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           The neonatal Fc receptor for IgG (FcRn), a major histocompatibility complex 

(MHC) class I-related molecule, plays an important role in IgG transport and 

protection. The transport of IgG across epithelial and endothelial barriers and the IgG 

homeostasis maintained by FcRn contributes to the effective humoral immunity. Thus, 

the level of FcRn itself will affect the IgG-associated immune responses. 

           Although FcRn is expressed in a variety of tissues and cell types, the extent to 

which FcRn expression is regulated by immunological and inflammatory events 

remains unknown.I showed here that FcRn was up-regulated by the stimulation of 

inflammatory cytokines or Toll-like receptor ligands in human peripheral blood 

mononuclear cell (PBMC) and THP-1 cell line. By chromatin immunoprecipitation, I 

identified three NF-κB binding sites within introns 2 and 4 of the human FcRn gene. These 

intronic binding sites boost FcRn transcription activities through looping with the promoter 

region. In contrast, FcRn expression was down-regulated by Th1 cytokine IFN-γ, and the 

down-regulation of FcRn was not caused by apoptosis or the instability of FcRn mRNA. It 

  



has been demonstrated that IFN-γ activated STAT1 bound with GAS sequence in human 

FcRn promoter, and which blocked the transcriptional machinery.  

           Fc gamma receptors (FcγRs) expressed in macrophages (MФ) and dendritic cells 

(DCs) can mediate antigen presentation in both MHC class II and MHC class I 

pathways. We tested here the role for FcRn in antigen presentation of IgG-restricted 

Immune complexes (ICs). It was observed that the expression of FcRn in MФ, but not 

in DC enhanced the phagosomal ICs antigen presentation to CD4 T cells. A low pH 

value in phgosome of MФ facilitated FcRn binding to ICs, stabilizing the antigens and 

promoting the efficient MHC II –peptide assembly. However, the alkalized 

phagosomes in DC failed FcRn to enhance the antigen presentation of ICs. 
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CHAPTER 1: INTRODUCTION 

   OVERVIEW 

 Immunoglobulins 
 

        Immunoglobulin is the crux of humoral immune responses. Membrane 

immunoglobulins on B cell surface serve as receptors to antigen for B cell. The secreted 

immunoglobulins are able to bind antigen, receptors, and complement to arm and recruit 

effector systems in defense of invading pathogens. Such a wide array of duties performed by 

immunoglobulin is attributed to the feature of its high binding affinity to antigen and Fc 

receptors (1, 2).There are five isotypes of immunoglobulins in mammals: IgM, IgD, IgG, IgA 

and IgE. IgM and IgD, the major component of B cell receptor (BCR), are co-expressed on 

the surface of naive B cells share a number of commonalities to mediate activation, deletion 

and anergy of B cell (3). Pentameic IgM is the first antibody to be secreted upon challenge by 

antigen. The secreted IgD is very rare in the plasma comparing with other isotypes. IgG is the 

predominant immunoglobulin in blood, lymph, peritoneal fluid and cerebrospinal fluid. It 

makes up 75% of serum immunoglobulin (over 30 mg/kg/d). IgG is the only isotype that can 

pass through the human placenta, thereby providing protection to the fetus in utero. The 

majority of synthesized IgA is in the secreted form, which coats the mucosal surface. The 

synthetic rate of IgA is the highest, roughly double that of IgG (4). IgE is the present in 

serum in the lowest concentration of all immunoglobulins. It plays a vital role in the 

clearance of parasites and the unfortunate consequence of allergy. 
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IgG and FcγRs 

         IgG is the most abundant and stable isotype of immunoglobulin in serum. The presence 

of high affinity IgG is the hallmark of the secondary humoral immune responses. There are 

four subclasses in the IgG family (human IgG1, IgG2, IgG3, and IgG4; mouse IgG1, IgG2a, 

IgG2b and IgG3). The selection of IgG subclasses does not occur randomly. In human, IgG1 

and IgG2 tend to be against polysaccharide immunogens, while IgG1, IgG3 and IgG4 are 

biased to anti-protein and anti-viral responses (5, 6). In mouse, IgG3 tends to be against 

carbohydrate, IgG1 and IgG2a is for anti-protein and anti-viral (7, 8). This skewness is 

greatly affected by cytokines. These characteristics signify the function of the IgG molecule 

in humoral and cell-mediated immune response (Table I.I) (1).  

 

 IgG communicates with the effector arms of immune system via the Fc receptors 

(FcγR), thereby bridging the cellular and humoral arms of the immune response. 

Macrophages, polymorphonuclear cells and lymphocytes are implicated as important binders 

of IgG. Interaction of IgG with FcγRs on these immunological cells triggers many functional 

effects, such as antibody-dependent cell-mediated cytotoxicity (ADCC), phagocytosis, 

antigen presentation and inflammation (9).  Signals through FcγRs cytoplasmic tail or their 

associated chains also modulate antigen presentation, cytokine secretion, and cytokine 

receptors or co-stimulatory expression in lymphocyte. The activating Fc receptors, FcγRI, 

FcγRIIa FcγRIII and FcγRIV, contain an immunoreceptor tyrosine-based activation motif 

(ITAM) in their cytoplasmic region or in their associated subunit (9, 10). The inhibitory 

receptor, FcγRIIb contains an immunoreceptor tyrosine-based inhibitory motif (ITIM) (9, 

11). FcγRI is able to bind both monomeric IgG and IgG-antigen complex  

 2 
 



 

 
Table I.I Characteristics of the IgG Isotype. Compilation of the various 
characteristics and functions of the IgG subclasses. 

 

                                    
                              CHARACTERISTICS OF IgG 
 

 
            Subclasses 

                       
                   IgG1, IgG2, IgG3, IgG4 (human) 
                  IgG1, IgG2a, IgG2b, IgG3 (mouse) 

   
  Concentration in Sera 
 

                   
                  IgG1 > IgG2 > IgG3 > IgG4 (human) 

               
 
          FcγR Binding 
 
 
 

 
  High affinity receptor -can bind monomeric IgG 
          FcγRI: IgG3, IgG1 >IgG4>>IgG2 (human) 
                       IgG2a>IgG2b, IgG3>>IgG1 (mouse) 
 
Low affinity receptors –bind IgG-immune complexes 
                      FcγRII: IgG1, IgG2, IgG3 (human) 
                      FcγRIII:IgG1, IgG3 (human) 
            FcγRIV:IgG2a, IgG2b >> IgG1, IgG3 (mouse) 
           

          

           FcRn Binding 

                  
                 IgG4>IgG1>IgG3>IgG2 (human) 
 
                 IgG2a>IgG1>IgG2c>IgG2b (rat) 
 
                 IgG2a>IgG1>IgG3>IgG2b (mouse) 
              

 

              Th Response 

                  
                            Th1: IgG1, IgG3 (human) 
                                      IgG2a (mouse) 
 
                            Th2: IgG4 (human) 
                                     IgG1 (mouse) 
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with high affinity in dendritic cells (DCs), monocytes and macrophages (MΦ). However 

FcγRs bind to different IgG subclasses with different affinity. In humans, high affinity Fc 

receptor FcγRI preferentially binds IgG1 and IgG3 (12). The high affinity of FcγRI depends 

on a third extracellular Ig-like domain. Low affinity FcγRs, FcγRII and III are only capable 

of binding immune complexes. FcγRI and FcγRIII are homodimers that associated with the 

subunit (FcRγ) chain. The formation of homodimer is required for their cell surface 

expression. FcRγ chain is essential for triggering activation signals through FcγRI and 

FcγRIII. FcγRII, in contrast, is a single-chain receptor (9, 11).  FcγRs are important immune 

regulators, FcRγ knockout (KO) mice fail to induce IgG-mediated phagocytosis by MΦ, and 

they also exhibit severe reduction in the autoantibody-dependent experimental hemolytic 

anemia and thrombocytopenia (13), anti-glomerular basement membrane IgG-induced 

glomerulonephritis (14), and immune complex-induced vasculitis syndrome (15). Therefore, 

FcγRs play important roles in shaping the immune response (16-20) and determining the 

outcome of immunopathology (21-25). 

       

The Neonatal Fc Receptor (FcRn).    

 FcRn belongs to MHC class I family 

        It has long been known that passive immunity can be transferred from mother to 

offspring. The neonatal Fc receptor (FcRn) is the first receptor identified in rodent to carry 

out the specific transport of IgG. IgG is the only immunoglobulin transferred from mother to 

the fetus. The gene encoding FcRn was first isolated from rat by Simister & Mostov in 1989. 

FcRn is a heterodimer of β2-microglobulin and a 45- to 53-kDa heavy chain, associating with 
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each other noncovalently. The sequencing analysis of the heavy-chain confirmed that all 

three extracellular and transmembrane domains of FcRn share homology with the 

corresponding regions of MHC class I molecules (26). This thereby expand the functions of 

MHC class I molecules beyond their known roles in antigen presentation. The fact that 

cytoplasmic domains of FcRn share much less homology with MHC class I molecules is 

consistent with the different functional activities of the two types of proteins (27). 

 

           The structural similarity between FcRn and MHC class I molecules was confirmed by 

the X-ray crystallographic structure (28). Notably, the antigen-binding groove where peptide 

or glycolipid ligand binds is occluded in FcRn (Fig. 1.1). This occlusion is primarily caused 

by a kink which is introduced by the presence of proline at position 165 of the α2 domain 

helix (29). However, the introduction of a proline at the corresponding position in the MHC 

class I molecule H-2d does not affect peptide MHC class I-mediated antigen presentation to  

(30), suggesting that additional structural features of FcRn cause the closed groove. It is 

interesting to explore whether groove on FcRn might be opened up in the acidic condition, 

based on the finding that groove on CD1b can opened up by low pH (31). 

 

          Both mouse and human FcRn alpha chains have been isolated later on (32, 33).  FcRn 

from mouse and rat is highly related and the human form is more divergent, although the 

rodent and human genes share homology. Human FcRn was first identified in human 

syncytiotrophoblast (33-35). This suggests that it plays a role in the transfer of IgGs from the 

maternal circulation to the fetal capillaries of the placental villi (34, 36, 37). The isolation 

and characterization of human FcRn links the studies of FcRn in rodents and humans. 
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                                    FcRn                                           MHC class I 

 

                      

 

      Figure 1.1 The structural comparison of FcRn and MHC class I 

 From Zeng et al., 1997, Science: 277:339-345. and Bennett et al., 2000, Nature 403:46. 
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The interaction of IgG with FcRn 

           Characterization of FcRn-IgG interaction sheds light on the mechanism of IgG 

transport. A combination of approaches has been used to identify the IgG interaction site for 

FcRn. Several conserved amino acids located at the CH2-CH3 domain interface of IgG has 

been identified playing a central role in the interaction with rat or mouse FcRn. Ile253, 

His310 in CH2 domain of IgG are key players in the interaction of IgG with FcRn (38-40), 

although the His435 in CH3 plays a minor but significant role in the mouse FcRn-IgG 

interaction (40). Also, the sequence -H-N-H-Y (AA 433-436) of the CH3 domain is 

important for pH-dependent binding. These residues are highly conserved across species, and 

the lack of conservation of this amino acid across species is consistent with more limited 

involvement (40).  Further analyses of resulting recombinant Fc fragments demonstrated that 

amino acids at position 257 and, to a lesser extent, positions 307 and 309 in proximity to the 

CH2-CH3 domain interface play a role in the FcRn-Fc interaction. The role of residues 257, 

307, and 309 is less marked than that of Ile253, His310, and His435 (40, 41). However, 

sequence variations at 257, 307, and 309 can be used to explain the different affinities of rat 

IgGs for FcRn. Furthermore, fragment B of staphylococcal protein A is known to bind to 

amino acids at this interdomain interface; it competes with IgG for binding to FcRn (42) 

(Table I.II).  

 

         The IgG binding site on rat FcRn was mapped using site-directed mutagenesis, the 

mutants were then analyzed by in vitro binding assays (42, 43). These studies identify α2 

domain and  β2m for interacting with IgG. The α2 domain residues (Glu117, Glu132,  
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Table I.II  Variations of IgG sequences in the region involved in the binding of FcRn (27) 
  

Position  
  
252 253 254 255 256 257

 
307 308 309 310 311 

 
 433 434 435 436 

 
 
Human 
 

IgG1 

IgG2 

IgG3 

IgG4 

Met  Ile  Ser Arg Thr Pro

Met  Ile  Ser Arg Thr Pro

Met  Ile  Ser Arg Thr Pro

Met  Ile  Ser Arg Thr Pro

Thr Val  Leu His Gln 

Thr Val  Val  His Gln 

Thr Val  Leu  His Gln 

Thr Val  Leu  His Gln 

His  Asn  His  Tyr 

His  Asn  His  Tyr 

His  Asn  Arg Phe

His  Asn  His Tyr

 

 

Mouse 

IgG1 

IgG2a 

IgG2b 

IgG3 

Thr   Ile Thr Leu Thr Pro

Met  Ile  Ser Leu Thr Pro

Met  Ile  Ser Leu Thr Pro

Met  Ile  Ser Leu Thr Pro

Pro  Ile   Met  His Gln  

Pro  Ile   Gln  His Gln 

Pro  Ile   Gln  His Gln 

Pro  Ile   Gln  His Gln 

His  Asn  His His

His  Asn  His His

Lys  Asn  Tyr Tyr

His  Asn  His His

 

 

 Rat 

IgG1 

IgG2a 

IgG2b 

IgG2c 

Thr  Ile Thr  Leu  Thr Pro

Thr  Ile Thr  Leu  Thr Pro

Leu  Ile Ser  Gln  Asn Ala

Met  Ile Thr Leu  Thr Pro

Pro  Ile   Leu His Gln 

Pro  Ile   Val  His Arg 

Pro  Ile   Gln  His Gln 

His  Ile   Gln  His Gln 

His  Asn  His His

His  Asn  His His

His  Asn  His His

His  Asn  His His
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Trp133, Glu135, and Asp137) and one β2m residue (Ile1) are shown playing a direct role in  

the interaction, and these residues are reasonably well conserved across species (26, 33, 44). 

 FcRn binds to IgG is a pH dependent manner. The IgG binding occurs at pH<6.5, and the 

dissociation happens at pH>7.5. The highly conserved histidines (His 310 and His 435) in 

IgG, together with acidic residues in FcRn (Glu117, Glu132, Trp133, Glu135, and Asp137) 

provide an explanation for the strict pH dependence of the FcRn-IgG (or Fc) interaction (26). 

 

           The interaction of IgG with FcRn occurs in a mode distinct from that reported for T-

cell receptor-peptide-MHC class I interactions (45, 46), in which the T-cell receptor footprint 

covers the surface of the two MHC helices and binds antigenic peptide in a diagonal 

orientation. A ‘‘lying-down’’ model has been proposed for FcRn-IgG binding where an FcRn 

dimer binds to one IgG molecule. This is supported by in vitro studies showing that FcRn 

dimerizes upon binding to IgG in a higher afffinity (47). 

 

The interaction of FcγRs with IgG is different from FcRn 

         Mutagenesis studies indicate that the FcγR interaction sites of IgG are different from 

the region of IgG binding with FcRn. The residues in the lower hinge region of IgG are 

important for binding to FcγRI, FcγRIIa and FcγRIII (48-52). Other residues close to lower 

hinge spatially, such as FcγRI (Pro331) and FcγRII (Glu318), glycocylation of IgG are also 

important for FcγR binding(49, 53-55). The binding of both FcγRI and FcγRII to IgG was not 

inhibited by recombinant soluble FcRn, indicating that FcγR interaction site does not 

encompass the CH2-CH3 domain surface covering FcRn binding sites (27). 
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The FcRn-mediated transportation of IgG 

          FcRn, was initially identified as a receptor transporting maternal IgGs across placenta 

to the fetus and from the proximal small intestine to the newborn animals (36, 56). In other 

words, FcRn transcytoses IgG across a polarized cell layer from the mother to the offspring. 

In the gut of neonatal rodents, FcRn functions most efficiently in the neonatal period. 

Maternal IgG from ingested milk passes through the stomach, goes into the duodenum, 

where IgG binds to FcRn on the apical surface of an epithelial cell with the slightly acidic 

environment (57). The FcRn-IgG complexes are taken up by receptor-mediated endocytosis. 

The complexes are then transcytosed across the cells and delivered via exocytosis at the 

basolateral surface of the cells. FcRn then releases IgG into the underlying extracellular 

space, due to an increase in pH. In β2-microglobulin-/- or FcRn -/- mice, no maternal IgG 

was transported (58). These studies confirm that FcRn is the receptor involved in the 

transport of IgG from mother’s milk to newborns.  

        

          There is also a minor route for IgG transport in rodent. The successful cloning FcRn 

from rat yolk sac endoderm indicates that this Fc receptor is also involved in the maternal 

IgG transfer (59). However, the barely detectable FcRn on the cell surface led to the 

suggestion that FcRn binding to IgG occurs only after nonspecific uptake via fluid-phase 

pinocytosis by yolk sac.  

 

        In human, transporting maternal antibodies across placenta antenatally is the major route 

of IgG delivery to the fetus. Although the relative transfer efficiency of maternal IgG still 

remains controversial, the proposed model of FcRn-mediated IgG transfer is that the 
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syncytiotrophoblast internalizes fluid containing maternal IgG into endosomes; the IgG-

containing endosome is then gradually acidified thereby allowing IgG to bind tightly to FcRn 

present in this compartment. The vesicle then fuses with the membrane on the fetal side of 

the syncytiotrophoblast, where the physiological pH promotes the dissociation of IgG from 

FcRn. The FcRn molecule may then be recycled to the maternal membrane to perform 

additional rounds of transcytosis (57).  

 

          FcRn in human is different from that in rodents. In humans, FcRn is expressed by 

intestinal epithelial cells in both the fetus and adult (60, 61). However, intestinal expression 

of FcRn in rodent is highest on the epithelial cells of the proximal small intestine during the 

neonatal period and then decline rapidly after weaning. The level of FcRn in the intestine of 

adult rodent is very low (62, 63). The intestinal expression of FcRn in adult human suggests 

the additional role of FcRn besides the maternal IgG transfer. This hypothesis was proven by 

the study from Blumberg’s group. They showed that IgG–bacteria complexes were 

transcytosed across the epithelium by using a transgenic mice carrying human FcRn. FcRn in 

the mouse intestine delivered the immune complexes back to lamina-propria DCs, which 

then efficiently process and present antigen to the antigen-specific T‑cell in the draining 

lymph node (57). 

 

             Consistent with the observation that significant amount of IgG exist on the mucosal 

surface of lung, FcRn is highly expressed in the bronchiolar and alveolar epithelium in rats. 

Different from rat, FcRn is expressed predominantly in the upper airway epitheliumof 

primate (64). Given the large surface area of the lung epithelium, a role for FcRn is being 
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taken for consideration seriously. FcRn is proposed to transport IgGs from the circulation to 

the lumen of lung airway, where IgGs provide protection against the pathogens from the air 

(64). Similarly, IgG absorption by the epithelium should not be ignored in these systems.  

   

FcRn-mediated IgG/albumin protection from catablism.          

         FcRn also acts as salvage receptors binding and protecting IgGs from lysosomal 

degradation. It has been demonstrated that the IgGs in both β2m and FcRn knockout (KO) 

mice have short serum half-lives (27, 58, 65-68). In FcRn-deficient mice, the serum IgG level 

is ~20–30% of wild-type animals, the half-lives of IgG and albumin are reduced from ~6–8 

days to ~1 day, similar to the typical half-life of other serum proteins that are not freely 

filtered by the kidneys (57). Consistent with these, other studies showed that a good 

correlation between affinity for binding IgG and serum half-life for IgG. The mechanism for 

FcRn-mediated IgG protection is likely through uptaken of IgG by cells expressing FcRn. 

Following entry into an acidic compartment such as endosome, IgG molecules bind to FcRn. 

Enzymes present in the vesicles downstream of endosomes, such as in lysosomes, digest 

unbound IgG; whereas, the IgG bound to FcRn is protected and recycled back out of the cells 

(69)(Fig. 1.2).  

           

           Recently, FcRn has also been shown to bind albumin and extend its half-life. In FcRn-

deficient mice, the serum albumin concentration is about 40% of the normal level. It is 

important to note that IgG and albumin make up ~90% of the protein content of serum. 

Therefore, through a pH-dependent binding, FcRn rescues IgG and albumin from 

degradation, and thereby selectively extends their half-lives in the circulation.        
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            The exact tissure location of FcRn to protect serum IgG remains an open question, 

and the dual functions of FcRn also complicated this issue. At present, FcRn expressed on 

vascular endothelium is considered as the main player for IgG protection (70, 71). 

Expression of FcRn in the vascular endothelium of skeletal muscle and the skin in mice 

provides a large contact area for FcRn to contactwith blood (46, 71, 72). As these endothelial 

cells efficiently internalize serum proteins, FcRn is proposed to capture IgG and return it to 

the circulation, thereby prolonging the persistence of IgG in the serum. Alternatively, IgG 

may be saved from lysosomal catabolism when IgG is transcytosed into tissues through the 

polarized cells (57). 

 

          The expression of FcRn on monocytes, including MФs and DCs provides additional 

candidates for the IgG protection (73, 74).When WT bone marrow cells are adoptively 

transferred to FcRn deficient mouse, it  partially rescued the serum half-life of IgG (72). 

