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Optimization of the topology of a plate coupled with an acoustic cavity is investigated 

in an attempt to minimize the fluid-structure interactions at different structural 

frequencies. A mathematical model is developed to simulate such fluid-structure 

interactions based on the theory of finite elements. The model is integrated with a 

topology optimization approach which utilizes the Moving Asymptotes Method. The 

obtained results demonstrate the effectiveness of the proposed approach in 

simultaneously attenuating the structural vibration and the sound pressure inside the 

acoustic domain at several structural frequencies by proper redistribution of the plate 

material.  

Prototypes of plates with optimized topologies are manufactured at tested to validate 

the developed theoretical model.  The performance characteristics of plates optimized for 

different frequency ranges are determined and compared with the theoretical predictions 



of the developed mathematical model.  A close agreement is observed between theory 

and experiments. 

 The presented topology optimization approach can be an invaluable tool in the design 

of a wide variety of critical structures which must operate quietly when subjected to fluid 

loading. 
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CHAPTER 1                                                                  

BACKGROUND 

1.1      Basic Concepts of Topology Optimization 

Topology optimization is often referred to as “layout optimaization” or “generalized 

shape optimization” in the literature [1]. The importance of this type of problem lies in the fact 

that the choice of the appropriate topology of a structure is generally decisive for the cost 

efficiency of the structure. Moreover, the optimization of the geometry and topology of structural 

layouts has great impact on the performance of structures [2].  

The traditional optimization problems aim at optimizing the size, shape, or topology of an 

elastic body and its material properties under specific loading conditions as shown in Figure 1.1.  

 

 

 

 

 

 

 

 

 

In the sizing and shape optimization problems, the structural material is distributed in 

such a way in order to satisfy the imposed stress constraints while maintaining the same topology 

a-

b-

c-

Figure  1.1: Different types of optimization objectives 
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of the base structure (Figures (1.1a) and (1.1b)).  In the case of topology optimization, the 

topology of the original and the optimized structures are completely different as the optimization 

algorithms carves the unnecessary material from the original structure in order to minimize the 

weight of the structure while satisfying constraints imposed on the structural performance 

(Figure (1.1c). 

In topology optimization, the geometry of the body is usually modeled using a raster 

representation realizing the material distribution of the work piece and the classical performance 

objective is to maximize the stiffness of load elastic body subject to a volume constrain. But 

quickly the method was extended to other objectives like minimizing the weight or maximizing 

the fundamental eigenvalue while being subjected to numerous design constraints like buckling 

constraints, displacement constraints, design dependent loads (e.g. pressure loads) and stress 

constraints. 

The significant development of topology optimization was supported by the interest of 

engineers and industry. The design process followed during typical industrial development 

process can be broken into the following distinct phases: Conceptual design, preliminary design, 

detailed design, and finally, testing. Ideally, the feedback of the simulations indicates only 

changes in the detailed design and repeated testing. These loops are rather cheap in comparison 

to the situation if changes in the conceptual design are enforced. Then it could happen that the 

whole development process is relocated to its conceptual stage, which is usually expansive in 

both, time and costs. Due to the fundamental role of the conceptual design phase topology 

optimization became a valuable computational tool for the basic layout [3]. 

In recent years, extensive applications of topology optimization of continuum structures 

have been reported, as it has been verified that using such an approach would yield structures 
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with optimal dynamic and static characteristics. For these reasons, topology optimization has 

found its ways in aeronautical, civil and mechanical engineering implementations, and even 

started to become a standard part of commercial finite element analysis software such as 

ANSYS.  

1.2      Literature Review 

Literature on structural topology optimization is quite extensive and research activities in 

these fields were focused on large diversity of applications. The optimization problem was 

treated as a material distribution problem to minimize / maximize a certain objective function. In 

other words the material in a structure is redistributed to achieve the optimization goal bounded 

by various constraints, among which is the volume fraction of the material.  The efficiency of 

this method was clearly demonstrated by Bendsoe and Kikuchi [4] and Bendsoe [5] for the 

minimum compliance problem.  

Later on, structural dynamics started to gain interest of researchers working in topology 

optimization. Maximization of the dynamic properties of structures such as the eigen-

frequencies, either the fundamental or higher order ones, as well as maximizing the band gap 

between two consecutive eigen-frequencies, was tackled by Bendsoe and Diaz [6], Krog and 

Olhoff [7], Pederson [8], Olhoff and Du [9] and Jensen and Pedersen [10]. Minimizing the 

dynamical response of a structure for a given driving frequency or frequency range was studied 

by Jog [11]. The problem of maximization of the fundamental buckling load of structures was 

investigated by Bendsoe and Sigmund [3]. 
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1.3      Topology Optimization of Fluid-Structure Interaction Problem 

When a flexible structure vibrates, it produces vibrational disturbances to the fluid with 

which it is in contact. The resulting fluid-structure interactions are governed by the coupling 

between the dynamics of the structures as well as the fluid. According to Crocker [12], the 

disturbances generate sound pressure levels which are uniquely determined by: 

(1) The properties of the fluid. 

(2) The geometry of the vibrating structure. 

(3) The acoustics properties and geometric distribution of any other passive structures 

bounding the fluid. 

(4) The spatial distribution of the component of vibrational acceleration normal to the 

vibrating surface. 

The fluid is coupled to the structure by its pressure at the interface and the structure is 

coupled to the fluid by the acceleration of the vibrating surface. In the general case, the action of 

a fluid on a structure has several effects such as radiation damping and modification of the eigen-

frequencies [13].  

In the literature, only a few investigators have considered using topology optimization for 

optimizing fluid-structure interaction problems. For example, Yoon, Jensen and Ole [14] used 

the (u, p) mixed finite element model to represent a fluid-structure coupled domain, where the 

structure was placed inside an acoustic medium. Using this approach, the authors were able to 

formulate the problem without explicit boundary interface representation. The objective of the 

optimization scheme was to minimize the sound pressure inside the acoustic medium, when 

exciting the structure by fixed excitation frequency.  
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Du and Olhoff [15] tried to minimize the sound power radiated from a structure surface 

placed inside an acoustic cavity. They claimed to have taken the fluid-structure coupling into 

consideration. Nevertheless, they stated later that since air was the acoustic medium, a feedback 

coupling between the acoustic medium and the structure can be neglected. In addition, they 

assumed weak coupling and ignored the acoustic pressure in the structural equation. Also, during 

their study the excitation frequency was maintained fixed at certain value regardless of the effect 

of the material redistribution on the stiffness of the structure domain, and hence on the modal 

frequencies. 

Wang and Lee [16] presented a sizing optimization using the design sensitivity analysis 

through chain-ruled derivatives from the finite and boundary element methods. However, their 

study was limited only to closed structures because they used Helmholtz integral equation. If the 

structures have holes, their acoustic optimization approach fails to yield reliable solutions.  

In 2004, Lee et al. [17] applied topology optimization which is integrated with genetic 

algorithms to fluid–structure interaction problems in order to minimize the noise pressure levels. 

Using a simple hexahedral box model, they proposed a topology optimization technique to 

design holes for the radiation and scattering from thin-body structures using the normal gradient 

integral equation. The formulation which was proposed by Wu and Wan [18], was used for the 

acoustic analysis of thin-bodies and the genetic algorithm was adopted as an optimization 

algorithm. 

Hence, topology optimization of fluid-structure interaction problems, where true coupling 

is considered and the external excitation being locked to the modal frequencies has yet to be 

studied in a comprehensive manner. It is therefore the objective of the current work to model a 
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fluid-structure interaction problem, where a flexible plate is coupled to a closed acoustic cavity 

and subject to external mechanical excitation. 

1.4      Solid Isotropic Material with Penalization (SIMP) 

It is also known as the power-law approach, in which the material properties can be 

expressed in terms of the design variable material density using a simple “power-law” 

interpolation as an explicit means to suppress intermediate values of the bulk density. This 

method has been presented by Bendsoe [5]. In the traditional SIMP material model, material 

properties are assumed constant within each finite element used to discretize the design domain 

with the design variables being the element “densities”. In each point of the design domain, the 

material properties are modeled as the relative material density raised to some power times the 

material properties of solid material. For instance, in SIMP model, Young’s modulus of elasticity 

is given by equation (1.1) 

where ܧ and ܧ௢ are the Young’s modulus of the homogenized and basic material that will be 

distributed in the domain, respectively. Also, ߩ denotes the density describing the amount of 

material in each point of the domain which can assume values between 0 and 1, and ݌ is a 

penalization factor to recover the discrete nature of the design. For ߩ ൌ 0, the material is equal to 

void, and for ߩ ൌ 0, the material is equal to solid material. The effect of the exponent ݌ is to 

penalize intermediate densities. Since intermediate densities are allowed in this method, a 

penalization of these densities is necessary to prevent the so called "grey" designs from 

appearing as they are not manufacturable from a two-constituent, i.e. material or void, model. In 

Figure (1.2), we can see that as the exponent increases, fewer and fewer intermediate density 

values are possible. 

ሻݔሺܧ  ൌ ሻ (1.1)ݔ௢ሺܧ௣ߩ



7 
 

 

 

 

 

 

 

 

 

 

According to Sigmund [19], this approach has been criticized since it was argued that no 

physical material exists with properties described by the power-law interpolation. However, the 

work done by Bendsoe and Sigmund [20] proved that the power-law approach is physically 

permissible as long as simple conditions on the power are satisfied (e.g. ݌ ൌ 3 for a material 

with Poisson’s ratio equals to 
ଵ

ଷ
). 

Moreover, like most of the other topology optimization methods, the SIMP method does not 

directly resolve the problem of non-existence of solutions (ill-posedness) and thus numerical 

instabilities may occur. One of the most serious numerical instabilities is the occurrence of 

checkerboard patterns in the final solutions as shown in Figure (1.3). This occurs when, around a 

single node, there are just two solid elements diagonally connected, as a checkerboard. Another 

numerical problem is the fact that different solutions can be obtained just by choosing different 

number of elements. This is the mesh-dependence problem. There are many solutions to a 

topology optimization problem, one global and many local minima. Different solutions to the 

same problem with the same discretization by using different starting solutions are often 

Figure  1.2: Effect of SIMP penalty parameter 
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obtained. This is known as non-convergence problem. Various approaches have been proposed 

to relieve these problems. 

 

 

 

 

 

The problem of non-existence was considered by Petersson and Sigmund [21] and Zhou 

et al. [22]. They used an upper bound to constrain the maximum density slope. This extra 

constraint makes the problem well-posed in the sense that existence of solutions is guaranteed, 

and the solutions obtained by a finite element method will converge uniformly to the set of exact 

solutions as the mesh is refined. 

Cardoso and Fonseca [23] proposed a general mesh independent filter as a mean to control 

the complexity of topology optimization designed structures. They used a sequential linear 

programming algorithm as an optimizer and applied the filter over the move-limits. In their 

work, they showed that the new filter can prevent the checkerboard instability and also controls 

the complexity of the topology. To alleviate the influence of the finite element solution on the 

final topology, they suggested using a non-regular meshes for the design domain together with 

the proposed filter. Figure (1.4) shows the output topology configuration after applying the 

proposed filter which resulted in a well-posed problem.  

 

 

 

Figure  1.3: Checkerboard pattern in layout optimization. (a) Design domain of 
a beam under loading, (b) final design with checkerboard patterns. 
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Jang et al. [24] showed that the checkerboard problem in topology optimization can be 

overcome by the use of the non-conforming finite elements since the convergence of the non-

conforming finite element is independent of the Lame parameters. Solving three typical design 

problems, they were able to show that a non-conforming element is capable of predicting 

correctly behaving stiffness of the checkerboard patch. As it can be seen in Figure (1.5), the 

checkerboard pattern was has been successfully removed in the final design using a non-

conforming element rather than a conforming one.  

 

 

                                                        

 

 

 

 

1.5      Method of Moving Asymptotes (MMA) 

The method of moving asymptotes belongs to a group of optimization methods which 

represent a family of convex approximation methods suitable for structural optimization 

Figure  1.4: Influence of the mesh pattern. (a) Mesh pattern, (b) final design without 
filtering, (c) final design with filtering [23]. 

Figure  1.5: Effect of using non-conforming elements. (a) Design domain under 
investigation, (b) final design using conforming elements in the compliance 
minimization, (c) final design using non-conforming elements [24]. 
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problems. These methods involve solving successive convex approximations to the optimization 

problem. In MMA, the efficiency of solving a problem depends strongly on asymptote and move 

limit locations [25]. A well established general approach for solving a structural problem using 

MMA is to generate and solve a sequence of explicit subproblems according to the following 

iterative scheme: 

Step (0):  Choose a starting point ݔሺ଴ሻ, and let the iteration index ݇ ൌ 0. 

Step (I):  Given an iteration point ݔሺ௞ሻ, calculate ௜݂ሺݔሺ௞ሻሻ and the gradients ׏ ௜݂ሺݔሺ௞ሻሻ for 
݅ ൌ 0,1, … , ݉. 

Step (II): Generate a subproblem ܲሺ௞ሻ by replacing, in the original optimization problem, the 

usually implicit functions ௜݂ by approximating explicit functions ௜݂
ሺ௞ሻ based on the calculations in 

step I. 

Step (III):  Solve ܲሺ௞ሻ and let the optimal solution of the subproblem be the next iteration point 

݇ ሺ௞ାଵሻ. Letݔ ൌ ݇ ൅ 1 and go to step I. 

The generalized topology optimization problem has the following form: 

where, ݔ ൌ ሺݔଵ, … ,  ሻݔሻ is the objective function, ݃௜ሺݔ௡ሻ் is the vector of design variables, ݂ሺݔ

are behavior constraints such as limitations on stresses or displacements and ݔ௠௜௡ is a given 

lower bound on the design variables. 

Using the method of moving asymptotes, the above general formulation will be 

reformulated as follows: 

 

ە
ۖ
۔

ۖ
ۓ min

௫
݂ሺݔሻ

Subject to:
݃௜ሺݔሻ ൑ 0                  ݅ ൌ 1, … , ݉

              0 ൑ ௠௜௡ݔ ൑ ௝ݔ ൑ 1 ݆ ൌ 1, … , ݊

 (1.2)
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where, ݕ א ܴ௠  and  ݖ א ܴ  are additional “artificial variables” and ܽ௜, ܿ௜ and ݀௜ are non-

negative, real valued constants such that ܿ௜ ൅ ݀௜ ൐ 0 for each ݅. 

The above formulation has two main advantages [28]: 

i. The optimization will proceeds even when the problem becomes “infeasible”, 

i.e. when the original constraints are violated, in which case the variable 

values are pushed back toward the acceptable region of the design space. 

ii. It can be used to solve special classes of optimization problems, such as the 

min-max problems, by adding some minor adjustments. 

