a rational agent-observer only in special cases, namely when the

measured observables have a discrete spectrum7.

At this point, one should stress that Redei’s argument relies on a hid-

den assumption, namely that quantum states are normal states. If one as-

7Notice, however, that the stability condition is violated also in the finite dimensional

case when one performs Positive Operator-Valued Measurements (POVMs).
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sumes singular states, instead, a norm-one projection embedding B(H) onto

B0 is known to exist also in the case the measured observable B does not

have a pure-point spectrum (Srinivas 1980). Specifically, by Stone’s theo-

rem, any observable B ∈ B(H) uniquely generates a (strongly continuous)

one-parameter group of unitary operators UB = {eitB|t ∈ R}. Then, there

exists a conditional expectation map EB
η such that

tr(ρTB
η (A)) = ηxtr(ρeiBxAe−iBx) (3.31)

for any density operator ρ. The symbol ηx denotes the invariant mean, which

represents the rigorous analogue of the flat probability measure on the real

line8. Whenever the observable B has a discrete spectrum, TB
η (A) coincides

with the Lüders rule. Hence, formula (3.31) generalizes quantum statistical

inference in infinite dimensions.

In the last analysis, if probabilities are assumed to be only finitely addi-

tive, conditional probability states φ′ = φ0 ◦TB
η are always defined in Hilbert

space quantum mechanics. As I mentioned in the previous section, Bayesian

probabilities do not actually need to be σ-additive. Nevertheless, there still

8An invariant mean on the real line is defined over the space of all bounded continuous

complex-valued functions f on R with the norm ||f || = supx∈R|f(x)|. In particular, it

assigns the same value to a function f(x) and its translated function f(x + a) for every

real number a.
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remains an open problem. There exist infinitely many invariant means η on

the real line. Thus, the conditional expectation TB
η is not uniquely defined.

Moreover, as no physical reason seems to indicate which invariant mean one

should choose, many conditional probability states are possible. Contrary

to the non-uniqueness of the a priori probability, this fact raises a serious

difficulty for any Bayesian interpretation of quantum mechanics.

Indeed, no matter how the a priori probabilities are determined, on the

basis of a quantum measurement any single agent-observer would infer more

than one conditional probability, without being able to decide rationally

which one represent her degrees of belief. That is a very embarassing sit-

uation even for an extremely subjectivist approach, as it means that the

agent-observer’s degrees of belief would become indefinite. Clearly, the non-

uniqueness of conditional expectation is even worse than the failure of stabil-

ity condition, as the agent-observer would end up with several different, but

equally justified, degrees of belief already after the first statistical inference.

Thus, one would need a compelling reason for selecting a particular map TB
η .

In the absence of something like a rationality constraint for Bayesian prob-

ability theory that uniquely fixes a (singular) conditional probability state,

one must attack Redei’s argument on a different ground.

The non-existence of a φ-preserving conditional expectation in quantum

mechanics means that the algebra B0 generated by a continuous observable B
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falls outside the conditions dictated by the Takesaki theorem. In fact, it is not

stable under the one-parameter automorphism group σφ
t . As σφ

t (B0) 6= B0,

there is some event A0 ∈ B0 whose time-evolution σφ
t (A0) 6∈ B0. Therefore,

the probabilities of all the events belonging to B0, namely the evidence ψ0 on

the basis of which the agent-observer performs the first statistical inference,

are not the same as the probabilities of all the events belonging to B0 at time

t, namely the evidence ψ′0 on the basis of which the agent-observer performs

the second statistical inference. That is, ψ0 6= ψ0 ◦ σφ
t = ψ′0.

The fact that one cannot have the same evidence twice implies that the

stability condition is not applicable in quantum mechanics. Intuitively, that

can be also justified by the following consideration. Performing a yes/no

measurement of a continuous observable, say position, yields an interval in

the real line, i.e. a Borel set d: if one repeats the same measurement again,

one does not obtain the same interval, but just an interval overlapping with

the previous one. Therefore, one finally gets round Redei’s argument: indeed,

if a rationality constraint does not apply, one cannot claim its failure. As

a consequence, there is no violation of a necessary condition for a Bayesian

interpretation of quantum probabilities. Clearly, the non-applicability of

the stability condition means that quantum mechanics is characterized by a

weaker form of rationality than Bayesian classical probability theory.

Let me conclude by addressing the problem of philosophy of probability
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which stems from Redei’s argument. The non-existence of norm-one projec-

tions T : M → M0, and thus the failure of the stability condition in the

general case, challenges the extension of Bayesian probability theory to non-

commutative spaces of events. To this extent, Redei identifies two alternative

conclusions.

• One cannot regard noncommutative probabilities as degrees of belief of

a rational agent. In fact, a rationality constraint for Bayesian probabil-

ity theory is violated in general; moreover, if a conditional expectation

cannot be defined at all, then conditional probability states do not

exist.

• One can regard noncommutative probabilities as degrees of belief of

a rational agent only under special circumstances, that is whenever a

norm-one projection exists. Accordingly, the Takesaki theorem would

draw the limits of noncommutative Bayesian statistical inference.

As the latter possibility allows for a generalization of Bayesian probabil-

ity theory to general spaces of events, the special circumstances under which

one would able to perform stable statistical inferences define what it takes for

noncommutative states to be degrees of belief of a rational agent. The Take-

saki theorem requires that the von Neumann subalgebra M0 is left invariant

by the dynamics σφ
t generated by the a priori state φ on M; otherwise, if
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M0, and thus the collection of probabilities the agent happens to learn, does

not remain the same through time, the agent’s revised degrees of belief can-

not be determined unambiguously. The one-parameter automorphism group

σφ
t also determines a dynamics on the space of all states ϕ on M by the

relation Dt(ϕ) = ϕ ◦ σφ
t .

As Redei suggests, from a Bayesian point of view such dynamics should be

interpreted as the time-evolution of the agent’s degrees of belief. Accordingly,

“the agent can perform statistical inference only on the basis of knowing the

probabilities of events whose collection forms a constant, recognizable unit

with respect to the natural dynamics of his measures of degrees of rational

belief” (Redei 1992, 131). Moreover, the a priori state φ remains constant

through time, as it generates the one-parameter automorphism group σφ
t (in

fact φ = φ ◦ σφ
t = Dt(φ)), whereas all the other probability states evolve ac-

cording to the dynamics Dt. That means that agent’s degrees of belief would

change in time spontaneously, even without gaining any further evidence.

One may observe, though, that under this interpretation the Takesaki

theorem would betray a clash with the requirement of stable statistical in-

ferences (which, instead, it is supposed to guarantee). Indeed, after the first

statistical inference, the conditional state φ′ capturing the agent’s revised

degrees of belief evolves in time: so, at any time t the agent may perform the

second statistical inference, her degrees of belief are given by a state Dt(φ
′)
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which is in general different than φ′. On the contrary, the stability condition

supposes that, if no new evidence is acquired, the agent’s degrees of belief

should not differ from φ′.

However this may be, Redei concludes his argument by leaving the ques-

tion of noncommutative statistical inference still open.

I regard this latter position very reasonable but also highly spec-

ulative, since, after all, one does not expect mathematics, espe-

cially particular mathematical theorems, to give insight into the

psychic processes of human mind. Also, however, categorically re-

jecting the possibility to interpret non-commutative probabilities

as degrees of rational belief seems to be unsatisfactory because it

is too strong a claim; furthermore, it is at least as speculative as

the other position and for the same reason.

Thus, I think, one ought to look for further answers to the ques-

tion: ’When can a non-commutative statistical inference be Bayesian?’

[Redei (1992), p.131]

In the next section we provide an answer to such a question, which gets round

both Redei’s alternatives.

The fact that in quantum mechanics the agent cannot be presented with

the same evidence twice demonstrates that the stability condition is not al-
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ways applicable. Interestingly, the conditions dictated by the Takesaki the-

orem also prove necessary and sufficient for the applicability of the stability

condition. Indeed, after the first statistical inference due to knowing ψ0, at

any time t the agent may perform the second statistical inference the prob-

abilities of all the events in M0 are given by the state ψ′0 = ψ0 ◦ σφ
t . As

both probability states are defined on the subalgebra M0 of M, the equiva-

lence ψ0 = ψ′0 holds if and only if M0 is invariant under the one-parameter

automorphism group σφ
t .

That means that the domain of applicability and the domain of fulfill-

ment of the stability condition coincide. In other words, whenever the agent

is actually presented with the same evidence twice, she is able to perform

stable statistical inferences and her degrees of belief are determined unam-

biguously; alternatively, outside this domain the stability condition cannot

be applied, and hence one cannot claim the violation of a rationality con-

straint. Nonetheless, if σφ
t (M0) = M0, norm-one projections do not exist,

therefore conditional probability states are not defined. As a result, the ex-

tension of Bayesian probability theory to noncommutative spaces of events

is still blocked.

To solve the problem of Bayesian statistical inference a conditional ex-

pectation which always exists and satisfies rationality constraints is required.

A conditional expectation in the sense of Redei fulfills stability condition but
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cannot be defined in general. So, it does not really represent a proper con-

ditional expectation. Thus, one should look for another map enacting a

noncommutative conditionalization rule in the theory of von Neumann alge-

bras.

In particular, one should relax some of the defining properties of norm-one

projections (see section 2.2.). No good candidate for conditional expectation

can give up linearity and conditions (i) and (ii). In fact, in order to extend

ψ0 to a state φ′ = ψ0 ◦ T , that is a linear, positive, normalized functional

on M, T is required to be a linear, positive and unit-preserving mapping.

However, the other provisions are mathematically less strict. Redei himself

hints at possibility:

if ... one drops the requirement that T : M −→ M0 preserve a

state, then a T projection might exist. [Redei (1998), p.133]

Thus, one could abandon property (iii) of φ-preserving conditional expecta-

tions.

Accardi and Cecchini (1982) defined a conditional expectation which is

completely positive, always exists and does not preserve the state φ. That is

called a φ-conditional expectation Tφ to distinguish it from the φ-preserving

conditional expectation T and it generalizes the measure theoretic construc-

tion of classical conditional expectations in von Neumann algebras (see Petz
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(1988) for a review). That means that performing a statistical inference

would not leave the agent’s a priori probability invariant in the sense that

φ 6= φ ◦ Tφ. Yet, such map is not in general a projection mapping from M

onto M0. Remarkably, the fixed point algebra of Tφ, namely the set of ele-

ments A0 ∈ M0 such that Tφ(A0) = A0, amounts to the largest subalgebra

of M0 which is invariant under the one-parameter automorphism group σφ
t

associated with φ. Therefore, within the conditions dictated by the Take-

saki theorem, and only within such conditions, a φ-conditional expectation

coincides with a norm-one projection T : M→M0.

Accordingly, whenever the stability condition is applicable, the mapping

Tφ guarantees its fulfillment. Furthermore, as a φ-conditional expectation

exists in general, a (unique) conditional probability state φ′ = ψ0 ◦ Tφ can

be defined even outside such domain. In the final analysis, Accardi and

Cecchini’s map provides the proper conditional expectation. That assures,

pace Redei’s argument, that noncommutative statistical inference can always

be Bayesian.
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Chapter 4

Correlations between Space-like

Separated Quantum Systems

Quantum Field Theory (QFT) is the synthesis of quantum mechanics and

special relativity. If one may have any doubt concerning the peaceful co-

existence of quantum non-locality with Einstein’s theory, the experimental

success of QFT would thus serve as a strong note of caution toward any

claim of incompatibility. Relativistic quantum mechanics is indeed regarded

as the locus where the two theories are fully developed together. An inter-

esting philosophical question that can be investigated in such a framework

is whether or not quantum correlations between spacelike separated physical

systems become stronger by adding relativistic constraints. This is the topic

I survey in the present chapter.
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Section 4.1 begins by offering a brief overview of the foundations of quan-

tum field theory. My main focus is to study the structural features of the

models constructed for free quantum field systems, hence I will not deal with

the physical account of interactions between the fields. Then, I introduce the

basic ideas of Algebraic Quantum Field Theory (AQFT). It is in this context

that the formalism developed by von Neumann finds its most outstanding

application in physics. Differently from his expectations, though, the proper

mathematical arena for AQFT is representated by the von Neumann factor

algebras of type III. The algebraic approach is based on an axiomatic treat-

ment of QFT. This makes it possible to cope with some serious mathematical

problems that plague the other standard approaches. In fact, AQFT is widely

recognized as our most rigorous description of non-interacting quantum field

systems. On top of that, the algebraic formulation is conceptually very neat,

which is the reason why philosophers of physics interested in quantum field

theory have turned their attention to it. The principles of special relativity,

namely Einstein’s requirement of locality and the invariance under Lorentz

transformations, are naturally built in as axioms. So, Algebraic Quantum

Field Theory is particularly suitable to discuss the issue of long-distance

correlations of relativistic quantum systems.

A crucial aspect of AQFT is its local character. The fundamental ob-

jects of the theory are the (nets of) local algebras of observables, whose
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elements represent operations that can be performed within a finite region

of Minkowski spacetime. Yet, as it is recalled in section 4.2.1, Bell’s in-

equality is maximally violated. Moreover, a theorem by Reeh and Schlieder

(1961) seems to indicate that vacuum correlations give rise to a quite pecu-

liar type of non-locality. Notwithstanding these facts, I argue in section 4.2.2

that the existence of operations which are local in a well-defined sense entails

that Algebraic Quantum Field Theory fares much better than non-relativistic

quantum mechanics in a field theoretic paradigm inspired by Einstein (1948).

