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In this dissertation, we study two algorithms that accomplish multipath rout-

ing in communication networks. The first algorithm that we consider belongs to

the class of Ant-Based Routing Algorithms (ARA) that have been inspired by ex-

perimental observations of ant colonies. It was found that ant colonies are able

to ‘discover’ the shorter of two paths to a food source by laying and following

‘pheromone’ trails. ARA algorithms proposed for communication networks employ

probe packets called ant packets (analogues of ants) to collect measurements of

various quantities (related to routing performance) like path delays. Using these

measurements, analogues of pheromone trails are created, which then influence the

routing tables.

We study an ARA algorithm, proposed earlier by Bean and Costa, consisting

of a delay estimation scheme and a routing probability update scheme, that updates

routing probabilities based on the delay estimates. We first consider a simple sce-



nario where data traffic entering a source node has to be routed to a destination

node, with N available parallel paths between them. An ant stream also arrives

at the source and samples path delays en route to the destination. We consider a

stochastic model for the arrival processes and packet lengths of the streams, and a

queueing model for the link delays. Using stochastic approximation methods, we

show that the evolution of the link delay estimates can be closely tracked by a deter-

ministic ODE (Ordinary Differential Equation) system. A study of the equilibrium

points of the ODE enables us to obtain the equilibrium routing probabilities and the

path delays. We then consider a network case, where multiple input traffic streams

arriving at various sources have to be routed to a single destination. For both the N

parallel paths network as well as for the general network, the vector of equilibrium

routing probabilities satisfies a fixed point equation. We present various supporting

simulation results.

The second routing algorithm that we consider is based on an optimization

approach to the routing problem. We consider a problem where multiple traffic

streams entering at various source nodes have to be routed to their destinations

via a network of links. We cast the problem in a multicommodity network flow

optimization framework. Our cost function, which is a function of the individual

link delays, is a measure of congestion in the network. Our approach is to consider

the dual optimization problem, and using dual decomposition techniques we provide

primal-dual algorithms that converge to the optimal routing solution. A classical

interpretation of the Lagrange multipliers (drawing an analogy with electrical net-

works) is as ‘potential differences’ across the links. The link potential difference can



be then thought of as ‘driving the flow through the link’. Using the relationships

between the link potential differences and the flows, we show that our algorithm

converges to a loop-free routing solution. We then incorporate in our framework a

rate control problem and address a joint rate control and routing problem.
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Chapter 1

Introduction

The routing problem in communication networks is concerned with the task

of guiding incoming traffic from the various source nodes of the network to the

destination nodes. The design of algorithms that accomplish this task is quite

challenging because such algorithms have to be distributed in nature (i.e., the nodes

have to implement the algorithm by exchanging information and coordinating with

each other), have to be able to adapt to changing input traffic conditions, and even

be able to cope with changes in the network topology. Communication networks

are required to handle a wide variety of input application traffic with their own

peculiar Quality of Service (QoS) requirements. This requires the design of routing

algorithms that are also able to act in conjunction with algorithms at the other

layers of the protocol stack in order to cater to the requirements of the input traffic

to the network.

The main functions of routing algorithms are to find routes between source-

destination node pairs in a network, and to then guide traffic along such routes.

For wireless networks (especially for Mobile Adhoc Networks (MANETs), where

the network topology is usually time-varying) an additional task is to collect and

maintain information about the network topology, which is required for the smooth
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execution of the above-mentioned tasks. The way the above functionalities are

implemented depend on the nature of the application that the network is supposed

to cater to and the approach taken to transmit packets from the source to the

destination. For example, for packet-switched networks, routing decisions are taken

at each node of the network as to which outgoing link to direct an incoming packet to,

in its journey to a destination. Every packet can thus, in principle, follow a different

sequence of nodes to the destination. In circuit-switched (or virtual circuit-switched)

networks, the path that the packets of a new incoming connection must follow is

decided before the packets are transmitted (the ‘circuit set-up’ phase), so that all

packets follow the same path. The design of the corresponding routing algorithms

also follows a different set of criteria, based on the different service requirements of

the corresponding applications.

In this dissertation, we concern ourselves with wireline packet-switched net-

works and with routing algorithms that cater to applications involving bulk-data

transfer (‘elastic’ traffic) from various source nodes of the network to the corre-

sponding destination nodes. Routing algorithms for such applications essentially

involve the construction of routing tables at the nodes of the network. The routing

table at a node is used to decide, for an incoming packet bound for a particular

destination node, which outgoing link to direct the packet to. This kind of hop-

by-hop routing enables a packet to eventually reach its intended destination. We

consider two different types of routing algorithms for such applications. The first

routing algorithm that we consider belongs to a class of routing algorithms called

Ant-Based Routing Algorithms. These algorithms have been inspired by observa-
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tions of the foraging behavior of ants in nature. The second routing algorithm that

we consider is based on an optimization approach to the routing problem. The rout-

ing objective is to establish a packet traffic flow pattern so that packets are directed

to their respective destinations while, at the same time, minimizing a cost related

to the congestion in the network. Both the routing algorithms can be implemented

in a distributed manner and both of them have the capability to adapt to changing

incoming traffic conditions 1. Both the algorithms require that information related

to congestion in the network is available at the network nodes, which utilize this

information to adaptively adjust the routing tables. The congestion information

that is used in both the algorithms are measurements of delays in the links and the

paths of the network.

In the following two sections, Section 1.1 and Section 1.2, we provide a brief

overview of the literature related to Ant-Based Routing and optimal routing algo-

rithms, respectively. The next section Section 1.3, summarizes the contributions of

the thesis, and the final section of the chapter, Section 1.4, discusses the organization

of the thesis.

1.1 Literature survey on Ant-Based Routing Algorithms

“Ant algorithms” constitute a class of algorithms that have been proposed to

solve a variety of problems arising in optimization and distributed control. They

form a subset of the larger class of what are referred to as “Swarm Intelligence”

1We would typically require that the incoming traffic conditions change slowly enough so that

the routing algorithms can converge.
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algorithms, a topic which has received widespread attention recently, and to which

entire books have been devoted (see, for example, Bonabeau, Dorigo, and Theraulaz

[13]). The central idea here is that a “swarm” of relatively simple agents can inter-

act through simple mechanisms and collectively solve complex problems. There are

numerous examples in nature that illustrate this idea. Bonabeau, Dorigo, and Ther-

aulaz [13] give examples of insect societies like those of ants, honey bees, and wasps,

which accomplish fairly complex tasks of building intricate nests, finding food, re-

sponding to external threats etc., even though the individual insects themselves have

limited capabilities. The abilities of ant colonies to collectively accomplish complex

tasks have served as sources of inspiration for the design of “Ant algorithms”.

Figure 1.1: The Binary Bridge Experiment: Ants discover shortest paths.

Examples of “Ant algorithms” are the set of Ant-Based Routing algorithms
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that have been proposed for communication networks. It has been observed in an

experiment conducted by biologists Deneubourg, Aron, Goss, and Pasteels, called

the double bridge experiment [19], that a colony of ants, when presented with two

paths to a source of food, is able to collectively converge to the shorter path (see

Figure 1.1). Every ant lays a trail of a chemical substance called pheromone as

it walks along a path; subsequent ants follow and reinforce this trail. Notice that

(assuming all ants move at the same speed and deposit pheromone at the same con-

stant rate) the ants will move back and forth through the shorter path more quickly,

which would result in a more rapid accumulation of pheromone in the shorter path.

Because subsequent ants follow the stronger pheromone trails, this ‘positive rein-

forcement’ effect eventually leads to all ants following, and thus discovering, the

shorter path. The double bridge experiment also considers the case where there are

two branches of equal length. It was observed that, if due to random fluctuations

a larger number of ants initially choose a branch, due to reinforcement effects all

ants converge to that branch eventually. The following model was considered to

explain the observation: Let a number An out of n ants choose a branch, say A.

Then the next, i.e., (n + 1)st ant, chooses path A with probability proportional

to the ν-th power of K + An, where K ≥ 0 is a constant. For certain values of

K ≥ 0 and ν ≥ 0, the model was found to agree well with simulations. The simple

intuition involved in the double bridge experiment has been nicely captured in the

mathematical formulations of Makowski [38] and Das and Borkar [18]. Makowski

considers the model proposed for the double bridge experiment (with equal length

branches). The paper shows that the asymptotic behavior of the algorithm criti-
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cally depends on the parameter ν. Using martingale and stochastic approximation

techniques, it is rigorously shown that, in fact, only for ν > 1, is it true that all ants

eventually choose one branch. For 0 < ν < 1, ants choose with each branch with

equal probability, whereas for ν = 1, the asymptotic probability is a [0, 1]-valued

random variable, whose distribution depends upon the initial value A1. Das and

Borkar in their paper (dubbed as the Multi-Agent Foraging Ant Colony Optimiza-

tion (MAFACO) scheme) explore a scheme whereby a fixed number of agents shuttle

back and forth between a source and a destination node, sampling paths between

them, and ‘positively reinforcing’ the shorter paths. There are three algorithms

involved - a pheromone update scheme, which updates the pheromone content on a

path based on the number of ants traversing the path; a scheme which updates an

estimate of the utility of a path based on the pheromone content of the path; and a

scheme which updates the probabilities of an agent choosing the paths, based on the

utility estimates of the paths. The paper views the problem as being an example

of a stochastic approximation algorithm and uses ODE approximation methods to

study the convergence of the algorithm. It is shown that if the initial probabilities

are so chosen that the probability on the shortest path is larger than the probabili-

ties on the alternative paths then the algorithm converges to the shortest path, i.e.,

asymptotically, all agents choose the shortest path with probability one (‘equilibrium

selection through initial bias’). In Das and Borkar, though the delays are allowed to

be stochastic, they are not functions of the routing probabilities themselves, which

is typically the case that would arise in a communication network.

Most of the Ant-Based Routing Algorithms proposed in the literature are
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inspired by the basic idea of the double bridge experiment, viz., the creation and

reinforcement of a pheromone trail on a path that serves as a measure of the quality

of the path. These algorithms employ probe packets called ant packets (analogues

of ants) to explore the network and measure various quantities that are indicators

of network routing performance, like link and path delays. These measurements are

used to create analogues of pheromone trails. In turn, these trails are used to update

the routing tables at the network nodes. The update algorithms tend to reinforce

those outgoing links which lie on paths with lower delays.

Schoonderwoerd et. al. [43] propose an Ant Routing Algorithm for circuit-

switched networks. Ant packets are launched from the various nodes of the network

towards the destination nodes. While traversing through the network, an ant packet

picks up information related to the spare capacity available on each link (spare ca-

pacity here refers to the number of circuits (connections) that are not being used),

and assigns a weight to the link that is an exponentially decreasing function of the

spare capacity. These weights are then used to form pheromone estimates that in-

fluence the routing tables. They implemented the algorithm on a 30-node network

of British Telecom and report much better performance - the percentage of dropped

calls is lesser - compared to other algorithms (including fixed shortest path schemes;

for details please refer to the paper). This generated interest in Ant Routing Al-

gorithms for all kinds of networks - circuit- and packet-switched wireline networks,

and even packet-switched wireless networks. Ant Routing Algorithms for wireless

networks have been proposed in Baras and Mehta [2], Di Caro, Ducatelle, and Gam-

bardella [21], and Gunes et. al. [30]. For wireline packet-switched networks Ant
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Routing Algorithms have been proposed in Di Caro and Dorigo [22], Gabber and

Smith [27], and Bean and Costa [4] (among many others). A discussion of these

algorithms is provided in Chapter 2 of the thesis.

Though a large number of Ant Routing Algorithms have been proposed, very

few analytical studies are available in the literature. Analytical studies of Ant

Colony Optimization algorithms are the above-mentioned articles by Das and Borkar

[18], as also the article by Gutjahr [31] and the analysis available in Dorigo and

Stutzle [23] (Chapter 4). Analytical investigation of the properties and convergence

of Ant Routing Algorithms have also been pursued in Subramanian, Druschel, Chen

[45] and Yoo, La, and Makowski [50]. Yoo, La, and Makowski [50] consider a network

consisting of two nodes connected by L parallel bidirectional links. The ant packets

move back and forth between the nodes sampling the delays in the links, and are

routed probabilistically at the nodes. In turn, the delays that the ants sample

are used to reinforce the probabilistic routing tables at the nodes using a slight

variant of what are known as Linear Reinforcement Schemes (Kaelbling, Littman,

and Moore [32] and Thathachar and Sastry [46]). The paper considers both uniform

routing of ants as well as routing based on the routing tables at the nodes (called

regular routing). An elegant analysis then reveals that the routing tables converge in

distribution (regardless of the initial condition) for the uniform ants case, and almost

surely to the shortest path solution for the regular ants case. However, the results

are for the case when the link delays are constants (not time-varying). The scheme

that Yoo, La, and Makowski analyse is essentially (with a slight generalization)

that proposed for a general network by Subramanian, Druschel, and Chen. Though
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the paper by Subramanian, Druschel, and Chen announces convergence results for

the two-node, L parallel links network, there are no formal proofs provided, and

in fact some of the results as they stand, are incorrect (as pointed out by [50]). A

paper which seeks to use reinforcement learning approaches for routing in packet-

switched wireline networks is Boyan and Littman [15]. Inspired by the reinforcement

learning technique of Q-learning, the scheme proposed tries to make estimates at a

node, of delays along routes going through the outgoing links of the node. However

no convergence results are available for the scheme.

The above set of analytical studies have mostly concentrated on networks

where the delays in the links are deterministic (or stochastic, as in Das and Borkar

[18]), but independent of the offered traffic loads. Most of the results in the papers

show convergence of the algorithms to shortest path solutions.

1.2 Literature survey on Optimal Routing Algorithms

An early important work on optimal routing for packet-switched communica-

tion networks was Gallager [28]. The cost considered was the sum of all the average

link delays in the network and is a measure of the network-wide congestion. A

distributed algorithm was proposed to solve the problem. The algorithm preserved

loop-freedom after each iteration, and converged to an optimal routing solution.

Bertsekas, Gafni, and Gallager [10] proposed a means to improve the speed of con-

vergence by using additional information of the second derivatives of link delays.

Both the algorithms mentioned above require that related routing information like
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marginal delays be passed throughout the network before embarking on the next

iteration. Another cost function that has been considered in the literature is a sum

of the integrals of queueing delays; see Kelly [34] and Borkar and Kumar [14]. The

solution to this problem can be characterized by the so-called Wardrop equilibrium

[49] - between a source-destination pair, the delays along routes being actively used

are all equal, and smaller than the delays of the inactive routes. Another formula-

tion of the optimal routing problem, called the path flow formulation (see Bertsekas

[7] and Bertsekas and Gallager [9]), has been in vogue. Tsitsiklis and Bertsekas

[47] considered this formulation, and used a gradient projection algorithm to solve

the optimal routing problem in a virtual circuit network setting. They also proved

convergence of a distributed, asynchronous implementation of the algorithm. This

formulation was considered by Elwalid, Jin, Low, and Widjaja [24] to accomplish

routing in IP datagram networks using the Multi-Protocol Label Switching (MPLS)

architecture. The routing functionality is shifted to the edges of the network (a

feature of the path flow formulation; this is similar to ‘source routing’), and requires

measurements of marginal delays on all paths linking a source and a destination. Be-

cause the number of such paths could scale exponentially as the network size grows,

it is not clear that the solution would scale computationally. Multipath routing

and flow control based on utility maximization have also been considered, notably

in Kar, Sarkar, and Tassiulas [33] and in Wang, Palaniswami, and Low [48]. Kar,

Sarkar and Tassiulas propose an algorithm which uses congestion indicators to effect

control of flow rates on individual links, but do not explicitly consider congestion

indicators based on queueing delays as we do (their congestion indicators are based
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on flows on links). Their algorithm avoids the scalability issue mentioned above.

On the other hand, Wang, Palaniswami, and Low consider a path flow formulation

of the multipath routing and flow control problem, which as we have mentioned

above has scalability problems. However, they do consider the effect of queueing

delays, extracting related information by measuring the round trip times. Recently,

dual decomposition techniques have been used by Eryilmaz and Srikant [25], Lin

and Shroff [37], Neely, Modiano, and Rohrs [40], and Chen, Low, Chiang, and Doyle

[16], to design distributed primal-dual algorithms for optimal routing and scheduling

in wireless networks. Such techniques consider the dual to the primal optimization

problem and exploit separable structures in the costs and/or constraints to come

up with a decomposition which automatically points the way towards distributed

implementations. The seminal work of Kelly, Maulloo, and Tan [35] showed how

congestion control can be viewed in this way. The approach (called Network Utility

Maximization (NUM)) has gained currency and has been applied to a variety of

problems in wireline and wireless communication networks, cutting across all layers

of the protocol stack (see [17] for an overview).

1.3 Contributions of the Thesis

Convergence Results for Ant-Based Routing Algorithms. In contrast

to the analytical studies available in the literature, we consider convergence results

for an Ant Routing Algorithm when the delays in the links of the network can be

time-varying (and stochastic), which is interesting as well as important. The delays
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are dependent on the offered traffic loads and the routing probabilities. The Ant

Routing Algorithm that we consider is the one proposed by Bean and Costa [4]. The

scheme of Bean and Costa retains most of the useful and interesting features of Ant

Routing Algorithms. It can be implemented in a distributed manner. The routing

tables are updated based on the information regarding the link and path delays

collected by the ant packets, which enables the algorithm to be adaptive. There

is thus a delay estimation algorithm and a routing table update algorithm, which

makes use of the delay estimates. Furthermore, the scheme provides a multipath

routing solution, which has the benefits of providing better utilization of network

resources and good throughput performance for incoming connections.

We first consider a simple routing scenario where data traffic entering a single

source node has to be routed towards a single destination node, and there are N

available parallel paths between them. We model the arrival processes and packet

lengths of both the ant and the data streams that arrive at the source node, and

argue, using methods from the theory of adaptive algorithms and stochastic approx-

imation, that the evolution of the link delay estimates can be closely tracked by a

deterministic ODE system, when the step size of the estimation scheme is small.

Then a study of the equilibrium points of the ODE gives us the equilibrium behav-

ior of the routing algorithm; in particular, the equilibrium routing probabilities and

the mean delays in the N links under equilibrium can be obtained. We also show

that the fixed point equations that the equilibrium routing probabilities satisfy are

actually the necessary and sufficient conditions of a convex optimization problem.

This enables us to show that if there is a solution to the fixed point equations then
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such a solution is unique. We then explore further properties of the equilibrium

routing solution. We show that by tuning a parameter (β) in our algorithm, we can

influence the equilibrium routing behavior. We provide and discuss results obtained

by performing discrete event simulation of the system.

We then turn our attention to the more general case when multiple traffic

streams enter a network at various source nodes and which have to be routed to

a single destination node (the “single commodity” case). We formulate the prob-

lem in a similar manner as the N parallel links network, taking into account the

asynchronous nature of operation of the algorithm. We then derive the appropri-

ate deterministic ODE system that tracks the evolution of the vector of link delay

estimates. We also study the equilibrium routing behavior of the algorithm.

The approach that we use is most closely related to the work of Borkar and

Kumar [14], which studies an adaptive algorithm that converges to a Wardrop equi-

librium. Our framework is similar to theirs - they have a delay estimation algorithm

and a routing probability update algorithm which utilizes the delay estimates. Their

routing probability update algorithm is designed so that the routing probabilities

converge to a Wardrop equilibrium. Their probability update scheme moves on a

slower time scale than their delay estimation scheme. Using two time scale stochas-

tic approximation methods they prove convergence of their scheme for a general

network, the algorithms being completely distributed and asynchronous.

An Optimal Routing Algorithm using Dual Decomposition Tech-

niques. We consider an optimal routing problem and cast it in a multicommodity

network flow optimization framework. Our cost function is related to the conges-
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tion in the network, and is a function of the flows on the links of the network.

The optimization is over the set of flows in the links corresponding to the various

destinations of the incoming traffic. We separately address the single commodity

and the multicommodity versions of the routing problem. Our approach is to con-

sider the dual optimization problems, and using dual decomposition techniques we

provide primal-dual algorithms that converge to the optimal solutions of the prob-

lems. Our algorithms, which are subgradient algorithms to solve the corresponding

dual problems, can be implemented in a distributed manner by the nodes of the

network. For online, adaptive implementations of our algorithms, the nodes in the

network need to utilize ‘locally available information’ like estimates of queue lengths

on the outgoing links. We show convergence to the optimal routing solutions for

synchronous versions of the algorithms, with perfect (noiseless) estimates of the

queueing delays (these essentially are the convergence results of the corresponding

subgradient algorithms). Our optimal routing solution is not an end-to-end solution

(not a path-based formulation) like many of the above-cited works [47], [24], [48].

Consequently, our algorithms would avoid the scalability issues related to such an

approach. Every node of the network controls the total as well as the commodity

flows on the outgoing links using the distributed algorithms. Our optimal solutions

also have the attractive property of being multipath routing solutions. Furthermore,

by using a parameter (β) we can tune the optimal flow pattern in the network, so

that more flow can be directed towards the links with high capacities by increasing

the parameter (we observe this in our numerical computations).