Most likely, myeloid-derived monocytes contribute to this protection by recycling the 

internalized IgG, as phagocytes and monocytes can ingest significant quantities of fluid.  

Additional functions for FcRn were found in professional antigen-presenting cells (APCs). 

The recent two reports describing the recycle of intact IgG immune complexes (ICs) in DCs 

and the impaired function of antigen presentation for ICs in FcRn -/- DC provide evidence 

for the divergent faces of FcRn (75, 76). 

 

FcRn, as therapeutic target for autoimmune diseases 

         As FcRn functions as salvager to maintain IgG homeostasis in the serum, and as 

transporter to deliver IgG to different tissue and organs (Fig. 1.2), many studies have been  
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done in the IgG-mediated diseases by taking advantage of these characteristics of FcRn (57). 

In autoimmune diseases model (Table I.III), such as myasthenia gravis, bullous pemphigoid, 

idiopathic thrombocytopenic purpura (ITP) and systemic lupus erythematosus (SLE), the 

endogenously pathogenic IgG level was reduced by administration of high-dosage of 

intravenous immunoglobulins (IVIG) as a consequence of FcRn saturation (77, 78). Blocking 

FcRn-IgG interaction by using FcRn specific antibody is a more direct approach to reduce 

the titer of pathogenic IgG (78, 79). Alternatively, administration of humanized IgG 

monoclonal antibodies with Fc regions that bind to FcRn with an unusually high affinity 

results in the rapid degradation of non-bound endogenous antibodies (80). 

 

Transcriptional regualtion 

The nuclear factor-κB (NF-kB) and inhibitors of NF-kB (IkBs) 

          The mamalian NF-kB family has many members including RELA (p65), NF-kB1 

(p50; p105), NF-kB2 (p52; p100), c-REL and RELB (81, 82). These proteins have a 

structural conserved amino terminal region, which contains the dimerization, nuclear 

localization and DNA-binding domains. The RELA, RELB and c-REL also have a carboxy-

terminal domain which can activate transcription. The p50 and p52 is generated respectively 

from precursor p105 and p100 by proteolytic digestion, they lack transcription activation 

domain, but they still are able to bind to NF-kB consensus sites in DNA. Each member of 

NF-kB family can form homodimers as well as heterodimers with one another, except for 

RELB. The main activated form of NF-kB is the heterodimer of p65/p50 or p65/p52. p50 and 

p65 are expressed in a wide varities of cell types, whereas the expression of RELB is  
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         Table I.III   IgG-mediated autoimmune diseases 

 
IgG-mediated Autoimmune Diseases 

 
 

Organ-specific 

 

 

 

           Systemic 

 
 
Addison’s disease 
Insulin dependent diabetes mellitus 
myasthenia gravis 
bullous pemphigoid 
Multiple sclerosis 
Autoimmune haemolytic anaemia 
Idiopathic thrombocytopenic purpura 
Rheumatoid arthritis 
Scleroderma 
Systemic lupus erythematosis (SLE) 
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restricted to thymus, lymph nodes and Peyer’s patches. The c-REL is confined to 

haematopoietic cells and lymphocytes (81, 83). 

 

             It has been well documented that the association of IkBs with NF-kB proteins in the 

cytoplasm results in the inactivation of NF-kB. Most commonly, IkBs are composed of 

IkBα, IkBβ and IkBε, which are defined by the presence of ankyrin repeats, a 33-amino-acid 

motif that mediates protein-protein interactions. Another unusual member of IkBs is BCL-3, 

which specifically interacts with p50 or p52 homodimers and can enhance the NF-kB-

regulated genes. This is in contrast to the inhibitory function of IkBs (83). The subsequent 

phosphorylation, ubiquitination and proteasome-mediated degradation of IkBs result in the 

liberation of NF-kB heterodimers follwed by rapid translocation to the nucleus. IkBs are 

phosphorylated by IkB kinases (IKKs) including IKKα, IKKβ and IKKγ. IKKs mediate site-

specific phosphorylation of the IkBs, which triggers the degradation of NF-kB inhibitors. 

Once in the nucleus, NF-kB bind to the consensus sequence (5’-GGGRNYYYCC-3’, R: 

purine, Y: pyrimidine, N: any nucleic acid) and activate gene transcription (84).  

 

NF-κB signalling pathways through TLR ligands and cytokines 

          The NF-kB/REL family of transcriptional factors has an essential role in regulating the 

expression of a wide variety of genes that control both innate and adaptive immune response. 

NF-kB is activated rapidly in response to a wide range of stimuli, including pathogens, stress, 

and inflammatory cytokines. Many pathogens are recognized by specific pathogen-

recognition receptors (PRR). These pathogens are consistently found bearing small molecular 

motifs named as pathogen-associated molecular patterns (PAMPs). Bacterial 
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lipopolysaccharide (LPS), peptidylglycans, lipoproteins, unmethylated bacterial DNA and 

double strand RNA are considered as PAMPs. The best known PRRs are Toll-like receptors 

(TLRs), a group of transmembrane proteins that mediates the intracellular signalling after 

recognizing the extracellular pathogens. The binding of PAMPs with TLRs will activate an 

intracellular signaling cascade through TLR cytoplamsic Toll/IL-1 receptor (TIR)-homology 

domain. The TLR family signaling pathway is highly homologous to that of IL-1 receptor 

(IL-1R) family in mammals. Both TLR and IL-1R interact with an adaptor protein MyD88 

(myeloid differentiation primary response gene 88). Upon stimulation, MyD88 recruits IL-1R 

associated Kinase (IRAK), IRAK is activated by phosphorylation and then associates with 

TRAF6 (TNF receptor associated factor 6), leading to activation of NF-kB (85). The 

complex of transforming-growth-factor-β-activated kinase 1 (TAK1), TAK-binding protein 

(TAB1) and TAB2 was considered as an integral component that linked TRAF6 and 

downstream IKK complexes, but recent observation from TAB1-andTAB2-knockout mice 

did not support the roles for these proteins in NF-kB signalling (83). Another candidate 

molecule that links TRAF6 and NF-kB was identified in a screen of TRAF6-interacting 

molecules, designated ECSIT (evolutionarily conserved signaling intermediate in Toll 

pathways), and the roles for ECSIT need more studies (86, 87). 

 

           Cytokines, such as TNF and IL-1, are another important class of NF-kB inducers. 

TNF and IL-1 activate signaling cascade that lead to the activation of activitor protein1 

(AP1) and NF-kB, which regulates the expression of inflammatory cytokine genes. IL-1 

activates NF-kB in a similar manner to LPS, because both IL-1R and TLR 4 contain 

homology domain (TIR) in the cytoplasmic tail. The engagement of TNF and TNF receptor 
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results in the receptor trimerization and recruitment of adaptor protein TRADD (TNF 

receptor-associated via death domain) to the cytoplamic tail. TRADD interacts with carboxyl 

terminus of TRAF2. Mitogen-activated protein (MAP)/extracellular signal-regulated kinase 

ERK) kinase kinase 3 (MEKK3) and receptor interacting serine/throenine kinase (RIP) are 

likely to relay the signal from TNF to IKKs (88, 89). 

 

JAKs ( Janus family tyrosine kinases)-STATs (Signal transducer and activitor of 

transcription) 

        JAKs and STATs pathway is integral to both type I (IFN-α/β) and type II (IFN-γ) 

interferons and to all type I cytokines which share a similar four-α-helix bundle strutures. 

This pathway represents a rapid membrane-to-nucleus signaling system to induce many 

important biological responses in the target cell (90). 

         

            Jaks are relatively large kinases of approximately 1150 amino acids with molecular 

weight 120-130 kDa. Jak family is recognized by the existance of tandem kinases domain 

(JH1) and pseudokinase domains (JH2) in the C-terminal. In addition, five other Jak 

homology (JH3-JH7) domains were defined in Jaks. The N-terminal of Jaks seems to 

associate with receptor subunits.  Four Jaks have been identified in mamalian: Jak1, Jak2, 

Jak3 and Tyk2 (Tyrosine kinase 2). The essential functions of Jaks are established in many 

cytokine signaling pathways. Specially, IFN-α/β requires Jak1 and Tyk2, whereas IFN-γ 

requires Jak1 and Jak2 (91).  

            

            Mamalian STATS comprises seven member proteins: Stat1, Stat2, Stat3, Stat4, Stat5, 

 19 
 



 

Stat6 and Stat7. STATs are approximately 750-850 amino acids in length. They have a 

conserved tyrosine (~700 residues), whose phosphorylation allows STATs dimerization, a 

Src homology (SH2) domain and an N-terminal domain known to play a role in the 

dimerization of STATs, and the DNA binding domain located in the middle region (91). 

Following the interferons binding to their receptors, Jak kinase is rapidly induced and 

phosphorylates the interferon receptors. Such phosphorylation provides docking sites for 

STATs. The recruited STATs are phosphorylated, dimerized and released from the receptors. 

The dimric form then translocates into the nucleus and binds with STATs binding sites to 

mediate gene expression. 

           

           Interferons have potent antiviral and growth inhibitory effects, which provide the first 

line in defence against viral invasion and have important roles in immunosurveilance for 

malignant cells. The binding of type I interferons (mainly IFN-α/β) with their receptors 

(IFNAR1 and IFNAR2) results in the phosphorylation and activation of Jak1 and Tyk2. 

Activated Jak1 and Tyk2 in turn regulate the phosphorylation and activation of Stat1 and 

Stat2. Together with IRF-9 (Interferon-regulatory factor 9), the dimerized Stat1 and Stat2 is 

delivered to the nuclues and binds to specific elements known as interferon-stimulated 

response element (IRES), thereby initate the gene expression (90, 92). Other Stats, such as 

Stat3, Stat5, Stat4 and Stat5 can also be activated by type I interferon. In contrast, the 

association of type II interferon (IFN-γ) with its receptor (IFNGR1 and IFNGRII) triggers 

activation of Jak1 and Jak2, which induce the phosphorylation of Stat1. Phosphorylated Stat1 

forms homodimer, translocates into the nucleus and binds to GAS sites (Interferon-γ-

activated sites) (90).  
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            The phosphorylation of tyrosine residues (Tyr 701) in STATs by JAKs is a crucial 

step in IFN-mediating sigaling, as it is required for the dimerization and translocation of 

STATs (93). However, in Stat1 and Stat3, serine residue at position 727 (Ser 727) is also 

found phosphorylated by the induction of type I and type II interferons. The Ser727 is located 

in the C-terminal domain. Such phosphorylation is not required for their translocation, but it 

is essential for full transcriptional activaties (94, 95).  

            

             IFN-activated STATs can interact with other proteins to enhance the transcriptional 

precisement. For examples, the protein inhibitor of activated STAT-1 (PIAS1) and 

suppressor of cytokine signaling (SOCS) have been shown to negatively regulate STAT-1 

signaling in cytosol (96). The association of STATs with p300 and CBP (cAMP-responsive 

elements-binding protein (CREB) binding protein) in nucleus increase IFN-α- or IFN-γ- 

inducible transcription. P300 and CBP are acetyltransferases which remodel the chromatin 

and regulate the gene expression on epigenic level (97). 

 

Antigen presentation 

MHC class I-restricted antigen presentation.  

       Endogenous proteins destined to presentation on MHC-I molecules are ubiquitinated in 

cytosol and degradated by proteasome. The resulting peptides are transferred to the ER by 

TAP (Transporter associated protein) and loaded on the newly synthesized MHC-I molecules 

under the help of loading complex comprised of several chaperones (tapasin, calnexin, and 

calreticulin) (98). After the MHC-I-peptide loaded, MHC-I is rapidly transferred through 
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Golgi apparatus to the plasma membrane, where MHC-I molecules interact with TCR of 

CD8+ T cells and activate CD8+ T cells. The sources for endogenous proteins vary, incuding 

cytosolic proteins, alternative translation products and defective ribosomal translation, 

proteins retranslocated to the cytosol from ER, and internalized proteins transferred to the 

cytosol (99). 

 

            Exogenous proteins can also be presented on MHC-I molecules, a recently discribed 

antigen presentation route denoted as “Cross-presentation”. Exogenous proteins are 

internalized by various ways. Macropinocytosis allows the soluble antigen cross-presented in 

DCs. Phagocytosis has been shown a major route for antigen uptake and cross-presentation in 

both MΦ and DC. Interestingly, phagocytosis of apoptosic cells also results in efficient cross-

presentation of viral and tumor antigens. In addition, FcR-mediated uptake of immune 

complexes enhances the cross presentation efficiently. The MHC class I peptide loading for 

cross presentation occurs at two main sites, either endocytic compartment or ER lumen. 

Endocytic compartments pathway is sensitive to proteases inhibitors and TAP-independent, 

this requires the presence of MHC-I molecules in the endocytic compartments. By contrast, 

ER lumen pathway is sensitive to proteasome inhibitor and requires TAP, and the antigen 

transport pathway from endocytic lumen to cytosol is essentially required for TAP-dependent 

cross presentation.  

 

MHC class II-restricted antigen presentation 

             Antigens loading on MHC class II molecules occur through a different pathway 

(APC). Soon after synthesis in ER, three a/b MHC-II dimers bind to one trimers of invariant 
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chains (Ii). Ii chain will escort MHC-II from ER to the endocytic pathways under the tranport 

signal present in the cytoplasmic tail of Ii chain. Once in the endosomes and lysosomes, the 

acidic environment facilitates proteolytic enzyme to digest Ii chain. MHC-II dimers become 

competent to bind antigenic peptide under the control of two nonpolymorphic MHC-II 

molecules HLA-DM/HLA-DO (human). MHC-II peptide complexes reach to the plasma 

surface after peptide loading onto the MHC-II molecules. Antigen loaded onto MHC-II 

molecules are typically generated from exogenous proteins internalized by antigen presenting 

cells (APC). The internalization of exogenous proteins is mainly through four pathways, 

including phagocytosis, micropinocytosis, clathrin-meditaed endocytosis and non clathrin 

endocytosis. 

 

Macrophage and DC 

         MΦ has long been considered the prototypical APC, simply due to the fact that they are 

associated with microoganisms endocytosis in innate immune response. MΦ owns 

extraordinary capacity for endocytosis. It can internalize cell-associated or soluble antigens, 

either nonspecifically or via specific receptors (FcR, lectins, etc.), allowing them to stimulate 

T cells. MΦ express MHC-I, MHC-II, and costimulatory molecules, and their expression 

level can be upregulated by the stimulation of inflammatory cytokines or bacterial products. 

Although the level of MHC II and costimulators expressed on MΦ are lower than that of DCs 

and B cells. the large number of MΦ at the sites of infection and chronic inflammation  

contribute to the T cell stimulation (22, 99). 
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            DCs are the most efficient antigen-presenting cells to the T cell stimulation. Both MΦ 

and DCs are originated from bone marrow-derived precursor and take residence in peripheral 

tissue. Nearly all the tissues contain MΦ and DCs, but the primary function for DCs is 

antigen presentation. DCs exhibit a variety of features that greatly enhance the capacity as 

APCs. First, DCs have unique surveillance and migratory properties to carry antigen acquired 

in the periphery to lymph node and then activate the naïve T cells . Second, DCs can 

endocytose and present virtually any form of protein antigen on MHC I and II molecules. 

Third, exceptionally high level of MHC-II and co-stimulatory molecule is expressed on DCs.  

Fourth, DCs own the capacity to tightly control the antigen degradation (99).  

 

          The function of DCs can be regulated by maturation, and the maturation induces a 

dramatic structural reorganization. Immature DCs express low levels of surface MHC II and 

co-stimulatory molecules, together with high capacity of endocytosis. Upon stimulation by 

TLR ligand, inflammatory cytokines, DCs begin to mature with several changing features. 

First, MHC II is transported to the plasma membrane associated with high levels of 

costimulatory molecules (100, 101). Second, endocytosis rates decrease dramatically 

following a transient increase (102). Finally, DCs change the morphology with extended 

dendrites and more folded membrane. Concomitant with these features, DCs switch the 

function from antigen handling to T cell activation (100). 

 

           QUESTIONS TO BE ADDRESSED IN MY PROJECT 

          In our study, we want to know whether FcRn can be regulated in the context of 

inflammation. In other words, how is the IgG controller controlled? We found that human 
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FcRn can be regulated by inflammatory cytokines, toll-like receptor ligands, and interferons. 

This will be described in detail in Chapter 2 and Chaper 3. Furthermore, the phagosomal 

pH difference in DC and MФ leads to a new discovery of FcRn-mediated antigen 

presentation of immune complexes (Chapter 4). 
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CHAPTER 2: NF-κB SIGNALING REGULATES FUNCTIONAL 

EXPRESSION OF FcRn VIA INTRONIC BINDING SEQUENCES 

  
 ABSTRCT  

            The neonatal Fc Receptor for IgG (FcRn) functions to transport maternal IgG to 

a fetus or newborn and to protect IgG from degradation. Although FcRn is expressed 

in a variety of tissues and cell types, the extent to which FcRn expression is regulated 

by immunological and inflammatory events remains unknown. Stimulation of 

intestinal epithelial cell lines, macrophage-like THP-1, and freshly-isolated human 

monocytes with cytokine tumor necrosis factor-α (TNF-α) rapidly up-regulated FcRn 

gene expression. In addition, Toll-like receptor ligands lipopolysaccharides and CpG-

oligodeoxynucleotide enhanced the level of FcRn expression in macrophage-like 

THP-1 and freshly-isolated human monocytes. Treatment of TNF-stimulated THP-1 

cells with nuclear factor-kappa B (NF-κB) specific inhibitor, or over-expression of a 

dominant negative mutant inhibitory nuclear factor-kappa B (IκBα, S32A/S36A) 

resulted in down-regulation of FcRn expression. By chromatin immunoprecipitation, 

we identified three NF-κB binding sites within introns 2 and 4 of the human FcRn 

gene. The intronic NF-κB sequences in combination with the promoter or alone 

regulated the expression of a luciferase reporter gene in response to TNF-α 

stimulation or over-expression of NF-κB p65 and p50. DNA looping interactions 

potentially occurred after the stimulation between intronic NF-κB sequences and 

FcRn promoter, as shown by chromosome conformation capture assay. Together, 
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these data provide the first evidence that NF-κB signaling via intronic sequences 

regulates FcRn expression and function. 

 
 

INTRODUCTION 

           The neonatal Fc receptor for IgG (FcRn) differs from FcγRs because it is 

structurally related to the MHC class I family, with a membrane-bound heavy chain 

(HC) in nonconvalent association with β2-microglobulin (β2m) (26, 47). The overall 

exon-intron organization of the FcRn gene is similar to that of MHC class I 

molecules, with the exception of a very large 10-kb intron between exons 4 and 5. In 

addition, FcRn displays pH-dependent binding of IgG; specifically, FcRn 

preferentially binds IgG at acidic pH (6-6.5) and releases it at neutral pH (7-7.4).  

FcRn is a transport receptor involved in controlling the movement of IgG from the 

maternal to the fetal blood of rodents and humans in placental and/or intestinal 

tissues. FcRn, therefore, plays a major role in the passive acquisition of neonatal 

immunity to newborn mammals. FcRn also functions in the maintenance of IgG 

homeostasis in mammals of all ages by salvaging IgG from degradation. In the 

proposed model, IgG is taken up into cells by pinocytosis or endocytosis from the 

surrounding tissue fluid or blood. FcRn in acidic compartments, such as the 

endosome, binds and recycles IgG out of the cell to avoid IgG degradation in the 

lysosome. The IgG transport and protective functions of FcRn are evidenced by 

several studies in which mice deficient in either β2m or the FcRn HC fail to transport 

maternal IgG and show a significant reduction in the serum half-life of IgG (27, 103-

105).  
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            Although first observed in the intestinal epithelial cells of the neonatal rodent, 

FcRn has more recently been shown to express in a variety of cell types and tissues, 

including epithelial cells, endothelial cells, macrophages and dendritic cells in adult 

life (73). The level of FcRn expression appears to be critical for controlling IgG 

levels in tissues and blood (106). In autoimmune situations, FcRn expression may act 

as a rheostat that enables sufficient levels of pathogenic IgG to permit downstream 

conventional FcγR-mediated immune responses, immune complexes and 

inflammatory cascades. Indeed, FcRn has been shown to be associated with the 

development of pathogenic IgG-mediated autoimmune diseases (107, 108)). Although 

an understanding of the operative mechanism of FcRn function is emerging, evidence 

of how FcRn is regulated, especially under immune responses or inflammatory 

reactions, is not understood. The central roles that FcRn plays in the protection and 

transportation of IgG under normal or inflammatory situations have led to an 

increased interest in the mechanism that controls FcRn expression with regard to both 

the constitutive and stimuli-mediated receptor expression. 

 

           Nuclear factor kappa B (NF-κB) is a family of transcription factors that 

coordinate the expression of numerous genes in the innate and adaptive immune 

responses and development of inflammatory and autoimmune diseases. NF-κB is 

composed of five members of the Rel family, including NF-κB1 (p50), NF-κB2 (p52), 

RelA (p65), RelB, and c-Rel (Rel) (83). These proteins form homo- and heterodimers, 

which are usually sequestered in the cytosol of unstimulated cells via non-covalent 
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interactions with specific inhibition proteins known as IκBs. Upon stimulation, 

signals that induce NF-κB activity subsequently cause the phosphorylation of IκBs by 

IκB kinase complex. As a result, ubiquitin ligase complex interacts with the 

phosphorylated IκB, mediates poly-ubiquitination of IκB, and leads to its subsequent 

proteasomal degradation (109, 110) . The degradation of IκB proteins, thereby, 

allows NF-κB dimers to translocate to the nucleus and bind cognate NF-κB 

sequences of target genes.  