The last section is entirely devoted to investigate the nature of entangled

states across local algebras. Remarkably, entanglement proves more robust in

AQFT than in ordinary quantum theory. Section 4.3.1 shows that there are

plenty of spacelike separated regions of Minkowski space that are maximally

entangled. I then explain that, against what is often maintained in the

literature, the overwhelming presence of entangled states is not a consequence

of the Reeh-Schlieder theorem. Finally, in section 4.3.2, I critically address

and develop an argument by Clifton and Halvorson (2001). In particular,

they prove that, contrary to the non-relativistic case, not all entangled states

of a global field system can be destroyed by performing local operations.

Such a fact depends on a structural difference between type I and type III

factors. As I demonstrate at the end of the chapter, though, the persistence

of entanglement is not peculiar only to Algebraic Quantum Field Theory.
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4.1 Foundations of Algebraic Quantum Field

Theory

4.1.1 The mathematical description of relativistic quan-

tum fields

A relativistic extension of quantum theory is required to account for a range

of physical events that fall beyond the domain of ordinary quantum mechan-

ics. There exist fundamental particles, such as photons, whose rest mass is

null and thus travel in the vacuum at the speed of light. Hence, their behav-

ior cannot be described by a non-relativistic theory. One of the elementary

processes in high-energy physics is in fact the emission or annihilation of

a photon corresponding to a change of momentum of an electron (or of its

anti-particle, that is the positron). Quantum Field Theory provides a math-

ematical and conceptual framework for the treatment of such phenomena.

As a preliminary step to outline the basic ideas of QFT, one needs to

introduce the notion of Fock space, which is a generalization of Hilbert space

for multi-particle systems. The statistics of a composite system of an arbi-

trary number of identical particles depends on the particle species. There are

two different cases. On the one hand, particles that are symmetric under per-

mutations obey Bose statistics, for which reason they are called bosons; on
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the other hand, particles that are anti-symmetric under permutations obey

Fermi statistics, and are called fermions. Empirically, the former have inte-

ger spin and the latter have half integer spin. Let H
⊗

N represent a system

of N particles. The Fock space F(H) is constructed as a direct sum of all

tensor product Hilbert spaces corresponding to each (increasing) number of

particles, i.e. F(H) =
⊗N

0 H
⊗

N . A state Ψ(n) is a normalized vector state

of the Fock space associated with the occupation number distribution (n).

The latter is defined as an infinite list

(n) = n1, n2, ...

of finite sequences of occupation numbers, as nk indicates the number of

particles in the k-th state. An annihilation operator ak, as well as a creation

operator a∗k, can also be defined for a particle in state k: Applying such

operators to Ψ(n) has the effect of raising, respectively lowering, by one unit

the total number of particles. In the bosonic case ak and a∗k satisfy mutual

commutation relations, whereas in the fermionic case they anti-commute.

The original purpose of QFT was to develop a quantum version of Maxwell’s

electrodynamics. The quantization methods, which enact the transition from

classical to quantum mechanics, were applied to electromagnetic fields satis-

fying Maxwell equations. Canonical commutation relations can be explicitly
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formulated for field systems in the absence of charged matter. A free scalar

field Φ(x) defined on Minkowski spacetime does not commute with its corre-

sponding conjugate field at a fixed time. In particular, the canonical quanti-

zation of a free scalar field obeying the Klein-Gordon equation leads to the

Fock space of a multi-particle system obeying Bose statistics. Accordingly,

the states of the field can be interpreted in terms of particle configurations.

This procedure is known as “second quantization”.

Quantum Field Theory thus arises as a relativistic extension of quan-

tum mechanics. There is some important difference with ordinary quantum

theory, though. In the non-relativistic case the wave-function identifies the

quantum-mechanical state of the system. As it corresponds to a vector of

Hilbert space, it is acted upon by operators representing the observables. In-

stead, in QFT one assigns a field value to each space-time point x by means

of an operator. That is, a quantum field is an operator-valued quantity

and, as such, it itself acts on the space of states. This means, first of all,

that the concept of state of a field system loses any direct spatio-temporal

significance. Furthermore, since operators represent what one can measure,

contrary to classical fields, the operator-valued quantum field Φ(x) would

not be associated with a definite value of a physical quantity any more.

Nevertheless, there emerges a thorny difficulty here, that afflicts the stan-

dard formalism of the theory. From a physical point of view, performing a
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measurement at a single point x would require an infinite amount of energy.

Hence, a quantum field at x cannot be an honest observable. In fact, Φ(x) is

not an operator in the Fock space. It is, instead, an operator-valued distribu-

tion over Minkowski space. Specifically, finite values for the matrix element

〈Ψ1|Φ(x)|Ψ2〉 are obtained just in case the vector states Ψ1 and Ψ2 lie in

some dense subspace D of F(H). In particular, this implies that different

field operators cannot be directly multiplied at x. One can overcome such a

problem by approaching QFT in an axiomatic manner. A set of axioms were

proposed by Wightman (1957) that define the mathematical representative

of a quantum field as a proper operator on the vectors of D. The solution

consists in averaging Φ with a smooth function f with domain in Minkowski

space, that is

Φ(f) =
∫

Φ(x)f(x)d4x

Then, taking f to be a test function1 assures that Φ(f) is an operator on

F(H). Accordingly, the field is not evaluated at x but it is “smeared out” in

its neighbourhood. The technical inconvenience with Wightman axiomatics

is, however, that the operator thus defined is unbounded, which makes it

very problematic to treat it mathematically.

1That is an infinitely differentiable function which decreases, together with its deriva-

tive, faster than any power as x goes to infinity in any direction.
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The algebraic reformulation of QFT has the advantage that one can work

with bounded operators. Segal (1947) first suggested to account for relativis-

tic quantum mechanics within the framework of C*-algebras. Yet, the formal

aspect of dealing with fields is that one works with systems having infinitely

many degrees of freedom. It is known that von Neumann’s uniqueness the-

orem for irreducible representations of the canonical commutation relations

fails to hold in this case. The canonical quantities of a quantum field would

not suffice to specify all the observables of QFT. This has an algebraic coun-

terpart in the availability of inequivalent irreducible representations of a C*-

algebra. Hence, if one insists on the Hilbert space representation, the other

representations should be dismissed as non-physically relevant. To avoid such

a loss of algebraic structure, Haag proposed that one should not focus on a

single algebra: one recovers the physical significance of inequivalent represen-

tations by providing a mathematical description of quantum field systems in

terms of a net of algebras. The physical information is contained in the way

in which these algebras are linked together. Haag’s intuition underlies Alge-

braic Quantum Field Theory, whose reference exposition is offered by Haag

(1996). There are two main versions of this approach, depending on whether

or not one makes explicit use of operators on Hilbert space: concrete AQFT,

developed by Haag and Araki, appeals to von Neumann algebras, whereas

abstract AQFT, developed by Haag and Kastler, appeals to C*-algebras.
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According to Haag’s approach, the primitive object in the mathematical

model of a quantum field is the mapping

O −→ A(O) (4.1)

from the bounded region O of Minkowski space M onto the net of algebras

A(O). The elements of the latter represent operations that one can perform

in the corresponding spacetime region. Restricting to finite regions rules

out those physical quantities, such as total charge and total energy of a

field, which are allowed as observables by standard QFT but are actually

unobservable, since their measurement would have to take place throughout

infinitely extended regions, namely the whole universe. Algebraic Quantum

Field Theory is local in the sense that only local observables are considered.

The set {A(O)|O ⊂ M} is called a covariant net of strictly local observ-

ables. Its partition into subalgebras yields the relevant information about

any physical quantity. In fact, one does not need to specify what observables

have physical significance. It is sufficient to investigate the net structure of

local algebras. Interpreting the theory in terms of local operations has an

empirical justification. In fact, the experimental data that one is presented

with in quantum field theory, such as a blackening in a photoemulsion, a

track in a bubble chamber or an interference pattern on a screen, are always
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relative to the space-time localization of micro-systems. From the latter all

the other physical properties can be inferred.

Accordingly, neither fields nor particles are the fundamental entities of

AQFT. The more so because nets of algebras can be defined without reference

to fields at all.

In quantum physics just as in classical physics the concept of

“fields” serves to implement the principle of locality. In particu-

lar, a “quantum field” should not be regarged as being more or

less synonimous with a “species of particles”. While it is true that

with each type of particle we may associate an “incoming field”

and an “outcoming field”, these free fields are just convenient

artifacts...

This suggests that the net of algebras A ... constitutes the in-

trinsic mathematical description of the theory. The mentioned

physical interpretation establishes the tie between space-time and

events. The role of “fields” is only to provide a coordinatization

of this net of algebras. [Haag (1996), p.105]

In fact, local algebras are associated with a quantum field in the sense of

Wightman axioms in a well-defined way. The algebraic structure {A(O)}

is generated by the field operators smeared out with test functions f whose
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support lies in the corresponding spacetime regions, i.e. Supp(f) ⊂ O. How-

ever, the relation between nets of local algebras and Wightman fields Φ(f)

is one-to-many. Different fields may describe the same local net. Hence,

while specifying A suffices to determine the corresponding quantum field,

the converse is not true.

4.1.2 The axioms of AQFT and their consequences

To complete the algebraic formulation of Quantum Field Theory, one postu-

lates that the net of local algebras {A(O)|O ⊂ M} satisfies certain math-

ematical properties, which are introduced by placing physically motivated

axioms. In this section I review the axiomatics of AQFT as formulated in

Haag’s approach and show that it constrains the mathematical description of

quantum field systems to be given in the framework of type III1 factors. Here

is below a list of the basic postulates of Algebraic Quantum Field Theory.

Axiom 1

Isotony: A(O1) ⊂ A(O2) if O1 ⊂ O2

This expresses the fact that any observable which can be measured in a

region O1 is measurable in a larger region O2 containing O1 as well. As such

a condition holds for any region of M , the net of algebras {A(O)|O ⊂ M} is

an inductive system. So, isotony can be also justified in the sense that there
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is an inductive limit C*-algebra A generated by all local algebras. That is a

quasilocal algebras whose elements can be uniformly approximated by local

observables.

Axiom 2

Microcausality: ifO1 andO2 are spacelike separated regions, then

the corresponding local algebras commute, i.e. [A(O1),A(O2)] =

{0}.

This captures the intuition that measurements of observables located in

spacelike separated regions of Minkowski spacetime should not disturb each

other. They are in fact copossible. We have already seen how microcausality

reflects Einstein’s relativistic principle of locality. Notice that it is not always

required that the operators representing observables associated with space-

like separated regions commute. Indeed, Fermi field operators anti-commute.

Hence, one needs superselection rules to distinguish observables, namely the

elements of A(O), from unobservable quantities represented by field opera-

tors (I will not enter into the discussion of the Doplicher, Haag and Roberts

superselection theory, though). Importantly, for many spacetime regions one

can strengthen the locality axiom to obtain a property called local duality,

which reads
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A(O′) = A(O)′ (4.2)

where the region O′ is the causal complement of O, comprising all the points

in M which are spacelike separated from every element of O.

Axiom 3

Relativistic Covariance: There exists a continuous representation

α of the Poincaré group P by automorphisms αg on A such that,

given any g ∈ P ,

αg(A(O)) = A(gO) (4.3)

for all regions O of Minkowski spacetime M .

This expresses the Lorentz covariance of AQFT in terms of the net of algebras

{A(O)|O ⊂ M}. Such a condition marks the main difference from ordinary

quantum mechanics, whose group of symmetry is just the Galilean group,

thus guaranteeing the extension of the theory to the relativistic context.

Then, by generalizing the GNS theorem, one can show that a state φ on

A(O) which is invariant under the Poincaré group P gives rise to a Hilbert

space Hφ carrying a unitary representation U of P , in the sense that for any

A ∈ A(O) one has
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U(g)πφ(A)U∗(g) = π(αg(A)) (4.4)

Moreover, the GNS vector Ωφ is invariant under the action of any P on Hφ,

that is U(g)Ωφ = Ωφ for all g.

One also postulates that there exists at least one physical representation

of the algebra A given by the Poincaré invariant vacuum state φ0. That is,

the following provision is satisfied by the GNS representation (Hφ0 , Ωφ0 , πφ0):

Axiom 4

Spectrum Condition: P 2
0 ≥ 0 and P 2

0 + P 2
1 + P 2

2 + P 2
3 ≥ 0, for the

generators Pi (where i = 0, 1, 2, 3) of the translation sub-group of

the Poincaré group P .

This corresponds to the requirement that energy is positive in every Lorentz

frame. In fact, such an axiom mandates that the spectrum of the self-adjoint

operators Pi, which has the physical interpretation of the global energy-

momentum spectrum of the theory, lies in the closed forward light cone.

Clearly, the spectrum condition makes sense only relative to a representation,

wherein the infinitesimal generators of the spacetime translation group of M

can actually be defined via Stone’s theorem.

In the Haag-Araki approach all the local algebras {A(O)|O ⊂ M} are

von Neumann algebras acting on some Hilbert space H, so that A′′ = B(H).
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Accordingly, one supposes that a translationally invariant vacuum state Ωφ0

exists. However, the requirement that all abstract nets have a representation

satisfying the vacuum does not entail that one must pass to such a represen-

tation to compute expectation values. As Haag and Kastler (1964) argued,

all concrete representations of a net, whether equipped with a translation-

ally invariant vacuum state or not, are physically equivalent in some precise

sense. Here I assume that in the representation π defined by a given state,

say the (unique) vacuum, the net consists of local von Neumann algebras

π(A(O))′′ = N (O) for which the above conditions hold.