The convex subproblem corresponding to the above problem (1.3) is written as follows:  

The approximation functions ሚ݂ሺ௞ሻ and ෤݃௜
ሺ௞ሻ are recalculated for each iteration ሺ݇ሻ of the 

main problem and have the following asymptotic form: 

 

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ min 

௫
 ݂ሺݔሻ ൅ ෍ሺܿ௜ݕ௜ ൅

1
2

݀௜ݕ௜
ଶ

௠

௜ୀଵ

ሻ ൅ ݖ

Subject to:
                ݃௜ሺݔሻ െ ܽ௜ݖ െ ௜ݕ ൑ 0          ݅ ൌ 1, … , ݉

௠௜௡ݔ                                    ൑ ௝ݔ ൑ ݆          ௠௔௫ݔ ൌ 1, … , ݊
௜ݕ ൒ 0
ݖ ൒ 0

 (1.3)

 

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۓ min

௫
 ሚ݂ሺ௞ሻሺݔሻ ൅ ෍ሺ݀௜ݕ௜ ൅

1
2

݀௜ݕ௜
ଶ

௠

௜ୀଵ

ሻ ൅ ݖ

Subject to:

                ݃ప෥ ሺ௞ሻሺݔሻ െ ܽ௜ݖ െ ௜ݕ ൑ 0          ݅ ൌ 1, … , ݉

௝ן                                         
ሺ௞ሻ൑ ௝ݔ ൑ ௝ߚ

ሺ௞ሻ          ݆ ൌ 1, … , ݊
௜ݕ ൒ 0
ݖ ൒ 0

 (1.4)
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where: 

 

 ݌௜௝
ሺ௞ሻ ൌ ൞

ቀ ௝ܷ
ሺ௞ሻ െ ௝ݔ

ሺ௞ሻቁ
ଶ డ௚೔

డ௫ೕ
൫ݔሺ௞ሻ൯ ݂݅

డ௚೔

డ௫ೕ
൫ݔሺ௞ሻ൯ ൐ 0 

0                 ݂݅
డ௚೔

డ௫ೕ
൫ݔሺ௞ሻ൯ ൑ 0  

 (1.7.1)

 

 ݍ௜௝
ሺ௞ሻ ൌ ൞

0                 ݂݅
డ௚೔

డ௫ೕ
൫ݔሺ௞ሻ൯ ൒ 0 

ቀݔ௝
ሺ௞ሻ െ ௝ܮ

ሺ௞ሻቁ
ଶ డ௚೔

డ௫ೕ
ሺݔሺ௞ሻሻ ݂݅

డ௚೔

డ௫ೕ
൫ݔሺ௞ሻ൯ ൏ 0   

 (1.7.2)

 
 ݎ௜

ሺ௞ሻ ൌ ݃௜൫ݔሺ௞ሻ൯ െ ∑ ቆ
௣೔ೕ

ሺೖሻ

௎ೕ
ሺೖሻି௫ೕ

൅
௤೔ೕ

ሺೖሻ

௫ೕି௅ೕ
ሺೖሻቇ

௡
௝ୀଵ  (1.7.3)

  ן௝
ሺ௞ሻൌ ௝ݔቄݔܽ݉

௠௜௡, ௝ܮ0.9
ሺ௞ሻ ൅ ௝ݔ0.1

ሺ௞ሻቅ (1.7.4)

  ߚ௝
ሺ௞ሻ ൌ ௝ݔቄݔܽ݉

௠௜௡, 0.9 ௝ܷ
ሺ௞ሻ ൅ ௝ݔ0.1

ሺ௞ሻቅ (1.7.5)

Thus each ෤݃௜
ሺ௞ሻ is obtained by a linearization of ݃௜ in variables of the type 1/ሺݔ௝ െ  ௝ሻ orܮ

1/ሺ ௝ܷ െ  .ሺ௞ሻݔ ௝ሻ dependent on the signs of the derivatives of  ௜݃  atݔ

The parameters ܮ௜ and ௜ܷ are normally changed between the iterations and referred to as 

“moving asymptotes”. These parameters provide a means of controlling the speed of algorithm 

convergence. A heuristic method is used to update the locations of the upper and lower 

asymptotes ௜ܷ and ܮ௜ based on the absolute limits on the design variables as well as the design 

variable values from previous iteration. 

The subproblem ܲሺ௞ሻ is solved by forming the Lagrangian and satisfying  Kuhn-Tucker 

optimality conditions of stationarity ሺ߲ݔ߲/ܮ ൌ 0ሻ; primal feasibility, which means that the 

 ሚ݂ሺ௞ሻሺݔሻ ൌ ෍ ൭
଴௝݌

ሺ௞ሻ

௝ܷ
ሺ௞ሻ െ ௝ݔ

൅
଴௝ݍ

ሺ௞ሻ

௝ݔ െ ௝ܮ
ሺ௞ሻ൱

௡

௝ୀଵ

൅ ଴ݎ
ሺ௞ሻ ݅ ൌ 0, … , ݉ (1.5)

 ෤݃௜
ሺ௞ሻሺݔሻ ൌ ෍ ൭

௜௝݌
ሺ௞ሻ

௝ܷ
ሺ௞ሻ െ ௝ݔ

൅
௜௝ݍ

ሺ௞ሻ

௝ݔ െ ௝ܮ
ሺ௞ሻ൱

௡

௝ୀଵ

൅ ௜ݎ
ሺ௞ሻ ݅ ൌ 0, … , ݉ (1.6)
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values ሺݔଵ, ,ଶݔ … ,  ௡ሻ should correspond to a feasible point; dual feasibility, meaning theݔ

Lagrange multipliers must be non-negative; and complementary slackness, which means that the 

Lagrange multipliers associated with inactive constraints should be equal to zero. 

The convexity of the subproblem causes the method to converge quit rapidly using 

Newton’s method to determine the direction of each optimization step. This method is highly 

robust and has been used successfully in a variety of structural optimization problems. For this 

reason, it is among primary choices in optimization methods used in structural optimization and 

particularly in topology optimization [28]. 

The method of moving asymptotes (MMA) was firstly presented in (Svanberg, 1987). In that 

work, an empirical technique that gradually modifys the asymptote values depending upon 

results obtained after each iteration during the optimization process was proposed. Afterwards 

the method was further studied and developed.  

In (Zillober 1993), an efficient global convergent sequential convex programming method was 

developed by combining MMA with a line search performed afterwards. 

Bletzinger (1993) presented a simple extension with respect to strict convex approximation 

of the objective function, deterministic asymptote adaption, and consistent treatment of equality 

constraints. His approximation was based on second-order information estimated by forward 

finite differences. In his work, he showed that if the upper and lower asymptotes were set to 

positive and negative infinity, then the method is identical with diagonal quasi Newton 

sequential quadratic programming. 

In (Ni, 2003), a globally convergent method of moving asymptotes with trust region 

technique was proposed. In the modified method, the choice of asymptotes is controlled by the 
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trust region radius and a convex separable subproblem is being solved in each iteration such that 

global convergence of the algorithm is obtained. 

Fleury (1989) suggested a rational scheme based on second order derivatives. Although this 

method gives suitable values for asymptotes, its efficiency in practical applications is not 

obvious because of high cost of second order derivatives calculations. 

1.6      Scope of the dissertation 

In this dissertation, topology optimization will be used to minimize the fluid-structure 

interactions between a flexible plate coupled with an acoustic cavity at different structural modal 

frequencies.  A finite element model will be developed, in Chapter 2, to model the fluid-structure 

interactions. The theoretical predictions of the vibration and sound radiation of a topology 

optimized plate/acoustic cavity system will be presented in Chapter 3 along with comparisons of 

the characteristics of plain plate/cavity system. Experimental verification of the predictions of 

the developed finite element model will be carried out in Chapter 4. Chapter 5 will present a 

summary of the conclusions and the recommendations for future work.   
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CHAPTER 2                                                                 

FINITE ELEMENT MODELING 

2.1      Basic Model and Main Assumptions 

Consider the plate-cavity system shown schematically in Figure (2.1).  In this system, a 

rectangular flexible plate is coupled with an acoustic cavity that has five rigid walls. The plate is 

subjected to external excitation and a finite element model will be developed to predict the 

interaction between the plate vibration and the associated sound radiation into the acoustic 

cavity. 

 

 

 

 

 

 

Finite element modeling is used to predict the plate displacements as well as the sound 

pressure inside the acoustic cavity for the coupled fluid-structure system. The finite element 

model consists of two different types of elements. The first one is 4-node quad elements with 3 

degrees of freedom per node ൫ݓ, ,௫ߠ  ,௬൯ representing the transverse displacement of the nodeߠ

the rotation about the y-axis and that about the x-axis respectively. The second type of elements 

Rigid acoustic cavity 

Flexible plate 

Figure  2.1: Coupled plate-cavity system 
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is a cubic 8-node element for the acoustic domain with the acoustic pressure ሺ݌ሻ as the sole 

degree of freedom per node. The element shapes are as presented in Figures (2.1) and (2.2). 

 

 

 

 

  

 

 

 

 

The plate finite element model is based on the first order shear deformation theory, which 

is efficiently used for relatively thick as well as thin plates. In this model it is assumed that 

planes normal to the mid-surface of the plate in the un-deformed state remain plane but not 

necessarily normal to the mid-surface in the deformed state. Hence the rotation degrees of 

freedom ߠ௫ and ߠ௬ are considered as independent degrees of freedom and not derivatives of the 

mid-surface out of plane displacements.  This approach was adopted, since it a general way in 

modeling plates and is capable for the special case of thin plates by considering reduced order 

Gaussian numerical integration for the terms that tend to approach zero, when the thickness gets 

smaller.  

Figure  2.2: Plate 4-node quad element 

Figure  2.3:Acoustic 8-node brick element. 
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2.2      System Energies and Work 

Considering a fluid volume “ܸ”, then the Kinetic Energy (K.E.) can be written as  

and the Potential Energy (P.E.) can be expressed as 

The work done on the acoustic cavity by the plate ሺ ௉ܹሻ element is given by,  

where: 

 ߩ஺ is the equilibrium density of the acoustic medium 

 ݑ஺ is the particle displacement in the acoustic medium 

 ݑሶ஺ is the particle velocity in the acoustic medium 

 ܿ is the sonic speed in the acoustic medium 

 ݌ is the acoustic pressure 

 ݓ is the transverse displacement of the plate 

For the sake of simplifying the calculations, the velocity potential ߮, which is a scalar 

quantity, can be used instead of the acoustic pressure ݌ using the following identities: 

.ܭ .ܧ ൌ
1
2

஺ߩ නሺݑሶ஺ሻଶ ܸ݀
௏

 (2.1)

ܲ. .ܧ ൌ
1
2

஺ܿଶߩ  නሺ݀݅ݒ ஺ሻଶݑ ܸ݀
௏

 (2.2)

௉ܹ ൌ න ݓ݌ ܣ݀
஻௢௨௡ௗ௔௥௬

஺௥௘௔

 (2.3)

  ݌ ൌ െߩ஺
డఝ

డ௧
 (2.4.1)
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  Hence, the previous expressions for the Kinetic Energy, Potential Energy and Work can be 

rewritten as: 

2.3      Equation of Motion 

Hamilton’s principle, as given in equation (2.7) is used to extract the differential equation 

of motion of the acoustic fluid, as influenced by the external forces applied on the exposed plate. 

Let φ ൌ N஦ ૎  where N஦ denotes an appropriate shape function and ૎ represents the 

nodal velocity potential vector of the element. Similarly, let ݓ ൌ ܰ௪ሼ઼ሽ where ܰ௪is an 
appropriate shape function is and ሼ઼ሽ denotes the nodal deflection vector of the plate. Then,  

The variation of the Kinetic Energy (ܭߜ.  :ሻ is written asܧ

  ݑሶ஺ ൌ ߮׏ ൌ ቂ
డఝ

డ௫
ଓԦ ൅

డఝ

డ௬
ଔԦ ൅

డఝ

డ௭
ሬ݇Ԧቃ (2.4.2)

  ሺݑሶ஺ሻଶ ൌ ሺ߮׏ሻଶ ൌ ൤ቀ
డఝ

డ௫
ቁ

ଶ
൅ ቀ

డఝ

డ௬
ቁ

ଶ
൅ ቀ

డఝ

డ௭
ቁ

ଶ
൨ (2.4.3)

  ݀݅ݒ ஺ݑ ൌ െ
ଵ

௖మ

డఝ

డ௧
 (2.4.4)

 K. E. ൌ
1
2

஺ߩ නሺ߮׏ሻଶ ܸ݀
௏

 (2.5)

 P. E. ൌ
1
2

஺ߩ

ܿଶ නሺ ሶ߮ ሻଶ ܸ݀
௏

 (2.6)

 
WP ൌ െߩ஺ න ሶ߮

஻௢௨௡ௗ௔௬
஺௥௘௔

ݓ  ܣ݀
(2.7)

 න .ሺ۹ߜ ۳ െ .۾ ۳ ൅ ሻ۾܅

௧మ

௧భ

ݐ݀ ൌ 0 (2.8)
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And the variation of the Potential Energy ሺܲߜ.  :ሻ can be written asܧ

Using integration by parts to eliminate ሼߜ ሶ߮ ሽ yields:  

Finally, the variation of the work done by the plate element ሺߜ ௉ܹሻ is found to be 

Again, using integration by parts to eliminate ሼ઼૎ሶ ሽ yields: 

Substituting with the variations of the system energies and work in equation (2.7) and summing up 

the terms of ሼ߮ߜሽ inside the time integral and equating them to zero results in the required 

equation of motion of the acoustic element: 

቎
஺ߩ

ܿଶ න ൫ܰఝ൯
்

ఝܰ ܸ݀
௏

቏ ሼ૎ሷ ሽ ൅ ቎ߩ஺ න ቂ൫ܰߘఝ൯
்

൫ߘ ఝܰ൯ቃ ܸ݀
௏

቏ ሼ઼ሽ ൌ ቎ߩ஺ න ൫ܰఝ൯
்

ሺܰ௪ሻ݀ܣ
஺

቏ ൛ ሶ઼ ൟ (2.14)

Differentiating the above equation with respect to time and utilizing the following identities: 

.ሺ۹ߜ  ۳ሻ ൌ ஺ߩ නሼ઼૎ሽ் ቂ൫ߘ ఝܰ൯
்

൫ߘ ఝܰ൯ቃ
௏

ሼ૎ሽ ܸ݀ (2.9)

.۾ሺߜ  ۳ሻ ൌ
஺ߩ

ܿଶ නሼ઼૎ሶ ሽ்

௏

ቂ൫ߘ ఝܰ൯
்

൫ߘ ఝܰ൯ቃ ሼ૎ሶ ሽ ܸ݀ (2.10)

.۾ሺߜ  ۳ሻ ൌ െ
஺ߩ

ܿଶ නሼ઼૎ሽ்

௏

ቂ൫ߘ ఝܰ൯
்

൫ߘ ఝܰ൯ቃ ሼ૎ሷ ሽ ܸ݀ ൅ ሺܤ. ܥ ൌ 0ሻ (2.11)

ሻ۾܅ሺߜ  ൌ െߩ஺ නሼ઼૎ሶ ሽ் ቂ൫ܰఝ൯
்

ܰ௪ቃ ሼ઼ሽ ܣ݀
஺

 (2.12)

ሻ۾܅ሺߜ  ൌ െߩ஺ නሼ઼૎ሽ் ቂ൫ ఝܰ൯
்

ܰ௪ቃ ൛ ሶ઼ ൟ ܣ݀
஺

൅ ሺܤ. ܥ ൌ 0ሻ (2.13)

 
 ሶ߮ ൌ െ

௣

ఘಲ
 

(2.15.1)
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gives: 

቎
1
ܿଶ න൫ܰఝ൯

்
ܰఝܸ݀

௏

቏ ሼܘሷ ሽ ൅ ቎න൫ܰߘఝ൯
்

൫ܰߘఝ൯ ܸ݀
௏

቏ ሼܘሽ ൌ ቎െߩ஺ න൫ܰఝ൯
்

ሺܰ௪ሻ݀ܣ
஺

቏ ൛ ሷ઼ ൟ (2.16)

where ሼ݌ሽ is the nodal pressure vector. 

Equation (2.16) could also be written as 

where: 

 ሼࢾሽ represents the degrees of freedom of the structure element, 

 ሾM஺ሿ ൌ ଵ

௖మ ׬ ൫ ఝܰ൯
்

ఝܸܰ݀
௏

 is the mass matrix of the acoustic medium, 

 ሾܭ஺ሿ ൌ ׬ ൫ߘ ఝܰ൯
்

൫ߘ ఝܰ൯ ܸ݀
௏

 is the stiffness matrix of the acoustic 

medium, 

 ሾΩሿ் ൌ ஺ߩ ׬ ൫ ఝܰ൯
்

ሺܰ௪ሻ݀ܣ஺  is the fluid-structure coupling matrix. 