The Lagrange multipliers (dual variables) can be interpreted as ‘potentials’
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on the nodes for the single commodity case, and as ‘potential differences’ across

the links for the multicommodity case. We can then associate with every link of

the network a ‘characteristic curve’ (see Bertsekas [7] and Rockafellar [42]), which

describes the relationship between the potential difference across the link and the

link flow, the potential difference being thought of as ‘driving the flow through

the link’. Using the relationships between the potential differences and the flows,

we then provide simple proofs showing that our algorithm converges to a loop-free

optimal solution, which is a desirable property. A related piece of work which has

gained some attention recently is the paper by Basu, Lin, and Ramanathan [3] which

constructs a potential function on the nodes of the network. This potential function

is a convex combination of the distance of the node from a destination node (the

distance is computed based on some weights on the edges of the graph) and a metric

based on the queue lengths of the outgoing links. The latter feature, according to

the authors, enables the algorithm to be ‘traffic-aware’. The routing algorithm at

each node now computes the route to the destination as the direction (i.e., the next

hop) in which the potential field decreases fastest (direction of the ‘force field’).

In our case, we show that the Lagrange multipliers can be naturally interpreted as

‘potentials’ (or ‘potential differences’), and in fact their values decrease as one moves

along any path in the network from a source node towards a destination node, being

a minimum at the destination. Our techniques are related to those employed in the

literature on NUM methods (though the details involved and the interpretations are

different). We also show how we can incorporate in our framework the rate control

problem, and consequently address a joint rate control and optimal routing problem.
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1.4 Organization of the Thesis

The remainder of the dissertation is organised as follows. Chapter 2 is wholly

devoted to the formulation and study of an Ant-Based Routing Algorithm. In

Chapter 3 we study the optimal routing problem. Chapter 4 provides a summary

and a few concluding remarks, and also outlines some directions for future research.
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Chapter 2

Convergence Results for Ant Routing Algorithms via

Stochastic Approximation and Optimization

In this chapter we study the convergence and equilibrium behavior of ant

routing algorithms. The chapter is organised as follows. In Section 2.1 we describe

the general framework and the mechanism of operation of Ant-Based Routing Al-

gorithms. We also describe in brief the various routing schemes that have been

proposed in the literature. In Section 2.2 we describe a scheme proposed by Bean

and Costa [4] which is adaptive and which admits of a distributed implementation.

For these reasons this scheme can be a suitable candidate for deployment in commu-

nication networks, and in the next two sections we devote ourselves to an analysis

of the algorithm. In Section 2.3 we provide convergence results for the algorithm

and discuss its equilibrium behavior for the simple case when data has to be trans-

ported from a source node to a destination node through N parallel paths. Section

2.4 considers the routing problem when there are multiple sources of traffic that

attempt to transfer data through a network to a single destination node (the “single

commodity” case).
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2.1 Ant-Based Routing: General Framework and Routing Schemes

We provide in this section a brief formal description of the general framework

of ant routing for a wireline communication network. Such a network can be rep-

resented by a directed graph G = (N ,L), where N denotes the set of nodes of the

network, and L the set of directed links. The framework that we follow for a formal

description, is the one described in Di Caro and Dorigo [22], [23], which is general

enough and adequate for our purposes.

Every node i in the network maintains two key data structures - a matrix

of routing probabilities, the routing table R(i), and a matrix of various kinds of

statistics used by the routing algorithm, called the network information table I(i).

For a particular node i, let N(i, k) denote the set of neighbors of i through which

node i routes packets towards destination k. For the communication network con-

sisting of |N | nodes, the matrix of routing probabilities R(i), has |N | − 1 columns,

corresponding to the |N | − 1 destinations towards which node i could route pack-

ets, and |N | − 1 rows, corresponding to the maximum number of neighbor nodes

through which node i could route packets to a particular destination. The entries

of R(i) are the probabilities φikj . φikj denotes the probability of routing an incoming

packet at node i and bound for destination k via the neighbor j ∈ N(i, k). The ma-

trix I(i) has the same dimensions as R(i), and its (j, k)-th entry contains various

statistics pertaining to the route from i to k that goes via j (denoted henceforth

by i → j → · · · → k). Examples of such statistics could be mean delay and delay

variance estimates of the route i → j → · · · → k. These statistics are maintained
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and updated based on the information the ant packets collect about the route. The

matrix I(i) represents the characteristics of the network that are learned by the

nodes through the ant packets. Based on the information collected in I(i), “local

decision-making” - the update of the routing table R(i) - is done. The iterative

algorithms that are used to update I(i) and R(i) will be referred to as the learning

algorithms.

We now describe the mechanism of operation of Ant-Based Routing Algo-

rithms. For ease of exposition, we restrict attention to a particular fixed destination

node, and consider the problem of routing from every other node to this node, which

we label as D (see Figure 2.1). The network information table I(i) contains only

statistics related to estimates of the mean delay.

 i j

.

.

. . .

. . .

. .
BA updates I(i), R(i)

FA records forward trip−time 

D

.

.

Figure 2.1: Forward Ant and Backward Ant packets

Forward ant generation and routing. At certain intervals, forward ant

(FA) packets are launched from a node i towards the destination node D to discover

low delay paths to it. The FA packets sample walks on the graph representing the

communication network, based on the current routing probabilities at the nodes.
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FA packets share the same queues as data packets and so experience similar delay

characteristics as data packets. Every FA packet maintains a stack of data structures

containing the IDs of nodes in its path and the per hop delays encountered. The per

hop delay measurements are obtained through time stamping of the packets as they

pass through the various nodes. Depending on the nature of the application, which

determines the statistics being reinforced at the nodes, other relevant information

may be collected by the FA packets. For example, for secure routing applications,

FA packets could obtain measurements reflecting the ‘security level’ of the links,

and update an appropriate statistic on the nodes.

Backward ant generation and routing. Upon arrival of an FA at the

destination node D, a backward ant (BA) packet is generated. The FA packet

transfers its stack to the BA. The BA packet then retraces back to the source the

path traversed by the FA packet. BA packets travel back in high priority queues,

so as to quickly get back to the source and minimize the effects of outdated or stale

measurements. At each node that the BA packet traverses through, it transfers the

information that was gathered by the corresponding FA packet. This information

is used to update the matrices I and R at the respective nodes. Thus the arrival of

the BA packet at the nodes triggers the iterative learning algorithms.

Various learning algorithms have been proposed in the literature. In the fol-

lowing subsections, we briefly describe some of the algorithms.
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2.1.1 Algorithm A

Di Caro and Dorigo [22], [23], suggest the following scheme. Suppose that an

FA packet measures the delay ∆iD
j associated with a walk i→ j → · · · → D. When

the corresponding BA packet arrives back at node i, this delay information is used

to update estimates of the mean delay X iD
j and the delay variance Y iD

j using the

algorithms (these are simply the exponential estimators)

X iD
j := X iD

j + ε
(

∆iD
j −X iD

j

)
, (1)

Y iD
j := Y iD

j + ε
((

∆iD
j −X iD

j

)2 − Y iD
j

)
, (2)

where ε ∈ (0, 1) is a small constant. Similar updates of the mean delay and the delay

variance estimates take place on all the nodes along the route that the BA retraces

back to the source (and which the corresponding FA packet had earlier traversed).

Simultaneously, the routing probability φiDj (also called pheromone by Di Caro

and Dorigo) is updated using the algorithm

φiDj := φiDj + r
(

1− φiDj
)
, (3)

and for the other neighbor nodes k ∈ N(i,D) the probabilities are proportionally

decreased so that they sum to unity,

φiDk := φiDk − r φiDk . (4)

r is the reinforcement parameter which depends on a window of observed values

of the delays ∆iD
j . In fact r can also be kept constant, but the authors argue that

there can be benefits when it is allowed to depend on the delay values.

21



The form that the dependence should take has also been described by Di

Caro and Dorigo. They found this form to give empirically the best system routing

performance 1. It is given by the following formula:

r = c1.
Wbest

∆iD
j

+ c2.
Isup − Iinf(

Isup − Iinf

)
+
(
∆iD
j − Iinf

) , (5)

where Wbest is the best trip time recorded over a window of past observations, and

Isup and Iinf denote the upper and lower limits of an approximate confidence interval

constructed for the estimated mean delay X iD
j

2.

Baras and Mehta [2] suggest a very similar scheme where the mean delay, the

delay variance, and the routing probability estimates are calculated as above but

they suggest a different rule for the reinforcement parameter:

r =
k

f(X iD
j )

, (6)

where k is a positive constant, and f is an increasing function of the delay estimate.

2.1.2 Algorithm B

As in Algorithm A, a BA packet arrives back at node i with a measurement of

the delay ∆iD
j . However, instead of updating estimates of the average delay to the

destination, Di Caro, Ducatelle, and Gambardella [21] suggest that the average of the

inverse delay be estimated, and they call this the pheromone content τ iDj associated

1The authors don’t define very precisely though what exactly is the system routing performance

metric.
2In fact, the actual reinforcement r that is used is a squashed function of the above quantity.

Refer to [22], [23] for the details.
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with the link (i, j). Consequently, the update equation for the pheromone content

is given by

τ iDj := τ iDj + ε
( 1

∆iD
j

− τ iDj
)
, (7)

where, as usual ε ∈ (0, 1).

The routing probabilities are then updated by

φiDj =
(τ iDj )

β∑
k∈N(i,D) (τ iDk )

β
, j ∈ N(i,D), (8)

where β is a positive constant.

A variety of schemes, other than the above, have been proposed in the litera-

ture on Ant-Based Routing Algorithms. Most of these are heuristics that have been

found experimentally to give good results in a few cases. In fact even the schemes

Algorithm A and Algorithm B described above have been studied only through

simulations. The scheme for the update of the routing probabilities (pheromones)

in Algorithm A is actually the Linear Reinforcement Scheme considered in stud-

ies of learning stochastic automata; see Kaelbling, Littman, and Moore [32], and

Thathachar and Sastry [46]. A Linear Reinforcement Scheme is also used by the

Trail Blazer ant routing algorithm of Gabber and Smith [27] to update their routing

probabilities. Yoo, La, and Makowski [50] consider a version of Algorithm A where

the link delays are constant. They thus, have only a routing probability update

scheme. They show that the probability update scheme converges almost surely to

the shortest path solution for the case of a network consisting of N parallel links

between a pair of source-destination nodes.

We would like to consider the more general and interesting case where the
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link delays are stochastically varying with time and there is a learning algorithm

which “learns” the delays, and this information is fed back to the routing update

algorithm. This enables the routing algorithm to be adaptive, i.e., reponsive to

changing topology and traffic conditions. Di Caro and Dorigo do provide such a

framework in Algorithm A above, though it seems that the routing algorithm they

consider (the Linear Reinforcement Scheme) is designed to (and can) work only when

the delays are constant (not stochastically varying). We do not consider Algorithm

B because we are not able to find a good rationale behind it.

2.2 The Routing Scheme of Bean and Costa

We now consider the routing scheme proposed by Bean and Costa [4]. Bean

and Costa suggest the following scheme for the learning algorithms. As in Algo-

rithms A and B, suppose a BA packet (corresponding to some FA packet) arrives

at node i with the delay information ∆iD
j . This information is used to update the

estimate of the mean delay X iD
j using the simple exponential estimator

X iD
j := X iD

j + ε (∆iD
j −X iD

j ), (9)

where 0 < ε < 1 is a small constant. The mean delay estimates X iD
m , corresponding

to the other neighbors m of node i, are left unchanged

X iD
m := X iD

m . (10)

Simultaneously, the routing probabilities at the nodes are updated using the
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scheme:

φiDj =

(
1

XiD
j

)β
∑

k∈N(i,D)

(
1

XiD
k

)β , j ∈ N(i,D), (11)

where β is a constant positive integer. β influences the extent to which outgoing

links with lower delay estimates are favored compared to the ones with higher delay

estimates.

We can interpret the quantity 1
XiD
j

as analogous to a pheromone deposit on the

outgoing link (i, j). This deposit gets dynamically updated by the ant packets. The

pheromone content influences the routing tables through the relation (11). Equation

(11) shows that the outgoing link (i, j) is more desirable when X iD
j , the delay in

routing through j, is smaller (i.e., when the pheromone content is higher) relative

to the other routes.

This scheme has been studied in some detail by Bean and Costa [4] using a

combination of simulation and analysis. The scheme is a multipath routing scheme

and the link delays can be stochastically varying. The scheme tries to form estimates

of the means of the delays and these are used to update the routing probabilities.

The authors employ ‘a time-scale separation approximation’ whereby the delay es-

timates are computed ‘before’ the routing probabilities are updated.An analytical

model that just consists of the equations (9) and (11) is considered (as also a variant

of it, see [4]), and it is found that results from numerical iterations of the model

and those from simulations agree well. However, the exact nature of the ‘time-scale

separation’ is not clear nor is any formal proof of convergence provided. Bean and

Costa, however, do recognize the need for a formal proof of convergence of ant rout-
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ing algorithms in general (see the section Conclusions in their paper [4]) and suggest

that the theory of stochastic approximation algorithms can be used to demonstrate

convergence.

In the following two sections, Section 2.3 and Section 2.4, we study the con-

vergence and the equilibrium routing behavior of the routing scheme of Bean and

Costa analytically. We also study other aspects of the routing scheme - for instance,

the effect of the parameter β that appears in equation (11), and the relation of the

equilibrium routing behavior to the capacities of the links.

2.3 The N Parallel Paths Case

The first model that we consider pertains to the simple routing scenario where

arriving traffic at a single source node S has to be routed to a single destination

node D. There are N available parallel (disjoint) paths between the source and the

destination node through which the traffic could be routed. The network and its

equivalent queueing theoretic model are shown in Figures 2.2 and 2.3, respectively.

The queues represent the output buffers (which we assume to be infinite) at the

source and are associated with the N outgoing links. We assume in our model that

the queueing delays dominate the propagation and the packet processing delays in

the N branches. These additional (usually deterministic) delay components can be

incorporated into our model with no additional complexity, but to keep the dis-

cussion simple, we assume they are negligible. Two traffic streams, an ant and a

data stream, arrive at the source node S. At node S, every packet of the com-
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bined stream is routed with probabilities φ1, . . . , φN (the current values) towards

the queues Q1, . . . , QN , respectively. These probabilities are updated dynamically

based on running estimates of the means of the delays (waiting times) in the N

queues. Samples of the delays in the N queues are collected by the ant packets

(these are forward ant packets) as they traverse through the queues. These samples

are then used to construct the running estimates of the means of the delays in the

N queues. We now describe our model in detail.

Ant  Stream

Data  Stream

Source  S Destination D

Capacity C

Capacity C N

1

.

.

.

Figure 2.2: The network with N parallel paths

We model the arrival processes of ant and data stream packets at the source

node S as independent Poisson processes of rates λA and λD packets/sec, respec-

tively. The lengths of the packets of the combined stream constitute an i.i.d. se-

quence, which is also statistically independent of the packet arrival processes. The

capacity of link i is Ci bits/sec (i = 1, . . . , N). We assume that the length of an

ant packet is generally distributed with mean LA bits, and that the length of a data

packet is generally distributed with mean LD bits. If we denote the service times
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Figure 2.3: N parallel paths : The queueing theoretic model

of an ant and a data packet in queue Qi by the generic random variables SAi and

SDi , then SAi and SDi are generally distributed (according to some c.d.f.’s, say GA
i

and GD
i ) with means E[SAi ] = LA

Ci
and E[SDi ] = LD

Ci
, respectively. The ant stream

essentially acts as a probing stream in our system collecting samples of delays while

traversing through the queues along with the data packets. Thus the packets of this

stream would in general be much smaller in size compared to the data packets.

Let {∆i(m)} denote the sequence of delays experienced by successive ant pack-

ets traversing Qi. Here delay refers to the total waiting time in the system Qi (wait-

ing time in the queue plus packet service time). Let {t(m)} denote the sequence

of arrival times of packets at the source S (the packets could be either ant or data

packets). Also, let {δ(n)} denote the sequence of successive arrival times of ant

packets at the destination node D. Then the n-th arrival of an ant packet at D

occurs at δ(n). Suppose that this ant packet has arrived via Qi. We denote the
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decision variable for routing by R(n); that is, for i = 1, . . . , N , we say that the

event {R(n) = i} has occurred if the n-th ant packet that arrives at D has been

routed via Qi. ψi(n) =
∑n

k=1 I{R(k)=i}, thus, gives the number of ant packets that

have been routed via Qi among a total of n ant arrivals at destination D (IA is the

indicator random variable of event A). Once the ant packet arrives, the estimate Xi

of the mean of the delay through queue Qi is immediately updated using a simple

exponential averaging estimator

Xi(n) = Xi(n− 1) + ε (∆i(ψi(n))−Xi(n− 1)), (12)

0 < ε < 1 being a small constant.

The delay estimates for the other queues are left unchanged, i.e.,

Xj(n) = Xj(n− 1), j ∈ {1, . . . , N}, j 6= i. (13)

In general thus, the evolution of the delay estimates in the N queues can be

described by the following set of stochastic iterative equations

Xε
i (n) = Xε

i (n− 1) + ε I{Rε(n)=i}

(
∆ε
i(ψ

ε
i (n))−Xε

i (n− 1)
)
, i = 1, . . . , N, n ≥ 1,

(14)

along with a set of initial conditions Xε
1(0) = x1, . . . , X

ε
N(0) = xN . The ε’s in the

superscript, in the equation (14) above, recognize the dependence of the evolution

of the quantities involved (for example, the delay estimates Xi) on ε. (This notation

is used in the section 2.4.2, where a convergence result for the evolution of the delay

estimates to an approximating ODE, as ε ↓ 0, is provided.)

At time δ(n), besides the delay estimates, the routing probabilities φi(n), i =
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1, . . . , N , are also updated simultaneously according to the equations

φεi(n) =
(Xε

i (n))−β∑N
j=1 (Xε

j (n))−β
, i = 1, . . . , N, (15)

β being a constant positive integer. The initial values of the probabilities are φεi(0) =

(xi)
−βPN

j=1 (xj)
−β , i = 1, . . . , N . We note that φε1(n) + · · · + φεN(n) = 1, for all n. Again,

the ε’s in the superscript, in the equation (15) above, recognize the dependence of

the evolution of the quantities involved on ε.

The vector of delay estimates X = (X1, . . . , XN) and the vector of routing

probabilities φ = (φ1, . . . , φN) thus get updated at the times δ(n), n = 1, 2, 3, . . ..

Let us also consider the continuous time processes, {x(t), t ≥ 0} and {f(t), t ≥ 0},

defined by the equations

x(t) = X(n), for δ(n) ≤ t < δ(n+ 1), (16)

f(t) = φ(n), for δ(n) ≤ t < δ(n+ 1). (17)

In the above model we consider only forward ants and do not incorporate the

effects of backward ants. We assume that the estimates Xi of the means of the delays

and the probabilities φi are updated as soon as the (forward) ant packets arrive at

the destination D, and this information is available instantaneously thereafter at

the source node S. We thus assume, in effect, that there is negligible delay as

the backward ant packets travel back carrying the delay information to the source.

Because backward ants are expected to travel back to the source through priority

queues, the delay may not be very significant, except for large-sized networks. On

the other hand, incorporating the effect of delays in our model introduces additional

asynchrony, making the problem harder.
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time 
δ δ δ δ(n)(n−1) (n+1) (n+2)

X(n)
φ(n)

t

Packet arriving at S
at time t is routed 
according to φ(n)

Figure 2.4: Routing of arriving packets at source S. Sequence {δ(n)} represents the

times at which algorithm updates take place.

As mentioned earlier, the arriving packets at source S (ant or data packets) are

routed according to the prevalent routing probabilities at S. Thus, in the context of

the discussion above, a packet that arrives at the point of time t, is routed according

to the routing probability vector f(t−), the value just before the arrival time t (see

Figure 2.4).

Another important point to note is that our delay estimation scheme (14) is a

constant step size scheme. As is well known in the literature on adaptive algorithms

(see, for example [5]), this enables the scheme to adapt to (track) long term changes

in statistics of the delay processes. This is important for communication networks,

because the statistics of arrival processes at the nodes as well as the network char-

acteristics typically change with time.

2.3.1 Analysis of the Algorithm

We view the routing algorithm, consisting of equations (14) and (15), as a set

of discrete stochastic iterations of the type usually considered in the literature on
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stochastic approximation methods [5], [36]. We provide below the main convergence

result which states that, when ε is small enough, the discrete iterations are closely

tracked by a system of Ordinary Differential Equations (ODEs). In Appendix A,

we provide a heuristic analysis which enables us to arrive at the appropriate ODE.

This section is organised as follows. In subsection 2.3.1.1 we discuss the ODE ap-

proximation. In subsection 2.3.1.2 we study the equilibrium behavior of the routing

algorithm, and in subsection 2.3.1.3 we provide some simulation results.

2.3.1.1 The ODE Approximation

An analysis of the dynamics of the system, as given by equations (14) and (15),

is fairly complicated. However, when ε > 0 is small, a time-scale decomposition

simplifies matters considerably. The key observation is that, when ε is small, the

delay estimates Xi evolve much more slowly compared to the waiting time (delay)

processes ∆i. Also, because the probabilities φi are (memoryless) functions of the

delay estimates Xi, they too evolve at the same time-scale as the delay estimates.

