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 Imidacloprid is a widely used neonicotinoid insecticide with high efficacy and 

long residual activity, and it is frequently applied to manage insect pests in urban 

landscapes.  Recent reports of secondary outbreaks of spider mites after imidacloprid 

applications have prompted research endeavors to explain the driving force of the abrupt 

increases in abundance of mites.  In this research, I documented outbreaks of spider mites 

in field and greenhouse experiments, and explored the three main mechanisms that have 

been proposed to explain the outbreaks: elimination of natural enemies, direct stimulation 

of spider mite fecundity and changes in plant quality, specifically, changes in defense 

pathways.  To this end, I examined if the outbreaks occur in field and greenhouse 

experiments, and tested if imidacloprid applications disrupted communities of beneficial 

insects and caused increased reproductive performance of spider mites in two woody 

ornamental systems, elm trees and boxwood shrubs.  Additionally, I used a model 



  

organism, tomato plants, to address the hypothesis of altered plant defenses in plants 

treated with imidacloprid.   

I found overwhelming evidence that outbreaks of spider mites occur consistently 

following applications of imidacloprid in landscape and greenhouse experiments.  

Moreover, surveys of arthropods on elms and boxwoods showed no evidence of 

disruption of a key predator of spider mites that could explain the outbreaks.  

Importantly, I found a plant-mediated effect of imidacloprid on fecundity of spider mites, 

while there was no evidence that the insecticide applied directly to the mites exerted the 

same effect on their reproductive performance.  Lastly, two genes involved in jasmonic 

and salicylic acid showed a differential expression in tomatoes treated with imidacloprid, 

indicating that it affected plants’ defense pathways in ways that could render plants more 

suitable for spider mites.  This research demonstrated that changes in quality of plants 

brought about by imidacloprid seem to be the driving mechanism of secondary outbreaks 

of spider mites.    
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Chapter 1: Abundance of a non-target pest, spider mites (Acari: 
Tetranychidae), increases abruptly following applications of 

imidacloprid to woody ornamental plants. 
 

Abstract 

Imidacloprid, a neonicotinoid insecticide, has been used worldwide since its 

development in the early 1990’s.  It is a highly efficacious insecticide with long residual 

activity against a wide range of target pests.  Recently, economic and environmental 

benefits of imidacloprid have been overshadowed by reports of secondary outbreaks of 

spider mites (Acari: Tetranychidae) on plants treated with imidacloprid.  The objectives 

of this study were to quantify differences in abundance of teranychids on commonly 

grown woody ornamental plants.  Field and greenhouse experiments were conducted 

using elm trees and boxwood plants in a managed urban landscape and potted boxwoods 

and cotoneasters in a greenhouse.  Abundance of Tetranychus schoenei McGregor on 

elm, Eurytetranychus buxi Garman on boxwood, and Oligonychus ilicis McGregor on 

cotoneaster was compared between treatments.  Spider mites in the field and greenhouse 

experiments were more numerous on plants that received imidacloprid.  Additionally, 

there is some evidence of increase in numbers of eriophyid mites (Peralox insolita 

Keifer, Acari: Diptilomiopidae) and tydeid mites (Homeopronematus anconai Baker, and 

Lorryia spp Oudemans, Acari: Tydeidae) on elm trees treated with imidacloprid.  

Abundance of a key predator of T. schoenei, G. herbertae (Acari: Phytoseiidae) was 

reduced on elms treated with imidacloprid. Implications of these findings to possible 

mechanisms of secondary outbreaks of spider mites are discussed.  
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Introduction 

 Outbreaks can be defined as dramatic increases in the abundance of arthropod 

pests that occur in relatively short periods of time that negatively affects some aspect of 

human well-being (Berryman 1987, Barbosa and Schultz 1987).  Outbreaks of 

herbivorous arthropods that successfully compete with humans for valued resources have 

attracted considerable attention from scientists (Logan et al. 2003).  Sudden and 

unpredictable spikes in abundance of pests are thought to arise from such factors as 

changes in physical environment, abundance and quality of host plants, inherent genetic 

propensity of the organisms, and disruptions of natural enemies that allow pests to escape 

regulation by predators and parasites (Berryman 1982, Barbosa and Schultz 1987, 

Wallner 1987, Logan et al. 2003, Raupp et al. 2009).   

 Climate is one of the most powerful factors in shaping geographical distribution 

of arthropods and alters the frequency of outbreaks (Logan et al. 2003).  On a global 

scale, weather and rainfall are the most important predictors of insect distribution 

(Wallner 1987).  Temperature fluctuations and drought have been recorded to precede 

insect outbreaks.  For example, Powers et al. (1999) found that in addition to topography 

and vegetation type, weather phenomena played a role in outbreaks of bark beetles on 

Douglas fir in Oregon forest. Increased abundance of giant phasmids and chrysomelid 

beetles on eucalyptus was linked to temperature and rainfall in Australia (Nylin 2002).  

Temperature and patterns of rainfall are linked to outbreaks of herbivores driven by 

qualitative and quantitative changes in their host plants and disruption of predator-prey 

interactions that normally suppress pest populations (Berryman 1982, Barbosa and 

Schultz 1987, Wallner 1987, Logan 2003, Raupp et al. in press).   
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 While natural events can dramatically destabilize trophic interactions, 

anthropogenic practices can have impacts equally damaging in consequences.  

Widespread use of pesticides to control herbivorous arthropods in urban landscape has 

been implicated in resurgence of primary pests and outbreaks of secondary herbivores 

(Ripper 1956, Roberts et al. 1973, McClure 1977, Dreistadt and Dahlsten 1986, Godfray 

and Chan 1990, Raupp et al. 1992, Raupp et al. 2001, Raupp et al. in press, Amalin et al. 

2001, Marquini et al. 2002, Devotto et al. 2006, Frampton et al. 2007, Liang et al. 2007).   

Documented cases of outbreaks of secondary pests are of particular relevance to 

my research.  In 1975 Luck and Dahlsten reported that mosquito-fogging programs 

resulted in increased abundance of pine needle scale, Chionaspis pinifoliae. A secondary 

outbreak of another scale insect, European fruit lecanium, followed application of an 

insecticide aimed to control filth-flies (Merritt et al. 1983).  Similar cases of increased 

abundance following insecticide applications were reported for citrus red mite, 

honeylocust spider mite, woolly whitefly, purple scale, citrus mealybug (Debach and 

Rose 1977, Sclar et al. 1998, Raupp et al. 2004, Raupp et al. 2008).  It was the onset of 

widespread use of pesticides after World War II that contributed to the rise of spider 

mites (Acari: Tetranychidae) to a status of a worldwide pest (Kropczynska-Linkiewicz 

1984).  Population levels of tetranychids usually remain low until pesticides are applied 

(Prischmann 2005).     

In general, outbreaks of pests following applications of insecticide are generally 

thought to arise due to a few mechanisms. These include insecticide-induced elimination 

of natural enemies or decrease of their foraging abilities, increased herbivore fecundity 

either by hormoligosis, the direct, sublethal effect of stress agent on reproductive ability 
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or trophobiosis, insecticide-driven changes in plant physiology that increase plant’s 

nutritional value, elimination of competition and lastly, shift toward female-biased sex 

ratio that results in greater number of eggs are thought to cause the outbreaks of pests 

(Jones and Parella 1984, Trichilo and Wilson 1993, Hardin et al. 1995).   

Elimination or decrease in foraging ability of natural enemies has been 

extensively studied with respect to pest outbreaks following application of insecticides 

(Roberts et al. 1973, Luck and Dahlsten 1975, DeBach and Rose 1977, Merritt et al. 

1983, Dreistadt and Dahlsten 1986). Outbreaks of tetranychids often follow when 

pesticides remove predators and release mites from their regulating pressure (Ripper 

1956, Croft and Brown 1975, Pimentel and Edwards 1982).  Following the application of 

pyrethroid insecticides, Trichilo and Wilson (1993) noted a 12-fold increase in abundance 

of mites on treated plants. Natural enemy release and an increase in fecundity of mites 

where mechanisms underlying these dramatic increases.  Applications of an 

organophosphate insecticide to wine grapes lead to increased abundance of spider mites 

that was linked to lower numbers of predatory phytoseiid mites (Acari: Phytoseiidae) 

(Prischmann et al. 2005). Phytoseiids are key predators of tetranychids (McMurtry et al. 

1970, Helle and Sabelis 1985).  Stavrinides and Mills (2009) observed higher levels of 

spider mites and lower numbers of predatory mites on grapes that were treated with 

imidacloprid, a neonicotinoid insecticide.  However, many studies illustrated only the 

post-treatment effect of pesticides on predators, and failed to demonstrate that the 

specific beneficial arthropod was vital to regulating spider mite populations in a density-

dependent relationship in the studied system (Ripper 1956, Hardin et al. 1995).   
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 In addition to examples of disruption of natural enemies of spider mites, there are 

numerous reports of insecticides that directly affect mites.  Saini and Cutkomp (1966) 

and Dittrich et al. (1974) reported that DDT increased oviposition and resulted in female-

biased ratio in spider mites.  Methyl carbamate applications had a stimulatory effect on 

spider mites as well (Dittrich et al. 1974, Boykin and Campbell 1982, Costa et al. 1988, 

Calabrese 1999). Another insecticide class, pyrethroids, affected tetranychids in a similar 

way.  Application of synthetic pyrethroids resulted in higher fecundity, female-biased sex 

ratio, decreased generation time and delayed diapause (Iftner and Hall, 1984, Jones and 

Parella 1984, Costa et al. 1988, Gerson and Cohen 1989, Ayyappath 1997).   

 Moreover, in addition to effects of insecticides on natural enemies and 

reproductive stimulation of tetranychid mites, there is some evidence that insecticidal 

chemicals promote changes in plant quality that may lead to outbreaks of mites.  

Insecticides are known to have positive effects on plant growth (Pless et al. 1971, 

Wheeler and Bass 1971, Chelliah and Heinsrich 1980, Oosterhuis and Brown 2003, 

Gonias et al. 2006, Tenczar and Krischik 2006, Gonias et al. 2008), and there are several 

studies suggesting that changes in plant physiology have positives effect on abundance of 

spider mites.  Boykin and Campbell (1982) found changes in physiology of peanut plants 

after carbaryl applications resulted in elevated populations of spider mites.  This effect 

was also observed on soybean plants treated with carbofuran (Mellors et al. 1984).  More 

recently, Gupta and Krischik (2007) reported that rose plants treated with imidacloprid 

had elevated indices of chlorophyll and leaf area and housed higher numbers of spider 

mites than untreated plants.   



 6

 Elevated numbers of tetranychid mites after applications of imidacloprid have 

been observed in the past.  Sclar et al. (1998) first described the phenomenon of increased 

populations of spider mites following the application of imidacloprid on honeylocust.  

Elevated populations of spider mites were later reported on hops and hemlocks (James et 

al. 2001, Raupp et al. 2004).  Because of imidacloprid’s widespread use in management 

of herbivorous insects (Li et al. 2001, James and Price 2002, Rogers et al. 2007), it is 

crucial to document the secondary outbreaks of mites and understand their underlying 

mechanisms.   

 Imidacloprid, [1-(6-chloro-3-pyridylmethyl)-2-nitroimino-imidazolidine], was 

the first neonicotinoid that came into widespread use (Mullins 1993). It is similar in 

structure to nicotine, and acts as an agonist at the nicotinic acetylcholine receptor 

(nAChR) distributed throughout the nervous system of insects (Tomizawa and Casida 

2003). Insect nAChRs are involved in rapid neurotransmission. Binding of the primary 

ligand, acetylcholine, to the extracellular domain of the receptor in the postsynaptic 

region results in conformational change of the receptor and subsequently an action 

potential is generated by influx of Na+ ions and efflux of K+ ions (Tomizawa and Casida 

2003). After the acetyl group of the ligand is cleaved by acetylcholinesterase, choline 

leaves the receptor and membrane repolarizes (Tomizawa and Casida 2003). 

Imidacloprid has been found to depolarize and block transmission between synapses of 

the receptor at the postsynaptic membrane. It binds to the receptor causing an action 

potential, but then is not recognized by acetylcholinesterase and remains bound to the 

receptor (Matsuda et al. 2001). Neonicotinoids do not ionize at physiological pH, and are 

thus more hydrophobic and better at penetrating membranes (Tomizawa and Casida 



 7

2003). Moreover, the insecticide exhibits target site specificity for insect nAChR. This is 

attributed to the fact that imidacloprid's structure enhances its reactivity with insect 

nAChR (Tomizawa and Casida 2003, Matsuda et al. 2001). Imidacloprid contains 

bridgehead nitrogen and a strong electron withdrawing nitro group that are thought to 

strengthen interactions with particular amino acids of insect nAChR (Matsuda et al. 

2001). This was confirmed by Matsuda et al. (2001) in an experiment that involved 

synthesis of a chemical that differed from imidacloprid only by absence of the bridgehead 

nitrogen and the nitro group. This molecule did not show high affinity for insect nAChR. 

Moreover, Zhang et al. (2000) found that the specificity of imidacloprid for the binding 

site on acetylcholine receptor was conserved between two different aphid species, a 

housefly and a fruit fly. This indicates that the high specificity of imidacloprid is 

conserved among insect species and families. 

 Imidacloprid’s chemical characteristics translate to very important practical 

benefits such as reduced environmental impact, high efficacy and long residual activity. 

Imidacloprid's high affinity for insect nAChRs increases its safety to humans and other 

mammals. The Environmental Protection Agency has found the insecticide to have no 

acute, reproductive, or carcinogenic toxicity (EPA 2000). A great advantage of the 

pesticide is that it can be applied as a soil drench or soil injection, which minimizes 

exposure of non-target arthropods to the chemical. Imidacloprid is a systemic insecticide, 

and it is absorbed through the roots into the vascular system, and distributed to plant 

tissues (Mullins 1993, Gill et al. 1999). It has been reported to control sucking insect 

pests such as aphids, whiteflies, lace bugs, adelgids as well as several species of 

Coleoptera and Diptera (James 1997, Gill et al. 1999, d'Eustachio and Raupp 2001, James 
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and Vogele 2001, Webb et al. 2003, Raupp et al. 2004, Szczepaniec and Raupp 2007). 

High effectiveness and low mammalian toxicity of imidacloprid stimulated research on 

other neonicotinoids: thiamethoxam, nitenpyram, acetamiprid, dinotefuran, clothianidin, 

all of which are currently available on the market. Neonicotinoid seed treatments have 

been shown to provide an effective control of potato leafhopper (Nault et al. 2004). In 

addition to providing excellent short-term control of insect pests, imidacloprid has shown 

exceptionally long activity: absence of pests and toxicity of foliage was observed up to 

three years following application in potted cotoneaster plants (Szczepaniec and Raupp 

2007) and up to almost three years in established hemlock trees (Raupp et al. 2004).  

 The objective of this study was to document empirically the occurrence of 

spider mite outbreaks following applications of imidacloprid to plants growing in urban 

landscapes.  To this end, the abundance of tetranychid mites was observed on elm trees 

and boxwood shrubs in managed landscapes and common gardens, and on boxwoods and 

cotoneasters in greenhouse studies.  Spider mites are parenchyma-sucking arthropods that 

feed on cell contents of their host plants by piercing the cell walls with long stylets (Helle 

and Sabelis 1985).  Another cell-contents feeders, lace bugs (Hemiptera: Tingidae) are 

known to be susceptible to imidacloprid (Gill et al. 1999, d’Eustachio and Raupp 2001), 

which implies that arthropods can come in contact with imidacloprid by sucking out the 

contents of plant cells.  This allowed me to assume that spider mites were exposed to 

imidacloprid by consuming plants treated with the neonicotinoid.  Species of mites used 

included Tetranychus schoenei (McGregor) on elm, Eurytetranychus buxi (Garman) on 

boxwoods and Oligonychus ilicis (McGregor) on cotoneasters.  With the exception of a 

study of boxwoods conducted in a greenhouse, no mites other than naturally occurring 
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populations were introduced onto the experimental units.  In addition to tetranychid 

mites, abundances of other mites were recorded in experiments conducted with elms in 

the field.   

Methods 

Study system: Tetranychus schoenei McGregor (Acari: Tetranychidae) and  Ulmus 

americana Linn. (Urticales: Ulmaceae) 

Herbivore and its natural enemies.  The T. schoenei, (Tetranychus schoenei 

McGregor) is a polyphagous tetranychid distributed over the eastern and southeastern US 

(Reeves 1963). It shares many traits of its natural history with a close relative, the 

twospotted spider mite, Tetranychus urticae (described in Chapter 4).  Similar in this 

respect to the twospotted mite, the T. schoenei has four developmental stages, larva, 

protonymph, deutonymph and adult. (Jeppson et al. 1975).  There are morphological 

differences between different developmental forms of this mite.  While deutonymphs and 

adult forms of T. schoenei have four dark spots, two located on each side of their bodies, 

larvae and protonymphs have only two spots, one on each side.  The complete life cycle 

can take place in seven days at optimum temperature (25-28 °C), and there is an average 

of nine generations per year.  At their maximum reported longevity, 36 days, T. schoenei 

females may lay over 100 eggs (Jeppson et al. 1975).  T. schoenei feeds mainly on the 

underside of leaves and produces variable webbing.  Heavy infestations of the pest cause 

yellowing of the leaves and leaf drop.  This mite overwinters as mated females, and 

diapausing individuals can be distinguished by their bright orange coloration (Jeppson et 

al. 1975).   
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 The natural enemies of this mite are shared by most tetranychids, and include 

phytoseiid mites (Acarina: Phytoseiidae) (Helle and Sabelis 1985, Dicke et al.  1999, 

Roda et al.  2000), minute spider mite destroyer, Stethorus punctum (Coleoptera: 

Coccinellidae) (Helle and Sabelis 1985, Roda et al. 2000, Rott and Ponsonby 2000, Roy 

et al. 2002, Roy et al. 2003), lacewing larvae (Neuroptera: Chrysopidae) (Reddy 2001, 

Rosenheim et al. 2004), dusty wings (Neuroptera: Coniopterygidae) and ceccidomyid 

larvae (Diptera: Ceccidomyiidae) (Huffaker and Messenger 1976).  There are no reports 

of a specialist natural enemy feeding exclusively on the T. schoenei.  

 

Host plant.  The American elm (Ulmus americana), also known as water elm and 

white elm, is a deciduous tree native to North America (United Stated Department of 

Agriculture 2009a).  It is distributed from Nova Scotia to Florida, and occurs as far west 

as Manitoba and down to central Texas (United Stated Department of Agriculture 2009a).  

Elms are fast-growing trees that are adapted to various types of soil and have medium 

drought tolerance (United Stated Department of Agriculture 2009b).   

Elms’ low - maintenance and highly aesthetic appearance made it one of the most 

popular landscape trees until the onset of Dutch elm disease (DED) in the 1930’s 

(McLeod et al. 2005, Newhouse et al. 2007).  Among other pests of American elms are 

leafhoppers, aphids, elm lace bugs, leaf miners, fall webworm, elm leaf beetle, eriophyid 

mites and spider mites (Johnson and Lyon 1991).  Recently, an introduced species of a 

boring beetles, Asian longhorned beetle (ALB), Anoplophora glabripennis, has killed 

many elm trees and forced the removal of thousands of others in Illinois, New Jersey, 

New York and Massachusetts (United Stated Department on Agriculture 1996, 1998, 
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2003, 2007, 2008).  ALB eradication efforts include prophylactic applications of 

imidacloprid in quarantine zones, which resulted in unusually high abundance of spider 

mites on American elms in Central Park, New York, NY (Raupp et al. 2008).  

Study system: Eurytetranychus buxi Garman (Acari: Tetranychidae) and Buxus 

sempervirens Linn. (Euphorbiales: Buxaceae) 

Herbivore and its natural enemies.  E. buxi is a specialist and feeds only on 

boxwoods (Jeppson et al. 1975).  Its developmental stages do not differ from other 

tetranychids.  However, boxwood mites tend to have a longer life cycle. It takes about 20 

days from the time an egg is laid for a mite to mature. Fecundity of E. buxi is also 

significantly lower than T. schoenei.  Boxwood mites lay an average of 30 eggs in the 

span of their lifetime, which varies from two to five weeks (Jeppson et al. 1975).  E. buxi 

prefers to feed on the upper side of young boxwood leaves, and in heavy infestations, the 

leaves may appear yellow from coalesced stippling injury.  Boxwood spider mite does 

not produce webbing, and prefers high temperatures with low humidity (Jeppson et al. 

1975).  After approximately 8 generations a year, boxwood spider mites overwinter as 

eggs, and hatch in early spring (Jeppson et al. 1975).   

 As with other tetranychids, the key predator of this mite are phytoseiids 

(Acarina: Phytoseiidae) (Helle and Sabelis 1985, Dicke et al.  1999, Roda et al.  2000).  

Other important natural enemies of boxwood mites are minute spider mite destroyer, 

Stethorus punctum (Coleoptera: Coccinellidae) (Helle and Sabelis 1985, Roda et al. 2000, 

Rott and Ponsonby 2000, Roy et al. 2002, Roy et al. 2003), lacewing larvae (Neuroptera: 

Chrysopidae) (Reddy 2001, Rosenheim et al. 2004), dusty wings (Neuroptera: 
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Coniopterygidae) and ceccidomyid larvae (Diptera: Ceccidomyiidae) (Huffaker and 

Messenger 1976).   

