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The goal of this thesis was to develop and apply a genetic algorithm-based column 

generation heuristic to solve a passenger rail crew scheduling problem.  The crew 

scheduling problem minimized the total cost of payment to crew members based on 

the hours on-board, hours away from a crew base, number of nights of lodging, and 

number of on-board and away meals.  Payment regulations also dictated an overtime 

payment and a guaranteed salary per week.   Additional problem constraints included 

restrictions on the maximum number of continuous working hours, maximum number 

of days worked per week, and minimum hours of rest. The proposed heuristic 

produced solutions with improvements of total cost ranging from 3.0 percent to 27.9 

percent. 
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Chapter 1: Introduction 

 

1.1 Background 

 The crew scheduling problem (CSP) is the problem of assigning work to crew 

members to create a minimal cost work schedule.  In this thesis, a genetic algorithm-

based column generation heuristic is applied to the CSP for the Northeast Corridor of 

the North American passenger railway corporation, Amtrak.  Amtrak’s busiest 

corridor is the Northeast Corridor, which stretches from the Canadian border to North 

Carolina.  Within the corridor, the most heavily used portion is between Boston, 

Massachusetts and Washington, D.C., which includes stations in New York City and 

Philadelphia, Pennsylvania.  Amtrak crew is comprised of trainpersons and engineers 

(T&E crew) and on-board services crew.   For this thesis, the CSP focuses on solely 

the T&E crew, consisting of conductors, assistant conductors, engineers, and firemen.  

The CSP for the Northeast Corridor contains 4338 total work duties that must be 

covered by these crew members.   

  Most of the research on rail crew scheduling in the North America has 

focused on the freight rail industry rather than passenger rail.  Although the lessons 

learned from research on CSPs in either industry may be applicable to other 
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industries, there are also important differences between freight and passenger rail 

crew scheduling.   

First, the North American passenger rail industry has special payment rules 

with guaranteed weekly or biweekly salaries.  The union regulations generally require 

that workers be paid a minimum weekly or biweekly salary regardless of the number 

of actual hours worked.  A simple example is a crewperson assigned 10 hours of work 

in a week but guaranteed pay for 40 hours per week.  This guaranteed salary results in 

inefficiency since crew are essentially paid for not working.  While these schedules 

may be necessary for some crew members in order to cover all work requirements, it 

is likely that current crew schedules are not operating at maximized efficiency due to 

this regulation. This special guaranteed payment rule is unique to Amtrak and is not 

found in many other industries.   

Second, the passenger rail crew payment is based on shifts rather than 

individual duties.  In this respect, the payment scheme is similar to many long-haul 

airline crew payment rules in which crew members are paid based on the time away 

from their home rather than individual duties.  These two special payment rules are 

not typically found in the freight rail industry and significantly complicate the crew 

scheduling problem.  For Amtrak’s Northeast Corridor in particular, the single train 

trips may be relatively short compared to train trips in other corridors in the 

Midwestern and Western portions of the country.   These shorter trips may result in 

more time away from a crew member’s crew base since more trips are required to fill 

a single crew member’s weekly or biweekly schedule. 
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A third difference between freight and passenger rail crew scheduling is that 

passenger rail crew normally have set work duties.  These work duties are typically 

defined by the train timetable whereby a certain number of crew must work every 

train trip listed in the timetable.  However, in freight rail, work duties may change 

based on shipping demand.  Since shipping demand frequently changes based on 

many different factors, the trips are often not repeated weekly, biweekly, or even 

monthly as they are in transit and passenger rail.  The scheduling cycles in passenger 

rail applications mean that schedules can be optimized for a single cycle, for instance, 

a weekly schedule, and that any savings in cost can be multiplied to produce large 

annual savings.  This nature of passenger rail makes these CSPs good candidates for 

optimization and improvements.  Nevertheless, as previously stated, most research on 

CSPs in North America has focused on the freight rail industry.  The differences 

between freight and passenger rail crew scheduling highlight the need for more 

research on North American passenger rail CSPs. 

On an international level, both passenger and freight rail crew scheduling have 

been more widely studied than in North America.   Studies on passenger rail crew 

scheduling in the last decade include applications at Netherlands Railways (Kroon & 

Fischetti 2001), Australian National Rail Corporation (Ernst 2001), and Deutsche 

Bahn in Germany (Bengtsson et al. 2007).  In each study, crew scheduling at these 

passenger rail corporations produced significant savings in operating costs.  These 

applications show that there is potential for improving crew schedules at Amtrak as 

well.  While the solution approaches used in these studies provided effective crew 

scheduling systems, tailoring these solution methods to the Amtrak CSP would prove 
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to be a difficult task.  The numerous differences between working and payment 

regulations across various passenger rail corporations facilitate the need for case-

specific solution approaches. 

 Outside of the rail industry, the CSP has been applied in the air and transit 

industries.  In fact, CSPs have been most extensively studied in the airline industry.  

While the underlying goals of the air and transit CSPs are similar to those in rail, the 

major difference here is in the work duties.  For airlines, the work duties might 

consist of all flights in a hub network, whereas in rail, the work may include a much 

larger set of train trips.  The train trips may also occur much more frequently than 

flights.  A second difference between these CSPs is air crew may be allowed to work 

continuously for a longer period of time to allow for longer distance, or long-haul, 

flights.  For transit applications, the work may be daily bus or subway trips in a far 

smaller network than rail or air.  The transit work regulations may require that crew 

have resting periods more frequently, but the time horizon of a crew schedule is also 

typically shorter. The transit CSP also does not need to consider crew away time 

lodging and meals, and all crew must return home at the end of each day.  In these 

respects, the rail CSP can prove to be a more difficult problem to solve than many 

airline and transit CSPs.  

1.2 Problem Statement 

The purpose of the work in this thesis is to apply a genetic algorithm-based 

column generation heuristic to solve the passenger rail crew scheduling problem for 

Amtrak’s Northeast Corridor.   The crew in this problem consists of trainpersons and 

engineers who are responsible for piloting trains and handling passengers.  More 
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specifically, this crew includes conductors, assistant conductors, engineers, and 

firemen based in the Northeast Corridor region in the railway system.   

The objective of the problem is to minimize the cost of salary payment to the 

crew based on the number of hours worked on-board a train, the number of hours held 

away from the crew base when not on-board, the number of nights of lodging 

provided, and the number of on-board and away meals provided.  The constraints of 

this problem are the work regulations, as defined in the union rules, and the payment 

regulations defined by Amtrak.  These constraints set minimum rest times, maximum 

working days per week, overtime rates, and guaranteed salary.  The ultimate goal of 

this thesis is to determine if there is potential for savings in operating costs for 

Amtrak by improving crew schedules.   

1.3 Motivation 

The primary motivation of this thesis is to determine if there are potential 

cost-savings in optimizing Amtrak crew schedules.  In 2008, Amtrak has seen 

increased ridership due to various factors, including the rise of fuel prices and the 

resulting attractiveness of mass transit.  However, for many years, Amtrak has also 

faced criticism for not generating enough revenue to support operations and 

depending heavily on government subsidies and funding.   The need for an efficient 

business drives the motivation for researching cost-savings in improving crew 

scheduling.  Despite this need, the passenger rail crew scheduling problem has not 

been extensively studied in the United States.   

The complexity of crew scheduling constraints also makes the Amtrak 

problem more difficult to solve than many other CSPs.  This thesis aims to develop an 
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approach to solve this passenger rail crew scheduling problem for Amtrak’s Northeast 

Corridor within a reasonable amount of time and computer memory resources.  Due 

to the large size of CSPs, finding optimal solutions is often impossible or impractical.  

As a result, finding an improved solution within a short amount of time is an 

important component of a CSP solution method.  

While Amtrak has optimized crew schedules for the Northeast Corridor in the 

past, it is uncertain if there is room for improvement in the current schedule.  The 

ultimate goal of this work is to show if there are any potential cost-savings in 

optimizing the Northeast Corridor crew scheduling. 

The existing schedule implemented by Amtrak covers a total of 43 routes and 

469 trains.  Of these routes, 15 are long distance, and 28 are corridors and state 

sponsored routes.  For the month of April 2007, 2,207,146 passengers rode on 

Amtrak trains.  The revenue collected from this particular month reached 

$128,644,681.  The financial information for that entire fiscal year reported 25.8 

million passengers and $1.5 billion in revenue.  Because of the repeating nature of 

crew scheduling, minor improvements to schedules which reduce cost each week or 

month can lead to a significant annual savings.  This makes crew schedule 

improvement an ideal application for cost-savings studied in this thesis.  

1.4 Overview of Research 

 The goal of this thesis was to develop and apply a genetic algorithm-based 

column generation heuristic to solve a 4,338 duty passenger rail crew scheduling 

problem in North America.  A review of relevant research on passenger rail CSPs and 

CSPs in general revealed the need for further research on crew scheduling for rail 
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crew schedule in the United States.  Various techniques and solution methods have 

been applied to CSPs, including mathematical programming, heuristics, and 

constraint programming.  For large, real world-size problems, a combination of these 

approaches has proven to be useful for rail crew scheduling applications.   