2.4      Coupling the Acoustic Cavity with the Plate Structure 

The equation of motion of the plate is given as: 

where ࡿࡲ represents the forces exerted by the acoustic fluid on the plate elements. 

The forcing function  “ࡿࡲ” can be calculated from the work done by the acoustic field on 

the structure. From equation (2.3), it follows that 

 
 ሷ߮ ൌ െ ௣ሶ

ఘಲ
 

(2.15.2)

 
 ഺ߮ ൌ െ

௣ሷ

ఘಲ
 

(2.15.3)

 ሾM஺ሿሼܘሷ ሽ ൅ ሾܭ஺ሿሼܘሽ ൌ െሾΩሿ்൛ ሷ઼ ൟ (2.17)

 ሾM௦ሿ൛ ሷ઼ ൟ ൅ ሾܭ௦ሿሼ઼ሽ ൌ ௌ (2.18)ܨ
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Hence, 

Since the Work = Force × Displacement, then the forcing term on the plate can be 

calculated as: 

where ሾષሿ is as defined previously. 

Thus, the complete differential equation of the composite plate is given as: 

The equation of motion of the coupled system is given in the following matrix form:  

where “࢙ࢌ” is the externally applied force. 

From equation (2.23), for harmonic excitation at angular frequency ࣓, we can write 

and 

Equation (2.25) can be rewritten as 

Substituting for ࢖ from equation (2.26) into equation (2.24) results in: 

۾܅  ൌ න ሼ઼ሽ்ሺܰ௪ሻ்

஺

൫ܰఝ൯ሼܘሽ (2.19) ܣ݀

 ሺ઼۾܅ሻ ൌ න ሼ઼ߜሽ்ሺܰ௪ሻ்

஺

൫ܰఝ൯ሼܘሽ (2.20) ܣ݀

ௌܨ  ൌ
ሾΩሿܘ

஺ߩ
 (2.21)

 ሾM௦ሿ൛ ሷ઼ ൟ ൅ ሾܭ௦ሿሼ઼ሽ ൌ
ሾΩሿܘ

஺ߩ
 (2.22)

 ൤
௦ܯ 0

ሾΩሿ் ஺ܯ
൨ ൜

ሷ઼
ሷܘ

ൠ ൅ ቎ܭ௦ െ
ሾΩሿ

஺ߩ
0 ஺ܭ

቏ ൜
઼
ൠܘ ൌ ቄ ௦݂

0
ቅ (2.23) 

ݏܭൣ  െ ݏܯ ߱2൧઼ െ
ሾΩሿ

௢ߩ
ܘ ൌ (2.24) ܛ܎

 ߱ଶሾΩሿ઼் ൌ ሾܭ஺ െ (2.25) ܘ஺߱ଶሿܯ

ܘ  ൌ ሾܭ஺ െ ஺߱ଶሿିଵܯ ߱ଶሾΩሿ઼் (2.26)
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2.5      Formulation for the Optimization of the Fluid-Structure Interaction Problem 

 The topology optimization problem can be formulated as follows: 

Note that ܥ௪઼ ൌ  from ܟ ௪ is a matrix that extracts the transverse deflectionܥ where ܟ

the nodal deflection vector ઼. Also, the objective function can be explained literally as to 

minimize the coupling between the structure and the fluid domains. By doing this, minimum 

work or energy is transmitted between the structure and the fluid domains, resulting in 

minimization of the sound intensity and sound pressure levels, due to structure resonances inside 

the acoustic cavity. It is worth mentioning, that due to the formulated objective function, the 

cavity modes will not be affected as a result of the topology optimization of the flexible plate.  

2.6      Sensitivity Analysis 

Sensitivity analysis represents the crucial point of the entire optimization procedure. The 

main effort in order to determine these sensitivities is that for path-dependent problems, the 

 ቈ൫ݏܭ െ 2൯߱ ݏܯ െ
ሾΩሿ

௢ߩ
൫ܣܭ െ 2൯߱ܣܯ

ିଵ
߱2ሾΩሿܶ቉ ઼ ൌ (2.27) ܛ܎

 

ە
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۓ

min
ఘ

ܬ ൌ ሺ઼்ܥ௪
ሻܘ் defined at the boundary area

Subject to:

઼ ൌ ൝
ݓ
௫ߠ
௬ߠ

ൡ

                                                                    ൤
௦ܯ 0

ሾΩሿ் ஺ܯ
൨ ൜

ሷ઼
ሷܘ

ൠ ൅ ቎ܭ௦ െ
ሾΩሿ

௢ߩ
0 ஺ܭ

቏ ൜
઼
ൠܘ ൌ ቄܛ܎

૙
ቅ

                                          ෍ ݄௘

ே೐

௘ୀଵ

௘ܣ ൑ ௙ݒ ൈ ݄௠௔௫ ൈ ෍ ௘ܣ

ே೐

௘ୀଵ

                  0 ൑ ݄௠௜௡ ൑ ݄௘ ൑ ݄௠௔௫

 (2.28)
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structural sensitivities are also path dependent. These sensitivities can be evaluated numerically 

by the finite difference method or analytically by the adjoint variable method or the direct 

differentiation method. In the current work, the direct differentiation method is being used to 

calculate the sensitivity of the objective function. 

Sensitivity of the objective function, which is the fluid-structure coupling “ܬ”, with 

respect to the optimization variables, which are the densities of the plate elements “ߩ”, can be 

found firstly by differentiating the objective function given in problem (2.28) with respect to the 

optimization variables, which yields: 

To calculate 
ௗ઼

ௗఘ
, we differentiate equation (2.27) with respect to ߩ: 

݀
ߩ݀

ቈሺܭ௦ െ ௦ ߱ଶሻܯ െ
ሾΩሿ

݋ߩ

ሺܭ஺ െ ஺߱ଶሻെ1ܯ ߱ଶሾΩሿ்቉ ઼

൅ ቈሺܭ௦ െ ௦ ߱ଶሻܯ െ
ሾΩሿ
݋ߩ

ሺܭ஺ െ ஺߱ଶሻെ1ܯ ߱ଶሾΩሿ்቉
઼݀
ߩ݀

ൌ 0 

(2.30)

For simplification, the following identities will be defined: 

Substitution with equations (2.31.1-2.31.3) into equation (2.30) results in: 

As ܣ ൌ
ሾΩሿ

݋ߩ

ሺܭ஺ െ  then ,ߩ ஺ ߱ଶሻିଵ ߱ଶሾΩሿ் is independent of the optimization variableܯ

 
ܬ݀
ߩ݀

ൌ ௪ܥ઼்
் ܘ݀

ߩ݀
൅ ௪ܥ்ܘ

઼݀
ߩ݀

 (2.29)

  ܭ௦_஽ ൌ ሺܭ௦ െ ௦ܯ ߱ଶሻ (2.31.1)

  ܭ௙௟_஽ ൌ ሺܭ஺ െ ஺ܯ ߱ଶሻ (2.31.2)

  ܣ ൌ
ሾΩሿ

݋ߩ

ሺܭ஺ െ ஺ܯ ߱ଶሻିଵ ߱ଶሾΩሿ் (2.31.3)

 
݀

ߩ݀
௦_஽ܭൣ െ ൧઼ܣ ൅ ௦_஽ܭൣ െ ൧ܣ

઼݀
ߩ݀

ൌ 0 (2.32)
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Again, define the following identities:  

Substitution with equations (2.34.1) and (2.34.2) into equation (2.33) will result in: 

To calculate 
ௗܘ

ௗఘ
, we differentiate equation (2.25) with respect to ߩ. Hence,  

Define: 

Then, substitution with equations (2.37) and (2.31.2) into equation (2.36) will result in: 

From equation (2.38), equation (2.29) will be rewritten as:  

Substituting 
ௗ઼

ௗఘ
 from equation (2.35) into equation (2.39) results in 

 
௦_஽ܭ݀

ߩ݀
઼ ൅ ௦_஽ܭൣ െ ൧ܣ

઼݀
ߩ݀

ൌ 0 (2.33)

  ܤ ൌ ௦_஽ܭൣ െ ൧ (2.34.1)ܣ

  ܥ ൌ
ௗ௄ೞ_ವ

ௗఘ
 (2.34.2)

 
઼݀
ߩ݀

ൌ െିܤଵ(2.35) ઼ܥ

 ߱ଶሾΩሿ் ઼݀
ߩ݀

ൌ ሾܭ஺ െ ஺߱ଶሿܯ
ܘ݀
ߩ݀

 (2.36)

ܦ  ൌ ߱ଶሾΩሿ் (2.37)

 
ܘ݀
ߩ݀

ൌ ௙௟_஽ܭ
ିଵ ܦ

઼݀
ߩ݀

 (2.38)

 
ܬ݀
ߩ݀

ൌ ௪ܥ઼்
௙௟_஽ܭ்

ିଵ ܦ
઼݀
ߩ݀

൅ ்ܘ ઼݀
ߩ݀

 (2.39)

 
ܬ݀
ߩ݀

ൌ െൣ઼்ܥ௪
் ௙௟_஽ܭ

ିଵ ܦ ଵିܤ ܥ ઼ ൅ ்ܘ ଵିܤ ܥ ઼ ൧ (2.40)
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Equation (2.40) represents the final form of the objective function sensitivity. During the 

topology optimization calculation, the effect of the density is substituted for by the effect of the 

thickness of the plate elements.  

2.7      Summary    

 This chapter has presented the theoretical modeling of the fluid-structure interaction 

between the dynamics of a flexible flat plate and a rigid acoustic coupled with it.  The developed 

model is integrated with a topology optimization algorithm which utilizes the Moving Asymptotes 

Method.  The model is used to develop the sensitivity analysis necessary for the operation of the 

topology optimization algorithm.   

 The prediction of the performance of topology optimized plate/cavity systems will be 

presented in Chapter 3 and the experimental validation of the mathematical model is presented in 

Chapter 4. 
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CHAPTER 3                                                                 

PERFORMANCE OF THE OPTIMIZED PLATE-CAVITY 

SYSTEM 

3.1      Model Parameters 

A finite element model for a closed acoustic cavity coupled with a flexible plate was 

developed. Two different sets of plates were analyzed for two different fluid domains. Air and 

water were used as fluid domains while aluminum and Fullcure-720 were used as structural 

materials of the plates. The physical and mechanical properties of the used materials are listed in 

table(3.1). 

  

  
Density 

ሺ݃ܭ/݉ଷሻ 
Poisson’s 

Ratio 
Modulus of 

Elasticity ሺܽܲܩሻ 
Sonic Speed 

ሺ݉/ݏሻ 

Structural 
Material 

Aluminum 2700 0.3 71 N/A 
Fullcure-720 1193.4 0.25 2.87 N/A 

Fluid 
 domain 

Air 1.2 N/A N/A 343 
Water 1000 N/A N/A 1482 

 

One of the major concerns while developing the model was to force the excitation at the 

structural modal frequencies so that the optimization algorithm will redistribute the material of 

the plate in such a way to minimize the coupling at that specific modal frequency. The excitation 

force applied on the plate was selected to be symmetric, and the first 2 odd modes were studied. 

The initial thickness of the plate under consideration is 1⁄16". It was the objective to use 50% of 

the material of the plate and minimize the fluid-structure coupling. Therefore the initial guess 

will start with a plate with uniform thickness of 1⁄32" and while the optimization algorithm 

Table  3.1: Physical and mechanical properties for fluid and structural domains. 
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evolves, the thickness should vary between 1⁄16" and 1⁄64", which represents the minimum 

permissible plate thickness. The plate is excited mechanically with external forces at frequencies 

locked at the modal frequencies of the coupled plate-cavity system. In specific, the 1st and 5th 

modes were considered since they represent the first 2 odd modes, which are known of their high 

acoustic coupling. At each optimization iteration, the structural modal frequencies are expected 

to change due to the effect of the material redistribution of the plate. Therefore at each iteration 

step the structural modal frequencies of the first two odd modes for the coupled system are 

calculated and the excitation frequency is locked on. 

In the next sections, the resulted optimal configurations and predicted behaviors for 

different structural and fluid domains will be presented and discussed.       

3.2      Excitation Frequency and Topology Optimization of Air-Aluminum Cavity 

The characteristics of the coupled fluid-structure domain are as given in table (3.2). 

 

 

 

  

 

 

 

In the following two sections, the results of using these parameters in targeting the 1st and 

2nd odd modes are being presented.  

Cavity dimensions ሺܹ ൈ ܪ ൈ "ሻ 12ܮ ൈ 12" ൈ 30" 

Fluid domain Air at 25° C and and 1 atm. 

Flexible plate dimensions ሺܹ ൈ "ሻ 12ܪ ൈ 12" 

Upper bound of flexible plate thickness ሺ݄௠௔௫ሻ 1/16" 

Flexible plate material Aluminum 

Volume fraction ൫ݒ௙൯ 0.5 

Lower bound of flexible plate thickness ሺ݄௠௜௡ሻ 0.25 ൈ ݄௠௔௫ 

Table  3.2: Coupled Air-Aluminum domain parameters 
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3.2.1      Excitation Frequency and Topology Optimization of the 1st Mode 

The shape of material distribution and relative plate displacement field after 25 iterations 

are shown in Figure (3.1). 

 

 

 

 

 

 

The optimization convergence of the objective function ሺ઼்ܥ௪
 which represents the (ܘ்

coupling between the aluminum plate and the air inside the cavity during the optimization 

process is shown in Figure 3.2. 

 

 

 

 

 

 

 

 

Figure  3.1: Material distribution for the 1st mode optimization of the Air-Aluminum cavity. 

Figure  3.2: Optimization Convergence for 1st structural odd mode of the Air-Aluminum 
cavity 
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The frequency response for the plate displacement and the sound pressure level were also 

monitored. The plate displacement was monitored at the midpoint of the plate and the sound 

pressure was also calculated at a point 3" away from the midpoint of the plate inside the acoustic 

cavity.  

The frequency responses for the plain and optimized cases are as shown in Figures 3.3 

and 3.4. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  3.3: Displacements for plain and 1st mode optimized aluminum plates.  

Figure  3.4: Average sound pressure levels inside Air-Aluminum cavity targeting the 
1st structural mode 
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The results of the optimization targeting the 1st mode of the Air-Aluminum cavity are 

summarized in table (3.3). 

 

 Reduction at targeted mode 
(%) 

Broadband reduction 
(%) 

Plate displacement 92 65 
Sound pressure level 37 49.5 

 

It can be seen from the above table that by exciting the Aluminum plate at the 1st 

structural mode frequency, the plate displacement at the targeted mode was considerably 

reduced. Also, considerable reduction was obtained at other structural modes. The average sound 

pressure inside cavity was also reduced at the targeted mode and larger reduction can be noted 

within the selected broadband range.  

  

3.2.2      Excitation Frequency and Topology Optimization of the 2nd Odd Mode 

The shape of material distribution and relative plate displacement field after 25 iterations 

are shown in Figure 3.5. 

 

 

 

 

 

 Figure  3.5: Material distribution for the 1st mode optimization of the Air-Aluminum cavity. 

Table  3.3: Results summary for Air-Aluminum cavity targeting 1st structural mode. 
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Again the solution convergence of the objective function during the optimization process 

is shown in Figure 3.6. 

 

 

 

 

 

 

 

The frequency response for the plate displacement, sound pressure level were also 

monitored for this mode. These responses are shown in Figures 3.7 and 3.8. 