 

Host plant.  Boxwoods (Buxus sempervirens) are one of the most popular woody 

ornamental shrubs grown in urban landscapes (Jagdale et al. 2002, Raupp et al. 1985).  

This introduced evergreen is distributed throughout the Continental US (ITIS 2009), but 

it originated in the Mediterranean region of Eurasia (Roberts and Wink 1998).  Boxwood 

leaves are opposite, shiny and dark green, and contain toxic alkaloids such as 

cyclobuxine and buxanine (Roberts and Wink 1998).  These compounds are derived from 

cholesterol skeletons and had medicinal use in ancient and medieval times (Roberts and 

Wink 1998).  This slow-growing plant can reach up to ~15 feet in height, and clay and or 

loamy soils are the most suitable for growth (Gilman 1999).   

A few key pests attack boxwoods.  Leafminer Monarthopalpus flavus (Diptera: 

Cecidomyiidae) infestations are particularly troublesome because they cause yellowing 

and blistering of the leaves, which diminishes the aesthetic value of boxwoods 

(d’Eustachio and Raupp 2001a).  Distortion of leaves is caused by a psyllid, Psylla buxi, 

(Hemiptera: Psyllidae) which is another troublesome boxwood pest.  Psyllid feeding 

causes significant, visible damage by cupping of the leaves in which immatures of the 

pest develop.  A few other pests such as various scale insects and a specialized 

tetranychid, boxwood spider mite, may inflict significant damage (Johnson and Lyon 

1991).  Imidacloprid applications are commonly administered to control boxwood 

leafminer and psyllid infestations (d’Eustachio and Raupp 2001b).  
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Study system: Oligonychus ilicis McGregor (Acari: Tetranychidae) and Cotoneaster 

salicifolius Franch (Rosales: Rosaceae) 

 Herbivore.  Southern red mites, O. ilicis, are oligophagous pests with a 

worldwide range (Jeppson et al. 1975).  It is the most destructive and widespread 

tetranychid pest of broad-leaved evergreens, and it attacks a variety of economically 

important plants (Jeppson et al. 1975, Johnson and Lyon 1995).  As their common name 

suggests, southern red mites are red to purple in color, and lay eggs of a similar 

coloration (Jeppson et al. 1975).  They can complete their development in two weeks at 

22-24° C and have multiple, overlapping generation during periods of their activity 

(Jeppson et al. 1975).  Feeding by these mites results in bronzing of the foliage, 

especially along the mid-rib (Jeppson et al. 1975).  Southern red mite prefers cooler 

season and aestivates as eggs during the summer months (Jeppson et al. 1975, Johnson 

and Lyon 1995).  O. ilicis  was found to be most abundant in late spring and early fall in 

Massachusetts and Kentucky (Jeppson et al. 1975, Potter and Kimmerer 1989).  

Phytoseiids (Acarina: Phytoseiidae) are a key natural enemy of this spider mite (Helle 

and Sabelis 1985, Dicke et al. 1999, Roda et al. 2000) 

  

 Host plant.  Cotoneaster (Cotoneaster salicifolius) is a shrub commonly grown in 

urban landscape.  It reaches a maximum height of 0.3 m, has attractive dark green leaves 

and produces abundant red berries in the winter months (USDA 2009b).  It is native to 

central Asia, and has escaped cultivation and become an invasive species in parts of 

California and Hawaii (Starr et al. 2003).  Cotoneasters are attacked by hawthorn lace 

bugs, Corythuca cydoniae Fitch (Hemiptera: Tingidae), whose feeding may lead to 
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severe discoloration of leaves and eventual leaf drop in high infestations (Schultz 1983).   

This serious key pest is successfully controlled with imidacloprid (Gill et al. 1999, 

Szczepaniec and Raupp 2007).  

Effect of imidacloprid applications on abundance of spider mites on elm trees and 

boxwood shrubs in managed landscapes 

Field experiment: Elm. To investigate how applications of imidacloprid applied to 

the soil affected spider mite populations on elms, 18 elm trees were planted in a common 

garden at the University of Maryland Turf Research Farm in College Park, Maryland in 

May 2005.  The trees were purchased from a nursery, and had a trunk diameter at breast-

height (DBH) of approximately 2.5 cm at the time of planting.  They were hand-watered 

as needed throughout each season, and received applications of 15 g of a slow-release 

fertilizer Osmocote® (N:P:K of 17:7:12) once a year.  In a completely randomized block 

design, nine elms were treated with imidacloprid (Merit® soluble powder formulation, 

750g of imidacloprid/kg, Bayer, Kansas City, MO) at the label rate of 1.4 tsp (~2 g) per 

2.5 cm DBH dissolved in 1L of water.  Nine other elms were designated as untreated 

controls.  I applied imidacloprid on 06/05/2006, and repeated the applications on 

05/11/2007 and 05/19/2008.   

Numbers active stages and eggs of the spider mite, T. schoenei, and other mites 

were counted from June to September in 2007 and 2008.  Four terminal leaves were 

removed from two branches on each tree using hand and pole pruners.  Foliage was 

brought back to the laboratory in a cooler filled with ice where spider mites on both sides 

of the leaves were counted using a dissecting microscope. To compute density of mites, 

leaf area was measured using LI-31100C area meter (Li-Cor® Biosciences USA) and 



 15

arthropod abundance was expressed as the number per cm2 of leaf area.  Spider mites 

feed by sucking out contents of plant cells, and their feeding has little effect on biomass 

of the hosts unless populations reach extremely high levels.  Thus, density of the mites 

was the most suitable parameter to detect fluctuations in mite abundance.  

 

Field experiment: Boxwood.  Responses of E. buxi to applications of imidacloprid 

were evaluated on boxwoods, B. sempervirens, in a managed landscape on campus of the 

University of Maryland, College Park, MD, U.S.A.  Boxwoods in this garden were not 

trimmed during the study and they received no supplemental water other than rain.  I used 

20 boxwoods that were approximately 0.6 m tall, and grew in rows separated by about 

0.3 m between individual plants.  The experiment was a completely randomized design 

with two boxwoods between shrubs assigned to treatments serving as buffers.  Ten plants 

received imidacloprid and ten boxwoods were designated as untreated controls.  

Imidacloprid was administered to the plants on 05/17/2005.  Imidacloprid was applied as 

a soil drench formulation (Merit® water soluble powder, 750 g of imidacloprid/kg, Bayer, 

Kansas City, MO) at the label rate of 1.4 tsp (~ 2 g) per 0.3 m of height dissolved in 1L 

of water.  Spider mite abundance was evaluated throughout the growing season in 2005 

as described above, with the exception that mites on five leaves rather than four were 

recorded.  Leaf area was measured using Li-Cor® LI-31100C area meter and abundance 

of mites was expressed as the number per cm2 of leaf area. 
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Effect of imidacloprid applications on abundance of spider mites on boxwoods and 

cotoneasters in a greenhouse 

Greenhouse study: Boxwood.  This experiment was conducted at the Research 

Greenhouse Complex at the University of Maryland, College Park, MD, U.S.A.  

Containerized boxwoods, B. sempervirens, measuring 0.3 – 0.5 m in height, were 

purchased from a commercial supplier.  Shrubs were potted in 3.7 L containers, they 

were maintained at 18 – 22° C, and received approximately 0.2 L of water every day 

delivered by drip irrigation.  To evaluate how soil drench applications of imidacloprid 

affected abundance of spider mites, 10 boxwood plants free of spider mites received 

imidacloprid (Marathon® soluble powder formulation, 600 g of imidacloprid/kg, Bayer, 

Kansas City, MO) at the high label rate of 0.33 g per pot dissolved in 0.1 L of water.  Ten 

other boxwoods were designated as untreated controls.  Boxwoods in both treatments 

were then interspersed with shrubs heavily infested with boxwood mite to create 

infestations on experimental units.  Imidacloprid was administered in February 2008, and 

numbers of boxwood mites were recorded four months later.  Branch samples and mite 

counts were obtained in the same manner described above for the field experiment.   

 

Greenhouse study: Cotoneaster.  This experiment was conducted at the Research 

Greenhouse Complex at the University of Maryland, College Park, MD, U.S.A. Plant 

material for this study was purchased at a retail nursery.  Cotoneasters, C. salicifolius, 

were in 3.7 L pots, and measured approximately 0.5 m in height.  Plants were maintained 

in the conditions described previously for boxwoods, and were watered every other day 

with a hand-held hose until leaching was observed.  Ten cotoneasters were randomly 
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assigned to receive imidacloprid and 10 were designated as untreated controls.  The 

insecticide was administered on 05/17/2005 as a soil drench formulation at the high dose 

described on the label as described previously.  Southern red mites, O. ilicis, were 

recorded on treated and untreated cotoneasters in August by sampling five terminal 

leaves from four branches chosen at random from each experimental unit.  Branches were 

not excised from cotoneasters, and a hand lens (10X, Hasting Triplet, Bausch & Lomb®) 

was used to count spider mites and their eggs on both sides of each leaf. Spider mite 

density was expressed as number of mites per terminal.  

Statistical analyses 

 Results of the field experiments that spanned entire growing seasons were 

analyzed using repeated measures model of analysis of variance (SAS 2008).  If time by 

treatments interactions were statistically significant, then one-way ANOVA tests were 

performed at each date of sampling, (Statistix 2005).  For each of the greenhouse 

experiments, normality of distribution was tested using a Shipiro-Wilk test, and 

homogeneity of variance was evaluated according to Levene’s test (SAS 2008).  One-

way analysis of variance was performed on data that were normally distributed and 

homoschedastic.  Abundance was compared using a nonparametric Kruskal – Wallace 

test if assumptions of ANOVA could not be met by raw or transformed data (Ott and 

Longnecker 2001).   
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Results 

Effect of imidacloprid applications on abundance of spider mites on elm trees and 

boxwood shrubs in managed landscapes 

Field experiment: Elm.  Abundance of spider mites on elms differed between 

treatments in both sampling years (Figure 1.1).  In 2007, there was a significant 

interactive effect of treatment and time (F2,52 = 9.17, P = 0.0012).  Treated elm trees 

housed more mites than untreated trees on two out of the three sampling dates in 2007 

(Figure 1.1, Table 1.1).  Similarly, in 2008 there was a significant treatment by time 

interaction on tetranychid abundance (F3,71 = 5.10, P = 0.0053 ) (Figure 1.1).  With the 

exception of the first sampling in June, T. schoenei were more numerous on elms treated 

with imidacloprid (Table 1.1).   

In addition to tetranychid mites, elms housed three other mites that were relatively 

common. Phytophagous mites from the super family Eriophyoidea responded positively 

to imidacloprid applications. Peralox insolita Keifer (Acari: Diptilomiopidae) was 

significantly more abundant on imidacloprid treated elms in 2007 (F1,24 = 11.57, P = 

0.0023) and there was no significant interactive effect of time and treatment on 

abundance of these mites (F2,52 = 2.64, P = 0.0922) (Figure 1.2).  P. insolita were 

significantly more numerous on treated elms only on the first sampling date (Table 1.1).  

However, a trend for greater abundance on elms that received imidacloprid application 

continued throughout the season.  In contrast, imidacloprid had no effect on eriophyids 

during the following year (F1,32 = 0.01, P = 0.9232) (Figure 1.2).  In 2008, eriophyid 

mites were more abundant on control plants on the first sampling date (Table 1.1), while 

the trend reversed one month later.  In both years, eriophyid mites populated trees in 



 19

greater numbers during June and July and decreased in the month of August and early 

September.  

 Abundance patterns of another acarian, tydeid mites Homeopronematus anconai 

Baker and Lorryia sp. Oudemans (Acari: Tydeidae), was somewhat similar to P. insolita.  

Majority of tydeids collected on the elms were in the species H. anconai.  In 2007, tydeid 

mites were significantly more abundant on elms that received imidacloprid (F1,24 = 4.79, 

P = 0.0387), and there was no interactive effect of time and treatment on tydeid numbers 

(F2,52 = 0.88, P = 0.4260) (Figure 1.3).  Treated elms had consistently greater abundance 

of tydeids in 2007 (Table 1.1).  However, the effect of imidacloprid on these mites was 

not repeated in 2008.  Tydeids tended to be greater on treated trees on most dates, but the 

difference between treatments was not significant (F1,32 = 0.01, P = 0.9363) (Figure 1.3).  

In fact, mites were more numerous on untreated elms on the last sampling date.   

 Importantly, the opposite trend was observed for the effect of imidacloprid on 

abundance of predatory mites, Galendromus herbertae Chant and Galendromus 

halvelous Chant (Acari: Phytoseiidae), which are key natural enemies of spider mites.  G. 

herbertae was more common of the two species collected. These species could not be 

readily separated visually during the processing of samples, but the ratio of G. herbertae 

to G. halvelous was approximately 8:1. In both sampling years, phytoseiid numbers were 

significantly different between treatments (F1,24 = 5.06, P = 0.0340, F1,32 = 20.34, P = 

0.0001 in 2007 and 2008, respectively) (Figure 1.4).  In addition, interaction between 

time and treatment was not significant in either year (F2,52 = 2.03, P = 0.1529 and F3,71 = 

3.70, P = 0.217 in 2007 and 2008, respectively).  In both years, the trend for higher 

abundance of phytoseiids on untreated elms persisted throughout the season, and 
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Galendromus sp. were significantly more abundant on two of the sampling dates in each 

year (Table 1.1).   

 

 Field experiment: Boxwood.  Boxwood spider mites responded in a pattern similar 

to T. schoenei.  Imidacloprid had a significant effect on abundance of E. buxi (F1,72 = 

11.03, P = 0.0013) (Figure 1.5).  However, in case of the boxwood mite, time and 

treatment did not have an interactive effect on the spider mites (F7,159 = 0.63, P = 0.7310).  

Mean numbers of the mite were higher on imidacloprid-treated shrubs on most sampling 

dates.  Mite abundance declined sharply in both treatments in mid-July.   

Effect of imidacloprid applications on abundance of spider mites on boxwoods and 

cotoneasters in a greenhouse. 

Greenhouse studies: Boxwood and Cotoneaster.  Abundance of boxwood spider 

mites in the greenhouse differed significantly between treatments (F1,18 = 12.56, P = 

0.0023) (Figure 1.6).  Treated boxwoods housed a greater number of mites 4 mo after 

imidacloprid was applied to the shrubs. Similarly, southern red spider mites were more 

numerous on cotoneasters treated with imidacloprid (F1,18 = 6.53, P = 0.0199) (Figure 

1.7).  O. ilicis were nearly 20 times more abundant on cotoneasters treated with 

imidacloprid.   

Discussion 

 Applications of imidacloprid to elms and boxwoods resulted in outbreaks of 

tetranychid mites on plants treated in the field.  Abundance of mites on imidacloprid-

treated elms was ten-fold greater than on untreated plants on three sampling dates over 
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the course of the experiment.  By mid-summer in both sampling years, densities of T. 

schoenei on trees treated with imidacloprid surpassed those of untreated elms, and while 

date of sampling had a significant effect on abundance of mites, it does not explain 

elevated numbers of mites on treated plants.   

 While the magnitude of difference in abundance was not as pronounced as on 

elms, spider mites on boxwoods also responded differentially to imidacloprid 

applications.  Additionally, numbers of mites on imidacloprid-treated boxwoods were not 

dependent on date of sampling.  E. buxi were significantly more abundant on treated 

shrubs on all sampling dates past mid-July.  Relative to the earlier sampling dates, mites 

on untreated shrubs declined, while mean number of tetranychids on treated boxwoods 

remained unchanged.  Patterns of abundance of this mite suggests it is a cool-season mite, 

and imidacloprid-containing plants seem to provide better conditions for this arachnid in 

the hotter, more humid environment of Maryland summers.   

 Perhaps the most important finding that helps untangle mechanisms leading to 

outbreaks of spider mites after imidacloprid treatments are the results of greenhouse 

experiments.  On boxwoods and cotoneasters grown in the greenhouse, abundances of E. 

buxi and O. ilicis were significantly greater when plants received applications of 

imidacloprid. These plants housed elevated populations of mites from two genera in the 

relative absence of natural enemies.  This provides strong evidence that while natural 

enemies may play a role in outbreaks; there is a strong bottom-up force that drives a 

positive response of mites to plants treated with the imidacloprid.  Either imidacloprid in 

plant tissues affects mites directly, or it promotes changes in the quality of plants that 

render it nutritiously more suitable or less defended.   
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 While there is only one study that found empirical evidence that imidacloprid 

enhances spider mite fecundity directly (James and Price 2002), the literature offers 

compelling support for the plant-mediated mechanisms of the outbreaks.  Most recently, 

Gupta and Krischik (2007) described rose plants that received three times the label dose 

of imidacloprid with a greater total chlorophyll index, leaf nitrogen content, and leaf area 

than the untreated plants.  While greater chlorophyll index translates into increased 

photosynthetic capacity of plants (Campbell and Reece 2002) nitrogen content has been 

positively correlated with increased spider mite fecundity and shorter developmental time 

(Kropczynska-Linkiewicz 1984, Helle and Sabelis 1985, Wilson et al. 1988).  In addition 

to these studies, Tenczar and Krischik (2006) found poplar trees to have an increased rate 

of growth between one and four years after applications of imidacloprid.  Moreover, 

imidacloprid has been reported to have a positive effect on yield and growth rates of 

cotton.  Gonias et al. (2006) found that cotton treated with imidacloprid had increased 

yield of 7% and elevated dry weight of 16%.  In addition, it was later demonstrated that 

imidacloprid-treated cotton had greater photosynthetic rates and chlorophyll index than 

untreated plants (Gonias et al. 2008).  This response was amplified when plants 

experienced temperature and water stress, suggesting that imidacloprid enhanced 

tolerance of cotton to stress, a possibility alluded to by Thielert (2006).  It is important to 

note that the body of research cited here illustrates that applications of imidacloprid may 

promote changes in plant physiology that could be involved with outbreaks of spider 

mites. 

Imidacloprid also had an effect on populations of eriophyid mites, P. insolita.  

Eriophyid mites are small (0.1-0.3 mm), spindle-shaped mites with two pairs of legs 
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(Jeppson et al. 1975).  They are phytophagous, and feed primarily on succulent plant 

tissue causing fine stippling that coalesces into larger brown spots when populations 

reach high numbers (Jeppson et al. 1975).  Some species secrete chemicals that change 

plants’ growth patterns resulting in galls and curling of leaves inside of which the mites 

feed and reproduce (Jeppson et al. 1975).  There are three families in the superfamily 

Eriophoidea: Phytoptidae, Eriophyidae and Diptilomiopidae, and they are distributed 

worldwide (Jeppson et al. 1975; Linquist et al. 1996; Childers and Achor 1999).  P. 

insolita (Diptilomiopidae) is a common vagrant on elm leaves and its feeding can result 

in fine stippling, while another eriophyid mite attacking elms, Eriophyes ulmi Gar (Acari: 

Eriophyidae) causes formation of small, thin galls on the upper side of leaves (Johnson 

and Lyon 1991).   

In this experiment, in addition to tetranychid outbreaks, an interesting trend for 

increased numbers of eriophyid mites on treated elm trees emerged.  Previously, the 

positive effect of imidacloprid applications on colonization of eriophyid mite, Aceria 

tosichella Keifer, was reported on wheat (Harvey et al. 1998).  Moreover, Raupp et al. 

(2004), illustrated increased rust mite (Acari: Eriophyidae) damage and one case of 

increased abundance of hemlock rust mites, Nalepella tsugifolia Keifer on imidacloprid-

treated trees. However, Raupp et al. (2004) also found no increase in rust mite abundance 

in a second study. Similarly, a trend for greater abundance of eriophyids was observed in 

a survey of arthropod fauna on imidacloprid-treated elms in a managed landscape in 

Maryland (Chapter 2).  In this study, however, eriophyids were more abundant on 

imidacloprid-containing trees. Notably, in this as well as other studies, eriophyids do not 

always respond to imidacloprid exposure consistently. 
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Tydeid mites on elms follow abundance patterns similar to those of the eriophyid 

mite.  Tydeid biology is not fully known, even though they are one of the most 

commonly encountered family of mites on leaves (Walter and Behan-Pelletier 1999).  

However, H. anconai, which was the most abundant tydeid collected, is known to feed on 

eriophyid mites (Hessein and Perring 1986, Hessein and Perring 1988, Aguilar et al. 

2001, Kawai 2002, Mainul and Kawai 2003), while Lorryia sp. are plant and fungi 

feeders (Jeppson et al. 1975, Mendel and Gerson 1982, Badii et al. 2001).  On nearly all 

of the sampling dates, imidacloprid-treated elms housed more tydeids than untreated 

trees.  Increased incidence of these mites could be caused by greater availability of 

eriophyid mites in case of H. anconai, or changes in quality of plants or fungal resources 

in case of tydeids in Lorryia sp.  Effects of imidacloprid on interactions between tydeid 

mites and their prey deserve a closer look in future research.   

The results of my study indicated that applications of imidacloprid to elms might 

harm phytoseiid mites.  Most phytoseiids collected on the elms belonged to the species G. 

herbertae , which is a selective predator of Tetranychidae (McMurtry and Croft 1997).  