 Crew schedule and work requirement data for this thesis were obtained from 

Amtrak.  The datasets were for the T&E crew in the Northeast Corridor.  As part of 

this thesis, the data was processed and prepared for the crew scheduling application.  

In order to reduce the size of the problem, the entire network of trains was partitioned 

into smaller problems by crew type and by region.  The partitioning resulted in four 

separate CSPs.  In addition, three small problems were created based on the real 

datasets. 

 The main contribution of this thesis was the development and application of a 

genetic algorithm-based column generation heuristic on the passenger rail crew 

schedule problem.  This heuristic was applied to the three small, generated problems, 

the four partitioned CSPs as well as two larger CSPs for the entire Northeast Corridor 

network.   The new solutions for these problems were compared, and the sensitivity 

of the overall improvement, calculation time, and memory usage was examined. The 

heuristic was able to successfully show improvements in the crew schedules, which 

indicated that there is potential for savings in cost by improving the Northeast 

Corridor crew schedules.   

1.5 Outline of Thesis 

The thesis is divided into the following seven chapters: 

Chapter 1 – Provides a brief introduction to the passenger rail CSP, 
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Chapter 2 – Discusses important definitions and a literature review of past 

 works on CSPs with emphasis on the main solution approaches 

 applied to CSPs,   

Chapter 3 – Describes Amtrak CSP and the data obtained from Amtrak, 

Chapter 4 – Explains in detail the solution methodology and the heuristic 

 approach, 

Chapter 5 – Discusses analysis of the solution results, and 

Chapter 6 – Summarizes the conclusions and offers extensions on the 

 passenger rail CSP. 
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Chapter 2: Literature Review 
 

2.1 Introduction 

This chapter introduces the crew scheduling problem (CSP) and provides 

definitions of important terminology related to the CSP.  A review of relevant 

literature organized by solution approach follows.  For each solution approach, 

important works in the rail, air, and transit industries are described. 

2.2 The Crew Scheduling Problem 

 The CSP is the problem of assigning work duties to crew members while 

covering all required work at minimum cost.  Because crew scheduling terminology 

is not standard throughout the literature, it is first important to define the terminology 

used in this thesis: 

• Duty – In rail crew scheduling, a duty corresponds to a single train trip or one 

day of yard work or extra board.   For example, a single duty may be an 

engineer duty for the train trip from Washington, D.C. to New York City at 9 

AM on Monday. 

• Yard Work – Crew on yard work at the crew base station is responsible for 

maintenance or other work at the train station.  Yard work duties do not 
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require traveling away from the station, thus, do not require away time, 

lodging, or meals.  Typically, certain crew members are responsible for yard 

work, and most of these crew members’ schedules consist of only yard work. 

• Extra Board – Extra board duties are when crew members are on back-up 

duty for other crew.  These crew members may remain at home and are not 

on-duty unless unforeseen circumstances force them to be called to work.  For 

instance, if a crew member takes leave due to illness, a crew member on extra 

board will fulfill the duties.  Crew members on extra board are paid the 

regular hourly salary regardless of whether he or she is called to work.  

• Shift – One or many duties make up a shift.  A shift is a chain of duties that 

begins and ends at a crew base.  For example, a single shift may be from the 

crew base in New York City to Philadelphia, from Philadelphia to 

Washington, D.C., and from Washington, D.C. back to New York City. 

• Crewbase – The crewbase is the location at which a crew member goes on 

and off duty and is usually near the crew member’s residence.   

• Pairing - One or many shifts make up a pairing, or a sequence of trips that 

starts and ends at a single crew base for a given time horizon.  In the Amtrak 

CSP for this thesis, a pairing consists of all duties for a single crew member 

over a one week period.  A pairing may consist of train duties, yard work, 

and/or extra board duty. 

• Away – During a shift, a crew member may travel to an away location, a 

location that is not the crew base and in which a crew change is permitted.  

When at an away location, the crew may have rest time and may be 
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compensated for meals and/or lodging depending on the length of the away 

time. 

• Deadhead – When a crew deadheads a duty, the crew is not on duty during 

that train trip.  Deadheading may be required to transport a crew to a location 

for starting a shift or to transport a crew back to the crew base at the end of a 

shift. 

 The planning horizon of crew scheduling may vary.  Long-term planning 

involves large changes to the crew schedule every few years.  In the long-term 

planning, the crew scheduling has a large impact on the operations and business of 

the transportation system.  In short-term planning, crew scheduling changes are 

marginal and may be done biannually or seasonally.  Lastly, tactical planning 

involves crew scheduling responses to real-time changes in work demand or 

disruptions.  Solving CSPs for tactical planning is a difficult task that requires 

collection of real-time information and powerful solution methods that can produce 

efficient results. 

2.3 Early Works on the CSP 

Early research in crew scheduling was primarily applied to the transit and air 

industries.  In the transit industry, one of the earliest works in computerized crew 

scheduling involved using a simple local search approach to develop crew schedules 

for trains in Adelaide, Australia (Bennett & Potts 1968).  Wren also provides a brief 

review of early works in transit and an application of a constructive heuristic for bus 

driver scheduling at London Transport (Wren 1981).  In the airline industry, the CSP 

was solved by enumerating pairings, reducing the number of pairings by heuristics, 
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and then optimizing a reduced linear program (LP) problem using the branch-and-

bound method (Arabeyre, Fearnley, Steiger, & Teather 1969).  A comprehensive 

summary of early CSP cases and solution methods is provided by Bodin et al. (1983).  

The focus on airline and transit applications is perhaps because these areas have 

larger opportunities for profit from solving crew scheduling problems. 

2.4 Applications of the CSP 

 Although earlier works were not applied in the rail industry, there are 

similiarities between the CSP in these different applications.  The rail CSP is most 

similar to the problem in the airline industry for several reasons.  First, the time 

horizons are similar in that both cases involve short-haul and long-haul trips.  The 

transit case differs because crew scheduling horizons are daily and crew members 

return home at the end of the day.  With respect to scheduling time horizons, the air 

and rail CSP is more complex because crew may be required to stay at an away 

location.  The CSP costs then involves not only costs associated with lodging and 

meals at away locations, but also far more complex rest requirements.  Union and 

work regulations require that crew members have specific minumum rest times.  In 

contrast to the airline application of the CSP, the rail application may be more 

difficult in the magnitude of the problems.  In the CSP for the Italian railways, there 

were over 5000 train trips and one million duties per day (Caprara et al. 1999).  The 

researchers noted that this magnitude is one to two times larger than a typical airline 

CSP.   

 Most works on the rail CSP has been conducted in Europe.  The large body of 

research done in Europe may have been a response to the deregulation and 
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privatization of the rail industry in European countries.  In addition, there has been 

research in other areas that have larger markets for rail such as in Asia and Australia 

In the United States, a recent work solved the CSP for a major freight rail company 

There is more draw for work to be done in the freight industry over the passenger rail 

industry because there is more opportunity for profit from finding solutions for freight 

rail carriers.  At this time, there has been little research on the rail passenger CSP in 

the United States. 

2.5 Solution Approaches 

2.5.1 Set Partitioning Problem & Set Covering Problem Approaches 

The most common method of solving the CSP in the literature has been 

through modeling the CSP as a set covering problem (SCP) or set partitioning 

problem (SPP).  In both of the SCP and SPP formulations of the CSP, the decision 

variable, xj, is a binary integer variable that represents whether or not a pairing is 

selected as a work duty for one crew member.  The constraints consist of a matrix of 

binary values aij that indicate if a pairing j covers a work duty i.  Each row in this 

matrix shows which pairings cover a single work duty.  Each column corresponds to 

one possible pairing or the work for an individual crew member over the defined time 

horizon.  The SPP models the CSP as a problem of finding a minimum cost subset of 

pairings that exactly covers the work requirements.  The SPP formulation is: 

  Minimize j j
j

c x∑  

 
  Subject to  1ij j

i
a x =∑  
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    { }0,1ijx ∈  
 
  Where:  jc = cost of pairing 
 

    
1, pairing j is selected
0, otherwise               jx
⎧

= ⎨
⎩

 

 

    
1, pairing j covers work requirement i
0, otherwise                                        ija
⎧

= ⎨
⎩

 

 
 

The SCP formulation of the CSP is similar to that of the SPP, except the 

problem is more flexible, allowing for over coverage of the work requirements.  The 

SCP is the problem of finding the minimum cost subset of pairings that covers the 

work requirements.  The SCP formulation of the CSP is: 

 
  Minimize j j

j
c x∑  

 
  Subject to 1ij j

i
a x ≥∑  

   
    { }0,1ijx ∈  
 
 
  Where:  jc =cost of pairing 
 

    
1, pairing j is selected
0, otherwise               jx
⎧

= ⎨
⎩

 

 

    
1, pairing j covers work requirement i
0, otherwise                                        ija
⎧

= ⎨
⎩

 

 
 

Depending on the CSP application, the SPP or SCP formulation may be more 

appropriate.  In some cases, exact coverage may be needed because over coverage 
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would result in a large cost relative to the regular schedule costs.  Formulating this 

problem as a SCP would then result in a suboptimal solution.  In this thesis, the SPP 

is the appropriate formulation since exact coverage is needed.  Over coverage would 

result in excess crew members assigned to duties.   