 

          In the present study, we investigate the involvement of NF-κB activation in the 

regulation of human FcRn expression and function. Our study showed that NF-κB 

specific inhibitor significantly down-regulated expression of human FcRn gene. 

Using several complementary strategies, we have further identified direct 

involvement of NF-κB specific binding sites located in human FcRn introns 2 and 4  

that may function as modulators that are responsive to immunologic and 

inflammatory stimuli, such as agonists of toll like receptor and proinflammatory 

cytokines TNF-α. 

 
 

MATERIALS AND METHODS 

Cell lines, antibodies, reagents 

           Human intestinal epithelial cell lines HT-29 and Caco-2, and THP-1 cells 

(kind gifts from Dr. Richard S. Blumberg, Harvard Medical School, Boston, MA) 

were maintained in DMEM or RPMI 1640 medium (Invitrogen, CA) supplemented 
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with 10 mM HEPES, 10% fetal calf serum, L-glutamine (1:100 dilution), nonessential 

amino acids, and penicillin/streptomycin (1:100 dilution) in a humidified atmosphere 

of 5% CO2 incubator at 37°C.  

 

           The anti-human FcRn monoclonal antibodies DVN24 and ADM31 were made 

by immunizing C57BL/6 mFcRn -/- mice first with 2x107 spleen cells from C57BL/6 

human FcRn transgenic mice in complete Freund’s adjuvant (Sigma, St Louis, Mo), 

followed 2 weeks later with the same cells in incomplete Freund’s adjuvant (Sigma). 

Spleen cells from seropositive responder mice were fused with SP2-0 cells using 

established procedures to make hybridomas.  HRP-conjugated donkey anti-rabbit 

antibody was purchased from Pierce (Rockford, IL), and purified human IgG from 

Jackson ImmunoResearch Laboratories (West Grove, PA). Antibodies against NF-κB 

p65, p50, Rel B, p52 were obtained from Santa Cruz Biotechnology (Santa Cruz, 

CA), and IL-1β and TNF-α from R&D Systems (Minneapolis, MN). Affinity-purified 

rabbit anti-FcRn antibody has been described (9). Phosphorothionate CpG ODN (5′-

TCGTCGTTTTGTCGTTTTGTCGTT-3′) and mutant GpC ODN (5′-

TCTGGCTTTTCTCATTTTCTGGTT-3′) were from Operon (San Francisco, CA).  

Semi-quantitative RT-PCR and quantitative real-time RT-PCR 

Total RNA was isolated from cells (2 x 106/ml) in TRIzol (Invitrogen). cDNA was 

generated by amplification of total RNA using the FcRn-specific primers 

(5’CCGGAATTGGAGCCCCCCTCCAT-3’, 5’-

TGCTCTAGAGGAGGACTTGGCTGGAGATT-3’) with a one-step RT-PCR kit 

(Qiagen). GAPDH was amplified by primers (5’-GAGAAGGCTGGGGCTCAT-3’, 
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5’-TGCTGATGATCTTGAGGCTG-3’). Thirty cycles of PCR amplification were 

performed under optimized conditions. The total RNA samples were extracted from 

freshly-isolated human CD14+ CD11+ monocytes (Cambrex, Baltimore, MD). The 

106 cells/ml monocytes were stimulated with TNF-α (50 ng/ml) or LPS (1μg/ml). 

Total RNA (150 ng/reaction) was reversely transcribed to yield first-strand cDNA 

using Superscript III (Invitrogen). Real-time RT-PCR was performed using FcRn and 

GAPDH primers and the SYBR Green Supermix Kit (Bio-Rad) in Chromo 4 (MJ 

Research, MA). FcRn expression was calculated following normalization to GAPDH 

levels by the comparative delta delta CT method. All reactions were performed for 40 

cycles: 15 s at 94°C, 15 s at 58°C, and 20 s at 72°C. The specificity of the 

amplification reactions was confirmed by melt curve analysis. Software Opticon 

Moniter 3.1 was used for real time RT-PCR.   

 

Gel electrophoresis, Western blot, and IgG binding assay  

          Gel electrophoresis and Western blots were performed as previously described 

(108, 111). In brief, cell lysates were prepared in PBS with 0.5% CHAPS by adding a 

protease inhibitor cocktail (Sigma, St. Louis). A post-nuclear supernatant was 

analyzed for total protein concentrations by the Bradford method with BSA as a 

standard (BioRad, Hercules, CA). The proteins were separated on 12% SDS-PAGE 

gels under reducing conditions and transferred onto nitrocellulose (Schleicher & 

Schuell, Keene, NH). The membranes were blocked with 5% non-fat milk and probed 

with affinity-purified anti-human FcRn antibody, then with HRP-conjugated Goat 

anti-rabbit or -mouse antibody. All washing steps were performed in 5% milk 

 31 
 



 

containing 0.05% Tween-20. The final product was visualized by ECL (Pierce, 

Rockford, IL). 

  

             IgG binding assay was performed as previously described (20). Cells were 

lysed in PBS (pH 6.0 or 7.5) with 0.5% CHAPS (Sigma) and protease inhibitor 

cocktail. Post-nuclear supernatants containing 0.5–1 mg of soluble proteins were 

incubated with human IgG-Sepharose (Amersham Pharmacia Biotech). The unbound 

proteins were washed away with PBS (pH 6.0 or 7.5) containing 0.1% CHAPS. The 

adsorbed proteins were boiled with reducing electrophoresis sample buffer. The eluted 

proteins were subjected to 12% SDS-PAGE gel electrophoresis. Proteins were 

visualized by Western blot. 

 

Chromatin immunoprecipitation (ChIP) 

           ChIP experiments were performed according to the manufacturer 

recommendations (Upstate Biotechnology Inc, Lake Placid, NY). In brief, THP-1 

cells (5 x 106 cells) were incubated with or without TNF-α (50 ng/ml) for 20-60 min. 

The cells were fixed with formaldehyde. The nuclei were isolated and sonicated. 

Chromatin was immunoprecipitated overnight at 4°C by mild agitation with 5 µg of 

antibody specific for p65, p50, or with 5 µg of normal IgG as negative control. 

Immune complexes were collected by incubation with protein-A-agarose. The DNA 

samples were amplified by PCR primers in an optimized condition.  

  

Construction of expression or reporter plasmids and mutagenesis 

 32 
 



 

             The pLUC-MCSFcRn vectors were constructed by cloning the pairs of 

complementary oligonucleotides encompassing the three tandem NF-κB binding 

sequences from the FcRn introns (Fig. 2.4 A, +1104, +5561, +9651). An FcRn DNA 

sequence (+3463) was also used as negative control. Double-stranded oligonucleotide 

was cloned into the pLUC-MCS plasmid (Stratagene, La Jolla, CA) digested with 

Hind III and Xho I. All plasmids were verified by DNA sequencing analysis.  

  

Transient transfection and Luciferase assay 

            THP-1 and HT-29 cells were transiently transfected with Effectene (Qiagen, 

Valencia, CA). In each co-transfection, 2 × 106 cells were transfected with a DNA 

mix containing 0.95µg firefly luciferase reporter plasmid and 0.05 µg Renilla 

luciferase pRL-TK control plasmid. In the following day, the cells were cultured with 

or without TNF-α (10-50 ng/ml). The cells were harvested 24 hr after stimulation and 

assayed for the expression of renilla and firefly luciferase using the dual luciferase kit 

(Promega, Madison, WI). The values for firefly luciferase were normalized to the 

renilla luciferase activity and expressed as fold activation over the vector background.  

 

 Chromosome conformation capture (3C) assay  

             The 3C experiment was modified according to previously-described 

procedures (112, 113). Briefly, THP-1 cells (1 X 107) were fixed with 2% 

formaldehyde. The nuclei were harvested and suspended in the Hind III digestion 

buffer containing 0.3% SDS at 37°C for 1 hr. Triton X-100 was added to a 1.8% final 

concentration to sequester the SDS. Samples were digested with Hind III overnight at 
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37°C. Samples were then diluted with ligase buffer. Trinton X-100 was added to a 

final concentration of 1%. T4 DNA ligase was then added for incubation at 16°C for 

4.5 hr. The intramolecular ligation of cross-linked fragments was optimized, and 

ligation product was monitored by PCR. Proteinase K was added at 200 µg/ml final 

concentration. The samples were incubated at 65°C overnight to reverse cross-linking 

and the DNA was isolated. 

 

             The PCR amplifications were determined by primer pairs in Table II.I. Primer 

pairs were designed to span each of six Hind III sites positioned along the 15-kb 

region of the human FcRn gene. Primers were used for cross-linked and control 

templates in all pairwise combinations. In general, DNA amplifications were done in 

20-µl reaction mixtures by an initial denaturing step for 5 min at 94 °C, then 35 

cycles of PCR. PCR products were cloned and sequenced to confirm the presence of 

the FcRn DNA fragments ligated in a Hind III site.  

 

RESULTS 

Up-Regulation of FcRn expression by TNF-α  

           The NF-κB is well known to be activated by exposure of cells to 

proinflammatory mediators, such as TNF-α  (114). To show the possibility that TNF-

α regulate the gene expression of human FcRn, we treated human freshly isolated 

monocytes treated with TNF-α (50 ng/ml),  FcRn mRNA was increased 12-fold over 

the mock-stimulated cell after 20 min and about 17-fold after 1 hr, as assessed by real 

time RT-PCR (Fig. 2.1 A). To determine whether newly-synthesized proteins, 
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including transcription factors, are required for TNF-dependent induction of FcRn 

mRNA, we treated THP-1 cells with cycloheximide (CHX, 25 μg/ml) and then 

subsequently with cytokines for 20 minutes and 1 hr. CHX failed to inhibit the TNF-

α-dependent induction of FcRn expression from both semi-quantitative or real time 

RT-PCR.These data indicate that de-novo protein biosynthesis was not required for 

the induction of FcRn transcription by TNF-α. The enhanced expression of FcRn 

protein in THP-1 cells was shown by Western blot in TNF-α-stimulated cells 

(Fig.2.1B, lanes 4-5) in comparison with mock-stimulated cells (lane 3). Lysates from 

Hela and Hela-FcRn were used as a negative (Fig 2.1 B lane 1) and positive (lane 2) 

controls in Western blot. Furthermore, induction of FcRn protein could be 

significantly detected by staining with flow cytometry or immunofluorence 

microscope with FcRn-specific antibodies in THP-1 cells.  

  

                 FcRn binds IgG at acidic pH 6.0 and releases IgG at neutral pH (27). We 

tested whether the enhanced expression of FcRn after TNF-α stimulation affects its 

ability to bind to its natural ligand IgG. We incubated cell lysates from cells at either 

pH 6.0 or pH 8.0 with human IgG-Sepharose. Cell lysates from Hela cells transfected 

with FcRn were used as positive control. As expected, FcRn from Hela-FcRn cells 

bound IgG at pH 6.0, but not pH 8.0 (Fig. 2.1 C, lanes 5-6). Our result showed that 

TNF-α stimulation enhanced cellular FcRn binding to IgG at pH 6.0 (Fig. 2.1C, lane 

3) in comparison with mock-stimulated cells (Fig. 2.1C, lanes 1), suggesting the 

enhanced level of FcRn led to increased FcRn-IgG complexes. To evaluate other cell 

types in response to TNF-α induction, human intestinal HT-29 cells were treated with 
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TNF-α (10 ng/ml). The mRNA level of FcRn was increased about 2.5-fold over the 

unstimulated level (Fig. 2.1 D).  

 

Regulation of FcRn expression in THP-1 cells by a TLR-mediated signaling 

pathway 

      Similar to TNF-α receptor engagement, activation of Toll-like receptors (TLR) by 

their cognate ligands can effectively result in NF-κB activation (115). We 

investigated the activation of TLR on cells in the induction of human FcRn 

expression. The TLR9 binds nonmethylated CpG-containing DNA and the TLR4 in 

association with CD14 recognizes ligand LPS. THP-1 cells express both TLR4 and 

TLR9 (115). FcRn mRNA appeared to be rapidly augmented in response to CpG in 

comparison to the mutant GpC treatment (Fig. 2.2 A). CpG increased the FcRn 

mRNA level 1.7-fold and 2-fold over the unstimulated cell after 60 and 120 min,  

   respectively. THP-1 cells expressed nearly undetectable levels of CD14 expression on 

the surface. The phorbol 12-myristate 13-acetate (PMA) and 1,25-dihydroxy vitamin 

D3 are known to increase the expression of CD14 (116). Thus, THP-1 cells were first 

stimulated with 100 nM PMA and 100 nM 1,25-dihydroxy vitamin D3. THP-1 cells 

were then mock-treated (Fig. 2.2 B, lane 1) or treated by LPS (1μg/ml) (Fig. 2.2 B, 

enhanced 1.8 fold after 1 hr (lane 3) and up to 2-fold after 3 hr (lane 5) following 

LPS stimulation. Furthermore, human freshly isolated monocytes treated with 

LPS (1 µg/ml) increased FcRn mRNA level 6-fold over the mock-stimulated cells 

after 1 h and 12-fold after 2 h as measured by real-time RT-PCR (Fig. 2C). As such, 
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 lanes 2-5). Semi-quantitative RT-PCR showed that the FcRn mRNA level was  

 

Figure 2.1  FcRn expression in response to cytokine stimulation. A. Quantitative real-time 
RT-PCR analysis of FcRn mRNA in freshly isolated human monocytes treated with TNF-α (50 
ng/ml) for indicated time or mock treated. B. Western blot. The cell lysates (10 μg)  from Hela (lane 
1), Hela-FcRn (lane 2),  TNF-stimulated THP-1 (lanes 3-5) was blotted with FcRn- (top panel) or β-
actin- (bottom panel) specific antibody (bottom panel). The ratio of the mock group is assigned a 
value of 1.0, and the values from other groups are normalized to this value. C. The pH-dependent 
FcRn binding of IgG. D. Quantitative real-time RT-PCR analysis of FcRn mRNA by analyzing total 
RNA extracted from HT-29 cells treated with TNF-α (10 ng/ml) as indicated time.  Data are mean ± 
SD of three independent experiments. 
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 the studies in Fig. 2 suggest that activation of TLR signal pathways, similar to TNF- 

and IL-1β, can also enhance FcRn expression. 

 

Effect of NF-κB inhibition on FcRn expression 

             Because downstream activation of TNF-α, IL-1β, and Toll-like receptors 

undergoes the similar NF-κB-mediated signaling pathway, we further study the 

function of NF-κB signaling in FcRn transcription.  Several steps of the NF-κB 

activation pathway, such as IκB kinase activation, IκB phosphorylation and 

degradation, and NF-κB nuclear translocation, can be targeted by a variety of 

inhibitors (117). Caffeic acid phenethyl ester (CAPE) has an inhibitory effect on the 

translocation of NF-κB p65 to the nucleus and inhibition of NF-κB binding to DNA 

(117). THP-1 cells were pretreated with CAPE (25 μg/ml) for 2 hr, subsequently 

stimulated by TNF-α. Treatment with CAPE significantly reduced TNF-α-stimulated 

   FcRn levels to that of the mock-stimulated THP-1, as assessed by semi-quantitative 

RT-PCR (Fig. 2.3 A). We further tested the effects of CAPE on CpG-stimulated 

THP-1 cells, and similar inhibitions were observed. Treatment with CAPE 

significantly reduced CpG-stimulated FcRn yield to the level of the mutant GpC-

stimulated THP-1. In addition, CAPE did not exert the obvious toxicity to cells in our 

assay. 

 

        NF-κB can be activated by phosphorylation of its inhibitory subunit, IκB-α, 

on serine residues 32 and 36 by IκB kinases (109). Signaling through the TNF-α or 

IL-1β receptor can cause rapid phosphorylation of IκBα. The substitution of alanine 
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Figure 2.2 FcRn expression in response to CpG or LPS stimulation. 
A.THP-1 cells were stimulated with 4 μg/ml CpG or mutant GpC for 60 and 120 min. A representative 
sample for RT-PCR analysis using total RNA extracted from the cells is shown for FcRn and GAPDH. 
B. THP-1 cells were pretreated with PMA and 1,25-dihydroxy vitamin D3 for 6 days, then  
stimulated with 1 μg/ml LPS for the indicated time. A representative sample for RT-PCR analysis 
using total RNA extracted from the cells is shown for FcRn and GAPDH. C.Quantitative real-
time RT-PCR analysis of FcRn mRNA from freshly isolated human monocytes treated with 
LPS (1 µg/ml) for the indicated times or left untreated. Data are mean ± SD of three 
independent experiments. *, p < 0.05. 
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   residues for serines 32 and 36 within the N-terminal signal response domain can 

abolish the signal-induced IκBα phosphorylation and ubiquitination for degradation, 

resulting in a blockage of NF-κB activation. Over-expression of this IκBα 

(S32A/S36A) decreased FcRn expression in response to TNF-α by at least 80% (Fig. 

2.3 B, lane 3), compared to cells transfected with a control plasmid (Fig. 2.3 B, lanes 

1 and 2). Overall, this selective NF-κB inhibition by CAPE in conjunction with the 

over-expression of dominant IκB mutant indicates that the blockade of NF-κB 

activation inhibited the FcRn transcription in response to TNF-α.  

 

Screening for NF-κB binding sites adjacent to the FcRn gene 

         The canonic NF-κB DNA binding sequence is a common 10-bp consensus DNA 

element, which has been identified as 5’-GGGRNNYYCC-3’ or 5’-

HGGARNYYCC-3’ (where H is A, C, or T; R is an A or G purine; and Y is a C or T 

   pyrimidine) (83). We hypothesized that NF-κB regulates FcRn expression through a 

mechanism that involves direct binding to a putative regulatory NF-κB binding 

sequence (s) located in the FcRn gene. To test this hypothesis, we searched for 

   putative NF-κB-binding sequence (s) along the entire human FcRn genomic sequence 

(Fig. 2.4 A) (GenBank accession No. AC010619). Computational inspection revealed 

   that the promoter and introns of FcRn gene contained sequences with a similarity to 

   the NF-κB consensus sequence (Fig 2.4 B). To verify that these putative NF-κB 

binding sequences do have the capability to directly bind NF-κB proteins in living 

cells, we employed a ChIP assay to precipitate the NF-κB-DNA complexes with 

   antibody specific for p65 or p50 after cross-linking the DNA with bound NF-κB 
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Figure 2.3 Effect of NF-κB inhibitors on the expression of FcRn. A  Effects of CAPE on 
expression of FcRn mRNA. B. Effect of NF-κB blockage by IκBα on expression of FcRn. Human 
THP-1 cells were transfected with the dominant-negative construct pCMV-IκBα (S32A/S36A). 
RNA was isolated and analyzed by semi-quantitative RT-PCR. 
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   proteins in situ in TNF-stimulated verus unstimulated THP-1 cells. The DNA 

fragments containing the putative NF-κB binding sequences in FcRn gene were 

measured by PCR. As shown in Fig. 2.4 C, PCR with primers flanking the putative 

NF-κB binding sequences (Fig 2.4 C, +1104, +5561, +9651) produced a band from 

DNA coprecipitated with p65 or p50. In a negative control, immunoprecipitation with 

normal rabbit IgG did not generate any corresponding PCR products (Fig 2.4 C, lane 

6). The NF-κB binding sequence in the IκB gene promoter was used as a positive 

control. These data suggest that NF-κB p65 and p50 interacted with the three NF-κB 

binding sequences of FcRn gene in THP-1 cells.  

 

NF-κB binding sequences in FcRn introns can regulate the expression of the 

luciferase  

          We constructed luciferase reporter plasmid in which three tandem copies of 

NF-κB binding sequences (+1104, +5561, +9651) were respectively linked to a  

   minimal promoter containing only a TATA box (Fig. 2.5 A). The pLuc-MCS 

plasmids (Fig. 2.5 A) were transiently transfected into intestinal HT-29 cells with or 

without co-transfection of the NF-κB p50/p65 plasmid in order to validate the results  

   obtained from THP-1 cells. The data showed that each NF-κB binding sequence 

significantly amplified the luciferase signal from 2-12 folds in cooperation with 

p65/p50 proteins (Fig. 2.5 B). A relevant DNA sequence (Fig. 2.4 B) that did not bind 

p50 or p65 in vivo from our ChIP assay was used a negative control, and it failed to 

enhance the luciferase activity over vector alone (Fig. 2.5 B). However, NF-κB 

binding sequence (+1104) from the intron 2 supported the strongest induction (12 
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Figure 2.4 Mapping of NF-κB binding sequence (s) in human FcRn gene by 
chromatin immunoprecipitation (ChIP). A. Organization of the human FcRn gene. 
Arrowheads indicate the position of candidate NF-κB sequences. Exons (E) are drawn as 
boxes and intron numbers are shown as Roman numerals. B. The putative NF-κB binding 
sequences in FcRn gene are listed. Numbers represent the putative NF-κB binding sequences 
relevant to the transcription start site of the FcRn gene. The consensus NF-kB sequence is 
bolded. R is an A or G purine; and Y is a C or T pyrimidine. C. NF- B p65 and p50 
components are present at FcRn introns in vivo in response to TNF-α. THP-1 cells were 
treated with TNF-α (50 ng/ml) for 30 min. ChIP assays were performed using p65- (lanes 1-3 
and p50- (lanes 4-6) specific antibodies. IgG was used as a negative control (lanes 3 and 6). 
Immunoprecipitated chromatin was prepared and subjected to PCR analysis using primer pairs  
 

A. 
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fold) in comparison with the other intronic NF-κB binding sequences (2.1 fold). 