Consequently, with the vector (X1(n), . . . , XN(n)) fixed at (z1, ..., zN) (equivalently,

φi(n), i = 1, . . . , N , fixed at φi = (zi)
−βPN

j=1 (zj)
−β , i = 1, . . . , N), the delay processes

∆i(.), i = 1, . . . , N, can be considered as converged to a stationary distribution,

which depends on (z1, . . . , zN). Also, when ε is small, the evolution of the delay

estimates can be tracked by a system of ODEs. A heuristic analysis of the algorithm,
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as provided in Appendix A, shows that the ODE system for our case is given by

dz1(t)

dt
=

(z1(t))−β
(
D1(z1(t), . . . , zN(t))− z1(t)

)
N∑
k=1

(zk(t))
−β

,

...
...

dzN(t)

dt
=

(zN(t))−β
(
DN(z1(t), . . . , zN(t))− zN(t)

)
N∑
k=1

(zk(t))
−β

, (18)

with the set of initial conditions z1(0) = x1, . . . , zN(0) = xN . Di(z1, . . . , zN), i =

1, . . . , N , are the mean waiting times in the queues under stationarity (as seen by

arriving ant packets) with the delay estimates considered fixed at z1, . . . , zN .

Formally, the ODE approximation result can be stated as follows (see Ben-

veniste, Metivier, and Priouret [5]). For any fixed ε > 0 and for i = 1, . . . , N , con-

sider the piecewise constant interpolation of Xi(n) given by the equations : zεi (t) =

Xi(n) for t ∈ [nε, (n + 1)ε ), n = 0, 1, 2, . . ., with the initial value zεi (0) = Xi(0).

Then the processes {zεi (t), t ≥ 0}, i = 1, . . . , N , converge to the solution of the ODE

system (7) in the following sense : as ε ↓ 0, for any 0 ≤ T <∞,

sup
0≤t≤T

|zεi (t)− zi(t)|
P−→ 0, (19)

where
P−→ denotes convergence in probability.

In order to obtain the evolution of the ODE, we need to compute the quantities

Di(z1, . . . , zN), for our queueing system. We recall that Di(z1, . . . , zN), i = 1, . . . , N ,

refer to the means of the waiting times as seen by ant packet arrivals to the queues

when the delay estimates are considered fixed at z1, . . . , zN . Then the routing prob-

abilities to the N queues are φi = (zi)
−βPN

j=1 (zj)
−β , i = 1, . . . , N . We now discuss how to
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compute the quantities Di(z1, . . . , zN) given our assumptions on the statistics of the

arrival processes and on the packet lengths of the arrival streams.

Under such conditions, every incoming arrival at source S from either of the

Poisson streams (the ant or the data stream) is routed (independent of other ar-

rivals) with probability φi towards queue Qi. Thus the incoming arrival process in

queue Qi (for each i) is a superposition of two independent Poisson processes with

rates λAφi and λDφi. Consequently, every incoming packet into Qi is, with proba-

bility λA
λA+λD

, an ant packet, and with probability λD
λA+λD

, a data packet. Also, under

our assumptions on the statistics of the packet lengths of the arrival streams and

on the arrival processes, all of the queues evolve as M/G/1 queues. The cumula-

tive incoming stream into Qi is Poisson with rate (λA + λD)φi, and every incoming

packet’s service time is distributed according to the c.d.f GA
i with probability λA

λA+λD

and according to the c.d.f. GD
i with probability λD

λA+λD
. We further assume that

the queues are within the stability region of operation given by the inequalities :

(λA + λD)φiE[Si] < 1, i = 1, . . . , N , where E[Si], the mean packet service time

in Qi, is given by E[Si] =
λAE[SAi ]+λDE[SDi ]

λA+λD
. We note that the average waiting time

in the system as experienced by successive ant arrivals to queue Qi, is the same as

the average waiting time in Qi by the PASTA (Poisson Arrivals See Time Aver-

ages) property. Thus, using the Pollaczek-Khinchin formula for the average waiting

time and assuming that the queues are stable, we finally obtain the expression for

Di(z1, . . . , zN) (i = 1, . . . , N):

Di(z1, . . . , zN) = E[Si] +
(λA + λD)φiE[S2

i ]

2(1− (λA + λD)φiE[Si])
, (20)
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where E[Si] and E[S2
i ] are given respectively by E[Si] =

λAE[SAi ]+λDE[SDi ]

λA+λD
and

E[S2
i ] =

λAE[(SAi )
2
]+λDE[(SDi )

2
]

λA+λD
, and φi = (zi)

−βPN
j=1 (zj)

−β .

Once the expressions for Di(z1, . . . , zN) are available, we can numerically solve

the ODE system (18), starting with the initial conditions z1(0), . . . , zN(0). We

observe in our simulations that if we start the system with initial conditions such

that we are inside the stability region, the system stays within the stability region

thereafter.

2.3.1.2 Equilibrium behavior of the routing algorithm

We now obtain the equilibrium points of the ODE system (18) which would,

in turn, enable us to obtain the equilibrium routing behavior of the system. In

particular, we can obtain the equilibrium routing probabilities and the mean delays

in the system under steady state operation of the network. For ε small, the steady

state values of the estimates of the average waiting times (delays) in the N queues

are approximately given by the components of the equilibrium points z∗ of the ODE

system (18). The equilibrium points of the ODE, z∗, must satisfy the set of equations

given by

(z∗1)−β

N∑
j=1

(z∗j )
−β

.
[
D1(z∗1 , . . . , z

∗
N)− z∗1

]
= 0,

...
...

(z∗N)−β

N∑
j=1

(z∗j )
−β

.
[
DN(z∗1 , . . . , z

∗
N)− z∗N

]
= 0. (21)
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The steady state routing probabilities, φ∗1, . . . , φ
∗
N , are related to the average delay

estimates, z∗1 , . . . , z
∗
N , through the equations, φ∗i =

(z∗i )−βPN
j=1 (z∗j )−β

, i = 1, . . . , N . Be-

cause we have assumed that our queues are in the stable region of operation, the

steady state estimates of average delays must be finite, and so z∗i must be finite for

every i = 1, . . . , N . Then the steady state routing probabilities, φ∗i =
(z∗i )−βPN
j=1 (z∗j )−β

,

i = 1, . . . , N , are all strictly positive. Equations (21) then reduce to : z∗i =

Di(z
∗
1 , . . . , z

∗
N), i = 1, . . . , N . We also notice, from equation (20), that for each i,

Di(z
∗
1 , . . . , z

∗
N) is a function solely of φ∗i , and so, with a slight abuse of notation, we

denote it by Di(φ
∗
i ). Then, utilizing the fact that φ∗i =

(z∗i )−βPN
j=1 (z∗j )−β

, we find that the

equilibrium routing probabilities, φ∗1, . . . , φ
∗
N , must satisfy the following fixed-point

system of equations

φ∗1 =
(D1(φ∗1))−β

N∑
j=1

(Dj(φ∗j))
−β
,

...
...

φ∗N =
(DN(φ∗N))−β

N∑
j=1

(Dj(φ∗j))
−β
. (22)

Notice that φ∗1 + · · ·+ φ∗N = 1.

A point to note is that the steady state probabilities, φ∗1, . . . , φ
∗
N , must not only

satisfy the above system of equations, but must all be strictly positive and satisfy the

following stability conditions for the system: (λA+λD)φ∗iE[Si] < 1, i = 1, . . . , N . We

now show that the system of equations (22) are actually the necessary and sufficient

optimality conditions for an optimization problem involving the minimization of a

convex objective function of (φ1, . . . , φN) subject to the above mentioned constraints.
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We show as a consequence that, if there exists a solution to the set of equations (22)

that also satisfies the above mentioned constraints, then such a solution is unique.

Consider the optimization problem

Minimize F (φ1, . . . , φN) =
∑N

i=1

∫ φi
0
x[Di(x)]βdx,

subject to φ1 + · · ·+ φN = 1,

0 < φ1 < a1,

...

0 < φN < aN ,

where ai = 1
(λA+λD)E[Si]

, i = 1, . . . , N .

Let us denote by C the set defined by the constraints of the above optimization

problem – the feasible set. It is easy to see that C is a convex subset of RN .

It is possible that the set C is empty (for a given set of values of λA, λD, and

E[Si], i = 1, . . . , N), which means that there are no feasible solutions to the above

optimization problem in such a case. We assume, in what follows, that there exists

at least one feasible solution to the above optimization problem, i.e., C is non-empty.

Before we attempt to solve the optimization problem, we make certain nat-

ural assumptions on the delay functions Di(x), i = 1, . . . , N . We assume that the

functions Di(x) are positive real-valued, differentiable and monotonically increasing

on their domains of definition. This holds true in most cases of interest, because

when the routing probability for an outgoing link increases, the amount of traffic

flow into that link also increases, resulting in an increase of the delay. The following

proposition describes the optimal solutions φ∗ of the above optimization problem.
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Proposition 1. Given the above assumptions on the delay functions Di(x), i =

1, . . . , N , a probability vector φ∗ is a local minimum of F over C if and only if

φ∗ satisfies the set of fixed-point equations (22). φ∗ is then also the unique global

minimum of F over C.

Proof: The Hessian of F is a diagonal matrix given by

∇2F (φ1, . . . , φN) = diag
(

[Di(φi)]
β−1{Di(φi) + βφiD

′
i(φi)}

)
, (23)

where D′i(.) denotes the derivative of Di(.). Under the above assumptions on the

Di(x)’s, ∇2F is positive definite over C, and so F is a strictly convex function on

C. Consequently, any local minimum of F is also a global minimum of F over C;

furthermore, there is atmost one such global minimum [6].

If φ∗ = (φ∗1, . . . , φ
∗
N) is a local minimum of F over C, we must have (Proposition

2.1.2 of Bertsekas [6]),

N∑
i=1

∂F

∂φi
(φ∗)(φi − φ∗i ) ≥ 0, ∀φ ∈ C. (24)

Let us fix a pair of indices i, j, i 6= j. Then choose φi = φ∗i + δ and φj = φ∗j − δ,

and let φk = φ∗k,∀k 6= i, j. Now, choosing δ > 0 small enough that the vector

φ = (φ1, . . . , φN) is also in C, the above condition becomes

(∂F
∂φi

(φ∗)− ∂F

∂φj
(φ∗)

)
δ ≥ 0,

or, φ∗i [Di(φ
∗
i )]

β ≥ φ∗j [Dj(φ
∗
j)]

β.

By a similar argument, we can show that φ∗j [Dj(φ
∗
j)]

β ≥ φ∗i [Di(φ
∗
i )]

β. Thus, the

necessary conditions for φ∗ to be a local minimum are

φ∗1[D1(φ∗1)]β = · · · = φ∗N [DN(φ∗N)]β.
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Combining this with the normalization condition, φ∗1 + · · · + φ∗N = 1, gives us the

system of equations (22).

The necessary conditions above can also be written in the form

∂F

∂φ1

(φ∗) = · · · = ∂F

∂φN
(φ∗).

We check that these conditions are also sufficient for φ∗ to be a local minimum.

Suppose φ∗ ∈ C satisfies the above conditions. Then for every other vector φ ∈ C,

we have
∑N

i=1(φi − φ∗i ) = 0. So, the quantity

N∑
i=1

∂F

∂φi
(φ∗)(φi − φ∗i ) =

∂F

∂φ1

(φ∗)
N∑
i=1

(φi − φ∗i ) = 0.

Then, because F is convex over C, by Proposition 2.1.2 of Bertsekas [6], φ∗ is

a local minimum. �

For our model, it is easy to check that the functions Di(x), as given by (20), are

positive real-valued, differentiable and monotonically increasing on their domains of

definition. Thus, there is a unique equilibrium probability vector φ∗ which satisfies

the fixed-point equations (22).

2.3.1.3 Simulation Results and Discussion

In this subsection we consider a few illustrative examples. The queueing sys-

tem as described at the beginning of Section 2.3 has been implemented using a

discrete event simulator. We present here results for the case when the number of

parallel paths is N = 3. The step size ε was set at the value 0.002 in the examples

described below. In the first example β is set at 1 and in the second example β is

set at 2.
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For both the examples, the ant and the data traffic arrival processes are Poisson

with rates λA = 1 and λD = 1, respectively. For the ant packets, the service times

in the three queues are exponential with means E[SA1 ] = 1/3.0, E[SA2 ] = 1/4.0

and E[SA3 ] = 1/5.0, respectively. For the data packets also, the service times in

the three queues are exponential with means E[SD1 ] = 1/3.0, E[SD2 ] = 1/4.0 and

E[SD3 ] = 1/5.0, respectively. The initial values of the delay estimates in the three

queues were set at X1(0) = 0.8, X2(0) = 2.8, and X3(0) = 5.6.

We now discuss the results for the case when β = 1. With the values of the

initial delay estimates set as above, the initial routing probabilities are φ1(0) = 0.7,

φ2(0) = 0.2, and φ3(0) = 0.1, which ensures that, initially, we are inside the stability

region of the queueing sytem. We observed in our simulations that as the queueing

system evolved over time, never did the system become unstable.

Let us denote by µi = 1
E[Si]

the service rate of packets in the queue Qi, i =

1, 2, 3. Because the ant and the data packets both have the same average service

times in each queue Qi, and because the packets are exponentially distributed, the

delays Di(φ
∗
i ) (computed using the Pollaczek-Khinchin formula (20)) in the fixed

point equations (22) are given by

Di(φ
∗
i ) =

1

µi − λφ∗i
, (25)

where λ = λA + λD (the familiar M/M/1 relations). Consequently, the fixed point

equations (22) reduce to

φ∗i =
µi − λφ∗i∑3

j=1

(
µj − λφ∗j

) , i = 1, 2, 3,
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which on simplification gives us

φ∗i =
µi∑3
j=1 µj

, i = 1, 2, 3.

Thus in this very special case, the equilibrium routing probabilities are directly

proportional to the service rates of packets in the queues. The equilibrium delays

from (25) are then

Di(φ
∗
i ) =

∑3
j=1 µi

µi
(∑3

j=1 µj − λ
) , i = 1, 2, 3.

Figures 2.5(a), 2.5(b) and 2.5(c) provide plots of the interpolated delay estimates

zεi (t), i = 1, 2, 3, in the three queues versus the ODE approximations z1(t), z2(t), z3(t),

obtained by numerically solving (18). We see that the theoretical ODEs track

the simulated delay estimates fairly well. Figures 2.6(a), 2.6(b) and 2.6(c) pro-

vide plots of routing probabilities φ1(n), φ2(n), and φ3(n). The routing probabilities

converge to the equilibrium values φ∗1 = 3/12, φ∗2 = 4/12, φ∗3 = 5/12 (note that

µ1 = 3, µ2 = 4, µ3 = 5).

We now consider the case when β = 2. The fixed point equations (22) are now

φ∗i =
(µi − λφ∗i )

2∑3
j=1 (µj − λφ∗j)

2 , i = 1, 2, 3.

We numerically solve the fixed point system for the above set of values of arrival

rates and service rates, and obtain the solution φ∗1 = 0.197, φ∗2 = 0.326, φ∗3 = 0.477.

We note that with the larger value of β more of the incoming flow is directed towards

the path with the highest capacity (or service rate). Further discussion of this is

provided in the next subsection 2.3.1.4 below. Once the routing probabilities are
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obtained, the equilibrium delays can be immediately calculated from (25) above;

they are found to be D1(φ∗1) = 0.384, D2(φ∗2) = 0.300, D3(φ∗3) = 0.247.

Figures 2.7(a), 2.7(b) and 2.7(c) provide plots of the interpolated delay esti-

mates zεi (t), i = 1, 2, 3, in the three queues versus the ODE approximations z1(t), z2(t),

z3(t), obtained by numerically solving (18). Figures 2.8(a), 2.8(b) and 2.8(c) provide

plots of routing probabilities φ1(n), φ2(n), and φ3(n).
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Figure 2.5: The ODE approximations. Parameters: λA = 1, λD = 1, β = 1, E[SA1 ] =

E[SD1 ] = 1/3.0, E[SA2 ] = E[SD2 ] = 1/4.0, E[SA3 ] = E[SD3 ] = 1/5.0.
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Figure 2.6: Plots for the routing probabilities. Parameters: λA = 1, λD = 1, β =

1, E[SA1 ] = E[SD1 ] = 1/3.0, E[SA2 ] = E[SD2 ] = 1/4.0, E[SA3 ] = E[SD3 ] = 1/5.0.
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Figure 2.7: The ODE approximations. Parameters: λA = 1, λD = 1, β = 2, E[SA1 ] =

E[SD1 ] = 1/3.0, E[SA2 ] = E[SD2 ] = 1/4.0, E[SA3 ] = E[SD3 ] = 1/5.0.
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Figure 2.8: Plots for the routing probabilities. Parameters: λA = 1, λD = 1, β =

2, E[SA1 ] = E[SD1 ] = 1/3.0, E[SA2 ] = E[SD2 ] = 1/4.0, E[SA3 ] = E[SD3 ] = 1/5.0.
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2.3.1.4 Equilibrium routing behavior and the parameter β

In this section, we study the effect of the parameter β on the equilibrium rout-

ing behavior. In Section 2.3.1.2 we noted that the equilibrium routing probability

vector φ∗ was such that (for a given β) its components satisfied the following set of

equations (as also the queue stability conditions)

φ∗1[D1(φ∗1)]β = · · · = φ∗N [DN(φ∗N)]β,

φ∗1 + φ∗2 + · · ·+ φ∗N = 1.

We denote the (unique) solution by φ∗(β), to emphasize its dependence on β. In this

section, we show that at equilibrium, as β increases, more flow is diverted towards

the outgoing link with the most capacity. To show this concretely, we consider in

this section the case when the delays Di are functions only of the first moments E[Si]

of the service times, and hence only of the capacities Ci. (This would be true, for

example, when the lengths of both the ant and the data packets are exponentially

distributed.) Consequently, the delay function of the i-th queue can be written as

Di(φi) = D(φi, Ci). We assume that this function has the following properties: it

is positive, and it is a strictly increasing function of φi when Ci is held fixed, and a

strictly decreasing function of Ci when φi is held fixed.

Suppose C1 > C2 = · · · = CN . Then using the relations

φ∗1(β)[D(φ∗1(β), C1)]β = · · · = φ∗N(β)[D(φ∗N(β), CN)]β,

it is not difficult to check that

φ∗1(β) > φ∗2(β) = · · · = φ∗N(β)
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and consequently that

D(φ∗1(β), C1) < D(φ∗2(β), C2)
(
= · · · = D(φ∗N(β), CN)

)
. (26)

In this subsection, lets assume that β is a nonnegative real number (instead of

being a positive integer). To arrive at a contradiction, lets suppose, for some small

positive δβ that φ∗1(β + δβ) < φ∗1(β); then we also have φ∗2(β + δβ) > φ∗2(β). This

implies that

φ∗1(β + δβ)

φ∗2(β + δβ)
<
φ∗1(β)

φ∗2(β)
. (27)

Using the relationships with the delays, we then have

[D(φ∗2(β + δβ), C2)

D(φ∗1(β + δβ), C1)

]β+δβ

<
[D(φ∗2(β), C2)

D(φ∗1(β), C1)

]β
,

or,
[D(φ∗2(β + δβ), C2)

D(φ∗2(β), C2)
.

D(φ∗1(β), C1)

D(φ∗1(β + δβ), C1)

]β+δβ

<
[D(φ∗1(β), C1)

D(φ∗2(β), C2)

]δβ
.

Using the hypothesis and the monotonicity property of the delay function with

respect to the routing probability, it is easy to see that the left hand side of the

above inequality is greater than one, which implies that

D(φ∗1(β), C1) > D(φ∗2(β), C2),

which contradicts the relation (26).

With some additional effort, we can in fact show that
dφ∗1(β)

dβ
> 0, when C1 >

Ci, i = 2, . . . , N (see Appendix B). However, if additionally C2 > Ci, i = 3, . . . , N ,

it is not true that
dφ∗2(β)

dβ
> 0. The example in Subsection 2.3.1.3 shows this fact (the

value of φ∗2 is smaller for β = 2 than for β = 1).

We now consider a couple of examples studying what happens when β →∞.

As in Subsection 2.3.1.3 let us denote by µi = 1
E[Si]

the service rate of packets in
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the queues Qi, and assume that the lengths of the ant and the data packets are

exponentially distributed and that the average service times of both ant and data

packets in a particular queue are the same (E[SAi ] = E[SDi ]). The number of parallel

paths N = 3. The delays in the queues are then given by the formula Di(φ
∗
i ) =

1
µi−λφ∗i

. For the first example, we assume that λA = 1, λD = 1, µ1 = 4, µ2 = 3, µ3 = 3.

The fixed point equations that the equilibrium routing probabilities must satisfy are

given by (note that φ∗2 = φ∗3)

φ∗1 =

(
4− 2φ∗1

)β(
4− 2φ∗1

)β
+ 2

(
3− 2φ∗2

)β ,
φ∗2 =

1− φ∗1
2

.