Phytoseiids responded fairly consistently in both sampling years.  These results suggest 

that either consuming prey that are toxic or exposure to foliage of treated elms is 

detrimental to this mite.  Imidacloprid has been shown previously to have negative 

impacts on abundance of phytoseiid mites (James and Coyle 2001, James 2003, Kimm et 

al. 2005, Stavrinides and Mills 2009).  Because phytoseiid mites are key predators of 

spider mites (Helle and Sabelis 1985, Dicke et al. 1999, Roda et al. 2000), it is 

conceivable that the release of spider mites from phytoseiid regulation contributes to mite 

outbreaks.   
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It is noteworthy, however, that Phytoseiidae respond ambiguously to exposure to 

imidacloprid.  There is one report of stimulated reproduction of a phytoseiid mite 

exposed to sprays of imidacloprid.  James (1997) reported that Amblyseius victoriensis 

(Acari: Phytoseiidae) laid more eggs in laboratory experiments when directly exposed to 

imidacloprid sprays than its untreated counterparts.  This experiment was not replicated 

by other researchers, however, and remains the singular case of a positive effect of 

imidacloprid on a phytoseiid mite.   

Additionally, phytoseiids do not always suppress populations of spider mites in 

urban settings.  Ehler and Frankie (1979) found well developed communities of predatory 

mites on oaks that were not able to prevent spider mite outbreaks in an urban landscape.  

The authors suggested that mite outbreaks on these trees were related to plant stress 

rather than release from natural enemies.  Kropczynska et al. (1986) reported a similar 

finding for populations of spider mites outbreaking despite an assemblage of phytoseiid 

predators on lindens in Warsaw, Poland.  Enhanced nutritional quality of lindens along 

streets elevated fecundity of Eotetranychus tiliarum (Acari: Tetranychidae) and resulted 

in subsequent outbreaks of mites.  Additionally, a few studies report lack of numerical 

response of phytoseiids to increasing prey availability.  Such examples include 

interactions between Amblyseius potentillae (Garman) (Acari: Phytoseiidae) and T. 

urticae on rose plants, and Amblyseius ovalis (Evans) (Acari: Phytoseiidae) and 

Tetranychus kanzawai (Kishida) (Acari: Tetranychidae) on maize (Halle and Sabelis 

1985).   

 
 



 26

Tables 

 
Table 1.1. Results of analyses of variance (Fdf) and non-parametric Kruskal-Wallis test 
(Χ2 (df)) comparing abundance of arthropods within each sampling date on imidacloprid-
treated elms and untreated elms.  

  
    Date                       6/13/07                   8/01/07                 9/01/07   
                  
   Taxa                       Test         P         Test         P          Test         P 
         
T. schoenei              Χ2= 4.86 (1) 0.028   Χ2= 9.85 (1)  0.002     Χ2= 8.24 (1) 0.004 
P. insolita                F1,18= 18.52  0.001   F1,18= 2.86     0.120     F1,18= 0    0.952     
Tydeidae                  F1,18= 3.34   0.086    F1,18= 4.64     0.042     Χ2= 0.33 (1) 0.564 
Galendromus sp      Χ2=0.01 (1) 0.963   F1,18= 5.85     0.028     F1,18= 3.39   0.084 

                          
     Date                      6/24/08                 7/21/08                  8/11/08                    9/11/08   
 
     Taxa                Test          P          Test            P        Test         P           Test         P 
 
T. schoenei           Χ2= 1.84 (1) 0.175   Χ2= 12.29 (1) 0.001   F1,18= 15.43 0.001    Χ2= 11.68 (1) 0.001 
P. insolita             F1,18= 12.71 0.003   Χ2= 1.031 (1) 0.310   Χ2= 0.049 (1) 0.825  F1,18= 0.48    0.498 
Tydeidae              Χ2= 0.03 (1) 0.859   F1,18= 0.4   0.537        Χ2= 0.2 (1)    0.659   F1,18= 16.3    0.001 
Galendromus sp  Χ2= 0.66 (1) 0.418   Χ2= 1.87 (1)  0.171    F1,18= 10.13 0.006     Χ2= 12.80 (1) 0.001 
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Figures 

 

 
Figure 1.1. Abundance of T. schoenei imidacloprid treated and untreated elms in College 
Park, MD in 2007 and 2008.  Black bars represent untreated controls while grey bars 
represent shrubs exposed to the insecticide.  Vertical lines represent standard errors of the 
mean. Asterisks mark means that were significantly different within each date at P = 
0.05. 
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Figure 1.2. Abundance of an eriophyid mites on imidacloprid treated and untreated elms 
in College Park, MD in 2007 and 2008.  Black bars represent untreated controls while 
grey bars represent shrubs exposed to the insecticide. Vertical lines represent standard 
errors of the mean. Asterisks mark means that were significantly different within each 
date at P = 0.05.  
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Figure 1.3. Abundance of tydeid mites on imidacloprid treated and untreated elms in 
College Park, MD in 2007 and 2008.  Black bars represent untreated controls while grey 
bars represent shrubs exposed to the insecticide. Vertical lines represent standard errors 
of the mean. Asterisks mark means that were significantly different within each date at P 
= 0.05.  
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Figure 1.4. Abundance of predatory mites on imidacloprid treated and untreated elms in 
College Park, MD in 2007 and 2008.  Black bars represent untreated controls while grey 
bars represent shrubs exposed to the insecticide. Vertical lines represent standard errors 
of the mean. Asterisks mark means that were significantly different within each date at P 
= 0.05.  
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Figure 1.5. Abundance of boxwood spider mite imidacloprid treated and untreated 
boxwoods in College Park, MD in 2005.  Black bars represent untreated controls while 
grey bars represent shrubs exposed to the insecticide. Vertical lines represent standard 
errors of the mean. Asterisks mark means that were significantly different within each 
date at P = 0.05.  
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Figure 1.6. Abundance of E. buxi on imidacloprid treated and untreated boxwoods in a 
greenhouse.  Black bars represent untreated controls while grey bars represent shrubs 
exposed to the insecticide. Vertical lines represent standard errors of the mean. Asterisks 
mark means that were significantly different within each date at P = 0.05.  
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Figure 1.7. Abundance of southern red mite (O. ilicis) on imidacloprid treated and 
untreated cotoneasters in a greenhouse.  Black bars represent untreated controls while 
grey bars represent shrubs exposed to the insecticide. Vertical lines represent standard 
errors of the mean. Asterisks mark means that were significantly different within each 
date at P = 0.05.  
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Chapter 2: Effects of imidacloprid on the community of arthropods 
associated with elm trees and boxwood shrubs in the urban forest. 

 

Abstract 

Reports of secondary outbreaks of spider mites after applications of imidacloprid 

to control an invasive pest, Asian longhorned beetle (ALB), prompted interest in the 

effects of the insecticide on communities of beneficial arthropods.  Elimination of key 

predators of spider mites was suggested as the mechanism underlying the outbreaks.  To 

evaluate the impact of imidacloprid on the assemblage of arthropods in general and 

natural enemies in particular, the arthropod community on elm trees and boxwood shrubs 

was compared between treated and untreated plants.  In both study systems and across 

locations, the arthropod community responded positively to imidacloprid applications.  

However, high numbers of spider mites drove the response curves.  Spider mites on elm 

trees and boxwood shrubs, T. schoenei and E. buxi  were significantly more abundant on 

plants that received imidacloprid applications.  Additionally, another phytophagous mite, 

P. insolita (Acari: Eriophyoidea: Diptilomiopidae) tended to be more numerous on 

imidacloprid-treated elms at one of the locations, but its response was not consistent 

across the sampling years.  In general, treated elms housed lower numbers of an 

omnivorous tydeid mite (Acari: Tydeidae), while arthropods on boxwood responded 

variably.  Neither of the plant systems exhibited any evidence of detrimental effects of 

imidacloprid on the community of beneficial arthropods.  Abundance of a predator of 

spider mites, Gelendromus sp. (Acari: Phytoseiidae) did not differ significantly between 

treated and untreated elm trees and varied between the two study sites.  Elimination of 
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key predators of spider mites does not appear to be the sole mechanism underlying 

secondary outbreaks of spider mites following imidacloprid applications.   

Introduction 

Attacks of invasive species of insects have always prompted serious measures on 

the part of government and local authorities to halt the spread of the pest (Invasive 

Species Act 1999).  A recent invasion of trees in several states in the United States by an 

exotic cerambicid borer, the Asian long-horned beetle (ALB) (Anoplophora glabripennis, 

Coleoptera: Cerambycidae) resulted in quarantines, removal of infested trees and 

preventive insecticide treatments in Illinois, New Jersey, New York and Massachusetts 

(USDA 1998, 2003, 2007, 2008).  One of the most significant urban parks in the US, 

New York City’s Central Park found itself at the heart of the battle against this invasive 

cerambycid.  Between 2002 and 2007, thousands of elms were treated with a systemic 

neonicotinoid insecticide, imidacloprid, as part of the Asian long-horned beetle 

eradication effort (USDA 2007).  While these preventative treatments may have slowed 

down the invasive pest’s progress, they had a surprising effect on another arthropod.  

Abundance of a spider mite, T. schoenei, erupted on trees that received treatments of the 

systemic insecticide, imidacloprid.  Unusually high densities of this mite resulted in 

yellowing of the foliage and premature leaf drop. 

Sudden outbreaks of pests following insecticide applications have been 

documented in urban settings previously (Raupp et al. 1992, 2009).  In 1975 Luck and 

Dahlsten reported that mosquito-fogging programs resulted in increased abundance of 

pine needle scale, Chionaspis pinifoliae through elimination of parasitoids that otherwise 

successfully control this pest.  A secondary outbreak of another scale insect, European 
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fruit leucanium, followed application of an insecticide aimed to control filth-flies (Merritt 

et al. 1983).  Similar cases of increased abundance following insecticide applications 

were reported for citrus red mite, honeylocust spider mite, woolly whitefly, purple scale, 

citrus mealybug (Debach and Rose 1977, Sclar et al. 1998). 

 Despite imidacloprid’s selectivity and systemic mode of action, it has been 

proposed that detrimental effects of imidacloprid on the community of natural enemies 

may cause the outbreaks of spider mites (Sclar et al. 1998).  Investigations of 

imidacloprid and natural enemies found some evidence supporting the contention that 

imidacloprid inflicts mortality and impairs foraging activity of key beneficial insects.  

Imidacloprid has been found to be harmful to certain species of anthocorids, coccinellids, 

lacewings, seed bugs, some parasitic wasps, such as Braconidae and Aphelinidae, and 

pentatomids (Mizell and Sconyers 1992, Stark et al. 1995, Sclar et al. 1998, Stapel et al. 

1999, Elzen 2001, James and Vogele 2001, Lucas et al. 2003, Rebek and Sadof 2003).  

James and Vogele (2001) also observed a reduction in the abundance of coccinellid and 

neuropteran larvae four to nine weeks after imidacloprid was applied. Early studies 

focused on foliar applications of imidacloprid, but there are now reports of experiments 

that examined the effects of imidacloprid when applied through the soil.  Smith and 

Krischik (1999) found Coleomegilla maculata (Coleoptera: Coccinellidae) that consumed 

pollen of plants treated with soil application of imidacloprid experienced reduced 

longevity, reduced general mobility, and increased time to first oviposition.  Decreased 

longevity and survival has also been shown in minute pirate bug (Orius insidiosus, 

Hemiptera: Anthocoridae) feeding on plants that received soil drench applications of 

imidacloprid (Sclar et al. 1998).  The minute pirate bug is an omnivore, and it has been 
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observed to eat and develop on plant tissue when prey are not available (Coll 1996, 

Armer et al. 1998, Ferkovich and Shapiro 2004).  

 Notably, there is some evidence that imidacloprid may harm a key predator of 

tetranychids, predatory mites in the family Phytoseiidae.  Mortality of Amblyseius 

cucumeris (Oudemans) (Acari: Phytoseiidae) increased after application of imidacloprid 

in a laboratory study (Kimm et al. 2005). Additionally, James (1997) demonstrated a 

decrease in number of a predatory mite from the same genus following foliar application 

of imidacloprid in a field study conducted in an orchard.  Notably, James (1997) also 

found that in laboratory bioassays females of the predatory mite sprayed with 

imidacloprid laid more eggs than unsprayed mites. When the predator was exposed to 

ten-fold increase in imidacloprid, however, 34% mortality was observed.  This study was 

replicated in 2001, using two species of phytoseiid mite from a different genus, 

Typhlodromus dossei and T. doreenae and included both laboratory bioassays and field 

experiments using foliar applications of imidacloprid (James and Vogele 2001).  In this 

experiment, fecundity of the predators was not monitored, and the authors reported no 

effect of the insecticide on either predator species when imidacloprid was applied at the 

label rate. At ten times the label rate, 19% mortality of T. doreenae was observed, but T. 

dossei was not affected. Inconsistent reports on imidacloprid's toxicity to predatory mites 

from different genera imply that the phytoseiid mites do not respond to imidacloprid as 

uniformly as spider mites, which have been found to increase in numbers across different 

genera within family Tetranychidea (Sclar et al. 1998, Gupta and Krischik 2007, Raupp 

et al. 2004, 2008).  
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 Here, I investigate how imidacloprid applications alter the community of 

arthropods in general.  In particular, I was interested in determining how key predators of 

spider mites responded to introduction of imidacloprid to plants they occupied.  The 

experiments were conducted using two plant systems common in urban landscape, elm 

trees, U. americana, and boxwood shrubs, B. sempervirens.  Experiments involving elms 

spanned three years at two urban locations, in Central Park, New York, NY, and on 

campus of the University of Maryland, College Park, MD.  The boxwood study was 

carried out in College Park, MD, and lasted one growing season.   

Methods 

Structure of arthropod assemblage on elm trees treated with imidacloprid. 

Central Park, New York, NY.  A preliminary sample of elm trees in New York 

City’s Central Park was conducted in 2004.  Comprehensive studies of the community 

structure in elm canopies and abundance of T. schoenei on elms in Central Park were 

conducted in 2005, 2006, and 2007.  The experimental design in Central Park was 

inherently challenging, because treatments were not randomly assigned to experimental 

subjects.  Since 2001, USDA-APHIS, US-Forest Service, State and City cooperators in 

New York designate elm trees for treatment with imidacloprid in Central Park based on 

their proximity to known infestations of ALB in Manhattan (USDA 2005).  Three 

insecticides with imidacloprid as the active ingredient were applied from 2004 to 2006.  

In 2004 the elms were treated with Imicide HP® (J.J. Mauget Co, Arcadia, CA, 10% 

imidacloprid) delivered by trunk injections (4 ml per 2.5 cm DBH), while in 2005 and 

2006 trunk injections of Imicide HP®, soil injections of Merit® 75 WSP (Bayer, Kansas 

City, MO, water soluble powder, 75% imidacloprid, 2 g per 2.5 cm DBH) and Bandit® 75 
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WSP (Bayer, Montvale, NJ, 75% imidacloprid, 2 g per 2.5 cm DBH), and soil drenches 

of Bandit® 75 WSP (75% imidacloprid, 2 g per 2.5 cm DBH) were administered to elms 

in quarantine area.  Bandit® 75 WSP and Imicide® were applied to all treated elms in 

2007.  In 2004, 924 elm trees south of 65th Street were treated with imidacloprid and trees 

north of 65th Street were untreated.  In 2005, 2006, and 2007, the treatment zone shifted 

north to 86th Street.  The number of trees that received imidacloprid application in these 

years was 4,806 in 2005, 4,866 in 2006 and 1,536 in 2007.  In 2005, trees on an east-west 

transect across the park north and south of 86th Street were sampled.  In 2006 trees on the 

western boundary of the park along 8th Avenue north and south of the treatment 

demarcation line at 86th Street were sampled, and in 2007 trees along the eastern 

boundary along 5th Avenue north and south of the demarcation boundary were used in the 

experiment.  Each year ten elms were sampled from treated and untreated populations.  

All elms used in the study were mature trees ranging in height from about 15 to 30 m.  

Both treated and untreated elms bordered roadways or paths.  We used only elms whose 

foliage could be sampled from the ground by hand or pole pruners.   

Elms were sampled five times in 2005, three times in 2006 and four times in 

2007.  In all years, four branches per tree were removed from each cardinal position.  The 

excised foliage was brought back to the laboratory, where arthropods were counted using 

a dissecting microscope.  All arthropods on the two most terminal leaves were counted, 

and natural enemies and their eggs were noted on three additional leaves occupying 

position 3 – 5 on the branch’s terminus.  To compute density of various taxa, leaf area 

was measured using LI-31100C  area meter (Li-Cor® Biosciences, USA) and arthropod 
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abundance was expressed as the number per cm2 of leaf area.  Arthropod abundance was 

the dependent variable used for analyses. 

 

University of Maryland, College Park, MD.  Twenty elms in a managed landscape 

lining a roadway on the campus of the University of Maryland, College Park, MD were 

used.  Trees were mature and were approximately 4.5 m tall.  Trees received no 

supplemental water other than rain and no fertilizer was applied.  The experiment was a 

completely randomized design with ten elm trees in each treatment.  Ten elms were 

designated as untreated controls, and ten elms received a single soil drench application of 

imidacloprid (Merit® soluble powder formulation, 750g of imidacloprid/kg, Bayer, 

Kansas City, MO) at the label rate 2 g per 2.5 cm DBH dissolved in 1L of water.  

Imidacloprid was applied on 06/09/2005, 06/05/2006, and 05/11/2007.  Foliage was 

collected from the elms and arthropod abundance was recorded as described above for 

elm samples from Central Park. In 2005, I sampled trees once prior to applying 

imidacloprid and five times following the applications.  Arthropods were sampled three 

times over the course of the growing seasons in 2006 and 2007.  In all years, arthropod 

abundance was used for analyses. 

Structure of arthropod assemblage on boxwood shrubs treated with imidacloprid. 

I compared the structure of the arthropod community between boxwoods treated 

with imidacloprid and those untreated in a managed landscape on campus of the 

University of Maryland, College Park, MD, USA.  I used twenty boxwoods that were 

approximately 0.6 m tall, and grew in rows separated by about 0.3 m between individual 

plants.  Boxwoods were not trimmed during the study and received no supplemental 



 41

water other than rain. The experiment was a completely randomized design with two 

boxwoods between shrubs assigned to treatments serving as buffers.  Ten plants were 

assigned to receive imidacloprid and ten boxwoods were designated as untreated controls.  

Imidacloprid was administered to the plants on 05/17/2005 as a single soil drench 

application (Merit® soluble powder formulation, 750 g of imidacloprid/kg, Bayer, Kansas 

City, MO) at the label rate of  2 g per 0.3 m of height dissolved in 1 L of water.   

Arthropods were passively sampled by pheromone-free sticky traps (Insect Trap 

and Monitor, EPA Est. #48377-NY-1, Model #288-I) placed throughout the boxwoods 

and collected after they had remained on the plants for one week.  Traps’ total adhesive 

area was 170 cm2, and each individual trap was cut into three pieces that were wrapped 

around boxwood branches, sticky side out, and distributed throughout the canopy of each 

experimental shrub.  I surveyed plants once before the imidacloprid was applied and five 

times post-application, from June to September 2005.  Arthropods were surveyed every 

3-4 weeks.  Insects and arachnids were identified in the laboratory using a dissecting 

microscope.  Insects were identified to family level where possible.  Abundance of 

arthropods was the dependent variable used for analyses.  

Statistical Analyses 

To test and visualize how the community of arthropods responded to imidacloprid 

treatment through time, I utilized a multivariate approach based on redundancy analysis, 

a principle response curve (PRC) (Van den Brink and Ter Braak 1999, Dively 2005, 

Prasifka et al. 2005).  PRC is a constrained form of principle components analysis.  It 

performs weighted least-squares regression of values of inert and latent variables, 

referred to as axes, extracted from the species abundance data on treatment and time.  
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The weights are based on abundance of each taxon relative to its accumulation in the 

control treatment, therefore, response of the sampled arthropod fauna is expressed as 

deviation from the community in control treatment.   

PRC yields canonical coefficients.  Coefficients depict deviation of a sampled 

community from control.  Values of the control treatments are graphed as zero and serve 

as a reference to treatment values.  Treatment values are plotted against time.  In addition 

to the PRC coefficients, the test specifies species scores for all taxa.  These values 

illustrate how each group fits the curve of the entire community response.  Species scores 

≥ 0.5 and ≤ -0.5 are considered significant (Dively 2005, Prasifka et al.  2005).  

Taxonomic groups with a significant positive score follow the pattern of PRC of the 

sampled community, while groups with a significant negative score exhibit pattern 

opposite to that portrayed by the PRC.   Taxa with scores near 0 (≤ 0.5 and ≥ -0.5) either 

do not respond to treatment, or their response is different from the one depicted by the 

PRC. 

PRC also provides a quantitative test.  Monte-Carlo permutations are used to test 

for significance of the response curve.  An F-type test statistics is calculated and the 

permutations produce 1,000 new data sets that are equally likely under a null hypothesis 

of canonical coefficients equaled zero.  Significance is then computed based on the 

proportion of F values greater or equal to the F value of the original data set (Dively 

2005).   