Overall, the results support the notion that these NF-κB binding sequences are 

functional. 

 

Mutual interactions between promoter and intronic NF-κB of human FcRn gene 

            Considering that NF-κB-dependent induction of genes involves the cooperative 

interactions between NF-κB and other transcription factors (118, 119), we speculated 

that the intronic NF-κB binding sequences might also act upon the upstream FcRn 

promoters through a DNA looping mechanism. The chromosome conformation 

capture (3C) assay has proven to be an effective method to analyze the interactions 

between genomic regions, such as promoter-enhancer or enhancer-enhancer 

interactions, in gene regulation (112). We used the 3C assay to investigate the 

mechanism through which the distant NF-κB binding sequences regulate the FcRn 

gene. Intact nuclei isolated from live THP-1 cells were cross-linked with  

formaldehyde to fix segments of genomic DNA that are in close physical proximity 

(Fig 2.6 A). The cross-linked DNA was then digested with Hind III (Fig. 2.6 B) and 

ligated at a low concentration of DNA, and the ligated DNA was then analyzed by  

PCR using primers in all possible combinations (1F + 2R, 1F + 3R, 1F + 4R, 1F + 

5R) (Fig. 2.6 B). The appearance of a positive PCR product signals successful 

ligation and DNA looping. 

 

        As shown in Fig. 2.6 B, the primer H1F (Table II.I) which anneals to the 

promoter region sequence of the FcRn gene was used as an anchor primer to pair with 
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Figure 2.5 NF-κB binding sequences from FcRn introns can enhance the transcription of 
luciferase gene. A. A schematic representation of constructs pLuc-MCS containing NF-κB binding 
sequences from human FcRn introns 2 and 4. The pLuc-MCS plasmid has the minimal promoter with a 
TATA box. The plasmids, pLuc-MCS+1104, pLuc-MCS+5561, pLuc-MCS+9651, and pLuc-MCS+3463, 
were constructed as described in Materials and Methods. NF-κB sequences are underlined. Numbers 
represent the locations of NF-κB sites in the human FcRn gene. A DNA sequence corresponding +3463 
was used as a negative control. B. HT-29 monolayers were cotransfected with the pLuc-MCS reporter 
plasmids as indicated, and the NF-κB transactivator plasmid p50/65 in addition to Renilla luciferase pRL-
TK control plasmid. The pLuc-MCS backbone serves as a negative control. Luciferase activity was 
measured 24 hr post-transfection.  The results represent the mean of three independent experiments. 
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As shown in Fig. 6B, the primer H1F (Table 2) which anneals to the promoter region 

sequence of the FcRn gene was used as an anchor primer to pair with other test 

primers (Table 2) in the Hind III-digested and ligated fragments. In Fig. 6C, PCR 

reactions from three primer pairs (1F+1R, 1F+2R, 1F+5R) yielded positive products 

(Fig. 6C, lanes 4 and 5). The PCR product from the primer pair 1F+2R and 1F+5R  

 

             

 

 

Figure 2.6 Chromosome conformation capture (3C) analysis of interaction between 
promoter and downstream human FcRn gene. A. Schematic representation of the 3C 
technology in analyzing human FcRn gene regulation.PC, protein complexes. B. Locations of Hind 
III sites and PCR primers in the 15-kb FcRn gene are shown. Positions of the six Hind III restriction 
sites (perpendicular bars) from the transcriptional start site of the FcRn gene are indicated. C. The 
3C assay. THP-1 cells were mock-treated (lanes 2 and 4) or stimulated by TNF-α (50 ng/ml) for 20 
minutes (lanes 3 and 5). Chromatin material was cross-linked and digested with excessive amounts 
of Hind III, ligated, and amplified by PCR.  Primer 1F was the anchor primer, and the others 
amplified from 5' to 3'. In lane 1, random ligation control templates were generated by amplifying 
the genomic DNA fragment with primers that amplify across the Hind III sites. Equimolar amounts 
of five different PCR products were mixed and digested with Hind III overnight at 37 °C. Ligated 
DNA was used to generate control PCR products by using a combination of primer pairs listed in 
Table II.I to monitor the efficiency of ligation. Hind III-digested chromosomal DNA were used as 
template for PCR to examine the efficiency of Hind III digestion (Lanes 2 and 3). Ligated templates 
after dilution were used to PCR amplify after Hind III digestion and ligation (Lanes 4 and 5). Input 
DNA was used as an internal control for PCR reaction.  D. Sequence analysis of PCR products from 
3C analysis. PCR products were sequenced to confirm the fidelity of Hind III digestion and ligation. 
The Hind III sites were underlined in ligated products.  
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other test primers (Table II.I) in the Hind III-digested and ligated fragments. In Fig. 

8C, PCR reactions from three primer pairs (1F+1R, 1F+2R, 1F+5R) yielded positive 

products (Fig. 2.6 C, lanes 4 and 5). The PCR product from the primer pair 1F+2R 

and 1F+5R was sequenced to confirm the fidelity of ligations and PCR amplifications 

(Fig. 2.6 D). The primer 1F+1R produced positive products from the ligated DNA 

template in both stimulated and unstimulated cells (Fig. 2.6 C, lanes 4 and 5).  To 

exclude the possibility that the observed PCR products were a result of random 

collisions as the result of the inherent flexibility of chromatin (112, 113) and of 

independent of the Hind III digestion, we also analyzed unligated samples after Hind 

III treatment for overnight (Fig. 2.6 C, lanes 2+3). We failed to detect corresponding 

bands amplified by PCR from the non-ligated DNA template. To monitor the 

differences in PCR amplification and ligation efficiencies, an additional control was 

used by mixing all restriction fragments from Hind III-digested PCR fragments 

(1F+1R, 2F+2R, 3F+3R, 4F+4R, 5F+5R) in equimolar amounts. After ligation at a 

high DNA concentration, all possible ligation products were present in the sample 

and amplified by PCR (Fig. 2.6 C, lanes 1). Taken together, we conclude that there 

were specific looping-interactions between NF-κB binding sequences and FcRn 

promoters. 

 

DISCUSSION 

            Activation or inhibition of NF-κB signaling pathway can regulate human FcRn 

expression. Proinflammatory cytokines TNF-α as well as TLR ligands, are well 

known to activate NF-κB signaling pathway. Our results showed that stimulation by 
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Table II.I   3C primers used in this study 

   H1F  5’-GAACTCGGATAGAGGTGACAGTTGCAC-3’ 
   H1R  5’-CCGAGATTGCACCACTGCACTCCAGAC-3’ 
  H2F  5’-CGCAGCAGTACCTGAGCTACAATAGC-3’ 

   H2R  5’-GAGGTGTTGTCAGGGCCCAGTTCACAG-3’ 
   H3F  5’-AGGAAGCGAGCATCCCATCACTGAGAC-3’ 

    H3R  5’-GCAGTGAGCCGAGACTGAGCCACTACAC-3’ 
    H4F  5’-GCTTTGGTAAATCTCAGACATCACAGTG-3’ 
  H4R  5’-GTCAGGAGTTCAAGACCAGCCTGGCC-3’ 
  H5F  5’-GCCCTTTGCATCCTGTGATGTTGCTG-3’ 
  H5R  5’-GTCCACAGAACAGCACAGAAGCAAGC-3’ 
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TNF-α, CpG, and LPS augmented the FcRn expression in THP-1 and HT-29 cell 

lines, or freshly-isolated human monocytes in both mRNA and protein level (Figs 

2.1&2.2). This result is in concordance with studies that TNF-α induces MHC class I 

and polymeric IgA receptor (114, 120) expression. Interestingly, we observed that the 

activation dynamics of FcRn expression exhibited an oscillatory behavior when cells 

were stimulated by TNF-α but lengthened period when stimulated by LPS treatment. 

This observation is in agreement with the NF-κB expression patterns induced by 

TNF-α and LPS (121). Furthermore, we observed that FcRn expression induced by 

TNF-α was strongly counteracted by the NF-κB specific inhibitor CAPE. This was 

corroborated by the fact that over-expression of the dominant-negative 

IκBα (S32Α/S36Α) almost completely abrogated FcRn transcriptional activation 

induced by TNF-α (Fig 2.3 B). This complementary experiment lessens concern of 

specificity or toxicity of the chemical inhibitor. Interestingly, over-expression of 

either NF-κB did not affect FcRn basal expression in the absence of TNF-α 

stimulation.  It is possible that TNF-α treatment may modify the chromatin structure, 

allowing NF-κΒ, or NF-κΒ+ΙκBα, to become more accessible to their binding sites. 

It has been shown that TNF-α stimulation can remodel chromatin by histone 

acetylation (118, 122). More importantly, TNF-α also induces the binding of NF-κB 

to κB-like sequences in the promoter of human β2m gene (123). Therefore, activation 

of NF-κB by TNF-α, and possibly other NF-κB activators, could coordinately up-

regulate the expression of both FcRn and β2m genes. This balanced regulation of 

both genes through an NF-κB-mediated signaling pathway may have functional 
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significance, since the noncovalent association of FcRn heavy chain and β2m is 

critical for FcRn to exit the endoplasmic reticulum (111).  

 

           NF-κB binding sequences were identified in the intronic regions of human 

FcRn gene. It was unclear whether NF-κB regulates FcRn expression directly or 

through an indirect mechanism by inducing other transcription factors which, in turn, 

could bind to the FcRn gene. Our data showed FcRn mRNA exhibited the rapid 

kinetics, usually within 20–30 min, in response to stimuli in our experiments. Our 

inhibition experiment by cyclohexmide further showed that the induction of FcRn 

mRNA was mediated without newly-synthesized protein factors. In fact, three NF-κB 

binding sequences were mapped in our ChIP experiment to the second and fourth 

introns of the human FcRn gene (Fig. 2.4). This is in concert with the observed TNF-

α-induced expression of other genes through intronic NF-κB-dependent mechanisms 

(111, 119, 120, 123). Notably, a large number of studies identify NF-κB binding 

sequences within noncoding introns (124, 125). The data presented here extend this 

concept and support an inducer-specific role for intronic regulatory elements in the 

transcription of human FcRn. Several interesting aspects should be perceived. First, 

the NF-κB binding sequences identified in the introns of human FcRn were not 

completely conserved, based on the NF-κB consensus binding sequence (Fig. 2.4 B). 

However, the apparent binding sequence for NF-κB is very broad and displays a 

certain degree of degeneration (126). Second, multiple NF-κB isoforms can be 

detected in nuclear extracts of activated cells. These isoforms may compensate for 

each other and/or induce gene expression in a sequence-dependent manner.   
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             NF-κB per se is clearly involved in the transcriptional regulation of many 

genes. Its activity can be modulated significantly by factors that bind to motifs 

adjacent to, overlapping with or distant from that of NF-κB binding sequences (110). 

In this regard, Sp1 elements may be strong candidates because they are often found in 

the enhancers or promoters of NF-κB-regulated genes (118, 127, 128). Additional 

studies have suggested that NF-κB dimers can act synergistically with NF-IL-6, AP-1, 

and Ets transcriptional factors to influence gene regulation (129, 130). Most 

importantly, the 5'-proximal promoter region of human and rodent FcRn shares 

numerous putative consensus sequences that are recognized by Sp1, AP-1, Ets, and 

NF-IL6 (131, 132). These protein-protein interactions may be involved in mediating 

the transcriptional regulation of FcRn gene in response to stimuli and can functionally 

cooperate to elicit maximal activation of the promoter. Further studies are needed to 

determine whether and how NF-κB and other transcriptional factors in the introns and 

promoter cooperatively regulate FcRn expression. 

 

          What might be the biological significance of regulation of FcRn by NF-κB 

signaling via intronic binding sequences? NF-κB is activated by exposure of cells to 

many physiological and non-physiological stimuli. Thus, regulation of FcRn 

expression in vivo likely involves the coordinated action of numerous modulatory 

factors. Tight control of FcRn may be especially important because FcRn plays a 

critical role in maintaining IgG homeostasis. This function results in the maintenance 

of much higher serum concentrations of immunoprotective IgG. However, FcRn also 
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extends the life span of pathogenic or autoimmune IgG, potentially promoting the 

progression of autoimmune diseases. Humans with lupus have been shown to have 

elevated TNF serum levels (133), which could exacerbate their condition based on 

these findings. Therefore, the level of FcRn expression may be directly coupled to the 

pathogenesis and treatment of autoimmune diseases. NF-κB-based regulation of FcRn 

expression may have certain advantages. Since the promoter of IκBα gene contains 

NF-κB binding sites, NF-κB is able to autoregulate the transcription of its own 

inhibitor. As a result, the NF-κB activation of gene expression is transient in nature. 

Therefore, this autoregulatory control of NF-κB and IκBα expression may, in turn, 

maintain FcRn expression and be the basis of IgG homeostasis. Additionally, FcRn 

transports normal or neutralizing IgG across polarized epithelial cells potentially 

‘seeding’ neonatal and mucosal immunity. FcRn expression elevated from the basal 

level by cytokines or TLR ligands, or during mucosal infections, could facilitate a 

local immune response and/or promote the transport of IgG to mucosal surfaces and, 

thereby, allow rapid eradication of infectious agents. This result is further supported 

by the fact that the activated macrophages are a major source of TNF-α in intestinal 

inflammation. By examining the molecular mechanisms by which NF-κB regulates 

FcRn expression using human cell lines or freshly-isolated cells, our studies may 

contribute toward the general understanding of FcRn-mediated mucosal immunity and 

IgG-mediated autoimmune diseases. The in vitro results described in the present 

study are likely paralleled by in vivo events when NF-κB activation causes enhanced 

FcRn-mediated transport and protection of IgG. These questions are being further 

investigated. 
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            In summary, the unusually-long intron of the FcRn gene contains sequences 

that bound either p65/p50 heterodimers or p50/p50 homodimers of the NF-κB 

transcription factors. The presence of NF-κB binding sequences located in distant 

intronic regions suggests NF-κB complexes may play an important role in the 

regulated expression of FcRn, possibly in cooperation with other transcriptional 

elements in the FcRn promoter. Because the FcRn protein may exert both beneficial 

and detrimental effects in a variety of infectious and autoimmune diseases, FcRn 

biosynthesis may be under the control of multiple complex regulatory mechanisms in 

response to an extracellular stimulus. Understanding the complex regulation of this 

critically-important receptor will require additional studies both in vivo and in vitro. 
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CHAPTER 3:  TRANSCRIPTIONAL REPRESSION OF FcRn BY 

INTERFERON-γ THROUGH JAK-STAT-1 SIGNALING PATHWAY  

 
 

ABSTRACT 
             

            Expression of many MHC genes is enhanced at the transcriptional or 

posttranscriptional level following exposure to the cytokine IFN-γ. However, we here 

found that IFN-γ down-regulated the constitutive expression of the neonatal Fc receptor 

(FcRn), a MHC class I-related molecule that functions to transport IgG across polarized 

epithelial cells and protect IgG and albumin from degradation. Epithelial cell exposure to 

IFN-γ resulted in significant decrease of human FcRn expression, as assessed by real-

time RT-PCR and Western blot. The down-regulation of FcRn was not caused by 

apoptosis or the instability of FcRn mRNA. Chromatin immunoprecipitation and gel 

mobility shift assays showed that STAT-1 bound to an IFN-γ activation site (GAS) in the 

human FcRn promoter region. Luciferase expression from an FcRn promoter-luciferase 

reporter gene construct was not altered in JAK1- and STAT-1-deficient cells following 

exposure to IFN-γ. Furthermore, the repressive effect of IFN-γ on the FcRn promoter was 

selectively reversed or blocked by mutations of the core nucleotides in the GAS 

sequence. Functionally, IFN-γ stimulation dampened bidirectional transport of IgG across 

a polarized Calu-3 lung epithelial monolayer. Taken together, our results indicate that 

JAK-STAT-1 signaling pathway was necessary and sufficient to mediate the down-

regulation of FcRn gene expression by IFN-γ.  
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INTRODUCTION 

      IFNs are multifunctional cytokines that have antiviral, antiproliferative, antitumor, 

and immunomodulatory effects (90, 134). In the case of IFN-γ, the cell membrane 

receptor for IFN-γ  is composed of two subunits, IFN-γR1 and IFN-γR2. Upon 

binding to IFN-γ, the IFN-γ receptor rapidly associates with the Janus tyrosine 

kinases JAK1 and JAK2. JAK enzymes phosphorylate one another and then 

subsequently phosphorylate the IFN-γ receptor, which results in the formation of a 

docking site for the latent cytoplasmic transcription factor named STAT-1, a member 

of the STAT (signal transducer and activator of transcription) protein family (92). 

Upon phosphorylation, STAT-1 homodimerizes, translocates to the nucleus, and 

regulates gene transcription by binding to IFN-γ-activated sequences (GAS) in the 

IFN-γ-inducible genes. Homodimerization of STAT-1 is mediated by the binding of 

the phosphorylated tyrosine 701 of one STAT-1 monomer to the Src homology 2 

domain of another. However, maximal transcriptional activity by active STAT-1 

homodimers also requires STAT-1 phosphorylation at serine 727 (135, 136). It has 

been found that STAT-1 phosphorylation plays a critical role in IFN-mediated innate 

immunity to microbial infection (137). STAT-1 signaling can also be negatively 

regulated by the protein inhibitor of activated STAT-1 (PIAS1) and suppressor of 

cytokine signaling (SOCS) (96). IFN-γ can also regulate expression of its inducible 

genes in a STAT-1-independent manner (138, 139), suggesting that multiple signaling 

pathways in parallel play important roles in the biological response to IFN-γ.  
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            The pivotal roles in the protection and transport of IgG have led to an 

increasing interest in the mechanism that regulates FcRn expression regarding both 

constitutive and stimulated expression. MHC class I and related molecules include 

HLA-A, HLA-B, HLA-C, HLA-F, HLA-G, HLA-H, MR1, MIC A/B, CD1, and FcRn. 

Expression of several MHC class I genes significantly increases at the transcriptional 

or posttranscriptional level following exposure to IFN-γ in a variety of tissues and 

cells (140-145). Although the transactivating roles of IFN-γ in MHC class I and its 

related molecules are well established, at present little is known about whether and 

how IFN-γ regulates FcRn gene expression. In an effort to identify the role of IFN 

signaling in regulation of the FcRn receptor, we unexpectedly found, for the first time, 

that IFN-γ down-regulated human FcRn expression and function. Furthermore, our 

study showed that activation of STAT-1 is required for IFN-γ-induced down-

regulation of FcRn expression. STAT-1-repressed FcRn transcription may act through 

sequestering the transcriptional coactivator CREB binding protein (CBP)/p300, thus 

reducing the level of CBP/p300 at the human FcRn promoter.  

 

MATERIALS AND METHODS 

Cell lines, Abs, reagents  

         Human lung-derived Calu-3 adenocarcinoma cells were obtained from American Type 

Culture Collection (HTB-55) and maintained in a 1:1 mixture of DMEM and Ham’s F-12 

medium (Invitrogen). Human 2fTGH cells, a cell line derived from the human fibrosarcoma 

HT1080 cell line, and the 2fTGH-derived cell lines U3A (STAT-1 deficient) and U4A (JAK1 

deficient) were gifts from Dr. G. Stark (Cleveland Clinic Foundation, Cleveland, OH). HeLa-
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E2A4 (JAK1 deficient) was from Dr. R. A. Flavell (Yale University School of Medicine, 

New Haven, CT). The human intestinal epithelial cell lines HT-29 and Caco-2 and the 

macrophage-like THP-1 cells were obtained from Dr. R. S. Blumberg (Harvard Medical 

School, Boston, MA). The human intestinal epithelial cell line T84 was from Dr. W. Song 

(University of Maryland, College Park, MD). All epithelial and fibrosarcoma cells were 

maintained in DMEM complete medium (Invitrogen). All complete medium was 

supplemented with 10 mM HEPES, 10% FCS, 2 mM L-glutamine, nonessential amino acids, 

and penicillin (0.1 µg/ml)/streptomycin (0.292 µg/ml) in a humidified atmosphere of 5% CO2 

at 37°C.  

            

            HRP-conjugated donkey anti-rabbit or rabbit anti-mouse Ab was purchased from 

Pierce, and purified human IgG was from Jackson ImmunoResearch Laboratories. Anti-

STAT-1 , anti-phospho-STAT-1 (tyrosine 701), anti-phospho-STAT-1 (serine 727), and anti-

p300 Abs were from Cell Signaling Technology. Human recombinant IFN-γ was from R&D 

Systems. All DNA-modifying enzymes were purchased from New England Biolab.  

 

Semiquantitative RT-PCR and quantitative real-time RT-PCR  

           Semiquantitative RT-PCR and real-time RT-PCR were performed as previously 

described (146). In brief, total RNA was isolated from stimulated and mock-stimulated cells 

(2 x 106/ml) in TRIzol reagents (Invitrogen) according to the manufacturer’s instructions. 