We solve the above fixed point system of equations in Mathematica for increasing

values of β. The equilibrium routing probabilities are equal to φ∗1 = 0.664, φ∗2 =

0.168, φ∗3 = 0.168 for high values of β 3. It may be noted however that once φ∗1 ≥ 2
3
,

D1(φ∗1) = 1
4−2φ∗1

≥ D2(φ∗2) = 1
3−2φ∗2

, the delay in the higher capacity path is more

than or equal to the delay in the lower capacity path, which is impossible. Thus it

may be surmised in this case that when β increases to ∞, φ∗1 increases to 2/3 but

never attains that value.

We now consider the same case as above but increase the service rate in queue

Q1 to µ1 = 6. In this case, the equilibrium routing probabilities get arbitrarily close

to φ∗1 = 1.0, φ∗2 = 0, φ∗3 = 0 with increasing β; all the incoming traffic is routed

through Q1
4. It may be noted in this case, that for no φ∗1 ∈ [0, 1] (with φ∗2 =

1−φ∗1
2

),

3These are the values when β = 516. Mathematica reports errors due to machine precision

problems beyond this value of β.
4Mathematica gives these values when β = 40.
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is it possible that D1(φ∗1) = 1
6−2φ∗1

≥ D2(φ∗2) = 1
3−2φ∗2

. We can thus have all the

traffic routed through a particular path, for large β, provided that the capacity of

the path is quite large compared to the other paths.

Thus β acts like a tuning parameter that can be used to modulate the fraction

of flow on the outgoing links under equilibrium. Higher values of β make the flows

more concentrated on the outgoing links with more capacity (in the limiting case

of β → ∞, as the example above shows we can even have all the incoming flow

routed to the highest capacity path) whereas lower values of beta make the flows

more evenly distributed on the outgoing links (in the limiting case of β = 0, the

flows are evenly distributed: φ∗i = 1
N
, i = 1, 2, . . . , N).

2.4 The General Network Model: The “Single Commodity” Case

We consider the Ant Routing Algorithm for a general network in this section.

The set of nodes in the network is denoted by N , and the set of links by L. We

consider the problem of routing from the various nodes i of the network to a single

destination node D (the “single commodity” problem). Let N(i) denote the set

of neighbor nodes of i, and let (i, j), j ∈ N(i), denote the set of outgoing links

from the node i. At every node i, there exists queues associated with the outgoing

links (i, j); we assume these queues to be of infinite size. As in the case for the N

parallel links network, we assume that the queuing delays dominate the processing

and propagation delays in the links (though again, this can be accommodated with

slight modifications). We recall that every node i in the network maintains the
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following data structures: the routing table R(i) and the network information table

I(i). The entries of R(i) for our case are the routing probabilities φiDj of routing

an incoming packet at node i bound for D, through the outgoing link (i, j). The

entries of I(i) are the mean delay estimates X iD
j related to the routes from i to D

that go via the neighbor nodes j.

The general algorithm of Bean and Costa is asynchronous and distributed.

This is because the nodes launch the Forward Ants (FAs) towards the destination

in an uncoordinated way. Moreover, each Forward Ant - Backward Ant (BA) pair

experiences an arbitrary (random) delay while traversing the network, and the algo-

rithms at the nodes (involving updates of R(i) and I(i)) are triggered at arbitrary

points of time. We consider a more simplified view of operation of the algorithm,

which is still asynchronous and distributed and retains the main characteristics of

the algorithm, but is easier to analyse.

We assume that ant packets (FA packets) are generated according to some

point process of positive rate λA at each of the nodes. These packets are routed

towards the destination node D by the intermediate nodes of the network based

on the prevalent routing probabilities at the nodes. Initially, at every node i the

mean delay estimate for the route i→ j → · · · → D is given by X iD
j (0) = xiDj , and

the outgoing routing probabilities are given by φiDj (0) =
(xiDj )

−βP
k∈N(i) (xiDk )

−β . Whenever

a BA packet (corresponding to an FA packet) arrives at a node, the mean delay

estimates and the routing probabilities at that node are updated. We assume that

the BA packets arrive back at the source nodes (from which the corresponding FA

packets are launched) from the destination node D instantaneously; that is, there
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is no delay associated with travel of the BA packet from D to the source node. We

consider the (asynchronous) general operation of the algorithm as described earlier

(Sections 2.1 and 2.2) with this modification. Furthermore, we note that in the

general operation, the BA packet updates the delay estimates at every node that it

traverses on its way back to the source, besides the source itself. In what follows, we

shall consider the more simplified operation, where only the delay estimates and the

routing probabilities at the source node (from where the corresponding FA packet

was launched) are updated. Let {δ(n)}∞n=1 denote the sequence of times at which

successive BA packets arrive back at the nodes of the network. These are also the

sequence of times at which the algorithm updates are triggered at the various nodes

of the network. At time δ(n), let X(n) and φ(n) denote the vector of mean delay

estimates and the vector of outgoing routing probabilities at the network nodes,

respectively. The components of X(n) and φ(n) are X iD
j (n), j ∈ N(i), i ∈ N , and

φiDj (n), j ∈ N(i), i ∈ N , respectively.

By time δ(n), n BA packets will have arrived at the network nodes. Let T (n)

be the N -valued random variable that indicates which node the n-th BA packet

arrives back to. Then ξi(n) =
∑n

k=1 I{T (k)=i} gives the number of BA packets that

have arrived at node i by time δ(n). Let Ri(.) denote the routing decision variable

for ant packets launched from node i; that is, we say that the event {Ri(k) = j}

has occurred if the k-th FA packet that arrives at D and that has been launched

from i, has been routed via the outgoing link (i, j) (this is also the k-th BA packet

that arrives back at i through link (i, j), by the zero delay assumption on the BA

packets). Let ψij(n) =
∑ξi(n)

k=1 I{Ri(k)=j}; ψ
i
j(n) gives the number of BA packets that

51



arrive at node i by time δ(n) and which have arrived via the outgoing link (i, j) (the

corresponding FA packets have been routed via the outgoing link (i, j)). Also, let

{∆iD
j (m)} denote the sequence of delay measurements obtained by successive FA

packets arriving at D, having traversed the route i→ j → · · · → D. This is also the

sequence of delay measurements about the route i → j → · · · → D made available

to the source i by the BA packets.

Lets suppose that at time δ(n) a BA packet arrives back at the node i. Fur-

thermore, suppose that the corresponding FA packet was routed via the outgoing

link (i, j). When this BA packet arrives back at node i, the delay estimate X iD
j is

updated using an exponential estimator (ε ∈ (0, 1))

X iD
j (n) = X iD

j (n− 1) + ε
(

∆iD
j (ψij(n))−X iD

j (n− 1)
)
. (28)

The delay estimates X iD
k for the other outgoing routes i → k → · · · → D (k ∈

N(i), k 6= j) are left unchanged

X iD
k (n) = X iD

k (n− 1); (29)

also the delay estimates for the other nodes are not changed

X lD
p (n) = X lD

p (n− 1), ∀p ∈ N(l),∀l 6= i. (30)

Also as soon as the delay estimates are updated at node i, the outgoing routing

probabilities are also updated

φiDj (n) =
(X iD

j (n))
−β∑

k∈N(i) (X iD
k (n))

−β , j ∈ N(i). (31)

The routing probabilities at the other nodes are left unchanged.
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In general thus the evolution of the delay estimates at the various nodes of the

network can be described by the following set of stochastic iterative equations

X iD
j

(ε)
(n) = X iD

j

(ε)
(n− 1) + ε I{T (ε)(n)=i,Ri(ε)(ξi(ε)(n))=j} ×(

∆iD
j

(ε)
(ψij

(ε)
(n))−X iD

j

(ε)
(n− 1)

)
,∀j ∈ N(i),∀i ∈ N , n ≥ 1,(32)

starting with the initial conditions X iD
j

(ε)
(0) = xiDj ,∀j ∈ N(i),∀i ∈ N . As in the

N parallel links case, the ε’s in the superscripts indicate the dependence of the

evolution of the quantities involved on ε.

The routing probabilities are updated in the usual way

φiDj
(ε)

(n) =
(X iD

j
(ε)

(n))
−β

∑
k∈N(i) (X iD

k
(ε)

(n))
−β , ∀j ∈ N(i),∀i ∈ N , n ≥ 1, (33)

starting with the initial conditions φiDj
(ε)

(0) =
(xiDj )

−βP
k∈N(i) (xiDk )

−β ,∀j ∈ N(i),∀i ∈ N 5.

2.4.1 Analysis of the Algorithm

As in the case for the N parallel links network, we view the routing algorithm,

consisting of equations (32) and (33), as a set of discrete stochastic iterations of the

type considered in the literature on stochastic approximation. In the following sub-

section 2.4.1.1, we discuss an ODE approximation result, and in subsection 2.4.1.2

we consider the equilibrium behavior of the routing algorithm.

5There are no records of delay estimates and routing probabilities at the destination D, because

all packets are destined for it. This is assumed understood in the above equations, though not

explicitly mentioned.
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2.4.1.1 The ODE Approximation

In this subsection we discuss the ODE approximation result. The key observa-

tion again is that there is a time-scale decomposition when ε > 0 is small enough; the

delay estimates X iD
j then evolve much more slowly compared to the delay processes

∆iD
j . Also then the probabilities φiDj evolve at the “same time-scale” as the delay

estimates. We assume that, with the vector X(n) fixed at z (equivalently φ(n) fixed

at φ, the components of φ being φiDj =
(ziDj )

−βP
k∈N(i) (ziDk )

−β ), the delay processes {∆iD
j (.)}

converge to a proper stationary distribution, which is dependent on z. This would

be true when the network queues are stable; that is, the average input rate of traffic

into every queue is smaller than the average service rate of packets in the queue.

We assume that this is true in what follows, and we then denote the mean of the

delay processes under stationarity by DiD
j (z).

As in the N parallel paths case, the evolution of the vector X(n) can again

be tracked by a deterministic ODE, when the step-size ε of the estimation scheme

is small. A heuristic development of the ODE approximation can be attempted

following exactly the same procedure as described in Appendix A for the N parallel

paths case. We do not describe the steps here; instead later in Section 2.4.2, we

outline a proof of convergence to the ODE. We have the following ODE system for

our case

dziDj (t)

dt
=
ζi(z(t)) (ziDj (t))

−β
(
DiD
j (z(t))− ziDj (t)

)
∑

k∈N(i) (ziDk (t))
−β , ∀j ∈ N(i),∀i ∈ N , t > 0,

(34)

with the initial conditions given by ziDj (0) = xiDj ,∀j ∈ N(i),∀i ∈ N . We note again
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thatDiD
j (z) is the average delay (under stationarity) experienced by FA packets trav-

eling to the destination D via the outgoing link (i, j), when the delay estimate vector

is considered fixed at z. Also, ζi(z) is a function of z and assumes values from the set

(0, 1). It is the long term fraction of BA packets arriving back at node i, and hence

also the fraction of times the update algorithms are triggered at node i, when the

delay estimate vector is considered fixed at z. The right hand side of the ODE (34)

is denoted by the function Fij, Fij(z(t)) =
ζi(z(t)) (ziDj (t))

−β
(
DiD
j (z(t))− ziDj (t)

)
∑

k∈N(i) (ziDk (t))
−β .

Numerical computation of the ODE requires the computation of the means

DiD
j (z) (for given z), as well as the fractions ζi(z) ∈ (0, 1). The computation of the

means depends upon the particular network (a system of inter-connected queues)

under consideration. For general input arrival processes (of ant and data packets)

at the source nodes and for general packet lengths of ant and data packets, and

for an arbitrary network topology, it would be impossible to compute these means

(no known procedure exists to solve such queuing networks analytically). Also,

the fractions ζi(z) would generally be difficult to compute. For only some special

network topologies, and making certain specific approximations and assumptions on

the statistics of the arrival processes as well as the service times of packets in the

network queues, can one actually compute the ODE.

2.4.1.2 Equilibrium behavior of the Routing Algorithm

The equilibrium behavior of the routing algorithm can be obtained by equating

the right hand sides of the ODE approximation (34) to zero. For this section, we
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adopt the following notation for convenience. We drop the superscripts D in all the

quantities, and write ziDj as zij, D
iD
j (z) as Dij(z), and φiDj as φij. Then we have

because the ζi(z(.)) are all positive 6, and denoting the values under equilibrium by

a ∗ in the superscript, we have

(z∗ij)
−β∑

k∈N(i) (z∗ik)
−β .

(
Dij(z

∗)− z∗ij
)

= 0, ∀j ∈ N(i),∀i ∈ N . (35)

Now, the steady state routing probabilities are related to the steady state delay

estimates through the relations φ∗ij =
(z∗ij)

−βP
k∈N(i) (z∗ik)−β

, ∀j ∈ N(i), ∀i ∈ N . Under our

stability assumptions, the steady state delay estimates are finite, and so the steady

state routing probabilities must be all positive. Consequently, Dij(z
∗) = z∗ij,∀j ∈

N(i),∀i ∈ N . Now, denoting the functional dependence of the mean stationary

delays on the routing probabilities also by Dij(φ
∗) (a slight abuse of notation),

and noting that φ∗ij =
(z∗ij)

−βP
k∈N(i) (z∗ik)−β

, we finally find that the equilibrium routing

probabilities must satisfy the following fixed-point system of equations

φ∗ij =
(Dij(φ

∗))−β∑
k∈N(i) (Dik(φ∗))

−β , ∀j ∈ N(i),∀i ∈ N . (36)

Now Dij(φ
∗) can be written as

Dij(φ
∗) = wij(φ

∗) + J j(φ∗), (37)

where J j(φ∗) is the expected delay from node j to the destination and wij(φ
∗) is

the expected delay along the link (i, j), both experienced by a FA packet when the

routing probability vector is φ∗. The quantities (‘costs-to-go’) J j(φ∗), j ∈ N , satisfy

6This is because of our assumption that ant packets are generated at a positive rate at each of

the nodes.
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the following set of equations

J i(φ∗) =
∑
j∈N(i)

φ∗ij

(
wij(φ

∗) + J j(φ∗)
)
, ∀i ∈ N , i 6= D,

JD(φ∗) = 0. (38)

Because our steady state routing probabilities φ∗ij are all positive, clearly there

exists a positive probability path from every node i to the destination node D.

Consequently, there exists a unique vector solution J(φ∗) (see Bertsekas, Tsitsiklis

[12]) to the set of equations above (a φ∗ as ours is analogous to a proper policy for a

stochastic shortest path problem with D as the termination state). Thus for every

φ∗, there is a unique vector J(φ∗). This then implies that, for every φ∗, there is a

unique vector of Dij(φ
∗)’s. 7

2.4.2 Proof of Convergence of the Ant Routing Algorithm

As discussed in Section 2.4, the evolution of the delay estimates and the routing

probabilities is given by the equations

X iD
j (n) = X iD

j (n− 1) + ε I{T (n)=i,Ri(ξi(n))=j}

(
∆iD
j (ψij(n))−X iD

j (n− 1)
)
,

∀j ∈ N(i),∀i ∈ N , n ≥ 1, (39)

and the equations

φiDj (n) =
(X iD

j (n))
−β∑

k∈N(i) (X iD
k (n))

−β , ∀j ∈ N(i),∀i ∈ N , n ≥ 1, (40)

respectively, with the appropriate initial conditions.

7We do not have a uniqueness and existence result for the vector of equilibrium routing proba-

bilities satisfying the fixed-point system (36), though.
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We adopt the following notation for convenience. We drop the destination D

from the superscript, and write X iD
j as Xij, R

i(ξi(n)) as Ri(ξi(n)), ∆iD
j as ∆ij, ψ

i
j as

ψij, φ
iD
j as φij, and DiD

j as Dij. Also, recognizing the dependence on ε (0 < ε < 1)

of the evolution of the delay estimates and the routing probabilities, we rewrite the

above equations as

Xε
ij(n) = Xε

ij(n− 1) + ε I{T ε(n)=i,Rεi (ξ
ε
i (n))=j}

(
∆ε
ij(ψ

ε
ij(n))−Xε

ij(n− 1)
)
,

∀j ∈ N(i),∀i ∈ N , (41)

φεij(n) =
(Xε

ij(n))−β∑
k∈N(i) (Xε

ik(n))−β
, ∀j ∈ N(i),∀i ∈ N . (42)

We now consider the piecewise constant interpolation of {Xε
ij(n)} given by the

equations

zεij(t) = Xε
ij(n), for t ∈ [nε, (n+ 1)ε), (43)

(n = 0, 1, 2, . . .) with the initial value zεij(0) = Xε
ij(0) = xij. Define the vector-

valued piecewise constant process zε(t) = (zεij(t))(i∈N ,j∈N(i)) for t ≥ 0. The process

{zε(t)} evolves on the path space D|L|[0,∞), consisting of right-continuous R|L|-

valued functions possessing left hand limits.

The stochastic iterations (41) (considered along with (42)) are an example of

constant step-size stochastic approximation algorithms. For the proof of the ODE

approximation for the algorithm, we follow the approach as given in the standard

textbook of Kushner and Yin [36]. A brief outline of the proof is as follows:

• We first show that the family of processes {zε(t)}, ε ∈ (0, 1), is tight. Then

there exists a subsequence ε(k) → 0 as k → ∞ and a process {z(t)} with
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Lipschitz continuous paths such that {zε(k)(t)} converges weakly to {z(t)};

this is denoted by

zε(k) ⇒ z (44)

• The limit process {z(t)} will be then shown to have the following property (z(t)

has components zij(t), i ∈ N , j ∈ N(i)). Let t, τ > 0 be arbitrary numbers,

and let 0 ≤ s1, s2, . . . , sp ≤ t also be a set of arbitrary numbers. Then, for a

bounded continuous function h, we have

E[h(z(s1), z(s2), . . . , z(sp))
(
zij(t+ τ)− zij(t)−

∫ t+τ

t

Fij(z(u))du
)

] = 0, (45)

for each i ∈ N , j ∈ N(i). This fact then implies that zij(t) − zij(0) −∫ t
0
Fij(z(u))du, t ≥ 0, is a martingale with respect to the filtration gener-

ated by the process {z(t)}. This martingale process, because it has Lipschitz

continuous paths, can be shown to have zero quadratic variation. It is hence

a constant. Because the martingale is zero at t = 0, it is identically zero with

probability one. We shall thus have the result.

The fact that (45) holds will be shown by showing that

E[h(zε(s1), zε(s2), . . . , zε(sp))
(
zεij(t+ τ)− zεij(t)−

∫ t+τ

t

Fij(z
ε(u))du

)
] = 0, (46)

and using the fact that {zε(t)} converges weakly to {z(t)} (we are actually going

through the subsequence ε(k)).

Let us consider the increasing sequence of σ-fields {F ε(n)}, where F ε(n) encap-

sulates the entire history of the algorithm for the time t < δ(n+ 1). In particular, it

contains the σ-field generated by the random variables Xε(0), Xε(1), . . . , Xε(n). We
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now make the following set of assumptions, under which we obtain our convergence

results.

Assumptions:

(A1) We assume that, for every i, j, and for every ε ∈ (0, 1), the sequence

{∆ε
ij(m)} is uniformly integrable.

(A2) We assume that, if the sequence X(n) is fixed at a value x (the sequence

φ(n) is then fixed at a value φ; φ has components φij =
(xij)

−βP
k∈N(i) (xik)−β

) then, for

every l ≥ 0, and for every j ∈ N(i), i ∈ N ,

lim
r→∞

1

r

l+r∑
m=l+1

E[I{T (m)=i,Ri(ξi(m))=j} ∆ij(ψij(m))/F(m− 1)]− ζi(x) φij Dij(x) = 0,

(47)

and lim
r→∞

1

r

l+r∑
m=l+1

E[I{T (m)=i,Ri(ξi(m))=j}/F(m− 1)]− ζi(x) φij = 0.

(48)

(A3) We assume that the quantities ζi(x)φijDij(x) and ζi(x)φij are continuous

functions of x.

We now embark on the proof. We first show the tightness of the family

{zε(t)}, ε ∈ (0, 1), using the uniform integrability assumption.

From equation (41) we can write

Xε
ij(n+ 1) =

(
1− εI{T ε(n+1)=i,Rεi (ξ

ε
i (n+1))=j}

)
Xε
ij(n)

+εI{T ε(n+1)=i,Rεi (ξ
ε
i (n+1))=j}∆

ε
ij(ψ

ε
ij(n+ 1)),

Xε
ij(n+ 1) ≤ Xε

ij(n) + εI{T ε(n+1)=i,Rεi (ξ
ε
i (n+1))=j}∆

ε
ij(ψ

ε
ij(n+ 1)).
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Iterating we can see then that for every positive integer m,

Xε
ij(n+m) ≤ Xε

ij(n) + ε
( n+m∑
k=n+1

I{T ε(k)=i,Rεi (ξ
ε
i (k))=j}∆

ε
ij(ψ

ε
ij(k))

)
.

Consequently, for any L > 0, we have

E[|Xε
ij(n+m)−Xε

ij(n)|] ≤ ε

n+m∑
k=n+1

E[∆ε
ij(ψ

ε
ij(k))],

= ε
n+m∑
k=n+1

E[∆ε
ij(ψ

ε
ij(k))I{∆ε

ij(ψ
ε
ij(k))≥L}

+∆ε
ij(ψ

ε
ij(k))I{∆ε

ij(ψ
ε
ij(k))<L}].