Axioms 1-4 determine algebraic quantum field theories which are very

general. To obtain theoretical models that can describe more concrete prop-

erties of quantum fields one needs to supply further constraints depending

on the specific physical circumstances. In particular, the following condition

is introduced to derive important properties and theorems of AQFT.

Axiom 5

Weak Additivity: N (V) = {N (O)|O ⊂ V}′′ for any (possibly

unbounded) regions V in M .

This states that there is no minimal distance between regions of Minkowski

space. It then follows that spacetime is homogeneous. The physical moti-

vation for such an assumption is that the theory should not allow for any
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smallest length scale. As a result, all observables localized in O are gener-

ated by means of algebraic operations of observables from arbitrarily small

regions V .

Another axiom can be added that appeals to the notion of the causal

hull O− of a spacetime region O. The latter comprises the set of points p in

Minkowski space such that all timelike straight lines containing p intersect

O.

Axiom 6

Local Primitive Causality: A(O−) = A(O)

This captures the hyperbolic character of the time evolution of the theory.

Accordingly, all the quantities which are observable in O, and hence belong

to the corresponding local algebra, are fixed by what is observable in a region

O− of M that causally determines O.

The physical justifications underlying each axiom make the appeal to the

algebraic framework less abstract. By constraining the general mathematical

structure one obtains a rigorous description of free quantum fields.

Many concrete models satisfying these conditions have been con-

structed, though none of them is an interacting quantum field in

four spacetime dimensions. Of course, no such model has ever

been constructed, so one can hardly attribute the source of the
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problem to the set of “axioms” above. On the contrary, we are

convinced that the above conditions are operationally natural and

express the minimal conditions to be satisfied by any local rela-

tivistic quantum field theory in the vacuum Minkowski space. So

we view consequences of these assumptions to be generic proper-

ties in the stated context. [Redei and Summers (2007)]

An immediate consequence of such assumptions is that specific spacetime

configurations are determined, within which well-defined implementations of

models for quantum field theory are available.

Typical spacetime regions in AQFT are the double-cones. Let us consider

a point x in Minkowski spacetime and another point y ∈ M lying in x’s

forward light cone. An open double cone is the intersection of the causal

future of x and the causal past of y. The double cones thus obtained for all

pairs of such points of the manifold form the set K of all double cones. Two

double cones are tangent if they are spacelike separated and their closure

intersects at a single point. If the latter provision does not hold, they are

said to be strictly separated.

Another kind of spacetime configuration is given by the wedge regions.

Differently than double cones, which are finite, such regions of Minkowski

space are actually unbounded. For any fixed point x0 ∈ M , the right wedge
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is defined as the set WR ≡ {x ∈ M |x > |x0|}; likewise, the left wedge

amounts to the set WL ≡ {x ∈ M |x < |x0|}. The collection of wedge regions

are obtained as the set of all Poincaré transforms of WR. Complementary

wedge regions are such that W ′
R = WL. These are tangent regions, as their

closures intersect at one point.

It remains to show that the proper mathematical arena for Algebraic

Quantum Field Theory is given by von Neumann factor algebras of type

III. That was first argued by Araki (1964). Later on, a uniqueness theorem

by Buchholz et al. (1987) proved that local algebras for relativistic free

fields are type III1. The basis for such a result is the fact that the physical

information in the theory is encoded in the relation between the algebras

of different regions, rather than in the individual algebras of observables.

This reflects the hyperfinite structure of A(O). Indeed, a von Neumann

algebra is hyperfinite if it is the weak closure, namely the W*-inductive limit,

of an ascending sequence of finite dimensional (not necessarily hyperfinite)

algebras.

Yet, hyperfiniteness characterizes other types of von Neumann algebras

as well. Hence, further constraints are to be put in place. In particular,

non-triviality, namely the requirement A(O) 6= cI for any spacetime region

O (with c ranging in the complex numbers), implies that local algebras are

properly infinite, and thus it rules out the case In as well as the case II1.

188



Then, one can construct A(O) as a unique type III1 hyperfinite factor from

the underlying Wightman theory by adding the assumption of scaling limit.

Let us define a monotonic function N mapping from real numbers into real

numbers and a scale transformation of the test functions f −→ fλ such that

fλ = N(λ)f(λ−1x). The fields satisfy asymptotic scale invariance just in

case for some field Φ with vanishing vacuum expectation values, N(λ) can

be suitably chosen in such a way that the scale field operators Φ(fλ) has the

following properties:

• the expectation values 〈Ω0, Φ(fλ)
∗Φ(fλ)Ω0〉 converge in the limit λ −→

0 for all f , and it is nonzero for some test functions

• the norms ‖Φ(fλ)
∗Φ(fλ)Ω0‖ and ‖Φ(fλ)Φ(fλ)

∗Ω0‖ are finite in the limit

λ −→ 0

where Ω0 represents the vacuum state. In the last analysis, once the above

axioms for AQFT are made, if a model, such as the free Bose field of null

(and positive) mass, has a non-trivial scaling limit, then the local algebras

are uniquely type III1.

The universality of ... [A(O)] may be seen as analogous to the

situation in quantum mechanics where we can associate to each

system or subsystem an algebra of type I, i.e. an algebra iso-

morphic to the set of all bounded operators on Hilbert space.
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The change from the materially defined systems in mechanics to

“open subsystems” corresponding to sharply defined regions in

space-time in a relativistic local theory forces the change in the

nature of the algebras from type I to type III1. [Haag (1996),

p.267]

The difference between type III and type I factors and the unsuitability of

the latter to account for relativistic quantum mechanics, even for systems

requiring infinite dimensions, such as in the I∞ case, can be illustrated with

a though experiment formulated by Fermi (1932) and further discussed by

Hegerfeldt (1994) and Ingvason (2005).

Fermi’s gedankenexperiment envisages two atoms a1 and a2 separated

by a distance d. The composite system is described by the tensor product

M = M1
⊗M2 of the algebras associated to each atom. At the initial time

0 the first atom is in its ground state ω1, whereas the other one is in an

excited state ω2. By neglecting the contribution of the radiation field, the

joint state is ω0 = ω1⊗ω2 on M. Due to the decay of a2, there is a non-zero

probability that at time t > 0 the atom a1 absorbing the emitted radiation

will be in an excited state. The evolution of the state of the total system

ωt(·) = ω0(e
itH · e−itH) (4.5)
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is governed by the Hamiltonian operator H. The probability of finding a1

excited at time t is then computed by p(t) = ωt(E), where the projection

E = (I−|ψ1〉〈ψ1|)⊗I is determined by the Hilbert space vector ψ1 associated

with the ground state of the first system.

Since the effect of the decay cannot propagate faster than the speed of

light, the state of a1 would remain unchanged at least until a time equal to

that required by c to cover the distance d has passed. Thus, one might expect

that p(t) = 0 for t < d
c
. However, the analyticity following from the stability

assumption about H implies that, if ωt = 0 during some time interval, then

it must be zero for all t, but this cannot be the case2. As a consequence,

for any excitation of a1 to take place, it should occur immediately after the

decay of a2, hence infringing on the prohibition of superluminal signaling.

Actually, by appealing to factors of type III, instead of factors of type I,

one can avoid such a counterintuitive conclusion.

Let us denote with ω′0 the state of the total system in case atom a2 is

unexcited; then, ω′t represents its evolution in time. In order to evaluate the

effect of the decay, these states ought to be compared with the state ω0 and

its evolution ωt associated with a2 being initially excited. Specifically, the

2Since there is a lower bound for energy, as the Hamiltonian has a semi-bounded spec-

trum, the vector valued function EeitHφ can be continuously extended for any φ to an

analytic function of t, where the imaginary part of the latter is positive.
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deviation

D(t) = sup
A∈M1

|ωt(A)− ω′t(A)| (4.6)

yields a proper measure of the effect of the decay with respect to all mea-

surements A that can be performed in the region O1 where the first atom.

At time t = 0 the value of the above quantity vanishes for any distance less

than d. The axiom of local primitive causality guarantees that D(t) = 0 for

t < d
c

without any failure of the relativistic constraint of locality.

The alleged paradox arises for type I factors because the projector E

mapping onto the orthogonal complement of ψ1 may belong to the algebra

associated with O1, and thus would be a candidate to test the excitation

in the latter region. Accordingly, ω′t(E) = 0 for all t. On the contrary, all

projections are properly infinite in a type III factor, and thus the observ-

able E is not necessarily local in the region where the atom a1 is localized.

Therefore, a non-null expectation value of ωt does not imply D(t) = 0. In

fact, the deviation ωt(E)−ω′t(E) can be zero for a positive expectation value

ω′t(E). This means that ωt(E) > 0 is not a consequence of the decay of atom

a2. Hence, causality is not violated in Fermi’s two-atom system.
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4.2 How Local is Local Quantum Field The-

ory?

4.2.1 Maximal Violation of the Bell’s Inequality and

the Reeh-Schlieder Theorem

As it should be clear from section 4.1.1., the local structure of Algebraic

Quantum Field Theory manifests itself in a two-fold way. On the one hand,

locality is introduced via the axiom of microcausality. On the other hand,

the observables of the theory are required to be local in the sense that they

are connected with finite regions of Minkowski space. As Horuhzy (1990)

put it,

there is a fundamental property which appears already at the

early stage and deeply affects the conceptual (and, consequently,

the mathematical) structure of algebraic quantum field theory.

This property is locality, which is, in its turn, a combination of

two properties: localization and causality. The former means

that since any physical experiment takes place in a finite space-

time region, each physical quantity determined directly from the

experiment is also associated with some region (localized in it).

As to the latter property, one should keep in mind that no signal
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velocity can exceed the velocity of light, and no processes taking

place in spacetime regions separated by spacelike intervals can

affect each other (Einstein’s causality principle). Consequently,

each observable must also be causal, i.e. compatible with any

other observable if their localization regions are mutually space-

like. Observables having the described properties of localization

and causality are called local observables. This concept is the real

cornerstone of the algebraic approach in quantum field theory.

[Horuhzy (1990), p.3]

The compatibility of any two observables belonging to regions separated

by a non-null spacelike distance is indeed the most important feature of

relativistic systems, which embodies Einstein’s principle of causality. Of

course, such a requirement is trivially fulfilled by classical systems too, as no

incompatible observables are present at all in commutative algebras. How-

ever, in relativistic quantum mechanics, where the relevant algebras are non-

commutative, one has to impose locality as a geometrical condition: any

observable in the region O commutes with all observables in its causal com-

plement O′.

As to the localizability property, it retains the idea that quantum field

theory is a statistical theory accounting for the outcomes of local measure-
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ments. Accordingly, the experimental content of QFT comes from measure-

ments that can be performed in finite regions of spacetime. As a consequence,

global observables cannot belong to local algebras, and thus are ruled out

from AQFT. It is worthwhile to emphasizing a point that I mentioned in

the previous section: that is that no characteristic of observables other than

their localization in spacetime is necessary for a description of quantum fields.

Empirical data in quantum theory always refer to the localization properties

of microscopic objects. Experimental apparatuses, such as detectors and

counters, only register that a particle appeared at a certain spacetime re-

gion. This is the sense in which the outcomes of experiments in elementary

particle physics are just geometrical facts. The structure of the net of alge-

bras {A(O)|O ⊂ M} is sufficient to reconstruct all the physically relevant

information concerning the system under investigation. The set of all local

observables belonging to A(O) is actually fixed by what one can measure by

means of experiments performed in the corresponding finite spacetime region

O.

Thus, we have defined observables and states, the basic physical

quantities of the algebraic approach, and found that locality is

the main specific principle in the observable-state formalism for

relativistic quantum theory.
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...

Therefore, fundamentally the algebraic approach was conceived

as a general algebraic theory of local structures for relativistic

quantum physics or, as it is called more briefly, local quantum

theory. [Horuzhy (1990), p.4]

A sharpening of the locality principle that, as Haag (1996) suggested,

makes it possible to define “finitely extended subsystems” in AQFT is the

split property. It requires that for any two spacelike separated regions O1

and O2 of Minkowski spacetime, there exists a type I von Neumann algebra

M such that

A(O1) ⊂M ⊂ A(O2)
′ (4.7)

Accordingly, local algebras associated with spacelike separated regions not

only commute, but are statistically independent as well. In fact, the split

property is a necessary and sufficient condition for the existence of a (normal)

product state φ on the total algebra A(O1)
∨A(O2) which factorizes into

φ(AB) = φ1(A)φ2(B) for all A ∈ A(O1) and B ∈ A(O2), where φi is a

state on A(Oi) with i = 1, 2. Therefore, across any pair of local algebras

which are split there is some unentangled joint state. The split property has

been verified by many models of quantum fields localized in strictly spacelike

196



separated double cones, whereas wedge regions are known to be non-split.

The fact that the primitive concept of Algebraic Quantum Field Theory

is the locality of the algebras of observables does not mean that there is

not a sense in which the theory is non-local. Indeed, Bell’s inequality is

provably violated by a pair of relativistic systems in a stronger way than in

non-relativistic quantum mechanics. Furthermore, a theorem by Reeh and

Schlieder (1961) that can be derived from the axioms of AQFT seems to

entail a quite peculiar kind of non-locality. I now discuss these two aspects

of relativistic quantum field theory.