Earlier works using the SCP or SPP approaches added side constraints and 

were application oriented.  Rubin formulated an airline CSP as an SCP with 

constraints that specified the number of crew at each crew base (Rubin 1973).  The 

researcher did not solve the SCP, but instead used a current known schedule as an 

initial solution for a heuristic to solve the problem.  A review of other earlier works 

using the SPP model of the CSP can be found in Marsten and Shepardson (1981).  

This paper reviewed the use of Lagrangian relaxation, subgradient optimization, and 

heuristics to solve the CSP for several airlines and a transit system. 

 A major difficulty with the SPP and SCP formulations of the CSP is that of 

determining all possible pairings for these models.  In the full SPP and SCP 

formulations, the matrix of constraints contains columns for every possible pairing.  

For larger CSPs, this results in an extremely large number of columns.  For a CSP 

with thousands of trips, there can easily be an unmanagebly large amount of possible 

pairings.  In this regard, the first problem is the time-consuming task of enumerating 

all these possible pairings.  In the rail CSP, complex work and payment rules make it 

difficult and inefficient to determine the set of all possible and legal pairings.  Then 

the second problem is that even if all pairings can be enumerated, the resulting SPP or 

SCP, which is a binary integer program, is NP-hard.  
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 Much of the past work in CSPs has tackled the difficulty of solving the SPP 

and SCP formulations for the CSP.  Some researchers have attempted to use 

constraints that force the linear programming (LP) relaxation of the problem to have 

integer solutions (Ryan and Foster 1981).  In a later work, the researchers showed 

how an LP relaxation of the integer SPP produced integer or near-integer solutions 

when each duty must be followed by the next available work requirement. 

 Another approach used in the SPP and SCP formulations of the CSP is the use 

of constructive heuristics methods to reduce the problem size.  Smith and Wren 

introduced heuristics for reducing the number of feasible pairings to a manageable 

size and solved the smaller problem with a branch-and-bound approach (1988).  

Another study introduced decomposing the CSP into subproblems by starting time 

(Falker and Ryan 1992).  Then, heuristics are used to remove duties that are not likely 

to appear in good solutions.  Finally, smaller sized SPPs were solved. 

 In another work, the researchers used constructive heuristics with relaxation 

techniques to solve the CSP.  Caprara et al. (2001) divided the CSP for an Italian 

railway into three parts: pairing generation, pairing optimization, and roster 

optimization.  For the pairing generation step, the researchers enumerated all feasible 

pairings and then proceeded to use heuristics to reduce the set of feasible pairings.  In 

the pairing optimization step, the researchers used a Lagrangian relaxation technique 

to help solve the set covering problem.  Finally, a constructive heuristic was used to 

match pairings together to create crew rosters.  The final crew schedule solution is 

improved by iterating between the pairing optimization and roster optimization steps 

(Caprara et al. 2001).   
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  For very large CSPs, many researchers have adopted a column generation 

technique to help in solving the SPP or SCP.  Desrocher and Soumis (1989) presented 

a column generation constrained shortest path subproblem for adding new pairings.  

The researchers solved an urban mass transit CSP as a SCP with side constraints for 

work shift regulations using dynamic programming.  The use of the shortest path 

algorithm has been used successfully in other works as well.Column generation is 

used with pricing strategies, which is a method called branch-and-price.   

The simplest way to generate these new pairings is through enumeration 

(Garfunkel and Nemhauser 1970; Marsten 1974).  However, enumeration is memory-

intensive and not efficient for large problems.  Methods that combine enumeration 

with bounding have also been used (Makri & Klabjan 2004).   

Other research has approached the subproblem of pairing generation by using 

heuristics for generation promising but not necessarily optimal pairings (Klabjan et al. 

2001).  One specific heuristic method is constraint programming, which uses 

computer programming techniques to reduce the feasible domain of solutions to the 

subproblem (Fahle et al. 2002; Sellman 2004).  Such heuristics provide fast 

approaches to finding near-optimal solutions to the subproblem. 

Many works have formulated the pricing subproblem as a constrained shortest 

path problem (Desrochers & Soumis 1989; Lavoie et al.1988).  In this approach, 

dynamic programming is usually used to solve a multi-label, resource-constrained 

shortest path problem.  This approach, however, is not able to efficiently model more 

complex constraints. 
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Similar to branch-and-bound for integer programming problems, branch-and-

price uses a branching tree to solve for integer solutions.  In the branch-and-price 

method, column generation is used at each node in the branch-and-bound tree.  

Constraint branching rules are used to solve a pricing subproblem at each node in the 

branch-and-bound tree.  Branch-and-price involves generating new pairings, or 

columns, while solving an IP, whereas the column generation heuristic method 

generates new pairings in between solving LP relaxations problems.  A detailed 

description of branch-and-price for airline CSPs can be found in Barnhart et al. 

(1998).  The branch-and-price method has also been used in mass transit (Fores and 

Proll 1998) and rail CSPs (Freling et al. 2004). 

 Another method for solving large, real-world CSPs formulated as a SCPs or 

SPPs is the branch-and-cut method.  Branch-and-cut involves branch-and-bound with 

cutting planes to solve large integer programming problems.  Hoffman and Padberg 

(1993) introduced the branch-and-cut method for solving a SPP in airline crew 

scheduling with 8,600 columns by 800 rows and one million columns by 145 rows.  

A similar study also applied the cutting plane method to solve the CSP for United 

Airlines (Graves et al. 1993).  In the rail industry, Ernst et al. solved the crew 

scheduling and roster problems with complex regulations and crew quality of life 

restrictions for an Australian railway (2001).   

Researchers have also extended on the general CSP.  Willers et al. examined 

the CSP with dual objective functions for cost and number of crew (1995).  The study 

presents new construction heuristics and a model for the dual objective function.  

Other works have integrated the CSP with vehicle scheduling.  In the general CSP, 
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the vehicle schedule has been determined and is used as an input into the CSP.  

However, researchers have worked on the integrated vehicle and crew scheduling 

problems as a way of better optimizing transportation operations.  Haase and Friberg 

presented a SPP formulation of the integrated mass transit vehicle and crew 

scheduling problem with a single crew base.  The problem was solved using branch-

and-bound with column generation (1999).  An extension the work incorporated a 

cutting plane scheme in the solution approach (Haase et al. 2001).  Another way of 

dealing with the CSP and vehicle scheduling has been to examine crew scheduling 

before vehicle scheduling and routing.  Klabjan et al. solved the airline CSP before 

the aircraft routing problem to evaluate a new way to find cost savings (2001).  This 

work considered the CSP with time windows and number of aircraft constraints in 

order to ensure a feasible solution that precedes the aircraft routing problem. 

 Recent works in CSP have also focused on the crew rescheduling problem, or 

crew scheduling as part of disruption management.  The goal crew rescheduling 

problem is to make changes to a predetermined scheduling while minimizing costs 

caused by disruptions such as weather, technical problems, or absence of crew.  There 

especially has been interest in the crew rescheduling problem in the airline industry 

(Nissen and Haase 2006, Kohl et al. 2007).  In the rail industry, researchers have 

examined the impacts of crew rescheduling, adjustments in timetables, and rolling 

stock in Denmark (Jespersen-Groth et al. 2007). 

With recent advancements in technology and improved solution techniques, 

researchers have solved large real-world railway CSPs using the SPP and SCP 

methods.  Kroon and Fischetti solved CSPs for a Dutch railway with 2,500 through 
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9,000 trips (2001) using a combination of column generation, Lagrangian relaxation, 

and heuristic methods.  Another more recent study of the Dutch railway NS Reizigers 

presented solution techniques for a CSP with over 14,000 trips and 1,000 duties per 

day (Abbink et al. 2004).  The researchers used similar methods to find a crew 

schedule solution with savings of $4.8 million per year. 

2.5.2 Network Flow Approach 

Another approach to the CSP is through modeling the problem as a network 

flow problem.  Mellouli introduced a time-space network representation of a German 

rail CSP (2001).  The advantage of the network approach is that the resulting problem 

is usually smaller than the corresponding SPP or SCP.  In this approach, the difficulty 

lies in the construction of the network model.  Yan and Tu used a pure network flow 

problem and network simplex to solve an airline CSP for China Airlines (2002).  

Another study introduced the airline CSP as an integer multicommodity flow problem 

(MFP) (Cappanera et al. 2004).  The researchers develop a model that incorporates 

complex regulations on working times, crew absence, training, and union activities.  

The MFP approach was able to solve a CSP that could not be solved by a traditional 

SPP approach.  Vaidyanathan et al. (2007) also used a MFP approach for a freight rail 

CSP.  The researchers developed a time-space network model of the problem and also 

introduced an algorithm for incorporating the seniority and bidding aspect of the 

freight rail crew system. 