Thus, for any n, n + m ∈ {0, 1, 2, . . . , bT
ε
c} (for some fixed 0 < T < ∞), we

have

E[|Xε
ij(n+m)−Xε

ij(n)|] ≤ T sup
k≥1

E[∆ε
ij(ψ

ε
ij(k))I{∆ε

ij(ψ
ε
ij(k))≥L}] + Lmε.

If we now let t = nε and τ = mε, and noting that zεij(t) = Xε
ij(b tεc), we have

sup
0≤t≤t+τ≤T

E[|zεij(t+ τ)− zεij(t)|] ≤ T sup
k≥1

E[∆ε
ij(ψ

ε
ij(k))I{∆ε

ij(ψ
ε
ij(k))≥L}] + Lτ. (49)

With T fixed, the uniform integrability of the sequence {∆ε
ij(m)} allows us to

choose L large enough that the first term on the right hand side can be made as

small as we like. Once L is so chosen, we can choose τ small enough that the second

term can be made as small as we like. We then have the following result. For any

0 < T <∞,

lim
τ↓0

lim
ε↓0

sup
0≤t≤t+τ≤T

E[|zεij(t+ τ)− zεij(t)|] = 0. (50)

(Simple modifications would enable us to argue the result for arbitrary t, t+τ ∈

[0, T ], which are not integral multiples of ε.) Now, because

E[‖ zε(t+ τ)− zε(t) ‖] ≤
∑

j∈N(i),i∈N

E[|zεij(t+ τ)− zεij(t)|],
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we have

lim
τ↓0

lim
ε↓0

sup
0≤t≤t+τ≤T

E[‖ zε(t+ τ)− zε(t) ‖] = 0. (51)

The fact that this holds for every 0 ≤ T <∞ is sufficient for the family {zε(t), ε ∈

(0, 1)} to be tight.

We now show the validity of (46). We have the following expression for Xε
ij(n)

Xε
ij(n) = Xε

ij(0) + ε
n∑

m=1

(
I{T ε(m)=i,Rεi (ξ

ε
i (m))=j}∆

ε
ij(ψ

ε
ij(m))

−E[I{T ε(m)=i,Rεi (ξ
ε
i (m))=j}∆

ε
ij(ψ

ε
ij(m))/F ε(m− 1)]

)
+ε

n∑
m=1

(
E[I{T ε(m)=i,Rεi (ξ

ε
i (m))=j} ∆ε

ij(ψ
ε
ij(m))/F ε(m− 1)]

−ζi(Xε(m− 1))φεij(m− 1)Dij(X
ε(m− 1))

)
+ε

n∑
m=1

(
ζi(X

ε(m− 1))φεij(m− 1)Dij(X
ε(m− 1))

)
−ε

n∑
m=1

(
I{T ε(m)=i,Rεi (ξ

ε
i (m))=j} X

ε
ij(m− 1)

−E[I{T ε(m)=i,Rεi (ξ
ε
i (m))=j} X

ε
ij(m− 1)/F ε(m− 1)]

)
−ε

n∑
m=1

(
E[I{T ε(m)=i,Rεi (ξ

ε
i (m))=j} X

ε
ij(m− 1)/F ε(m− 1)]

−ζi(Xε(m− 1))φεij(m− 1)Xε
ij(m− 1)

)
−ε

n∑
m=1

(
ζi(X

ε(m− 1))φεij(m− 1)Xε
ij(m− 1)

)
. (52)
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We can then write, using the fact that zεij(t) = Xε
ij(b tεc) for all t ≥ 0,

zεij(t) = zεij(0) + ε

b t
ε
c∑

m=1

M ε
ij(m) + ε

b t
ε
c∑

m=1

N ε
ij(m)

+ε

b t
ε
c∑

m=1

(
ζi(X

ε(m− 1))φεij(m− 1)Dij(X
ε(m− 1))

)

−ε
b t
ε
c∑

m=1

P ε
ij(m)− ε

b t
ε
c∑

m=1

Qε
ij(m)

−ε
b t
ε
c∑

m=1

(
ζi(X

ε(m− 1))φεij(m− 1)Xε
ij(m− 1)

)
,

where M ε
ij(m), N ε

ij(m), P ε
ij(m), and Qε

ij(m) refer to the corresponding quantities in

the equation (52) above.

We introduce the following quantities: Gε
1(t) = ε

∑b t
ε
c

m=1M
ε
ij(m), Gε

2(t) =

ε
∑b t

ε
c

m=1 N
ε
ij(m), Gε

3(t) = ε
∑b t

ε
c

m=1 P
ε
ij(m), and Gε

4(t) = ε
∑b t

ε
c

m=1Q
ε
ij(m). Now the term

ε

b t
ε
c∑

m=1

ζi(X
ε(m− 1))φεij(m− 1)

(
Dij(X

ε(m− 1))−Xε
ij(m− 1)

)
=

∫ t

0

Fij(z
ε(u))du,

when t is an integral multiple nε of ε, and is an approximation otherwise, the

approximation error vanishing when ε→ 0.

Hence, in order to show (46), from equation (52) and the remark above, we

can see that all that we need to show is that

lim
ε→0

E[h(zε(s1), zε(s2), . . . , zε(sp))
(

(Gε
1(t+ τ)−Gε

1(t))

+(Gε
2(t+ τ)−Gε

2(t))− (Gε
3(t+ τ)−Gε

3(t))− (Gε
4(t+ τ)−Gε

4(t))
)

] = 0.

We show that each of the summands in the expectation above tend to zero

as ε → 0, i.e., for i = 1, 2, 3, 4, limε→0E[h(zε(s1), zε(s2), . . . , zε(sp))
(
Gε
i(t + τ) −

Gε
i(t)
)

] = 0.
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We start with showing that limε→0E[h(zε(s1), zε(s2), . . . , zε(sp))
(
Gε

1(t + τ) −

Gε
1(t)
)

] = 0. Now,

E[h(zε(s1), zε(s2), . . . , zε(sp))
(
Gε

1(t+ τ)−Gε
1(t)
)

] =

E[h(zε(s1), zε(s2), . . . , zε(sp))
(
ε

b t+τ
ε
c∑

m=b t
ε
c+1

M ε
ij(m)

)
].

It can be checked that the sequence {M ε
ij(m)} is a martingale difference se-

quence with respect to {F ε(m − 1)} (that is, the sequence T εij(n) =
∑n

m=1 M
ε
ij(m)

is a martingale with respect to the same filtration). It then follows that

E[h(zε(s1), zε(s2), . . . , zε(sp))
(
Gε

1(t+ τ)−Gε
1(t)
)

] = 0;

the result then also holds true when ε→ 0.

In a similar manner, we can show that lim
ε→0

E[h(zε(s1), . . . , zε(sp))
(
Gε

3(t+ τ)−

Gε
3(t)
)

] = 0.

The arguments for showing that the relations, lim
ε→0

E[h(zε(s1), . . . , zε(sp))
(
Gε

2(t+

τ)−Gε
2(t)
)

] = 0 and lim
ε→0

E[h(zε(s1), . . . , zε(sp))
(
Gε

4(t+ τ)−Gε
4(t)
)

] = 0, hold, are

similar in nature. Consequently, we shall discuss in detail the steps for only one of

them.

Lets consider the term lim
ε→0

E[h(zε(s1), . . . , zε(sp))
(
Gε

2(t+τ)−Gε
2(t)
)

] = 0. We

recall that

Gε
2(t+ τ)−Gε

2(t) = ε

b t+τ
ε
c∑

m=b t
ε
c+1

(
E[I{T ε(m)=i,Rεi (ξ

ε
i (m))=j} ∆ε

ij(ψ
ε
ij(m))/F ε(m− 1)]

−ζi(Xε(m− 1))φεij(m− 1)Dij(X
ε(m− 1))

)
.

(53)
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Now, for a scalar η > ε > 0 (with η < τ), the expression on the right hand side

of (53) is approximately equal to the following (complicated looking) expression

b τ
η
c∑

j=0

η

[
ε

η

b t+(j+1)η
ε

c∑
m=b t+jη

ε
c+1

(
E[I{T ε(m)=i,Rεi (ξ

ε
i (m))=j} ∆ε

ij(ψ
ε
ij(m))/F ε(m− 1)]

−ζi(Xε(m− 1))φεij(m− 1)Dij(X
ε(m− 1))

)]
.

In the interval {b t+jη
ε
c + 1, . . . , b t+(j+1)η

ε
c}, each of the summands above can

be written as the sum of the terms

E[I{T ε(m)=i,Rεi (ξ
ε
i (m))=j} ∆ε

ij(ψ
ε
ij(m))/F ε(m− 1)]

−ζi(Xε(bt+ jη

ε
c))φεij(b

t+ jη

ε
c)Dij(X

ε(bt+ jη

ε
c))

and

ζi(X
ε(bt+ jη

ε
c))φεij(b

t+ jη

ε
c)Dij(X

ε(bt+ jη

ε
c))

−ζi(Xε(m− 1))φεij(m− 1)Dij(X
ε(m− 1)).

Choosing an η > 0 small enough, and noting that ζi(x)φijDij(x) is assumed

to be a continuous function of x (Assumption (A3)), and the fact that {zε(t)} is

tight, shows that the latter terms tend to zero in the mean as ε→ 0. For the former

terms, we just notice that for small η > 0, the expression

ε

η

b t+(j+1)η
ε

c∑
m=b t+jη

ε
c+1

(
E[I{T ε(m)=i,Rεi (ξ

ε
i (m))=j} ∆ε

ij(ψ
ε
ij(m))/F ε(m− 1)]

−ζi(Xε(bt+ jη

ε
c))φεij(b

t+ jη

ε
c)Dij(X

ε(bt+ jη

ε
c))
)

= 0,

tends to zero as ε tends to zero, by Assumption (A2).
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2.5 Appendix A: ODE approximation for N Parallel Paths Case

The heuristic analysis provided below largely follows Benveniste, Metivier, and

Priouret (Section 2.2, Chapter 2) [5]. Let us consider the mean delay estimation

scheme given by equation (14). We can write, for a positive integer M ,

X1(n+M) = X1(n) + ε

M∑
k=1

I{R(n+k)=1}

(
∆1(ψ1(n+ k))−X1(n+ k − 1)

)
,

...
...

XN(n+M) = XN(n) + ε

M∑
k=1

I{R(n+k)=N}

(
∆N(ψN(n+ k))−XN(n+ k − 1)

)
.

(54)

If ε > 0 is small enough, the vector (X1(n), . . . , XN(n)) can be assumed to

have not changed much in the discrete interval {n, n + 1, . . . , n + M}, and we can

write the following approximate equations

X1(n+M) ≈ X1(n) +Mε
(
P1(n,M)−Q1(n,M)X1(n)

)
,

...
...

XN(n+M) ≈ XN(n) +Mε
(
PN(n,M)−QN(n,M)XN(n)

)
. (55)

Now we try to find approximations to the quantities Qi(n,M) =
PM
k=1 I{R(n+k)=i}

M

and Pi(n,M) =
PM
k=1 I{R(n+k)=i}∆i(ψi(n+k))

M
for i = 1, . . . , N , when the values of the

mean delay estimates X1(.), . . . , XN(.) are considered fixed at X1(n), . . . , XN(n),

and M is large. Then the routing probability vector (φ1(.), . . . , φN(.)), too, can

be regarded as essentially constant in the interval {n, . . . , n + M}, because the

probabilities are continuous functions of the mean delay estimates. The routing
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probabilities are then approximately equal to φi(n) = (Xi(n))−βPN
j=1 (Xj(n))−β

, i = 1, . . . , N .

Now, assuming that M is large enough that a law of large numbers effect takes over,

the average
PM
k=1 I{R(n+k)=i}

M
, which is the fraction of ant packets that have arrived

at destination via Qi when the routing probabilities are φi(n), can be approxi-

mated by φi(n). With the routing probabilities fixed, the delay processes ∆i(.),

can converge to a stationary distribution, the mean under stationarity being de-

noted by Di(X1(n), . . . , XN(n)). The quantities
PM
k=1 I{R(n+k)=i}∆i(ψi(n+k))

M
can then

be approximated by φi(n).Di(X1(n), . . . , XN(n)). Note that Di(X1(n), . . . , XN(n))

are the mean waiting times as seen by ant packets. Employing the approxima-

tions as described above, we notice from (15) that the evolution of the vector

(X1(n), . . . , XN(n)) resembles that of a discrete-time approximation to the following

ODE system when ε is small enough,

dz1(t)

dt
=

(z1(t))−β
(
D1(z1(t), . . . , zN(t))− z1(t)

)
N∑
j=1

(zk(t))
−β

,

...
...

dzN(t)

dt
=

(zN(t))−β
(
DN(z1(t), . . . , zN(t))− zN(t)

)
N∑
j=1

(zk(t))
−β

, (56)

with the set of initial conditions z1(0) = x1, . . . , zN(0) = xN .

2.6 Appendix B

We show in this appendix that for the N parallel paths case,
dφ∗1(β)

dβ
> 0, when

C1 > Ci, i = 2, . . . , N . Notice that then we have (as in Section 2.3.1.4 )

φ∗1(β) > φ∗i (β), i = 2, . . . , N,
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and consequently that

D(φ∗1(β), C1) < D(φ∗i (β), Ci), i = 2, . . . , N. (57)

From the equation φ∗1(β) + φ∗2(β) + · · ·+ φ∗N(β) = 1, we have

dφ∗1(β)

dβ
= −

(dφ∗2(β)

dβ
+ · · ·+ dφ∗N(β)

dβ

)
. (58)

Differentiating with respect to β the equation φ∗1(β)[D(φ∗1(β), C1)]β =

φ∗2(β)[D(φ∗2(β), C2)]β, we have

dφ∗1(β)

dβ

(
[D(φ∗1(β), C1)]β + β .φ∗1(β) .[D(φ∗1(β), C1)]β .

dD(φ∗1,C1)

dφ∗1

D(φ∗1(β), C1)

)
+φ∗1(β) .[D(φ∗1(β), C1)]β . logD(φ∗1(β), C1) =

dφ∗2(β)

dβ

(
[D(φ∗2(β), C2)]β + β .φ∗2(β) .[D(φ∗2(β), C2)]β .

dD(φ∗2,C2)

dφ∗2

D(φ∗2(β), C2)

)
+φ∗2(β) .[D(φ∗2(β), C2)]β . logD(φ∗2(β), C2). (59)

Differentiating each of the equations φ∗1(β)[D(φ∗1(β), C1)]β =

φ∗i (β)[D(φ∗i (β), Ci)]
β, i = 3, . . . , N , we obtain N − 2 similar equations as equation

(59) above. Adding all the equations we obtain the following relation

(N − 1)
dφ∗1(β)

dβ

(
[D(φ∗1(β), C1)]β + β .φ∗1(β) .[D(φ∗1(β), C1)]β .

dD(φ∗1,C1)

dφ∗1

D(φ∗1(β), C1)

)
+(N − 1)φ∗1(β) .[D(φ∗1(β), C1)]β . logD(φ∗1(β), C1) =

N∑
i=2

(
dφ∗i (β)

dβ

(
[D(φ∗i (β), Ci)]

β + β .φ∗i (β) .[D(φ∗i (β), Ci)]
β .

dD(φ∗i ,Ci)

dφ∗i

D(φ∗i (β), Ci)

)
+φ∗i (β) .[D(φ∗i (β), Ci)]

β . logD(φ∗i (β), Ci)

)
. (60)

Now let

Γ = min
i=2,...,N

(
[D(φ∗i (β), Ci)]

β + β .φ∗i (β) .[D(φ∗i (β), Ci)]
β .

dD(φ∗i ,Ci)

dφ∗i

D(φ∗i (β), Ci)

)
.
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Γ is positive, because each of the terms in the minimum above is positive under our

assumptions. Consequently, we can write

(N − 1)
dφ∗1(β)

dβ

(
[D(φ∗1(β), C1)]β + β .φ∗1(β) .[D(φ∗1(β), C1)]β .

dD(φ∗1,C1)

dφ∗1

D(φ∗1(β), C1)

)
+(N − 1)φ∗1(β) .[D(φ∗1(β), C1)]β . logD(φ∗1(β), C1) ≥

Γ

(
dφ∗2(β)

dβ
+ · · ·+ dφ∗N(β)

dβ

)
+

N∑
i=2

φ∗i (β) .[D(φ∗i (β), Ci)]
β . logD(φ∗i (β), Ci). (61)

Using equation (58) and transposing terms we obtain

dφ∗1(β)

dβ

(
(N − 1)[D(φ∗1(β), C1)]β + β .(N − 1) .φ∗1(β) .[D(φ∗1(β), C1)]β .

dD(φ∗1,C1)

dφ∗1

D(φ∗1(β), C1)

+ Γ

)
≥

N∑
i=2

φ∗i (β) .[D(φ∗i (β), Ci)]
β . log

D(φ∗i (β), Ci)

D(φ∗1(β), C1)
.

We observe now that the coefficient of
dφ∗1(β)

dβ
on the left hand side of the

inequality is positive. Also, using the fact that φ∗1(β)[D(φ∗1(β), C1)]β = · · · =

φ∗N(β)[D(φ∗N(β), CN)]β the expression on the right hand side can be written as

φ∗1(β) .[D(φ∗1(β), C1)]β .
N∑
i=2

log
D(φ∗i (β), Ci)

D(φ∗1(β), C1)
,

and then using the relation (57), we have the desired result,
dφ∗1(β)

dβ
> 0.
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Chapter 3

An Optimal Distributed Routing Algorithm using Dual

Decomposition Techniques

In this chapter we consider an optimization based approach to the routing

problem. In Section 3.1 we provide a formulation of the routing problem as an opti-

mization problem. The cost of the optimization problem is a measure of congestion

in the network and the constraints of the problem are the flow balance relations at

the network nodes. We consider separately the single commodity and the multi-

commodity versions of the problem, in Sections 3.2 and 3.3, respectively. For both

the versions, we provide distributed algorithms that converge to the optimal routing

solutions, and we also discuss the various properties of the optimal routing solutions.

3.1 General Formulation of the Routing Problem

We now describe in brief our formulation. Let r
(k)
i ≥ 0 denote the rate of

input traffic entering the network at node i and destined for node k 1. The flow

on link (i, j) corresponding to packets bound for destination k is denoted by f
(k)
ij .

The total flow on link (i, j) is denoted by Fij and is given by Fij =
∑

k∈N f
(k)
ij .

1The arrival process is usually modeled as a stationary stochastic process, and r
(k)
i then refers

to the time average rate of the process.
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All packet flows having the same node as destination are said to belong to one

commodity, irrespective of where they originate. Let Cij denote the total capacity

of link (i, j). At node i, for every outgoing link (i, j), there is an associated queue

which is assumed to be of infinite size. Let Dij(Fij) denote the average packet delay

in the queue when the total traffic flow through (i, j) is Fij, with Fij satisfying the

constraint 0 ≤ Fij < Cij. (Quantities Fij, r
(k)
i , f

(k)
ij and Cij are all expressed in the

same units of packets/sec.)

Let f denote the (column) vector of commodity link flows f
(k)
ij , (i, j) ∈ L, k ∈

N , in the network. We consider the following optimal routing problem:

Problem (A) : Minimize the (separable) cost function

G(f) =
∑

(i,j)∈L

Gij(Fij) =
∑

(i,j)∈L

∫ Fij

0

u[Dij(u)]βdu,

subject to

∑
j:(i,j)∈L

f
(k)
ij = r

(k)
i +

∑
j:(j,i)∈L

f
(k)
ji , ∀i, k 6= i, (1)

f
(k)
ij ≥ 0, ∀(i, j) ∈ L, k 6= i, (2)

f
(i)
ij = 0, ∀(i, j) ∈ L, (3)

Fij =
∑
k

f
(k)
ij , ∀(i, j) ∈ L, (4)

with 0 ≤ Fij < Cij, ∀(i, j) ∈ L.

In the work on convergence of Ant-Based Routing Algorithms (Chapter 2 of

the thesis), we showed, for a simple network involving N parallel links between

a source-destination pair of nodes, that the equilibrium routing flows were such

that they solved an optimization problem with a similar cost function and with
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similar capacity constraints as above. The scheme also yielded a multipath routing

solution. It is natural to look for a generalization for the network case that has

similar attractive properties. We shall see, using dual decomposition techniques,

that the solution to our (optimization) Problem (A) is also a multipath routing

solution, which can be implemented in a distributed manner by the nodes in the

network. Our cost function is related to the network-wide congestion as measured

by the link delays, and is small if the link delays are small. (Other cost functions,

related to network-wide congestion, have been used in the literature: in Gallager

[28] and Bertsekas, Gallager and Gafni [10] it is of the form (in our notation) D(f) =∑
(i,j)∈LDij(Fij); and in the Wardrop routing formulation (see Kelly [34]) it is of

the form W (f) =
∑

(i,j)∈L
∫ Fij

0
Dij(u)du.) The parameter β in our cost is a constant

positive integer that can be used to change the overall optimal flow pattern in

the network. Roughly speaking, a low value of β results in the flows being more

‘uniformly distributed’ on the paths, whereas a high value of β tends to make the

flows more concentrated on links lying on higher capacity paths.