The general algebraic form of the maximal Bell correlation that was

spelled out in section 3.2.2. can be straightforwardly applied to nets of

algebras. Given two regions O1 and O2 and a joint state φ across the cor-

responding local algebras A(O1) and A(O2), Bell’s inequality is expressed

by

β(φ,A(O1),A(O2)) ≤ 1 (4.8)

In QFT there are many states in which the above bound is violated. Indeed,

typical local algebras contain an infinite product of copies of the algebra

M2(C) associated with Pauli matrices. Two (nets of) algebras are said to be

maximally correlated if all possible states across them maximally violate the
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Bell’s inequality, that is the Bell correlation takes on the value
√

2 for any φ.

Let us stress that, according to Jarrett’s decomposition of Bell’s inequality

(see section 3.2.2.), Bell-type non-locality in relativistic quantum mechanics

must be a consequence of the failure of outcome independence. Indeed, pa-

rameter independence naturally holds in AQFT because it is embodied in

the axiom of microcausality, whereby one presupposes O1 ⊆ O′
2.

For every pair of strictly spacelike separated regions O1 and O2 there is

a state φ such that β(φ,A(O1),A(O2)) =
√

2. Actually, for such regions

quantum field theory predicts the existence of several states that maximally

violate Bell’s inequality, no matter how far apart O1 and O2 are located.

Furthermore, as Summers and Werner (1988) demonstrated for both dou-

ble cones and wedge regions, if two spacetime regions in AQFT are tangent,

then they are maximally correlated. The proof hinges on the fact that the

vacuum φ0 being faithful on the von Neumann algebra A(O1)
∨A(O2) max-

imally violates Bell’s inequality. It thus follows that no pair of local algebras

corresponding to tangent regions can fulfill the split property, otherwise there

would be some state satisfying Bell’s inequality.

Since tangent regions are maximally correlated, whereas strictly spacelike

separated regions are not, it is interesting to study how the Bell correlation

varies with the degree of separation between O1 and O2 in an irreducible

vacuum representation. Summers and Werner (1987) demonstrated a sharp
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short-distance bound for the Bell correlation in the vacuum. Specifically, in

any irreducible vacuum sector with a positive mass gap m > 0 the value of

the maximal Bell correlation decreases exponentially from
√

2 to 1 according

to the formula

β(φ0,A(O1),A(O2)) ≤ 1 + e−md(O1,O2) (4.9)

where d(O1,O2) indicates the maximal timelike distance that the region O1

can be translated before it is no longer contained in the causal complement of

O2. Summers and Werner (1995) then improved the above bound to account

for spacelike separations smaller than d(O1,O2). Under the same conditions,

one obtains

β(φ0,A(O1),A(O2)) ≤
√

2−
√

2

7 + 4
√

2
(1− e−md(O1,O2)) (4.10)

This means that there exist many pairs of regions of Minkowski space for

which the maximal Bell correlation ranges in the semi-open interval [1,
√

2[.

In these cases, the Bell’s inequality is neither satisfied nor maximally violated.

As no specific assumption concerning the nature of the relevant spacetime

configurations is made, such a result does not depend on the geometry of O1

and O2. Hence, it holds for strictly spacelike separated wedge regions too. As

a consequence, the maximal Bell correlation computed for the latter does not
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need to attain the bound
√

2: in fact, models of quantum fields localized in

these type of spacetime regions predict maximal violation of Bell’s inequality

in all possible states only for the case of massless theories.

A theorem by Halvorson and Clifton (2000) captures the idea that the

failure of Bell’s inequality is “typical” in Algebraic Quantum Field Theory.

Let (M1,M2) be a pair of von Neumann algebras on a (separable) Hilbert

space satisfying the Schlieder property and such that M1 ⊆ M′
2. Then, if

both algebras are properly infinite, there is a dense set of vectors in H that

induce joint states across (M1,M2) which violate Bell’s inequality. Since the

identity operator is equivalent to any of its subprojection in a type III factor,

and therefore the latter is properly finite, the theorem applies to nets of local

algebras {A(O)|O ⊂ M}. Accordingly, most states across (A(O1),A(O2)),

with O1 and O2 being arbitrary spacelike separated regions of Minkowski

space, violate Bell’s inequality.

As I just mentioned, the vacuum state contains sufficiently strong corre-

lations between spacelike separated measurements that relativistic quantum

field theory predicts maximal violation of the Bell’s inequality for φ0. Vac-

uum correlations have been largely investigated in the literature. Globally,

φ0 is the state of lowest energy, which, by definition, has no particle present

in it. Accordingly, it yields eigenvalue 0 for both particle and anti-particle

operators. Nonetheless, as Redhead (1995) pointed out, locally “it is seething
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with activity”: observable phenomena are produced by the fluctuations ex-

hibited by local observables, such as charge densities, confined in the vacuum.

It is then quite remarkable that no local procedure carried out in the space-

time region O can establish whether one is in the vacuum state. In fact, the

projection Pφ0 , mapping on the closed subspace of Hilbert space spanned by

the vector state Ω0 which generates φ0, does not belong to the local algebra

A(O). In fact, for the sake of reductio ad absurdum, suppose that it does.

Then, the operator I − Pφ0 would be in A(O) too (where I is the identity

in the algebra), which implies (I − Pφ0)Ω0 = 0; yet, such a relation would

be satisfied only for Pφ0 coinciding with the identity and this cannot be the

case since Pφ0 is a one-dimensional projection. Consequently, the question

whether we actually are in the state Ω0 can never be answered from a local

perspective, but it would require one to survey the entire spacetime manifold.

The correlations associated with the vacuum are actually responsible for

some non-local effects of quantum fields which are not predicted by non-

relativistic quantum mechanics. That is the content of the Reeh-Schlieder

theorem. Before spelling it out, let us first recall some relevant definitions

of the algebraic approach. A vector state x on a Hilbert space H is cyclic

for a von Neumann algebra M if the norm closure of the set {Ax|A ∈ M}

spans the whole of H. In other words, by applying any operator belonging

to the algebra to x, one can obtain any state in the underlying Hilbert space.

201



Furthermore, x is separating for M just in case Ax = 0 implies A = 0 for any

element A in the algebra. In particular, if M possesses a separating state,

then every state of M is a vector state. It was established by Kadison and

Ringrose (1997) that a vector state is cyclic for a von Neumann algebra M

if and only if it is separating for its commutant M′.

The Reeh-Schlieder theorem connects the property of cyclicity of a global

state x of a field to the physical fact that the latter has bounded energy.

Reeh-Schlieder Theorem: If x has bounded energy, then x is

cyclic for any local algebra A(O).

Let E denote the spectral measure of the global Hamiltonian of the field.

Energy being bounded in the state x requires the existence of a finite r

such that E([0, r])x = x. Of course, the vacuum vector state Ω0 is a state of

bounded energy because the corresponding eigenvalue of E is zero. Therefore,

the Reeh-Schlieder theorem immediately applies to the vacuum. This means

that, by acting on Ω0 with some operation localized in the spacetime region

A(O), it is possible to approximate an arbitrary state of the field in any other

region of Minkowski space, even if it is spacelike separated from O.

Indeed, by operating locally on a finite region of M one can reconstruct

any state of the field in its causal complement. In case the expectation values

of the vacuum confined to O agree with the expectations of a global state of
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the field on the algebra A(O′), the latter state is said to be localized in O.

To put in another way, all localized states are given by “excitations” of the

vacuum.

To achieve this the operator must judiciously exploit the small

but nonvanishing long distance correlations which exist in the

vacuum as a consequence of the spectral restrictions for energy-

momentum in the theory. The theorem shows that the concept

of localized states, if used in a more than qualitative sense, must

be handled with care. [Haag (1996), p.102]

Haag then characterizes the conceptual import of the Reeh-Schlieder theorem

as a “superficial paradox”. Some more dramatic sentiments toward such a

peculiar non-local aspect of relativistic quantum field theory were expressed

by Segal (1964), Segal and Goodman (1965) and Fleming (1999), who char-

acterize the possibility of producing space-like distant effects by means of

local physical actions as “striking”, “bizarre” and “amazing!”, respectively.

In order to prove the theorem one just needs to appeal to the spectrum

condition and the axioms of weak additivity. If one adds microcausality, one

can derive a corollary which has further remarkable implications. Specifically,

if the casual complement of O is non-null, it follows from the Reeh-Schlieder

theorem that a state of bounded energy is cyclic in A(O′), and hence it is
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separating for its commutant. Microcausality then guarantees that A(O′)′

properly contains A(O). Therefore, the given state of the field is separating

for the latter local algebra too. That is, one can conclude

Corollary: If x has bounded energy, then x is separating for any

local algebra A(O), where O′ 6= 0.

This means that the structure of the vacuum Ω0, as well as of any other

vector state x of bounded energy, is rich enough to discriminate the action of

distinct elements of any local algebra. In fact, if two elements of A(O), say

operation A and B, have the same effect on Ω0, it follows that (A−B)Ω0 = 0.

The vacuum being separating for the algebra then assures A and B are the

same operator.

A first consequence of such a result is that, just as locally we can never

know if the present state is the vacuum state, it is never a local question

whether we are in a N -particle state either. Let ψ denote the vector state

representing a system composed of a certain number N of particles. Cer-

tainly, ψ is orthogonal to vacuum, where there is no particle. Hence, one

has PψΩ0 = 0, but by the above corollary of the Reeh-Schlieder theorem the

projection Pψ, which is an operation in the local algebra, must be zero. In

the last analysis, particle states are non-local objects.
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Moreover, and quite surprisingly, one can show that every possible out-

come of a local measurement in O has a non-vanishing finite probability of

occurring in the vacuum. The probability p = ProbΩ0(P = 1) that a lo-

cal measurement represented by the projection P ∈ A(O) yields a positive

result in the vacuum is equal to ‖PΩ0‖2. So, if such a probability is zero,

then PΩ0 would be null too and the corollary of the Reeh-Schlieder theorem

would further imply P = 0. By contraposition, for any non-zero projection

one obtains p 6= 0. In other words, in the long run any possible excitation of

the field will manifest itself in the vacuum.

According to the Reeh-Schlieder theorem, operations performed in the

spacetime region O1 can effectively produce changes in the spacelike sep-

arated regions of Minkowski space O2. Thus, given two local operations

P1 ∈ A(O1) and P2 ∈ A(O2), the conditional probability p = ProbΩ0(P2 =

1|P1 = 1) being equal to one means that a positive outcome of the measure-

ment associated with P1 turns Ω0 into a state lying in the range of P2 as

well. Actually, the “force” of such non-local effects is not independent of the

degree of separation between O1 and O2. In fact, a theorem by Fredenhagen

(1985), on which the derivation of formula (4.9) by Summers and Werner is

based, describes the exponential decreasing of vacuum correlations with the
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Lorentz distance d(O1,O2). Specifically,

〈P1P2〉Ω0 − 〈P1〉Ω0 · 〈P2〉Ω0 ≤ e−md(O1,O2)‖P1〉Ω0‖ · ‖P2〉Ω0‖

Redhead (1995) exploited such a bound to estimate the probability of a

measurement of P2 to give a positive outcome in terms of the probabil-

ity relative to a previously performed measurement of P1, that is 〈P1〉Ω0 ≤
e−md(O1,O2)〈P2〉Ω0

(1−〈P2〉Ω0
)2

. He thus concluded that

... for a given probability of P2 happening, the maximally corre-

lated P1 must have a probability of occurring that falls off expo-

nentially with the distance between O1 and O2.

This again shows how difficult it would be in practice to observe

the long-range correlations in the vacuum. But, of course, it does

not show that they do not exist! [Redhead (1995), p.134]

Such remarks emphasize the significance that vacuum correlations have for

the issue of non-locality. Redhead also observed that they pose a threat

for the possibility of localizing particles in AQFT. As a reaction, Fleming

(2000) proposed a localization scheme that avoids the non-local consequences

of the Reeh-Schlieder theorem, although it requires that QFT ought to be

formulated in the framework of type I factors. I will not enter into this

debate, but one may see Halvorson (2001) for a reply to Fleming.

206



4.2.2 Einstein’s Field Theoretic Paradigm in Relativis-

tic Quantum Mechanics

Einstein gave his argument against the completeness of quantum mechanics

(at least) four times after the publication of the EPR paper in 1935. It has

been pointed out by several authors, for instance Howard (1985) and Clifton

and Halvorson (2001), that Einstein’s dissatisfaction with quantum theory

hinges on the incompatibility between the standard Hilbert space formulation

and what can be called a field theoretic paradigm. The latter is spelled out

in his 1948 “Dialectica” paper.

If one asks what is characteristic of the realm of physical ideas

independently of the quantum theory, then above all the follow-

ing attracts our attention: the concepts of physics refer to a real

external world, i.e. ideas are posited of things that claim a “real

existence” independent of the perceiving subject (bodies, fields,

etc.), and these ideas are, on the other hand, brought into as se-

cure a relationship as possible with sense impressions. Moreover,

it is characteristic of these physical things that they are conceived

of as being arranged in a spacetime continuum. Further, it ap-

pears to be essential for this arrangement of the things introduced

in physics that, at a specific time, these things claim an existence
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independent of one another, insofar as these things “lie in different

parts of space”. Without such an assumption of mutually inde-

pendent existence (the “being-thus”) of spatially distant things,

an assumption which originates in everyday thought, physical

thought in the sense familiar to us would not be possible. Nor

does one see how physical laws could be formulated and tested

without such a clean separation. Field theory has carried out this

principle to the extreme, in that it localizes within infinitely small

(four dimensional) space-elements the elementary things existing

independently of one another that it takes as basic as well as the

elementary laws it postulates for them.