2.5.3 Metaheuristic Approach 

A different approach to the CSP is through the use of metaheuristics. 

Metaheuristics provide a framework of steps to solve optimization problems and can 
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produce near-optimal or optimal solutions.  These strategies typically allow worse 

solutions in subsequent iterations in hopes of avoiding local optima.  One 

metaheuristic that has been applied to the CSP is simulated annealing (SA).  In SA, 

the heuristic framework uses principles from the energy process of cooling metals to 

find new solutions.  SA metaheuristics are generally good for finding acceptable 

solutions in a defined amount of time.  Emden-Weinert and Proksch (1999) solved an 

airline CSP using a SA approach.  The work concluded that the SA produced good 

quality solutions, but required longer processing times than simpler heuristics.  An 

SA approach was also used to solve a multi-objective CSP for airline pilots (Lucic 

and Teodovoric 1999).  In the rail industry, SA has been used to solve the CSP with 

complex crew compensation rules (Ernst et al. 2001).  Overall, SA solution 

approaches to the CSPs have produced acceptable solutions, but have not been shown 

to be as effective as other methods. 

 Another metaheuristic applied to CSPs is tabu search (TS), which exploits 

local or neighborhood searches and a list of “taboo” moves to drive the solution 

search and avoid local minima.  Cavique et al. (1999) used a TS approach for solving 

a CSP with regulations for working time and meal breaks for Lisbon Underground.  

TS has also been used in transit CSPs, but produced solutions that were inferior to 

other methods (Shen & Kwan 2001).  The researchers, however, show that refining a 

TS procedure has potential to produce better solutions.  Tabu search methods treat the 

CSPs as problems similar to vehicle routing problems (VRP), in which crew (or 

drivers in the VRP) must be on specific trains (or at specific locations in a network 

for the VRP) at the given time.  Instead of routing vehicles in a network, the CSP 
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“routes” crew members through a network of train trips.  Tabu search methods have 

not been extensively studied for applications in the CSP.  However, the success of 

tabu search metaheuristics for VRPs with various constraints indicates that they may 

be applicable to CSPs as well. 

Genetic algorithms (GA) have also been used to solve CSPs. GAs use the 

evolutionary behavior of genes in chromosomes to produce new populations of 

possible solutions from existing parent solutions.  GA approaches have been used in 

several transit CSP applications (Clement and Wren 1995; Wren & Wren, 1995; 

Kwan and Wren 1996; Kwan et al. 1999).  The GA methods produced good quality 

solutions, but cannot guarantee optimal solutions.  Another application of GA showed 

that the GA solutions were inferior to exact algorithms for most problem instances 

and did not produce feasible solutions for some problems (Levine 1996).  The GA 

approach does, however, allow incorporating complex work regulations and can 

produce good solutions for very large problems that cannot be solved efficiently with 

exact solution methods. 

2.6 Summary of Literature Review 

 The CSP aims to reduce inefficiencies in crew schedules for airline, rail and 

transit systems. By reducing these inefficiencies, transportation operators can 

significantly reduce operating costs.  Additionally, CSPs solutions can help balance 

workload for crew members. 

Past work on passenger rail CSPs is limited. The literature has focused on 

airline applications and rail appliccations in Europe and Asia. The rail CSP research 
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in North America has especially been limited, which prompts the need for further 

work on passenger rail CSPs, such as the Amtrak CSP in this thesis. 

The review of relevant literature presented three general approaches to solving 

the CSP: 

1. SPP & SCP Approach -- This approach is the most widely used and has 

been applied to the largest, real world sized problems.  Due to the problem 

formlation in this approach, complex contraints can be incorporated.  

Since this approach formulates the CSPs as a binary IP and requires 

enumeration of a large set of feasible variables, the problem is NP-hard.  

As presented in this chapter, reseachers have used various relaxation 

methods, heurstics, column genration, and branching strategies to solve 

this problem.  However, approaches that have been applied to real world 

problems are not ideal for solving the Amtrak CSP because each method is 

tailored to a specific problem and constraints.  In particular, the Amtrak 

CSP has complex payment and allowance schemes as well as complex 

work regulations and union rules to which a schedule must adhere.  

2. Network Flow Approach – The network flow approach has been used in 

more recent research on the CSP in the last decade. This approach 

formulates the CSP as a network flow problem, which has been successful 

for moderately-sized, real world problems. This approach is limited, 

however, because it can be difficult to model more complex constraints 

and to solve very large problems. 
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3. Metaheuristic Approach – The metaheurstic approach has been shown to 

be successful in finding feasible, although not necessarily near-optimal, 

solutions for large CSPs.  Metaherustics allow complex cosntraints to be 

incorporated and produce solutions with fast computation times. This 

approach is also useful for making marginal changes to a crew schedule. 

The work in this thesis aims to combine the SPP approach with a GA 

metahuerstic to solve the large, real world Amtrak Northeast Corridor CSP.  The SPP 

formulation of the problem handles the complex constraints of the CSP, and the goal 

of the GA is to drive a column generation heuristic that can produce solutions within 

a reasonable compution time.
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Chapter 3: Problem Description 

 

The objective of this project is to apply a genetic algorithm-based column 

generation heuristic to the passenger rail crew scheduling problem.  This chapter 

describes the problem, input data, and constraints in detail.   

3.1 Description of Data 

Data on crew requirements and schedule for Amtrak’s Northeast Corridor 

were obtained from Amtrak for the summer operating season of 2008.  The 

requirements indicate which duties need to be fulfilled by the crew, and the existing 

schedule provides a basis for determining the existing cost of the crew schedule. A 

sample dataset is provided in the Appendix.  Full datasets are not provided due to the 

excessive size of all data.  

Amtrak routes cover 13 zones across the United States.  For the purposes of 

this thesis, the Northeast Corridor zone was studied. The Northeast Corridor is the 

busiest corridor in the Amtrak network with the heaviest ridership between Boston 

and Washington, D.C.  This zone covers 32 different stations, allowing for billions of 

unique schedules (Figure 3-1).  Within a week’s time, the schedule must be covered 

by a specific number of crew members.  For instance, a single train may require two 



 

 26 
 

conductors, one engineer, and one fireman.  A train with more cars or heavier 

ridership may require more crew members.  

 
Figure 3 - 1.  Amtrak Northeast Corridor 

 
 

The crew requirements dataset contains the duties required to fulfill all trains 

for 32 total release stations and 16 crew bases (Table 3-1).  The release stations are 

stations at which crew may go on or off duty and may be released for rest.  There are 

many other stations in the Amtrak Northeast Corridor that are not included since they 

are not release points.   

These duties in the requirements dataset includes train work, extra board, and 

station yard work.  The dataset provides information on the date and time of when a 

duty begins and ends, the starting and ending locations of the duty, the train number, 

North 
 
South
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the number of crew needed for each train, and the type of crew required. The crew 

type may be one of four positions: 

1. Conductor, 

2. Assistant Conductor,  

3. Engineer, or  

4. Fireman.   

Of the 4,338 current duties, 2,093 are engineer and firemen positions, and 

2,245 are conductor positions and assistant conductor positions.  The engineer and 

firemen positions can be filled by the same type of personnel as these crew types 

share the same responsibilities.  The conductor and assistant conductor positions can 

also be filled by the same type of personnel.  However, engineering and firemen 

positions are not interchangeable with conductor and assistant conductor positions.  

This conveniently allows the route information to be divided among those two groups 

for data processing and solving.  By partitioning the single, full network problem as 

two independent problems, the problem size is dramatically reduced. The full 

Northeast Corridor network has 4,338 duties.  After partitioning this problem into one 

for the engineers and firemen and one for the conductors and assistant conductors, the 

two new problems have 2,093 and 2,245 duties, respectively.  These two crew-

specific problems will be referred to as EF, for engineers and firemen, and AC, for 

conductors and assistant conductors. 
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Table 3 - 1.   Amtrak Northeast Corridor Stations and Crew Bases 

Code Station Location 
ALB* Albany, NY 
BON* North Station, Boston, MA 
BOS* South Station, Boston, MA 
BUF* Buffalo, NY 
CLT Charlotte, NC 
CUM Cumberland, MD 
CVS Charlottesville, VA 
FLO Florence, SC 
GRO Greensboro, NC 
HAM Hamlet, NC 
HAR* Harrisburg, PA 
HRB* Harrisburg, PA 
HUN* Huntington, WV 
MTR Montreal, QC 
NFL Niagara Falls, NY 
NFS Niagara Falls, ON 
NHV* New Haven, CT 
NLC New London, CT 
NPN Newport News, VA 
NYP* Penn Station, NY 
NYZ* Penn Station, NY 
OSB Old Saybrook, CT 
PGH Pittsburgh, PA 
PHL* Philadelphia, PA 
POR* Portland, ME 
RGH Raleigh, NC 
RUD Rutland, VT 
RVR* Richmond, VA 
SPG* Springfield, MA 
SYR Syracuse, NY 
TOL Toledo, OH 
UCA Utica, NY 
WAS* Washington, DC 
WDC* Washington, DC 
WWS* Washington, DC 

   *crew base 
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The schedule dataset lists all current work schedules for each individual crew 

member.  For each individual crew member’s schedule, the data indicates the duties, 

pairings, and away time for a single week.  The current Amtrak schedule in 

electronically documented form takes up over four megabytes of memory.  In order to 

further reduce the complexity in coding required to process this large amount of data 

efficiently, the Northeast Corridor zone was partitioned into a North and South region 

(Figure 3-1).  The current train network has a single station at the Washington, D.C. 

crew base that divides the network into two sections.  All trains originating from 

north of Washington, D.C. must travel through this station in order to arrive at a 

station south of Washington, D.C.  As a result, North region for this thesis was 

designated as all stations north of Washington, D.C., and the South region was 

designated as all stations south of Washington, D.C.  Additionally, within the existing 

schedule provided by Amtrak, the crew base for the Washington, D.C. station was 

coded as two distinct crew bases.  One Washington, D.C. crew base only served 

stations north of the station, and the other crew base only served stations south of the 

station.   