 

 

 

 
 

 

 

 

 

Figure  3.6: Optimization Convergence for 2nd structural odd mode (the 5th mode of 
vibration) of the Air-Aluminum cavity 

Figure  3.7: Displacements for plain and 2nd odd mode (the 5th mode of vibration) 
optimized aluminum plates.  
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The results of the optimization targeting the 5th mode of the Air-Aluminum cavity are 

summarized in table (3.4). 

 

 Reduction at targeted mode 
(%) 

Broadband reduction 
(%) 

Plate displacement 71 49 
Sound pressure level 83 35 

 

Again, it can be seen from the above table that by exciting the Aluminum plate at the 5th 

structural mode frequency, the plate displacement at the targeted mode was considerably 

reduced. Also, considerable reduction was obtained at other structural modes. The average sound 

pressure inside cavity was dramatically reduced at the targeted mode, but lesser effect can be 

noted at other structural modes.  

 

 

Figure  3.8: Average sound pressure levels inside Air-Aluminum cavity targeting the 
5th structural mode 

Table  3.4: Results summary for Air-Aluminum cavity targeting 5th structural mode. 
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    3.3      Excitation Frequency and Topology Optimization of Water-Aluminum Cavity 

The characteristics of the coupled fluid-structure domain are as given in table (3.5). 

 

 

 

  

 

 

 

3.3.1      Excitation Frequency and Topology Optimization of the 1st Mode 

The shape of material distribution and relative plate displacement field after 25 iterations 

are shown in Figure 3.9. 

 

 

 

 

    

 

 

 

The solution convergence of the objective function during the optimization process is 

shown in Figure 3.10. 

Cavity dimensions ሺܹ ൈ ܪ ൈ "ሻ 12ܮ ൈ 12" ൈ 30" 

Fluid domain Water at 25° C and and 1 atm. 

Flexible plate dimensions ሺܹ ൈ "ሻ 12ܪ ൈ 12" 

Upper bound of flexible plate thickness ሺ݄௠௔௫ሻ 1/16" 

Flexible plate material Aluminum 

Volume fraction ൫ݒ௙൯ 0.5 

Lower bound of flexible plate thickness ሺ݄௠௜௡ሻ 0.25 ൈ ݄௠௔௫ 

Table  3.5: Coupled Water-Aluminum domain parameters 

Figure  3.9: Material distribution for the 1st mode optimization of the Water-Aluminum cavity. 
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The frequency response for the plate displacement, sound pressure level and sound 

intensity are shown in Figures 3.11 and 3.12. 

 

 

 

 

 

 

 

 

 

 

Figure  3.11: Displacements for plain and 1st odd mode optimized aluminum plates.  

Figure  3.10: Optimization Convergence for 1st structural odd mode of the Water-
Aluminum cavity 
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The results of the optimization targeting the 1st mode of the Water-Aluminum cavity are 

summarized in table (3.6). 

 

 Reduction at targeted mode 
(%) 

Broadband reduction 
(%) 

Plate displacement 69 67 

Sound pressure level 64 41 

 

As it can be noticed, by exciting the Aluminum plate at the 1st structural mode frequency, 

the plate displacement was considerably reduced not only at the targeted mode but also at other 

structural modes. A considerable reduction was also obtained in the average sound pressure level 

at the 1st structural mode and the broadband range. 

 

 

Figure  3.12: Average sound pressure levels inside Water-Aluminum cavity targeting 
1st structural mode

Table  3.6: Results summary for Water-Aluminum cavity targeting 1st structural mode. 
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3.3.2      Excitation Frequency and Topology Optimization of the 2nd Odd Mode 

The shape of material distribution and relative plate displacement field after 25 iterations 

are shown in Figure 3.13. 

 

 

 

 

 

 

 

 

 

The solution convergence of the objective function during the optimization process is 

shown in Figure 3.14. 

 

 

 

 

 

 

 

 

 

 

Figure  3.13: Material distribution for the 2nd odd mode optimization of the Water-Aluminum 
cavity 

Figure  3.14: Optimization Convergence for 2nd structural odd mode of the Water-
Aluminum cavity 
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The frequency response for the plate displacement, sound pressure level and sound 

intensity are shown in Figures 3.15 and 3.16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results of the optimization targeting the 5th mode of the Water-Aluminum cavity are 

summarized in table (3.7). 

Figure  3.15: Displacements for plain and 2nd odd mode optimized aluminum plates.  

Figure  3.16: Average sound pressure levels inside Water-Aluminum cavity targeting the 5th 
structural mode
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As it can be noticed, by exciting the Aluminum plate at the 5th structural mode frequency, 

the plate displacement was considerably reduced at this mode but with lesser effect on other 

structural modes. The optimized plate has a reduced average sound pressure level at the 5th mode 

and through the broadband range. 

 

    3.4      Excitation Frequency and Topology Optimization of Air-Fullcure720 Cavity 

The characteristics of the coupled fluid-structure domain are as given in table (3.8). 

 

   

 

 

 

 

 

 

 

3.4.1      Excitation Frequency and Topology Optimization of the 1st Mode 

The shape of material distribution and relative plate displacement field after 25 iterations 

are shown in Figure 3.17. 

 Reduction at targeted mode 
(%) 

Broadband reduction 
(%) 

Plate displacement 71 44 

Sound pressure level 31 25 

Cavity dimensions ሺܹ ൈ ܪ ൈ "ሻ 12ܮ ൈ 12" ൈ 30" 

Fluid domain Air at 25° C and and 1 atm. 

Flexible plate dimensions ሺܹ ൈ "ሻ 12ܪ ൈ 12" 

Upper bound of flexible plate thickness ሺ݄௠௔௫ሻ 1/16" 

Flexible plate material Full Cure 720 

Volume fraction ൫ݒ௙൯ 0.5 

Lower bound of flexible plate thickness ሺ݄௠௜௡ሻ 0.25 ൈ ݄௠௔௫ 

Table  3.8: Coupled Air-FullCure720 domain parameters 

Table  3.7: Results summary for Water-Aluminum cavity targeting 5th structural mode. 
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The solution convergence of the objective function during the optimization process is 

shown in Figure 3.18. 

 

 

 

 

 

 

 

 

 

 

The frequency response for the plate displacement, sound pressure level and sound 

intensity are shown in Figures 3.19 and 3.20. 

Figure  3.17: Material distribution for the 1st odd mode optimization of the Air-FullCure720 cavity 

Figure  3.18: Optimization Convergence for 1st structural mode of the Air-FullCure720 
cavity 
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The results of the optimization targeting the 1st mode of the Air-Fullcure720 cavity are 

summarized in table (3.9). 

 

 

Figure  3.19: Displacements for plain and 1st mode optimized FullCure720 plates.  

Figure  3.20: Average sound pressure levels inside Air-Fullcure720 cavity targeting 1st 
structural mode 
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It is clear that by exciting the Fullcure720 plate at the 1st structural mode frequency, the 

plate displacement was considerably reduced at the 1st mode and also at other structural modes. 

Good reduction was also achieved in the average sound pressure level at the targeted mode and 

through the broadband range. 

 

 

3.4.2      Excitation Frequency and Topology Optimization of the 2nd Odd Mode 

The shape of material distribution and relative plate displacement field after 25 iterations 

are shown in Figure 3.21. 

 

 

 

 

 

 

 

 

 Reduction at targeted mode 
% 

Broadband reduction 
% 

Plate displacement 51 65 
Sound pressure level 39 38 

Figure  3.21: Material distribution for the 2nd odd mode optimization of the Air-FullCure720 cavity 

Table  3.9: Results summary for Air-FullCure720 cavity targeting 1st structural mode. 
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The solution convergence of the objective function during the optimization process is 

shown in Figure 3.22. 

 

 

 

 

 

 

 

 

 

 

The frequency response for the plate displacement, sound pressure level and sound 

intensity are shown in Figures 3.23 and 3.24. 

 

 

 

 

 

 

 

Figure  3.22: Optimization Convergence for 2nd structural odd mode of the Air-
FullCure720 cavity 

Figure  3.23: Displacements for plain and 2nd odd mode optimized FullCure720 plates.  
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The results of the optimization targeting the 5th structural mode of the Air-Fullcure720 

cavity are summarized in table (3.10). 

 

It can be seen from the above table that by exciting the Fullcure720 plate at the 5th 

structural mode frequency, the plate displacement at the targeted mode was considerably 

reduced. Also, considerable reduction was obtained at other structural modes. The average sound 

pressure inside cavity was dramatically reduced at the targeted mode, but lesser effect can be 

noted through the broadband range.  

 

 Reduction at targeted mode 
% 

Broadband reduction 
% 

Plate displacement 69 56 
Sound pressure level 96 22 

Figure  3.24: Average sound pressure levels inside Air-Fullcure720 cavity targeting the 5th 
structural mode

Table  3.10: Results summary for Air-Fullcure720 cavity targeting 5th structural mode. 
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    3.5      Excitation Frequency and Topology Optimization of Water-Fullcure720 Cavity 

 

The characteristics of the coupled fluid-structure domain are as given in table (3.11). 

 

   

 

 

 

 

 

 

 

 

3.5.1      Excitation Frequency and Topology Optimization of the 1st Mode 

The shape of material distribution and relative plate displacement field after 25 iterations 

are shown in Figure 3.25. 

 

 

 

 

 

 

 

Cavity dimensions ሺܹ ൈ ܪ ൈ "ሻ 12ܮ ൈ 12" ൈ 30" 

Fluid domain Water at 25° C and and 1 atm. 

Flexible plate dimensions ሺܹ ൈ "ሻ 12ܪ ൈ 12" 

Upper bound of flexible plate thickness ሺ݄௠௔௫ሻ 1/16" 

Flexible plate material Full Cure 720 

Volume fraction ൫ݒ௙൯ 0.5 

Lower bound of flexible plate thickness ሺ݄௠௜௡ሻ 0.25 ൈ ݄௠௔௫ 

Table  3.11: Coupled Water-FullCure720 domain parameters 

Figure  3.25: Material distribution for the 1st mode optimization of the Water-FullCure720 cavity 
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The solution convergence of the objective function during the optimization process is 

shown in Figure 3.26. 

 

 

 

 

 

 

 

 

 

 

The frequency response for the plate displacement, sound pressure level and sound 

intensity are shown in Figures 3.27 and 3.28. 

 

 

 

 

 

 

 

 

Figure  3.26: Optimization Convergence for 1st structural mode of the Water-
FullCure720 cavity 

Figure  3.27: Displacements for plain and 1st mode optimized FullCure720 plates.  
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The results of the optimization targeting the 1st structural mode of the Air-Fullcure720 

cavity are summarized in table (3.12). 

 

As it can be noticed, by exciting the Fullcure720 plate at the 1st structural mode 

frequency, the plate displacement was considerably reduced not only at the targeted mode but 

also at other structural modes. A considerable reduction was also obtained in the average sound 

pressure level at the 1st structural mode and the broadband range. 

 

 Reduction at targeted mode 
% 

Broadband reduction 
% 

Plate displacement 67 66 

Sound pressure level 47 43 

Figure  3.28: Average sound pressure levels inside Water-Fullcure720 cavity targeting the 1st 
structural mode

Table  3.12: Results summary for Water-Fullcure720 cavity targeting 1st structural mode. 
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3.5.2      Excitation Frequency and Topology Optimization of the 2nd odd Mode 

The shape of material distribution and relative plate displacement field after 25 iterations 

are shown in Figure 3.29. 

 

 

 

 

 

 

The solution convergence of the objective function during the optimization process is 

shown in Figure 3.30. 

 

 

 

 

 

 

 

 

 

 

Figure  3.29: Material distribution for the 2nd odd mode optimization of the Water-FullCure720 
cavity 

Figure  3.30: Optimization Convergence for 2nd odd structural mode of the Water-
FullCure720 cavity 
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The frequency response for the plate displacement, sound pressure level and sound 

intensity are shown in Figures 3.31 and 3.32. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results of the optimization targeting the 5th structural mode of the Water-Fullcure720 

cavity are summarized in table (3.13). 

Figure  3.31: Displacements for plain and 2nd odd mode optimized FullCure720 plates.  

Figure  3.32: Average sound pressure levels inside Water-Fullcure720 cavity targeting the 5th 
structural mode 
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It is clear that by exciting the Fullcure720 plate at the 5th structural mode frequency, the 

plate displacement and average sound pressure level inside cavity at targeted mode were 

dramatically reduced. Considerable reduction was also achieved in plate displacement through 

the broadband range. However, lesser effect was shown on the average sound pressure level at 

other structural modes. 

 

3.4      Summary    

 This chapter has presented the theoretical performance characteristics of a plate coupled 

with an acoustic cavity when the plate topology is optimized to target the first or the second odd 

modes.  The obtained results demonstrate the effectiveness of the developed approach in 

minimizing the coupling between the plate and the cavity, minimizing the structural vibration, 

and minimizing the sound radiation without the use of any passive or active damping means. 

 

 

  

 Reduction at targeted mode 
% 

Broadband reduction 
% 

Plate displacement 72 42 

Sound pressure level 75 25 

Table  3.13: Results summary for Water-Fullcure720 cavity targeting 5th structural mode. 
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CHAPTER 4                                                             

EXPERIMENTAL VERIFICATION 

4.1      Experimental setup    

To verify the obtained results experimentally, a set of 3 different Aluminum plate 

configurations and a set of 3 different FullCure720 plate configurations were prepared. The first 

plate of each set has surface dimensions of 12"×12" and uniform thickness of 1/32". The 2nd and 

3rd plates of each set have the optimal configurations resulted from the topology optimization 

processes when targeting the 1st and 2nd structural odd modes respectively, while maintaining the 

volume equal to the first plain case as shown in Figures 4.1 and 4.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Figure  4.1 : Manufactured aluminum plate approximating the optimization results when 
targeting the 1st odd mode 

Figure  4.2: Manufactured aluminum plate approximating the optimization results when 
targeting the 2nd odd mode 
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In Figures 4.1 and 4.2, the plain uncovered metal has a thickness of 1/64", the white-

covered parts have a thickness of 1/32", the red-covered parts have a thickness of 3/64" and 

finally the black-covered plate parts have a thickness of 1/16".  

Also, a 12"×12"×30" closed acoustic cavity was prepared. The cavity has only one 

surface coupled to the flexible plate as shown in Figure 4.5. Each of the 3 different plates of each 

set was mounted and the plate acceleration as well as the sound pressure level inside the cavity 

was measured. The plate was mechanically excited with a speaker that is mounted in a position 

to cause the excitation to be symmetric. 

 

Figure  4.3: Manufactured FullCure720 plate with the exact optimization results when 
targeting the 1st odd mode 

Figure  4.4: Manufactured FullCure720 plate with the exact optimization results when 
targeting the 2nd odd mode 
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The speaker was excited with a function generator that sweeps a frequency range 

between 40 Hz and 1 kHz with a resolution of 0.5 Hz. The acceleration was measured at the 

midpoint of the plate and the sound pressure was measured at a point corresponding to the 

midpoint of the plate, only 3" away.  

4.2      Experimental results for Air-Aluminum cavity    

Frequency response for the aluminum plate acceleration as well as the sound pressure 

inside the acoustic cavity are shown in Figures 4.6 and 4.7 for the first case, where the 

optimization is tailored to the 1st structural odd mode. The same results for the optimization 

tailored to the 2nd odd mode are shown in Figures 4.8 and 4.9. 

 

 

 

 

Figure  4.5 : Experimental setup 
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Figure  4.6 : Sound Pressure for regular and 1st mode optimized cases 

 
Figure  4.7: Plate acceleration for regular and 1st mode optimized cases 

 

Figure  4.8: Sound Pressure for regular and 2nd odd mode optimized cases 
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In addition to the frequency response measurement for the plate vibration acceleration 

and sound pressure inside the acoustic cavity, the plate displacement field was measured using a 

laser vibrometer. The setup is shown in Figure 4.10.  