PRC analyses and corresponding Monte-Carlo tests were performed over all 

sampling dates in each year for elm trees and boxwood shrubs to examine how the 

arthropod community responded to imidacloprid applications.  CANOCO software (Ter 
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Braak and Šmilauer 2002) was used for the analyses.  For the elm experiments, which 

span over a three-year period, a separate PRC was generated for each sampling year.  A 

single taxon weight was generated for each arthropod by combining data from all three 

years at each location.  The species scores related the abundance pattern of each taxon to 

the PRCs in each sampling year (Prasifka et al. 2005).  Mean number of arthropods per 

cm2 of leaf tissue was used in analyses, and data were log-transformed.  Permutations 

were configured to occur between treatments, and sampling dates were designated as 

blocks.   

Following PRC analyses, I analyzed the abundance of each taxon with a 

significant species score at each site and year using repeated measures model of ANOVA 

with imidacloprid treatment as a fixed effect (SAS 2008, Statistix 2005).  When 

significant time by treatment interaction was detected, ANOVA were performed at each 

date to determine effects of imidacloprid on arthropod abundance (simple effects).  Mean 

abundance of arthropods per cm2 of leaf area was compared between untreated and 

imidacloprid treated plants.  Square root transformations of the data were performed, if 

assumptions of homogeneous variances and normal distribution were not met.  Non-

parametric Kruskal-Wallis tests were used if assumptions of ANOVA could not be 

achieved with transformations (Zarr 1999).   

Results 

Structure of arthropod assemblage on elm trees treated with imidacloprid. 

Central Park, New York, NY.  In each year, the abundance of arthropods on 

treated trees in Central Park differed significantly from the abundance of arthropods on 

control trees (Table 2.1).  Abundance was consistently higher on elms treated with 
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imidacloprid (Figure 2.1).  The first axes explained 10%-20% of variation, and the 

second axis explained additional 1%-4% of variance. Time accounted for 9%-29% of 

variance.  The only 2 taxa that had significant species scores were the spider mite, T. 

schoenei, and tydeid mites H. anconai  and Lorryia sp.  The score of T. schoenei was 

positive.  This indicates that its abundance increased on treated trees relative to untreated 

ones. Abundance of tydeid mites was lower on treated elms compared to untreated trees.  

While not significant, phytoseiids, Galendromus sp., had a positive species score, 

indicating a trend for higher abundance on treated elms.  None of the other predators 

known to feed on spider mites such as lacewings (Neuroptera: Chrysopidae) and spider 

mite destroyers (Coleoptera: Coccinellidae) contributed to the response curve.   

 Abundance of T. schoenei was analyzed as a repeated measures analysis of 

variance for each sampling year.  There was a significant interactive effect of 

imidacloprid treatment and time on abundance of spider mites in all sampling years (F4, 

72.2 = 24.14; P = 0.0001; F2,17 = 11.23; P = 0.0008; F3,16 = 4.52; P = 0.0177 in 2005, 2006 

and 2007, respectively) (Figure 2.2).  Comparisons of spider mite numbers within 

sampling dates each year indicate that mites were more abundant on treated elm trees on 

one of the sampling dates in 2005 and 2 sampling dates in 2006 and 2007 (Table 2.2).   

Imidacloprid applications and time did not have an interactive effect on tydeid 

mites in 2005 and 2006 (F4, 71.9 = 0.99; P = 0.4173; and F2,17 = 0.13; P = 0.878, 

respectively) (Figure 2.3).  The insecticide did not significantly affect the mites in the 

first year of the study (F1,17.8 = 0.37; P = 0.5499).  However, during the second year, 

tydeid mites were more abundant on untreated elm trees (F1,18 = 42.16; P = 0.0001) and 

this trend continued in 2007 (F1,18 = 32.14; P = 0.0001).  Abundance of tydeids was time-
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dependent in all sampling years (F4, 71.9 = 34.62; P = 0.0001; F2,17 = 8.21; P = 0.0032; and 

F3,16 = 8.05; P = 0.0017 in 2005, 2006 and 2007, respectively). 

 

 University of Maryland, College Park, MD.  In each year, the abundance of 

arthropods on trees treated with imidacloprid was significantly higher than the 

community on untreated trees (Figure 2.4; Table 2.1). The first and second axes 

accounted for 6%-18% and 1%-5% of variance related to treatment, respectively, while 

22%-37% of variance was explained by the effect of time. The significant and positive 

species score of T. schoenei, indicated that the mites’ abundance followed the pattern 

depicted on the PRC graph. The eriophyid mite, P. insolita, also had significant and 

positive species scores. Taxa with negative scores, the scale insect, Eriococcus spuria 

Modeer (Hemiptera: Eriococcidae), and tydeid mites, H. anconai and Lorryia sp., 

exhibited the opposite pattern and declined in numbers on trees that received applications 

of imidacloprid. In the case of E. spuria this is not surprising, as imidacloprid has been 

documented to kill this scale (Sclar and Cranshaw 1996).  Similarly to the Central Park 

site, none of the key predators of spider mites had significant taxa weights.  Phytoseiid 

mites (G. herbertae and G. halvelous Chant, with over 80% of phytoseiids sampled 

belonging to G. herbertae) had a negative species score at this site, which is opposite of 

the trend observed in the New York site.  Phytoseiids on Maryland elms were less 

numerous on trees that were treated with imidacloprid.  

Elm trees used in this experiment remained assigned to the same treatment for the 

duration of the study.  Thus, repeated measures ANOVA was used to analyze the data as 

a continuous experiment that spanned a three-year period. There was a significant 
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interactive effect of imidacloprid applications and time on spider mite abundance (F11, 7.5 

= 4; P = 0.0335) (Figure 2.5).  Spider mites were significantly more numerous on elms 

treated with imidacloprid at the last two sampling dates within each year (Table 2.3).  

Their abundance increased as the growing season progressed.  

However, there was no detectable effect of imidacloprid application on the 

abundance of eriophyid mites (F1,18 = 1.48; P = 0.2398) (Figure 2.6).  Time was a 

significant factor in determining eriophyid abundance (F11, 7.15 = 76.60; P = 0.0001), and 

it did not interact with imidacloprid treatment factor (F11, 7.15 = 2.11; P = 0.1629).  While 

there was no clear trend for these mites to prefer treated elms in the first sampling year, in 

the two latter years, P. insolita tended to be more numerous on trees that received 

imidacloprid applications 

Another taxon that contributed to the response curve were the tydeid mites.  They 

were significantly more abundant on untreated elms (F1, 75 = 11.52; P = 0.0011) (Figure 

2.7).  Time also had a significant effect on the mites (F11, 184 = 6.58; P = 0.0001), but there 

was no interaction between the two factors (F11, 184 = 1.15; P = 0.3224).  Whereas in 2005 

tydeid abundance had no clear pattern, by 2006 and 2007 the mites were more numerous 

on untreated elms.  

Lastly, there was a significant effect of imidacloprid treatment and time 

interaction on abundance of scale insects (F11, 183 = 5.82; P = 0.0001) (Figure 2.8).  Scales 

were significantly more abundant on untreated elm trees within each sampling date in 

2006 and 2007 (Table 2.4).  
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Structure of arthropod assemblage on boxwood shrubs treated with imidacloprid. 

 Abundance of arthropods on boxwoods treated with imidacloprid was 

significantly higher than on untreated shrubs (F = 4.940; P = 0.002) (Figure 2.9).  The 

first and second axes explained 29% and 6% of variation, while time accounted for 33% 

of variance.  A total of 45 taxa were identified, and arthropods with significant species 

scores, that is a score ≥ 0.5 and ≤ -0.5, were reported and their abundance patterns further 

analyzed.  We trapped many scale insects as males and airborne immature stages, called 

crawlers, and these could not be identified to family.  Thus, the level of superfamily, 

Coccoidea,  was used for this taxon.  Arthropods that occurred on treated shrubs in higher 

numbers and had a significant positive scores included boxwood spider mites, E. buxi, 

scale insects (Hemiptera: Coccoidea), mymarid wasps (Hymenoptera: Mymaridae), and 

spiders (Aranea).  Taxa with negative scores that were more abundant on untreated 

boxwoods were encyrtid wasps (Hymenoptera: Encyrtidae), ants (Hymenoptera: 

Formicidae), collembola (Collembola), and the boxwood psyllid, Psylla buxi Linn. 

(Hemiptera: Psyllidae).  None of the arthropods that contributed to the response curve 

were spider mite predators.   

 Abundance of the dominant species, spider mites, was affected by a significant 

interaction between time and imidacloprid treatment (F5, 90 = 2.46; P = 0.0390).  Numbers 

of E. buxi did not differ between treatments before application of the insecticide, while 

imidacloprid-treated boxwoods housed significantly greater abundance of mites in June 

and July (Figure 2.10, Table 2.5).  Numbers of mites in both treatments decreased with 

time.   
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  Despite having significant species scores and abundance patterns that contributed 

to the response curve, repeated measures analyses of the remaining taxa did not yield 

statistically significant differences (Table 2.6).  Overall, scale insects tended to be more 

abundant on imidacloprid treated shrubs (Figure 2.11), and their numbers were 

significantly greater on one of the sampling dates.  Mymarid wasps (Figure 2.12 ) also 

showed a tendency for greater abundance on treated shrubs.  Spider abundance did not 

display a clear pattern for either treatment (Figure 2.13), but there were significantly 

greater numbers of spiders on boxwoods that received imidacloprid on the last sampling 

date.  Another parasitoid, an encyrtid wasp, was more abundant on untreated plants on 

one of the dates (Figure 2.14), but was otherwise equally distributed among treated and 

untreated plants.  Ants tended to be more abundant on untreated plants (Figure 2.15), 

whereas treated boxwoods housed significantly fewer boxwood psyllids, a hemipteran 

known to be susceptible to imidacloprid, on one of the sampling dates (Figure 2.16). 

Discussion 

Structure of arthropod assemblage on elm trees treated with imidacloprid. 

In both New York and Maryland, the arthropod community on imidacloprid 

treated elms was significantly different from the community on untreated elms (Figures 

2.1, 2.4).  The primary taxon driving this response at both locations was T. schoenei and 

their populations reached levels significantly higher on treated elms every year.  

Maryland elms housed an assemblage of arthropods similar to the one in New York.  

However, in Maryland I found a greater number of arthropods with a significant response 

to imidacloprid treatment (Figure 2.4).  
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While there were several predatory and herbivorous arthropods collected, only a 

few taxa significantly contributed to the general response curve in both locations.  

Tetranychids were more numerous on treated elm trees in New York as the growing 

season progressed, and this trend was consistent in all sampling years (Figure 2.2).  The 

magnitude of difference between treatments varied, and was largest in 2007.  Similarly, 

in Maryland spider mites were consistently more abundant on treated elms, regardless of 

sampling year. Their numbers increased with time and the mites were most abundant in 

2007 (Figure 2.5).  

Notably, there was no indication of decreased abundance of any key predators of 

spider mites that could explain the explosion of mite numbers.  Chrysopid larvae, 

coccinellids and phytoseiids were collected from imidacloprid treated and untreated elms 

at both locations, but their abundance patterns did not contribute to the general response 

curve, that is, they did not differ between treated and untreated elms (Figures 2.1, 2.4).  A 

few other researchers found that applications of imidacloprid had little or no effect on 

predators of spider mites such as coccinellids, lacewing larvae, and predaceous mites 

(Sapute et al 2002, Kannan et al. 2004).  However, in most studies imidacloprid was 

found to be toxic to a myriad of natural enemies that came in direct or indirect contact 

with the insecticide through residues on the surface or in plant tissues.  Among these 

beneficial insects were coccinellid beetles, predatory bugs, and predatory mites (Mizell 

and Sconyers 1992, Sclar et al. 1998, Smith and Kirschik 1999, James and Coyle 2001, 

Studebaker and Kring 2003, James 2003a, James 2003b, Rebeck and Sadof 2003 ).  Most 

of these studies were performed under laboratory conditions, and discrepancies between 

results of our field study and research done by others may stem from fundamental 
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differences in the nature of field and laboratory experiments.  Natural enemies in the field 

have an option to leave a plant or habitat and move to a more favorable location. 

Moreover, alternative food sources uncontaminated by insecticide residues may provide 

beneficial arthropods with resources to sustain populations even on plants treated with 

imidacloprid.  Arthropods in microcosms in the laboratory are usually confined to the 

experimental arena without alternative source of nutrition.   

It is important that phytoseiid mites, which are key predators of spider mites, did 

not respond consistently to imidacloprid treatments and increased prey abundance. While 

phytoseiid abundance did not differ significantly between treatments, the predatory mites 

in New York tended to be more numerous on treated elms, while their abundance 

exhibited an opposite trend in the experiment conducted in Maryland.  Elm trees at the 

Maryland site that received insecticidal treatments housed fewer phytoseiid mites than 

untreated trees suggesting that plants or prey present on the elms were toxic to the 

predator. Negative effects of imidacloprid to phytoseiid mites were reported previously 

(James and Coyle 2001, James 2003 (1), Stavrinides and Mills 2009).  However, 

exposure to imidacloprid is not consistently detrimental to phytoseiids.  James (1997) 

found females of A. victoriensis  sprayed with imidacloprid to lay more eggs than their 

unsprayed counterparts.  Additionally, a ten-fold increase in imidacloprid dose resulted in 

over 30% mortality of the mites, suggesting that the reproductive stimulation was caused 

by sublethal levels of the neonicotinoid.   

It is difficult to link secondary outbreaks of T. schoenei to disruption of 

phytoseiids.  Patterns of abundance of the predatory mites were variable and exhibited no 

clear trend in response to imidacloprid or numbers of T. schoenei.  Other studies of mites 
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in urban habitats have suggested that predatory mites play and important role in 

suppressing populations of spider mites on trees along streets and in parks.  Balder et al. 

(1999) found inverse density dependence for the spider mite Eotetranychus tiliarum and 

its phytoseiid predators on street trees in Berlin.  On trees where predators were 

abundant, spider mites were relatively rare.  Schneider et al. (2000) reported similar 

findings in a separate study involving Eotetranychus tiliarum along broad and narrow 

streets in Berlin.  Along narrow streets where lindens were interplanted with other trees 

and shrubs, predatory mites were common and spider mites were rare, whereas along 

broad avenues where no trees other than hosts were present, predatory mites were rare 

and spider mites were extraordinarily abundant.  In the Italian cities of Como and Milan, 

greater diversity and abundance of predatory mites in parks and woods reduced the 

abundance of spider mites on trees, while along avenues predators were rare and several 

species of spider mites reached outbreak status (Rigamonti and Lozzia 1999).  It is 

noteworthy that phytoseiids do not always suppress populations of spider mites in urban 

settings.  Ehler and Frankie (1979) found well developed communities of predatory mites 

in urban settings and suggested that mite outbreaks on oaks in cities were related to plant 

stress rather release from natural enemies.  Kropczynska et al. (1986) reported a similar 

finding for populations of outbreaking spider mites on lindens in Warsaw, Poland.  Here 

enhanced nutritional quality of lindens along city streets elevated fecundity of E. tiliarum 

and subsequent outbreaks of mites. 

Abundance of tydeid mites on treated elms in New York (Figure 2.3) mirrored 

their abundance pattern in Maryland (Figure 2.7). Treated trees in 2006 and 2007 at both 

locations tended to house fewer tydeid mites.  H. anconai, which was the most abundant 
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tydeid collected, is known to feed on eriophyid mites (Hessein and Perring 1986, Hessein 

and Perring 1988, Aguilar et al. 2001, Kawai 2002, Mainul and Kawai 2003), while 

Lorryia sp are plant and fungi feeders (Jeppson et al. 1975, Mendel and Gerson 1982, 

Badii et al. 2001).  There is some evidence in the literature that imidacloprid-treated 

plants are less suitable for tydeids.  Castagnoli et al. (2005) found that fecundity of 

Tydeus californicus (Acari: Tydeidae) decreased significantly when mites were exposed 

to a topical application of imidacloprid.  Notably, tydeids were found to respond 

positively to imidacloprid in another study (Chapter 1, Figure 1.4), suggesting that 

additional factors may affect the response of this mite to imidacloprid applications.   

Another taxon with a significant species scores at the study site in Maryland were 

eriophyid mites, P.  insolita.  Imidacloprid-treated elms housed significantly more 

eriophyids on two sampling dates (Figure 2.6).  However, numbers of P. insolita did not 

show a consistent pattern of higher abundance on treated elms in Maryland.  Harvey et al. 

(1998) reported that wheat curl mites, Aceria tosichella Keifer (Acari: Eriophyidae) 

exhibited increased incidence of infestation of wheat treated with imidacloprid, but there 

was no difference in the abundance of mites between imidacloprid-treated and untreated 

plants.  Additionally, in an experiment conducted in a common garden described earlier 

(Chapter 1, Figure 1.3), P. insolita exhibited the same tendency for greater abundance on 

elms that received application of imidacloprid.  Thus, I conclude that imidacloprid may 

exert the same effect on the eriophyid mites as it does on the tetranychids. However, 

inconsistent responses of P. insolita to imidacloprid applications warrant additional 

studies.   
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Lastly, imidacloprid had a significant effect on populations of the eriococcid 

scales, E. spuria in Maryland (Figure 2.8). This scale is known to be susceptible to 

applications of imidacloprid (Sclar and Cranshaw 1996), and these results confirm this 

finding. After a relatively low abundance on treated and untreated elms in 2005, scale 

numbers were significantly greater on untreated trees in 2006 and 2007, while 

imidacloprid treated plants were virtually scale-free. The low numbers on untreated trees 

in 2005, could be explained by the age of the trees, which were not colonized by the 

scales at the onset of the experiment.   

Structure of arthropod assemblage on boxwood shrubs treated with imidacloprid. 

 As in studies of arthropod communities on elms, applications of imidacloprid had 

a significant effect on arthropod fauna on boxwood plants.  Elevated numbers of E. buxi 

drove the shape of the response curve on imidacloprid treated shrubs.  However, higher 

numbers of spider mites on treated plants did not result in a proportionate response of key 

predators of this mite.  While predatory mites, ladybugs, dustywings (Coniopterygidae) 

and lacewing larvae were collected on treated and untreated boxwoods, their abundance 

did not significantly contribute to the shape of the response. Abundance of spider mites 

on boxwoods before treatment with imidacloprid was not significantly different among 

plants, and was highest at the first sampling date post treatment (Figure 2.10).  On the 

three subsequent sampling dates, spider mites were significantly more abundant on 

treated shrubs and this pattern persisted from June until August.  Notably, numbers of E. 

buxi were relatively high on all boxwoods before imidacloprid was applied, and their 

abundance declined on untreated boxwoods post-treatment, while it remained high on 

treated shrubs.  This indicates that imidacloprid affected quality of the boxwoods as 
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hotter, more humid conditions of the season developed.  Gonias et al. (2008) found that 

cotton plants treated with imidacloprid and exposed to temperatures ranging from 30-39 

°C had higher levels of photosynthesis and chlorophyll fluorescence compared to 

untreated cotton.  Additionally, the effect of imidacloprid on these parameters was greater 

in plants under higher temperatures.  The authors linked the response of cotton to 

imidacloprid treatment to lower activity of glutathione reductase (GR), which is a 

detoxifying enzyme involved in plants’ response to stress (Cakman and Marschner 1992, 

Foyer et al. 1995).  Untreated cotton maintained at higher temperatures had higher levels 

of GR, suggesting that plants treated with imidacloprid experience less stress (Gonias et 

al. 2008).  The pattern of abundance of E. buxi seems to suggest that this may be the case 

for boxwoods.  Additionally, the second sample was taken only three weeks post-

treatment, exemplifying the rapid response of spider mites to application of imidacloprid.  

Three weeks after imidacloprid was applied, boxwoods that received the insecticide 

application housed approximately 80% more spider mites than the untreated shrubs 

(Figure 2.10).  Moreover, it appears that no predator in the boxwood – spider mite system 

was able to respond numerically to high populations of spider mites.  This lack of top-

down regulation has also been noted for other systems involving spider mites in urban 

habitats such as the one in this study (Ehler and Frankie 1979, Kropczynska et al. 1986, 

Balder et al. 1999, Schneider et al 2000) 

Another taxon that was significantly affected by imidacloprid were scale insects.  

Due to the sampling method used, it was not possible to distinguish between the effects 

of treatment on different taxa of scales such as soft scales, which are known to be largely 

susceptible to imidacloprid (Sclar and Cranshaw 1996, Gill et al. 1999, Elbert et al. 
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2008), and armored scales, which are generally not affected by imidacloprid (Sadof and 

Sclar 2000).  Negative effects of imidacloprid on encyrtids (Krischik et al. 2007) and 

other important parasitoid of scales, aphelinid wasp, (Rebek and Sadof 2003) were shown 

previously, suggesting that imidacloprid disrupts the dynamic between scales and their 

parasitoids.  However, it is more likely that mature oak trees and other vegetation 

growing near the study site were the source of scales collected on the sticky traps.  

Additionally, the effect of imidacloprid on psyllids, P. buxi may have had an 

important impact on ants (Figures 2.15 and 2.16).  Lower numbers of psyllids, which are 

known to produce honeydew utilized by ants (Essig 1958, Basset 1991, Novak 1994), 

could explain decreased abundance of ants on treated boxwoods.  Importantly, this does 

not indicate direct toxicity of imidacloprid-treated plants to formicids, and merely 

suggests that due to elimination of a food source, ants did not associate with treated 

boxwoods as much as with untreated ones.  While there are known cases of negative 

effect of imidacloprid on ants (Rust et al. 2004), ants do not respond consistently to 

imidacloprid exposure (Kunkel et al. 1999, Zenger and Gibb 2001).  Further investigation 

of indirect effect of imidacloprid on ants through elimination of a food source would be 

needed to conclusively assess ants’ response to imidacloprid in this system. .  