 

Table 3 - 2. Description of Problems 
Problem Crew Type Region Code Number of Duties 

1 Engineers & Firemen North EFN 1044 
2 Conductors & Assistant Conductors North ACN 1178 
3 Engineers & Firemen South EFS 1049 
4 Conductors & Assistant Conductors South ACS 1067 
5 Engineers & Firemen All EF 2093 
6 Conductors & Assistant Conductors All AC 2245 
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The current schedules connecting the north and south regions are assumed to 

be static throughout the study, which makes the two partitions into independent 

networks.  This partitioning in conjunction with the previously described specialized 

crew assignments creates a total of four separate problems for the Northeast Corridor 

(Table 3-2): 

1. ACN - conductors and assistant conductors in the north partition, 

2. ACS - conductors and assistant conducts in the south partition,  

3. EFN - engineers and firemen in the north partition, and  

4. EFS - engineers and firemen in the south partition.  

3.2 Description of Constraints 

3.2.1 Crew Work Regulations 

Amtrak T&E crew members are subject to specific work regulations.  First, 

T&E crew may be required to stay at away locations between trips or overnight, but 

must return home at the end of a shift.  Second, T&E crew schedules permit 

deadheading of crews.  Deadheading may require additional cost for transporting 

crew to the appropriate locations, but is necessary for some cases in order to meet all 

work requirements. 

 In accordance with union regulations, T&E crew are guaranteed minimum rest 

times (Figure 3-2).  Before working a shift, crew must be allowed at least eight 

consecutive hours of rest during the 24 hours prior to working.  After being on duty 

for 12 consecutive hours or more, the crew must have at least 10 consecutive hours of 

rest.  In addition, crew members must have at least one entire day without work per 

week. 
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Figure 3 - 2. Minimum rest time regulations 
 

 

 

 
 
 
 
 
 

 

3.2.2 Crew Payment Regulations 

 In this project, the regular hourly rate paid to the crew is assumed to be 

$33.60, which is based on the real Amtrak crew cost.  The “one-and-one-half” 

overtime rate is thus equal to $50.40.  The categories of payment regulations include: 

• Shift work payment, 

• Meal allowance, 

• Lodging allowance, and 

• Weekly 40-hour guarantee. 

Shift work payment includes pay for hours on-duty and billable away hours. 

The on-duty hours are time spent on a train trip, yard work, or extra board hours. 

Thus, the duty hours for a duty is simply the starting date and time of the duty 

subtracted from the ending date and time of the duty: 

train hours for duty i
i iTR end startT t t= = −  
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When held away, the number of billable away hours is a function of the total 

number of hours held away; crew are only paid for certain hours held away (Figure  

3-3).  Crew are not paid for the first 12 consecutive hours away.  After being held 

away for 12 consecutive hours, Amtrak pays the crew for up to eight hours every 24 

consecutive hours away.  For the first 30 hours away, the billable away hours are: 
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Figure 3 - 3. Billable away hours 
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Calculation of shift payment is based on entire shifts rather than individual 

work duties.   The Amtrak regulation states that the first eight hours of a shift are paid 

at the regular hourly rate, and any additional hours in the shift above eight hours are 

paid at the overtime rate.   Therefore, the cost to Amtrak for a single shift, where Ts is 

the total number of paid hours in a shift, is: 
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50.4 , 8
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s s
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The second payment category covers meal allowances for crew during duties 

and while away.  If a train duty is at least five hours long, Amtrak provides crew 

members an allowance of $3.50 every five hours.  When held away for at least four 

hours, the company provides an allowance of $6.00 and another $6.00 once every 

eight hours afterwards.  The cost of meal allowances for a duty is: 

1
4

3.5 6
5 8

i i i iA D D A
M

t t t t
C +

− − +⎢ ⎥ ⎢ ⎥
= ∗ + ∗⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 

The third category of payment reimburses crew for lodging when held away 

for at least four hours. Lodging allowance is assumed to be $70.00, and additional 

lodging allowance is provided once every 24 hours after the first four hours of away 

time.  Thus, the cost of lodging for a duty is: 

2070
24

D A
L

t tC − +⎢ ⎥= ∗ ⎢ ⎥⎣ ⎦
 

The last payment category guarantees that all crew members are paid for at 

least 40 hours of work each week.  If the total working time and paid away time is 

less than 40 hours, Amtrak pays for the additional hours at the regular rate of $33.60 

dollars per hour.  This case is disadvantageous to Amtrak since the company 

essentially pays the crew member for hours not worked.   If the total working time 

and paid away time is over 40 hours, however, Amtrak pays for hours over 40 hours 

at the one-and-one-half overtime rate.  Again, paying crew for additional overtime is 

not of direct benefit to Amtrak.  However, good crew schedules may include many 

pairings with additional overtime because these pairings cover more duties.  Efficient 

crew schedules have a good balance between the cost of paying the 40-hour guarantee 

and the benefit of that pairing covering more duties. 
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3.3 Current Crew Schedule 

 In order to manipulate and study the current crew schedules from Amtrak, a 

consistent set of rules governing the data must be present among all different 

problems studied.  This means that certain duties need to consistently be removed 

across all groups of data so that the remaining data can be compared.  The following 

are rules for data removal: 

• Duties on train outside of the defined corridor in this thesis.  Since different 

operating units in Amtrak have different definitions of the “Northeast 

Corridor”, the corridor defined in this thesis is limited to trains along the main 

corridor between Boston, New York, and Washington, D.C.  Some duties on 

train outside of the defined region were not included in the analysis. 

• Duties that do not serve Amtrak trains but are included in the dataset for 

operations purposes.  For example, local agency-operated commuter trains 

that may share tracks with Amtrak are listed in the raw dataset. 

• Duties with missing data.  Some duties had missing data for starting or ending 

locations and times, and thus, these duties could not be included in the 

analysis. 

The current crew schedules for the North portion of the Northeast Corridor 

after the above mentioned duties are removed show potential for savings in cost.  The 

easiest way to identify that schedules can be improved is the varying length of the 

pairings.  Within the data, there currently exists many short (2-3 duties) pairings and 

many long (10 or more duties) pairings.  This condition suggests that crew members 
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are likely paid for hours not worked due to the cost guarantee or overtime.  The 

current weekly costs of the crew schedules for each problem are shown in Table 3-3.   

 
Table 3 - 3. Current Crew Schedule Costs 
Crew Schedule Weekly Cost ($) 

ACN $426,879 
EFN $237,782 
ACS $631,892 
EFS $451,120 
AC $1,110,099 
EF $709,902 
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Chapter 4: Methodology 

 
This chapter describes the methodology used to solve the passenger rail crew 

scheduling problem.     

4.1 Model Formulation 

 The problem is formulated as the general set partition problem (SPP) used in 

crew scheduling, described in Section 2.5.1.   This basic formulation was selected 

because it is arguably the most versatile operations research approach to the crew 

scheduling problem (CSP).  Since the specific problem in this thesis requires complex 

constraints, the SPP allows the constraints to be simply modeled as part of the cost 

and binary constraint matrix.  The drawback of the SPP formulation is that the entire 

set of feasible pairings cannot be generated and solved efficiently.  The total number 

of feasible pairings grows exponentially with the number of duties required.  For a set 

of n duties, there are 2n possible pairings, and any number can be feasible, depending 

on the constraints.   The following solution approach aims to efficiently create a 

subset of “good” pairings so that the entire set of pairings does not need to be 

generated and solved. 
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4.3 Data Processing 

Prior to solving the problem, the raw data from Amtrak was processed to 

prepare it for input into the computer program.  Processing the data involved 

preparing the two input files for the computer program.  The first input file stored the 

required duties for the problem as a two-dimensional array of n by 4 entries.  In this 

file, each row represents a duty, where the first two entries are the starting and ending 

station location, and the last two entries are the starting and ending times (Figure 4-1).   

Figure 4 - 1. Sample Required Duties Input File 
 0 – From 1 – To 2 – Start Time 3 – End Time 

0 – Duty 1 10 0 360 629 
1 – Duty 2 0 10 820 1181 

…     
n-1 – Duty n 10 3 1230 1416 

 

The station locations are coded as distinct integers representing the stations in 

Table 4-1.  The duty starting and ending times are coded in minutes. This file is 

sorted by start time, which allows duty information to be expressed chronologically. 