Constraints (1) above are the per-commodity flow balance equations at the

network nodes (flow out of the node = flow into the node), and constraints (3)

express the fact that once a packet reaches its intended destination it is not routed

back into the network. The optimization is over the set of link flow vectors f .
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3.2 The Single Commodity Problem : Formulation and Analysis

We consider in this section the single commodity problem, which involves

routing of flows to a common destination node, which we label as D. We restate

the problem for this special case in the following manner:

Problem (B) : Minimize G(F) =
∑

(i,j)∈L

Gij(Fij) =
∑

(i,j)∈L

∫ Fij

0

u[Dij(u)]βdu,

subject to

∑
j:(i,j)∈L

Fij = ri +
∑

j:(j,i)∈L

Fji, ∀i ∈ N , (5)

FDj = 0, for (D, j) ∈ L, (6)

with 0 ≤ Fij < Cij, ∀(i, j) ∈ L.

ri is the incoming rate for traffic arriving at node i, and destined for D. The opti-

mization is over the set of link flow vectors F, whose components are the individual

link flows Fij, (i, j) ∈ L. As usual, equations (5) give the flow balance equations at

every node and equations (6) refer to the fact that once a packet reaches D, it is

not re-routed back into the network.

We use a dual decomposition technique of Bertsekas [7] to develop a distributed

primal-dual algorithm that solves the above-stated optimal routing problem. We

carry out our analysis under the following fairly natural assumptions. These as-

sumptions are also used, almost verbatim, for the multicommodity version of the

problem in Section 3.3.

73



Assumptions:

(A1) Dij(u) is a nondecreasing, continuously differentiable, positive real-valued

function of u, defined over the interval [0, Cij).

(A2) limu↑Cij Dij(u) = +∞. Also, limF↑Cij
∫ F

0
u[Dij(u)]βdu = +∞.

(A3) There exists at least one feasible solution of the primal problem (B).

Assumption (A1) is a reasonable one, because when the flow u through a link

increases, the average queueing delay (which is a function of the flow u) increases

too. The first part of Assumption (A2) is satisfied for most queueing delay models

of interest. We also require the second part to hold to ensure existence of an optimal

solution (see Lemma 3 in the Appendix to the chapter). This holds, for example,

when the growth rate of the delay Dij, as a function of the flow, is “fast enough”

when the flow is close to the capacity Cij. It is not difficult to check, by straightfor-

ward integration, that for the delay function of the M/M/1 queue Dij(u) = 1
Cij−u ,

the condition holds (β being a positive integer). Assumption (A3) implies that

there exists a link flow pattern in the network such that the incoming traffic can be

accommodated without the flow exceeding the capacity in any link. Then we can

check that the function Gij(Fij) is convex on [0, Cij), and so the objective function

of our optimization problem is a convex function.

We start the analysis by attaching prices (Lagrange multipliers) pi ∈ R, to the

flow balance equations (5) and form the Lagrangian function L(F,p)

L(F,p) =
∑

(i,j)∈L

Gij(Fij) +
∑
i∈N

pi

( ∑
j:(j,i)∈L

Fji + ri −
∑

j:(i,j)∈L

Fij

)
,
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a function of the (column) price vector p and the link flow vector F. We can

rearrange the Lagrangian to obtain the following convenient form

L(F,p) =
∑

(i,j)∈L

(
Gij(Fij)− (pi − pj)Fij

)
+
∑
i∈N

piri. (7)

Using the Lagrangian, the dual function Q(p) can be found by

Q(p) = inf L(F,p),

where the infimum is taken over all vectors F, such that the components Fij satisfy

0 ≤ Fij < Cij.

From the form (7) for the Lagrangian function, we can immediately see that

Q(p) =
∑

(i,j)∈L

inf
{Fij :0≤Fij<Cij}

(
Gij(Fij)− (pi − pj)Fij

)
+
∑
i∈N

piri,

=
∑

(i,j)∈L

Qij(pi − pj) +
∑
i∈N

piri, (8)

where the function Qij : R→ R is given by Qij(pi−pj) = inf{Fij :0≤Fij<Cij}

(
Gij(Fij)−

(pi − pj)Fij
)

. We can extend the definition of the function Gij to the whole of R,

by simply setting it to be +∞ outside [0, Cij). Then the function −Qij(pi − pj) =

sup{Fij∈R}

(
(pi − pj)Fij −Gij(Fij)

)
is just the conjugate or the Legendre transform

of the function Gij.

The dual optimization problem is

Maximize Q(p)

subject to no constraints on p (i.e., p ∈ R|N |).

The dual function is a concave function and the dual optimization problem is

a convex optimization problem. According to our Assumption (A3) and from the
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fact that Gij(Fij) is differentiable for every Fij in [0, Cij), with the derivative being

G′ij(Fij) = Fij[Dij(Fij)]
β, there exists a regular 2 primal feasible solution to our

primal problem, Problem (B). Then, by Proposition 9.3 of Bertsekas [7], if F∗ is an

optimal solution of the primal problem, there exists an optimal solution p∗ of the

dual problem that satisfies the following Complementary Slackness (CS) conditions

together with F∗

Gij(F
∗
ij)− (p∗i − p∗j)F ∗ij = inf

{Fij :0≤Fij<Cij}

(
Gij(Fij)− (p∗i − p∗j)Fij

)
, ∀(i, j) ∈ L. (9)

Also, by Proposition 9.4 of Bertsekas [7], the optimal primal and dual costs are

equal - that is, the duality gap is zero 3. Consider the minimization problem in the

CS-condition (9) (for each link (i, j))

Minimize Gij(Fij)− (pi − pj)Fij =
∫ Fij

0
u[Dij(u)]βdu− (pi − pj)Fij

subject to 0 ≤ Fij < Cij.

The second derivative of Gij is G′′ij(Fij) = [Dij(Fij)]
β + βFij[Dij(Fij)]

β−1D′ij(Fij).

Under our Assumption (A1), Gij(Fij) is twice continuously differentiable and strictly

convex on the interval [0, Cij), so that the minimization problems above are all

convex optimization problems on convex sets. We can show that for any price vector

p (in particular, for an optimal dual vector p∗), there exists a unique Fij ∈ [0, Cij)

(for every (i, j)) which attains the minimum in the above optimization problem

(Lemma 3, Appendix).

2A flow vector is called regular if for every link (i, j), the left derivative G−
ij(Fij) <∞, and the

right derivative G+
ij(Fij) > −∞ [7].

3This fact is nontrivial and a proof requires the techniques of monotropic programming [42],

[7].

76



Conditions equivalent to (9) that an optimal primal-dual pair (F∗,p∗) must

satisfy are given by (for each (i, j) ∈ L)

F ∗ij[Dij(F
∗
ij)]

β ≥ p∗i − p∗j , if F ∗ij = 0, (10)

F ∗ij[Dij(F
∗
ij)]

β = p∗i − p∗j , if F ∗ij > 0. (11)

We also make the following observation. Suppose p∗i − p∗j ≤ 0; then because

for any Fij > 0, Gij(Fij)− (p∗i −p∗j)Fij =
∫ Fij

0
u[Dij(u)]βdu− (p∗i −p∗j)Fij > Gij(0)−

(p∗i −p∗j).0 = 0, F ∗ij = 0 must then be the unique global minimum. Now, consider the

contrapositive of (10) which reads: if p∗i − p∗j > 0 then F ∗ij > 0. Thus, if p∗i − p∗j > 0

then F ∗ij is positive, and is given by the solution to the nonlinear equation

F ∗ij[Dij(F
∗
ij)]

β = p∗i − p∗j .

Because Dij is a nondecreasing and continuously differentiable function, the above

equation has a unique solution for F ∗ij.

To summarize, an optimal primal-dual pair (F∗,p∗) is such that the following

relationships are satisfied for each link (i, j),

F ∗ij = 0, if p∗i − p∗j ≤ 0, (12)

F ∗ij[Dij(F
∗
ij)]

β = p∗i − p∗j , if p∗i − p∗j > 0, (13)

and in this case F ∗ij > 0. In analogy with electrical networks, the relations above

can be interpreted as providing the ‘terminal characteristics’ of the ‘branch’ (i, j).

The Lagrange multipliers p∗i can be thought of as ‘potentials’ on the nodes, and the

flows F ∗ij as ‘currents’ on the links. The branch can be thought of as consisting of an

ideal diode in series with a nonlinear current-dependent resistance. The difference
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of the ‘potentials’ or ‘voltage’ p∗i − p∗j , when positive, drives the ‘current’ or flow F ∗ij

through a nonlinear flow-dependent resistance according to the law defined by (13)

4.

3.2.1 Distributed Solution of the Dual Optimization Problem

We now focus on solving the dual problem using a distributed primal-dual

algorithm. We first make a quick remark on the differentiability properties of the

dual function Q(p). It can be verified that, for each (i, j) and (j, i), the partial

derivatives
∂Qij(pi−pj)

∂pi
and

∂Qji(pj−pi)
∂pi

exist for all pi ∈ R. Then, at any point p, the

partial derivatives ∂Q(p)
∂pi

all exist and can be easily seen to be given by

∂Q(p)

∂pi
=

∑
j:(i,j)∈L

∂Qij(pi − pj)
∂pi

+
∑

j:(j,i)∈L

∂Qji(pj − pi)
∂pi

+ ri, i ∈ N . (14)

The gradient vector ∇Q(p) can thus be evaluated at each point p.

The dual optimization problem can now be solved by the following simple

4This analogy with electrical circuit theory helps in developing intuition. It was known to

Maxwell (see Bertsekas [7], Rockafellar [42]) for the case of a quadratic cost function, who showed

that minimizing the power in the network (which is the sum of the powers in the individual links)

subject to Kirchoff’s laws for conservation of flow (current) at every node, leads us to an Ohm’s law

description of the ‘terminal characteristics’ of each branch. It was exploited by Dennis [20], who

suggested that flow optimization problems with separable convex costs can be solved by setting

up a network with arcs having terminal characteristics that can be derived in the same way as

for our case. Once the network reaches equilibrium (starting from some initial condition), the

currents and potentials can be simply ‘read off’ and are the optimal solutions to the primal and

dual optimization problems, respectively. This amounts to solving the flow optimization problem

using analog computation.
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gradient algorithm starting from an arbitrary initial price vector p0

pn+1 = pn + αn∇Q(pn), n ≥ 0, (15)

where {αn} is a suitably chosen step-size sequence that ensures convergence of the

gradient algorithm to an optimal dual vector p∗. We now try to simplify the ex-

pression (14), and get it into a form that is suitable for computational purposes.

We had shown earlier that the minimum in the expression

inf
{Fij :0≤Fij<Cij}

(
Gij(Fij)− (pi − pj)Fij

)
≡ Qij(pi − pj)

is uniquely attained for each scalar pi − pj by the flow Fij which satisfies relations

(12) and (13). Let us denote such a flow using the notation Fij(pi−pj), emphasizing

its functional dependence on the price difference pi − pj. Then

Qij(pi − pj) = Gij(Fij(pi − pj))− (pi − pj)Fij(pi − pj).

Notice that
∂Qij(pi−pj)

∂pi
= −Fij(pi − pj), and that

∂Qji(pj−pi)
∂pi

= Fji(pj − pi), so that

∂Q(p)

∂pi
=

∑
j:(j,i)∈L

Fji(pj − pi)−
∑

j:(i,j)∈L

Fij(pi − pj) + ri, i ∈ N . (16)

The right hand side in the above equation can be interpreted to be the surplus

flow at node i. The gradient algorithm (15) can now be written down in terms of

iterations on the individual components of the price vector p as follows

pn+1
i = pni + αn

( ∑
j:(j,i)∈L

Fji(p
n
j − pni )−

∑
j:(i,j)∈L

Fij(p
n
i − pnj ) + ri

)
, (17)

where for each (i, j),

Fij(p
n
i − pnj ) = 0, if pni − pnj ≤ 0, (18)

Fij(p
n
i − pnj ) > 0, if pni − pnj > 0, (19)
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and can be determined by solving the equation Fij[Dij(Fij)]
β = pni − pnj . The

relations (17), (18), and (19), can be used as a basis for a distributed algorithm

that converges to a solution of the dual optimization problem. We now describe a

general, online version of such an algorithm. The algorithm can be initialized with

an arbitrary price vector p0. (Each node can choose a real number as the initial

value of its price variable.) Let’s suppose that at the start of a typical iteration, the

dual vector is p, with each node i having available information of its own price pi

as well as the prices pj of its neighbor nodes j such that (i, j) ∈ L. Each node i

makes an estimate of the average queueing delay on each of its outgoing links (i, j).

This estimate can be made by taking measurements of the packet delays over a time

window and taking an average, or by using a ‘running’ estimator like an exponential

averaging estimator. The flows Fij(pi − pj) are then determined by using relations

(18) and (19), and node i adjusts the flows on its outgoing links to these values.

Each node i then broadcasts the updated flow values to its neighbors j. In this way,

every node i has information regarding the flows Fij(pi − pj) and Fji(pj − pi) on

the links (i, j) and (j, i), respectively. Node i can then use (17) to update its own

dual variable pi, and broadcasts to all the neighbor nodes this updated value. A

fresh iteration can now commence with these updated dual variables. The general

algorithm, as described, is adaptive and the updates of the dual variables and the

flow variables in general take place asynchronously. As in [41], the outgoing flow on

a link depends on the inverse of the estimated queueing delay on that link.

Although we have described a general, asynchronous, distributed algorithm

for the dual problem, we shall discuss convergence only for the special case of the
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synchronous version as given by the equations (17), (18), and (19), with ‘perfect’

(‘noiseless’) measurements of the delays. We can view the gradient algorithm (15)

as a special case of a subgradient algorithm, and employ the results of convergence

analysis (see, for example, Bertsekas, Nedic, and Ozdaglar [11]) for the latter algo-

rithm. For simplicity, we confine ourselves to a discussion of the constant step-size

case - αn = α, for some small, positive α. The central result is that, if the gradient

vector ∇Q(p) has a bounded norm (that is, ||∇Q(p)|| ≤ G, for some constant G,

and for all p), then for a small positive number h,

Q(p∗)− lim
n→∞

Qn < h, (20)

where Qn is the ‘best’ value found till the n-th iteration, i.e., Qn = max(Q(p0),

Q(p1), . . . , Q(pn)). The number h is a function of the step-size α, and decreases

with it, and in fact decreases to zero as α decreases to zero. In our case, for any p,

the partial derivatives∣∣∣∂Q(p)

∂pi

∣∣∣ =
∣∣∣ ∑
j:(j,i)∈L

Fji(pj−pi)−
∑

j:(i,j)∈L

Fij(pi−pj)+ri

∣∣∣ ≤ ∑
j:(j,i)∈L

Cji+
∑

j:(i,j)∈L

Cij+ri

are bounded, and so, the gradient vector ∇Q(p) is also (uniformly) upper bounded.

The convergence result therefore holds in our case (with a constant step-size). Upon

convergence, the algorithm yields simultaneously, the optimal dual vector p∗, as well

as the optimal flows Fij(p
∗).

3.2.2 Loop Freedom of the Algorithm

Loop freedom is a desirable feature for any routing algorithm because com-

munication resources are wasted if packets are routed in loops through the network.
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We now show, for the single commodity case under discussion, that the primal-dual

algorithm converges to a set of optimal link flows, F ∗ij, (i, j) ∈ L, which are loop

free.

Lemma 1. An optimal link flow vector F∗ is loop free.

Proof. Suppose that an optimal link flow vector F∗ is such that it forms a loop in

the network. Then for some sequence of links (i1, i2), (i2, i3), . . . , (in, i1) that form a

cycle, there is a positive flow on each of the links : F ∗i1i2 > 0, F ∗i2i3 > 0, . . . , F ∗ini1 > 0.

This implies, by relation (11), that

p∗i1 − p
∗
i2
> 0, p∗i2 − p

∗
i3
> 0, . . . , p∗in − p

∗
i1
> 0,

which is impossible. (None of the nodes i1, i2, . . . , in above can be the destination

node D, because of the condition (equation (6)) that flows are not re-routed back

to the network once they reach the destination.)

3.2.3 An Example

We consider a simple example network in this subsection. We illustrate the

computations and show how the allocation of flows to the links by the routing

algorithm changes as the link capacities are changed, and that the optimal flow

allocations avoid forming loops in the network.

The network that we consider is shown in Figure 3.1. There are incoming

traffic flows at nodes 1 and 2, and the destination node is 4. The incoming traffic

rates at nodes 1 and 2 are r1 = 6 and r2 = 4. Cij denotes the capacities of the links
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Figure 3.1: The network topology and the traffic inputs : A single commodity

example

(i, j). In what follows, we assume that β = 1 and that the delay functions are of

the form Dij(Fij) = 1
Cij−Fij . (This is the commonly made M/M/1 approximation,

also referred to as Kleinrock’s independence assumption [9].) This delay function

satisfies our assumptions (A1) and (A2). We now set up the gradient algorithm.

For this case, the relations (18) and (19) reduce to

Fij(p
n
i − pnj ) = 0, if pni − pnj ≤ 0,

Fij(p
n
i − pnj ) =

(pni − pnj )Cij

1 + pni − pnj
, if pni − pnj > 0.

We set up the gradient algorithm with a small constant step-size, i.e., αn = α, for

some small positive α, and start with an arbitrary initial dual vector p0. Each dual

vector component is updated using the equation

pn+1
i = pni + α

( ∑
j:(j,i)∈L

Fji(p
n
j − pni )−

∑
j:(i,j)∈L

Fij(p
n
i − pnj ) + ri

)
,

where Fij(p
n
i − pnj ) and Fji(p

n
j − pni ) are computed using the above equations.

The capacities of the links are C13 = 10, C21 = 4, C32 = 4, C34 = 14, C24 = 4,

and α is set equal to 0.05. The optimal flows and potentials with this setting are
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Table 3.1: Optimal flows and ‘potentials’ (C13 = 10, C21 = 4, C32 = 4, C34 = 14, C24 = 4)

Optimal link flows Optimal node potentials

F ∗
13 = 6.89 p∗1 = 3.19

F ∗
21 = 0.89 p∗2 = 3.48

F ∗
24 = 3.11 p∗3 = 0.97

F ∗
34 = 6.89 p∗4 = 0.00

F ∗
32 = 0.00

Table 3.2: Optimal flows and ‘potentials’ (C13 = 10, C21 = 4, C32 = 4, C34 = 14, C24 = 8)

Optimal link flows Optimal node potentials

F ∗
13 = 6.00 p∗1 = 2.25

F ∗
21 = 0.00 p∗2 = 1.00

F ∗
24 = 4.00 p∗3 = 0.75

F ∗
34 = 6.00 p∗4 = 0.00

F ∗
32 = 0.00

tabulated in Table 3.1.

Keeping the capacities of the other links fixed, we can increase the capacity

C24 until the entire flow that arrives at node 2 goes through the link (2, 4) and no

fraction traverses (2, 1). This happens when C24 is increased to 8. The optimal flows

and potentials that result are tabulated in Table 3.2.

If we now further increase the capacity C24, because the flow coming in at

node 3 now sees an additional available path that goes through node 2 to node 4

and has high capacity, a fraction of the flow arriving at 3 goes through this path.

The optimal flows and potentials when C24 is set at 16 are tabulated in Table 3.3.
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Table 3.3: Optimal flows and ‘potentials’ (C13 = 10, C21 = 4, C32 = 4, C34 = 14, C24 = 16)

Optimal link flows Optimal node potentials

F ∗
13 = 6.00 p∗1 = 2.11

F ∗
21 = 0.00 p∗2 = 0.41

F ∗
24 = 4.67 p∗3 = 0.61

F ∗
34 = 5.33 p∗4 = 0.00

F ∗
32 = 0.67

The optimal flow allocations on links thus vary as the capacities vary relative

to each other. In fact the routing algorithm can be seen as accomplishing a form

of resource allocation (the resources being the link capacities) that helps relieve

congestion in the network. Also the optimal flow allocations are always loop free.

3.2.4 Effect of the parameter β

We had noted in Section 3.1.4 of Chapter 2, for the N parallel links case, that

increasing the parameter β enables more of the incoming flow at the source node to

be diverted towards the outgoing link with the highest capacity. We also observed,

roughly speaking, that lower the value of β, the more ‘spread out’ is the distribution

of flows on the outgoing links. For the N parallel links network, our optimal routing

solution is the same as the equilibrium routing solution as considered in Section

2.3.1.4, and so the same considerations and results apply. For the general network

single commodity case, we have carried out numerous numerical computations for

various examples, and the same general observation seems to be true, viz., that as

β increases more and more of the outgoing flow at every node is directed towards
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the links that lie on high capacity paths. Unfortunately, we haven’t been able to

prove this conjecture. In this section we document the results of our computations

for various simple networks.

We consider the network shown in Figure 3.2. This network is slightly more

complex than the network with parallel links. Routing decisions need to be made

at the source node 1 and also at the downstream nodes 2 and 3. There is only

one incoming flow r1 (r1 = 7 units) into the network, which needs to be routed to

the destination node 4. We first consider the case when the capacities are given by

C12 = 10, C13 = 8, Ca
24 = 8, Cb

24 = 8, Ca
34 = 8, Cb

34 = 8. Table 3.4 enlists the values of

the flows in the various links as β increases. We notice that the flow along the path

consisting of links with capacities C12 and Ca
24 increases as the value of β increases.