Surprisingly, psyllids were more abundant on boxwoods that received 

imidacloprid immediately following the application.  Physiological effect of sublethal 

levels of imidacloprid on nervous system of insects, which manifests itself in increased 

excitability and movement (Thorne and Breisch 2001, Joost and Riley 2005) could 

provide a possible explanation for greater abundance of psyllids on treated boxwood 

shortly after applications were administered.  Lambin et al. (2001) found that honeybees 
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exposed to low levels of imidacloprid exhibited increased motor activity, while their 

movement was impaired at higher concentrations of the insecticide. Thus, random 

movements of imidacloprid-intoxicated psyllids may have increased their occurrence on 

sticky traps in the first weeks after treatment when imidacloprid level was high enough to 

affect behavior, but too low too inflict mortality.  Psyllids were significantly less 

numerous on treated boxwoods on the second post-treatment sampling, providing further 

evidence that imidacloprid successfully controls this key pest of boxwoods (Young 

2002).   

Conclusions 

The use of insecticides to eliminate pests has frequently been shown to have far-

reaching consequences to assemblages of arthropods (Roberts et al. 1973, Luck and 

Dahlsten 1975, DeBach and Rose 1977, McClure 1977, Merritt et al. 1983, Dreistadt and 

Dahlsten 1986, Morse et al. 1987, Amalin et al. 2001, Letourneau and Goldstein 2001, 

Raupp et al. 2001, Marquini et al. 2002, Devotto et al. 2006, Frampton et al. 2007, Liang 

et al. 2007). One of the most important of these consequences is an adverse effect on 

natural enemies, which often contributes to primary and secondary outbreaks of 

phytophagous arthropods (Roberts et al. 1973, Luck and Dahlsten 1975, DeBach and 

Rose 1977, McClure 1977, Merritt et al. 1983, Dreistadt and Dahlsten 1986). It has been 

argued that a systemic mode of action may mitigate negative effects of pesticides on 

beneficial arthropods by reducing exposure (Mullins 1993, Sclar and Cranshaw 1996, 

Gill et al. 1999).  However, due to omnivory of some key predators, systemic insecticides 

present in plant tissues might place them at risk (Coll and Guershon 2002). A few of 

these omnivores, such as lacewing larvae (Neuroptera: Chrysopidae) (Limburg and 
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Rosenheim 2001, Patt et al. 2003), and minute pirate bug (Hemiptera: Anthocoridae) 

(Coll 1996, Armer et al. 1998, Coll and Guershon 2002, Ferkovich and Shapiro 2004) are 

also important predators of spider mites (Reddy 2001, Rosenheim et al. 2004).  

I predicted that if applications of imidacloprid reduced the abundance of key 

predators of spider mites, then this could explain in part outbreaks of spider mites. The 

results of experiments described here do not support a change in the community of 

predators as the mechanism behind secondary outbreaks of spider mites following 

applications of imidacloprid.   

In both elms and boxwoods, increased numbers of spider mites on plants treated 

with imidacloprid were driving the response curve of arthropod community.  The survey 

confirmed the occurrence of outbreaks of tetranychids following imidacloprid 

applications.  The overwhelming abundance of T. schoenei on treated plants did not seem 

to arise from elimination of a single key natural enemy or obvious disruption of the 

community of natural enemies.  While it is well documented through laboratory studies 

that imidacloprid is toxic to and impairs foraging ability of many key predators, I did not 

find an absence or lower abundance of natural enemies to provide a satisfactory 

explanation for dramatically elevated abundance of spider mites on trees and shrubs 

treated with imidacloprid.  Lack of effect of imidacloprid on key predators of T. schoenei 

and E. buxi as well as other natural enemies provides additional supporting evidence that 

mechanisms other than disruption of beneficial insects and arachnids is responsible for 

secondary outbreaks of spider mites.  Results of the boxwood study suggest that 

imidacloprid affected quality of the plants as well.  Moreover, the experiment 

exemplified how introduction of imidacloprid may result in cascading effects spanning 
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all trophic levels.  Elimination of susceptible pests and increased abundance of other 

herbivores may lead to restructuring of the arthropod fauna on host plants treated with the 

neonicotinoid.  Given what is known about the unusually long residual activity of 

imidacloprid in plants (Webb et al. 2003, Frank et al. 2007, Szczepaniec and Raupp 

2007), imidacloprid’s impacts on food webs may have far-reaching and long-lasting 

impacts.  
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Tables 

 
Table 2.1. Results of quantitative comparisons between communities of arthropods on 
elms treated with imidacloprid and untreated elms.  

 
                                                                                                  
  Site                           Year                                 F-value                      P-value               
                                                                
 
Univ. of MD,            2005                                   11.951                        0.006                  
College Park 
                                  2006                                   16.580                        0.002                
 
                                  2007                                   16.503                        0.002                 

 
Central Park,             2005                                    11.274                        0.01                 
New York 
                                  2006                                    16.103                        0.002                 
 
                                  2007                                    18.888                        0.004                 
                                   

Monte-Carlo permutations were used to generate 1,000 new data sets and resolve 
statistical differences between treatments. Sampling dates within each year were 
designated as blocks.  
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Table 2.2. Comparisons of abundance of T. schoenei on elms treated with imidacloprid 
and untreated elms in Central Park, New York.  

 
                                                                                                 
  Date                    Test*             df          P-value              
                                                                
 
6/09/05           F  = 0.950         1,18         0.3471      

6/29/05           Χ2 = 0.052        1             0.8193 

8/03/05           Χ2 = 3.456        1             0.0630 

8/26/05           F = 28.75          1,18       <0.0001 

9/16/05           Χ2 = 0.006        1             0.9397 

6/21/06           F = 2.380          1,18        0.1404 

7/25/06           Χ2 = 4.080        1             0.0009 

9/08/06           Χ2 = 6.8961      1             0.0086 

6/15/07           Χ2 = 0.1570      1             0.6919 

7/03/07           Χ2 =  0.027       1             0.8686 

8/08/07           Χ2 = 11.071      1             0.0009 

9/26/07           F = 2.60            1,18        0.1246 

ANOVA was used to compare means between treatments (F-value).  If assumptions of 
normal distribution and homogeneous variances were violated and could not be corrected 
with transformations, a non-parametric test, Kruskal-Wallis, was used (Χ

2). 
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Table 2.3. Comparisons of abundance of T. schoenei on elms treated with imidacloprid 
and untreated elms in College Park, Maryland.  

 
                                                                                                 
  Date                 Test*             df          P-value              
                                                                
 
6/02/05           Χ2

 = 7.286        1              0.0070   

6/15/05           F = 1.060          1,18         0.3168 

6/27/05           F = 0.240          1,18         0.6290 

7/12/05           F = 2.370          1,18         0.1418 

8/15/05           F = 18.730        1,18         0.0005 

9/01/05           F = 14.100        1,18         0.0016 

6/14/06           Χ2 = 0.082        1              0.7749 

7/31/06           Χ2 = 7.058        1              0.0079 

9/19/06           F = 5.430          1,18         0.0316 

6/05/07           Χ2 =  0.197       1              0.6569 

6/27/07           Χ2 = 6.242        1              0.0125 

7/23/07           F = 13.760        1,18         0.0016 

ANOVA was used to compare means between treatments (F-value).  If assumptions of 
normal distribution and homogeneous variances were violated and could not be corrected 
with transformations, a non-parametric test, Kruskal-Wallis, was used (Χ

2). 
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Table 2.4. Comparisons of abundance of E. spuria on elms treated with imidacloprid and 
untreated elms in College Park, Maryland.  

 
                                                                                                 
  Date                 Test*             df          P-value              
                                                                
 
6/02/05           F = 0                 1,18         1.0000   

6/15/05           Χ2 = 0.167        1              0.6820 

6/27/05           F = 5.580          1,18         0.0303 

7/12/05           F = 0.480          1,18         0.4957 

8/15/05           Χ2 = 3.717        1              0.0538 

9/01/05           Χ2 = 2.346        1              0.1256 

6/14/06           Χ2 = 10.185      1              0.0014 

7/31/06           F = 74.55          1,18       <0.0001 

9/19/06           Χ2 = 15.249      1           < 0.0001 

6/05/07           Χ2 =  9.380       1              0.0022 

6/27/07           Χ2 = 9.170        1              0.0025 

7/23/07           Χ2 = 7.207        1              0.0073 

ANOVA was used to compare means between treatments (F-value).  If assumptions of 
normal distribution and homogeneous variances were violated and could not be corrected 
with transformations, a non-parametric test, Kruskal-Wallis, was used (Χ

2). 
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Table 2.5. Comparisons of abundance of E. buxi on boxwoods treated with imidacloprid 
and untreated elms in College Park, Maryland.  

 
                                                                                                 
  Date                 Test*             df          P-value              
                                                                
 
5/05/05           F = 0.090          1,18         0.7667   

6/06/05           Χ2 = 6.858        1              0.0088 

7/06/05           Χ2 = 4.676        1              0.0308 

7/25/05           Χ2 = 8.371        1              0.0038 

8/19/05           Χ2 = 0.012        1              0.9136 

9/15/05           Χ2 = 0.002        1              0.9696 

 ANOVA was used to compare means between treatments (F-value).  If assumptions of 
normal distribution and homogeneous variances were violated and could not be corrected 
with transformations, a non-parametric test, Kruskal-Wallis, was used (Χ2). 
 
 
Table 2.6. Results of repeated measures analyses of most abundant arthropods on 
boxwoods treated with imidacloprid and untreated boxwoods.  

 
                                                                                                  
  Taxon                            Main Effect                             Time*Treatment              
                                                                
 
Tetranychidae           F1, 18 = 16.97; P = 0.0006         F5, 90 = 2.46; P = 0.0390   

Coccoidea                 F1, 18 = 1.76; P = 0.2016           F5, 90 = 1.76; P = 0.1298   

Mymaridae               F1, 18 = 1.00; P = 0.3306           F5, 90 = 1.00; P = 0.4225   

Aranea                      F1, 18 = 1.20; P = 0.2878           F5, 90 = 0.39; P = 0.8565   

Encyrtidae                F1, 18 = 0.87; P = 0.3648           F5, 90 = 0.24; P = 0.9484   

Formicidae               F1, 18 = 0.49; P = 0.4913           F5, 90 = 0.51; P = 0.7680   

Collembola               F1, 18 = 0.28; P = 0.6024          F5, 90 = 1.10; P = 0.3687    

Psyllidae                   F1, 18 = 0.37; P = 0.5528          F5, 90 = 0.58; P = 0.7156    
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Figures 

 
Figure 2.1. PRCs and species scores of arthropod community on elm trees treated with 
imidacloprid relative to untreated elms in Central Park, New York, NY.  Control was 
graphed at 0 to distinguish it from sampled community.  P values indicate significance 
level of comparisons between treatments within each year trees were sampled.  
Arthropods with positive species score ≥ 0.5 followed the response pattern shown in the 
PRCs, while groups with negative score ≤ -0.5 showed the opposite response pattern. 
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Figure 2.2. Comparisons of spider mite abundance between imidacloprid treated and 
untreated elms in Central Park, New York, NY from 2005 to 2007. Black bars represent 
untreated controls while grey bars represent trees exposed to the insecticide. Vertical 
lines represent standard errors. Asterisks mark means that were significantly different 
within each date at P = 0.05.  
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Figure 2.3. Repeated measures analysis of variance (ANOVA) and one-way ANOVA 
comparing abundance of tydeid mites between imidacloprid treated and untreated elms in 
Central Park, New York, NY from 2005 to 2007. Black bars represent untreated controls 
while grey bars represent trees exposed to the insecticide. Vertical lines represent 
standard errors. Asterisks indicate significant within-date difference in tydeid numbers P 
= 0.05.  
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Figure 2.4. PRCs and species scores of arthropod community on elm trees treated with 
imidacloprid relative to untreated elms on campus of the University of Maryland, College 
Park, MD. Control was graphed at 0 to help distinguish it from sampled community. 
Arrows indicate dates on which imidacloprid was applied P values indicate significance 
level of comparisons between treatments within each year trees were sampled. 
Arthropods with positive species score ≥ 0.5 followed response pattern shown in the 
PRCs, while groups with negative score ≤ -0.5 showed the opposite response pattern. 
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Figure 2.5.  Comparisons of spider mite abundance between imidacloprid treated and 
untreated elms in a common garden at the University of Maryland, College Park, MD 
from 2005 to 2007. Black bars represent untreated controls while grey bars represent 
trees exposed to the insecticide. Vertical lines represent standard errors.  Asterisks mark 
means that were significantly different on each  
date at P = 0.05.  
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Figure 2.6. Repeated measures analysis of variance comparing abundance of eriophyid 
mites between imidacloprid treated and untreated elms in a common garden at the 
University of Maryland, College Park, MD from 2005 to 2007.Black bars represent 
untreated controls while grey bars represent trees exposed to the insecticide. Vertical lines 
represent standard errors. Asterisks mark means that were significantly different on each 
date at P = 0.05.  
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Figure 2.7. Repeated measures analysis of variance comparing abundance of tydeid 
mites between imidacloprid treated and untreated elms in a common garden at the 
University of Maryland, College Park, MD from 2005 to 2007.Black bars represent 
untreated controls while grey bars represent trees exposed to the insecticide. Vertical 
lines represent standard errors. Asterisks mark means that were significantly different on 
each date at P = 0.05.  
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Figure 2.8. Comparison of the abundance of eriococcid scale insects between 
imidacloprid treated and untreated elms in a common garden at the University of 
Maryland, College Park, MD from 2005 to 2007. Black bars represent untreated controls 
while grey bars represent trees exposed to the insecticide. Asterisks mark means that 
were significantly different on each date at P = 0.05. Vertical lines represent standard 
errors. Asterisks mark means that were significantly different on each date at P = 0.05.  
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Figure 2.9.  PRCs and species scores of arthropod community on boxwoods treated with 
imidacloprid relative to untreated boxwoods on campus of the University of Maryland, 
College Park, MD.  Control was graphed at 0 to help distinguish it from sampled 
community.  The arrow indicates the date on which imidacloprid was applied.  
Arthropods with positive species score ≥ 0.5 followed the response pattern shown in the 
PRCs, while groups with negative score ≤ -0.5 showed the opposite response pattern. 
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Figure 2.10.  Abundance on E. buxi imidacloprid treated and untreated boxwoods in 
College Park, MD.  Black bars represent untreated controls while grey bars represent 
shrubs exposed to the insecticide. Vertical lines represent error bars. Asterisks mark 
means that were significantly different within each date at P = 0.05.  
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Figure 2.11.  Abundance of scale insects on imidacloprid treated and untreated 
boxwoods in College Park, MD.  Black bars represent untreated controls while grey bars 
represent shrubs exposed to the insecticide.  Vertical lines represent error bars. Asterisks 
mark means that were significantly different within each date at P = 0.05.  
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Figure 2.12  Abundance of a parasitoid wasp, Mymaridae, on imidacloprid treated and 
untreated boxwoods in College Park, MD.  Black bars represent untreated controls while 
grey bars represent shrubs exposed to the insecticide. Vertical lines represent error bars. 
Asterisks mark means that were significantly different within each date at P = 0.05.  
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Figure 2.13.  Abundance of spiders on imidacloprid treated and untreated boxwoods in 
College Park, MD.  Black bars represent untreated controls while grey bars represent 
shrubs exposed to the insecticide. Vertical lines represent error bars. Asterisks mark 
means that were significantly different within each date at P = 0.05.  
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Figure 2.14. Abundance of an Encyrtid wasp on imidacloprid treated and untreated 
boxwoods in College Park, MD.  Black bars represent untreated controls while grey bars 
represent shrubs exposed to the insecticide. Vertical lines represent error bars.  Asterisks 
mark means that were significantly different within each date at P = 0.05.  
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Figure 2.15.  Abundance of ants on imidacloprid treated and untreated boxwoods in 
College Park, MD.  Black bars represent untreated controls while grey bars represent 
shrubs exposed to the insecticide.  Vertical lines represent error bars. Asterisks mark 
means that were significantly different within each date at P = 0.05.  
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Figure 2.16.  Abundance of P. buxi on imidacloprid treated and untreated boxwoods in 
College Park, MD.  Black bars represent untreated controls while grey bars represent 
shrubs exposed to the insecticide. Vertical lines represent error bars.  Asterisks mark 
means that were significantly different within each date at P = 0.05.  
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Chapter 3: Plant-mediated and direct effects of imidacloprid on 
reproductive performance of Tetranychus schoenei (Acari: 

Tetranychidae) and Eurytetranychus buxi (Acari: Tetranychidae). 
 

Abstract 

 One of the hypothesized mechanism to explain outbreaks of spider mites that 

follow applications of imidacloprid was direct stimulation of mites’ fecundity.  Earlier 

studies provided evidence both supporting and refuting this hypothesis.   To examine if 

imidacloprid changes reproductive performance of mites, I investigated how applications 

of the insecticide to plants and directly to mites affected their fecundity.  T. schoenei and 

E. buxi were exposed to imidacloprid-treated elms and boxwoods, respectively.  

Additionally, the spider mites were sprayed with imidacloprid and then offered untreated 

foliage.  Results of the experiments indicate consistently higher fecundity of both species 

of mites after consuming imidacloprid-treated plants, while their longevity remained the 

same between treatments.  Spider mites sprayed with imidacloprid did not exhibit higher 

fecundity than their untreated counterparts, suggesting that the effect of imidacloprid on 

spider mite fecundity is mediated by changes in the quality of plants.   

Introduction 

 Hormoligosis is a phenomenon in which sublethal amounts of a chemical or 

other stressor found harmful when administered at high dose stimulates growth, 

accelerates maturation, or increases reproductive abilities of an arthropod when present at 

a lower dose (Luckey 1968, Morse 1998).  Previously, hormoligosis has been suggested 

as a key mechanism responsible for outbreaks of mites following the application of 
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imidacloprid (James and Price 2002).  A response that is expected in the case of 

hormoligosis is a β-curve, where growth, fecundity or other fitness parameters of the 

arthropod increase at lower doses of the chemical, reach a peak and then gradually 

decrease with increasing levels of the agent (Calabrese and Baldwin 1998).  The β-curve 

response of mites to increasing doses of imidacloprid has not been demonstrated and a 

level of imidacloprid detrimental to mites has not been identified.  Thus, it seems more 

appropriate to use a different term to refer to enhanced fecundity of mites exposed to 

imidacloprid.  Cohen (2006) suggested Pesticide-Induced Homeostatic Modulation 

(PIHM) as a more appropriate definition of direct stimulation of non-target organisms 

such as mites brought about by exposure to insecticides.  

 There are numerous reports of PIHM of mites in the literature.  Saini and 

Cutkomp (1966) and Dittrich et al. (1974) reported that DDT increased oviposition and 

resulted in female-biased ratio in spider mites.  Methyl carbamate applications had a 

stimulatory effect on spider mites as well (Dittrich et al. 1974, Boykin and Capmbell 

1982, Costa et al. 1988, Calabrese 1999).  Another insecticide class, pyrethroids, affected 

tetranychids in a similar way.  Application of synthetic pyrethroids resulted in higher 

fecundity, female-biased ratio, decreased generation time and delayed diapause (Iftner 

and Hall 1984, Jones and Parella 1984, Costa et al. 1988, Gerson and Cohen 1989, 

Ayyappath 1997).  McKnee and Knowles (1984) found that mites exposed to pyrethroid 

insecticide exhibited increased respiration and restlessness.   

 Little is known about the exact mechanism of direct stimulation of arthropod 

reproduction by pesticides.  One of the possible pathways that could result in increased 

feeding rate and greater fecundity is a positive change in plant nutritional value following 
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insecticide application (Rodriguez et al. 1960, Saini and Cutkomp 1966, Boykin and 

Campbell 1982, Mellors et al. 1984).  Gupta and Krischik (2007) found that rose plants 

treated with imidacloprid had elevated levels of chlorophyll and increased leaf area 

relative to untreated plants indicating a shift in the allocation of resources.  Twospotted 

spider mites, Tetranychus urticae (Acari: Tetranychidae), were more abundant on plants 

treated with imidacloprid.  In another important study, tomato plants treated with 

imidacloprid were probed more often by thrips, Frankliniella occidentalis, 

(Thysanoptera: Thripidae), than untreated plants (Joost and Riley 2005).  Another 

possible mechanism by which insecticides might elevate fecundity of arthropods is an 

increase in oocytes produced by the ovaries.  Elevated oogenesis  was suggested by 

Lemos et al. (2005) for stinkbugs exposed to sublethal levels of permethrin.  However, 

there are no rigorous experiments that would uncouple cause-and-effect relationship 

between greater numbers of eggs from increased feeding rate.   Increased respiration and 

enhanced locomotion were observed in spider mites exposed to a pyrethroid insecticide 

(McKnee and Knowles 1984)  

 Because of known cases of direct stimulation of reproduction of spider mites by 

various insecticides, a plausible mechanism underlying outbreaks of mites following 

imidacloprid applications was insecticide-induced increase in fecundity.  James and Price 

(2002) suggested hormoligosis as the mechanism of outbreaks of twospotted spider mites 

in hops.  James and Price (2002) presented evidence that imidacloprid administered as a 

foliar spray or soil drench affected mites directly by stimulating their fecundity and, in 

the case of treatments that involved soil applications of imidacloprid, also increasing mite 

longevity.  More importantly, James and Price (2002) evaluated the effects of a topical 
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treatment of mites with the insecticide.  Mites in this treatment were also found to 

produce more eggs than untreated females.  Notably, in studies involving direct exposure, 

imidacloprid was applied to spider mites on leaf disks, and did not account for plant-

mediated effects in this experiment.  Another group of scientists, who repeated James and 

Price's study, did not find any effect of imidacloprid on spider mite fecundity (Ako et al. 