For the relative independence of spatially distant things (A and

B), this idea is characteristic: an external influence on A has no

immediate effect on B; this is known as the “principle of local

action”, which is applied consistently only in field theory. The

complete suspension of this basic principle would make impossible

the idea of the existence of (quasi-)closed systems and, thereby,

the establishment of empirically testable laws in the sense familiar

to us. [Einstein (1948), translation taken from Howard (1985)]

Then, in another passage he added:
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Matters are different, however, if one seeks to hold on principle

II - the autonomous existence of the real states of affairs present

in two separated parts of space R1 and R2 – simultaneously with

the principles of quantum mechanics. In our example the com-

plete measurement on S1 of course implies a physical interference

which only effects the portion of space R1. But such an inter-

ference cannot immediately influence the physically real in the

distant portion of space R2. From that it would follow that every

measurement regarding S2 which we are able to make on the basis

of a complete measurement on S1 must also hold for the system

S2 if, after all, no measurement whatsoever ensued on S1. That

would mean that for S2 all statements that can be derived from

the postulation of ψ2 or ψ′2, etc. must hold simultaneously. This

is naturally impossible, if ψ2, ψ
′
2, are supposed to signify mutually

distinct real states of affairs of S2. [Einstein (1948), translation

taken from Howard (1985)]

Accordingly, the field theoretic paradigm which Einstein finds incompat-

ible with quantum mechanics relies on three main concepts: the “principle

of local action”, the “assumption of mutually independent existence (the

’being-thus’) of spatially distant things” and the related requirement that
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spatially distant systems be “quasi-closed”.

It is indeed true that standard Hilbert space quantum mechanics is not

field theoretical in the sense that observables in non-relativistic quantum

theory are not “conceived of as being arranged in a spacetime continuum”:

the observable quantities in quantum theory do not carry labels that would

indicate their spatiotemporal location in a four dimensional spacetime con-

tinuum; hence, quantum measurements and operations are also not conceived

of as possessing spatiotemporal tags explicitly. Nor is Hilbert space quantum

mechanics covariant with respect to a relativistic symmetry group. In fact

the relevant symmetry group for standard Hilbert space quantum mechanics

is the Galilean group: the generators of projective and continuous represen-

tations of this group are typically identified with observables. Thus it is not

surprising that quantum mechanics does not meet requirements of relativistic

locality interpreted in the sense of a field theoretical paradigm.

However, a local and relativistically covariant quantum mechanics exists.

Algebraic Quantum Field Theory supplies a particularly well-developed and

mathematically exact version of it. Then, it is very natural to ask: To what

extent does AQFT comply with the field theoretical paradigm as Einstein

formulates it?

Clifton and Halvorson (2001) claim that, in a sense AQFT fares even

worse than standard quantum mechanics: in their view the crucial element
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in Einstein’s criticism of standard quantum mechanics is the openness of

quantum systems, and in their interpretation “What makes quantum sys-

tems open for Einstein is that [...] quantum systems can occupy entangled

states in which they sustain non-classical EPR-correlations with other sys-

tems outside their light cones”. It follows then that the local systems in

AQFT are much more radically open systems than standard quantum me-

chanical systems because, as I shall discuss in section 4.3.2, entanglement

is far more dramatic and robust in relativistic quantum field theory than

in non-relativistic quantum mechanics. Thus, ironically, relativistic quan-

tum field theory would violate even more dramatically what Einstein takes

as necessary conditions for a physical theory to be acceptable from a field

theoretical viewpoint.

However, their argument goes through only if one takes the presence of

entanglement to be the crucial point in Einstein’s criticism against quantum

theory. Actually, Einstein does not mention entanglement in his 1948 crit-

icism of quantum mechanics at all - in spite of the fact that entanglement

had been well-known to him: he corresponded with Schrödinger in connection

with Schrödinger’s 1935 papers that analyzed entanglement systematically.

Nor does entanglement appear in the two other publications in which Einstein

formulated his incompleteness argument after the EPR paper, that is Ein-

stein (1936) and Einstein (1949). So, one can read and interpret Einstein’s
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1948 criticism of non-relativistic quantum mechanics somewhat differently,

in a way that seems very natural and closer to Einstein’s idea (and text) than

Halvorson and Clifton’s interpretation of focusing on openness and identify-

ing it with presence of entanglement. In this section I argue that relativistic

quantum field theory fares far better than standard non-relativistic quantum

mechanics in that it does satisfy Einstein’s criteria without which “physical

thought in the sense familiar to us would not be possible”.

According to Redei and Valente’s (2008) interpretation of the 1948 Dialec-

tica paper quoted above, Einstein formulates (informally) the following three

requirements for a physical theory to be compatible with a field theoretical

paradigm:

1. Spatio-temporality “... physical things [...] are conceived of as being

arranged in a spacetime continuum...”

2. Independence “... essential for this arrangement of the things in-

troduced in physics is that, at a specific time, these things claim an

existence independent of one another, insofar as these things ‘lie in

different parts of space’. ”

3. Local operation “... an external influence on A has no immediate

effect on B; this is known as the ’principle of local action’ ”; “... mea-

surement on S1 of course implies a physical interference which only
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effects the portion of space R1. But such an interference cannot im-

mediately influence the physically real in the distant portion of space

R2.”

Each of these provisions is indeed met in the framework of Algebraic Quan-

tum Field Theory. The requirement of Spatio-temporality is explicitly in-

corporated in the axioms of AQFT since the observables of the theory are

localized in regions of the spacetime continuum. As to the second condition,

we saw in the previous section that there is a rich hierarchy of notions of

independence that are satisfied by local algebras of observables. Then, there

remains to translate the constraint of local operation in algebraic terms and

to see in what sense it would be fulfilled by AQFT.

The notion of operations generalizes that of quantum measurements. An

operation T is a completely positive map from a C*-algebra A onto itself,

that is σ-weakly continuous and satisfies 0 ≤ T (I) ≤ I, where I is the unit

in A. An operation is non-selective if it is unit preserving, whereas it is

selective if T (I) < I. The dual T ∗ of an operation is an embedding from

the state space of A into itself: T ∗φ = φ ◦ T thus captures the effect of

T on the state φ of a system. T is normal if T ∗ maps normal states onto

normal states. Operations are the mathematical representatives of physical

operations, namely physical processes that take place as a result of physical
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interactions with the system.

With the aid of such a notion, one can formulate an idea of operational

independence that is contained in the two definitions below. The first is

operational C*-independence.

Definition 1: A pair (A1,A2) of C*-subalgebras of a C*-algebra

A is operationally C*-independent in A if any two operations on

A1 and A2, respectively, have a joint extension to an operation

on A; i.e. if for any two completely positive unit preserving maps

T1 : A1 −→ A1

T2 : A2 −→ A2

there exists a completely positive unit preserving map T : A −→

A such that

T (A1) = T1(A1) for all A1 ∈ A1

T (A2) = T2(A2) for all A2 ∈ A2

The second is operational W*-independence.
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Definition 2: A pair (M1,M2) of von Neumann subalgebras of

a von Neumann algebra M is operationally W*-independent in

M if any two normal operations on M1 and M2, respectively,

have a joint extension to a normal operation on M.

Operational C*-independence (respectively, W*-independence) expresses that

any operation, i.e. procedure, state preparation, etc., on system S1 is co-

possible with any such operation on system S2, if these systems are repre-

sented by C*-algebras (respectively, W*-algebras).

As usual, let O1 and O2 be spacelike separated spacetime regions, A(O1)

and A(O2) be local observable algebras in AQFT pertaining to spacetime

regions O1 and O2 and regarded as observables of a larger system A(O)

localized in spacetime region O with O ⊇ O1,O2. Let T be an operation on

A(O) that can be regarded also as representing an operation carried out on

system A(O1) viewed as a subsystem of A(O). Let φ be a state on A(O).

Redei and Valente (2008) call (A(O),A(O1),A(O2), φ, T ) a local system.

The requirement of Local operation means that local systems be such

that the operation-conditioned state T ∗φ = φ ◦ T should coincide with φ on

A(O2). This idea is fixed in the form of the following definitions:

Definition 3: Let (A(O),A(O1),A(O2), φ, T ) be a local system.

The operation T : A(O) −→ A(O) is said to be localizable in
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A(O1) if the latter is invariant under T ; i.e. if T (A) ∈ A(O1)

whenever A ∈ A(O1).

It is important to realize that localizability of T in A(O1) defined above

does not require that the operation does not affect A(O2) in the sense of

changing its state. The problem is precisely whether operations localized in

A(O1) in the above sense can have this feature or whether operations that

are carried out on A(O1) “behave badly causally” in the sense of affecting

the state of A(O2). Causal well behaving is spelled out in the next definition.

Definition 4: The local system (A(O),A(O1),A(O2), φ, T ) with

an operation T on A(O) that is localizable in A(O1) is defined

to be operationally separated if the operation conditioned state

T ∗φ = φ ◦ T coincides with φ on A(O2), i.e. if φ(T (A)) = φ(A)

for all A ∈ A(O2).

The question now is: are local systems in AQFT operationally separated?

Given a local system (A(O),A(O1),A(O2), φ, Tp) with the operation de-

fined by the projection postulate Tp(X) =
∑

i PiXPi, where the Pi are the

spectral projections of discrete observable being measured, the local commu-

tativity requirement of AQFT entails that the operation Tp is the identity

map on A(O2). Then, the following propositions hold:
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Proposition 1: The local system (A(O),A(O1),A(O2), φ, Tp)

with Tp describing the projection postulate is operationally sep-

arated for every state φ.

One can generalize some of the characteristic features of Tp. As we learnt

in section 3.3.3, a norm-one projection, that is positive, linear, unit preserving

map T from the C*-algebraA onto a C*-subalgebraA0 ofA whose restriction

to A0 is equal to the identity map is called a conditional expectation from

A onto A0. Furthermore, for a state ϕ on A, a norm-one projection also

preserves ϕ. Such a ϕ-preserving conditional expectation is denoted by Tϕ
p .

Clearly, a local system (A,A(O1),A(O2), ϕ, Tϕ
p ) with Tϕ

p mapping fromA(O)

onto A(O1) is operationally separated.

However, the projection postulate has limited applicability. Not every

interaction with (operation on) a quantum system can be described by a TP

of the above form. For instance, if the observable to be measured does not

have a discrete spectrum then one cannot directly generalize the Lüders rule

to obtain a completely positive map. More generally, a norm-one projection

mapping from A onto A0 exists in very rare circumstances. So, one ought to

replace such a map with a ϕ-preserving conditional expectation in the sense of

Accardi and Cecchini (1982): if ϕ is a faithful normal state on von Neumann

algebra M then there always exists a ϕ-preserving completely positive map
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Tϕ from M into any subalgebra M0.

Consider now the vacuum state φ0 and the local net of algebras {A(O)|O ⊂

M} in the vacuum representation. By the Reeh-Schlieder theorem φ0 is

faithful on every local von Neumann algebra A(O). Hence, there exists

the Accardi-Cecchini φ0-preserving conditional expectation T φ0 : A(O) −→

A(O1). Obviously, this T φ0 is localizable inA(O1) since its range is in the lat-

ter local algebra. Furthermore T φ0 cannot be the identity onA(O2) because it

takes A(O2) into A(O1), which commutes with A(O2) by local commutativ-

ity of the net. Accordingly, if T φ0 were the identity on A(O2), then the latter

local algebra would be commutative, which of course it is not. It follows that

there is an observable X ∈ A(O2) such that T φ0(X) 6= X. As a consequence,

there exists a normal state ω2 on A(O2) such that ω2(T
φ0(X)) 6= ω2(X),

and ω2 can be extended from A(O2) to a normal state ω on A(O) by the

Hahn-Banach theorem.

In the last analysis, if (A(O),A(O1),A(O2)) are local von Neumann alge-

bras in the vacuum representation of a local net in AQFT then there exists a

(normal) state ω onA(O) such that the local system (A(O),A(O1),A(O2), ω, T φ0)

with the Accardi-Cecchini φ0-preserving conditional expectation T φ0 is oper-

ationally not separated. It is clear that this argument can be repeated with

any state in the place of the vacuum state that is faithful. This means that

the following proposition has been shown:
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Proposition 2: There exist operationally not separated local

systems in AQFT.

Thus it would seem that the Local operations requirement is violated in

AQFT, contrary to the claim in the introductory part of the section. But

this conclusion would be too quick.

One can argue that the mere existence of operationally not separated lo-

cal systems should not be interpreted as the proper incompatibility of AQFT

with the Local operations requirement because one can not expect a theory

such as AQFT to exclude causally non-well-behaving local systems necessar-

ily. But it is reasonable to demand that AQFT allow a locally equivalent

and causally acceptable description of an operationally not separated local

system. In other words, one can say that it may happen that the possible

causal bad behavior of the local system (A(O),A(O1),A(O2), φ, T ) is due

to the non-relativistically conforming choice of the operation T on A(O)

representing an operation localized in A(O1), and there may exist another

operation T ′ on A(O) that is localizable in (O1) and which has the same

effect on A(O1) as that of T , (i.e. T ′(X) = T (X) for all X ∈ A(O1)) and

such that the system (A(O),A(O1),A(O2), φ, T ′) is causally well-behaving.