 

 

    

 

 

 

 

    

The 3 plate sets were excited at the 1st structural odd mode using a function generator and 

the excitation speaker. The laser vibrometer from the other hand was used to measure the 

displacement field of the different plates, while locked at the same excitation frequency. When 

attempting to apply the same for the 2nd structural odd mode, the plain plate was successful, 

Figure  4.9: Plate acceleration for regular and 2nd odd mode optimized cases 

Figure  4.10: Laser vibrometer experimental setup 
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while the other optimized plates were not, due to the extremely low amplitude of the 

displacement at that mode due to the topology optimization. The displacement fields are shown 

in Figure 4.11 through Figure 4.14. 

 

 

    

 

 

 

 

    

 

 

     

 

 

 

          

 

 

   

 

 

 

 

Figure  4.11: Displacement field for the plain plate excited at the 1st structural odd 
mode. (a) Experimental, (b) Analytical. 

(a)                                                         (b)

Figure  4.12: Displacement field for the plate optimized for the 1st structural odd 
mode. (a) Experimental, (b) Analytical. 

(a)                                                    (b)
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4.2      Experimental results for Air-FullCure720 cavity    

Frequency response for the FullCure720 plate acceleration as well as the sound pressure 

inside the acoustic cavity are shown in Figures 4.15 and 4.16 for the first case, where the 

optimization is tailored to the 1st structural odd mode. The same results for the optimization 

tailored to the 2nd odd mode are shown in Figures 4.17 and 4.18. 

Figure  4.14: displacement field for the plain plate excited at the 2nd structural odd mode. 
(a) Experimental, (b) Analytical. 

Figure  4.13: displacement field for the plate optimized for the 2nd structural odd mode. 
(a) Experimental, (b) Analytical. 

(a)                                                     (b)

(a)                                                     (b)
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Figure  4.15 : Plate acceleration for plain and 1st mode optimized cases 

Figure  4.16 : Sound Pressure level for plain and 1st mode optimized cases 
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The displacement fields for the FullCure720 plates excited at different frequencies using a 

vibrometer are shown in Figure 4.19 through Figure 4.21. 

 

 

Figure  4.17 : Plate acceleration for plain and 5th mode optimized cases 

Figure  4.18 : Sound Pressure level for plain and 5th mode optimized cases 
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Figure  4.19: Displacement field for the plain plate excited at different frequencies for 
the plain and optimized plates. (a) Analytical (b) Experimental. 

f =63Hz                      f =244Hz                    f =54Hz                     f =272Hz   
(a) 

f =63Hz                      f =244Hz                       f =54Hz                      f =272Hz   
(b)
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f =63Hz                      f =54Hz                    f =244Hz                     f =272Hz   
(a) 

f =63Hz                      f =54Hz                    f =244Hz                     f =272Hz   
(b) 

Figure  4.20: Displacement field for 1st mode optimized plate excited at different 
frequencies. (a) Analytical (b) Experimental. 
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4.3      Summary    

This chapter has presented an experimental validation of the predictions of the developed 

theoretical model when integrated with the topology optimization algorithm.  Prototypes of 

plates with optimized topologies are manufactured at tested to validate the developed theoretical 

model.  The performance characteristics of plates optimized for different frequency ranges are 

determined and compared with the theoretical predictions of the developed mathematical model.  

A close agreement is observed between theory and experiments. 

f =272Hz                      f =63Hz                    f =244Hz                     f =54Hz   
(a) 

f =272Hz                      f =63Hz                    f =244Hz                     f =54Hz   
(b) 

Figure  4.21: Displacement field for 5th mode optimized plate excited at different 
frequencies. (a) Analytical (b) Experimental. 
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CHAPTER 5                                                                  

ANSYS VERIFICATIONS  

5.1      Model development    

ANSYS offers its users a wide range on analytical options in acoustic analysis. The solver 

supports simple solutions such as modal analysis and harmonic analysis, and more coupled 

structural-acoustics such that the interaction of the fluid (air and water in this case) and the 

structure can be build into the assessment. 

The model analysis presented in this chapter aims at determining the response of the coupled 

fluid-structure system in order to draw a comparison with the results obtained from the 

theoretical  model using MATLAB.     

The structural elements in the model will require Young’s Modulus (defined in ANSYS by 

EX, EY and EZ), Poisson’s Ratio (defined in ANSYS by PRXY, PRYZ and PRXZ) and Density 

(defined in ANSYS by DENS) to be input as material properties. The thickness of each structural 

element is being defined through the material real constants by specifying the element thickness 

at each node. The fluid elements of the analysis will require that Speed of Sound (defined in 

ANSYS by SONC), Density and viscosity (defined in ANSYS by VISC) to be input. 

Three types of elements were used to model the complete fluid-structure interaction problem 

in ANSYS.  SHELL181element type was used for the structural elements (i.e. plate elements) 

while FLUID30 element type was used for the fluid domain elements. To distinguish between 

interfacing and non-interfacing fluid elements, another FLUID30 element type was used to 

represent the fluid elements on the interfacing layer.  These three types of elements as well as the 

complete ANSYS model are shown in Figure 5.1. 
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The developed model in ANSYS has been used to predict the response of the midpoint of the 

plate as it has been done using MATLAB. Also, the sound pressure level was measured at a 

point corresponding to the midpoint of the plate and 3" away inside the cavity. These two 

measurements were used to verify the accuracy of the theoretical model.  

The construction and analysis of the model is completed via a macro, written in the proper 

command format for ANSYS. The resulting macros are relatively simple text files that are easy 

to read and understand.  

 

 

5.2      ANSYS verification for the Air-Aluminum cavity mode 

A model that simulates the Air-Aluminum cavity was developed in ANSYS using actual 

dimensions of the real model and the proper element types. The results for the plain, 1st and 5th 

Figure  5.1: Complete ANSYS model with different types of elements used to simulate 
the dynamics of the structural and fluid domains  

Non-interfacing fluid 
elements

Fluid elements with 
structural interface

Structural 
elements 



64 
 

structural mode optimized cavities compared to MATLAB analytical model are shown in Figure 

5.2 through Figure 5.7. 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

   

 

 

 

 

Figure  5.2: MATLAB and ANSYS models’ displacement comparison for plain 
aluminum plates (Air-Aluminum cavity)  

Figure  5.3: MATLAB and ANSYS models’ sound pressure level comparison for plain 
aluminum plates (Air-Aluminum cavity) 
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Figure  5.4: MATLAB and ANSYS models’ displacement comparison for plain and 1st 
structural mode optimized aluminum plates (Air-Aluminum cavity) 

Figure  5.5: MATLAB and ANSYS models’ sound pressure level comparison for plain and 1st 
structural mode optimized aluminum plates (Air-Aluminum cavity) 
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As it can be seen from the previous results, there is an excellent agreement between the 

system responses obtained using MATLAB and ANSYS models for the three different cases of 

the structural medium (i.e. the aluminum plate). This remarkable agreement emphasizes the 

Figure  5.6: MATLAB and ANSYS models’ displacement comparison for plain and 5th structural 
mode optimized aluminum plates (Air-Aluminum cavity) 

Figure  5.7: MATLAB and ANSYS models’ sound pressure level comparison for plain and 5th 
structural mode optimized aluminum plates (Air-Aluminum cavity) 



67 
 

accuracy of the developed MATLAB model and its ability to accurately capture the dynamics of 

the fluid-structure coupled system.      

 

 

5.3      ANSYS verification for the Water-Aluminum cavity model 

Similarly, a model simulating the Water-Aluminum cavity was also developed in ANSYS 

using actual dimensions of the real model and the proper element types. The results for the plain, 

1st and 5th structural mode optimized cavities compared to MATLAB analytical model are shown 

in Figure 5.8 through Figure 5.13. 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

Figure  5.8: MATLAB and ANSYS models’ displacement comparison for plain 
aluminum plates (Water-Aluminum cavity) 
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Figure  5.9: MATLAB and ANSYS models’ sound pressure level comparison for plain 
aluminum plates (Water-Aluminum cavity) 

Figure  5.10: MATLAB and ANSYS models’ displacement comparison for plain and 
1st structural mode optimized aluminum plates (Water-Aluminum cavity) 
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Figure  5.11: MATLAB and ANSYS models’ sound pressure level comparison for plain and 1st 
structural mode optimized aluminum plates (Water-Aluminum cavity) 

Figure  5.12: MATLAB and ANSYS models’ displacement comparison for plain and 5th 
structural mode optimized aluminum plates (Water-Aluminum cavity) 
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5.4      ANSYS verification for the Air-Fullcure720 cavity model 

Similarly, a model simulating the Air-Fullcure720 cavity was also developed in ANSYS 

using actual dimensions of the real model and the proper element types. The results for the plain, 

1st and 5th structural mode optimized cavities compared to MATLAB analytical model are shown 

in Figure 5.14 through Figure 5.19. 

 

Figure  5.13: MATLAB and ANSYS models’ sound pressure level comparison for plain and 5th 
structural mode optimized aluminum plates (Water-Aluminum cavity) 
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Figure  5.14: MATLAB and ANSYS models’ displacement comparison for plain 
Fullcure720 plates (Air-Fullcure720 cavity) 

Figure  5.15: MATLAB and ANSYS models’ sound pressure level comparison for 
plain Fullcure720 plates (Air-Fullcure720 cavity) 
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Figure  5.16: MATLAB and ANSYS models’ displacement comparison for plain and 
1st structural mode optimized Fullcure720 plates (Air-Fullcure720 cavity) 

Figure  5.17: MATLAB and ANSYS models’ sound pressure level comparison for plain and 1st 
structural mode optimized Fullcure720 plates (Air-Fullcure720 cavity) 
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Again, there is an excellent agreement between the system responses obtained using 

MATLAB and ANSYS models for the three different cases of the structural medium (i.e. the 

Fullcure720 plate). 

 

Figure  5.18: MATLAB and ANSYS models’ displacement comparison for plain and 5th 
structural mode optimized Fullcure720 plates (Air-Fullcure720 cavity) 

Figure  5.19: MATLAB and ANSYS models’ sound pressure level comparison for plain and 5th 
structural mode optimized Fullcure720 plates (Air-Fullcure720 cavity) 
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5.5      ANSYS verification for the Water-Fullcure720 cavity model 

Finally, a model to simulating the Water-Fullcure720 cavity was also developed in ANSYS 

using actual dimensions of the real model and the proper element types. The results for the plain, 

1st and 5th structural mode optimized cavities compared to MATLAB analytical model are shown 

in Figure 5.20 through Figure 5.25. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5.20: MATLAB and ANSYS models’ displacement comparison for plain 
Fullcure720 plates (Water-Fullcure720 cavity) 
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Figure  5.21: MATLAB and ANSYS models’ sound pressure level comparison for 
plain Fullcure720 plates (Water-Fullcure720 cavity) 

Figure  5.22: MATLAB and ANSYS models’ displacement comparison for plain and 
1st structural mode optimized Fullcure720 plates (Water-Fullcure720 cavity) 
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Figure  5.23: MATLAB and ANSYS models’ sound pressure level comparison for plain and 1st 
structural mode optimized Fullcure720 plates (Water-Fullcure720 cavity) 

Figure  5.24: MATLAB and ANSYS models’ displacement comparison for plain and 5th 
structural mode optimized Fullcure720 plates (Water-Fullcure720 cavity) 
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5.6      Summary    

This chapter has presented ANSYS validation of the predictions of the developed 

theoretical model when integrated with the topology optimization algorithm. Different models of 

Fluid-structure were developed and solved in ANSYS. An excellent match with the theoretical 

model using MATLAB was noted in the plates’ displacements and sound pressure levels inside 

the cavity.         

  

Figure  5.25: MATLAB and ANSYS models’ sound pressure level comparison for plain and 5th 
structural mode optimized Fullcure720 plates (Water-Fullcure720 cavity) 
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CHAPTER 6                                                                 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK  

6.1      Conclusions 

This dissertation aimed at the development of a topology optimization approach for fluid-

structure interaction between a flexible plate coupled with a rigid acoustic cavity. The objective 

of the optimization was to redistribute the material of the flexible plate in order to minimize the 

fluid-structure coupling. A finite element model was developed to simulate the fluid-structure 

interactions and was integrated with the topology optimization approach. The model was used to 

develop the sensitivity analysis necessary for the operation of the topology optimization 

algorithm. The excitation acting on the plate was locked at the first or second structural odd 

modes to ensure the effectiveness of the optimization in reducing the sound pressure at the modal 

frequencies. The analytical model showed considerable attenuation for the first structural odd 

mode as well as consecutive modes, when the optimization was targeting that mode specifically. 

On the other hand excellent attenuation was obtained for the second structural odd mode, when 

targeting the optimization scheme towards that specific mode. 

Experimental verification was carried out by manufacturing three sets of topology 

optimized plates that approximate the results obtained from the analytical model. One set of the 

topology optimized plates was made of aluminum sections which are bonded together.  The other 

two sets were manufactured using stereolithography techniques by exporting the topology 

optimized geometry files directly to the stereolithography machine. The three sets of plates were 

coupled, one a time, to an acoustic cavity. Plate vibration acceleration and sound pressure inside 

the acoustic cavity were measured and compared with the plain-plate case. Considerable 
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attenuation in both the plate vibration acceleration and sound pressure inside the acoustic cavity 

were recorded. A good match with the analytical model was observed. The displacement fields 

of the plate were also measured using a laser vibrometer, and good agreement was observed with 

the analytical case. 

The predictions of the mathematical model were also validated against the predictions of 

models developed using ANSYS® software. This was carried out for all the three sets of plates 

and all the optimized configurations for the first two odd modes.  

Different acoustic media were also considered. Water, for example, was considered as an 

alternative acoustic media due to the wide applications of submerged structures.    

 

6.2      Future work 

 

        The presented topology optimization approach can be an invaluable tool in the design of a 

wide variety of critical structures which must operate quietly when subjected to fluid loading.  

Note that the utility of such a design tool is enhanced through the use of the first order shear 

deformation theory which makes the analysis equally applicable to thin and thick plate 

structures.  Therefore, a natural extension of the present work is to theoretically predict and 

experimentally validate the performance of topology optimized thick plates coupled with 

acoustic cavities. 

 

 The work presented here can also be extended to shell structures because of their wide 

use in various applications such as aircraft fuselage and underwater vehicles.  In these critical 
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applications, the optimization of the interaction of the shell structure and the neighboring fluid 

medium is essential to the quiet operation of these shells and to the minimization of their weight. 

  

Although the experimental work presented in this dissertation was limited to air-filled 

acoustic cavities, work is needed to validate the predictions of the developed model when the 

cavity is filled was water. 

 

More work is needed to generalize the objective function considered during the topology 

optimization process. In this work, only the coupling between the structure and fluid was 

minimized. Other objective functions that should be considered may include: minimizing the 

average sound pressure levels in the cavity, minimizing the sound intensity, and minimizing the 

structural vibration.  These additional objective functions may be considered one at a time, or 

more appropriately the topology optimization problem may be cast as a multi-objective 

optimization problem. 

 

Finally, in the present work, the topology optimization has not capitalized on the 

potential of introducing periodicity in the structural system in order to generate the favorable 

stop/pass band filtering characteristics that can impede the wave propagation over the structure.  