2004).  This result was consistent when different stains of T. urticae resistant and 

susceptible to acaricides were used in experiments as well (Ako et al. 2006).   

  I investigated direct and indirect (plant-mediated) effects of imidacloprid 

applications on fecundity of a spider mites found on elms, T. schoenei and boxwood 

spider mite, E. buxi.  I exposed spider mites to plants that received treatments of 

imidacloprid through a soil drench.  In addition, I administered topical application of the 

insecticide to the mites to account for indirect, plant-mediated effects of imidacloprid on 

the number of eggs laid by the mites.  By eliminating the plant factor, I hoped to 

determine if a direct or plant-mediated PIHM was contributed to elevated populations of 

mites exposed to imidacloprid.  

Methods 

Fecundity of T. schoenei exposed to imidacloprid in elm trees and through a topical 

application. 

Source of experimental mites.  Each growing season, T. schoenei were collected 

from naturally infested elm trees in Central Park, New York, NY, and elms on the 

campus of the University of Maryland, College Park, MD.  To obtain females of known 

age, I removed all adult females from the excised foliage using a fine paintbrush.  Spider 

mites remaining on the leaves were kept in open Petri dishes (Falcon®, 150x15mm) with 
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moistened filter paper (Whatman®, 125mm), and covered with fine mesh held in place by 

a rubber band.  These plates were placed in slightly closed plastic bags and stored in a 

Percival® growth chamber at 23 ± 2 °C and 16:8 L:D and 60 ± 10% relative humidity.  

The colony was inspected daily and mature females were used in subsequent 

experiments.  This protocol was repeated before every bioassay to generate females of 

known age. 

 

Plant-mediated effect of imidacloprid on mite fecundity.  To evaluate how 

applications of imidacloprid through the soil affected spider mite fecundity, 18 elm trees, 

U. americana, were planted in a common garden at the University of Maryland Turf 

Research Farm at College Park, Maryland in May 2005.  The trees were purchased from 

a nursery, were uniform in size and age, and had a trunk diameter at breast-height (DBH) 

of approximately 2.5 cm at the time of planting.  They were hand-watered as needed 

throughout each season, and received applications of 15 g of a slow-release fertilizer 

Osmocote® (N:P:K of 17:7:12) once a year.  In a completely randomized block design, 

nine elms were treated with imidacloprid (Merit® soluble powder formulation, 750 g of 

imidacloprid/kg, Bayer, Kansas City, MO) at the label rate of 1.4 tsp (~2 g) per 2.5 cm 

DBH dissolved in 1 L of water.  Nine other elms were designated as untreated controls.  

Imidacloprid was administered on 06/05/2006, 05/11/2007, and 05/19/2008.   

I evaluated fecundity of mites consuming leaves of elm trees treated with 

imidacloprid in late August and September 2007.  A single female of known age was 

placed in a Petri plate (Falcon®, 60 x 15 mm) containing an excised leaf from an 

imidacloprid-treated or untreated elm.  To ensure that spider mites did not escape from 
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the arena, I used the bottom of the 60 mm plate and used the top of a 35 mm plate as a 

lid.  The two plates were kept tightly closed with 2 large-sized metal binder clips (Figure 

3.1).  Each plate contained a moistened filter paper (Whatman®, 42.5mm).  The plates 

were kept in slightly closed plastic bags and maintained at 23 ± 2 °C and 16:8 L:D and 60 

± 30% relative humidity.  Eggs were counted daily for each female until death using a 

dissecting microscope. Females were moved onto newly collected foliage in new 

microcosms every other day.  The experiment consisted of nine replicates and nine 

subsamples. Subsamples consisted of females assigned to each replicate.  Square root 

transformations were performed to correct for heteroskedasticity of data.  Lifetime 

fecundity and longevity of mites were analyzed using ANOVA (Ott and Longnecker 

2001, SAS 2008).   

 

Direct effect of imidacloprid on fecundity of spider mites.  To determine if 

imidacloprid affected fecundity of mites directly, I administered topical application of the 

insecticide to T.  schoenei females in September 2007.  To this end, I used methods 

described by James and Price (2002).  A Potter Spray Tower was used to apply 2 ml of 

flowable formulation of Admire® (2 g of imidacloprid/L, Bayer, Kansas City, MO) at 50 

kPa, resulting in a mean deposition of 1.6-1.8 mg of liquid per cm2.  Females of known 

age were collected from the colony maintained in the laboratory, moved onto fresh 

untreated leaves, and were then sprayed with imidacloprid or with distilled water.  After 

treatment, the leaves and mites were allowed to dry for 20 min before mites were moved 

to new, untreated leaves for analysis of performance.   
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Performance of T.  schoenei females that received sprays of imidacloprid or 

distilled water was assessed in the following way.  Thirty treated and thirty untreated 

females were randomly assigned to arenas containing leaves from untreated elm trees 

growing in a common garden on campus of the University of Maryland, College Park, 

MD.  Foliage from these untreated trees served as food for the mites, and was changed 

every other day.  Using experimental arenas described above with temperatures, light 

cycles, and humidity of 23 ± 2 °C and 16:8 L:D and 60 ± 30% respectively, I counted 

mite eggs produced from the first day of exposure until death of the mite.  The 

experiment was replicated 10 times for each of the three different untreated trees for a 

total of 30 replicates across blocks for each treatment.   Square root transformations were 

performed to correct for heteroskedasticity of data.  Lifetime fecundity and longevity of 

mites were analyzed using ANOVA (Ott and Longnecker 2001, SAS 2008).   

 

Fecundity of E. buxi exposed to imidacloprid in boxwood shrubs and through a 

topical application. 

 Source of experimental mites.  Boxwood spider mites were collected from 

naturally infested boxwoods with no history of insecticide exposure during the previous 

five years growing on the campus of the University of Maryland, College Park, MD.  

Mites were moved to containerized shrubs, B. sempervirens, var. Varder Valley in 3.7 L 

pots purchased from a commercial supplier and kept year-round at the University of 

Maryland Greenhouse facility located in College Park, MD, USA.  Boxwoods were 

maintained at 22 °C and 18 °C during the day and night respectively, with ambient 

humidity and L:D cycle of 16:8 h  Plants received approximately 200 ml of water once a 
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day through drip irrigation.  Mite colonies sustained on these boxwoods were used in all 

subsequent experiments.  

To obtain females of known age, I collected boxwood mites from plants in the 

greenhouse and removed all adult females from the excised foliage using fine 

paintbrushes.  Spider mites remaining on the leaves were kept in open Petri dishes 

(Falcon®, 150x15 mm) with moistened filter paper (Whatman®, 125 mm), covered with 

fine mesh held in place by a rubber band.  Plates were placed in slightly closed plastic 

bags and stored in a Percival® growth chamber at 23 ± 2 °C and 16:8 L:D and 60 ± 30% 

relative humidity.  The colony was inspected daily and mature females were removed and 

used in subsequent experiments. This protocol was repeated before every bioassay to 

generate spider mite females of known age. 

 

Plant-mediated effect of imidacloprid on mite fecundity.  To evaluate how 

applications of imidacloprid applied to boxwoods as soil drenches affected spider mite 

fecundity, I treated ten boxwood plants free of spider mites with imidacloprid 

(Marathon® soluble powder formulation, 600 g of imidacloprid/kg, Bayer, Kansas City, 

MO) at the high label rate of 0.33 g per 3.7 L pot dissolved in 100 ml of water.  Ten other 

boxwoods were designated as untreated controls.  The insecticide was applied 

approximately six weeks prior to the onset of experiments.   

I compared fecundity of mites consuming boxwood leaves treated with 

imidacloprid to those consuming untreated leaves by placing a single spider mite female 

of known age in a Petri plate (Falcon®, 60 x 15 mm) containing either an excised leaf 

from an imidacloprid-treated plant or a leaf from an untreated plant.  Experimental arenas 
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described above were used in this experiment (Figure 3.1).  The plates were kept in 

slightly closed plastic bags and maintained at 23 ± 2 °C and 16:8 L:D and 60 ± 30% 

relative humidity.  Individual female fecundity was followed until death. Eggs were 

counted daily with the aid of a dissecting microscope. I changed Petri dishes and moved 

females onto newly collected foliage every other day.  The experiment consisted of ten 

replicates with the experimental unit being a boxwood shrub that received imidacloprid 

or was an untreated control. Nine spider mite females were assayed on each plant and 

were considered subsamples. Square root transformations were performed to correct for 

heteroskedasticity of data. Lifetime fecundity and longevity of mites were analyzed using 

ANOVA (Ott and Longnecker 2001, SAS 2008).  

 

Direct effect of imidacloprid on fecundity of spider mites.  To determine direct 

effects of the insecticide on mite fecundity, I administered topical application of 

imidacloprid to E. buxi females as described above and in James and Price (2002).  

Females of known age were collected from the colony maintained in the laboratory and 

moved onto fresh leaves, which we sprayed with imidacloprid or with distilled water.  

After treatment, leaves and mites were allowed to dry for 20 min before mites were 

moved to untreated leaves for analysis of performance as described above.  Thirty treated 

and 30 untreated females were randomly assigned to arenas containing leaves from three 

untreated boxwoods grown in containers in the greenhouse in conditions described 

previously.  Three boxwoods were used as blocks to control for potential effects of plant 

variation.  The experiment was replicated 10 times for each of the three untreated shrubs 

for a total of 30 replicates across blocks for each treatment. Square root transformations 
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were performed to correct for heteroskedasticity of data. Lifetime fecundity and longevity 

of mites were analyzed using ANOVA (Ott and Longnecker 2001, SAS 2008).  

Results 

Fecundity of T. schoenei exposed to imidacloprid in elm trees and through a topical 

application. 

Plant-mediated effect of imidacloprid on mite fecundity.  Spider mites that 

consumed foliage from imidacloprid treated elms laid significantly more eggs than 

females feeding on untreated plants (F1,15 = 4.93; P = 0.042) (Figure 3.2).  Average 

lifetime fecundity increased from 21.12 (± 1.93) to 29.01 (± 2.69) when the spider mites 

were offered leaves from imidacloprid-treated elms.  Mites also showed a trend for 

increased longevity when exposed to leaves from treated elms; however, the trend was 

not statistically significant (F1,15 = 1.54; P = 0.2335).  T. schoenei exposed to the 

insecticide lived on average two days longer than mites feeding on leaves from untreated 

elms (16.18 ± 1.21 and 14.69 ± 1.14 on leaves from imidacloprid-treated trees and 

untreated controls, respectively). However, this difference was not significant. 

 

Direct effect of imidacloprid on fecundity of spider mites.  There was no 

interaction between the blocks (untreated plants used as food) and treatment (F2,58 = 

1.5821; P = 0.2073).  Thus, data across the three blocks were combined.  When T. 

schoenei received topical application of imidacloprid or water and then were offered 

leaves from untreated elms, their average lifetime fecundity did not differ between 

treatments (F1,58 = 0.5254; P = 0.4685) (Figure 3.3).  Spider mites that were sprayed with 

imidacloprid laid an average of 37.60 (± 4.20) eggs during their lifetime, while their 
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unsprayed counterparts produced 36.40 (± 3.63) eggs.  As in the previous experiment, 

longevity of mites was not significantly enhanced when exposed to imidacloprid (F1,58 = 

1.45; P = 0.2285) and mites lived an average of 16.01 ± 1.86 and 15.17 ± 1.46 days for 

imidacloprid-treated mites and untreated females, respectively.  Mites in this experiment 

were recorded to lay more eggs than females in the previous study that examined plant-

mediated effects on fecundity (21.12 ± 1.93 to 29.01 ± 2.69 eggs per female).  The 

previous study was conducted by multiple researchers due to a large sample size, while 

the direct effects of imidacloprid on mite fecundity were examined by an individual 

scientist, which could explain discrepancies between reproductive performances in the 

two experiments.  

Fecundity of E. buxi exposed to imidacloprid in boxwood shrubs and through a 

topical application. 

Plant-mediated effect of imidacloprid on mite fecundity.  There was no interactive 

effect of time and treatment on spider mite fecundity (F1,28 = 0.02; P = 0.915) or longevity 

(F1,28 = 3.08; P = 0.0910).  Thus, data from experiments conducted during the span of 

three months were combined.  E. buxi that consumed boxwoods treated with imidacloprid 

laid significantly more eggs than mites that ate foliage of untreated plants (F1,28 = 5.19; P 

= 0.0305) (Figure 3.4).  Their average lifetime fecundity was 18.98 (± 1.023) on the 

insecticide-treated boxwoods, whereas mites on untreated foliage laid an average of 

15.039 (± 1.39) eggs.  Females’ longevity, on the other hand, did not differ between the 

two treatments (F1,28 = 0.11; P = 0.7398) (Figure 3.4).  E. buxi exposed to imidacloprid 

through boxwoods lived for 13.42 (± 0.717) days, while females on untreated shrubs 

lived an average of 14.1 (± 0.9) days.  
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Direct effect of imidacloprid on fecundity of spider mites.  There was no 

interactive effect of block and treatment (F2,64 = 0.9471; P = 0.5813), and data across the 

three blocks were combined.  When E. buxi were exposed to imidacloprid through direct 

contact of an insecticide spray, their fecundity was not affected (F1,64 = 0.01; P = 0.915) 

(Figure 3.5).  Females in both treatments laid approximately 18 to 19 eggs during their 

lives (18.27 ± 1.023 and 19.193 ± 1.9 for imidacloprid-sprayed mites and untreated mites, 

respectively).  Boxwood spider mites that received topical application of imidacloprid 

lived for 12.72 (± 0.8) days, and their longevity was comparable to that of their 

counterparts sprayed with distilled water, who lived 13.761 (± 1.39) days (Χ
2
 = 0.0547; 

df = 1; P = 0.8151) (Figure 3.5).  Similar to the elm experiments, boxwood mites that 

were directly sprayed with imidacloprid were recorded to lay more eggs in both 

treatments than mites exposed to imidacloprid through foliage.  Due to a large sample 

size, experiments examining plant-mediated effects of imidacloprid on fecundity of 

spider mites required employing a sizable group of researchers. Multiple technicians with 

varying degree of skill and experience could have been the source of the discrepancies in 

reproductive performance of mites in the two studies. 

Discussion 

Imidacloprid had a positive effect on mite fecundity when present in the plant 

tissue.  Mites that consumed leaves from imidacloprid-treated elms laid almost 30% more 

eggs than their counterparts on untreated foliage.  The increase in fecundity could not be 

attributed to a longer lifespan, since there was no difference in how long T. schoenei 

lived in either treatment.  Similarly, foliage from boxwoods treated with imidacloprid 
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enhanced fecundity of the boxwood spider mite, while the insecticide had no effect on 

reproductive performance of mites when it was applied as a topical spray.  Increased 

longevity did not account for higher lifetime fecundity in this case either, because mites 

in all treatments lived for a comparable number of days.   

These parallel results provide support for imidacloprid’s role as mediator of the 

nutritional quality of foliage as food for spider mites. This change ultimately translates to 

enhanced reproduction in spider mites that could explain dramatically higher numbers of 

mites on plants treated with imidacloprid.   

This experiment provides evidence for imidacloprid-induced homeostatic 

modulation (Cohen 2006) of T. schoenei and E. buxi, and further supports conclusions 

drawn by James and Price (2002).  However, in contrast to James and Price’s (2002) 

study, when mites were directly exposed to imidacloprid, their fecundity remained the 

same as that of mites not sprayed with the insecticide.  This outcome provides a clue to 

the mechanism through which imidacloprid affects mite fecundity.  It appears that 

imidacloprid does not affect the mites directly, rather, it has an indirect, plant-mediated 

effect.   

Our results are in accord with earlier reports of insecticides promoting changes in 

the quality of plants (Rodriguez et al. 1960, Saini and Cutkomp 1966, Boykin and 

Campbell 1982, Mellors et al. 1984).  Changes in quality of plant associated with 

pesticides could result in greater feeding by herbivores and concomitant enhanced 

reproduction.  Furthermore, insecticides are known to have positive effects on plant 

growth (Pless et al. 1971, Wheeler and Bass 1971, Chelliah and Heinsrich 1980, Mellors 

el al. 1984) suggesting a mechanism by which insecticides improve plant quality and 
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indirectly enhance fecundity of phytophagous arthropods.  Another route by which 

insecticides may influence plant physiology and render plants a more suitable food source 

for herbivores is through disruption of defense pathways. Although hypothesized, this has 

not been extensively documented (Hardin et al. 1995).  If imidacloprid exerts one or more 

of these effects on plants, then mites could feed more, lay more eggs, and increase in 

number dramatically. 

 There are a few reports in the literature connecting imidacloprid’s influence on 

plant physiology to pest outbreaks.  Imidacloprid decreased activity of the detoxification 

enzyme, glutathione S-transferase, in rice cultivar (Wu et al. 2003), which has been 

linked to increased fecundity and resurgence of a pyralid moth boring into rice stems, 

Tryporyza incertulas (Wang et al. 2005).  Rice plants also showed higher content of 

soluble sugar (Wu et al. 2003), and this translated into higher sugar and lipid content of 

F1 generation of planthoppers, Nilaparvata lugens (Hemiptera: Delphacidae) feeding on 

imidacloprid-treated rice (Yin et al. 2008).  Gupta and Krischik (2007) recently provided 

evidence that plants treated with imidacloprid may prove more nutritious to herbivores.  

In their experiment, roses that received granular and soil drench formulations of the 

insecticide at different doses had a significantly higher chlorophyll content, leaf area and 

nitrogen concentration than untreated plants.  Additionally, outbreaks of twospotted 

spider mite, T. urticae, were observed on roses that received imidacloprid at 

concentration three times higher than the label rate.  This report provides another 

documented case of secondary outbreaks of spider mite and exemplifies the importance 

of further examining the extent to which imidacloprid drives changes in plant physiology, 

resource allocation, and affects non-target herbivores.  Moreover, extending research 
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beyond measuring the differences in plant growth and defense to include the mechanisms 

underlying these differences between imidacloprid treated and untreated plants will 

provide a more complete picture of factors that create outbreaks of mites.  

 I found evidence of imidacloprid-mediated increases in spider mite fecundity 

when the herbivore consumed leaves of plants treated with imidacloprid.  However, the 

quest to find direct effects of imidacloprid on spider mite fecundity failed.  It seems that 

changes in the quality of plants are the driving force behind secondary outbreaks of 

spider mites.  Literature reports support the notion that imidacloprid has an effect on the 

physiology of plants, exemplified by increased growth rate (Tenczar and Krischik 2006), 

higher chlorophyll indices and leaf area (Gupta and Krischik 2007), and increased yield 

(Gonias et al. 2006, 2008).  This stresses the importance of more in-depth investigations 

of the roles that imidacloprid may play in plant-herbivore interactions. 
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Figures 

 

 
Figure 3.1.  Experimental arena consisting of two plates held together by binder clips.   
 