This idea of reducibility of operational non-separation is explicitly fixed

in the form of the following weakening of the definition of operational sepa-
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ration:

Definition 5: The local system (A(O),A(O1),A(O2), φ, T ) is

called operationally separable if it is operationally separated, or,

if it is not operationally separated, then there exists an operation

T ′ : A(O) −→ A(O) such that T ′(X) = T (X) for all X ∈ A(O1)

and such that the system (A(O),A(O1),A(O2), φ, T ′) is opera-

tionally separated.

Algebraic Quantum Field Theory is said to satisfy the Local operations

requirement if the local systems in AQFT are operationally separable.

If one interprets Einstein’s requirement of Local operations as the re-

quirement that local systems in Algebraic Quantum Field Theory should be

operationally separable in the above sense, then one is led to ask the question:

are local systems in AQFT operationally separable?

Consider the local system (A(O),A(O1),A(O2), φ, T ). If the pairA(O1),A(O2)

is operationally C*-independent, then taking the restriction T |A(O1) of T to

A(O1) and the identity map idA(O2) as operation on A(O2), the two opera-

tions T |A(O1) and idA(O2) have a joint extension T ′ to A(O) and since T ′ is the

identity onA(O2), it is clear that the local system (A(O),A(O1),A(O2), φ, T ′)

is operationally separated. In short we have:

Proposition 3: If the pair A(O1),A(O2) is operationally C*-
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independent, then for every φ and every T which is localizable

in A(O1) the local system (A(O),A(O1),A(O2), φ, T ) is opera-

tionally separable.

Since operational C*-independence holds for local algebras A(O1),A(O2)

associated with strictly spacelike separated double cone regions O1 and O2,

one can conclude that AQFT typically satisfies the requirement of local oper-

ations: “typically” because the double cone regions are the typical spacetime

regions with which the local algebras are associated. It still remains to prove

that this is also the case for tangent double cones and for wedge regions,

whether strictly separated or tangent. To establish such a positive result

one ought to show that the relevant spacetime regions are operationally W*-

independent. Accordingly, a W*-version of operational separability needs to

be formulated. As there is no known no go result ruling out such a possibil-

ity, one may well conjecture that operational separability, and thus Einstein’s

paradigm for field theories including the requirement of local operations, can

be extended in general to any local algebras of AQFT.

Interestingly, the notion of Operational Separability is quite independent

of Bell-type correlations. Indeed, the local operation T does not play any role

in the relation β(A(O1),A(O2), φ). Moreover, Bell’s inequality is maximally

violated for the vacuum state φ0, even for strictly spacelike separated dou-
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ble cones, which, as we have just seen, give rise to operationally separable

local systems. Therefore, the violation of Bell’s inequality does not imply

(operational) non-separability.

4.3 Entanglement between space-like separated

regions of Minkowski spacetime

4.3.1 Cyclicity and intrisically entangled states

In the previous section I argued that in local quantum field theory one has a

variety of notions of algebraic independence which allow one to characterize

physical systems being independent from each other. There is a precise sense

in which local measurements performed in a certain spacetime regionO would

not affect any system located in its causal complement O′, although there

may well be entangled states across the two regions. Such a result is quite

surprising, especially in light of the fact that entanglement between quantum

fields is more robust than in non-relativistic quantum mechanics, as I show

in the conclusive part of this chapter.

The definition of entanglement of a field in AQFT follows straightfor-

wardly from the algebraic characterization of non-separable states (see sec-

tion 3.2.2.). It is convenient here to use the Haag-Kastler concrete version
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of AQFT. Given the net of local algebras {A(O)|O ∈ M} acting on Hilbert

space H, a global state φ of a field is given on the von Neumann algebra

A′′ = B(H). Such a state is entangled across a pair of spacelike separated

regions (O1,O2) just in case its restriction φ|A12 to A12 = [A(O1)
∨A(O2)]

′′

falls outside the weak*-closure of the convex hull of product states on A12.

There is a physical motivation for the choice of weak*-topology. Indeed, one

cannot verify the norm convergence of a sequence of states in a laboratory.

Thus, experimental reasons motivate one to appeal to a strong notion of

entanglement.

Let me spell out two facts concerning entanglement in relativistic quan-

tum field theory which are direct applications of general properties of von

Neumann algebras. The first fact is derived by the Raggio-Bacciagaluppi the-

orem according to which there must exist some non-separable states across

two commuting non-abelian algebras. Since the local algebras A(O1) and

A(O2) are both non-commutative and, by definition, they fulfill microcausal-

ity too, the assumptions of the theorem are satisfied. Therefore, one has the

following

Fact 1: There is at least one entangled state φ across (O1,O2)

The second fact follows from a well-known result of quantum information.

That is that entanglement cannot be created by local operations. To see this,
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recall that it is a consequence of the Kraus representation theorem that any

operation T : B(H) −→ B(H) can be rewritten as

T (·) =
∑

i

K∗
i (·)Ki (4.11)

where {Ki} is a countable family of Kraus (bounded) operators such that the

weakly*-converging sum
∑

i KiK
∗
i takes its value in the real interval [0, 1].

The claim is that, if the state ω across two quantum systems described by

the von Neumann algebra M1 and M2 is not entangled, then by performing

a local operation T on the first system one cannot turn the joint state into

an entangled state.

Suppose ω is a product state on M = M1
∨M2, whose restrictions to

M1 and M2 are the states ω1 and ω2, respectively. For the sake of the proof,

but without loss of generality, we can consider pure operations. Accordingly,

T (·) = K∗(·)K and the state resulting from applying such a map reads

ω ◦ T = T ∗ω = ω(K∗·K)
ω(K∗K)

. So, for any element A ∈M1 and B ∈M2

T ∗ω(AB) =
ω(K∗(AB)K)

ω(K∗K)
=

ω(K∗AKB)

ω(K∗K)

where the last equality holds because the Kraus operator K obviously com-

mutes with B. The state thus factorizes into
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T ∗ω(AB) =
ω1(K

∗(A)K)

ω1(K∗K)
ω2(B) = T ∗ω1(A)ω2(B)

and hence T ∗ω is again a product state across the pair (M1,M2). The same

reasoning can then be extended to the case in which ω =
∑

n λnωn to show

that T preserves convex combinations of product states on M. In fact, one

obtains T ∗ω =
∑

n λT
nT ∗ωn by setting the coefficients to be λT

n = ωn(K∗K)
ω(K∗K)

. In

particular, if one restricts the attention to a global state of a field defined on

the von Neumann algebra A12, this conclusion entails the following

Fact 2: If any state φ across (O1,O2) is separable, then the state

φ ◦ T resulting from the application of a local operation T on O1

(or on O2) will not be entangled either.

Some information about the nature of entangled states in Algebraic Quan-

tum Field Theory can be inferred from the analysis of the maximal Bell

correlation relative to the local algebras associated with finite regions of

Minkowski space, which I offered in section 4.2.1. Entanglement is in fact a

necessary condition for the violation of Bell’s inequality. From the fact that

tangent regions are maximally correlated it follows that any state across such

spacetime configurations is maximally entangled. All joint states across any

pair of strictly spacelike separated wedge regions are also entangled, for the

Bell correlation is such that 1 ≤ β(φ,A(O1),A(O2)) ≤
√

2, although in this
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case φ is not necessarily maximally entangled. The only circumstance where

there exists some separable state is that of strictly spacelike separated double

cones, for which the split property holds.

The overwhelming presence of entangled states characterizing local alge-

bras seems to be what prompted Haag’s remark below.

... it is evidently not obvious how to achieve a division of the

world into parts to which we can assign individuality. We have

moved far away from Maxwell’s ode on atoms: “Though in the

course of ages catastrophes have occurred... the foundation stones

of the material universe remain unbroken and unworn. They

continue this day as they were created - perfect in number and

measure and weight.” Instead we used a division according to re-

gions in space-time. This leads in general to open systems. Under

special circumstances we can come from there to the materially

defined systems of quantum mechanics, claiming for instance that

in some large region of space-time we have precisely an electron

and a photon whose ties to the rest of the world may be neglected.

One of the essential elements in singling out such a material sys-

tem and assigning to it an individual, independent (at least tem-

porary) existence is its isolation, i.e; the requirement that in a
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large neighborhood we have a vacuum-like situation. However

this is not always enough... There may be persistent correlations

of a non-classical character... [Haag (1992), p.298-299]

Accordingly, (bounded) regions of Minkowski space are the basic elements

of the description of the world that local quantum physics offers. As Clifton

and Halvorson’s (2001) commented in relation to this quote, the fundamen-

tal aspect of such spacetime “blocks” is that they are intrisically open to

entanglement. Indeed, even in the case of strictly spacelike separated double

cones, no spacetime region O can be isolated from its environment, where the

latter is identified with the causal complement O′. The duality relation as-

sures that the von Neumann algebra A(O′) associated with the latter region

is equal to A(O)′, that is the commutant of the local algebra corresponding

to O. Now, it is a general property of von Neumann algebras theory that

any state across the pair (M,M′) maximally violates the Bell’s inequality

(see Summers (1990)). Thus, all the joint states across (A(O),A(O)′) are

maximally entangled. As a consequence, the region O is always intrinsically

entangled with its environment.

This has some further interesting consequences for AQFT. Connes and

Størmer (1978) provided a definition of type III1 factors in terms of unitary

operators: M acting on a (separable) Hilbert space H is type III1 just in
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case, given any two states ρ and τ on B(H), the norm ‖ρ− τUU ′‖ is bounded

by positive real numbers ε for some unitaries that U ∈ M and U ′ ∈ M′.

Presumably, two states converging to each other in norm ought to be assigned

close degrees of entanglement; on the other hand, Vedral et al. (1997) showed

that, in order to construct a reasonable measure of entanglement, such as the

standard von Neumann entropy measure, invariance under unitary operators

on the separated systems is a necessary condition. Clifton and Halvorson

(2001) then argued that all measures of entanglement in a type III1 factor

would be trivial.

The Connes-Størmer characterization immediately implies the

impossibility of distinguishing in any reasonable way between the

different degrees of entanglement that states might have across

... [(M,M′)].

[Clifton-Halvorson (2001), p.26, where the notation has been suit-

ably changed]

Nevertheless, such a conclusion is unwarranted. Since all states across a

von Neumann algebra and its commutant are maximally entangled, they

all possess the same degree of entanglement. That explains away the alleged

triviality. It is true, though, that a unitary invariant measure of entanglement

in AQFT is yet to be found. A major difficulty is that the von Neumann
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entropy is not defined at all: for a type III factor contains only infinite

projections, and hence no density operator, whose spectral projections are

necessarily finite, can exist. In the absence of such a measure, one can

hardly give a full characterization of entangled states in relativistic quantum

mechanics.

Let us now spell out the connection between the property of cyclicity and

the existence of entanglement. This can be done in the general algebraic

framework, without any immediate reference to the Reeh-Schlieder theorem.

Consider two noncommutative von Neumann subalgebras M1 and M2 of

a von Neumann algebra M such that M1 ⊆ M′
2. Halvorson and Clifton

(2000) proved that, if a vector state x is cyclic for either one of these sub-

algebras, then the corresponding joint state ωx on M is non-separable. The

reasoning proceeds by contradiction. Suppose ωx is actually not entangled.

Then, cyclicity of x guarantees that all states on M can be approximated

by means of local operations applied to ωx. As entanglement cannot be cre-

ated locally, such states ought to be all separable. However, by the Raggio-

Bacciagaluppi theorem, there is at least an entangled state across the pair

(M1,M2). Therefore, ωx must be entangled in the first place.

Such a result was strengthened by Clifton and Halvorson (2001), by

adding the requirement that there is a separating vector forM. The cyclicity

of x is actually preserved under the action of invertible operators. Let A be
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an invertible element of M. Then, since one can act on it by the operator

A−1 to obtain x again and from there one can of course approximate any

other state on H, the vector state Ax is cyclic too. Applying to x all the

invertible operators in the algebra gives rise to a dense set of vector states.

So, the presence of a cyclic vector for M entails that the underlying Hilbert

space contains a dense set of cyclic vectors for the algebra. Moreover, since

M possesses a separating vector, all its states are vector states. This means

that a (norm) dense set of the latter must be cyclic, and thus entangled. The

fact that non-separable states are open in the weak-* topology (and hence in

the norm topology too) completes the following

Generic Result: If either M1 or M2 possesses a cyclic state,

and M possesses a separating vector, then most states on M are

entangled across (M1,M2).

Such a result applies to local algebras in relativistic quantum field theory. In

case the pair (A(O1),A(O2)) satisfies the two antecedent conditions of the

above statement, typical states on A12 are entangled across the two spacelike

separated regions O1 and O2 of Minkowski space. This shows, once again,

that separable states are very rare in AQFT.

Notice that this is an algebraic fact that does not depend on the Reeh-

Schlieder theorem. In fact, the latter is just sufficient, under specific circum-
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stances, for the Generic Result to hold. As states of bounded energy are

involved, it implies the existence of some cyclic state on any local algebra.