Such characteristics can reduce not only the structural vibration but also the noise radiation in the 

acoustic cavity.  Furthermore, using such periodicity in the context of topology optimization can 

reduce the dimensionality of the problem considerably and speed the implementation of the 

topology optimization for more complex structures. 
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 APPINDEX A 

      MATLAB CODES 
 

 

Main file: 

function  sound_optimization(Lx_ov, Ly_ov, Lz_ov, nelx, nely, nelz) 
volfrac=0.5; 
nel=nelx*nely; 
residual_frac=0.25; 
n=nel;                          
m=1;                               
xval = ones(n,1)*volfrac;           
xmin = ones(n,1)*residual_frac;      
xmax = ones(n,1)*1;                  
xold1=xval;                        
xold2=xval;                        
low=0*ones(nel,1); 
upp=1000*ones(nel,1); 
a0=1; 
c=1000*ones(m,1); 
d=0*ones(m,1); 
a=zeros(m,1); 
iter=0; 
maxite=12; 
itte = 0; 
asyinit = 0.5; 
asyincr = 0.65;  
asydecr = 0.5;  
while itte < maxite 
    iter = iter+1; 
    itte = itte+1; 
    t = clock; 
    [freq_m]=Overall_Assembly_MMA_freq_search(Lx_ov, Ly_ov, Lz_ov,... 
        nelx, nely, nelz, xval, itte); 
    [f0val,df0dx,df0dx2,fval,dfdx,dfdx2,wc,P] = sound_objective_function... 
        (Lx_ov, Ly_ov, Lz_ov, nelx, nely, nelz, freq_m, volfrac, m, xval); 
    [xmma,ymma,zmma,lam,xsi,eta,mu,zet,s,low,upp] = ... 
        mmasub(m,n,iter,xval,xmin,xmax,xold1,xold2,f0val,df0dx,df0dx2,... 
        fval,dfdx,dfdx2,low,upp,a0,a,c,d,asyinit, asyincr, asydecr); 
    xold2 = xold1; 
    xold1 = xval; 
    xval = xmma; 
    outvector = [iter f0val fval' xval']'; 
    for ii=1:nely 
        for jj=1:nelx 
            xp(ii,jj)=xval((ii-1)*nelx+jj); 
        end 
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    end 
    xpp=zeros(size(xp)); 
    for ii=1:nely 
        xpp(nely-ii+1,:)=xp(ii,:); 
    end 
    target=full(P'*P)/length(P); 
    target_log=10*log10(target/1e-12); 
    if itte==1 
        target_old=target_log; 
        target_prev=target_log; 
    end 
    ddiiff=target_prev-target_log; 
    target_prev=target_log; 
    for ii=1:nely+1 
        for jj=1:nelx+1 
            pp(ii,jj)=wc((ii-1)*(nelx+1)+jj); 
        end 
    end 
    h=[]; 
    colormap gray; 
    figure(3); 
    colormap gray; 
    h = bar3(abs(xpp),1); 
    shading interp 
    for i = 1:length(h) 
        zdata = ones(6*length(h),4); 
        k = 1; 
        for j = 0:6:(6*length(h)-6) 
            zdata(j+1:j+6,:) = -abs(xpp(k,i)); 
            k = k+1; 
        end 
        set(h(i),'Cdata',zdata) 
        set(h,'EdgeColor',[0.7 0.7 0.7]) 
    end 
    grid 
    axis off 
    title(ss); 
    view([2 2 3]); 
    h=gcf; 
    s=sprintf('fig3d_%d',itte); 
    saveas(h,s); 
    colormap gray; 
    figure(4); 
    colormap gray; 
    subplot(1,2,1); 
    imagesc(-abs(xpp)); axis equal; axis tight; axis off;pause(1e-6); 
    subplot(1,2,2); 
    iter_p(iter)=target_log; 
    plot(1:iter,iter_p,'-rx','LineWidth',2,'MarkerEdgeColor','k',... 
        'MarkerFaceColor','g','MarkerSize',8); 
    xlabel('Iteration') 
    ylabel ('Sound Power (dB)') 
    axis([0 30 100 130]) 
    h=gcf; 
    s=sprintf('fig2d_%d',itte); 
    saveas(h,s); 
    figure(5) 
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surf(abs(pp),'FaceColor','interp','EdgeColor','none','FaceLighting','phong'); 
    axis([1 nelx 1 nely 0 0.0005])  
    axis([1 nelx 1 nely 0 0.00005])       
    axis off 
    grid 
    title(ss) 
    h=gcf; 
    s=sprintf('figS_%d',itte); 
    saveas(h,s); 
    etime(clock, t) 
end 
 

function [freq_m]=Overall_Assembly_MMA_freq_search(Lx_ov, Ly_ov, Lz_ov, nelx, 
nely, nelz, xj, itte) 
rho_air=1.2; 
inch=25.4e-3; 
nel=nelx*nely; 
[K_p_front, M_p_front, Force_front, BC_front, K_p_array_front, 
M_p_array_front, dK_dx_array_front, dM_dx_array_front,... 
    dK_dxx_array_front, dM_dxx_array_front]=Plate_Assembly_MMA(Lx_ov, Ly_ov, 
nelx, nely, inch/16, xj); 
[K_p_back, M_p_back, Force_back, BC_back, K_p_array_back, M_p_array_back, 
dK_dx_array_back, dM_dx_array_back,... 
    dK_dxx_array_back, dM_dxx_array_back]=Plate_Assembly_MMA(Lx_ov, Ly_ov, 
nelx, nely, 2.0*inch, xj); 
[K_fluid, M_fluid]=Fluid_Assembly_MMA(Lx_ov, Ly_ov, Lz_ov, nelx, nely, nelz); 
xlen=Lx_ov/nelx; 
ylen=Ly_ov/nely; 
zlen=Lz_ov/nelz; 
x=[0 1 1 0 0 1 1 0]*xlen; 
y=[0 0 1 1 0 0 1 1]*ylen; 
z=[0 0 0 0 1 1 1 1]*zlen; 
K_f_array=zeros(8,8,nel); 
M_f_array=zeros(8,8,nel); 
for ii=1:nel 
    [K_f_array(:,:,ii),K_f_array(:,:,ii)]=cavity_matrices(x,y,z); 
end 
[c_front, C_array_front]=coupling_Assembly_MMA(Lx_ov, Ly_ov, nelx, nely, 1); 
[c_back, C_array_back]=coupling_Assembly_MMA(Lx_ov, Ly_ov, nelx, nely, 2); 
dof_front=length(K_p_front); 
dof_back=length(K_p_back); 
dof_struct=dof_front+dof_back; 
dof_fluid=length(K_fluid); 
dof_overall=dof_struct+dof_fluid; 
dof_coup_press_front=(nelx+1)*(nely+1)*1; 
dof_coup_press_back=(nelx+1)*(nely+1)*1; 
K_overall=sparse(dof_overall,dof_overall); 
M_overall=sparse(dof_overall,dof_overall); 
K_struct=[K_p_front         zeros(dof_front);... 
          zeros(dof_back)   K_p_back]; 
M_struct=[M_p_front         zeros(dof_front);... 
          zeros(dof_back)   M_p_back];       
K_overall(1:dof_struct,1:dof_struct)=K_overall(1:dof_struct,1:dof_struct)+K_s
truct; 
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M_overall(1:dof_struct,1:dof_struct)=M_overall(1:dof_struct,1:dof_struct)+M_s
truct; 
K_overall(dof_struct+1:dof_overall,dof_struct+1:dof_overall)=... 
    K_overall(dof_struct+1:dof_overall,dof_struct+1:dof_overall)+K_fluid; 
M_overall(dof_struct+1:dof_overall,dof_struct+1:dof_overall)=... 
    M_overall(dof_struct+1:dof_overall,dof_struct+1:dof_overall)+M_fluid; 
start_=dof_struct+1; 
end_=dof_struct+dof_coup_press_front; 
M_overall(start_:end_,1:dof_front)=... 
    M_overall(start_:end_,1:dof_front)+c_front; 
start_=dof_overall-dof_coup_press_back+1; 
end_=dof_overall; 
M_overall(start_:end_,dof_front+1:dof_struct)=... 
    M_overall(start_:end_,dof_front+1:dof_struct)+c_back; 
c_front_k=-c_front'/rho_air; 
c_back_k=-c_back'/rho_air; 
start_=dof_struct+1; 
end_=dof_struct+dof_coup_press_front; 
K_overall(1:dof_front,start_:end_)=... 
    K_overall(1:dof_front,start_:end_)+c_front_k; 
start_=dof_overall-dof_coup_press_back+1; 
end_=dof_overall; 
K_overall(dof_front+1:dof_struct,start_:end_)=... 
    K_overall(dof_front+1:dof_struct,start_:end_)+c_back_k; 
% Applying the forces 
Force=sparse(dof_overall,1); 
Force(1:dof_front)=Force(1:dof_front)+Force_front; 
% Applying Boundary conditions 
alldofs     = 1:dof_overall; 
BC_back=dof_front+BC_back; 
BC=[BC_front BC_back]; 
freedofs    = setdiff(alldofs,BC); 
%% Solution %%%%%%%%%%%% 
dim=length(K_p_front)-length(BC_front); 
Kbc1=sparse(dim,dim);              
Mbc1=sparse(dim,dim);                
K_p_front1=K_p_front; 
M_p_front1=M_p_front; 
K_p_front1(BC_front,:)=[]; 
K_p_front1(:,BC_front)=[]; 
M_p_front1(BC_front,:)=[]; 
M_p_front1(:,BC_front)=[]; 
Mbc1 =M_p_front1; 
Kbc1 =K_p_front1; 
opts.disp=0; 
disp('inverse started') 
AA=Mbc1\Kbc1; 
disp('eigs started') 
[v,wn]=eigs(AA,11,'SM',opts); 
[wn_or,or]=sort(real(diag(wn))); 
%lamda_p(1)=(wn_or(1).^0.5)/2/pi; 
lamda_p(1)=(wn_or(5).^0.5)/2/pi; 
freq_m=lamda_p; 
search_pattern_no_FRF; 
[lamda_p; freq_m] 
disp('search ended') 
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function [K_elem, M_elem]=cavity_matrices(x,y,z) 
c_air=343;           
pa(1)=-1/sqrt(3); 
pa(2)=1/sqrt(3); 
pb(1)=-1/sqrt(3); 
pb(2)=1/sqrt(3); 
pc(1)=-1/sqrt(3); 
pc(2)=1/sqrt(3); 
K_elem=zeros(8,8); 
M_elem=zeros(8,8); 
for ii=1:2 
    for jj=1:2 
        for kk=1:2 
            a=pa(kk); 
            b=pb(jj); 
            c=pc(ii); 
            cc=1; 
            alpha=1/8; 
            N1=alpha*(1-a)*(1-b)*(1-c); 
            N1a=-alpha*(1-b)*(1-c); 
            N1b=-alpha*(1-a)*(1-c); 
            N1c=-alpha*(1-a)*(1-b); 
            N2=alpha*(1+a)*(1-b)*(1-c); 
            N2a=alpha*(1-b)*(1-c); 
            N2b=-alpha*(1+a)*(1-c); 
            N2c=-alpha*(1+a)*(1-b); 
            N3=alpha*(1+a)*(1+b)*(1-c); 
            N3a=alpha*(1+b)*(1-c); 
            N3b=alpha*(1+a)*(1-c); 
            N3c=-alpha*(1+a)*(1+b); 
            N4=alpha*(1-a)*(1+b)*(1-c); 
            N4a=-alpha*(1+b)*(1-c); 
            N4b=alpha*(1-a)*(1-c); 
            N4c=-alpha*(1-a)*(1+b); 
            N5=alpha*(1-a)*(1-b)*(1+c); 
            N5a=-alpha*(1-b)*(1+c); 
            N5b=-alpha*(1-a)*(1+c); 
            N5c=alpha*(1-a)*(1-b); 
            N6=alpha*(1+a)*(1-b)*(1+c); 
            N6a=alpha*(1-b)*(1+c); 
            N6b=-alpha*(1+a)*(1+c); 
            N6c=alpha*(1+a)*(1-b); 
            N7=alpha*(1+a)*(1+b)*(1+c); 
            N7a=alpha*(1+b)*(1+c); 
            N7b=alpha*(1+a)*(1+c); 
            N7c=alpha*(1+a)*(1+b); 
            N8=alpha*(1-a)*(1+b)*(1+c); 
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            N8a=-alpha*(1+b)*(1+c); 
            N8b=alpha*(1-a)*(1+c); 
            N8c=alpha*(1-a)*(1+b); 
            
xa=N1a*x(1)+N2a*x(2)+N3a*x(3)+N4a*x(4)+N5a*x(5)+N6a*x(6)+N7a*x(7)+N8a*x(8); 
            
xb=N1b*x(1)+N2b*x(2)+N3b*x(3)+N4b*x(4)+N5b*x(5)+N6b*x(6)+N7b*x(7)+N8b*x(8); 
            
xc=N1c*x(1)+N2c*x(2)+N3c*x(3)+N4c*x(4)+N5c*x(5)+N6c*x(6)+N7c*x(7)+N8c*x(8);             
            
ya=N1a*y(1)+N2a*y(2)+N3a*y(3)+N4a*y(4)+N5a*y(5)+N6a*y(6)+N7a*y(7)+N8a*y(8); 
            
yb=N1b*y(1)+N2b*y(2)+N3b*y(3)+N4b*y(4)+N5b*y(5)+N6b*y(6)+N7b*y(7)+N8b*y(8); 
            
yc=N1c*y(1)+N2c*y(2)+N3c*y(3)+N4c*y(4)+N5c*y(5)+N6c*y(6)+N7c*y(7)+N8c*y(8);             
            
za=N1a*z(1)+N2a*z(2)+N3a*z(3)+N4a*z(4)+N5a*z(5)+N6a*z(6)+N7a*z(7)+N8a*z(8); 
            
zb=N1b*z(1)+N2b*z(2)+N3b*z(3)+N4b*z(4)+N5b*z(5)+N6b*z(6)+N7b*z(7)+N8b*z(8);             
            
zc=N1c*z(1)+N2c*z(2)+N3c*z(3)+N4c*z(4)+N5c*z(5)+N6c*z(6)+N7c*z(7)+N8c*z(8);               
            Jac=[xa ya za; xb yb zb; xc yc zc]; 
            Jaci=inv(Jac); 
            detJac=det(Jac); 
            p=[N1 N2 N3 N4 N5 N6 N7 N8];                        
            p_x=Jaci(1,:)*[N1a N2a N3a N4a N5a N6a N7a N8a;... 
                           N1b N2b N3b N4b N5b N6b N7b N8b;... 
                           N1c N2c N3c N4c N5c N6c N7c N8c];                            
            p_y=Jaci(2,:)*[N1a N2a N3a N4a N5a N6a N7a N8a;... 
                           N1b N2b N3b N4b N5b N6b N7b N8b;... 
                           N1c N2c N3c N4c N5c N6c N7c N8c];     
            p_z=Jaci(3,:)*[N1a N2a N3a N4a N5a N6a N7a N8a;... 
                           N1b N2b N3b N4b N5b N6b N7b N8b;... 
                           N1c N2c N3c N4c N5c N6c N7c N8c];                           
            grad_x=p_x;           
            grad_y=p_y; 
            grad_z=p_z;             
            
K_elem=K_elem+(grad_x'*grad_x+grad_y'*grad_y+grad_z'*grad_z)*detJac*cc; 
            M_elem=M_elem+(1/c_air^2)*(p'*p)*detJac*cc; 
        end 
    end 
end 
 

 

 

 

function [f0val,df0dx,df0dx2,fval,dfdx,dfdx2,wc,P] = 
sound_objective_function(Lx_ov, Ly_ov, Lz_ov, nelx, nely, nelz, freq, 
volfrac, m, xj) 
nel=nelx*nely; 
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[objec, dobjec_dx, wc, P]=Overall_Assembly_MMA(Lx_ov, Ly_ov, Lz_ov, nelx, 
nely, nelz, freq, xj); 
f0val=objec; 
df0dx=dobjec_dx'; 
df0dx2=0*df0dx; 
fval(1,1)=sum(xj)-volfrac*nel; 
dfdx(1,:)=ones(1,nel); 
dfdx2(1,:)=0*dfdx(1,:); 
 