We notice the same trend for the case (Table 3.5) when the capacities of the links

are given by C12 = 10, C13 = 8, Ca
24 = 10, Cb

24 = 10, Ca
34 = 8, Cb

34 = 8, and with the

incoming flow given by r1 = 7.
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Table 3.4: Optimal flows as β changes (C12 = 10, C13 = 8, Ca
24 = 8, Cb

24 = 8, Ca
34 = 8, Cb

34 = 8)

β Optimal link flows

1 F ∗
12 = 3.8, F ∗

13 = 3.2,

F a
24
∗ = 1.9, F b

24
∗ = 1.9, F a

34
∗ = 1.6, F b

34
∗ = 1.6

2 F ∗
12 = 3.94, F ∗

13 = 3.06,

F a
24
∗ = 1.97, F b

24
∗ = 1.97, F a

34
∗ = 1.53, F b

34
∗ = 1.53

3 F ∗
12 = 4.04, F ∗

13 = 2.96,

F a
24
∗ = 2.02, F b

24
∗ = 2.02, F a

34
∗ = 1.48, F b

34
∗ = 1.48

4 F ∗
12 = 4.10, F ∗

13 = 2.90,

F a
24
∗ = 2.05, F b

24
∗ = 2.05, F a

34
∗ = 1.45, F b

34
∗ = 1.45

Table 3.5: Optimal flows as β changes (C12 = 10, C13 = 8, Ca
24 = 10, Cb

24 = 10, Ca
34 = 8, Cb

34 = 8)

β Optimal link flows

1 F ∗
12 = 3.88, F ∗

13 = 3.12,

F a
24
∗ = 1.94, F b

24
∗ = 1.94, F a

34
∗ = 1.56, F b

34
∗ = 1.56

2 F ∗
12 = 4.08, F ∗

13 = 2.92,

F a
24
∗ = 2.04, F b

24
∗ = 2.04, F a

34
∗ = 1.46, F b

34
∗ = 1.46

3 F ∗
12 = 4.18, F ∗

13 = 2.82,

F a
24
∗ = 2.09, F b

24
∗ = 2.09, F a

34
∗ = 1.41, F b

34
∗ = 1.41

4 F ∗
12 = 4.24, F ∗

13 = 2.76,

F a
24
∗ = 2.12, F b

24
∗ = 2.12, F a

34
∗ = 1.38, F b

34
∗ = 1.38
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3.3 Analysis of the Optimal Routing Problem : The Multicommodity

Case

Our approach takes as a starting point a decomposition technique that can

be found, for example, in Rockafellar [42]. This technique decomposes a multicom-

modity flow optimization problem into a set of per link simple nonlinear convex

flow problems and a set of per commodity linear network flow problems. We pro-

pose a primal-dual approach to solve our optimal routing problem, Problem (A),

utilizing this decomposition, aiming in particular to provide a solution that can be

implemented in a completely distributed manner by the nodes themselves.

We carry out our analysis under the same assumptions (A1), (A2) and (A3) of

Section 3.2, with a slight modification of Assumption (A3), whereby we now require

that the primal problem (A) has at least one feasible solution (we still refer to this

assumption as Assumption (A3)).

We start by attaching Lagrange multipliers zij ∈ R to each of the constraints

(4), and construct the Lagrangian function

L(f , z) =
∑

(i,j)∈L

Gij(Fij) +
∑

(i,j)∈L

zij

(
−Fij +

∑
k

f
(k)
ij

)
,

where z is the (column) vector of dual variables zij, (i, j) ∈ L. The above equation

can be rewritten in the form

L(f , z) =
∑

(i,j)∈L

(
Gij(Fij)− zijFij

)
+
∑
k

∑
(i,j)∈L

zijf
(k)
ij . (21)

The dual function Q(z), which is a concave function, can then be written down as

Q(z) = inf L(f , z), (22)
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where the minimization is over all vectors f satisfying the constraints (1), (2), and

(3), and the capacity constraints 0 ≤ Fij < Cij, (i, j) ∈ L. The separable form (21)

of the Lagrangian function simplifies the computation of Q(z), and we can obtain

the following form for Q(z)

Q(z) = QN(z) +
∑
k

Q
(k)
L (z). (23)

QN(z) involves the solution of a set (one per link) of simple one-dimensional non-

linear optimization problems and is given by

QN(z) =
∑

(i,j)∈L

min
0≤Fij<Cij

(
Gij(Fij)− zijFij

)
, (24)

and for each commodity k, Q
(k)
L (z) involves the solution of a linear network flow

optimization problem with the costs associated with links (i, j) being the Lagrange

multipliers zij,

Q
(k)
L (z) = min

f
(k)
ij ≥0,(i,j)∈L,P

j f
(k)
ij =r

(k)
i +

P
j f

(k)
ji ,i∈N ,

f
(i)
ij =0,(i,j)∈L

∑
(i,j)∈L

zijf
(k)
ij , , (25)

the constraints being the commodity flow balance equations. Note that (25) is a

linear program. An interesting interpretation of the above decomposition in terms

of marginal costs and the notion of Wardrop equilibrium is provided in Rockafellar

[42].

Once the dual function is available, the dual optimization problem can be cast

as

Maximize Q(z)

subject to no constraint on z (i.e., z ∈ R|L|).
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Under our assumptions (A1) and (A3), a regular primal feasible (see [42])

solution to the optimization problem, Problem (A), exists. (This is because, as in

Section 3.2, the function Gij(Fij) is differentiable, and the derivative G′ij(Fij) =

Fij[Dij(Fij)]
β is finite for Fij in [0, Cij).) Then it can be shown [42] that strong

duality holds - the optimal primal and dual costs are equal 5. Suppose further that z∗

is an optimal solution to the dual optimization problem, and f∗ is an optimal solution

to the primal optimization problem. Then (f∗, z∗) solves the set of commodity

linear optimization problems (25) (with the zij being set to z∗ij). Also, for each

(i, j) ∈ L, the optimal total flow F ∗ij =
∑

k f
(k)∗
ij , and satisfies along with z∗ij the

relation (equation (24))

Gij(F
∗
ij)− z∗ijF ∗ij = min

0≤Fij<Cij

(
Gij(Fij)− z∗ijFij

)
. (26)

Now, for a given dual vector z, let F(z) and f(z) be a pair of vectors that attain

the minimum in (24) and (25), respectively. The components of F(z) are the flows

Fij(z), and the components of f(z) are the flows f
(k)
ij (z). We discuss in the following

subsection how to compute F(z) and f(z) in a completely distributed manner, given

a dual vector z. We shall use this in Section 3.3.2 to develop a distributed primal-

dual algorithm that solves the dual optimization problem. Because of strong duality

and the comments in the preceding paragraph, we shall have also obtained alongside

the optimal flows f∗.

5The proof of this fact also can be accomplished by using the techniques of monotropic pro-

gramming [42].
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3.3.1 Flow Vector Computations

For a given dual vector z, we first turn our attention towards the problem of

obtaining F(z). It is clear from the form of the expression in the right hand side of

(24) that the computation can be arranged in a distributed manner, with each node

i computing the flows Fij(z) on its outgoing links (i, j) by solving the problem

Minimize Gij(Fij)− zijFij =
∫ Fij

0
u[Dij(u)]βdu− zijFij,

subject to 0 ≤ Fij < Cij.

Under assumption (A1) this problem is a minimization problem of a strictly convex

function over a convex set (arguments as in Section 3.2). Also, Lemma 3 of the

Appendix shows that for every z, there exists a unique minimum Fij(z) for the

problem. Equivalent (necessary and sufficient) set of conditions that Fij(z) must

satisfy are :

Fij(z)[Dij(Fij(z))]β ≥ zij, if Fij(z) = 0, (27)

Fij(z)[Dij(Fij(z))]β = zij, if Fij(z) > 0. (28)

The relations (27) and (28) imply that

Fij(z) = 0, if zij ≤ 0, (29)

Fij(z)[Dij(Fij(z))]β = zij, if zij > 0, (30)

and in this case Fij(z) > 0 (arguments are similar to those in Section 3.2).

The relations (27) and (28) hold also for an optimal total flow and dual vector

pair (F(z∗), z∗). At every node i the optimal total flows on its outgoing links could
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be positive or zero, depending on the capacities of the links. We can thus, in general,

have a multipath routing solution to our optimal routing problem. The outgoing

total flow Fij(z
∗), when positive, depends on the inverse of the average link delay.

For a given vector z, we now focus on solving the commodity linear flow opti-

mization problems (25), a linear program. For each commodity k, solving the opti-

mization problem gives the flows f
(k)
ij (z), (i, j) ∈ L. We use the ε-relaxation method

(Bertsekas and Tsitsiklis [12], Bertsekas and Eckstein [8]), because it can be imple-

mented in a purely distributed manner by the nodes in the network. The method

is an algorithmic procedure to solve the dual to the primal linear flow optimization

problem and is based on the notion of ε-complementary slackness. ε-complementary

slackness involves a modification of the usual complementary slackness relations of

the linear optimization problem by a small amount ε. At every iteration, the algo-

rithm changes the dual prices and the incoming and outgoing link flows at every

node i, while maintaining ε-complementary slackness and improving the value of

the dual cost at the same time. We briefly provide an overview in the following

paragraphs (for details see, for example, Bertsekas and Tsitsiklis [12]).

Consider the linear network flow problem for commodity k : Minimize the cost∑
(i,j)∈L zijf

(k)
ij , subject to the flow balance constraints

∑
j f

(k)
ij = r

(k)
i +

∑
j f

(k)
ji ,

for each node i, and the constraints f
(k)
ij ≥ 0, for each link (i, j). We also add

the constraint f
(k)
ij ≤ Cij (which must be satisfied at optimality), which enables

us to apply the method without making any modifications. The dual problem is

formulated by first attaching Lagrange multipliers (prices) pi ∈ R to the balance
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equations at each node i, and forming the Lagrangian M =
∑

(i,j)∈L

(
zijf

(k)
ij − (pi−

pj)f
(k)
ij

)
+
∑

i∈N r
(k)
i pi. For a price vector p and given ε > 0, a set of flows and

prices satisfies ε-complementary slackness conditions if the flows satisfy the capacity

constraints, and that

f
(k)
ij < Cij =⇒ pi − pj ≤ zij + ε,

f
(k)
ij > 0 =⇒ pi − pj ≥ zij − ε.

The ε-relaxation method uses a fixed ε, and tries to solve the dual optimization

problem using distributed computation. The procedure starts by considering an

arbitrary initial price vector p0, and finds a set of flows on the links such that the

flow-price pair satisfies the ε-complementary slackness conditions. At each iteration,

the surplus at nodes i, gi =
∑

j f
(k)
ji + r

(k)
i −

∑
j f

(k)
ij , are computed. A node i with

positive surplus is chosen. (If all nodes have zero surplus, then the algorithm termi-

nates, because the ε-complementary slackness conditions are satisfied and the flow

balance conditions, too, are satisfied. The corresponding flow vector f is optimal.)

The surplus gi is driven to zero at the iterative step, and another flow-price pair sat-

isfying ε-complementary slackness is produced. At the same time the dual function

value is increased, by changing the i-th price coordinate pi. At the iteration, except

possibly for price pi at node i, the prices of the other nodes are left unchanged. It

can be shown (even for zij and Cij that are not necessarily integers, which is the case

of interest to us; see [12]) that, if ε is chosen small enough, the algorithm converges

to an optimal flow-price pair 6.

6It can be shown [12] that ε should chosen to be smaller than the minimum, over all negative-

length cycles Y , the ratio − Length of cycle Y
Number of arcs of Y. The length of the cycle is computed based on
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Besides the ε-relaxation method, there exist other distributed algorithms, like

the auction algorithm, that solve linear flow optimization problems. Any such algo-

rithm can be used to solve the linear flow optimization problems at hand.

3.3.2 Distributed solution of the Dual Optimization Problem

We now focus on solving the dual problem using a distributed primal-dual algo-

rithm. To that end, we first note that the dual function Q(z) is a non-differentiable

function of z. This suggests that we can use a subgradient based iterative algorithm

to compute an optimal dual vector z∗. We shall see that the computations can be

made completely distributed.

We first compute a subgradient for the concave function Q(z) at a point z (in

R|L|). Recall that a vector δ(z) is a subgradient of a concave function Q at z if

Q(w) ≤ Q(z) + δ(z)T (w − z), ∀w ∈ R|L|. (31)

Recall that for a given vector z, F(z) and f(z) denoted a pair of vectors of total flows

and commodity flows that attain the minimum in (24) and in (25), respectively. For

vectors z,w, we have

Q(w)−Q(z) =
∑

(i,j)∈L

(
Gij(Fij(w))− wijFij(w)

)
+
∑
k

∑
(i,j)∈L

wijf
(k)
ij (w)

−
∑

(i,j)∈L

(
Gij(Fij(z))− zijFij(z)

)
−
∑
k

∑
(i,j)∈L

zijf
(k)
ij (z).

Because
∑

(i,j)∈L

(
Gij(Fij(w))− wijFij(w)

)
+
∑

k

∑
(i,j)∈Lwijf

(k)
ij (w) ≤

the costs zij on the edges of the cycle.
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∑
(i,j)∈L

(
Gij(Fij(z))− wijFij(z)

)
+
∑

k

∑
(i,j)∈Lwijf

(k)
ij (z), we have

Q(w)−Q(z) ≤
∑

(i,j)∈L

(
Gij(Fij(z))− wijFij(z)

)
+
∑
k

∑
(i,j)∈L

wijf
(k)
ij (z)

−
∑

(i,j)∈L

(
Gij(Fij(z))− zijFij(z)

)
−
∑
k

∑
(i,j)∈L

zijf
(k)
ij (z).

and so

Q(w)−Q(z) ≤
∑

(i,j)∈L

(
wij − zij

)(∑
k

f
(k)
ij (z)− Fij(z)

)
,

which shows that a subgradient of Q at z is the |L|-vector δ(z) with components∑
k f

(k)
ij (z)− Fij(z).

Consequently, in order to solve the dual optimization problem, we can set

up the following subgradient iterative procedure, starting with an arbitrary initial

vector of Lagrange multipliers z0,

zn+1 = zn + γn δ(z
n), n ≥ 0, (32)

where {γn} is a suitably chosen step-size sequence that ensures convergence of the

above subgradient iterations to an optimal dual vector z∗. The vector δ(zn), with

components
∑

k f
(k)
ij (zn) − Fij(z

n), is a subgradient of Q at zn. In terms of the

individual components, the subgradient algorithm (32) can be written as (for each

(i, j) ∈ L)

zn+1
ij = znij + γn

(∑
k

f
(k)
ij (zn)− Fij(zn)

)
. (33)

Equation (33) above shows that the subgradient iterative procedure can be

implemented in a distributed manner at the various nodes of the network. At each

node i, to update the dual variables zij for the outgoing links (i, j), the quantities

that are required are the optimal commodity flows f
(k)
ij (z) and total flows Fij(z). In
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Section 3.3.1 we showed how the above quantities can be computed in a completely

distributed manner by every node, given z. Fij(z
n) can be computed (exactly as in

Section 3.2.1) using estimates of average queueing delays on the outgoing links and

using (29) and (30). Computation of the flows Fij(z
n) and fij(z

n) require message

exchange with neighbor nodes, and local information like estimates of outgoing links’

queue lengths. The updated dual variables zij are broadcast to the neighbor nodes,

which utilise this information in the execution of their iterations. In general, the

updates of the dual variables and the flows take place asynchronously, so that the

algorithm is asynchronous and adaptive.

We now briefly discuss the convergence behavior of the subgradient algorithm

(32). As for the single commodity case, we restrict our attention to the synchronous

version of the algorithm as given by equation (32), and we consider only the constant

step size case here - γn = γ, for all n and some small, positive γ. If the subgradient

vector is bounded in norm, then the subgradient algorithm converges arbitrarily

closely to the optimal point. As in Section 3.2.1, the sense in which convergence

takes place is the following : for a small positive number h (which decreases with γ,

and in fact, decreases to zero as γ decreases to zero), we have

Q(z∗)− lim
n→∞

Qn < h,

where Qn is the ‘best’ value found till the n-th iteration, i.e., Qn = max(Q(z0), . . . ,

Q(zn)). In our case, because the commodity flows f
(k)
ij (z) and total flows Fij(z)

are always bounded (because of the capacity constraints), the subgradients δ(z) are

bounded in norm, and the subgradient algorithm converges. Bertsekas, Nedic, and
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Ozdaglar [11] contains other attractive (albeit more involved) step-size rules, includ-

ing diminishing step-size rules, which have more attractive convergence properties.

This is an avenue for future exploration. Upon convergence, the algorithm yields

simultaneously, the optimal dual vector z∗, as well as the optimal flow vectors F(z∗)

and f(z∗).

3.3.3 Loop Freedom of the Algorithm

In this subsection we show that an optimal flow vector f(z∗) is loop free.

Lemma 2. An optimal flow vector f(z∗) is loop free.

Proof. Suppose that an optimal flow vector f(z∗) is not loop free. Then for some

commodity k, and for some sequence of links (i1, i2), (i2, i3), . . . , (in, i1) that form

a cycle, there is a positive flow on each of the links : f
(k)
i1i2

(z∗) > 0, f
(k)
i2i3

(z∗) >

0, . . . , f
(k)
ini1

(z∗) > 0. Consequently, for the total flows we have Fi1i2(z
∗) > 0, Fi2i3(z

∗) >

0, . . . , Fini1(z
∗) > 0. This implies, by relation (28), that

z∗i1i2 > 0, z∗i2i3 > 0, . . . , z∗ini1 > 0.

On the other hand, the optimal flows f
(k)
ij (z∗), (i, j) ∈ L, constitute a solution

to the linear programming problem: Minimize the cost
∑

(i,j)∈L z
∗
ijf

(k)
ij , subject to

the constraints
∑

j f
(k)
ij = r

(k)
i +

∑
j f

(k)
ji , i ∈ N , and the constraints 0 ≤ f

(k)
ij <

Cij, (i, j) ∈ L. Attach Lagrange multipliers pi ∈ R to the balance equations at each

node i, and form the Lagrangian N =
∑

(i,j)∈L

(
z∗ijf

(k)
ij −(pi−pj)f (k)

ij

)
+
∑

i∈N r
(k)
i pi.

An optimal primal-dual vector pair (f(z∗),p∗) satisfies the following Complementary
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Slackness conditions (the derivation is similar to the derivation for equations (27)

and (28)) for each link (i, j),

z∗ij ≥ p∗i − p∗j , if f
(k)
ij (z∗) = 0

and z∗ij = p∗i − p∗j , if f
(k)
ij (z∗) > 0.

From the foregoing it is clear that we must have

p∗i1 − p
∗
i2
> 0, p∗i2 − p

∗
i3
> 0, . . . , p∗in − p

∗
i1
> 0,

which is a contradiction.

3.3.4 An Illustrative Example

We consider an example network in this section and illustrate the computa-

tions. The network consists of eight nodes interconnected by multiple directed links.

Figure 3.3 shows the network topology. The numbers beside the links are the ca-

pacities of the links. There are multiple sources and multiple sinks of traffic. The

rates of input traffic at the sources are given by r
(6)
1 = 6, r

(8)
1 = 8, r

(6)
2 = 8, r

(8)
2 =

6, r
(7)
2 = 10, r

(7)
3 = 10. There are three commodities in the network corresponding to

the three destinations for the traffic flows in the network. The capacities are such

that the network is able to accommodate the incoming traffic to the network.

As in the single commodity example we assume that the delay functions

Dij(Fij) are explicitly given by the formula Dij(Fij) = 1
Cij−Fij . We carry out the

numerical computations for the case when β = 1.

We set up the subgradient iterative algorithm (33) starting from an arbitrary
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Figure 3.3: The network topology and the traffic inputs : A Multicommodity Ex-

ample

initial vector z0

zn+1
ij = znij + γn

(∑
k

f
(k)
ij (zn)− Fij(zn)

)
, (i, j) ∈ L,

where the flow vectors F(zn) and f(zn) are computed as outlined in Section 3.3.1. As

we had noted in that section, computing F(zn) translates to satisfying the relations

(29) and (30), which in our example are the equations

Fij(z
n) = 0, if znij ≤ 0,

Fij(z
n)

Cij − Fij(zn)
= znij, if znij > 0.

The latter equation gives Fij(z
n) =

znijCij

1+znij
, a simple expression, showing that the flow

is proportional to the capacity.

We use a constant step-size algorithm (γn = γ, for all n) with the step-size

γ = 0.01. (This choice of small γ slows down the convergence of the algorithm.
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As pointed out in Section 3.3.2, other choices of step-size sequences can potentially

improve the speed of convergence.) The ε chosen for the ε-relaxation method is 0.01.

The subgradient algorithm converges and the optimal flows (upon convergence)

are tabulated in Table 4. As in Section 3.2 we note that the optimal routing solution

allocates a higher fraction of total incoming flows at every node to outgoing links

that lie on paths consisting of higher capacity links.