Together with the requirement that the complement of the union of the rele-

vant spacetime regions is non-empty, i.e. (O1
⋃O2)

′ 6= ∅, it then guarantees

that the second antecedent condition is fulfilled as well, as by the corollary

of the theorem a separating vector exists in any local algebra. On the other

hand, there are cyclic states which have no bounded energy. Specifically,

Borchers (1965) proved that for non-trivial operators A ∈ A(O1) any vector

of the form Ax never has bounded energy; yet, provided that x is cyclic,

such a vector is also cyclic for A being invertible. In conclusion, the Reeh-

Schlieder theorem is not necessary for the application of the Generic Result

in Algebraic Quantum Field Theory.

4.3.2 On the persistence of entanglement in relativistic

quantum field theory

The overwhelming majority of states being entangled across any pair of re-

gions of Minkowski space associated with local algebras is one way in which

the robustness of entanglement manifests itself in AQFT. Actually there is

another interesting way in which this happens, that I discuss in detail in this

section. We already know by Fact 2 that entanglement cannot be created by
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acting locally on either O1 or O2. Yet, one may wonder whether an entangled

state across such regions can be destroyed by performing any local operation.

The main technical result of a paper by Clifton and Halvorson (2001) is that

this is never the case in AQFT. My purpose here is to develop and complete

their argument.

Allegedly, the persistence of entanglement of field systems marks a funda-

mental structural difference between relativistic and non-relativistic quantum

mechanics. In the latter case, indeed, one can always find a local operation

that disentangles any composite quantum system. This can be shown with

a simple example. Let x be any vector state on the tensor product of two-

dimensional Hilbert space H1
⊗H2 representing a bi-partite non-relativistic

quantum system. Subsystem A may be given to Alice and subsystem B to

Bob. Suppose that the joint state x is initially entangled. The corresponding

density operator ρx projects onto the closed subspace spanned by the vector

state. If Alice measures a discrete observable with (one-dimensional) eigen-

projections P+ and P− on subsystem A, then the new state of the system is

described by the density matrix

ρ′x = (P+ ⊗ I)ρx(P+ ⊗ I) + (P− ⊗ I)ρx(P− ⊗ I)

Since one gets (P± ⊗ I)x = a±x ⊗ b±x for some non-zero vectors a±x ∈ H1 and
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b±x ∈ H2, the previous expression takes a more explicit form, namely

ρ′x = Tr[(P+ ⊗ I)ρx]P+ ⊗ Pb+x
+ Tr[(P− ⊗ I)ρx]P− ⊗ Pb−x

That shows that ρ′x is a convex combination of product states, and hence

represents an unentangled state. Therefore, Alice succeeded in isolating A

from Bob’s system. In terms of the Kraus representation theorem, Alice

performed a nonselective operation T , that can be decomposed into the Kraus

operators K1 = P+ ⊗ I and K2 = P− ⊗ I. Similarly, she could apply a

selective map, involving just one of these Kraus operators, but the resulting

state would still be separable. The disentangling procedure thus described

does not at all depend on the details of x, nor on the degrees of entanglement

between the two sub-systems. Moreover, as it is shown below in more general

terms, it can be extended to any finite and infinite dimensional Hilbert space.

In fact, no matter what the initial joint state is, entanglement between

quantum systems described by type I factors can be destroyed by local oper-

ations performed on one subsystem. By contrast, it is just such a possibility

that fails to hold in relativistic quantum field theory. As Clifton and Halvor-

son stressed at the beginning of their paper, from an algebraic point of view

this difference lies at a deep structural level.

We end section 4. by connecting the type III character of the
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algebra of a local field system with the inability, in principle,

to perform local operations on the system that will destroy its

entanglement with other spacelike separated systems. We offer

this result as one way to make precise the sense in which AQFT

requires a radical change in paradigm - a change that, regret-

tably, has passed virtually unnoticed by philosophers of quantum

theory. [Clifton-Halvorson (2001), p.5]

Although the emphasis on the importance of their result is totally warranted,

the conclusion of Clifton and Halvorson’s argument is not as strong as they

claim. I will suggest how to improve it.

To begin with, let us make sense to what the authors mean by the inabil-

ity in principle of destroying entanglement in AQFT. This expression should

be understood as opposed to the practical limitations that an experimenter

encounters when trying to disentangle a pair of spacetime regions, that in-

deed explain Streater and Wightman’s (1989) comment that “it is difficult

to isolate a system described by fields from outside effects” (p.139).

Any element A of a von Neumann algebra M is the strong limit of a se-

quence of invertible operators {An} ⊆ M (see Dixmier and Maréchal (1971)

for the proof). That is, Anx −→ Ax for n → ∞. Let us a consider a

state x of bounded energy across the pair of regions (O1,O2) of Minkowski

234



space. Since a local operation A in the algebra A(O1) does not preserve the

boundedness of energy, the Reeh-Schlieder theorem does not apply to Ax,

and therefore the latter vector does not need to be cyclic. Accordingly, one

expects that Alice’s measurement could disentangle x. On the contrary, as

we just learnt, all the vectors of the form Anx are cyclic, and hence they cer-

tainly represent entangled states. However, insofar as the Kraus operator An

|An|

lies in the strong neighborhood of the Kraus operator A
|A| , the experimenter

cannot distinguish between them from a purely operational point of view. In

particular, instead of performing the (possibly) disentangling local operation

represented A
|A| , Alice may well have performed any non-disentangling local

operation represented An

|An| . So, the practical limitations she is subjected to

stem from the lack of experimental means to specify what operation she ac-

tually applied. Furthermore, it follows from Dixmier and Maréchal’s result

that the states generated by the vectors Ax and Anx are close to each other

in norm, i.e. ‖φAx − φAnx‖ −→ 0. As a consequence, Alice would not even

be able to determine whether the global state she ended up with by acting

locally on the field is entangled or not.

There are also obstacles to isolating entangled quantum field systems

in practice which do not depend on the implications of the Reeh-Schlieder

theorem. The Generic Result derived at the end of the previous section poses

severe difficulties to the possibility of achieving disentanglement. The fact
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that most of the states across (O1,O2) are entangled means that, even if

Alice’s local operation on A(O1) produced a separable state, she would need

an extraordinary ability to distinguish the new global state of the field from

the typical states on A12. This could be achieved if further resources, such as

a well-defined measure of the degrees of entanglement, were actually available

in a type III factor von Neumann algebra.

In the last analysis, the practical limitations that Clifton and Halvorson

refer to have to do with the inability of the experimenter to ascertain that the

state resulting from the action of local operations is indeed separable. This

is the sense in which the above arguments do not establish an impossibility

in principle to destroy any entangled state of a field. Moreover, and perhaps

more importantly, such limits are not characteristic only of AQFT. Indeed,

they also arise in non-relativistic quantum mechanics. On the one hand,

cyclicity is a property of some von Neumann factor algebras of type I. For

instance, wheneverH1 andH2 have the same dimension, there is a local cyclic

state on each of the corresponding subalgebras of the algebra of all bounded

operators on the tensor product H1
⊗H2. On the other hand, the Generic

Result holds for composite quantum systems with at least three particles

described by infinite-dimensional Hilbert spaces too.

The impossibility in principle of disentangling any state on local algebras

must thus be demonstrated on a different ground. The relevant no go result
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should also be formulated in such a way that it only applies to relativistic

quantum systems. To be sure, there are plenty of spacetime configurations in

Minkowski space that are intrinsically entangled, in the sense that all states

across the local algebras associated with them are entangled. This means

that, in general, disentanglement can never be achieved in AQFT, no mat-

ter what one does. However, separable states exists on local algebras which

are split. So, the hope of isolating a field system from other entangled field

systems by performing local operations would make sense just for strictly

spacelike separated double cones3. Clifton and Halvorson’s no go result be-

comes interesting within such a domain.

I reconstruct their proof below in a way that will put me in a position

to highlight its conceptual consequences. The crucial definition to recall is

that of abelian projections: a projection P of a von Neumann algebra M is

abelian just in case the algebra PMP , generated by its application to all the

elements of M, is abelian. Clifton and Halvorson consider a local operation

performed on the spacetime region O1 represented by a selective map, where

by the Kraus operator K coincides with a projection. That is TP (·) = P (·)P .

3The existence of product states between local algebras satisfying the split property was

proven by Buchholz (1974), who also constructed a concrete example of such algebras. The

split property is in fact verified in a number of physically relevant quantum field models.

In particular, Buchholz demonstrated that it holds for free neutral massive scalar fields.
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The argument then proceeds by distinguishing the non-relativistic case and

the relativistic case.

Type I

Suppose the joint state φ is entangled across (A,B). The pro-

jection P can be chosen to be abelian, hence the map TP has

the effect to make the algebra PAP commutative. As a conse-

quence of the theorem by Raggio and Bacciagaluppi any state

across the pair (PMP,B) is separable. Therefore, T ∗
P φ must be

unentangled.

Type III

In this case there is no abelian projection, and hence P cannot

be chosen to be abelian. As a result, the algebra PA(O1)P is

noncommutative. By Fact 1 there exists at least one state ϕ

across the pair (PA(O1)P,A(O2)) that is entangled. Such a state

is the image under T ∗
P of a state φ on A12, i.e. ϕ = φ ◦TP . Then,

Fact 1 allows one to conclude that the initial state φ must have

been entangled as well.

The upshot of the proof is not that entanglement across type III von Neu-

mann algebras associated with strictly spacelike separated regions of Minkowski
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space can never be destroyed, but there is some joint state of a global quan-

tum field that will remain entangled irrespective of how one acts locally by

means of TP . In fact, other states across (O1,O2) may well get disentan-

gled. Yet, there is no way to determine which ones4. Such a result is truly

remarkable and demonstrates a feature of the local algebras identified by fac-

tors of type III which is not at all shared by the algebras of non-relativistic

quantum mechanics. Notwithstanding this, some care needs to be taken.

First of all, Clifton and Halvorson’s conclusion is not as general as it may

appear. It just holds for selective measurements. Nevertheless, one would

like to maintain that there is no disentangling local operation of any kind

in Algebraic Quantum Field Theory. Restricting the argument to maps of

the form TP (·) = P (·)P leaves open the possibility that some other T ∈

A(O1) can disentangle all states on A12. Furthermore, resorting to selective

operations for the purpose of isolating a quantum field system from other

systems located in spacelike separated spacetime regions does not really seem

appropriate in the context of Clifton-Halvorson’s work.

In their view the difference between non-selective and selective measure-

4Actually, there is dense set of entangled states across the pair of local algebras

(A(O1),A(O2)) that will not become separable under the action of TP (we do not need

to go into the details of this part of the proof). However, this does not mean that some

joint state is actually disentangled.
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ments reflects the distinction between physical and conceptual operations. In

fact, a (completely positive) non-selective map describes the physical interac-

tion of a quantum system with the measuring apparatus. That is tantamount

to separating an initial ensemble of identical copies of the measured system

into sub-ensembles, each one of which is associated with a Kraus operator

Ki. Non-selective measurement always yield a positive result. Instead, a

selective measurement can elicit different answers. It thus corresponds to

throwing away those sub-ensembles that are not associated with the selected

outcome. Clifton and Halvorson regarded the latter as a conceptual proce-

dure with no physical counterpart. This is, they claim, the key to dissolve

the puzzle arising from the non-local behavior of quantum fields predicted by

the Reeh-Schlieder theorem. Accordingly, the “physically quite surprising”

fact that one can approximate all states of any local algebra by means of

arbitrarily local operations reduces to a purely mathematical fact due to the

“innocuous” conceptual component of selective measurements. Irrespective

of whether or not one agrees with this interpretation, though, one should find

it quite at odds with the choice of TP as the relevant disentangling operation.

For, supposedly, the destruction of entanglement is a physical process. Thus,

a selective measurement being a conceptual operation would not be relevant

to disentanglement in any interesting way.

In order to fill these gaps in Clifton and Halvorson’s argument one needs
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to extend their result to any local operations T that may be performed on

A(O1). My reconstruction of their proof indicates that the crucial elements

to prohibit disentanglement to take place is the lack of abelian projections

in a type III factor. The other ingredients, namely Fact 1 and Fact 2, are

consequences of general properties of the algebraic approach that apply to

the type I case as well. More generally, what allows for any entangled state

to be transformed into a separable state is the existence of a local operation

T making the relevant algebra abelian. This intuition is captured by the

following proposition5.

Proposition: If T is a local operation on the noncommutative

von Neumann algebra M and T (M) is commutative, then T dis-

entangles M from any algebra, in particular from its commutant

M′.

Since T is local, it can be written in terms of isometries {Vi} ⊆ M, that is

T (·) =
∑

i V
∗
i (·)Vi. Any A′ ∈M′ is invariant under T . In fact,

T (A′) =
∑

i

V ∗
i A′Vi =

∑

i

V ∗
i ViA

′ = A′

where the last two equalities are guaranteed by Vi commuting with all ele-

ments of the commutant ofM and by the property V ∗
i Vi = I of any isometry,

5I am indebted to Hans Halvorson for suggesting this strategy.
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respectively. Given an arbitrary state ω on the joint algebra M∨M′, it fol-

lows from Lemma 3.12 in Summers (1990) that ω(T (AA′)) = ω(T (A)A′).

Then, by the commutativity of T (M) one can also infer the factorization

ω(T (A)A′)) = ρ(T (A))τ(A′)

for some state ρ on T (M) and some state τ on M′. Accordingly, T ∗ω is a

product state, and thus it is separable. In particular, this is true even if ω is

chosen to be entangled.