 

function [objec, dobjec_dx, wc, P]=Overall_Assembly_MMA(Lx_ov, Ly_ov, Lz_ov, 
nelx, nely, nelz, freq, xj) 
rho_air=1.2; 
inch=25.4e-3; 
nel=nelx*nely; 
omega=2*pi*freq; 
[K_p_front, M_p_front, Force_front, BC_front, K_p_array_front, 
M_p_array_front, dK_dx_array_front, dM_dx_array_front,... 
    dK_dxx_array_front, dM_dxx_array_front]=Plate_Assembly_MMA(Lx_ov, Ly_ov, 
nelx, nely, inch/16, xj); 
[K_p_back, M_p_back, Force_back, BC_back, K_p_array_back, M_p_array_back, 
dK_dx_array_back, dM_dx_array_back,... 
    dK_dxx_array_back, dM_dxx_array_back]=Plate_Assembly_MMA(Lx_ov, Ly_ov, 
nelx, nely, 2.0*inch, xj); 
[K_fluid, M_fluid]=Fluid_Assembly_MMA(Lx_ov, Ly_ov, Lz_ov, nelx, nely, nelz); 
xlen=Lx_ov/nelx; 
ylen=Ly_ov/nely; 
zlen=Lz_ov/nelz; 
x=[0 1 1 0 0 1 1 0]*xlen; 
y=[0 0 1 1 0 0 1 1]*ylen; 
z=[0 0 0 0 1 1 1 1]*zlen; 
K_f_array=zeros(8,8,nel); 
M_f_array=zeros(8,8,nel); 
for ii=1:nel 
    [K_f_array(:,:,ii),K_f_array(:,:,ii)]=cavity_matrices(x,y,z); 
end 
[c_front, C_array_front]=coupling_Assembly_MMA(Lx_ov, Ly_ov, nelx, nely, 1); 
[c_back, C_array_back]=coupling_Assembly_MMA(Lx_ov, Ly_ov, nelx, nely, 2); 
dof_front=length(K_p_front); 
dof_back=length(K_p_back); 
dof_struct=dof_front+dof_back; 
dof_fluid=length(K_fluid); 
dof_overall=dof_struct+dof_fluid; 
dof_coup_press_front=(nelx+1)*(nely+1)*1; 
dof_coup_press_back=(nelx+1)*(nely+1)*1; 
K_overall=sparse(dof_overall,dof_overall); 
M_overall=sparse(dof_overall,dof_overall); 
K_struct=[K_p_front         zeros(dof_front);... 
          zeros(dof_back)   K_p_back]; 
M_struct=[M_p_front         zeros(dof_front);... 
          zeros(dof_back)   M_p_back];       
K_overall(1:dof_struct,1:dof_struct)=K_overall(1:dof_struct,1:dof_struct)+K_s
truct; 
M_overall(1:dof_struct,1:dof_struct)=M_overall(1:dof_struct,1:dof_struct)+M_s
truct; 
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K_overall(dof_struct+1:dof_overall,dof_struct+1:dof_overall)=... 
    K_overall(dof_struct+1:dof_overall,dof_struct+1:dof_overall)+K_fluid; 
M_overall(dof_struct+1:dof_overall,dof_struct+1:dof_overall)=... 
    M_overall(dof_struct+1:dof_overall,dof_struct+1:dof_overall)+M_fluid; 
start_=dof_struct+1; 
end_=dof_struct+dof_coup_press_front; 
M_overall(start_:end_,1:dof_front)=... 
    M_overall(start_:end_,1:dof_front)+c_front;  
start_=dof_overall-dof_coup_press_back+1; 
end_=dof_overall; 
M_overall(start_:end_,dof_front+1:dof_struct)=... 
    M_overall(start_:end_,dof_front+1:dof_struct)+c_back; 
c_front_k=-c_front'/rho_air; 
c_back_k=-c_back'/rho_air; 
start_=dof_struct+1; 
end_=dof_struct+dof_coup_press_front; 
K_overall(1:dof_front,start_:end_)=... 
    K_overall(1:dof_front,start_:end_)+c_front_k; 
start_=dof_overall-dof_coup_press_back+1; 
end_=dof_overall; 
K_overall(dof_front+1:dof_struct,start_:end_)=... 
    K_overall(dof_front+1:dof_struct,start_:end_)+c_back_k; 
Force=sparse(dof_overall,1); 
Force(1:dof_front)=Force(1:dof_front)+Force_front; 
alldofs     = 1:dof_overall; 
BC_back=dof_front+BC_back; 
BC=[BC_front BC_back]; 
freedofs    = setdiff(alldofs,BC); 
UPP=sparse(dof_overall,1); 
for ii=1:length(omega) 
   UP(freedofs,:) = (K_overall(freedofs,freedofs)-
omega(ii).^2*M_overall(freedofs,freedofs)) \ Force(freedofs,:); 
   UP(BC,:)= 0; 
   UPP=UPP+UP; 
end 
U=UPP(1:dof_front); 
wc=U(1:3:length(U)); 
P=UPP(dof_struct+1:dof_overall,1); 
p_coup=(nelx+1)*(nely+1); 
pc=P(1:p_coup); 
pc_L1=P(1:2*p_coup); 
objec=full(wc'*pc); 
for ii=1:nely 
    for jj=1:nelx         
        c1=0; 
        c2=0;        
        for kk=1:length(omega) 
            n1=(ii-1)*(nelx+1)+jj; 
            n2=n1+1; 
            n3=(ii)*(nelx+1)+jj+1; 
            n4=n3-1; 
            DOF=3;            
            edof1=[(n1-1)*DOF+1, (n1-1)*DOF+2, (n1-1)*DOF+3]; 
            edof2=[(n2-1)*DOF+1, (n2-1)*DOF+2, (n2-1)*DOF+3]; 
            edof3=[(n3-1)*DOF+1, (n3-1)*DOF+2, (n3-1)*DOF+3]; 
            edof4=[(n4-1)*DOF+1, (n4-1)*DOF+2, (n4-1)*DOF+3]; 
            DOF=1;               



89 
 

            pdof1=(n1-1)*DOF+1; 
            pdof2=(n2-1)*DOF+1; 
            pdof3=(n3-1)*DOF+1; 
            pdof4=(n4-1)*DOF+1; 
            pdof5=pdof1+(nelx+1)*(nely+1); 
            pdof6=pdof2+(nelx+1)*(nely+1); 
            pdof7=pdof3+(nelx+1)*(nely+1); 
            pdof8=pdof4+(nelx+1)*(nely+1); 
            edof=[edof1 edof2 edof3 edof4]; 
            pdof=[pdof1 pdof2 pdof3 pdof4 pdof5 pdof6 pdof7 pdof8]; 
            Ue=U(edof,1);                             
            pce=pc_L1(pdof,1);                        
            index=(ii-1)*(nelx)+jj; 
            Kst_D = K_p_array_front(:,:,index)-
omega(kk).^2*M_p_array_front(:,:,index);        
            Kfl_D = K_f_array(:,:,index)-omega(kk).^2*M_f_array(:,:,index);               
            A1    = C_array_front(:,:,index);                                             
            D     = omega(kk).^2*A1;                                                      
            A     = A1'/rho_air*inv(Kfl_D)*D;                                             
            B     = Kst_D - A;                                                            
            C     = dK_dx_array_front(:,:,index)-
omega(kk).^2*dM_dx_array_front(:,:,index);                 
            ddelta_drho=-inv(B)*C*Ue;                                                     
            t1=ddelta_drho'; 
            c1=c1+t1(1:3:12)*pce(1:4); 
            dp_drho=inv(Kfl_D)*D*ddelta_drho;                                             
            t2=Ue'; 
            c2=c2+t2(1:3:12)*dp_drho(1:4);           
        end  
        if objec>0 
            dobjec_dx(index) = (c1+c2); 
        else 
            dobjec_dx(index) = (c1+c2); 
        end       
    end  
end  
 
 

function [K_assembly, M_assembly, Force, BC, K_el_array, M_el_array, 
dK_el_dx_array, dM_el_dx_array,... 
    dK_el_dxx_array, dM_el_dxx_array]=Plate_Assembly_MMA(Lx_ov, Ly_ov, nelx, 
nely, h0, xj) 
xlen=Lx_ov/nelx; 
ylen=Ly_ov/nely; 
x=[0 1 1 0]*xlen; 
y=[0 0 1 1]*ylen; 
DOF=3;  
Nnodesoverall=(nelx+1)*(nely+1); 
nel=nelx*nely; 
NDOFOverall=DOF*Nnodesoverall;                                   
K_assembly=sparse(NDOFOverall,NDOFOverall);                  
M_assembly=sparse(NDOFOverall,NDOFOverall);                  
Force=zeros(NDOFOverall,1); 
dK_el_dx_array=zeros(DOF*4,DOF*4,nel); 
dK_el_dxx_array=zeros(DOF*4,DOF*4,nel); 
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K_el_array=zeros(DOF*4,DOF*4,nel); 
dM_el_dx_array=zeros(DOF*4,DOF*4,nel); 
dM_el_dxx_array=zeros(DOF*4,DOF*4,nel); 
M_el_array=zeros(DOF*4,DOF*4,nel); 
for ii=1:nely 
    for jj=1:nelx          
        index=(ii-1)*(nelx)+jj; 
        xj_c = xj(index); 
        [K_el, M_el, dK_el_dx, dM_el_dx, dK_el_dxx, 
dM_el_dxx]=plate_matrices_3dof(x,y,h0,xj_c);                    
        dK_el_dx_array(:,:,index)=dK_el_dx;                                               
        dK_el_dxx_array(:,:,index)=dK_el_dxx;                                            
        K_el_array(:,:,index)=K_el;                                                       
        dM_el_dx_array(:,:,index)=dM_el_dx;                                               
        dM_el_dxx_array(:,:,index)=dM_el_dxx;                                             
        M_el_array(:,:,index)=M_el;                                                       
        globn(1)=(ii-1)*(nelx+1)+jj; 
        globn(2)=globn(1)+1; 
        globn(3)=ii*(nelx+1)+(jj+1); 
        globn(4)=globn(3)-1;       
        globndof1=(globn(1)-1)*DOF+1:(globn(1)-1)*DOF+DOF; 
        globndof2=(globn(2)-1)*DOF+1:(globn(2)-1)*DOF+DOF; 
        globndof3=(globn(3)-1)*DOF+1:(globn(3)-1)*DOF+DOF; 
        globndof4=(globn(4)-1)*DOF+1:(globn(4)-1)*DOF+DOF; 
        globndof=[globndof1 globndof2 globndof3 globndof4]; 
        K_assembly(globndof,globndof)=K_assembly(globndof,globndof)+K_el; 
        M_assembly(globndof,globndof)=M_assembly(globndof,globndof)+M_el;         
    end  
end  
         
for ii=nely/2+1:nely/2+1 
    for jj=nelx/2+1:nelx/2+1 
        location=(ii-1)*(nelx+1)+jj; 
        Force_Node=(location-1)*DOF+1;                      
        Force(Force_Node,1)=0.1; 
    end 
end 
BN1=1:nelx+1; 
BN2=(nelx+1)*nely+1:(nelx+1)*(nely+1); 
BN3=nelx+2:nelx+1:(nelx+1)*nely; 
BN4=2*(nelx+1):nelx+1:(nelx+1)*nely; 
BC1=[(BN1-1)*DOF+1, (BN1-1)*DOF+2, (BN1-1)*DOF+3];  
BC2=[(BN2-1)*DOF+1, (BN2-1)*DOF+2, (BN2-1)*DOF+3];  
BC3=[(BN3-1)*DOF+1, (BN3-1)*DOF+2, (BN3-1)*DOF+3];  
BC4=[(BN4-1)*DOF+1, (BN4-1)*DOF+2, (BN4-1)*DOF+3];  
BC=sort([BC1 BC2 BC3 BC4]); 
 

 

function [K_elem, M_elem, dK_elem_dx, dM_elem_dx, dK_elem_dxx, 
dM_elem_dxx]=plate_matrices_3dof(x,y,h0,xj) 
mu=0.3;              
rho=2700;            
Em=71e9*(1+0.07i); 
GG=1/2/(1+mu);       
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h=xj*h0; 
pa(1)=-1/sqrt(3); 
pa(2)=1/sqrt(3); 
pb(1)=-1/sqrt(3); 
pb(2)=1/sqrt(3); 
K_elem_b=zeros(12,12); 
dK_elem_b_dx=zeros(12,12); 
dK_elem_b_dxx=zeros(12,12); 
K_elem_s=zeros(12,12); 
dK_elem_s_dx=zeros(12,12); 
dK_elem_s_dxx=zeros(12,12); 
M_elem=zeros(12,12); 
dM_elem_dx=zeros(12,12); 
dM_elem_dxx=zeros(12,12); 
for ii=1:2 
    for jj=1:2         
        a=pa(ii); 
        b=pb(jj); 
        cc=1;         
        alpha=1/4; 
        N1=alpha*(1-a)*(1-b); 
        N1a=-alpha*(1-b); 
        N1b=-alpha*(1-a);        
        N2=alpha*(1+a)*(1-b); 
        N2a=alpha*(1-b); 
        N2b=-alpha*(1+a);        
        N3=alpha*(1+a)*(1+b); 
        N3a=alpha*(1+b); 
        N3b=alpha*(1+a);         
        N4=alpha*(1-a)*(1+b); 
        N4a=-alpha*(1+b); 
        N4b=alpha*(1-a); 
        xa=N1a*x(1)+N2a*x(2)+N3a*x(3)+N4a*x(4); 
        xb=N1b*x(1)+N2b*x(2)+N3b*x(3)+N4b*x(4); 
        ya=N1a*y(1)+N2a*y(2)+N3a*y(3)+N4a*y(4); 
        yb=N1b*y(1)+N2b*y(2)+N3b*y(3)+N4b*y(4); 
        Jac=[xa ya; xb yb]; 
        Jaci=inv(Jac); 
        detJac=det(Jac); 
w=[N1 0 0 N2 0 0 N3 0 0 N4 0 0];                                       
thx=[0 N1 0 0 N2 0 0 N3 0 0 N4 0];                         
thx_x=Jaci(1,:)*[0 N1a 0 0 N2a 0 0 N3a 0 0 N4a 0;... 
                 0 N1b 0 0 N2b 0 0 N3b 0 0 N4b 0];           
thx_y=Jaci(2,:)*[0 N1a 0 0 N2a 0 0 N3a 0 0 N4a 0;... 
                 0 N1b 0 0 N2b 0 0 N3b 0 0 N4b 0];            
thy=[0 0 N1 0 0 N2 0 0 N3 0 0 N4];                        
thy_x=Jaci(1,:)*[0 0 N1a 0 0 N2a 0 0 N3a 0 0 N4a;... 
                 0 0 N1b 0 0 N2b 0 0 N3b 0 0 N4b];             
thy_y=Jaci(2,:)*[0 0 N1a 0 0 N2a 0 0 N3a 0 0 N4a;... 
                 0 0 N1b 0 0 N2b 0 0 N3b 0 0 N4b];     
strain_bend  = [-thx_x ; -thy_y ; -(thx_y+thy_x)];            
  