Semiquantitative RT-PCR was performed using a one-step RT-PCR kit (Qiagen). Primers for 

amplification of FcRn and GAPDH have been previously described (146). Thirty cycles of 

PCR amplification were performed in a 20-µl volume. Each cycle consisted of denaturation 
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at 94°C for 30 s, annealing at 58°C for 30 s, and extension at 72°C for 30 s. An additional 10 

min was applied for the final extension. PCR products were resolved on 1.5% agarose gels 

and visualized by staining with ethidium bromide. Integrated density values for the FcRn 

binds were normalized to the GAPDH values to yield a semiquantitative assessment.  

           

           The freshly isolated human PBMCs (106 cells/ml) were stimulated with IFN-γ (25 

ng/ml) for 24 h. The total RNA samples were extracted. The RNA (400 ng/reaction) was 

reverse transcribed to yield first-strand cDNA using SuperScript III (Invitrogen). Real-time 

RT-PCR was performed using FcRn and GAPDH primers (146) and the SYBR Green 

Supermix kit (Bio-Rad Laboratories) in a Chromo 4 thermocycler (MJ Research). FcRn 

expression was calculated following normalization to GAPDH levels by the comparative 

threshold cycle method. All reactions were performed for 40 cycles: 15 s at 94 °C, 15 s at 58 

°C, and 20 s at 72 °C. The specificity of the amplification reactions was confirmed by melt 

curve analysis. The Opticon Monitor 3.1 software package (Bio-Rad Laboratories) was used 

for real time RT-PCR.  

 

Construction of expression or reporter plasmids and mutagenesis  

         Construction of the human FcRn promoter-luciferase reporter plasmid phFcRnLuc 

containing sequences from –1801 to +863 of the human FcRn promoter has been previously 

described (146). The mutant derivative plasmids pM1 and pM2 were constructed by 

overlapping PCR mutagenesis to disable the putative GAS sequence (see Fig. 3.3 B), using 

phFcRnLuc as a template. The primer pairs for pM1 (5'-

GGAAGCCAACTACTCATATGAATCTCTTTCTGTG-3' and 5'-
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AGGATTAGTGGACGTTCAGCTGGTTCAGAG-3') or pM2 (5'-

TTATATGATTCAATGGCTTAGACATGTGCAGAATAG-3' and 5'-

TATGAAGTCTTTCCTTCCTTCCTTCCTTGCCTC) were used (the mutations are 

underlined). The expression plasmid encoding wild-type STAT-1 (pSTAT-1) and the 

phosphorylation site mutant plasmid pSTAT-1Y701F were kindly provided by Dr. K. 

Nakajima (Osaka City University Medical School, Osaka, Japan) and Dr. D. Geller 

(University of Pittsburgh, Pittsburgh, PA). The FLAG-tagged STAT-1 and PIAS1 expression 

plasmids were kind gifts from Dr. K. Shuai (University of California, Los Angeles, CA). The 

FLAG-tagged pSTAT-1Y701F, pSTAT-1S727A, or pSTAT-1Y701F/S727A was constructed 

by the overlapping PCR mutagenesis method. The primer pair (5'-

AGGAACTGGATTTATCAAGACTGAGTTGAT-3' and 5'-

TTAGGGCCATCAAGTTCCATTGGCTCTGGT-3') was used to substitute tyrosine 701 

with a phenylalanine residue (underlined). The primer pair (5'-

GACAACCTGCTCCCCATGGCTCCTGAGGAG-3' and 5'-TGTGGTCTGAAGTCTA 

GAAGGGTGAACTTC-3') was used to change serine 727 to alanine (underlined). The 

murine JAK1 expression construct was obtained from Dr. J. Ihle (St Jude Children’s 

Research Hospital, Memphis, TN). The integrity of the DNA fragments in the plasmids was 

confirmed by DNA sequence analysis.  

 

Immunoprecipitation, gel electrophoresis, and Western blotting  

          Immunoprecipitation was done as described previously (111). Protein was precipitated 

with anti-FLAG Ab. The immunoreactive products were eluted from the protein G complex 

with gel loading buffer at 95°C. Gel electrophoresis and Western blot were performed as 
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previously described (108) (111). Protein concentrations were determined by the Bradford 

method. The cell lysates were resolved by electrophoresis on a 12% SDS-polyacrylamide gel 

under reducing conditions. Proteins were electrotransferred onto a nitrocellulose membrane 

(Schleicher & Schuell). The membranes were blocked with 5% nonfat milk, probed 

separately with affinity-purified rabbit anti-FcRn peptide (CLEWKEPPSMRLKARP) Ab for 

1 h, followed by incubation with HRP-conjugated donkey anti-rabbit Ab. All blocking, 

incubation, and washing were performed in PBST solution (PBS and 0.05% Tween 20). 

Proteins were visualized by an ECL method (Pierce).  

 

Determination of mature FcRn mRNA stability  

         Stability of the mature FcRn mRNA transcript was determined by using an actinomycin 

D inhibition assay as described previously(147, 148). Briefly, after 24 h of HT-29 cells being 

treated with or without IFN-γ, 5 µg/ml actinomycin D (Sigma-Aldrich) was subsequently 

added to each culture to stop the further production of mature FcRn transcript. Following the 

addition of actinomycin D, cell viability was analyzed by trypan blue exclusion and did not 

significantly change over the course of the experiment. HT-29 cells were collected from the 

cultures at 0, 1, 2, 4, 8, and 10 h following the addition of actinomycin D, and total RNA was 

isolated. The level of FcRn mRNA was quantified for each time point by semiquantitative 

RT-PCR or quantitative real-time PCR as described above.  

 

Nuclear run-on assay  

           The rate of mature FcRn transcription was determined by nuclear run-on as described 

in detail previously (148). Briefly, 5 x 107 THP-1 cells were collected 24 h following 
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stimulation in the presence or absence of IFN-γ and washed twice with PBS before 

resuspension in 5 ml of cell lysis buffer containing 10 mM Tris-HCl (pH 7.4), 10 mM NaCl, 

3 mM MgCl2, and 0.5% Nonidet P-40 for 5 min at 4°C. Nuclei were collected by 

centrifugation at 300 x g for 10 min at 4°C, resuspended in 500 µl of nuclear freezing buffer 

containing 50 mM Tris-HCl (pH 8.3), 40% glycerol, 5 mM MgCl2, and 0.1 mM EDTA, and 

stored at –80°C until use for nuclear run-on. Nuclear run-on and RNA isolation were 

preformed in the presence of biotin-16-UTP (Roche). To control for the possibility of 

nonbiotin-labeled RNA contamination, replicate sets of nuclei were used in the nuclear run-

on that did not contain biotin-16-UTP. Dynabeads M-280 (Invitrogen) were used to capture 

the biotin-labeled RNA molecules from the purified nuclear RNA, and beads were washed 

twice with 2x SSC plus 15% formamide and once with 2x SSC and resuspended in 30 µl of 

RNase-free H2O before the preparation of random hexamer-primed cDNA as described in the 

paragraph titled Semiquantitative RT-PCR and quantitative real-time RT-PCR above except 

for the primer pair used for GAPDH (5'-GCCACTAGGCGCTCACTGTTCTCTC-3' and 5'-

CTCCTTGCGGGGAACAGCTACCCTGC-3') and FcRn (5'-

GAGCCTGGGCGCAGGTGAGGGCCGC-3' and 5'-

GCGACAGGTGGTTCCCAGCCTCAGGC-3'). Primers located in the intronic region are 

underlined. All samples that did not contain biotin-16-UTP were found to be negative for the 

presence of GAPDH and mature FcRn transcripts.  

 

Immunofluorescence and detection of apoptosis by TUNEL  

          HT-29 cells were cultivated on coverslips for 24 h. The coverslips were rinsed in PBS 

and cells were cold-fixed in 4% paraformaldehyde in PBS for 30 min at 4°C. Subsequent 
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procedures were done at room temperature. After two washings with PBS, the coverslips 

were permeabilized (3% BSA and 0.2% Triton in PBS) for 30 min. Cells were incubated with 

affinity-purified rabbit anti-STAT-1 in PBST (0.05% Tween 20 and PBS) with 3% BSA for 1 

h. Cells were then incubated with Alexa 458 Fluor-conjugated AffiniPure goat anti-rabbit IgG 

(Jackson ImmunoResearch Laboratories) in PBST with 3% BSA. Cell nuclei were 

counterstained with 5 µg/ml 4',6'-diamidino-2-phenylindole (DAPI; Molecular Probes) in 

PBS. After each step the cells were washed three times with 0.1% Tween 20 in PBS. To 

mount coverslips, the ProLong antifade kit was used (Molecular Probes). Images were 

captured using a x100 oil-immersion objective on a Zeiss inverted microscope linked to a 

DeltaVision deconvolution imaging system.  

            

            In situ detection of apoptotic cells was performed with the TUNEL kit from Roche. 

After IFN-γ (50 ng/ml) treatment, HT-29 cells undergoing cell death were identified. Briefly, 

IFN-γ- or mock-treated cells were fixed with a freshly prepared fixation solution (4% 

paraformaldehyde in PBS (pH 7.4)) for 1 h at room temperature, and then incubated in 

permeabilization solution (0.1% Triton X-100 in 0.1% sodium citrate) for 2 min on ice, and 

the TUNEL procedure was conducted according to the manufacturer’s instructions. For the 

correlation of TUNEL with nuclear morphology, cells were counterstained with DAPI. To 

confirm the specificity of TUNEL, cells were treated with 3000 U/ml DNase I at room 

temperature for 10 min to induce DNA strand breaks before labeling procedures. In negative 

controls, terminal TdT was omitted from the labeling reaction mixture. Samples were viewed 

by fluorescence microscopy with excitation at 320–580 nm.  
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Transient transfection and luciferase assay  

           Transient transfection and luciferase assay were done as previously described (146). 

Briefly, cells were transiently transfected with Effectene according to instructions from the 

manufacturer (Qiagen). In each cotransfection, 2 x 106 cells were transfected with a DNA mix 

containing 0.95 µg of firefly luciferase reporter plasmid and 0.05 µg of Renilla luciferase 

pRL-TK control plasmid. The following day, the cells were cultured with or without IFN-γ. 

The cells were harvested 24 h after treatment and assayed for the expression of Renilla and 

firefly luciferase using the dual luciferase kit (Promega) according to the recommended 

protocol in a Victor 3 luminometer (PerkinElmer). The values for firefly luciferase were 

normalized to the Renilla luciferase activity and expressed as fold activation over the vector 

background.  

 

Chromatin immunoprecipitation (ChIP)  

          ChIP experiments were performed according to the manufacturer’s recommendations 

(Upstate Biotechnology) and as previously described(146). In brief, HT-29 cells (5 x 106 

cells) were incubated with or without IFN-γ (25 ng/ml) for 1–12 h. The cells were fixed with 

1% formaldehyde. The nuclei were isolated and sonicated 20 times on ice for 10–20 s with 

90-s breaks (Sonifier 350; Branson) between each sonication interval to shear the DNA to 

200-1000 bp. A small aliquot (20 µl) was saved as "input DNA" for PCR analysis by 

reversing histone-DNA crosslinks by heating at 65°C for 4 h. Chromatin was 

immunoprecipitated from 200-µl aliquots at 4°C by mild agitation overnight with 5 µg of Ab 

specific for STAT-1, phospho-STAT-1 (tyrosine 701), and phospho-STAT-1 (serine 727) or 

with 5 µg of normal rabbit IgG as negative control. Immune complexes were collected by 
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incubation with protein A-agarose. To analyze the target region, the immunoprecipitated 

chromatin DNA samples were amplified by PCR with primer pairs for FcRn (5'-

GGAAAGACTTCATATTATATGATTC-3' and 5'-

GCAACTGTCACCTCTATCCGAGTTC) or ICAM-1 (5'-

GATTGCTTTAGCTTGGAAATTC-3' and 5'-GGAGCCATAGCGAGGCTGAG-3'). DNA 

samples or input DNA fractions were analyzed by 35 cycles of PCR (94°C for 30 s, 58°C for 

30 s, and 72°C for 30 s) in 20-µl reaction mixtures. PCR products were subjected to 

electrophoresis by using 2% agarose gels in TAE (Tris-acetate-EDTA) buffer and visualized 

by ethidium bromide.  

 

Preparation of nuclear extracts and EMSA  

            Nuclear extracts were prepared using a nuclear and cytoplasmic extraction kit 

according to the manufacturer’s instructions (Pierce). IFN-γ (25 ng/ml)-treated HT-29 cells (1 

x 107) were used. The double-stranded oligonucleotides (5'-

TGATTCAATTTCTTTGAAATGTGCAG-3') containing a putative GAS sequence 

(underlined) from the FcRn promoter was used. The double-stranded oligonucleotides (5'-

CCCTTTCTGGGAAGTCCGGGT-3') containing the GAS sequence (underlined) from the c-

myc promoter were used as a positive control. The DNA was labeled with a biotin 3'-end 

DNA labeling kit (Pierce). In brief, 4 µg of nuclear extracts were incubated in binding buffer 

(10 mM Tris (pH 7.9), 50 mM NaCl, 5 mM MgCl2, 50 mM KCl, and 50% glycerol) with 50 

ng/ml poly(deoxyinosinic-deoxycytidylic acid) (poly(dI-dC)) and a 20-fmol final 

concentration of biotin-labeled, double-stranded oligonucleotide for 20 min at room 

temperature. For competition assays, samples were preincubated with a 100-fold excess of a 
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nonlabeled oligonucleotide. For the supershift assay, 0.8 µg of each Ab specifically directed 

against STAT-1 was preincubated with the nuclear extracts in the absence of poly(dI-dC) for 

30 min at 22°C. Subsequently, poly(dI-dC) was added and incubated for 5 min, followed by 

the addition of a probe for an additional 20 min. The samples were loaded on a 5% native 

polyacrylamide gel in 0.5x Tris-borate-EDTA buffer at 80 volts for 2 h. The gels were blotted 

onto a nylon membrane (Bio-Rad Laboratories), blocked, incubated with HRP-avidin, and 

developed using the LightShift chemiluminescent EMSA kit (Pierce) according to the 

manufacturer’s instruction. Visualization of the chemiluminescent signal on the membrane 

was achieved by exposing to X-ray film (Kodak).  

 

IgG transcytosis  

         IgG transport was performed with a modification of previously described methods (149, 

150). Calu-3 cells were grown onto Transwell filter inserts (Corning Costar) to form a 

monolayer exhibiting transepithelial electrical resistances (700 ohms/cm2). Transepithelial 

electrical resistance was measured using a tissue-resistance measurement equipped with 

planar electrodes (World Precision Instruments). Monolayers were equilibrated in HBSS and 

mock-treated or stimulated with IFN-γ (25 ng/ml) for 24 h. Thereafter, human IgG at a final 

concentration of 0.5 mg/ml was added to the apical or basolateral medium. Monolayers were 

incubated for 1 h with IgG or chicken IgY at 37°C. An aliquot of the buffer was collected into 

which apically and basolaterally directed IgG or IgY transport was conducted. Transported 

proteins were analyzed by reducing SDS-PAGE and Western blot-ECL. NIH Image software 

(National Institutes of Health, Bethesda, MD) was used to determine the relative band 

intensities of a blot.  
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Statistical analysis  

          Data from three independent experiments were initially analyzed by ANOVA to detect 

significant changes between the stimulated and mock-stimulated cells. Additional statistical 

evaluation of the differences in expression of FcRn genes was measured by Student’s t test 

with a Bonferroni correction. All results are expressed as mean values. A value of p < 0.05 

was considered significant.  

 

RESULTS 

Exposure of cells with IFN-γ down-regulates the expression of FcRn  

        IFN-  has been shown to enhance the expression of the MHC genes at the 

transcriptional or posttranscriptional level (140, 141). To determine whether IFN-γ regulates 

human FcRn gene expression, we treated human intestinal epithelial cell lines that express 

FcRn (61, 149) with IFN-γ (50 ng/ml). Our data showed that FcRn gene expression in T84 

and HT-29 cells was down-regulated in response to IFN-γ treatment as shown by 

semiquantitative RT-PCR (Fig. 3.1A). To rule out whether this decrease in FcRn was the 

result of general transcriptional decreases in the cell, we also measured the transcript for the 

MHC class II-associated invariant (Ii) chain, a molecule highly up-regulated by IFN-γ. 

Transcript levels for Ii (Fig. 3.1A, bottom panel) were significantly increased by IFN-γ, 

suggesting that the transcriptional down-regulation of FcRn is specific. The decreased 

expression of FcRn protein in HT-29 cells was shown by Western blotting in IFN-γ-

stimulated cells (Fig. 3.1B, top panel, lanes 2–4) in comparison with mock-stimulated cells 

(lane 1). Lysates from HeLa-FcRn and HeLa were used as a positive (Fig. 3.1B, lane 3) and 

negative (lane 4) controls. To establish whether this transcriptional repression requires new 
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protein synthesis, we performed additional experiments where the levels of FcRn mRNA 

were determined following treatment with cycloheximide (CHX), an established inhibitor of 

protein synthesis. In these experiments we used a concentration of CHX (25 µg/ml) at which 

>95% of protein synthesis is blocked within 1 h (151). The results showed that the IFN-γ-

induced transcriptional repression was totally independent of new protein synthesis. 

Specifically, by RT-PCR analysis we observed 60% reduction in FcRn mRNA synthesis 

following 24 h of exposure to IFN-γ in the presence of CHX, an overall inhibition 

comparable with that obtained in the absence of CHX (Fig. 3.1C). these data indicated that 

preexisting proteins were modified in a ligand-dependent manner to repress the FcRn gene.  

 

Effect of IFN-γ on FcRn mRNA stability, rate of mRNA transcription, and 

apoptosis  

          The primary mechanisms that regulate the amount of mRNA produced in 

mammalian cells are transcript stability and/or the rate of mRNA transcription. As 

such, we ascertained whether either of these mechanisms was involved in regulating 

the decrease in mature FcRn mRNA in the absence or presence of IFN-γ. Using an 

actinomycin D inhibition assay as shown by semiquantitative RT-PCR (Fig. 3.2 A, 

left panel) and quantitative real-time PCR (Fig. 3.2 A, right panel), the half-lives of 

FcRn mRNA appeared to be similar between mock- and IFN-γ-treated cells for the 

indicated time period. This suggests that a stability mechanism was not likely 

responsible for the decrease in FcRn mRNA. In contrast, nuclear run-on analysis 

indicated that the rate of FcRn mRNA transcription was decreased 80% in THP-1 

cells exposed to IFN-γ (Fig. 3.2 B). Thus, this finding suggests that the decrease in  
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A. B.

C. 

Figure 3.1 Down-regulation of human FcRn expression in epithelial cells by IFN- . 
*, p < 0.05. A. Down-regulation of human FcRn and up-regulation of Ii occur concomitantly in 
response to IFN-  treatment. Human intestinal cell lines were treated with (+) IFN-  (lanes 3, 5, 
and 7) or without (–) IFN-  (lanes 2, 4, and 6) (50 ng/ml) for 48 h. GAPDH amplification was 
used as an internal control. B.Western blot analysis of FcRn expression. The cell lysates (20 µg) 
from mock-treated (lane 1) and IFN- -stimulated HT-29 (lane 2) Cell lysates from HeLa-FcRn 
(lane 3) and HeLa (lane 4) were used as positive or negative controls, respectively. The ratio of 
the mock group is assigned a value of 1.0, and the values from other groups are normalized to 
this value. The ratios of FcRn and β-tubulin are shown as indicated. C. Effects of CHX on IFN-
-mediated repression of FcRn expression. Human intestinal HT-29 cells were incubated with (+) 
or without (–) the protein synthesis inhibitor CHX (25 µg/ml) for 2 h as indicated. HT-29 cells 
were subsequently stimulated with (+) or without (–) IFN-  (25 ng/ml) for 24 h. At the end of 
the incubation period, total RNA was isolated and analyzed by RT-PCR for FcRn and GAPDH. 
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FcRn mRNA induced by IFN-γ-stimulation on a HT-29 or THP-1 cell is due to a 

decrease in the rate of primary FcRn RNA transcription. 

           

           In addition, activation of the STAT-1 signaling pathway can cause expression 

of caspase 1 and subsequent apoptosis (152). To further assess the possible role of 

IFN-γ in inducing apoptosis in our experiment, HT-29 cells were pretreated with or 

without IFN-γ (50 ng/ml) for the indicated time periods (Fig. 3.2 C). A TUNEL assay 

demonstrated that IFN-γ induced detectable apoptosis in a small fraction of HT-29 

cells only following 120 h of incubation (Fig. 3.2 C). Mock-treated HT-29 cells were 

stained TUNEL negative at 120 h; cells stained after treatment with DNase I were 

used as a positive control (Fig. 3.2 C, panel labeled "PC"), and cells without IFN-γ 

treatment or those stained without TdT were used as a negative control (Fig. 3.2 C, 

panel labeled "NC"). Collectively, neither instability of FcRn mRNA nor significant 

apoptosis was induced by IFN-γ when used for this period of time (24–48 h) and at 

these concentrations (50 ng/ml) in our experiments. 