I now claim that a map with such a disentangling property cannot be

defined in Algebraic Quantum Field Theory. That is the content of the

conjecture stated below. If one proves that the latter is true, then one derives

a general result holding in AQFT.

Conjecture: If M is a von Neumann algebra of type III, then

there is no local operation T such that T (M) is a commutative

algebra.

In the language of Algebraic Quantum Field Theory, this would mean that

no local operation performed on A(O1) can disentangle any state φ across the

spacelike separated regions O1 and O2 of Minkowski space. In other words,

an experimenter would never be able, in principle, to isolate a quantum field
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system from another field system by acting locally on any of them. That

completes the generalization of the Clifton-Halvorson result.

By demonstrating a feature of type III factors that is not shared by

ordinary quantum mechanics, one may expect to have found an aspect of

entanglement that is characteristic of the relativistic setting. As Clifton and

Halvorson put it,

the advantage of the formalism of AQFT is that it allows us to see

clearly just how much more deeply entrenched entanglement is in

relativistic quantum theory. At the very least, this should serve

as a strong note of caution to those who would quickly assert

that quantum nonlocality cannot peacefully exist with relativity.

[Clifton-Halvorson (2001), p.28]

This is certainly true. Nonetheless, the claim they draw from their result

is too strong. Indeed, type II von Neumann factor algebras lack abelian

projections as well. Therefore, the impossibility of destroying any entangled

state by performing local measurements is not peculiar just to local alge-

bras of AQFT. Nor does it seem that one can appeal to structural differences

between factors of type II and type III to show that the non-existence of dis-

entangling maps is related uniquely to relativistic quantum theory. The only

aspect on which the two algebraic configurations diverge, as far as projections
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are involved, is that in the type II case not all projections are required to be

infinite. Yet, nothing in their argument rests on the fact that P is infinite.

So, pace Clifton and Halvorson, the persistence of entanglement under local

operations is not a direct consequence of associating the (bounded) regions

of Minkowski spacetime in which the entangled quantum field systems are

located with nets of algebras described by type III1 factors.

Let us conclude with some remarks on whether quantum field theory is at

all testable in such a deeply entangled world. Clifton and Halvorson suggest

that, ironically, testing the theory in the relativistic case is easier than in

ordinary quantum mechanics. Performing a testing measurement on a field

system in the region O1 requires that the experimenter first prepares a state

ρ on A(O1). For split regions such a preparation can be achieved by means

of a local operation on a region Õ1 which properly contains O1. Let us call a

local operation T̃ in A(Õ1) approximatively local on O1, as Õ1 can be chosen

to be arbitrarily larger than O1. Summers (1990) proved that by acting

with T̃ Alice has the freedom to prepare whatever state on A(O1) that she

pleases. In particular, ρ = φ1 ◦ T̃ for any initial state φ1 of the local field

on O1. Furthermore, any mapping T̃ thus constructed would disentangle all

states across the pair of local algebras (A(O1),A(O2)).

So as soon as we allow Alice to perform approximatively local op-
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erations on her field system, she can isolate it from entanglement

with other strictly-separated field systems, while simultaneously

preparing its state as she likes and with relative ease. God is

subtle, but not malicious. [Clifton-Halvorson (2001), p.29]

Notice that the experimenter’s ability of of destroying entanglement is

enacted by the existence of a type I von Neumann algebra M splitting the

local algebras associated with O1 and Õ1, in the sense that A(O1) ⊂ M ⊂

A(Õ1). The mapping T̃ is indeed an extension to A(Õ1) of a disentangling

operation in M. The latter takes the general form
∑

i Pi(·)Pi, where {Pi} is

a family of mutually commuting atomic projections. The type III character

of the local algebra associated with Õ1 assures that any such projection

is equivalent to the identity in A(Õ1). Moreover, ρ has a counterpart in

a state defined on M, whose corresponding density matrix is an infinite

convex combination of Pi. Then, one can conclude T̃ (A) = ρ(A)I for any

A ∈ A(O1), thus completing the local preparation of arbitrary states on the

region O1 of Minkowski spacetime. Since Pi can be chosen to be abelian for

M, the usual argument for disentangling any state across a pair of algebras

goes through. Also, T̃ may just be a non-selective operation.

Disentanglement of the pair (A(O1),A(O2)) is thus possible if one per-
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forms local operations on Õ1
6. From a practical point of view, this requires

that Alice is actually allowed to step out of her spacetime region and then

operate in a larger laboratory. Although Õ1 can be arbitrarily close to O1,

Alice is subjected to some restriction. In fact, she can destroy entanglement

only if O2 is contained in the causal complement of Õ1. In such a case,

T̃ (B) = B for any B ∈ A(O2). This implies φ(T̃ (AB)) = φ(T̃ (A)B), which

can be rewritten as φ(ρ(A)B). It follows that

T̃ ∗φ(AB) = ρ(A)φ(B)

That is, the state resulting from Alice’s (approximatively) local action is a

product state. Therefore, any entangled state φ of the global field can made

separable. However, the requirement O2 ⊆ Õ1 could be quite strong depend-

ing on the size of the region O1 and the spacelike separation of the latter from

O2. Furthermore, the above reasoning rests on the assumption that the rele-

vant regions of Minkowski space enjoy the split property7. Hence, if O1 and

O2 are not strictly spacelike separated double cones, testing quantum field

theory in the way described by Clifton and Halvorson is not possible; nor

can one achieve disentanglement by performing any approximatively local

6To be sure, though, the action of T̃ would not disentangle Õ1 from O2!
7Concretely, disentanglement could thus be achieved if the relevant model is that of

the free neutral massive scalar field.
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operation.

To conclude, an experimenter confined in a certain region of spacetime can

never destroy entanglement with another region by acting locally; however,

under very restrictive circumstances, if she is allowed to step out of her region

she would be able to isolate her field systems from other field systems. God

is indeed benevolent, but quite demanding!
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463-543

[36] Gleason A.M. [1957], “Measures on the closed subspaces of a Hilbert

space”, in Journal of Mathematics and Mechanics 5, pp.885-893

[37] Haag R. [1996], Local Quantum Physics, 2nd edition, Springer, New

York

[38] Haag R. and Kasteler D. [1964], “An Algebraic Approach to Quantum

Field Theory”, in Journal of Mathematical Physics, 5, pp. 848-861

[39] Halperin I [1961], “Review of ’Continuous Geometries with transition

probabilities”’ in Neumann J. von, Collected Works Vol. IV. Con-

tinuous Geometry and Other Topics, ed. by Taub A. H., Pergamon,

Oxford

253



[40] Halvorson H. [2001a], “On the nature of continuous physical quantities

in classical and quantum mechanics”, in Journal of Philosophical Logic

30, 27-50

[41] Halvorson H. [2001b], “Reeh-Schlieder defeats Newton-Wigner: on al-

ternative localization schemes in relativistic quatum field theory”, in

Philosophy of Science 68, pp. 111-133

[42] Halvorson H. [2004], “Remote preparation of arbitrary ensembles and

quantum bit commitment”, in Journal of Mathematical Physics 45,

p.49204931

[43] Halvorson H. and Clifton R. [2000], “Generic Bell correlation between

arbitrary local algebras in quantum field theory”, in Journal of Math-

ematical Physics 41, pp. 1711-1777

[44] Hegerfeldt G.C. [1994], “Causality Problems in Fermi’s Two Atoms

System”, in Phys. Rev. Lett. 72, pp. 596-599

[45] Hilbert D., Nordheim L. and Neumann J. von [1926], “Uber die Grund-

lagen der Quantenmechanik”, in von Neumann (1961b)

[46] Horuzhy S.S. [1990], Introduction to Algebraic Quantum Field Theory,

Dordrecht, Kluwer Academic Publishers

254



[47] Howard D. [1985], “Einstein on locality and separability”, in Studies

in History and Philosophy of Science 16, pp. 171-201

[48] Howard D. [1989], (1989), “Holism, separability and the metaphysi-

cal implications of the Bell experiments”, in Cushing and McMullin

eds. Philosophical Consequences of Quantum Theories: Reflections on

Bell’s Theorem, pp. 224-253, University of Notre Dame Press, Notre

Dame

[49] Kadison R. V. and Ringrose J. R. [1986], Fundamentals of the Theory

of Operators Algebras, Volumes I and II, Academic Press, Orlando

[50] Kalmbach G. [1983], Orthomodular Lattices, Academic Press, London

[51] Jarrett, J. (1984), “On the physical significance of the locality condi-

tions in the Bell arguments”, in Nos 18, 569-589

[52] Jaynes E.T. [1968], “Prior Probabilities”, in IEEE TRans. System Sci.

Cybernetics, SSC-4, 227-241

[53] Jaynes E.T. [1973], “The Well-Posed Problem”, in Foundations of

Physics 3, 477-493

[54] Jauch J. M. [1968], Foundations of Quantum Mechanics, Addison-

Wesley

255



[55] Landau L. [1987], Phys. Lett., 120A, p.54-56

[56] Loeve M. [1962], Probability Theory, 3rd edition, Von Nostrand,

Princeton

[57] Maeda S. [1990], “Probability measures on projections in von Neu-

mann algebras”, in Reviews in Mathematical Physics 1, pp.235-290

[58] Maudlin, T. [1994], Quantum Nonlocality and Relativity, Blackwell,

Oxford

[59] Mises R. von [1928], Probability, Statistics and Truth (second English

edition of Wahrscheinlichkeit, Statistik und Wahrheit, Springer, 1928),

Dover (1981), New York

[60] Murray F. J., Neumann J. von [1936], “On Rings of Operators”, in

Annals of Mathematics 37, reprinted in von Neumann (1961c)

[61] Murray F. J., Neumann J. von [1937], “On Rings of Operators II”,

in American Mathematical Society Transactions 41, reprinted in von

Neumann (1961c)

[62] Neumann J. von [1927a], “Mathematishe Bedrundung der Quan-

tummechanik”, in Gottinger Nachrichten, reprinted in von Neumann

(1961a)

256



[63] Neumann J. von [1927b], “Wahrscheinlichkeitstheoretischer Aufbau

der Quantenmechanik”, in Gottinger Nachrichten, reprinted in von

Neumann (1961a)

[64] Neumann J. von [1927c], “Thermodynamik quantenmechanischer

Gesamtheiten”, in Gottinger Nachrichten, reprinted in von Neumann

(1961a)

[65] Neumann J. von [1932], Mathematishe Grundlangen der Quantum-

mechanik, Springer, Heidelberg. Transl. by Beyer R. (1955), Princeton

University Press, Princeton

[66] Neumann J. von [1940], “On Rings of Operators III”, in Annals of

Mathematics 41, reprinted in von Neumann (1961c)

[67] Neumann J. von [1961a], Collected Works Vol. I. Logic, Theory of Sets

and Quantum Mechanics, ed. by Taub A. H., Pergamon, Oxford

[68] Neumann J. von [1961b], Collected Works Vol. II. Operators, ergodic

Theory and Almost Periodic Functions, ed. by Taub A. H., Pergamon,

Oxford

[69] Neumann J. von [1961c], Collected Works Vol. III. Rings of Operators,

ed. by Taub A. H., Pergamon, Oxford

257



[70] Neumann J. von [1961d], Collected Works Vol. IV. Continuous Geom-

etry and Other Topics, ed. by Taub A. H., Pergamon, Oxford

[71] Neumann J. von [1981], “Continuous Geometries with Transition

Probability”, in Memoirs of the American Mathematical Society, 34,

No. 252

[72] Neumann J. von [1937], Quantum logics (strict- and probability log-

ics). Unfinished manuscript, John von Neumann Archive, Library of

Congress, Washington D. C.

[73] Neumann J. von [1947], “The Mathematician”, published in Neumann

J. von [1961d]

[74] Neumann J. von [1954], “Unsolved Problems in Mathematics”, pub-

lished in John von Neumann and the Foundations of Quantum Physics,

edited by Redei M. and Stoltzner M., Vienna Circle Institute Year-

book, vol.8, Kluwer Academic Publisher, Dordrecht

[75] Petz D., Zemanek J. [1988], “Characterization of a Trace”, in Linear

Algebra and its Applications 111

[76] Petz D. [1988], “Conditional expectations in quantum probability”, in

Quantum Probability and Applications III, edited by Accardi L. and

von Waldenfels W., Springer-Verlag, Berlin, 251-260

258



[77] Petz D. [2001], “Entropy, von Neumann and von Neumann entropy”,

published in John von Neumann and the Foundations of Quantum

Physics, edited by Redei M. and Stoltzner M., Vienna Circle Institute

Year-book, vol.8, Kluwer Academic Publisher, Dordrecht

[78] Pitowsky, I. [1989], “Quantum ProbabilityQuantum Logic”, in Lecture

Notes in Physics 321, Springer-Verlag, New York

[79] Pitowski I. [2003], “Betting on the Outcomes of Measurements: A

Bayesian Theory of Quantum Probability”, in Studies in History and

Philosophy of Modern Physics 34(3), 395-414

[80] Popescu S. and Rohrlich D. [1997], “Thermodynamics and the Mea-

sure of Entanglement”, in Physical Review A 56, pp.3319-3321

[81] Popescu S. and Rohrlich D. [1998], “The Joy of Entanglement”, in Lo,

H., Popescu S, and Spiller T., eds Introduction to Quantum Compu-

tation and Information, World Scientific, Singapore

[82] Raggio G.A. [1981], “States and Composite systems in W*-algebraic

Quantum Mechanics”, Dissertation ETH No6824, Zürich
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