 

 

 
Figure 3.2. Average lifetime fecundity and longevity of T. schoenei feeding on foliage 
from imidacloprid treated and untreated elms.  Bars represent means and vertical lines 
represent standard errors of the mean.  Asterisk denotes means that are statistically 
significant at P = 0.05.  
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Figure 3.3. Average lifetime fecundity and longevity of T. schoenei that received 
imidacloprid or distilled water (control) topical spray. Bars represent means, and vertical 
lines represent standard errors of the mean.  
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Figure 3.4. Average lifetime fecundity and longevity of E. buxi feeding on foliage from 
imidacloprid treated and untreated boxwoods. Bars represent means and vertical lines 
represent standard errors of the mean; star denotes means that are significantly different 
at P = 0.05.  
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Figure 3.5. Average lifetime fecundity and longevity of E. buxi that received 
imidacloprid or distilled water (control) topical spray. Bars represent means and vertical 
lines represent standard errors of the mean.  
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Chapter 4: Differential expression of genes involved in inducible 
defense pathways in tomatoes treated with imidacloprid 

 

Abstract 

 Effects of applications of imidacloprid and herbivore feeding (Tetranychus 

urticae Koch, Acari: Tetranychidae) on expression of selected genes regulated by 

jasmonic acid (JA) and salicylic acid (SA) were examined.  Tomato plants, Solanum 

lycopersicum, were established as a model organism by confirming the occurrence of 

spider mite outbreaks and documenting differential reproductive performance of mites on 

tomatoes treated with imidacloprid.  Expression patterns of jasmonic acid (JA)-regulated 

genes for cathepsin D inhibitor (CDI), proteinase inhibitor I and II (PI-I and PI-II) and 

salicylic acid (SA)-modulated genes for pathogenesis-related proteins P6 and P4 (PR-P6 

and PR-P4) were compared using reverse-transcriptase polymerase chain reaction (RT-

PCR).  CDI and PR-P6 showed differential expression in plants treated with 

imidacloprid.  Tomatoes that did not receive imidacloprid application expressed higher 

levels of CDI than imidacloprid-treated tomatoes, and this response was independent of 

the herbivore presence.  Expression of PR-P6 was elevated when untreated tomatoes 

were exposed to T. urticae, but was suppressed in tomatoes that were exposed to 

imidacloprid and mites.  Expression of the remaining genes was comparable among 

treatments.  Significance of these results to understanding the mechanism underlying 

spider mite outbreaks following application of imidacloprid are discussed.   
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Introduction 

Imidacloprid-driven changes in plant growth and yield.  It has long been known 

that insecticides affect plant physiology (Pless et al. 1971, Wheeler and Bass 1971, 

Chelliah and Heinsrich 1980). A few recent reports suggest that new classes of 

insecticides such as neonicotinoids exert changes in plant physiology as well.  Recently, 

Gupta and Krischik (2007) found rose plants that received three times the label dose of 

imidacloprid had a greater total chlorophyll index, content of leaf nitrogen, and leaf area 

than untreated plants.  Additionally, Tenczar and Krischik (2006) described a case of 

poplar trees that exhibited an increased rate of growth between one and four months after 

applications of imidacloprid.  In earlier studies, imidacloprid was reported to positively 

affect yield and growth rates of cotton.  Gonias et al. (2006) found that cotton that 

received applications of imidacloprid had increased yield of 7% and elevated dry weight 

of 16%.  In addition, imidacloprid-treated cotton had greater photosynthetic rates and 

chlorophyll indices than untreated plants (Gonias et al. 2008).  This response was 

amplified when plants experienced elevated temperatures and limited water suggesting 

that imidacloprid enhanced tolerance of cotton to stress, a possibility alluded to by 

Thielert (2006).  These findings illustrate that applications of imidacloprid may be linked 

to changes in plant physiology.  Enhanced growth and yield suggest that applications of 

imidacloprid lead to differential allocation of resources, which could provide a clue to 

untangling the mechanisms leading to outbreaks of spider mites.   

 

Plant defense theory.  Theory of plant defense has evolved numerous times since 

its birth in 1950's (Stamp 2003).  Many hypotheses that have emerged over the years 
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differ in some aspects, but all acknowledge that investment in defense comes as a cost to 

other plant functions (Stamp 2003).  One favored hypothesis, Growth-Differentiation 

Balance (GDB) hypothesis, recognizes that plants must balance resources used for 

competition and those used for defense against herbivores. These important selective 

forces shape the evolution of a plant's patterns of resource allocation (Herms and Mattson 

1992).  The hypothesis states that since growth is highly nitrogen-demanding, and plants 

need to grow in order to compete for resources, when faced with high availability of this 

limiting resource plants choose to grow.  If photosynthesis increases in an environment 

rich in resources, then both growth and secondary metabolism benefit.  However, when 

photosynthesis remains constant with increasing availability of nutrients, growth is 

favored over differentiation.  As a result, fewer resources are allocated to synthesis of 

defense compounds that are expressed constitutively (Herms and Mattson 1992, Stamp 

2003).   

GDB theory has been well supported for constitutive defenses (Herms and 

Mattson 1992, Glynn et al. 2003, Stamp 2003).  It is not clear, however, if changes in 

availability of limiting nutrients also govern the expression of inducible defenses, which 

are less costly to produce.  Herms and Mattson (1992) suggested that induced responses 

should be highest in fast-growing plants and plant tissues, for they are the strongest 

photosynthesis sinks and rich in photosynthetic products.  However, literature offers 

mixed support for this theory.  A study by Glynn et al. (2003) illustrates the dichotomy in 

expression of inducible defenses by plants exposed to a range of resources.  Glynn et al. 

(2003) investigated whether high levels of fertilization affected rapid induced response 

(RIR) of poplar trees against two lepidopteran pests.  They found that plants in the high 
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nutrient treatment elicited a strong RIR in response to herbivory by the gypsy moth. This 

follows a prediction by Herms and Mattson (1992) regarding inducible defenses in plants.  

By contrast, trees in a low nutrient environment had high levels of RIR when exposed to 

tussock moth (Glynn et al. 2003).  In this case, inducible response followed a pattern 

predicted for constitutive defenses by the GDB theory.  The fact that responses of plants 

depended on the type of herbivore rather than on nutrient regimen suggested a large range 

of adaptive phenotypic plasticity of plants with respect to expression of inducible 

defenses (Baldwin 1999, Agrawal et al. 2002).  The literature offers examples of studies 

where fertilization resulted in both strong and poor elicitation of RIR.  Hunter and 

Schultz (1995) found that applications of fertilizer to oak trees decreased their inducible 

defenses to sap-sucking and gall-forming insects.  Mutikainen et al. (2000), however, 

reported that fertilized silver birches exhibited strong RIR to a geometrid moth.   

While it is not entirely clear if the expression of inducible pathways parallels the 

predictions of GDB theory for constitutive defenses, there are examples that support this.  

It is thus possible to hypothesize that if plants treated with imidacloprid grow at a faster 

rate than untreated plants, according to the GDB theory fewer resources are available to 

direct to constitutive and possibly inducible defenses.   

 

Jasmonic acid: its effect on spider mite performance and role in plants.  Patterns 

of expression of jasmonic acid (JA), a defense hormone induced by cell-content feeding 

herbivores such as mites is a plausible route to explore potential effects of imidacloprid 

on plant defenses.  Importantly, there are several reports of JA affecting the performance 

of mites in a way similar to imidacloprid.  For instance, T. urticae performed better on 
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tomato plants genetically engineered to be deficient in their ability to synthesize JA 

(Walling 2000).  Moreover, Thaler et al. (2002) reported a decrease in the number of 

spider mite eggs on tomato plants following foliar applications of JA, while Omer et al. 

(2000) was able to induce resistance to a spider mite with foliar application of JA.  The 

application of exogenous JA decreased spider mite fecundity in this experiment.  Li et al. 

(2002) and Ament et al. (2004) investigated the impact of the JA-mediated response on 

spider mite performance further.  Performance of the spider mite, T. urticae, which 

consumed tomato plants lacking genes required for expression of JA was enhanced when 

compared to plants expressing the phytohormone.  However, there is a discrepancy 

between the two studies: Li et al. (2002) found that spider mite feeding and fecundity 

were increased on mutant plants, while Ament et al. (2004) found that fecundity did not 

differ between the treatments. However, egg viability was higher when mites consumed 

mutant plants.  Nonetheless, both research groups present reports of a direct correlation 

between JA deficiency and increased mite performance that in turn could affect 

population size.   

 Jasmonic acid and its derivatives are ubiquitous in plant tissues (Taiz and Zeiger 

2002).  Jasmonate, a cyclic oxygenated fatty acid, is synthesized through the 

octadecanoid pathway.  Membrane-bound linolenic acid is released into cytoplasm and 

converted to 12-oxo-phytodienoic acid in the chloroplasts though a multi step enzymatic 

process involving lipoxygenase, allene oxide synthase, and allene oxide cyclase (Leon 

and Sanchez-Serrano 1999).  12-oxo-phytodienoic is then converted to JA through a 

series of oxidations in peroxisomes (Leon and Sanchez-Serrano 1999).  JA signaling can 

be induced by developmental cues, osmotic stress, wounding, elicitors such as wounding, 
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and potassium levels (Turner et al. 2002, Armengaud et al. 2004).  Proteins, whose 

expression is enhanced by JA are thionin, a fungal defense protein (Bohlmann et al. 

1998), plant defensins 1 and 2, which are involved in antimicrobial defense (Gfeller and 

Farmer 2004), and proteinase inhibitor, which is involved in inhibition of herbivore 

feeding (Bergey et al. 1996).  Another result of JA signaling was elucidated by applying 

exogenous jasmonate.  Foliar applications to tomato and potato plants were found to 

increase levels of polyphenol oxidase, an enzyme thought to promote plant resistance 

against insect herbivores (Thaler 1999, Thaler et al. 2002).  Furthermore, methyl 

jasmonate applied to tobacco plants stimulated expression of nicotine, a powerful 

defensive chemical (Baldwin 1998).  

The phytochemical JA is involved in regulation of plant growth and development 

and leaf senescence (Bell et al. 1995, Reymond and Farmer 1998, Gfeller and Farmer 

2004, Lorenzo et al. 2004 ).  Initially, JA was described as a senescence-promoting 

substance (Leon and Sanchez-Serrano 1999, Thaler 1999).  This view was supported by 

reports of the hormone's involvement in promoting leaf senescence in rice and 

Arabidopsis thaliana plants (Hung and Kao 1997, and He et al. 2002).  The molecular 

bases of JA-related leaf senescence was investigated in potato and tobacco plants, and it 

was shown that JA inhibits growth by affecting one of the checkpoints of mitosis (Ulloa 

et al. 2002, and Swiatek et al. 2004).  In case of potato plants, the activity and expression 

of cyclin-dependent kinases was found to be down-regulated by JA (Ulloa et al. 2002).  

The fact that JA interferes with activity of cyclin-dependent kinases implies its direct and 

crucial role in controlling growth of plants.   
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Involvement of JA in defense pathways, has been widely studied (Baldwin et al. 

1998, Baldwin 1999, Thaler et al. 2004). Expression of 67-84% of genes involved in 

defense is mediated by jasmonates, and activation of these genes is not dependent on 

whether the feeding herbivore is a specialist or a generalist (Gfeller and Farmer 2004, 

Reymond et al. 2004).  A large pool of knowledge of JA's role in defense came from 

experiments that involved applications of exogenous jasmonate and using transgenic 

plants unable to synthesize JA.  Defense-inducing properties of foliar applications of the 

phytohormone were observed to reduce herbivory of leaf miners (Black et al. 2003), 

thrips, aphids, caterpillars and flea beetles (Thaler 1999). 

  

 Salicylic acid (SA) and SA and JA cross-talk.  JA pathways are known to interact 

with salicylic acid (SA), another phytochemical vital to a plants’ response to herbivores.  

SA is synthesized in plants from phenylalanine that is converted to trans-cinnamic acid 

through decarboxylation and then hydroxylated to SA (Lee et al. 1995, Shah 2003).  

Accumulation of SA induces systemic acquired response (SAR) in plants that is directed 

against pathogens (Lee et al. 1995, Datta and Muthukrishnan 1999, Walling 2000, Shah 

2003).  SAR regulates expression of pathogenesis-related (PR) proteins.  SAR is involved 

in countering fungal, viral, and bacterial attack, but it is also elicited in response to 

herbivore wounding (Datta and Muthukrishnan 1999, Walling 2000).  Exposure to 

feeding by spider mites for example, has been shown to elicit expression of PR proteins 

(Walling 2000, Li et al. 2002, Ament et al. 2004).   

 Evidence of cross-talk between the two phytochemicals is well-supported (Doares 

et al. 1995, Walling 2000, Gatehouse 2002, Heidel and Baldwin 2004).  SA has been 
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shown to down-regulate expression of PIs regulated by JA (Doares et al. 1995, Walling 

2000, Gatehouse 2002, Heidel and Baldwin 2004), while JA is known to elicit 

accumulation of PR proteins independently of SA (Penninckx et al. 1996, Pieterse and 

van Loon 1999, Schaller et al. 1999, Walling 2000, Choh 2004).  

 The complicated interactions between the two pathways and the fact that 

wounding by spider mites stimulates expression of defensive proteins regulated by both 

JA and SA underlined the need to examine differential expression of genes regulated by 

both phytochemicals.  To this end, I investigated the effect of imidacloprid application on 

expression of selected genes, whose transcription is known to be up-regulated by spider 

mites (Li et al. 2002, Ament et al. 2004).  Genes regulated by JA, Cathepsin D Inhibitor 

(CDI), Protease Inhibitor I (PI-I) and Protease Inhibitor II (PI-II), and genes coding for 

proteins in the SA pathway, Pathogenesis-related Protein P6 (PR-P6) and Pathogenesis-

related Protein P4 (PR-P4) were chosen.   

CDI, PI-I and PI-II are protease inhibitors, and interfere with herbivores’ 

digestion of plant tissues (Gatehouse 2002, Lizon et al. 2006).  They belong to the group 

of proteins inhibiting serine protease that have been widely studied (Sanches-Serrano et 

al. 1986, Clevelend et al. 1987, Ryan 1990, Ritonja et al. 1990, Ryan 2000, Walling 

2000, Lizon et al. 2006).  PI-I and -II are active against chymotrypsin and trypsin and 

chymotrypsin respectively (Ryan 1990, Datta and Muthukrishnan 1999), while in 

addition to inhibiting serine proteases, CDI also inhibits an aspartic protease, cathepsin D 

(Ritonja 1990, Lizon et al. 2006).   

While serine proteases have been well-studied, relatively less is known about the 

PR family of proteins.  Proteins are included in the PR family if their expression is 
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induced by SAR pathway (Datta and Muthukrishnan 1999).  The PR-P4 are chitinase 

proteins I and II without lysozomal activity and are thought to be employed by plants as 

they attack fungal and bacterial walls (Datta and Muthukrishnan 1999).  They are also 

expressed in tomatoes attacked by spider mites (Li et al. 2002, Ament et al. 2004).  

Lastly, PR-P6 is a family of PR proteins related to tomato protease inhibitor I and inhibits 

serine proteases (Datta and Muthukrishnan 1999).  

 

 Tomato as the model system for imidacloprid-mediated disruption of defenses.  

There are a few crucial similarities in the effects that both imidacloprid and jasmonic acid 

have on spider mites.  Responses of tetranychids to plants treated with imidacloprid 

resemble responses seen in plants deficient in JA.  A model organism, Solanum 

lycopersicum, was used to investigate changes in JA mediated plant defense associated 

with applications of imidacloprid.  The objectives of this research were twofold.  First, I 

attempted to establish that the same phenomena illustrated for woody ornamental plants, 

namely outbreaks of mites and differential fecundity, hold true for the tomato system.  

Finding the link between the model system and woody ornamentals was essential to 

extrapolate possible disruption of defenses in tomato back to trees and shrubs growing in 

landscapes. Second, I wanted to examine if expression of selected genes from JA and a 

related, salicylic acid (SA) pathway were affected by imidacloprid application.  Genes 

involved in SA were used in the experiment as well because of known cross-talk between 

the two pathways (Traw and Bergelson 2003, Thaler et al. 2002, Heidel and Baldwin 

2004).  
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Methods 

Study system: Tetranychus urticae Koch (Acari: Tetranychidae) and Solanum 

lycopersicum (Solanales: Solanaceae) 

 Herbivore and its biology.   T. urticae is a generalist pest attacking a wide 

variety of plants.  These spider mites' hosts include over 900 species of plants (Walter 

and Proctor 1999), and damage inflicted by these mites can cause significant economic 

loss to agriculture and ornamental plant production (Huffaker et al. 1969, Helle and 

Sabelis 1985).  The mites overwinter as adult females, and go through four 

developmental stages before becoming a fully mature mite: egg, larva, characterized by 

three pairs of legs, protonymph and deutonymph (Helle and Sabelis 1985, Evans 1992, 

Walter and Proctor 1999).  Development from egg to adult is correlated to temperature 

and humidity with higher temperatures and lower humidity resulting in shorter 

development time (Helle and Sabelis 1985).  Eggs are deposited on the surface of the 

leaf, usually the underside, or on and inside webbing produced by mites at high densities.   

 T. urticae feeds by puncturing mesophyll cells and sucking out the cell 

contents (Helle and Sabelis 1985).  Their feeding damages spongy mesophyll cells, 

although damage in the palisade layer has been observed at high mite densities as well 

(Evans 1992).  There have been reports of toxic properties of mite saliva as early as 1964 

(Simon 1964), and other reports supporting this claim followed (Avery and Briggs 1968, 

Andrews and LaPre 1979).  More recently, it has been shown that elicitors in mite saliva 

stimulate the cascade of plant defense responses (Dicke et al. 1993, Takabayashi et al. 

2000, Walling 2000, Janssen et al. 2002).  Feeding by spider mites elicits release of 
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kairomones such as methyl salicilate, linapool, and (3E)-4-8-dimethyl-1,3,7-nonatriene 

(Evans 1992).   

 Spider mites feed mainly on the underside of leaves, and symptoms of their 

damage can range from stippling and irregular blotches of discoloration to yellowing or 

bronzing of the leaf (Helle and Sabelis 1985, Evans 1992).  Defoliation is associated with 

heavy infestations.  High mite populations can also lead to mite dispersal, although other 

factors such as plant host quality and desiccation also play a role in dispersal (Helle and 

Sabelis 1985, Evans 1992).  Female spider mites, sometimes immatures but rarely males, 

assume a distinct dispersal position with their forelegs raised, and are carried off the leaf 

by wind (Evans 1992).   

  

 Host plant.  Tomato (Solanum lycopersicum, formerly: Lycopersicon 

esculentum) is one of the more extensively studied agricultural plants due to its high 

cultural and economic importance.  It evolved in South America, and belongs to the 

“night shade” family, Solanaceae (USDA 2009).  The genome of tomato is being 

sequenced as a part of the 'International Solanaceae Genome Project (SOL): Systems 

Approach to Diversity and Adaptation' (Mueller et al. 2005).  Many crucial aspects of 

plant physiology such as plant development, fitness, yield, plant defense pathways and 

pathogen  resistance mechanisms have been studied by utilization of tomato genome 

(Bennett and Leyser 2006, Bian et al. 2006, Manning et al. 2006, Quinet et al. 2006, 

Schaefer et al. 2006, Semel et al. 2006). 
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Effects of imidacloprid on abundance, fecundity and longevity of T. urticae on 

tomato plants treated with imidacloprid. 

 Source of experimental mites.  A colony of spider mites, T. urticae, was 

maintained on potted tomato plants, S. esculentum var. Castlemart.  Tomatoes were 

grown in 18 cm (diameter) pots in Sunshine® All-Purpose soil mix (Bellevue, WA, 

U.S.A.).  Tomatoes were maintained in a walk-in growth chamber at the Greenhouse 

Complex at the University of Maryland, College Park, MD, U.S.A.  Plants were 

maintained at a 12:12 light: dark cycle, with relative humidity of 60% and received light 

intensity of 596.3 µmol/m2/s.  The plants were fertilized every other week with Miracle-

Gro® Liquid Plant Food (24:8:16 ratio of N:P:K) at label rate of 0.5 g dissolved in 3.7 L 

of water.  Tomatoes were watered by hand every other day.  Spider mites were obtained 

from infested greenhouse plants never treated with insecticide and moved onto leaves of 

tomatoes used to maintain colonies of mites.  New plants grown in the conditions 

described above were introduced to the colony of mites as needed.   

 For experiments requiring females of known age, tomato leaves with a high 

density of spider mite were cleared of all adult females using a fine paintbrush.  Leaves 

were inspected daily for new females, which were removed and used in subsequent 

studies.  

 

 Abundance of mites on imidacloprid-treated tomato plants.  To determine if 

spider mite populations varied between plants treated with imidacloprid and untreated 

plants, six-week old tomato plants in 18 cm pots maintained as described previously 

received the following treatments.  Five of the plants received an application of 
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imidacloprid according to the label of Marathon® 60 WP (soluble powder formulation, 

600 g of imidacloprid/kg, Bayer, Kansas City, MO) with 0.0235 g/pot dissolved in 100 

ml of water applied directly to soil.  Five tomato plants were assigned as untreated 

controls.  Two weeks after imidacloprid was administered, 500 female spider mites 

obtained from the colony were moved onto each of the five imidacloprid-treated and five 

untreated tomato plants.  Ten leaves from each plant were randomly selected, and five 

females were placed on each leaf using a fine paintbrush.  Abundance of spider mites was 

evaluated four and eight weeks following commencement of the experiment.  Tomatoes 

were left intact, and leaves were not excised from the plants.  A hand lens (10X, Hasting 

Triplet, Bausch & Lomb®) was used to count spider mites and their eggs on both sides of 

each leaf.  The response variable was the abundance of mites per tomato leaf.  Results 

were analyzed using one-way analysis of variance (ANOVA) following tests for 

normality (Shapiro-Wilk test) and homogeneity of variance (Levene’s test) (Ott and 

Longnecker 2001, SAS 2008).   

 

 Fecundity of mites raised on tomato plants.  To examine reproductive 

performance of T. urticae on tomatoes that received an application of imidacloprid, ten 

six-week old tomato plants potted in 18 cm pots and maintained in conditions described 

above were used.  Five of the plants were treated with imidacloprid as stated previously, 

and five were left untreated.  Two weeks after the insecticide was administered, a single 

female was moved onto one of nine leaves of each of the ten experimental plants.  Leaves 

were not removed from tomatoes during the experiment.  Eggs were counted using a 

hand lens and subsequently removed using a fine paintbrush.  Fecundity of each mite was 
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followed every other day until their death.  Number of eggs laid during lifetime of each 

female and their longevity were the response variables analyzed.  The entire study was 

repeated twice and the results were analyzed using ANOVA when data exhibited a 

normal distribution (Shapiro-Wilk tests) and homogeneity of variance (Levene’s test) 

(Ott and Longnecker 2001, SAS 2008).  Data from the two trials were combined if block 

by treatment interaction was found to be insignificant (Ott and Longnecker 2001). 