Identification of STAT-1 binding site in the FcRn promoter  

        IFN-stimulated response elements (ISRE) and IFN-γ activation site (GAS) 

motifs are present in a variety of IFN-inducible genes (90, 134). ISRE (consensus 

sequence AGTTTCNNTTTCNY) and GAS (consensus sequence TTNCNNNAA, 

TTCNNNG/TAA) binding motifs have been mapped (90, 134, 153). We searched for 

putative ISRE and GAS sequences along the entire human FcRn promoter (GenBank 

accession no. AC010619). Computational inspection revealed that the FcRn gene 

promoter contained no sequence similarity to typical ISRE consensus sequences;  
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Figure 3.2. Kinetic studies of FcRn mRNA levels and apoptosis in the absence or 
presence of IFN- . A. Human intestinal HT-29 cells were preincubated for 24 h in the absence or 
presence of IFN-  (25 ng/ml). Actinomycin D (5 µg/ml) was then added; total cellular RNA was 
harvested at the indicated time points (1–10 h). Ten nanograms of total RNA were reverse 
transcribed to cDNA in a final volume of 20 µl. Subsequently, 30 cycles of semiquantitative RT-
PCR (A, left panel) or a real-time RT-PCR (A, right panel) were performed. Electrophoresis of 10 
µl of PCR product was done on 1.5% agarose gel (left panel). FcRn values were normalized for 
GAPDH with each sample. FcRn product at time 0 before the addition of actinomycin D was plotted 
as 100%. B, Nuclear run-on analysis was performed on THP-1 nuclei isolated in the presence of 
biotin-16-UTP for 30 min. Biotinylated RNA was collected using streptavidin magnetic beads, and 
the level of FcRn or GAPDH RNA was determined by quantitative real-time RT-PCR. Data are 
mean ± SD of three independent experiments. C. TUNEL staining of human intestinal epithelial HT-
29 cells. After mock treatment or IFN-  (50 ng/ml) treatment at the indicated times, in situ detection 
of apoptotic cells was performed on HT-29 cells cultured on coverslips by using an in situ cell death 
detection kit. Treatment with DNase I as a positive control (PC) or stained without terminal 
deoxynucleotide transferase as a negative control (NC). For the correlation of TUNEL with nuclear 
morphology, cultures were counterstained with DAPI (5 µg/ml). Red represents apoptosis positive 
cells. Images were viewed by fluorescence microscopy with excitation at 320–580 nm. 
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however, it had two sequences with a similarity to the STAT-1 consensus target 

sequence (Fig. 3.3 A). To quickly screen whether these two sequences arefunctional 

in the transcriptional repression of FcRn by IFN-γ, we set up a transient cell 

transfection assay using the FcRn promoter/luciferase reporter gene construct 

phFcRnLuc (146). We also generated constructs pM1 and pM2, each of which 

contains mutations of the putative GAS sequence in phFcRnLuc (Fig. 3.3 A). 

Transient transfection revealed that the phFcRnLuc or pM1 construct had decreased 

expression of luciferase in response to IFN-γ stimulation in wild-type 2fTGH cells 

(Fig. 3.3 B). However, transient transfection of the pM2 construct revealed that 

mutation of this putative GAS sequence significantly increased the luciferase activity 

in IFN-γ-stimulated cells to a similar level as that in mock-stimulated cells (Fig. 3.3 

B). Hence, we conclude that the GAS sequence (TTCTTTGAA) in the human FcRn 

promoter is functional in response to IFN-γ stimulation (Table  III. I ).  

           

           To verify that this putative GAS sequence has the capability to directly bind 

STAT-1 protein in living cells, a ChIP assay was used to precipitate the STAT-1-

DNA complexes with an Ab specific for STAT-1. After cross-linking the DNA with 

bound STAT-1 proteins in situ in IFN-γ-stimulated vs mock-stimulated HT-29 cells, 

the DNA fragments containing the STAT-1 sequences in FcRn promoter were 

precipitated with Ab and measured by PCR amplification. As shown in Fig.3.3 C, 

PCR with primers flanking the putative STAT-1 sequences generated a band from 

DNA coprecipitated with STAT-1 (lanes 2 and 3). In a negative control, 

immunoprecipitation with normal IgG did not generate any corresponding PCR 
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products (Fig. 3.3 C lane 4). The STAT-1 binding sequence in the ICAM-1 gene 

promoter (154) was used as a positive control. As expected, ChIP assays failed to 

detect DNA bands from U3A cells (Fig. 3.3 C, lanes 5 and 6).  

         

          To further visualize the capability of STAT-1 protein to directly bind to the 

putative FcRn GAS site identified from the ChIP assay, EMSAs were conducted to 

confirm the ChIP assay by using oligonucleotides containing the putative GAS 

sequence. As shown in Fig. 3.3 D, oligonucleotides formed a complex with extracts 

from IFN-γ-stimulated cells (lane 2) but not from mock-stimulated cells (lane 1). An 

oligonucleotide containing the GAS sequence from the c-myc promoter was used as a 

positive control (Fig. 3.3 D, lane 9). To verify whether the binding was specific, a 

competition assay was performed. The inducible band could be completely competed 

away by unlabeled oligonucleotides (lane 3). Supershift analysis revealed that the 

complex contains a factor that was recognized by Ab specific for the STAT-1 protein 

(lane 4) but not normal IgG (lane 5). 

 

IFN-γ induces the in vivo association of p300 and STAT-1α, and overexpression of 

p300 reduces IFN-γ -mediated FcRn gene repression  

          Our data show that the nuclear translocation of STAT-1α correlated with IFN-γ 

-mediated down-regulation of FcRn gene transcription and that STAT-1α bound 

directly to the FcRn promoter (Fig. 3.3). It is possible that nuclear protein(s) 

interacting with STAT-1α may play a pivotal role in down-regulating FcRn gene  
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D. 

Figure 3.3  Identification of IFN-  responsive element in human FcRn promoter. 
A.The putative STAT-1 binding sequences in FcRn gene promoter. STAT-1 binding sequences 
from ICAM1 and c-myc as a positive control. The consensus STAT-1 sequence is in boldface. N 
represents any nucleotide. Reporter construct phFcRnLuc contains the FcRn promoter sequence 
from –1801 to +863 kb. The putative GAS mutations (underlined bases) in constructs pM1 and 
pM2 are also shown. Arrowheads indicate the position of the STAT-1 binding site in relation to 
the transcription start site of the FcRn gene. Luc, Luciferase. B. Identification of GAS sequence in 
response to IFN-  stimulation. Wild-type 2fTGH cells were transiently transfected with 
phFcRnLuc, pM1, and pM2 constructs. Twenty-four hours after transfection, cells were either 
mock-treated (filled bar) or treated with IFN-γ (open bar) for 24 h. Cells were then harvested and 
protein extracts were prepared for the luciferase assay. C. Detection of the in vivo binding of 
STAT-1 protein to the human FcRn promoter in a ChIP assay. ChIP assays were performed using 
STAT-1-specific Abs (lanes 1–3, 5, and 6) or isotype-matched IgG (lane 4) as a negative control. 
D.EMSA analysis of binding activities of DNA probe with nuclear extracts from HT-29 cells 
treated with (+) or without (–) IFN- . A 26-bp fragment spanning the putative STAT-1 binding 
sequence corresponding to the GAS was used as a biotin-labeled probe. Binding specificity of 
these complexes was examined by competition assays with a 100-fold molar excess of unlabeled 
STAT-1-specific probe (lane 3). Supershift experiments were performed in the presence of the 
STAT-1 Ab, resulting in the formation of a slow migrating supershift band (lane 4).  
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expression. It is known that STAT-1α can bind CBP/p300 (147). Therefore, we 

further examined the possibility that the interaction between STAT-1α and CBP/p300 

may lead to down-regulation of FcRn gene expression. Coimmunoprecipitation was 

used to examine the in vivo association of endogenous p300 and STAT-1α. The 

2fTGH and U3A cells were incubated in the absence and presence of IFN-γ and 

nuclear extracts from these cells were subjected to immunoprecipitation with Ab 

against p300. The precipitated immune complexes were then blotted for the presence 

of STAT-1α. In IFN-γ-treated cells, anti-p300 Ab immunoprecipitated a significant 

amount of STAT-1α (Fig. 3.4 A lane 2) in comparison with mock-stimulated cells 

(lane 1). As a negative control, IgG did not immunoprecipitate STAT-1α (lane 3). 

These results suggest that STAT-1α does not associate with p300 in mock-stimulated 

cells; however, IFN-γ treatment can induce the in vivo association of STAT-1α and 

p300.  

         

         It is possible that STAT-1α suppresses FcRn gene activation by interfering with 

the binding of CBP/p300 to the FcRn promoter. Transient transfection assays were 

first used to examine whether overexpression of p300 could reverse IFN-γ-mediated 

FcRn suppression. Indeed, overexpression of p300 reversed IFN-γ-induced 

suppression of luciferase expression in a dose-dependent manner (Fig. 3.4 B). 

Therefore, these data suggest that the IFN-γ-induced interaction between STAT-1α 

and CBP/p300 is responsible for the down-regulation of FcRn expression by IFN-γ. 
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A. 

B. 

Figure 3.4  IFN-  induces the in vivo association of p300 and STAT-1 , and 
overexpression of p300 blocks IFN- -mediated FcRn gene down-regulation. A. The 
2fTGH (lanes 1–3) and U3A (lane 4) cells were treated with IFN-  (10 ng/ml) or mock treated 
for 2 h and then nuclear extracts were obtained and subjected to immunoprecipitation. Anti-p300 
mAb (lanes 1, 2, and 4) and isotype-matched IgG (lane 3) were used to immunoprecipitate the 
STAT-1  and p300 complex. B. HT-29 cells were transiently transfected with increasing 
amounts (0.1–0.4 µg) of a p300 construct, and the total amount of transfected DNA was 
normalized by pcDNA3. Transfected cells were treated with IFN-  or mock treated for 14 h. 
FcRn mRNA was analyzed by quantitative real-time RT-PCR analysis. 
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IFN-γ reduced bidirectional transport of IgG in polarized lung epithelial 

monolayers  

          The FcRn protein has been shown to transport IgG bidirectionally in polarized 

epithelial cells, namely from the apical to the basolateral direction or vice versa (148). 

We therefore addressed the possibility that IFN-γ-stimulated epithelial cells have 

altered IgG transcytosis. Calu-3 cells have been previously shown to transcytose 

dimeric IgA in response to IFN-γ stimulation (155). We established the FcRnin Calu-

3 cell lines and further verified the FcRn down-regulation by IFN-γ stimulation, as 

assessed by semiquantitative RT-PCR (Fig. 3.5 A).  

            

           In our transport experiment, after adding human IgG to the apical or 

basolateral surface of a Calu-3 cell monolayer, we assessed the IgG transported to the 

opposite basolateral or apical chamber following IFN-γ exposure, respectively. As 

expected, after 1 h at 37°C intact human IgG applied to the apical or basolateral side 

was transported across this monolayer. IgG H chain was detected in medium 

incubated at 37°C (Fig. 3.5 B, upper row). Importantly, IgG transport was decreased 

30% in the apical to basolateral direction (Fig. 3.5 B, lane 3), or 40% in the 

basolateral to apical direction (Fig. 3.5 B, lane 5) following IFN-γ stimulation, in 

comparison to the mock-treated monolayer (Fig. 8C, lanes 2 and 4). Treatment of 

Calu-3 monolayers with IFN-γ for 24 h might result in a leakage of IgG molecules, as 

shown in human intestinal epithelial cell line T84. Chicken IgY was used as a 

negative control because it is structurally similar to human IgG but does not bind to 

human FcRn. As shown in Fig. 3.5 B (bottom panel), chicken IgY was not transported  
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A. B. 

Figure 3.5  Effects of IFN-  stimulation on the IgG transcytosis.  
A. Semiquantitative RT-PCR analysis of FcRn mRNA in the human lung epithelial Calu-3 
cell line. The Calu-3 cells were treated (+) with IFN-  (25 ng/ml) (right lane) or left untreated 
(–) (left lane) for 24 h. B.Calu-3 cells (5 x 105/well) were grown in a 12-well Transwell plate. 
When the resistance of the monolayer reached 700-1000 ohms/cm2, cells were stimulated with 
or without IFN-  (25 ng/ml) for 24 h. Cells were loaded with human IgG (top row) or chicken 
IgY (bottom row) (0.5 mg/ml) at 4°C in either the apical (lanes 2 and 3) or basolateral (lanes 4 
and 5) chamber. Lane 1 represents an IgG or IgY H chain. Cells were warmed to 37°C to 
stimulate transcytosis, and medium was collected from the nonloading compartment 1 h later 
and subjected to Western blot-ECL analysis. The results are representative of at least three 
independent experiments. Band intensities of IgG heavy chain (HC) were compared by 
densitometry against IgG transported from mock-stimulated cells. 
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in either direction, suggesting that the transepithelial flux of Abs by passive diffusion 

through intercellular tight junctions or monolayer leaks does not contribute to the 

amount of the IgG we detect. Therefore, we concluded that IFN-γ stimulation 

decreased the IgG transport across the polarized epithelial cells.  

 

DISCUSSION 

             Transcriptional regulation of genes hinges on the ordered recruitment of 

transcriptional polymerase, coactivators, repressors, chromatin modifiers/remodelers, 

and general transcriptional factors to the promoters of target genes. How the gene 

transcriptional machinery integrates signals from different biological signaling 

pathways is a central question for gene regulation. Exposure to IFN-γ can result in the 

regulation of up to 500 genes in either a positive or a negative way (134, 138). Genes 

that are negatively regulated by IFN-γ are fewer in number than those positively 

induced. Among the negatively regulated ones are some of the MMPs, stromelysin, 

type II collagen, HL-60, neu/HER-2, cell-cycle genes (c-myc, cyclin D, cyclin A), 

granulocyte chemotactic protein-2, IL-4, prolactin, perlecan, and the scavenger 

receptor A (SR-A) genes (138, 156-164). In this article we report, for the first time, 

the effect of IFN-γ on the transcriptional regulation of FcRn.  

          

         Activation of the IFN-γ signaling pathway down-regulates the expression of the 

human FcRn gene, and this down-regulation is dependent on the STAT-1 signaling 

pathway. This conclusion is supported by several pieces of evidence. First, our results 

showed that stimulation by IFN-γ decreased the FcRn expression in human intestinal 
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epithelial cells, Second, a nuclear run-on assay demonstrated that this down-

regulation indeed occurred at transcription initiation (Fig. 3.2 B). Third, we have 

mapped an IFN-γ-responsive sequence, GAS, to the promoter region of the human 

FcRn gene by both EMSA and ChIP. Mutation of this GAS sequence abolished the 

inhibitory effect of IFN-γ on FcRn promoter (Fig. 3.3). Fourth, expression of 

luciferase activity driven by the FcRn promoter following IFN-γ exposure was not 

affected in STAT-1-null U3A in comparison with the wild-type cell 2fTGH. These 

results provided both biochemical and genetic support for the conclusion that 

increased phosphorylation of STAT-1 is the mechanism by which IFN-γ treatment 

leads to FcRn down-regulation. Recent studies have shown that IFN-γ can regulate 

gene expression by STAT-1-independent pathways(138). Among several genes that 

are inhibited by IFN-γ, c-myc has been shown to require STAT-1-dependent and 

STAT-1-independent pathways and, notably, there is a GAS element in the c-myc 

promoter that is necessary, but not sufficient, to confer the total inhibitory effects of 

IFN-γ. Therefore, our data support the conclusion that the down-regulation of human 

FcRn expression was mediated via a STAT-1-dependent pathway in response to IFN-

γ. However, our data could not exclude the possibility that STAT-1 may bind to sites 

in other parts, such as introns, of the human FcRn gene. We considered the possibility 

that IFN-γ induces apoptosis(152) and regulates the expression of the gene at 

posttranscriptional level. However, several facts counter this conjecture. First, down-

regulation of human FcRn and up-regulation of Ii occurred concomitantly in response 

to IFN-γ treatment (Fig. 1A). Second, we failed to detect any noticeable effect of IFN-

γ on human FcRn half-life in actinomycin D-treated cells (Fig. 3.2), suggesting that 
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the half-life of FcRn mRNA was not affected by IFN-γ. Third, apoptosis was only 

detected after a 5-day period and then only in a few cells (Fig. 3.2 D). In addition, the 

level of IFN-γ repression (40–50%) on the reporter construct phFcRnLuc was similar 

to FcRn gene repression in cell lines; this would exclude the possibilities that the 

down-regulation of FcRn gene expression might be caused by apoptotic effects of 

IFN-γ or that IFN-γ affects the half-life and stability of FcRn mRNA. Therefore, these 

complementary experiments eliminate the concerns of apoptotic effects or stability of 

FcRn mRNA by IFN-γ.  

          

         The mechanism of STAT-1-mediated down-regulation of human FcRn 

expression might be through sequestering of the transcription activator CBP/p300. 

One potential mechanism by which IFN-γ might normally mediate the repression of 

FcRn transcription could be via STAT-1 interaction with either constitutive 

transcription factors or transcription factors that are activated upon exposure to IFN-γ. 

Although STAT-1 acts as an activator of transcription in numerous genes in response 

to IFN-γ stimulation, the detailed mechanisms by which STAT-1 switches on and off 

gene expression are still unclear. As shown in several elegant studies, although STAT-

1 is necessary and sufficient to inhibit MMP-9, SR-A, and type II collagen gene 

transcription by IFN-γ, there are no GAS elements in the promoters of these genes 

(156, 165). Thus, suppression of the expression of these genes by IFN-γ -activated 

STAT-1 is probably not dependent on the direct binding of STAT-1 on the gene 

promoter of these genes. In contrast, the suppression of the MMP-9 or the SR-A gene 

depends on the ability of activated STAT-1 to interact with other nuclear proteins. 
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Indeed, STAT-1 can interact with a variety of other transcription factors, including 

STAT-2, CBP, p300, p300/CBP cointegrator protein (pCIP), histone deacetylase 1 

(HDAC-1), N-Myc interactor (Nmi), and BRACA1 (166-169). Among these proteins, 

CBP/p300 serves as a scaffold in transcription complex formation in addition to 

functioning as histone acetyltransferases. Given the fact that the total amount of 

CBP/p300 is limited compared with the amount of other transcription regulators, a 

competition for using CBP/p300 in different signaling pathways has been proposed. In 

the case of the MMP-9, SR-A, neu/HER-2 genes, activated STAT-1 can 

competitively bind with CBP/p300, thereby resulting in decreased association of 

CBP/p300 in the gene promoter and interference with the assembly of functional 

transcription complexes (159, 165, 166). Our data showed that overexpression of 

CBP/p300 overcame the inhibitory effect of IFN-γ (Fig. 3.4 B). However, our data 

could not exclude the possibility of STAT-1 interacting with other transcription 

factors. For example, Y-box-binding protein YB-1, RFX5 complex, CIITA, IFN 

regulatory factor (IRF)-1, and IRF-2 are also involved in the gene repressions by IFN-

γ (135, 161, 169, 170). Further work is underway to determine how STAT-1 actually 

mediates repression of FcRn gene expression.  

           

         To date, two biological functions have been attributed for FcRn: transcytosis of 

IgG across polarized epithelial cells and protection of IgG from degradation. The level 

of FcRn expression may be critical for the regulation of IgG levels in tissues and 

blood. First, mucosal Abs are important for mucosal infections, and epithelial cells 

that line mucosal surfaces in vivo express FcRn. Therefore, FcRn transports normal or 
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pathogen-specific neutralizing IgG across polarized cells such as placental or mucosal 

epithelial cells, potentially "seeding" maternal and mucosal immunity. From our 

findings, one might speculate whether IFN-γ dampening the expression of the FcRn 

receptor might lead to the lessening of IgG transport. In an in vitro Transwell model, 

our results clearly demonstrated that IFN-γ functionally decreased IgG transport in the 

polarized lung epithelial Calu-3 cell line (Fig. 3.5 B). Therefore, IFN-γ may dampen 

IgG-mediated mucosal immunity by reducing IgG transport in vivo. This result is in 

contrast to the fact that IFN-γ up-regulates pIgR expression, which is expected to 

enhance secretory IgA-mediated mucosal immunity (155, 171). Furthermore, our 

previous finding revealed that TNF-α and IL-1β, via activation of the NF-κB 

signaling pathway, can up-regulate the functional expression of FcRn. Because IFN-γ, 

TNF-α, and IL-1β are proinflammatory cytokines, FcRn levels may therefore be 

finely tuned by opposing negative and positive signaling in the maintenance of IgG 

homeostasis under pathophysiological conditions. Thus, regulation of FcRn 

expression in vivo likely involves the species, magnitudes, and coordinated actions of 

proinflammatory cytokines or other functional regulators. Secondly, by mediating the 

protection of IgG from catabolism, FcRn extends the half-life of pathogenic or 

autoimmune IgG, potentially promoting the progression of IgG-mediated autoimmune 

diseases (106). Therefore, by influencing the expression level of FcRn, IFN-γ may be 

directly coupled to the pathogenesis of IgG-mediated autoimmune diseases. Indeed, 

IFN-γ has been shown to regulate the intensity or the progression of several 

autoimmune diseases (172). However, it remains for further investigation whether its 

regulatory effect in the changing course of an autoimmune disease is, at least in part, 
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through the down-regulation of FcRn expression. This question merits further 

investigation in a murine model. Overall, by examining the molecular mechanisms by 

which IFN-γ regulates FcRn expression, our studies may contribute toward the 

general understanding of FcRn-mediated mucosal immunity and inflammation. The 

identification and understanding of IFN-regulated FcRn gene expression may lead to 

improved therapies for IgG-mediated autoimmune diseases.  