The second input file stores the current crew schedule as an array of the duties 

and crewbases.  All of the duties from the first file are mapped to numerical 

identifiers for efficient storage.  For each crewperson’s schedule, the duties are listed 

in numerical form, followed by “999” to signify the end of the duties, then the 

crewperson’s crewbase (Figure 4-2).  The crewbase must be listed in the input file 

since the cost of a schedule depends on how long a crewperson is away from the 

crewbase.  The array ends with the integer “9999” to confirm the end of the file. 
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Table 4 - 1. Crewbase Identification 

Northern Partition  Southern Partition 
Crewbase ID  Crewbase ID 

ALB 0  CLT 0 
ALP 1  CUM 1 
BON 2  CVS 2 
BOS 3  FLO 3 
BUF 4  GRO 4 
MTR 5  HAM 5 
NFL 6  HAR 6 
NFS 7  HUN 7 
NHV 8  NPN 8 
NLC 9  NYP 9 
NYP 10  PGH 10 
OSB 11  PHL 11 
POR 12  RGH 12 
RUD 13  RVR 13 
SPG 14  WAS 14 
SYR 15    
TOL 16    
UCA 17    

 
 

 
Figure 4 - 2. Sample Crew Schedule Input File 
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4.2 Solution Approach 

The solution approach used to solve the problem is a genetic algorithm-based 

column generation heuristic.  Figure 4-3 provides an overview of this solution 

approach.   

 
Figure 4 - 3. Solution Approach 

 
1. Set Partition Problem (IP)

2. Create initial restricted master problem (IP)

4. Solve restricted master problem (LP)

5. Use genetic algorithm to solve pricing subproblem

3. Relax restricted master problem (LP)

7. Negative 
reduced 

cost found?

8. Add columns to restricted master problem

6. Remove columns

9. Revert restricted master problem (LP) back to IP

10. Solve restricted master problem (IP)

yes

no

 

 

4.2.1 Master Problem  

The master problem is the full integer program (IP): the SPP formulation of 

the crew scheduling problem.  This master problem is never completely generated 

due to the excessively large number of pairings.  The master problem serves as a 

starting point of for the rest of the solution method. 
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4.2.2 Restricted Master Problem  

In large CSPs, it is not efficient to enumerate all possible pairings or columns, 

so a restricted subset of the set of all feasible pairings is created.  This restricted SPP 

is also an IP.  Following a general column generation algorithm, the LP relaxation of 

the IP is used for the pricing subproblem described in the next section.   

In each iteration, the relaxed restricted master problem is solved by calling the 

commercial optimization package software CPLEX through the CPLEX Callable 

Library.  The library is used in code written in the C programming language within 

Microsoft Visual C++ 6.0.  The computer program uses the two input files previously 

described and first establishes the cost of each pairing based on the complex set of 

constraints.  Using this data, the program calls CPLEX to solve the relaxed, restricted 

LP.  The purpose of solving the restricted LPs is to find the dual variables, or shadow 

prices, corresponding to the duties in the problem for each restricted subset of 

pairings. These values are used to calculate the reduced cost of new pairings in the 

pricing subproblem. 

4.2.3 Pricing Subproblem 

 The pricing subproblem is used to determine which new pairings should be 

generated and added to the restricted problem.  This step is executed within the C 

program and does not require the use of CPLEX.   

According to LP duality theory, a solution improves when variables with 

negative reduced cost enter the basis.  As a result, the pricing subproblem aims to 

identify pairings (which are also columns or variables) that improve the LP relaxation 

master problem.  Using the dual variables from the LP solution, the reduced cost, c , 
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of each pairing can be calculated using the following equation from LP duality 

theory: 

j j i ij
i

c c aλ= −∑  

 
  Where:  reduced cost of pairing jjc =  
 
    jc = cost of pairing j 
 
    dual variable of duty iiλ =  
     

    
1, pairing j covers work requirement i
0, otherwise                                        ija
⎧

= ⎨
⎩

 

 
The pricing subproblem effectively “prices out” newly generated pairings to 

determine a good candidate for adding to the restricted problem.  The goal is to 

generate new pairings that improve the LP relaxation of the restricted master 

problem, which in turn, is likely to improve the IP master problem.  Thus, the 

objective of this pricing subproblem is to minimize the reduced cost of pairings not 

already in the restricted subset.  If the solution to this pricing subproblem is negative 

or zero, then the corresponding pairing should enter the restricted subset. In order to 

make the iterations more efficient, many pairings with negative reduced costs can be 

brought into the restricted subset in each iteration. If the solution is non-negative, 

then there is no additional pairing that can improve the LP relaxation of the master 

problem.   

4.2.4 Pairing Generation 

 The solution approach uses a genetic algorithm (GA) metaheuristic to 

generate new pairings for the pricing subproblem.  A GA is a global search heuristic 
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that uses evolutionary algorithms to find approximate solutions to optimization 

problems.  GAs work by using the notion of biological reproduction to create 

candidate solutions that evolve into improved solutions.  The evolution initiates with 

a population of individuals, which in this case, is the restricted subset of pairings.   

In this metaheuristic, a pairing is stored as a binary chromosome (Figure 4-4).  

In Figure 4-4, the sample pairing for a crew based at station 9 is required to work duty 

1, 3, and 5, before returning the crewbase.  If the problem has five total duties, the 

chromosome has five genes.  Then, a “1” in a gene represents a selected duty, and a 

“0” represents non-selected duty.  This chromosome representation of a pairing 

corresponds to a column in the binary matrix of the SPP formulation of the CSP.  The 

fitness of the pairing is equal to the reduced cost of the pairing, which is calculated 

from the cost, dual variable, and assigned duties.  In addition to the chromosome, a 

separate array keeps record of the crew base of each pairing. 

 

Figure 4 - 4. Chromosome Representation Sample 
 

Pairing: 

Crew Base 9  Duty 1  Duty 3  Duty 5  Crew Base 9 

 

Chromosome: 

Duty 1 Duty 2 Duty 3 Duty 4 Duty 5
1 0 1 0 1 

 

 

As previously stated, the genetic algorithm initializes with the current subset 

of pairings in the restricted problem.  The two pairings with the lowest fitness value 
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are selected from the population to be “parents”.   Once parents are selected, the 

parents reproduce to create “children”.  In this solution approach, reproduction occurs 

through a simple one-point crossover (Figure 4-5).  The crossover point is selected 

randomly for this approach. In Figure 4-5, two pairings, Pairing A and Pairing B, are 

the parents.  The crossover point is in between the fifth and sixth gene in the 

chromosome for this example.  The two new pairings that are created then share 

genes from each parent.    

The crossover creates a possible pairing, and a subsequent feasibility operator 

tests to ensure that the pairing is feasible.  A pairing is considered feasible if it is 

feasible to the overall crew scheduling problem, and it is not already in the subset of 

pairings in the restricted problem.  In the application of the GA to the CSP in this 

thesis, a large number of pairings are infeasible due to the constraints.  An additional 

mutation operator facilitates the genetic diversity of subsequent populations.  This 

reproduction process iterates to create many new populations of pairings for the 

restricted problem.   

Figure 4 - 5. Example of One-Point Crossover 
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The genetic algorithm terminates when a fixed number of feasible pairings are 

created.  The population size, n, is limited to a defined number to prevent the problem 

from becoming excessively large.  These pairings are added to the restricted problem.  

The metaheuristic also terminates if no new feasible pairings are found within a given 

amount of time.  The latter stopping criterion makes the solution approach more 

efficient and prevents the program from searching for feasible pairings for an 

excessive amount of time. 

4.2.5 Pairing Removal 

The pairing generation process creates a large number of new pairings.  In 

order to prevent an excessive number pairings in the pricing subproblem, pairings can 

be removed.  After each iteration of solving the restricted program, the new reduced 

costs of each pairing can be calculated.  The pairings that are not selected to be in the 

restricted LP solution and with a positive reduced cost are removed since these are 

less likely to improve a subsequent LP solution.  The removal of these less-optimal 

pairings reduces the overall size of a subproblem, which reduces run-time and 

memory usage requirements. 

4.2.6 Final Solution 

When no further pairings with negative reduced cost can be found by the 

genetic algorithm, the relaxed, restricted master problem can be solved to optimality 

or near-optimality.  The final relaxed, restricted master problem is reverted back to an 

IP.  Then, this IP is solved to optimality using CPLEX.  The resulting solution from 

this IP is the final solution to the CSP.  In terms of the Amtrak schedules, this means 
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that the resulting solution ensures that each train has the same amount of workers 

required to operate, but the overall cost of operation is reduced. 

4.5 Testing Strategy 

In order to test the proposed heuristic solution approach, three small sample 

problems were created based on the actual data.  These problems have 26, 28, and 30 

duties.  The duties for the 26 duty problem are based on the EFN data and are shown 

in Table 4-2.  The duties for the 28 and 30 duty problems are based on the EFS data 

and are shown in Table 4-3 and 4-5.  The existing crew schedules for these problems 

are shown in Table 4-6. 