Expression of selected genes involved in JA and SA pathways in tomatoes exposed to 

imidacloprid and herbivore feeding. 

 Tomatoes used in this experiment were placed in 10 cm (diameter) pots and 

maintained as described previously.  The experiment had a 2x2 factorial design with two 

levels of insecticide (imidacloprid present and absent) and two levels of herbivory (mites 

present and absent).  Imidacloprid (Marathon® 60WP) was applied to four-week old 

plants at label rate (0.013g dissolved in 50 ml of water applied directly to the soil).  Six 

tomatoes received the application while six additional plants were designated as untreated 

controls.  Two weeks after imidacloprid was administered, five female spider mites were 

moved to a single leaf of three imidacloprid-treated tomatoes and three untreated plants.  

Mites were placed on one of the youngest, but fully expanded leaves on each of the six 

plants assigned to herbivore treatment, and were allowed to feed on the foliage for 72 h 

prior to RNA extraction.   

 Leaves exposed to mite feeding and corresponding foliage on herbivore-free 

plants were used for the extraction.  A single leaf was removed from each of the 12 

plants, ground in liquid nitrogen using mortar and pestle and RNA was extracted from the 

leaves using RN-Easy Mini Kit from Qiagen® (Valencia, CA).  DNA contamination was 
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removed using RNase-Free DNase Set (Qiagen®,Valencia, CA) during RNA extraction.  

Quality of RNA was confirmed according to the kit instructions (Qiagen® Valencia, CA).  

Concentration of the RNA was measured using a spectrophotometer (Eppendorf® 

BioPhotometer Plus) and brought to an equal concentration of 0.2 µg among all samples 

using RNase-free water dilutions.  Extracted mRNA was stored at -80° C until it was 

used for the RT-PCR.  

 GenBank accession numbers for the six genes induced by mite feeding (Ament et 

al. 2004) are listed in Table[primers].  Primers were designed using PrimerQuestSM 

software (Integrated DNA Techn.®) and later ordered from Sigma-Adrich® (St. Louis, 

MO).  Elongation factor (EF1- α) was used as a positive control.  Reverse transcription of 

mRNA to cDNA and amplification of the fragments was performed using Qiagen® One-

Step RT-PCR Kit in a Lightcycler480 (Roche, Indianapolis, IN).  The PCR protocol 

consisted of a 1 min denaturation process at 94° C, followed by annealing of primers at 

60-65° C, and 35 cycles at 72° C.  Products of the PCR were visualized using ethidium 

bromide in agarose gel electrophoresis.  The relative intensity of bands was obtained 

using ImageJ (ImageJ 1.41, National Institute of Health, USA) software. Measurements 

from each band were standardized by the control, EF1- α. The quantitative measures of 

differences in expression were compared with a redundancy analysis, using Canoco 

software (Ter Braak and Smilauer 2002, Prasifka et al. 2005).  A 2x2 factorial ANOVA 

was performed to test for main and interactive effects of the two levels of imidacloprid 

and herbivore treatments on expression of each gene (Ott and Longnecker 2001, SAS 

2008).  Multiple pairwise comparisons made with Tukey’s procedure were used to 

compare expression of each gene among treatments if assumptions of normal distribution 
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(Shapiro-Wilk test) and homogeneity of variance (Levene’s test) were met (Ott and 

Longnecker 2001). 

Results 

Effects of imidacloprid on abundance, fecundity and longevity of T. urticae on 

tomato plants treated with imidacloprid. 

 Outbreaks of spider mites on tomatoes treated with imidacloprid.  Abundance 

of spider mites on tomatoes treated with imidacloprid did not differ from their numbers 

on untreated plants four weeks after the onset of the study (F1,8=1.44, P =0.316).  

However, tomatoes that received imidacloprid application housed significantly greater 

population of mites than untreated ones eight weeks after mites were introduced to the 

plants (F1,8=7.43, P=0.026) (Figure 4.1).  There were 50% fewer mites on untreated 

tomatoes than on imidacloprid-treated plants (22.20 (±3.75) and 10.57 (±1.6045) mites 

on treated tomato plants and untreated tomatoes, respectively.  

 

 Fecundity of mites raised on tomato plants.  Reproductive performance of 

mites was significantly greater when the females consumed tomatoes treated with 

imidacloprid compared to foliage from untreated plants (F1,18 = 7.53, P = 0.0207) (Figure 

4.2).  Spider mites on tomatoes exposed to imidacloprid produced 85.18 (±6.78) eggs in 

their lifetime, and mites on untreated tomatoes laid 66.29 (±5.66) eggs.  However, 

imidacloprid applications did not have an effect on longevity of spider mites (F1,18 = 0.24, 

P = 0.6325, Figure 4.2).  In both treatments, the mites lived an average of about 22 or 21 

days (21.95 (±1.91) and 20.73 (±2.20) on imidacloprid exposed tomatoes and untreated 

plants, respectively).  
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Expression of selected genes involved in JA and SA pathways in tomatoes exposed to 

imidacloprid and herbivore feeding. 

 Gel electrophoresis was performed to visualize the differences in expression 

of selected genes (Figure 4.3).  Based on Monte-Carlo permutations, relative intensity of 

bands standardized by the positive control was significantly different among treatments 

(F ratio = 6.918; P = 0.014).  Comparisons of treatment effects within each gene are 

presented in Figure 4.4.  There was no interactive effect of imidacloprid and herbivore 

treatments on levels of CDI transcripts (F1,8 = 0.01; P = 0.93).  Expression of CDI was 

significantly lower in tomatoes that received imidacloprid application compared to 

untreated plants (F1,8 = 20.1; P = 0.002), while presence of herbivore did not affect 

expression of CDI (F1,8 = 0.71; P = 0.424).  There was no effect of imidacloprid treatment 

(F1,8 = 0.69; P = 0.429) and herbivore feeding (F1,8 = 3.17; P = 0.113) on expression of 

PI-I, and the two factors had no interactive effect on expression of this gene (F1,8 = 2.7; P 

= 0.139). Similarly, there was no interactive effect of imidacloprid application and 

presence of spider mite on expression of the gene coding for PI-II (F1,8 = 0.23; P = 

0.645).  This gene also exhibited no difference in expression due to imidacloprid 

presence (F1,8 = 4.17; P = 0.075) or herbivore feeding (F1,8 = 0.35; P = 0.571). There was 

an interaction between the two factors for PR-P6 (F1,8 = 7.55; P = 0.025).  Untreated 

plants exposed to feeding by T. urticae had increased in levels of PR-P6 transcripts.  

Presence of the herbivore did not elicit expression of this gene in imidacloprid-treated 

tomatoes in comparable levels.  Neither the insecticide nor feeding by spider mites 

elicited differential expression of PR-P4 (F1,8 = 0.9; P = 0.371 and F1,8 = 0.28; P = 0.614 

for imidacloprid effect and herbivore effect, respectively).    
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Discussion 

Tomato plants treated with imidacloprid elicited the same population and 

individual response from the tetranychid mites as woody ornamental plants treated with 

imidacloprid (Chapters 1, 2, and 3).  Spider mite outbreaks that occurred on tomatoes 

receiving imidacloprid applications confirm that the phenomenon widely documented on 

the trees and shrubs in the field takes place on a vegetable as well (Sclar et al. 1998, 

Raupp et al. 2004, Gupta and Krischik 2007, Raupp et al. 2008).  In addition to increased 

abundance, spider mites laid more eggs when tomatoes were treated with imidacloprid.  

These two pieces of evidence suggest that the effect exerted on mites by imidacloprid is 

general, and occurs on plants as vastly different as the woody perennials and annual 

plants.  

Imidacloprid application to tomatoes resulted in differential expression of genes 

coding for two serine protease inhibitors, CDI and PR-P6.  Untreated tomato plants 

expressed CDI regardless of mite presence, while imidacloprid applications suppressed 

transcription of these genes to mRNA.  The fact that untreated tomatoes expressed this 

gene in comparable levels in both herbivore treatments could be caused by two factors.  

Firstly, PI’s are known to be expressed constitutively (Jongsma 1997, Gatehouse 2002) 

and it is possible that this gene is expressed in plant tissues that are not under attack.  

Additionally, the duration of feeding by spider mites, number of mites that the leaves 

were exposed to, and time elapsed from the onset of herbivore attack may all explain the 

apparent lack of difference in level of expression of CDI in tomatoes with and without 

the mites.  More importantly, tomatoes that were treated with imidacloprid did not 
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express this gene, and expression was not elicited even in the presence of spider mites.  

This suggests that imidacloprid interferes with expression of this PI.   

PR-P6 was expressed at a comparable level in plants treated with imidacloprid 

and untreated ones not subjected to feeding by spider mites.  When plants were exposed 

to spider mites, however, transcription levels of PR-P6 were significantly higher in 

tomatoes that were not treated with imidacloprid compared to treated plants.  As with 

CDI, there seems to be a strong inhibition of transcription of this gene to mRNA.   

Both of the genes that were differentially expressed in the presence of 

imidacloprid encode proteins known to be serine protease inhibitors.  Expression of CDI 

is modulated by the JA pathway, and while most PR proteins are generally regulated by 

SA, there are numerous reports in the literature of PR proteins induced by JA (Penninckx 

et al. 1996, Pieterse and van Loon 1999, Schaller et al. 1999, Walling 2000, Choh 2004).  

Additionally, PR-P6 has protease inhibiting property, and its function in plant defenses 

against herbivore attack has been demonstrated (Datta and Muthukrishnan 1999, Li et al. 

2002, Ament et al. 2004).  Both genes may have been regulated by JA in plants that were 

not treated with imidacloprid, while their down-regulation in tomatoes exposed to 

imidacloprid was related to disruption of JA signaling.   

Imidacloprid’s negative effect on expression of protease inhibitors could translate 

into significant advantages for spider mites.  Proteases produced by mites brake down 

proteins in plant tissues and aid in assimilation of amino acids by the herbivore (Datta 

and Methukrishnan 1999).  Inhibitors of these proteins are crucial for plant defenses, and 

decrease in their quantity and diversity would allow mites easier access to plants’ 

resources. 
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While it is not possible to discern directly from this experiment how exactly 

imidacloprid applications alter expression of these two genes, previous studies offer 

possible mechanisms.  Imidacloprid breaks down into several metabolites in plants.  One 

of them is a 6-chloronicotinic acid (6-CNA) (Suchail et al. 2001) (Figure 4.5).  This 

stable metabolite resembles in structure an important phytochemical involved in plants 

response to pathogen attack, isonicotinic acid (INA) (Figure 4.5) (Francis et al. 2008).  

Thielert (2006) suggested structural similarity between 6-CNA and an inducer of 

systemic resistance of plants earlier.  INA plays an important role in the response of 

plants to pathogens (Silverman et al. 1995, Mauchi-Mani and Metraux 1998, Dmitriev et 

al. 2003) and is thought to serve as SA analogue as well, eliciting expression of the same 

genes that are elicited by SA (Silverman et al. 1995, Friedrich et al. 1996).  INA is 

efficiently translocated through the plant, and induces SAR most likely by its 

translocation rather than a release of a systemic signal (Friedrich et al. 1996).  Because 

INA is involved in defense pathways of plants under attack by pathogens and may 

stimulate the same pathway regulated by SA, the accumulation of INA mimic, 6-CNA, 

could result in switching on a plant’s responses typical for pathogen attack.  Given that 

SA is known to down-regulate expression of PI’s (Doares et al. 1995, Heidel and 

Baldwin 2004), this could result in differential expression of these genes in plants treated 

with imidacloprid.   

Expression of genes coding for other PIs, PI-I and PI–II was not affected by 

imidacloprid.  Plants treated with imidacloprid and untreated controls generally did not 

express PI-I in absence of spider mites, while feeding by spider mites elicited 

accumulation of transcripts of PI-I.  Additionally, PI-II had comparable expression in 
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tomatoes in all four treatments.  This could be caused by constitutive expression of this 

gene, which has been shown for PIs in general (Jongsma 1997, Gatehouse 2002), 

duration of feeding by spider mites, number of mites that the leaves were exposed to, and 

time elapsed from the onset of herbivore attack.  It is not clear why patterns of expression 

of PI-I and PI–II differed from CDI and PR-P6.  It is important to note, however, that 

these proteins may have unrelated structures and are grouped into the family of PI’s 

because of their common ability to bind proteases (Datta and Methukrishnan 1999).  

There may be other roles that these proteins play in plants other than defense. (Datta and 

Methukrishnan 1999).   

Lastly, expression of PR-P4 also did not differ among treatments.  PR-P4 proteins 

are chitinases, and while their expression is activated by wounding inflicted by spider 

mites (Li et al. 2002, Ament et al. 2004), they are thought be directed mainly against cell 

walls of fungi and bacteria (Datta and Methukrishnan 1999).  The exact function of this 

family of proteins is unknown in tomato (Walling 2000).  It is possible that the duration 

of mites’ feeding on tomatoes and their low numbers were not sufficient to elicit 

expression of this protein.   

Cross-talk between the two phytohormones and negative feedback of SA on JA-

regulated pathways has been documented (Doares et al. 1995, Walling 2000, Gatehouse 

2002, Heidel and Baldwin 2004).  They provide support for a hypothesis that the 

imidacloprid metabolite accumulated and mimicked INA, thereby, influencing regulation 

of the JA pathway.  If imidacloprid exerts an SA-like impact on of the plants’ pathways, 

then inhibition of genes regulated by JA, such as PI’s, could take place.  This would in 

turn eliminate a component of plant’s defenses employed during spider mite feeding and 
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provide a plausible mechanism of spider mite outbreaks.  Even though disruption in 

expression of tomato genes involved in plant defense cannot be related directly as a 

mechanism driving outbreaks of spider mites on woody ornamental plants, these results 

suggest that imidacloprid affects general and conserved defenses of plants and as such 

creates conditions conducive to spider mite outbreaks.   

Variation in expression of the selected genes in tomatoes treated with 

imidacloprid and exposed to spider mites may stem from a complex relationship between 

JA and SA.  A study examining the effect of feeding of mirid bugs on expression of PIs 

found them up-regulated 24 h after attack (Doares et al. 1995). In contrast, Heidel and 

Baldwin (2004) reported that feeding by mirids down-regulated expression of PIs after 72 

h.  In both cases concentrations of SA were high, implying that an unknown signal plays 

a role in how SA affects PIs’ (Heidel and Baldwin 2004).   

This study examined transcription of the genes to mRNA at a single point in time 

during defensive response of imidacloprid-treated and untreated tomatoes to the mites.  

This prevents us from making inferences on how changes in expression translated to 

differences in concentration of these defense compounds.  Post-transcriptional 

modifications and effects of imidacloprid on transcription of other genes could affect the 

total responses of tomatoes to spider mites.  Further research on the full extent of 

physiological changes in plants driven by imidacloprid is needed before the complete 

mechanism of spider mite outbreaks is discerned. 
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Figures 

 
Figure 4.1.  Abundance of T. urticae on imidacloprid treated and untreated tomatoes.  
Bars represent means and vertical lines represent standard errors. The asterisk marks 
means that were significantly different at P = 0.05.  
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Figure 4.2.  Fecundity and longevity T. urticae on imidacloprid treated and untreated 
tomatoes.  Black bars represent untreated controls while grey bars represent plants 
exposed to the insecticide.  Vertical lines represent standard errors. The asterisk marks 
means that were significantly different at P = 0.05.  
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Figure 4.3.  Gel electrophoresis of RT-PCR products from tomatoes exposed to 
imidacloprid (+ Imid) and untreated tomatoes (- Imid) in presence (+ Mites) and absence 
(- Mites) of herbivory.  Expression patterns of cathepsin D inhibitor (CDI), proteinase 
inhibitor I (PI-I), proteinase inhibitor II (PI-II), pathogenesis-related protein P6 (PR-P6) 
and pathogenesis-related protein P4 (PR-P4) are presented.  Elongation Factor - 1α (EF-
1α) was used as a positive control.   
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Figure 4.4.  Comparisons of expression of selected genes in tomatoes subjected to two 
levels of imidacloprid (-Imid, +Imid) and two levels of herbivore feeding (-Mites, 
+Mites).  Expression patterns of cathepsin D inhibitor (CDI), proteinase inhibitor I (PI-I), 
proteinase inhibitor II (PI-II), pathogenesis-related protein P6 (PR-P6) and pathogenesis-
related protein P4 (PR-P4) are presented.  Relative intensity of each band was 
standardized by a corresponding expression of a positive control, EF 1- α.  Bars represent 
means while vertical lines represent standard errors.  Bars that share a letter are not 
significant at P = 0.05.  
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Figure 4.5.  Chemical structures of isonicotinic acid (A) and 6-chloronicotinic acid (B). 

A B 
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Conclusions and future directions 
 

 The goal of this work was to document outbreaks of spider mites following 

applications of imidacloprid, and to examine the three main mechanisms, elimination of 

natural enemies, direct effect of imidacloprid on mite fecundity and disruption of plant 

defenses thought to cause the outbreaks.  The findings of this research further support 

earlier reports of consistent outbreaks of spider mites on woody ornamental plants treated 

with imidacloprid in landscapes and greenhouse.  Notably, abrupt increases in abundance 

of mites in relative absence of natural enemies in the greenhouse provided evidence that 

elimination of natural enemies may not be the leading cause of the outbreaks.  

Furthermore, surveys of arthropods on elms and boxwoods treated with imidacloprid did 

not unveil significant differences in composition or numbers of natural enemies of spider 

mites.  Phytoseiid mites, a key predator of spider mites, displayed a variable pattern of 

abundance that deserves a closer, more rigorous examination.  Thus, while it is not 

possible to dismiss the possibility of negative impact of imidacloprid on communities of 

natural enemies of spider mites, additional factors seemed to contribute to increased 

abundance of mites on imidacloprid-treated plants.   

 These additional factors were identified in experiments that investigated changes 

in fecundity of mites and expression of plant defense pathways in response to 

imidacloprid presence.  Exposure to the neonicotinoid through plant tissues resulted in 

higher fecundity that could significantly influence population levels of spider mites.  This 

provided evidence that imidacloprid’s impact on mite fecundity is plant-mediated, which 

was confirmed through differential expression of two proteinase inhibitors in tomatoes 

treated with imidacloprid.  Lower concentrations or complete absence of these protease 
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inhibitors could benefit the mites by enhancing their ability to assimilate plant nutrients.  

Similarities in structure of imidacloprid metabolite and salicylic acid analogue could 

provide the possible mechanism of imidacloprid’s impact on expression of these protease 

inhibitors.  

 While the results of this work suggest that imidacloprid applications result in 

outbreaks of spider mites through disruption of important components of plant defenses, 

it is conceivable that the outbreaks are an outcome of interactive effects of all three 

mechanisms.  Additional studies would contribute to our knowledge of the extent of 

imidacloprid’s effect on plants, primary and secondary pests, non-target organisms and 

the interactions between the communities of arthropods in general.   

 To better understand the effects of imidacloprid applications on structure and 

composition of arthropod communities, different sampling methods than ones described 

in this study should be used.  Excising foliage and transporting it to the laboratory could 

have led to a biased account of pterous insects such as lacewing adults that would be less 

likely to remain on foliage while it was removed from the plant.  Using vacuum sampling 

would ameliorate this bias, and allow for a more comprehensive assessment of arthropod 

fauna.  Additionally, abiotic factors such as temperature and rainfall should be examined 

as covariates that could affect the interactions between imidacloprid-treated plants and 

arthropod herbivores.   

 In terms of physiological responses of plants exposed to imidacloprid, comparing 

concentrations of simple sugars and proteins would provide information on changes in 

nutritional quality of plants that could in turn affect spider mites.  Moreover, examining 

the effect of imidacloprid on expression of genes involved in plant growth and 
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differentiation would show if plants treated with the neonicotinoid exhibit patters of 

allocation characteristic to high resource environment, which according to GDB theory of 

plant defense would mean diverting resources to primary metabolism.  Notably, 

establishing such pattern of allocation in addition to inhibited defenses would provide 

important empirical evidence that plants’ investment in induced defenses follows 

predictions outlined by the GDB theory.  

 Additionally, the proposed hypothesis that imidacloprid metabolite mimics 

salicylic acid analogue, isonicotinic acid (INA), could be confirmed through treatments 

of plants with synthetic INA and measurement of the response of spider mites.  

Comparing abundance of mites and expression of protease inhibitors on plants treated 

with INA to plants exposed to imidacloprid would shed light on the parallel effects of the 

two chemicals on plants and their herbivores.  It would also be very informative to create 

high output of information on the effect on the two compounds on general genetic 

expression of plants through microarray analysis.  In addition to a wealth of information 

on how INA and imidacloprid affect plant’s genome, it would also allow for direct 

comparisons between INA’s and imidacloprid’s impact on genetic expression in plants.  

Lastly, jasmonic acid and salicylic acid are involved in plants’ recruitment of the 

third trophic level, natural enemies, through production of volatiles.  If imidacloprid 

applications affect expression of genes modulated by jasmonic acid, the volatiles 

regulated by JA may be affected as well.  This could have far-reaching consequences for 

the plants, other herbivores and the structure of arthropod fauna.  Examining if 

production of volatiles is disrupted by imidacloprid applications would shed light on 

another, indirect aspect of imidacloprid’s effect on natural enemies.   
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