The optimal routing solution splits the total incoming flow at each node among

the outgoing links. The solution also describes how the total flow on each link is split

among the commodity flows. We also note that our routing solution is a multipath

routing solution. It is well-known [9] that multipath routing solutions improve the

overall network performance by avoiding routing oscillations (shortest-path routing

solutions, for instance, are known to lead to routing oscillations), and by providing

better throughput for incoming connections, while at the same time reducing the

average network delay.

Our routing solution is not an end-to-end routing solution, as for example

[24]. The control is not effected from the end hosts, but every node i in the network

controls both the total as well as the commodity flows on its outgoing links (i, j),

using the distributed algorithm that we have described.

3.3.5 Joint Optimal Routing and Rate (Flow) Control

A popular way to treat rate control problems has been to cast them in a

utility maximization framework where one maximizes a utility that is a function
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Table 3.6: Optimal flows in links

Link (i, j) Optimal total flow F ∗
ij Optimal commodity flows

(1, 2) 5.77 f
(6)∗
12 = 0, f (8)∗

12 = 5.77

(1, 3) 8.23 f
(6)∗
13 = 6.00, f (8)∗

13 = 2.23

(2, 4) 14.31 f
(6)∗
24 = 5.86, f (7)∗

24 = 8.19, f (8)∗
24 = 0

(2, 5) 15.77 f
(6)∗
25 = 2.14, f (7)∗

25 = 1.82, f (8)∗
25 = 11.77

(3, 5) 18.23 f
(6)∗
35 = 6.00, f (7)∗

35 = 10.00, f (8)∗
35 = 2.23

(4, 6) 5.86 f
(6)∗
46 = 5.86

(4, 7) 8.19 f
(7)∗
47 = 8.19

(4, 8) 0 f
(8)∗
48 = 0

(5, 6) 8.23 f
(6)∗
56 = 8.14

(5, 7) 11.84 f
(7)∗
57 = 11.82

(5, 8) 14.00 f
(8)∗
58 = 14.00
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of the source rates (usually the function is of separable form). The constraints

to the problem are formed by considering a routing matrix that represents the

interconnections between the nodes of the network (the network topology), and by

noting that the sum of the flows along a link cannot exceed the link capacity. We

can naturally include a rate control problem in our optimal routing framework in the

following manner. We provide a brief outline in this section of the approach, showing

that the additions needed are minimal. Using the utility maximization approach

alluded to above, we say that a source that succeeds at transmitting at a rate r
(k)
i

towards a destination k derives a utility of Ui(r
(k)
i ), where Ui is an increasing, twice

continuously differentiable strictly concave function. The concavity models a ‘law

of diminishing returns’ - the additional utility (or ‘satisfaction’) derived by sending

an additional unit of traffic decreases with the traffic r
(k)
i , that is,

d2Ui(r
(k)
i

dr
(k)
i

2 < 0. An

example of a utility function that satisfies the requirements is Ui(x) = log x.

We pose the joint optimal routing and rate control problem in the following

manner. The cost given by
∑

(i,j)∈L
∫ Fij

0
u [Dij(u)]βdu −

∑
k

∑
i∈N ,i 6=k Ui(r

(k)
i ) is to

be minimized, with respect to both the set of flows f
(k)
ij and the rates r

(k)
i , with the

usual constraints given by the flow balance equations, the capacity constraints, and

the additional constraint that the rates r
(k)
i lie in some given intervals [0,M

(k)
i ]. The

utility of sending at the vector of rates r
(k)
i is thus of a separable form. Formally we

can write the joint optimization problem in the following way

Problem (C): Minimize the (separable) cost function

P (f , r) =
∑

(i,j)∈L

Gij(Fij)−
∑
k

∑
i∈N ,i 6=k

Ui(r
(k)
i ) =
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∑
(i,j)∈L

∫ Fij

0

u[Dij(u)]βdu−
∑
k

∑
i∈N ,i 6=k

Ui(r
(k)
i ),

subject to

∑
j:(i,j)∈L

f
(k)
ij = r

(k)
i +

∑
j:(j,i)∈L

f
(k)
ji , ∀i, k 6= i, (34)

f
(k)
ij ≥ 0, ∀(i, j) ∈ L, k 6= i, (35)

f
(i)
ij = 0, ∀(i, j) ∈ L, (36)

Fij =
∑
k

f
(k)
ij , ∀(i, j) ∈ L, (37)

r
(k)
i ∈ [0,M

(k)
i ], ∀i ∈ N , k 6= i, (38)

with 0 ≤ Fij < Cij, ∀(i, j) ∈ L.

The assumptions (A1), (A2), and (A3) as stated at the beginning of Section

3.3 remain in force here. The optimization is over the set of all commodity flows

f
(k)
ij and the set of all rates r

(k)
i . It is a convex optimization problem over a convex

set. We proceed, as usual, by attaching Lagrange multipliers zij ∈ R to each of the

constraints (37) and form the Lagrangian

L(f , r, z) =
∑

(i,j)∈L

Gij(Fij)−
∑
k

∑
i∈N ,i 6=k

Ui(r
(k)
i ) +

∑
(i,j)∈L

zij

(
−Fij +

∑
k

f
(k)
ij

)
,

where z is the (column) vector of dual variables zij, (i, j) ∈ L. The above equation

can be rewritten in the following form

L(f , r, z) =
∑

(i,j)∈L

(
Gij(Fij)− zijFij

)
+
∑
k

∑
(i,j)∈L

zijf
(k)
ij −

∑
k

∑
i∈N ,i 6=k

Ui(r
(k)
i ).

The dual function Q(z) is then given by

Q(z) = minL(f , r, z),
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where the minimization is over all vectors f , r satisfying the constraints (34), (35),

(36), (38), and the capacity constraints on the total flows. The function Q(z) can

be decomposed into the form

Q(z) = QN(z) +
∑
k

Q
(k)
L (z),

where QN(z) can be computed by solving a set of simple nonlinear optimization

problems

QN(z) =
∑

(i,j)∈L

min
0≤Fij<Cij

(
Gij(Fij)− zijFij

)
, (39)

and for each commodity k, Q
(k)
L (z) can be obtained by solving a set of minimization

problems

Q
(k)
L (z) = min

f
(k)
ij ≥0,(i,j)∈L,P

j f
(k)
ij =r

(k)
i +

P
j f

(k)
ji ,i∈N ,

r
(k)
i ∈[0,M

(k)
i ],i∈N ,k 6=i

∑
(i,j)∈L

zijf
(k)
ij −

∑
i∈N ,i 6=k

Ui(r
(k)
i ). (40)

Our approach, as for the optimal routing problem, is to solve the following

dual optimization problem

Maximize Q(z)

subject to no constraint on z (i.e., z ∈ R|L|).

To that end, we first discuss how to solve the minimization problems in the

right hand sides of (39) and (40), for a given dual vector z. For given z, let F(z) be

the vector which attains the minimum in (39). Also, let (f(z), r(z)) be the vector

pair which attains the minimum in (40). F(z) can be obtained exactly as described

in Section 3.3.1. Consider now the optimization problem on the right hand side of

(40). Attaching Lagrange multipliers pi ∈ R to the flow balance equations at the
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nodes, we can form the Lagrangian function R which can be written in the following

form

R =
∑

(i,j)∈L

(
zij − pi + pj

)
f

(k)
ij −

∑
i∈N

(
Ui(r

(k)
i )− pir(k)

i

)
. (41)

The dual function is the minimum of R subject to the conditions on the links

f
(k)
ij ≥ 0, and the conditions r

(k)
i ∈ [0,M

(k)
i ]. For a given vector p of Lagrange

multipliers, let r
(k)
i (p) be the scalar which attains the maximum in the following

problem

Maximize Ui(r
(k)
i )− pir(k)

i

subject to r
(k)
i ∈ [0,M

(k)
i ].

Under our assumptions on the function Ui there exists a unique solution to this

maximization problem.

We now briefly describe modifications to the ε-relaxation method of Section

3.3.1 to solve the dual optimization problem. We start with an arbitrary initial

price vector p0, and first find the vector of rates r
(k)
i (p0). These rates are then used

as inputs to the ε-relaxation procedure to obtain a new flow-price vector pair. The

new prices are used to determine a new vector of rates, which are again fed back

as inputs to the ε-relaxation procedure. This iterative procedure converges to an

optimal flow-price pair, as well as an optimal rate vector. We thus obtain f(z) and

r(z).

The dual optimization problem can be solved using the subgradient iterative

procedure exactly in the same way as has been described in Section 3.3.2. We note

that the concave function Q(z) would again have a subgradient at z that is given by
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the |L|-vector δ(z) with components
∑

k f
(k)
ij (z)−Fij(z) (the computations proceed

similarly as in Section 3.3.2).

We note thus, that we can incorporate in our framework and solve a joint

optimal routing and flow control problem using the same approach. We note that

the solution can be again implemented in a distributed manner. Furthermore, we

note that the rate control algorithm essentially operates at the source nodes of the

network (solving for the rate vectors r
(k)
i (p)) whereas all the network nodes partic-

ipate in the implementation of the routing algorithm, which involves determination

of the total as well as the commodity flows on the outgoing links. The sources need

that the information regarding the prices be made available to them in order to

implement the rate control algorithm.

3.4 Appendix

Lemma 3. Under our Assumptions (A1) and (A2), there exists a unique solution

to the following minimization problem (for any given wij),

Minimize Gij(Fij)− wijFij =
∫ Fij

0
u[Dij(u)]βdu− wijFij,

subject to 0 ≤ Fij < Cij.

Proof. For any given wij, Hij(Fij) = Gij(Fij) − wijFij increases to +∞ as Fij ↑

Cij (Assumption (A2)). Consequently, there exists an M ∈ [0, Cij), such that

Hij(Fij) > Hij(0) whenever Fij > M . The function Hij(Fij) restricted to the domain

[0,M ] attains the (global) minimum at the same point as the function considered

on the set [0, Cij). The set [0,M ] is compact; applying Weierstrass theorem to the
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continuous functionHij(Fij) on this set gives us the required existence of a minimum.

Uniqueness follows from the fact that Hij(Fij) is strictly convex on [0, Cij).
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Chapter 4

Conclusions and Directions for Future Research

In this chapter we provide a few concluding remarks and discuss a few di-

rections for future research which are related to the themes of the dissertation. In

the following section we provide concluding remarks for both the problems we have

considered, and in the section after that we discuss the directions for future research.

4.1 Concluding remarks

Convergence Results for Ant Routing Algorithms. In Chapter 2 of the

dissertation we have studied the convergence and have discussed the equilibrium

behavior of an Ant Routing Algorithm proposed by Bean and Costa. We have

considered wireline packet-switched communication networks. We have considered

a stochastic queuing model for the link delays, and have provided convergence results

for the Bean-Costa routing scheme. We have considered two specific cases in the

dissertation: one involving an N parallel link network, where data traffic arriving

at a single source node has to be transported to a single destination node via the

parallel link network, and the other involving a general network, where data traffic

arriving at various source nodes in the network have to transported to a single

destination node. For both the cases we assume that the network queues are stable,
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and we carry out our analysis given that this fact is true. However, we haven’t

investigated analytically what happens if during the dynamical evolution of the

system (which can be described as a stochastic dynamical system consisting of a

set of interconnected queues whose arrival rates are being modulated by the routing

probabilities) it veered into the unstable region of the queuing system. It is possible

that the algorithm is ‘self-stabilizing’; for example, for the N parallel links case,

notice that the routing probability for an outgoing link is proportional to the inverse

of the queuing delay estimate. Consequently, if the incoming traffic into the queue

is more than the service rate, the queue would momentarily build up rapidly, which

would in turn make the queuing delay estimate large. This would lower the routing

probability for the outgoing link leading to a decrease in the incoming traffic to the

queue. It would be interesting (and challenging) to investigate the specific issue

of stability of the queuing system both for the N parallel links case as well as the

general network case.

Routing algorithms like the Ant Routing Algorithms, which collect measure-

ments of quantities related to network routing performance like link and path delays

and feed this information back to update the routing tables, have certain advantages.

It might appear that any routing algorithm must have access to certain network in-

formation, as for example, information regarding the network topology, the input

traffic rates at the various source nodes, and the link capacities. For instance,

consider the optimal routing approaches available in the literature. Most of these

approaches require knowledge of the input traffic into the system. Approaches like

the Ant Routing Algorithm do not need the information regarding the input traffic
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rates at the source nodes nor do they need information about the link capacities.

This approach instead uses only the information regarding the delays. On the other

hand, such (adaptive) algorithms are known to converge slowly. It is possible to

improve the convergence speed of such algorithms. For instance, the step-size of

the delay estimation scheme can be made variable; information regarding the vari-

ance of the delays can be obtained which can then be used to adaptively change

the step-size. Also, most of the literature on Ant Routing Algorithms that uses the

delay information to update the routing probabilities, considers heuristic routing

probability update algorithms (in fact, the Bean-Costa scheme is also a heuristic).

It would be more appropriate to develop routing probability update algorithms that

are based on some sound underlying principles.

An Optimal Routing Algorithm using Dual Decomposition Tech-

niques. In Chapter 3 of the dissertation we have considered an optimal routing

problem that involves the minimization of a cost function, which is a measure of the

congestion in the network, subject to the flow balance conditions on the nodes and

capacity constraints on the links. We considered the dual optimization problem,

and using subgradient-based primal-dual algorithms we have provided a solution

to the problem. Our algorithms can be implemented by the nodes of the network

in a distributed manner using only ‘locally available information’ like estimates of

delays on the outgoing links. When the algorithm converges we obtain both the

optimal dual variables as well as the optimal primal variables, the link flows. Also,

we can readily incorporate the source rate control problem in our formulation, and

obtain a joint rate control and routing solution. Though our routing solution has
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many useful properties, a primary drawback of our algorithm (as perhaps with all

such Network Utilization Maximization approaches) is that the convergence of the

algorithm can be very slow. Moreover, an online implementation of the algorithm is

complex, requiring frequent message exchanges regarding the dual variable updates

as well as estimation of delays on the outgoing links. Such an implementation would

also be totally asynchronous, for which we do not have any convergence results. The

slow convergence is also a problem if changes in the input parameters to the prob-

lem - the input traffic rates and the network topology - occur frequently. Then the

algorithm will not be responsive to changing input conditions.

4.2 Future Directions of Research

4.2.1 Ant Algorithms

There is an ongoing interest in properties of Ant Algorithms in general, and

their applications to various practical problems. We describe in brief below various

directions in which research efforts can be extended.

Extensions for Wireless Networks. Various Ant Routing Algorithms have

been proposed for wireless networks. Wireless networks represent a particularly

challenging problem because packet transmission has to contend with interference

and with channel fading. Besides, if the nodes are mobile, the topology changes

frequently. There have been many Ant Routing Algorithms that have been proposed

exclusively for wireless networks (see the very brief mention in the literature survey

in Chapter 1). However analytical investigations have not been pursued for most
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of them. There is a need for development of appropriate models for analytically

studying routing in wireless networks.

There are other issues in applications to wireless networks. In wireless networks

one can either have a reactive routing scheme where routing related information per-

taining to a set of routes is obtained only when there is an incoming connection that

wants to route traffic through those routes, or a proactive routing scheme where rout-

ing related information throughout the network is regularly updated and maintained

at all times. Ant Routing Algorithms offer a hybrid alternative. We recall that ant

packets are used to collect routing related information in networks. They can thus

form a natural component of a reactive routing scheme. By tuning the rate at which

ant packets are generated one can cover the range from proactive to reactive routing

in wireless networks. This rate can be adjusted depending upon whether or not

there are incoming connections arriving at the nodes of the network (this feature

is already available in the AntNet algorithm of Di Caro and Dorigo [22]), and also

on the rate at which the topology of the wireless network changes (at least locally,

one can learn about topology changes through the periodic exchange of HELLO

messages). Di Caro, Ducatelle, and Gambardella [21] have proposed an Ant Routing

Algorithm for wireless mobile networks called AntHocNet which tries to capitalise

on the above mentioned idea, and show that their algorithm can outperform the

AODV algorithm in terms of routing performance. Various enhancements are made

to the basic Ant Routing idea in order to improve the overhead (which could be

substantial for Ant Routing schemes), and which are adapted for wireless networks.

There can be interesting analytical investigations into such issues. Finally, because
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they provide multi-path routing solutions, and because they can be adaptive and

distributed, ant routing schemes remain attractive for routing problems in mobile

wireless networks.

Other Applications of Ant Algorithms. Ant Algorithms have been pro-

posed for a wide variety of combinatorial search and optimization problems. Combi-

natorial optimization typically involves searching for an optimum in a finite but very

large set of feasible solutions. Typical combinatorial optimization problems to which

Ant Colony Optimization techniques have been applied are the Traveling Salesman

problem, the Graph Coloring problem, the Multiple Knapsack problem, and the

Set Covering problem. For all these problems, ant agents are used to emphasize

the good solutions by constructing pheromone trails. These pheromone trails are

then used to bias the combinatorial search (that is conducted by successive agents)

towards the good solutions. This way an expensive exhaustive search procedure is

avoided. For some of these algorithms convergence to the optimal solution has been

shown, see Dorigo and Stutzle [23]. However, a formal study of the computational

complexity of the procedures remains an open problem, as also the issue as to how

it compares with other search procedures. On the other hand, various experiments

have been conducted to study the issue as to how Ant Colony Optimization per-

forms with respect to the other procedures like Simulated Annealing, Tabu Search,

Lin Kernighan heuristic, etc., on a variety of combinatorial optimization problems,

and the results have been mixed - in some instances, ACO took lesser iterations

to converge to the optimum, and for some others, ACO needed more iterations to

converge. A survey of the results is available in Dorigo and Stutzle [23].
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4.2.2 Optimal Routing Algorithms.

Convergence Issues. In the numerical study of our optimal routing algo-

rithms we observed that the subgradient based algorithm takes many iterations to

converge (slow convergence). The convergence speed can be improved by consid-

ering decreasing step-size algorithms. This is one direction which requires a more

thorough numerical and analytical study.

An important direction in which the present work can be extended is to study

convergence of the subgradient algorithm for the general on-line, asynchronous case.

In the general on-line version, the average delays Dij(Fij) are not explicitly known,

and have to be estimated by using measurements of delays on the outgoing links

and then employing estimators to compute the average delays. Establishing the

convergence of the overall scheme is quite challenging. Results in this vein have

been obtained by Tsitsiklis and Bertsekas [47] for circuit-switched networks, and by

Elwalid, Jin, Low, and Widjaja [24] for the path-flow formulation of the optimal

routing problem. An interesting fact that is quantitatively proved in [24] is that

the speed of convergence of their routing algorithm decreases as the size of the

network (measured in terms of the number of end-to-end hops of the longest path)

increases and the asynchronism in the routing updates increases. This issue is

certainly relevant for a path-flow formulation, where end-to-end delays have to be

estimated by probe packets. It has some relevance for our formulation too, because in

general the information regarding the ‘potentials’ and the ‘potential differences’ are

exchanged asynchronously between neighboring nodes to perform the subgradient
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algorithm, and this fact needs to be taken into account in the investigation of the

convergence of the overall scheme.

Related Problems. Our Optimal Routing algorithm is just an instance of

the general Network Utility Maximization-based approach to the design of proto-

cols/algorithms for the operation of communication networks (wireline or wireless).

Most such approaches, as ours, assume that the utility (or cost) function Ui associ-

ated with an agent (which could be a source of input traffic) depends only on the

resource xi allocated to that agent. Recently, Nedic and Ozdaglar [39] have come

up with solutions for problems where the agent utilities are functions of the entire

vector of allocated resources to the agents, but the optimization problems are uncon-

strained; i.e., the problems are of the type: Minimize
∑m

i=1 Ui(x1, x2, . . . , xn) subject

to (x1, . . . , xn) ∈ Rn. A distributed version of the problem is considered where each

agent i (i = 1, . . . ,m) has information about his/her cost function Ui, and can

compute its subgradient using estimates of xj’s from the neighboring nodes. This

distributed version of the problem is solved by adapting the standard subgradient

methods. It would be interesting to extend the results to problems with constraints

and then consider applications to NUM for wireline (wireless) networks (for example,

in wireless networks this can be used to consider NUM based approaches for MAC

design, where there is an inherent coupling due to shared access to the medium -

the rate at which a user can transmit depends upon the rates at which its neighbors

are attempting transmission on the medium).

An interesting issue to consider is the design of routing and flow control

schemes taking into account the fact that a typical wireline network consists of
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a set of subnetworks, each of which is controlled by a network operator (service

provider). A typical source destination pair is connected by a set of links which

belong to the different subnetworks. Network operators interact with each other by

mechanisms whereby preferences are accorded to flows belonging to certain neigh-

boring operators. A lot of complex issues regarding routing performance accorded

to user flows, revenue as accrued by network operators, etc., arise in such situations

and is a rich source of problems of both practical and theoretical interest; exam-

ples of related works along this direction are Feamster, Johari, Balakrishnan [26],

Acemoglu, Johari, Ozdaglar [1], Griffin and Sobrinho [29], and Sobrinho [44].
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