DD=Em*[h^3/12/(1-mu^2)     mu*h^3/12/(1-mu^2)  0           ;... 
       mu*h^3/12/(1-mu^2)  h^3/12/(1-mu^2)     0           ;... 
       0                   0                   GG*h^3/12]; 
DD_x=Em*[3*xj^2*h0^3/12/(1-mu^2)     mu*3*xj^2*h0^3/12/(1-mu^2)  0           
;... 
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         mu*3*xj^2*h0^3/12/(1-mu^2)  3*xj^2*h0^3/12/(1-mu^2)     0           
;... 
         0                           0                          
GG*3*xj^2*h0^3/12];      
DD_xx=Em*[6*xj*h0^3/12/(1-mu^2)     mu*6*xj*h0^3/12/(1-mu^2)  0           
;... 
          mu*6*xj*h0^3/12/(1-mu^2)  6*xj*h0^3/12/(1-mu^2)     0           
;... 
          0                         0                         
GG*6*xj*h0^3/12];      
stress_bend = DD*strain_bend;    
stress_bend_dx=DD_x*strain_bend; 
stress_bend_dxx=DD_xx*strain_bend; 
        K_elem_b=K_elem_b+(strain_bend'*stress_bend)*detJac*cc; 
        dK_elem_b_dx=dK_elem_b_dx+(strain_bend'*stress_bend_dx)*detJac*cc; 
        dK_elem_b_dxx=dK_elem_b_dxx+(strain_bend'*stress_bend_dxx)*detJac*cc;         
         
        M_elem=M_elem+rho*(h*(w'*w)+h^3/12*(thx'*thx+thy'*thy))*detJac*cc; 
        
dM_elem_dx=dM_elem_dx+rho*(h0*(w'*w)+3*xj^2*h0^3/12*(thx'*thx+thy'*thy))*detJ
ac*cc;         
        
dM_elem_dxx=dM_elem_dxx+rho*(6*xj*h0^3/12*(thx'*thx+thy'*thy))*detJac*cc;                
    end 
end 
  
clear pa; 
clear pb; 
clear ww; 
for ii=1:1 
    for jj=1:1         
        a=0; 
        b=0; 
        cc=2; 
        alpha=1/4; 
        N1=alpha*(1-a)*(1-b); 
        N1a=-alpha*(1-b); 
        N1b=-alpha*(1-a); 
        N2=alpha*(1+a)*(1-b); 
        N2a=alpha*(1-b); 
        N2b=-alpha*(1+a); 
        N3=alpha*(1+a)*(1+b); 
        N3a=alpha*(1+b); 
        N3b=alpha*(1+a); 
        N4=alpha*(1-a)*(1+b); 
        N4a=-alpha*(1+b); 
        N4b=alpha*(1-a); 
        xa=N1a*x(1)+N2a*x(2)+N3a*x(3)+N4a*x(4); 
        xb=N1b*x(1)+N2b*x(2)+N3b*x(3)+N4b*x(4); 
        ya=N1a*y(1)+N2a*y(2)+N3a*y(3)+N4a*y(4); 
        yb=N1b*y(1)+N2b*y(2)+N3b*y(3)+N4b*y(4); 
        Jac=[xa ya; xb yb]; 
        Jaci=inv(Jac); 
        detJac=det(Jac); 
        w_x=Jaci(1,:)*[N1a 0 0 N2a 0 0 N3a 0 0 N4a 0 0;... 
            N1b 0 0 N2b 0 0 N3b 0 0 N4b 0 0];     
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        w_y=Jaci(2,:)*[N1a 0 0 N2a 0 0 N3a 0 0 N4a 0 0;... 
            N1b 0 0 N2b 0 0 N3b 0 0 N4b 0 0];     
        thx=[0 N1 0 0 N2 0 0 N3 0 0 N4 0];                         
        thy=[0 0 N1 0 0 N2 0 0 N3 0 0 N4];                         
        strain_shear  = [-(thx-w_x) ; -(thy-w_y)];             
        DD=Em*[h/2.4/(1+mu)    0;... 
            0               h/2.4/(1+mu)]; 
        DD_x=Em*[h0/2.4/(1+mu)      0;... 
                 0                  h0/2.4/(1+mu)];      
        DD_xx=0*Em*[h0/2.4/(1+mu)      0;... 
                    0                  h0/2.4/(1+mu)];                   
        stress_shear = DD*strain_shear;    
        stress_shear_x = DD_x*strain_shear;    
        stress_shear_xx = DD_xx*strain_shear;     
        K_elem_s=K_elem_s+(strain_shear'*stress_shear)*detJac*cc; 
        dK_elem_s_dx=dK_elem_s_dx+(strain_shear'*stress_shear_x)*detJac*cc;         
        
dK_elem_s_dxx=dK_elem_s_dxx+(strain_shear'*stress_shear_xx)*detJac*cc;                 
    end 
end 
K_elem=K_elem_b+K_elem_s; 
dK_elem_dx=dK_elem_b_dx+dK_elem_s_dx; 
dK_elem_dxx=dK_elem_b_dxx+dK_elem_s_dxx; 
 

 

function [K_fluid, M_fluid]=Fluid_Assembly_MMA(Lx_ov, Ly_ov, Lz_ov, nelx, 
nely, nelz) 
xlen=Lx_ov/nelx; 
ylen=Ly_ov/nely; 
zlen=Lz_ov/nelz; 
x=[0 1 1 0 0 1 1 0]*xlen; 
y=[0 0 1 1 0 0 1 1]*ylen; 
z=[0 0 0 0 1 1 1 1]*zlen; 
DOF=1;  
Nnodesoverall=(nelx+1)*(nely+1)*(nelz+1); 
NDOFOverall=DOF*Nnodesoverall;                               
K_fluid=sparse(NDOFOverall,NDOFOverall);                         
M_fluid=sparse(NDOFOverall,NDOFOverall);                     
[K_el, M_el]=cavity_matrices(x,y,z);                      
for kk=1:nelz 
    for ii=1:nely 
        for jj=1:nelx            
            globn(1)=(ii-1)*(nelx+1)+jj+(kk-1)*(nelx+1)*(nely+1); 
            globn(2)=globn(1)+1; 
            globn(3)=ii*(nelx+1)+(jj+1)+(kk-1)*(nelx+1)*(nely+1); 
            globn(4)=globn(3)-1; 
            globn(5)=(ii-1)*(nelx+1)+jj+kk*(nelx+1)*(nely+1); 
            globn(6)=globn(5)+1; 
            globn(7)=ii*(nelx+1)+(jj+1)+kk*(nelx+1)*(nely+1); 
            globn(8)=globn(7)-1;            
            globndof1=(globn(1)-1)*DOF+1:(globn(1)-1)*DOF+DOF; 
            globndof2=(globn(2)-1)*DOF+1:(globn(2)-1)*DOF+DOF; 
            globndof3=(globn(3)-1)*DOF+1:(globn(3)-1)*DOF+DOF; 
            globndof4=(globn(4)-1)*DOF+1:(globn(4)-1)*DOF+DOF; 
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            globndof5=(globn(5)-1)*DOF+1:(globn(5)-1)*DOF+DOF; 
            globndof6=(globn(6)-1)*DOF+1:(globn(6)-1)*DOF+DOF; 
            globndof7=(globn(7)-1)*DOF+1:(globn(7)-1)*DOF+DOF; 
            globndof8=(globn(8)-1)*DOF+1:(globn(8)-1)*DOF+DOF; 
            globndof=[globndof1 globndof2 globndof3 globndof4 globndof5 
globndof6 globndof7 globndof8]; 
            K_fluid(globndof,globndof)=K_fluid(globndof,globndof)+K_el; 
            M_fluid(globndof,globndof)=M_fluid(globndof,globndof)+M_el;             
        end  
    end  
end  
 
 

function [C_assembly, C_el_array]=coupling_Assembly_MMA(Lx_ov, Ly_ov, nelx, 
nely, location) 
xlen=Lx_ov/nelx; 
ylen=Ly_ov/nely; 
x=[0 1 1 0]*xlen; 
y=[0 0 1 1]*ylen; 
nel=nelx*nely; 
DOF=3;  
Nnodesoverall=(nelx+1)*(nely+1); 
NDOFOverall_delta=DOF*Nnodesoverall;                             
NDOFOverall_press=1*Nnodesoverall; 
C_assembly=sparse(NDOFOverall_press,NDOFOverall_delta);          
C_el_array=zeros(1*8,3*4,nel); 
for ii=1:nely 
    for jj=1:nelx             
        index=(ii-1)*(nelx)+jj; 
        [c_matrix]=coupling_matrix_final(x,y,location);         
        C_el_array(:,:,index)=c_matrix;                                   
        if location == 1    
            c_matrix(5:8,:)=[]; 
        else                 
            c_matrix(1:4,:)=[]; 
        end     
        globn(1)=(ii-1)*(nelx+1)+jj; 
        globn(2)=globn(1)+1; 
        globn(3)=ii*(nelx+1)+(jj+1); 
        globn(4)=globn(3)-1; 
        DOF=3; 
        globndof1=(globn(1)-1)*DOF+1:(globn(1)-1)*DOF+DOF; 
        globndof2=(globn(2)-1)*DOF+1:(globn(2)-1)*DOF+DOF; 
        globndof3=(globn(3)-1)*DOF+1:(globn(3)-1)*DOF+DOF; 
        globndof4=(globn(4)-1)*DOF+1:(globn(4)-1)*DOF+DOF; 
        globndof_delta=[globndof1 globndof2 globndof3 globndof4]; 
        DOF=1; 
        globndof1=(globn(1)-1)*DOF+1:(globn(1)-1)*DOF+DOF; 
        globndof2=(globn(2)-1)*DOF+1:(globn(2)-1)*DOF+DOF; 
        globndof3=(globn(3)-1)*DOF+1:(globn(3)-1)*DOF+DOF; 
        globndof4=(globn(4)-1)*DOF+1:(globn(4)-1)*DOF+DOF;        
        globndof_press=[globndof1 globndof2 globndof3 globndof4]; 
        
C_assembly(globndof_press,globndof_delta)=C_assembly(globndof_press,globndof_
delta)+c_matrix;         
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    end  
end  
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APPINDEX B 

      ANSYS MACRO 
 
 

FINISH 

/CLEAR 

/NOPR 

/FILNAME,PLAIN_AIR_ALUMINUM 

/TITLE,MINIMIZING ACOUSTIC COUPLIG OF FLUID LOADED PLATES USING TOPOLOGY OPT. 

/CONFIG,NRES,10000 

/PREP7 

INCH=25.4E-3 

!DEFINE KEYPOINTS, LINES AND AREAS FOR THE COMPLETE MODEL 

! FRONT FACE 

K,1,0,0,0 

K,2,0,0,-12*INCH 

K,3,0,12*INCH,-12*INCH 

K,4,0,12*INCH,0 

! BACK FACE 

K,5,-30*INCH,0,0 

K,6,-30*INCH,0,-12*INCH 

K,7,-30*INCH,12*INCH,-12*INCH 

K,8,-30*INCH,12*INCH,0 

! LINES FOR FRONT AREA 

L,1,2,12 

L,2,3,12 
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L,3,4,12 

L,4,1,12 

! LINES FOR BACK AREA 

L,5,6,12 

L,6,7,12 

L,7,8,12 

L,8,5,12 

! LINES FOR TOP AREA LINES 

L,8,4,10 

L,3,7,10 

! LINES FOR BOTTOM AREA LINES 

L,5,1,10 

L,2,6,10 

! DEFINE FRONT AREA 

AL,1,2,3,4               ! AREA # 1 ====> PLATE'S AREA 

! DEFINE BACK AREA 

AL,5,6,7,8                   

! DEFINE TOP AREA 

AL,3,10,7,9                   

! DEFINE BOTTOM AREA 

AL,1,12,5,11                 

! DEFINE RIGHT AREA 

AL,12,6,10,2                 

! DEFINE LEFT AREA 

AL,4,9,8,11                  

!DEFINE FLUID VOLUME 
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VA,1,2,3,4,5,6 

!DEFINE MATERIALS 

!MATERIAL FOR THE FLUID MEDIUM: AIR 

MAT,1 

MP,DENS,1,1.2         ! MATERIAL DENSITY 

MP,SONC,1,343         ! SONIC VILOCITY 

! MATERIAL FOR THE PLATE: ALUMINUM 

MAT,2 

MP,DENS,2,2700        ! MATERIAL DENSITY 

MP,DMPR,2,0.032       ! MATERIAL DAMPING                      

MP,EX,2,71E9          ! MODULUS OF ELASTICITY ALOMG X DIRECTION 

MP,EY,2,71E9          ! MODULUS OF ELASTICITY ALOMG Y DIRECTION 

MP,EZ,2,71E9          ! MODULUS OF ELASTICITY ALOMG Z DIRECTION 

MP,PRXY,2,0.3         ! Major Poisson's ratios MAJOR POISSON'S RATIO IN XY PLANE 

MP,PRYZ,2,0.3         ! Major Poisson's ratios MAJOR POISSON'S RATIO IN YZ PLANE 

MP,PRXZ,2,0.3         ! Major Poisson's ratios MAJOR POISSON'S RATIO IN XZ PLANE 

MP,GXY,2,27.3E9       ! SHEAR MODULUS OF RIGIDITY IN XY PLANE 

MP,GYZ,2,27.3E9       ! SHEAR MODULUS OF RIGIDITY IN YZ PLANE 

MP,GXZ,2,27.3E9       ! SHEAR MODULUS OF RIGIDITY IN XZ PLANE 

! REAL CONSTANTS FOR MATERIAL 2 

R,2,2.5*1/32*INCH,2.5*1/32*INCH,2.5*1/32*INCH,2.5*1/32*INCH 

! DEFINE ELEMENT TYPES  

ET,1,FLUID30,,1       ! NON-INTERFACING FLUID ELEMENTS  

ET,2,FLUID30          ! FLUID ELEMENTS INTERFACING WITH STRUCTURE 

ET,3,SHELL181         ! PLATE AND CAVITY ELEMENTS 

KEYOPT,3,3,2 
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KEYOPT,3,8,2 

! DEFINE ELEMENT TYPE AND MATERIAL TO MESH THE PLATE 

! NESH THE PLATE USING RAEL CONSTANTS=1 

ASEL,S,AREA,,1        ! SELECT AREA # 1 

AATT,2,2,3            ! ASSIGN MATERIAL #2, REAL #2 AND ELEMENT TYPE #3 TO AREA #1                     

AMESH,1               ! MESH AREA #1 

! DEFINE ELEMENT TYPE AND MATERIAL TO MESH THE FLUID MEDIUM (NON-INTERFACING) 

VSEL,S,VOLU,,1     ! SELECT VOLUME #1   

VATT,1,1,1         ! ASSIGN MATERIAL #1, REAL #1 AND ELEMENT TYPE #1 TO VOLUME #1   

VMESH,1            ! MESH AREAS #2 TO 5 

! DEFINE ELEMENT TYPE AND MATERIAL TO MESH THE FLUID MEDIUM (INTERFACING) 

NSEL,S,LOC,X,0 

ESLN,S 

ESEL,R,TYPE,,1 

EMODIF,ALL,TYPE,2 

! DEFINE BOUNDARY CONDITIONS FOR PLATE AND FLUID 

LSEL,S,LINE,,1,4 

NSLL,S,1 

D,ALL,UX,0,,,,UY,UZ,ROTX,ROTY,ROTZ 

! DEFINE BOUNDARY CONDITIONS FOR FLUID 

NSEL,S,LOC,Y,12*INCH 

NSEL,A,LOC,Y,0 

NSEL,A,LOC,Z,-12*INCH 

NSEL,A,LOC,Z,0 

NSEL,R,LOC,X,0,-3*INCH 

D,ALL,UX,0,,,,UY,UZ 
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! DEFINE SURFACE LOADS 

SFA,1,,FSI 

ALLSEL 

/SOLU 

! DEFINE LOADS 

F,109,FX,-0.05 

!ANALYSIS TYPE AND OPTIONS 

ANTYPE,HARMIC,NEW 

HROPT,FULL 

HARFRQ,,1000 

NSUBST,1000 

KBC,1 
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