           

           Among MHC class I-related molecules, IFN-γ causes the up-regulations of the 

MHC genes HLA-A, HLA-B, HLA-C, HLA-F, HLA-G, HLA-H, HLA-E, and CD1 

(141). The promoters of HLA-A, HLA-B, HLA-C genes contain a consensus ISRE 

sequence. IRF-1 is induced by IFN-γ and interacts with the ISRE in HLA gene 

promoters to stimulate transcription initiation (141). In the special case of HLA-E, 

although IFN-γ also induces HLA-E expression, the HLA-E gene promoter does not 

contain a functional ISRE. Instead, two distinct elements in the HLA-E promoter are 

termed the IFN response region (IRR) and the upstream IFN response region (UIRR). 

STAT-1 and GATA-1 bind to the IRR and UIRR, respectively, to stimulate 

transcription from the HLA-E promoter (173). Among the MHC class I-related genes, 

FcRn is an only molecule that is down-regulated by IFN-γ (Fig. 3.6). This scenario 

makes FcRn unique in the response to IFN regulation. Therefore, understanding 

differences in the mechanisms by which IFN-γ stimulates MHC-I genes and FcRn 

could be of great interest in the settings of immune responses and autoimmunity. Any 

differences in the signal transduction pathways leading to differential expression of  
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Figure 3.6. Schematic illustration of transcription factors binding to the promoter 
region of some MHC class I-related genes after IFN-γ treatment. The ISREs of HLA-A, 
HLA-B, HLA-C, and HLA-F bind IRF-1 upon IFN-γ exposure and regulate the IFN-γ-induced 
transactivation of these genes. The putative ISRE of HLA-E did not respond to IFN-γ-stimulation, 
whereas an upstream GAS sequence of HLA-E is responsive to IFN-γ through STAT-1 activation. 
HLA-G is responsive to IFN-γ via an upstream IFN-responsive regulatory sequence. Multiple 
putative ISREs of CD1D are predicted, but one is shown here. Human FcRn responds to IFN-γ 
through STAT-1 activation and binding to an upstream GAS sequence. In addition, several 
constitutive transcription factors are revealed to bind to the ISRE area. Sp1 binds to the GC-rich 
sequences in the ISRE areas of HLA-B, HLA-C, and HLA-G. The putative E box 5' of the ISRE in 
most HLA-BE alleles is bound by USF-1 and USF-2. Arrows represent the up- and down-
regulation of gene expression upon IFN-γ exposure. The schematic structure of the gene promoter 
is not scaled. 
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the FcRn and MHC class I genes would be potential targets for therapeutic 

intervention aimed at selective activation of one or the other.  

 

FN-

ion 

ould also provide new information on mucosal protection and vaccine 

development. 

 

 

 
 

          

          In summary, transcriptional repression of FcRn gene expression by IFN-γ is 

dependent on activated STAT-1 protein. These findings suggest that the biological 

consequence of IFN-γ -induced transcription of the FcRn gene is distinct from that of

other MHC class I or related genes. Therefore, our observation that FcRn repression 

by IFN-γ is, to our knowledge, the first demonstration that MHC class I-related genes 

are regulated negatively by IFN-γ exposure. These results provide evidence that I

γ differentially modulates the expression of FcRn and MHC class I or its related 

genes, which generates opposing effects on cellular and humoral immunity. Further 

studies of STAT-1-mediated mechanism of transcriptional repression on FcRn will 

provide insights into understanding the inhibitory effects of IFN-γ on gene expression 

in general. Given the important role of FcRn in the maintenance of IgG concentrat

as well as transport of IgG across placenta and mucosal surfaces, the results from 

these studies w
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CHAPTER 4: FCRN MEDIATES EFFICIENT ANTIGEN PRESENTATION 

OF PHAGOSOMAL IMMUNE COMPLEXES IN MACROPHAGE, BUT NOT 

IN DENDRITIC CELL. 

 
 
 
ABSTRACT 
 
            While Fc gamma receptors (FcγRs) facilitate MФ and DC presenting IgG-

restricted Immune complexes (ICs) onto MHC class II molecules efficiently, the role 

of another IgG Fc receptor, neonatal Fc receptor (FcRn) remains elusive. We now 

show that the phagosomal FcRn in MФ binds to uptaken latex-ICs, prolongs the half 

life of latex-IC, and enhances the MHC-II-restricted antigen presentation. However, 

defective FcRn has no effects on the antigen processing and presentation of latex-ICs 

in DC both in vitro and in vivo. We show that phagosomes in MФ are acidified very 

rapidly, that is required for the physical interaction of FcRn with IC. By contrast, DC 

maintains the neutral environment of phagosomes for a long time, which prohibits 

FcRn from binding to IC, consequently unable to affect the antigen process and 

antigen presentation. Our studies reveal a novel mechanism for FcRn to modulate the 

processing and presentation of IgG-complexed ICs antigen to MHC class II. 
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INTRODUCTION 
            
            Uptaking, processing and presenting exogenous antigens to T lymphocytes by 

professional antigen-presenting cells (APC) such as MФ and DC is a crucial step to 

initiate the immune responses (99). MФ and DC express FcγRs on their surfaces. 

Functionally analogous to the B cells receptor for antigen presentation, FcγRs could 

internalize antigen in the form of immune complexes and facilitate MHC class II-

restricted antigen presentation and MHC class I-restricted cross-presentation (9, 174, 

175). FcγRs-internalized IC are transported through endocytic pathway, to late 

endosomes or phagosomes, where IC is fragmented and loaded onto MHC class II 

molecules for  presentation to T cells (175). Furthermore, the binding of IC to FcγRI 

and FcγRIII triggers the activation signaling through the γ subunit (FcRγ) that carries 

an immunoreceptor tyrosine-based activation motif (ITAM) (176). The signal through 

the FcγRs induces the maturation of DC and promotes antigen presentation (174). 

 

             The neonatal Fc receptor for IgG (FcRn) is structurally and functionally 

different from FcγRs. FcRn consists of one membrane-bound 45-50 kDa heavy chain 

and one 12 kDa light chain β2-microglobulin (β2m). The structure and sequence 

analysis show that FcRn shares homology with MHC class I molecule (26, 47). 

Despite of the structure similarity, the peptide groove of FcRn is occluded (28, 171). 

Instead, FcRn binds Fc portion of IgG on the outer face of the narrowed groove, 

which involves both heavy chain and β2m. Several histidines residing in CH2 and 

CH3 domains of IgG are key residues directly contact FcRn, which are distinct from 

FcγR binding sites (26). FcRn was identified as a receptor to transport maternal IgG 
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to fetus or to the newborn across epithelial and endothelial barriers (36, 56). FcRn 

also can transport IgG and complexed antigens across intestine epithelium (177). This 

transcytosic function is accomplished by FcRn capturing IgG or ICs on the cell 

surface or in the endosomes, transporting them across the polarized cellular barriers. 

FcRn also acts as salvage receptors diverting the bound IgG away from lysosomal 

degradation and maintaining IgG homeostasis (67, 68, 178). These two functions of 

FcRn are dependent on the ability of FcRn to bind IgGs, which is pH restricted and 

only occurs at the pH ≤ 6.5 (27). 

 

            The pH value in the endocytic compartments of professional APCs plays a 

very important role to control the degradation of exogenous antigen following their 

uptake (179), as lysosomal degradation could destroy antigenic epitope for 

presentation. The high antigen presenting efficiency of DC is partially due to the pH 

regulation in different maturation stages and in different endocytic compartments. 

Particularly, the alkalinization of phagosomes provides DC the ability to control 

degradation for optimal presentation (101, 180). The rapid acidification of 

phagosomes in MФ results in a strong activation of lysosomal proteases and effective 

protein degradation (181, 182). Our recent studies show that in DC and MФ, FcRn 

localizes in late endosomes/lysosomes in addition to the early endosomes (183, 184). 

In this study, we compared the roles of FcRn in antigen processing and antigen 

presentation in DC and MФ. We showed that FcRn can facilitate antigen presentation 

by stabilizing the IgG-complexed antigens in a pH-dependent manner, which 

provides a novel mechanism to explain the FcRn-mediated antigen presentation. 
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MATERAILS AND METHODS 
 

 Mice.  

           Seven-wk-old C57BL/6 mice were purchased from National Cancer Institute 

and Charles River Laboratories (Frederick, MD). Female B6.PL-Thy1a/CyJ (Thy1.1 

congenic) WT mice and OT-II mice (B6 background) transgenic for OVA323-339 were 

purchased from The Jackson Laboratory (Bar Harbor, ME). OT-I/RAG-/- (B6 

background) mice transgenic for OVA257-264 were kindly provided by ghost lab 

(NIAID, Bethesda, MD). MHC class II -/- mice on B6 background were purchased 

from Taconic (Rockville, MD). FcRn-/- B6 mice bearing Thy1.2 were used (68). 

Transgenic mice were bred and maintained in HEPA-filtered cages at the University 

of Maryland (College Park, MD). The studies detailed herein conform to the 

principles set forth by the IACUC guidelines for the care and use of animals in 

biomedical research. 

 

Reagents.  

                   OVA (grade VI) was purchased from Sigma-Aldrich (St. Louis, MO). Rabbit IgG 

poly-Ab to OVA were purchase from MP Biochemicals (Solon, Oh). Rabbit IgG-

OVA immune complexes were made by mixing a 5:1 molar excess of anti-OVA: 

OVA at 37°C for 30min.  Mouse IgG mono-Ab to OVA was purchased from Sigma. 

Mouse IgG-OVA immune complexes were made by mixing 1:1 of anti-OVA: OVA 

at 37°C for 30min. Latex beads (3μm, fluorescent or nonfluorescent) were purchased 

from Polyscience (Warrinton, PA). Latex beads were noncovalently conjugated with 
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OVA (10mg/ml) by incubation at 4°C for 48 hours. After then, the conjugated beads 

were washed with PBS for three times and stored in PBS at 4°C. Latex-OVA-ICs 

were made by mixing Latex-OVA with Rabbit anti-OVA at the ratio of 1:1.  LPS 

from Escherichia coli type 0111.B4 was abtained from Sigma-Aldrich (St. Louis, 

MO). Rat mAb anti-LAMP-1 was from the Developmental Studies Hybridoma Bank 

(Iowa City, IA). mAb anti-EEA1, rat anti-mouse transferrin receptor were obtained 

from BD Biosciences. All secondary Abs were purchased from Invitrogen. 

 

 Bone marrow-derived DCs (BMDCs).  

                     BMDCs were produced as described by Lutz et al (185) with minor 

modifications. In brief, bone marrow was flushed from the femurs of mice, and cells 

were plated in 100-mm petri dishes at a concentration of 1 x 106 cells/ml in RPMI 

1640 supplemented with 10% FCS, penicillin/streptomycin, HEPES, glutamine, 50 

µM 2-ME, and 10% GM-CSF-secreting J588L (kind gift from Dr. Kristin Tarbell, 

NIDDK) cell culture supernatant. On days 3 and 6, half of the medium was removed 

and replaced with fresh conditioned medium. On day 8, the suspension cells were 

             harvested and analyzed by found flow cytometry. Cells contained > 80% CD11c+/ I-

A/E positive cells. 

 

Splenic DC (SPDC).  

                     Spleen was digested by Collagenase D (Roache, IN) for 30 min at 37°C. Then, 

cells were passed through a strainer and washed with RPMI 1640. To separate DC,  

             CD11c positive selection magnetic mcrio-beads (Miltenyi Biotec, CA) were used 

 94 
 



 

            following manufacture’s instruction. 

 

 Bone marrow-derived macrophages (BMMs).  

                     BMMs were prepared as described previously (186). bone marrow were 

obtained using a similar approach to that for BMDCs. Cells were plated in petri 

dishes in F12/DMEM Glutamax supplemented with 10% FCS, 

penicillin/streptomycin, glutamine, and 20% conditioned medium from the 

supernatant of M-CSF-secreting L929 fibroblasts. Media was replaced on day 3 and 

day6, and attached cells were used at 7-9 days for experiments. 

 

Antigen Presentation Assays.  

                     For MHC Class II–restricted antigen presentation assays. OVA, OVA-IC, and 

Latex-OVA-IC  was separately added to Immature DCs or MФ cells (1 x 105/well) in 

96-well microtiter plates were incubated with antigen in the presence of  LPS 200 

ng/ml for 12 h. Cells were then washed with PBS before adding OT-II CD4+ T cells 

at a concentration of 2 x 105/well. CD4+ T cells were purified from OT-II TCR 

transgenic mice by negative selection using CD4+ cell isolation kit (Miltenyi Biotec, 

CA). T cell responses were monitored at 24 h by measuring IL-2 accumulation in the 

supernatant by ELISA (BD Biosciences, CA). Data are from triplicate cultures.  

 

        For MHC Class I–restricted antigen presentation assays. Presentation of OVA 

epitope 257-264 on Kb was detected using the T cell hybridoma B3Z or OT-I T cells. 

B3Z cells carry a β-galactosidase plasmid driven by NF-AT elements from the IL-2 
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promoter(187). OT-I CD8+ T cells were purified from OT-I/RAG-/- transgenic mice 

by negative selection using CD8+ T cell isolation kit (Miltenyi Biotec, CA). For 

antigen presentation assays, DC or MФ were exposed to OVA-IC, at the 

concentration and for the periods of time specified, in the presence of the T cell 

hybridoma B3Z or OT-I CD8+ T cells. After incubation, B3Z cells were lysated, and 

a colorimetric assay using ONPG (sigma) as a substrate was used to detect LacZ 

activity in B3Z lysates. IL-2 production in supernatant was measured by ELISA kit 

following incubation with OT-I T cells.  

 

Phagosomal pH measurement by confocol microscopy  

                    Phagosomal pH was measured as previous description (188, 189). Briefly, 

BMMs or BMDCs (2x105cells/well) were plated in 4-well coverglass bottom 

chamber (Lab-Tek, Nunc, IL). After 80 % cells attached to the chambers, 1x106 

Latex-Beads coated with Dextran-Lysosensor Yellow/Blue (Invitrogen, CA) were 

added to each well and incubated with cells for indicated times, and then the cells 

were washed with warm PBS 5 min before the Confocal examination. The 

microscope (Zeiss LSM 510 Thornwood, NY) were used for the measurement at 

excitation laser 405 nm, and an emission filter at 450 nm and a longer emission 

between 505-530 nm. The ratios of 530/450 nm emission from phagocytosed beads 

were calculated by the software Zen 2007.  

 

         To obtain pH standard curve, cells were incubated with Lysosenor-coated 

beads for 5 h and then treated with 10 mM monensin and 20 mM nigericin. The 
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treated cells were equilibrated for 10 min with 25 mM MES (4-

morpholineethanesulfonic acid) buffer containg 5 mM NaCl, 115 mM KCl, 1.2 mM 

MgSO4 (from pH 5.0 to pH 7.5) prior to image acquirement. 

 

Measurement of HRP-IC uptake and processing.  

                      Horse radish peroxidase (HRP)-IC were generated by mixing HRP and rabbit 

anti-HRP (Sigma-Aldrich, MO) a 5:1 molar excess of anti-HRP:HRP at 37°C  for 

30min. After pulsed with HRP-IC for 3h at 37°C, cells were extensively washed and 

chased at 37°C for the indicated time point. The remaining HRP activities were 

represented by 450nm absorbance with TMB reagents. 

 

Adoptive transfer with antigen-pulsed DC and MФ.  

                     Bone marrow derived DC or MФ 5 x 105cells/ml were treated for 12 h in the 

presence of 100 μg/ml OVA, 10 μg/ml OVA-IC, and 10 μg/ml Latex-OVA-IC/ml in 

vitro. Free antigens were then removed from the cell cultures by washing about three 

times in cold PBS, each time followed by centrifugation for 10 min at 350 x g at 4°C. 

OVA323-339 peptide pulsed cells as positive control, ICs-pulsed cells were resuspended 

in fresh medium at 1 x 106 cells/200 µl, and then injected either s.c. or i.v. into each 

mouse (190). 

 

Analysis of CD4+ T cell proliferation ex vivo.  

                      The T cell recall response was measured as previously described (191, 192). On 

day 0, DC or MФ pulsed with the appropriate antigens were injected either s.c.or i.v., 
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depending on the experiment. Nonpeptide-pulsed APCs were used as a negative 

control. On 5 days (DC immunization) or 15 days (MФ immunization), CD4+ T cells 

were isolated from the spleen and lymph nodes of immunized  mice and labeled with 

1 µM CSFE (Invitrogen) for 10 min at 37°C. The cells were then washed once with 

HBSS without Mg2+ and Ca2+ (Fisher Scientific), supplemented with 5% FCS, 

followed by serum-free HBSS.  2 x 105/200ul CFSE-labeled CD4+ T cells were 

restimulated with spleenic DC bearing OVA peptide OVA323-339 in the 96-well 

plate.  T cell proliferation was monitered with CFSE and PE-conjugated anti-Vα2 

(BD Pharmingen) 3 days later by flow cytometry (193). 

  

Immunofluorescence  

                         Immunofluorescence patterns were visualized with confocal microscopy as 

described (184, 194)  Briefly, cells were cultivated on Lab-Tek chamber (Nalge Nunc 

NY) for 12 h. Cells were pulsed with 1μg/ml OVA-DQ ( Invitrogen)-ICs for 1h and 

then washed with PBS, cold fixed in 3.7% paraformaldehyde for 30 min at 4°C, and 

quenched with glycine for 10 min. After two washes with PBS, the cells were 

permeabilized in solution (PBS containing 0.2% Triton X-100) for 20 min and then 

blocked with PBS containing 10% normal goat serum. The mouse FcRn was detected 

using rabbit anti-FcRn-CT (184).    

 
 

RESULTS 
 
FcRn colocalizes with immune complexes (ICs) in the phagosomes of murine 

BMDC and BMM. 
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           FcRn has been shown to locate in early endosome and lysosomes of DC and 

MФ (184). We cultured bone marrow-derived DCs with J588L supernant and bone 

marrow-derived macrophages with L929 supernatant. In 8-10 days, FcRn was found 

highly distributed in early endosomes marked by Transferin receptor (TFR) of both 

BMDC and BMM by confocal microscope (Fig. 4.1 A),  in agreement with the 

previous findings (72, 183, 184). When OVA-IC labeled in green florescence was 

loaded to BMDC and BMM, FcRn in red was found colocolized with OVA-IC (Fig. 

4.1 B). To test if FcRn localizes in phagosomes, we feed BMDCs and BMMs with 

green florescent latex beads conjugated with OVA-ICs. We found that FcRn 

colocalized with latex beads, suggesting that FcRn was distributed to the phagosomes 

during the phagocytosis in DC and MФ (Fig. 4.1C). This is in agreement with the 

observation that FcRn resides in the phagosomes of neutrophils (195). 

 
In BMDC, FcRn enhances the presentation of endocytosed OVA-IC (mono), but 

not phagocytosed Latex-OVA-IC antigen through MHC class II. 

To assess the role of FcRn in antigen presentation through MHC class II 

pathway, we compared IL-2 production from the OT-II CD4+ T cells activated either 

by wild-type BMDC or by FcRn-/- BMDC. OT-II CD4+ T cells isolated from OT-II 

transgenic mice can recognize OVA peptide 323-339 aa presented by the MHC class 

II molecules I-Ab (B6 background). When exposed to OVA, FcRn deficiency had no 

effect on the ability of  DC to activate OT-II T cells (Fig. 4.2 D). As we know, 

soluble OVA was enocytosed into the cells and processed in the late 

endosome/lysosome as showed by OVA (Fig. 4.2 A). When monoclonal antiboby- 
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Figure 4.1  Localization of FcRn in endosomal compartments of murine bone marrow-
derived DC and macrophage. BMMs (top) were isolated from 10th day culture in the presence of 
10% J588L supernatant, and BMDCs (bottom) were isolated from 7th day culture with 20% L929 
supernatant. The cells were fixed, permeabilized, stained, and analyzed by confocal microscopy. FcRn 
were visualized (red) using rabbit anti-FcRn-CT and Alexa 533-conjugated secondary antibodies. TFR 
(CD71) was detected by monoclonal rat-anti CD71 and Alexa 488-conjugated secondary antibodies. A, 
FcRn overlayed with early endosome marker TFR (green). B, some of the FcRn protein was colocalized 
with OVA-IC (green) in both BMM and BMDC.C, before the fixation, cells were pulsed with OVA-IC 
coated fluorescent Latex beads (green) for 2h, and then followed by the same staining procedure. 
Yellow, condistribution of two colors. Bar, represent 10μM.

A. B. C. 
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restricted OVA-IC was exposed to the DCs, IL-2 production decreased modestly from 

OT-II T cell primed by FcRn-/- DC (Fig. 4.2 E) in comparison with WT DCs. These 

monoclonal IgG-restricted immune complexes also went through endosomes and 

lysosomes for antigen processing and presentation (Fig. 4.2 B). However, when DCs 

were incubated with latex beads conjugated with OVA-ICs, there was no difference 

on IL-2 production between WT DCs and FcRn-/- DCs primed T cells (Fig. 4.2 F), 

and these latex beads induced phagocytosis (Fig. 4.2 C). Similar results were obtained 

using polyclonal IgG-restricted immune complexs. Therefore, the expression of FcRn 

in BMDC promotes the presentation of antigen in ICs captured and processed through 

endocytosis, not through phagocytosis. 

 

In BMM, FcRn enhances both endocytosed OVA-IC and phagocytosed Latex-  

OVA-IC to MHC class II. 