While these problems are small in comparison to the real-world problems with 

approximately 1,000 to 2,000 duties, the number of possible pairings for these small 

problems is large (Table 4-1).  For a problem with 30 duties, there are 1,073,741,824 

possible pairings, although the actual number of feasible pairings is smaller due to the 

complex constraints of the problem.  The goal of using the heuristic method is to 

drastically reduce the large set of possible pairings and only select “efficient” pairings 

to solve in the SPP.   

The small problems were first formulated as SPP IPs and solved to optimality 

using CPLEX.  The results served as a base for comparison.  The small problems 

were then solved using the proposed solution approach, and the results were 

compared.   

Next, the real-world problems were solved using the proposed solution 

approach.  A sensitivity analysis was then conducted to determine the effects of 

changes in cost, schedule, and genetic algorithm population size on the solution.  
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Finally, conclusions were drawn from the results.  Each of the four large problems, 

ACN, EFN, ACS, EFS, was solved using the heuristic with a population size, n, of 

2,000, 4,000, and 20,000 pairings.  Finally, the entire AC and EF Amtrak Northeast 

Corridor problems were solved separately using the heuristic.    

 

Table 4 - 2. Generated Small Problem with 26 Duties 
Duty From To Depart Arrive 

0 0 4 605 1270 

1 0 4 605 1270 

2 4 0 1890 2525 

3 4 0 1890 2525 

4 0 4 2045 2710 

5 0 16 2160 2322 

6 16 0 2417 2605 

7 4 0 3330 3965 

8 0 4 3485 4150 

9 0 4 3485 4150 

10 0 16 3600 3762 
11 16 0 3857 4035 
12 4 0 4770 5405 
13 4 0 4770 5405 
14 0 4 4925 5590 
15 4 0 6210 6845 
16 0 4 6365 7030 
17 0 4 6365 7030 
18 0 16 6480 6642 
19 16 0 6737 6915 
20 4 0 7650 8285 
21 4 0 7650 8285 
22 0 4 7805 8470 
23 0 4 7805 8470 
24 4 0 9090 9725 
25 4 0 9090 9725 
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Table 4 - 3. Generated Small Problem with 28 Duties 
Duty From To Depart Arrive 

0 5 0 457 693 
1 0 5 482 753 
2 0 5 1093 1314 
3 5 7 1309 1469 
4 7 5 1886 2045 
5 5 0 1853 2156 
6 5 0 2464 2765 
7 0 5 2515 2749 
8 5 7 2754 2936 
9 7 5 3318 3515 
10 0 5 3352 3660 
11 5 7 4186 4370 
12 7 5 4752 4933 
13 5 0 4740 5039 
14 5 0 5358 5631 
15 0 5 5378 5634 
16 5 7 5649 5811 
17 7 5 6198 6360 
18 0 5 6262 6496 
19 5 7 7088 7251 
20 7 5 7621 7828 
21 5 0 7630 7898 
22 5 0 8259 8519 
23 0 5 8279 8555 
24 5 7 8505 8704 
25 7 5 9052 9268 
26 5 0 9052 9359 
27 0 5 9141 9387 

 
 
 
 

Table 4 - 4. Number of Possible Pairings for Small Problems 
 

 
   

No. of Duties No. of Possible Pairings 
26 67,108,864 
28 268,435,456 
30 1,073,741,824 
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4.5.1 Evaluation of Convergence and Cost 

 The solutions produced by the proposed iterative heuristic were studied after 

the resulting final costs have converged.  This ensured that the maximum benefit of 

the method is achieved when compared to alternative methods.  Many of the 

changeable parameters when using the proposed heuristic have a direct effect on the 

number of iterations needed for convergence.  The population size, costs, schedule 

complexity, and method of generated pairings are some of these parameters.  The 

number of pairings generated per iteration has a direct affect on cost.  Varying these 

factors allows for the full analysis of the proposed heuristic and full optimization of 

the heuristic. 

4.5.2 Evaluation of Calculation Time 

 Calculation times were determined using a Windows based machine with dual 

core processor and two gigabytes of random access memory.  Each iteration time as 

well as total runtime using the heuristic or the full subset of pairings was logged for 

study.  Calculation time using the heuristic was calculated by the summing the 

running times of each iteration.  The relationship between calculation time and 

iteration number can be determined within solving each single problem.   The 

relationship between calculation time and the number of pairings generated per 

iteration will require varying the number of pairings.  These values can then be 

compared to the cost improvement from using the heuristic to determine optimal 

parameters for efficiency. 
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Table 4 - 5. Generated Small Problem with 30 Duties 
Duty From To Depart Arrive 

0 0 10 0 360 
1 1 0 10 420 
2 2 0 10 995 
3 3 10 3 1230 
4 4 3 10 1799 
5 5 10 0 1800 
6 6 10 0 2412 
7 7 0 10 2435 
8 8 10 3 2670 
9 9 3 10 3239 
10 10 0 10 3300 
11 11 10 3 4110 
12 12 3 10 4679 
13 13 10 0 4680 
14 14 10 0 5292 
15 15 0 10 5315 
16 16 10 3 5550 
17 17 3 10 6119 
18 18 0 10 6180 
19 19 10 3 6990 
20 20 3 10 7559 
21 21 10 0 7560 
22 22 10 0 8172 
23 23 0 10 8195 
24 24 10 3 8430 
25 25 3 10 8999 
26 26 10 0 9000 
27 27 0 10 9060 
28 28 10 0 9612 
29 29 0 10 9635 

 

4.5.2 Evaluation of Memory Usage 

Similar to calculation time, memory management was also logged during each 

CPLEX iteration.  The C program managing all CPLEX calculations and pairing 

information stores only relevant route identification and does not store unused route 

information.  While more extensive program techniques could reduce memory usage, 
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the memory usage of this program should give good indication of how memory usage 

would scale on a typical, modern personal computer with parameters beyond the 

scope of what was studied.  This allows for an approximation of a possible maximum 

generated pairs per iteration and approximate calculation time for convergence. 

 
Table 4 - 6. Small Problem Existing Crew Schedules 

26 Duty Problem  28 Duty Problem  30 Duty Problem 
Pairing Home Duties  Pairing Home Duties  Pairing Home Duties 

1 16 

8  

1 5 

5  

1 10 

0 
12  3  2 
16  4  14 
20  11  18 

2 0 

0  12  22 
2  19  27 
18  20  

2 0 

1 
19  

2 5 

1  6 
22  6  10 
24  10  21 

3 0 

4  21  23 
7  23  28 
14  

3 0 

8  

3 10 

5 
15  9  7 

4 4 

5  16  13 
6  17  15 
9  24  26 
13  25  29 
17  

4 0 

5  

4 10 

8 
21  7  9 

5 0 

1  13  16 
3  15  17 
10  26  24 
11  

5 5 

2  25 
23  14  

5 10 

3 
25  18  4 

    22  11 
    27  12 
        19 
        20 
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Chapter 5:  Results & Analysis 

 

This chapter presents the results and provides analysis of the improved 

solution.   First, the small generated problem results are presented, followed by the 

results for the four partitioned problems.  Lastly, the full network problems are 

presented. 

5.1 Small Generated Problem Results 

In order to determine whether or not the proposed heuristic can improve the 

crew schedule, results for the small problems were compared.   The data for the real 

world Amtrak crew schedules are too large to generate a complete list of feasible 

pairings. The time required to first generate the feasible pairings is excessive.  Then, 

solving such a large integer program within a reasonable time would be impossible 

using modern computers.  As a result, three small problems based on the real world 

data were generated.  These small problems had 26, 28, and 30 duties each.  As the 

number of duties increases, the number of possible pairings grows exponentially.  The 

small problem with 28 duties is significantly larger than the 26 duty problem, and the 

30 duty problem is again much larger than the 28 duty problem.  By solving each of 

these problems to optimality using the traditional integer programming solution 

techniques in CPLEX and comparing the results to those obtained by the heuristic, it 

was found that the heuristic does improve the crew schedules.  
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The smallest problem with 26 duties was solved to optimality by the heuristic 

in less than 16 seconds (Table 5-2).  The solution converged in two iterations.  The 

final solution was 17.7 percent improvement over the original total cost.   

Table 5 - 1. Small Generated Network Comparison 26 Duties 
Iteration Total Cost ($) Improvement (%) Calculation Time (sec) 

0 8593 NA NA 
1 7074 17.7% 0.9 
2 7074 17.7% 15.0 

 
  
 The next problem with 28 duties was solved by the heuristic in about 22 

seconds and within four iterations (Table 5-3).  The final solution for this problem 

had an 18.4 percent improvement over the original total cost.  Compared with the 

smaller 26 duty problem, this larger problem required more time solve and more 

iterations to reach convergence.  This result was expected due to the larger number of 

possible pairings and larger number or feasible pairings.    