           To examine the roles of FcRn-mediated antigen presentation of MФ, an in 

vitro T cell proliferation assay was conducted on BMM. BMM derived from WT and 

FcRn-/- bone marrow were pulsed with indicated concentrations of OVA-IC 

overnight, washed to remove extra ICs, and incubated with OT-II cells for 20 h. As 

shown in Fig. 4.3 E, the FcRn-/- BMM failed to prime the OT-II T cells. Similarly, 

the latex-OVA-ICs-treated FcRn-/- BMM also induced less IL-2 production in 

comparison with that of WT BMM (Fig. 4.3 F). In the control experiment, OVA 

loaded BMM, either WT or FcRn defective, activated CD4+ T to a similar level  

(Fig. 4.3 D). The trafficking patterns of immune complexes in MФ and DC are 

similar (Fig. 4.3 A, 4.3 B, and 4.3 C).  
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FcRn does not affect the cross-antigen presentation by MHC class I. 

           The IC internalization through FcγRs in DC promotes both MHC class II and 

MHC class I restricted-antigen presentation (174, 196). We further addressed whether 

the FcRn-deficiency affected antigen cross-presentation in BMDC and BMM. CD8+ 

T cell hybridoma (B3Z) (187) were used to study presentation of exogenous OVA-

ICs. This hybridoma recognizes the OVA 257-264 peptide presented by MHC class I 

(H-2Kb). When incubated with high concentration of OVA or low concentration of 

latex-OVA-ICs, WT and FcRn-/- BMDC efficiently activated B3Z cells (Fig. 4.4 A 

and C). WT and FcRn-/- BMDCs that were incubated with mAb-derived OVA-ICs, 

failed to activate of B3Z T cells (Fig. 4.4 B). 

 

As shown previously (197), MФ was able to present the exogenous OVA on 

MHC class I molecules and to initiate the CTL response. However, the ICs did not 

enhance this process (198). To determine whether FcRn affects the cross-antigen 

presentation in MФ, B3Z T cells were primed with BMM. There was no contribution 

of FcγRs to BMM on the OVA-ICs cross-presentation as previously discussed (198), 

and the absent expression of FcRn in MФ did not affect activation of B3Z (Fig. 4.4 D, 

E, and F). To confirm these results, all the assays on B3Z cells were repeated on OT-I  

T cells, the data were consistent with results from B3Z T cells. Therefore, we 

conclude that FcRn is not involved in the antigen cross-presentation in either DC or 

MФ. 
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The phagosomal pH is different between BMM and BMDC; FcRn can stabilize the  

internalized ICs in the acidic compartments. 

          It was demonstrated that the phagosomal localizations of FcRn had distinctive 

effects on antigen presentations between DC and MФ. We reasoned that the 

discrepancy might be related to phagosomal pH in DC and MФ, based on the feature 

of FcRn binding to IgG at acidic pH. 

        

          To measure the phagosomal pH value in both MФ and DC, we selected the pH 

sensor, soluble dextran-linked LysoSensor Blue/Yellow. This probe exhibits pH-

dependent dual-emission spectra. At acidic condition, the probe emits at the 

wavelength of 530 nm maximally, whereas at neutral pH, the emission fluorescence 

at 450 nm is stronger (188). Thus, the pH value is equally translated to the ratio of 

fluorescence at 530 (Green) to 450 (Blue). After exposing the LysoSensor (1mg/ml) 

coupled latex-beads to BMM or BMDC for 5 hours, phagosomal pH values were 

measured. We found that the Green/Blue ratio obtained from phagosomes in BMM 

was 1.7 (Fig. 4.5 C). In contrast, phagosomes in BMDC displayed a Green/Blue ratio 

of 1.1 (Fig. 4.5 B). Using a pH standard curve (Fig. 4.5 A), we concluded that the 

phagosomal pH in MФ was below 5.0, whereas phagosomal pH in DC was over 7.0. 

 

         We next asked how FcRn in BMDCs and BMMs regulated the presentation of 

IgG-restricted antigens. Because the antigen digestion rate correlates with the 

magnitude of antigen presentation, it is highly possible that FcRn protects uptaken 

antigen from rapid degradation through its binding with antigen, consequently, 
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A. 

B. 

C.
Blue  450nm                          Green  530nm                               Merge 

Figure 4.5  BMDC bears a phagosomal alkalinization, while phagosomes in BMM is 
acidic. BMDC (B), BMMs (C). A. Standard calibration curve for LysoSensor Blue/Yellow pH 
indicator. Day 9-BMDCs were incubated for 5h with Lysosensor Blue/Yellow (1mg/ml)-coupled 
latex beads (3μm) at 37°C, and equilibrated with MES buffers ( pH value from 5.0 to 7.5) containing 
nigericin and monensin. Emissions at 450 nm and 530 nm from phagosomal beads were measured 
with confocal microscopy at exitation 405nm. The ratio of 530/450 nm fluorescence (Green/Blue) is 
measured as described in Materials and Methods.  B. BMDCs were incubated with Lysosensor-
coupled latex beads for 5h at 37°C, Emission at 450 nm was shown blue ( Left ); emission at 530 nm 
was displayed green ( Middle); and the merged photo is on the right. The ratio of Green/Blue was 
calculated and shown on the right C. BMMs were exposed with Lysosensor-coupled latex beads for 
5h, and the emissions were shown orderly as BMDC. 
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promotes the efficient epitopes loading onto the MHC class II molecules. To monitor 

the fates of internalized antigens in forms of ICs, Latex-beads-ICs or antigen alone in 

DC.  We treated WT or FcRn-/- BMDCs with HRP, HRP-ICs and HRP-Beads-ICs 

separately for 3h, washed cells, and then chased HRP activities at indicated time 

points. After extensive washes with PBS (pH 5.0), the cells were lysated and applied 

for spectrophotometer measurement in TMB substrate at wavelength of 450 nm. The 

remaining activities of HRP were measured and recorded (Fig. 4.6). When BMDC 

was loaded with HRP-IC, the remaining activities of HRP (red line) from WT BMDC 

(Fig. 4.6 A) decreased slower than that from FcRn -/- BMDC (Fig. 4.6 B). When 

BMDC were loaded with HRP-beads-ICs or soluble HRP, the degradation rates (Blue 

line or Black line) in WT BMDC were similar to that in FcRn-/- BMDC (Fig. 4.6 A, 

B). In contrast, the degradation rates of HRP-ICs and HRP-Beads-ICs in WT BMM 

were much slower than that of FcRn-/- BMM (Fig. 4.6 C, D). Therefore, it is 

concluded that FcRn could stabablize the immune complex in acidic phagosomes in 

MФ. 

 

FcRn enhances the ICs antigen presentation ex vivo. 

                    To further evaluate the contribution of FcRn mediated-antigen presentation in 

BMDC and BMM through MHC class II molecules ex vivo, we used an adoptive 

transfer system (175, 199). WT or FcRn-/- BMDC loaded with OVA, OVA-ICs or 

Latex-OVA-ICs were transferred to WT C57BL/6 mice. After 4 days, the draining 

lymph node (popliteal) was removed from these mice, and the CD4+ T cells were 

collected and stained with CFSE. T cells were restimulated with DC bearing peptides 
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A. 

Figure 4.6 The dynamic degradation of HRP, HRP-IC, and HRP-Beads-IC in both 
macrophage and DC.  WT BMDC (A.) and FcRn -/-BMDC (B.) was pulsed with HRP(▲), 
HRP-IC(■), and HRP-beads-IC(●) for  3 hours separately. After extensive washing, cells were 
incubated with fresh medium at 37°C for additional 3h, 6h, 9h, and 21h.   The reaminning HRP 
activites were measured by exposing the cell lysis to TMB reagent, and subject to the cytometric 
quantification at 450nm. The readout of 3h-pulsed samples were assigned as 100%, and the values 
of chase samples were calculated in comparison with pulse samples. Following the same procedure, 
WT BMM (C.) and FcRn-/- (D.) were treated and measured as described above. 

B. 

C. D. 
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            OVA323-339. The T cells from animals immunized with IC-loaded WT BMDC 

proliferated better than in the mice immunized with ICs-loaded FcRn-/- BMDC (Fig. 

4.7 A, second panel from right). In contrast, WT or FcRn-/- BMDCs loaded with 

Latex-OVA-ICs stimulated the CFSE-T cell proliferation to the similar extent (Fig. 

4.8 A, right panel). These results are consistent with in vitro data. In addition, T cells 

stimulated by OVA-loaded BMDCs proliferated equally (Fig. 4.7 A, second panel 

from left) 

 

       To further assess whether the presence of FcRn in BMM affects the T cells 

activation ex vivo, WT or FcRn-/- BMM was pulsed with ICs or Latex-OVA-ICs for 

4h, and then s.c.injected these loaded BMM to the C57BL/6 mice. CD4+ T cells 

isolated from the draining lymph nodes were labeled with CFSE and restimulated 

with OVA323-339 peptide. The results showed that FcRn in BMMs loaded with ICs 

or Latex-OVA-ICs enhanced the T cell proliferation (Fig. 4.7 B), in spite of the 

instensity of T cell proliferation was less than that of BMDC stimulation. 

Collectively, these data show that the binding of FcRn with IgG-restricted antigens in 

acidic pH is critical to allow DCs and MФ to present antigen and to activate naïve T 

cells response in vivo. 

 

DISCUSSION 
 

          This study establishes a novel mechanism of the enhanced antigen presentation 

of IgG-complexed ICs that is distinct from other ways which go through augmenting  
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B. 

Figure 4.7  FcRn defective BMDC  impairs the antigen presentation of  
endocytosed ICs to CD4+ T cell ex vivo, whereas FcRn defective BMM impair 
both endosomal and phagosomal antigen to CD4+ T cell . A. Day-9 BMDC (WT, 
top panel or FcRn KO bottom panel) was pulsed separately with OVA (second left 
panel), OVA-IC (second right), and Latex-OVA-IC (right panel) for 12 h at at 37°C, 
and then the antigen-loaded cells were washed with PBS for three times. Pretreated cells 
were injected s.c into syngenic C57BL/6. As control, non-antigen treated BMDC were 
injected. After four day, CD4+ T cells were isolated from different immunization and 
labeled with CFSE, the secondary anti-OVA proliferative responses were measured by 
repriming of CFSE-CD4+T cells with spleen DC bearing OVA specific peptide323-336. B. 
Day-7 BMM were treated with three forms of antigen and injected into C57BL/6 mice 
described as above. Two weeks later, CFSE-labelled CD4+ T cells proliferation were gated 
and measured. 
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antigen uptake and regulating maturation of APC cells. Our finding indicates that 

FcRn in endocytic compartments of DC and MФ protects the ICs from rapid 

catabolism in lysosomes and leads to increasing efficiency of antigen processing and 

peptide loading onto the MHC class II molecules. These data extend upon the unique 

ability of FcRn binding to IgG by now demonstrating a new function of FcRn in DC 

and MФ for antigen presentation, besides IgG protection and IgG transcytosis (57). 

We further demonstrated that FcRn in different endocytic compartments of DCs 

functioned differently during antigen presentation of IgG-ICs. It enhances antigen 

presentation of endocytosed ICs, but not phagocytosed ICs in DC. More interestingly, 

FcRn in MФ boosts antigen presentation of ICs uptaken through both endocytosis and 

phagocytosis. Furthermore, this discrapancy is shown due to the different pH among 

endocytic organelles. 

 

          Phagosomes in DC and MФ are considered as fully competent organelles for 

MHC class II and MHC class I antigen processing (175, 199). Efficient antigen 

processing in phagosomes requires the limited and controlled proteolysis of protein 

antigen. One of the most direct ways to control the activities of lysosomal proteases is 

the pH value adjustment. It has been shown in DC, that the recruitment of NADPH 

oxidase NOX2 to phagosomes mediates a sustained production of ROS, which 

consumes the proton in phagosomal lumen, causing the pH elevation to 7.4, even 

higher than the extracellular pH (180). This high pH in phagosomes provides DC with 

default control on proteases to digest the antigens properly. However, in MФ, due to 

the low ROS production and high activity of V-ATPase, the phagosomes are acidified 
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very rapidly. This low pH facilitates FcRn binding with ICs and protect antigen from 

rapid degradation in MФ. Regarding the endosomes/lysosomes, the pH in both MФ 

and DC is acidic, which facilitates FcRn involving in the presentation of immume 

complexes antigen internalized through endosomes/lysosomes. 

 

           Although a variety of studies document the involvement of FcγRs in the 

receptor-mediated endocytosis (9), the mechanism of ICs internalization (endocytosis 

and phagocytosis) in DC and MФ is still unclear. However, our results excluded the 

possibility that FcRn is required for ICs internalization. We demonstrated that the 

internalization of ICs in MФ and DC was not affected by FcRn deficiency, this result 

is compatible with the fact that majority of  FcRn is expressed in the 

endosomes/lysosomes of  DC and MФ (183, 184), and does not bind to IgG in neutral 

pH. Hence, ICs probably access to the endosomes or phagosomes through FcγRs-

mediated endocytosis. In the endosomes, the FcγRs-ICs binding switches to FcRn-ICs 

binding. The binding of FcRn with ICs makes ICs less susceptible to protease 

digestion. This is demonstrated by the experiment that HRP alone is digested much 

easier in endosomes/lysosomes than HRP-IC (Fig. 4.6). Therefore it warrants more 

detailed studies on how the interaction of FcRn with ICs contributes to the stability of 

antigens.   

 

        In summary, the MHC class I-like molecule FcRn stabilizes the internalized ICs 

through the direct binding in acidic organelles, promotes the antigen presentation on 

MHC class II. 
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CHAPTER 5: CONCLUSION AND PERSPECTIVE 
 
 
 
       FcRn is an MHC class I-related Fc receptor for IgG. It binds IgG at acidic pH and 

releases IgG at neutral pH, which differs from other FcγRs. In addition to facilitating 

the transfer of maternal IgG to fetus or newborn, FcRn also acts as homeostatic 

receptor responsible for extending the serum half-life of IgG in adult. In IgG-related 

autoimmune diseases and infectious diseases, IgG plays a pivotal role for disease 

development and progression. As IgG level is correlated closely with the expression 

level of FcRn, understanding the function and regulation of FcRn will pave the road 

to better understand these diseases in another angle.  

 

            In this study (Chapter 2) (146), we have shown the rapid up-regulation of FcRn 

mRNA and FcRn protein in a human macrophage-like cell line, an intestinal epithelial cell 

line, and freshly isolated human monocytes after TNF-α or IL-1β treatment or in response to 

CpG or LPS. Stimulated FcRn mRNA levels were reduced in cells treated with the inhibitor 

of NF-κB p65 nuclear translocation (CAPE) or by overexpression of a dominantly negative 

IκBα. Three intronic NF-κB binding sites in human FcRn gene were identified by chromatin 

immunoprecipitation assays. A chromosome conformation capture assay demonstrated 

interactions between the NF-κB binding sequences and the FcRn promoter. Human IgG 

transcytosis on polarized human intestinal epithelial cells was also enhanced in both 

directions after exposure of the cells to TNF-α. Overall, these data indicate that FcRn 

expression in human cells stimulated by proinflammatory cytokines or TLR ligands is 
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regulated by NF-κB binding to three FcRn gene intronic regions.  

 

           However, several interesting questions still remain. First, how is FcRn regulated in 

patients with antoimmune disease or infectious disease? What is the application of FcRn 

upregulation?  Such as, autoimmune skin blistering diseases, pemphigus and pemphigo, are 

characterized by subepidermal blisters, inflammatory cell infiltration, and the linear 

deposition of IgG autoantibodies at the basement membrane zone of skin. It is very 

interesting to know whether FcRn upregulation is involved in pemphigoid initiation and 

progression. The study by Zhi Liu and Derry, C. Roopenian’s groups have shown that FcRn 

deficiency ameliorates pemphigus (200), which provides a direct link between pemphigus 

and FcRn. Second, during inflammatory cytokines or TLR ligands stimulation, what 

transcription factors are involved in the formation of loops between introns and promoter 

besides NF-κB? In our study, chromosome confirmation capture (3C) assay indicates that 

there are potential loops formed between human FcRn intronic elements and promoter region 

after TNF-α stimulation. Because of limitation of 3C assay, several issues still need to be 

clarified, where is the exact locations of loops? How many loops are formed during the 

transcription? What other factors are involved in the NF-kB mediated gene upregulation? 

What are the modifications on the epigenetic level? Third, regarding the fact that human 

FcRn gene is different from mouse FcRn gene, the transgenic mouse model containg the 

whole human FcRn locus will be very useful; it will serve as valuable tool to understand the 

FcRn regulation in the context of autoimmune diseases and infectious diseases, and to 

provide additional thoughts on mechanisms of disease initation and progression. 
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           Many studies have shown that IFN-γ can upregulate MHC class I genes (141). 

In the present study (Chapter 3) (194), we demonstrated that MHC class I-related 

FcRn was down-regulated by IFN-γ stimulation, and this down-regulation is 

dependent on Jak1-Stat1 signaling pathway. One Stat1 binding site was identified in 

the human FcRn promoter by ChIP assay. The mutation of Stat1 binding site blocked 

the IFN-γ-induced down-regulation of luciferase activities that were driven by FcRn 

promoter. Most frequently, dimeric Stat1 translocates into the nucleus and binds to 

the GAS sequence to activate gene expression. However, in the case of FcRn, 

activated Stat1 bound to FcRn GAS sequence and blocked FcRn transcription. 

Similarly, gene suppression by Stat1 was also observed on MMP-9 or the SR-A gene, 

even though there are no GAS elements on these genes, and Stat1 was demonstrated 

to play an indirect role through interacting with other transcription factors (156, 165). 

Thus, it is very interesting to exploit the mechanism how Stat1 switchs on and off 

genes expression. In our study, an important transcription factor, p300/CBP was 

found recruited and sequestered by Stat1, which might result in the inhibition of FcRn 

transcriptional initiation. Furthermore, this block can be rescued by the 

overexpression of p300. Exploitation of p300-Stat1 interaction merits further study 

with the goals of understanding Stat1-mediated gene regulation on epigenic level. 

More interestingly, the GAS element (TTCTTTGAA) on human FcRn has stronger 

binding affinity with Stat4 (153). Also, we found that IFN-α/β can upregulate FcRn 

expression through non-IRES element, which coincide with the demonstration that 

Stat4 can be activiated by IFN-α/β directly (201-204). So, how type I interferon-

inducible-Stat4 antagonizes Stat1 in FcRn regulation remains an interesting question. 
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Under normal development, the significant decrease of murine FcRn was found in the 

intestine tracts after the weaning (57). Exploitation of FcRn regulation holds promises 

for unveiling the finely tuned network of transcriptional factors and the full function 

of FcRn in the mucosal organs. 

 

The involvement of FcRn in antigen presentation was recently discovered by 

Dr.Blumberg’s group (76). In our study (Chapter 4), we described that FcRn in DC 

and MФ can stabilize the input IgG-derived immune complexes in the acidic 

condition, slow down the antigen processing, and then promote the efficient peptide 

loading onto MHC class II molecules. In DC, the nearly neutral pH in phagosome 

fails FcRn to interact with uptaken immune complexes (IC -coupled beads), which 

results in non-effect on antigen presentation. However, in MФ, the acidic pH in 

phagosomes facilitates the physical contact between FcRn and immune complexes, 

which enhances the efficient antigen processing and antigen presentation both in vitro 

and ex vivo. Therefore, the pH value in the specific organelle is the key to determine 

whether FcRn is able to involve in the antigen presentation of uptaken immune 

complexes. However, how FcRn plays its role to protect complexed-antigen from 

rapid proteolysis remains still a question. Since proteolysis is necessary for antigen 

presentation, it is interesting to determine how FcRn balances the antigen digestion 

and protection to efficiently produce antigenic epitope from an immune complex. 

These findings will provide basis and starting point for subunit vaccine engineering. 

 

         The trafficking of FcRn in epithelium has been well demonstrated (205, 206).  
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How FcRn is distributed in DC and MФ remains elusive. Particularly, the expression 

of invariant chain in APC changes FcRn distribution (184). FcRn in turn is more 

prone to be delivered to the late endosome/lysosome in APC cells. In our study, we 

have also shown that FcRn traffics to the phagosome in APCs. Both late endosomes 

and phagosomes are competent organelles for antigen presentation. Therefore, 

understanding the traffic pattern of FcRn in APCs will further shed light on the 

mechanism of FcRn in antigen presentation. 

 

       It has been shown that the distribution pattern and fate of monovalent of IgG 

inside DC and MФ are different from that of multivalent antigen-antibody complexes 

(207). Monovalent IgGs are easily recycled, whereas, multivalent antigen-antibody 

complexes are destinated for the degradation (207, 208). Inconsistently, immune 

complexes can also be recycled in DC to better activate B cells (75). So, the question 

of how FcRn cooperates with other FcγRs to mediate immune complex trafficking 

will provide insightful concept to solve the discrepancy. The role of FcRn in immune 

complex trafficking could also explain FcRn-mediated antigen presentation.  

         

         FcRn, the pH-dependent Fc receptor begins to be fully recognized on its 

functional importance. In addition of its critical role of IgG transport and 

homeostasis, FcRn is involved in the antigen presentation of IgG-restricted immue 

complexes from our study. The exploitation of FcRn will be a great benefit for better 

therapeutics and better vaccines. 
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