 
Table 5 - 2. Small Generated Network Comparison 28 Duties 

Iteration Total Cost ($) Improvement (%) Calculation Time (sec) 
0 8920 NA NA 
1 9594 14.9% 1.1 
2 7074 16.2% 4.0 
3 7280 18.4% 8.2 
4 7280 18.4% 24.6 

 
  

Table 5 - 3. Small Generated Network Comparison 30 Duties 
Iteration Total Cost ($) Improvement (%) Calculation Time (sec) 

0 9776 NA NA 
1 9594 1.9% 1.2 
2 7074 19.8% 7.0 
3 7834 19.9% 31.0 
4 7834 19.9% 31.0 
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The last small problem with 30 duties was solved in about 31 seconds, with 

convergence at the fourth iteration (Table 5-4).  The total improvement was 19.9 

percent over the original total cost.  Again, the larger number of possible and feasible 

pairings for this problem made the calculation time longer. 

In all three small problems, the initial iteration produced a smaller 

improvement, while subsequent iterations produced the largest improvements.  These 

results may have occurred because the first iteration creates “good” parent pairings 

that may not improve the overall solution dramatically, but create “good” children 

pairings in the later iterations.  All three small problem results also indicated that the 

calculation times of later iterations were longer.  This result was also expected since 

the later iterations have a larger number of pairings to solve in the integer program in 

CPLEX.  Solving these larger integer programs is a more intensive process. 

The heuristic results for these three small problems are then compared to the 

optimal results obtained from CPLEX.  The problems were formulated as SPPs and 

solved the optimality.  The results are shown in Table 5-5.  

Table 5 - 4. Comparison of Small Problem Heuristic Solution and Optimal Solution 

No. of 
Duties 

Total Cost ($) Improvement (%) Calculation Time (sec) 

Heuristic Optimal Heuristic Optimal Heuristic Optimal
26 7074 7074 17.7% 17.7% 15 79 

28 7280 7280 18.4% 18.4% 22 889 

30 7834 7792 19.9% 20.3% 31 6284 
 

For the 26 duty problem, the heuristic solved the problem to optimality in 15 

seconds, which is far less than the 79 seconds required for the full SPP formulation 

solution.  The heuristic computation time was 81 percent less time than the traditional 

SPP IP solution method.  The heuristic also solved the 28 duty problem to optimality 

in 22 seconds, compared with the 889 seconds required for the SPP solution method.   
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The heuristic, however, did not solve the largest small problem with 30 duties to 

optimality.  The heuristic solution improvement was 19.9 percent, while the optimal 

solution improvement was 20.3 percent.  The total cost of the final heuristic solution 

was within 0.5 percent of the optimal solution.  The proposed heuristic also reached a 

final solution in 31 seconds, compared with 6,284 seconds for the optimal solution 

using the traditional SPP IP formulation method.   

As the number of duties increases beyond 30 duties, it is expected that the 

proposed heuristic solution would be increasingly less optimal.  However, the savings 

in calculation time appears to increase exponentially as the number of duties 

increases.  Based on only these three small problems, the total calculation time using 

the heuristic also appears to increase linearly as number of duties increases.  The 

calculation time for solving the traditional SPP IP formulation to optimality using 

CPLEX increases exponentially as the number of duties increases.  Based on this the 

calculation times of the small problems, a problem with 35 duties would 

conservatively require several days to solve.  The excessive calculation time required 

to find optimal solutions for the real world-sized problems demonstrates the need for 

more a efficient solution method.  For the problems in this work with over 1,000 

duties, generating all feasible duties and then solving the problem to optimality 

becomes nearly impossible due to computer memory and calculation time constraints. 

5.2 ACN Results  

5.2.1 ACN Results for n = 2,000 
 

The results for the ACN problem solved with a population size, n, of 2,000 are 

shown in Table 5-1 and Figure 5-1.   The final solution for the ACN problem was a 
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4.45 percent improvement over the original cost of $426,879 dollars per week, as 

determined by calculating the cost of the existing schedule.  Over one year, the total 

savings in cost would be $763,308 dollar per year. Since there were some 

simplification assumptions in the work for this thesis, the actual savings could differ.  

However, the results indicate that there are potential cost-savings in improving the 

crew schedules.    

The total cost for this problem is reduced linearly after each iteration before 

the results converge at the thirteenth iteration.  Afterwards, no cost reduction is 

observed.  Memory usage varied based on the average length of the pairings 

generated, but did not show a consistent trend from iteration to iteration.  It varied 

based on the collective lengths of the pairings generated in each iteration.   

Table 5 - 5. Improvement in ACN Total Cost for n = 2,000 
Iteration Total Cost ($) Improvement (%) Calculation Time (sec) Memory Usage (MB)

0 426879 NA NA NA 
1 424192 0.63% 2966 4.2 
2 422390 1.05% 2869 3.3 
3 420600 1.47% 3229 5.5 
4 419250 1.79% 2328 6.0 
5 416086 2.53% 2512 5.1 
6 414812 2.83% 2470 3.8 
7 412276 3.42% 3124 3.9 
8 412200 3.44% 2376 4.8 
9 411184 3.68% 2657 4.8 
10 409500 4.07% 2540 3.7 
11 407868 4.45% 2565 6.2 
12 407868 4.45% 2722 5.0 
13 407868 4.45% 2653 5.0 

 
Running with this number of pairings per iteration does not have a significant 

impact on the memory resources of a modern computer.  The calculation time is more 

dependent on the data rather than computer resources. 
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 Iteration 8 has minimal cost reduction compared to those from previous 

iterations.  The solution ultimately converges at iteration 13 because all resulting 

iterations provide no changes in selected pairings and no cost reduction.  The total 

calculation time when the solution converged was 9.72 hours.  Memory usage of 

solving the problem was not intensive for each iteration, and there were no issues 

with memory limits during the solution process.  The ACN problem had 1,178 duties 

and was the largest of the four partitioned problems. 

 
Figure 5 - 1.  Improvement in ACN Total Cost for n = 2,000 
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5.2.2 ACN Results for n = 4,000 

The results when population size, n, is set at 4,000 are similar to when n is 

2,000.  However, for the ACN problem, there is a larger improvement in each 

iteration (Table 5-2 and Figure 5-2).  This suggests that  allowing a larger population 

size provides more opportunity for improvement.   
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The final solution for the ACN problem with a limit of 4,000 pairings shows a 

7.4 percent improvement over the original total cost of $426,879 dollars per week.  

The potential annual savings in cost is $1,641,640 dollars per year. 

In the solution process for this problem, there are certain iterations that 

produce larger improvements in total cost.  For example, there is a relatively large 

improvement between iteration 6 and 7.  These improvements suggest that the GA is 

producing good candidate pairings for the restricted problem.  The improvements 

may result from the GA selecting “good” parents in previous iterations that produce 

better populations in the subsequent iterations.  Convergence is then observed at 

iteration 15.  This behavior is similar to when n is set to 2,000 and similar to the 

majority of the rest of the data sets.   

Table 5 - 6. Improvement in ACN Total Cost for n = 4,000 
Iteration Total Cost ($) Improvement (%) Calculation Time (sec) Memory Usage (MB)

0 426879 NA NA NA 
1 422742 0.97% 6114 8.4 
2 420794 1.43% 4684 6.6 
3 418828 1.89% 4840 11.0 
4 416960 2.32% 6114 12.0 
5 413014 3.25% 13792 10.2 
6 410466 3.85% 5941 7.6 
7 403770 5.41% 9959 7.8 
8 402502 5.71% 6036 9.6 
9 401319 5.99% 5796 9.6 
10 398631 6.62% 6739 7.4 
11 397263 6.94% 7273 12.4 
12 396947 7.01% 6769 10.0 
13 395309 7.40% 6742 10.0 
14 395309 7.40% 8326 14.0 
15 395309 7.40% 6412 12.0 
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As the population size doubled from 2,000 to 4,000, the final improved 

solution improves.  However, while increasing the number of pairings results in a 

better solution, the running time of the heuristic is slower.  The total calcalution time 

before convergence when n is 4,000 is about 29.3 hours.   

As expected, the memory usage for this problem also increases as more 

pairings are stored per iteration.  This calcalution time is significantly larger 

compared to when n is 2,000.  The memory usage again was relatively constant for 

each iteration.  

 
Figure 5 - 2. Improvement in ACN Total Cost for n = 4,000 
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5.2.3 ACN Results for n = 20,000 

The best solution for the ACN network was found when population size is 

20,000.  This parameter produced a crew schedule with a 15.8 percent cost reduction 

compared to the original.   The percentage of improvement is nearly four times that of 

the problem solved when n is 2,000.  The new crew schedule cost is $359,257 dollars 

per week, compared to $426,879 dollars per week of the original schedule.  This 
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result is a savings of $67,622 dollars per week, or $3,516,344 per year.  This is a 

significant amount of savings in operational cost. 

The results for when n is 20,000 are less linear than when there are less 

pairings per iteration (Table 5-3 and Figure 5-3).  Initially, the results follow almost 

an inverse relationship with respect to iteration.   

Table 5 - 7. Improvement in ACN Total Cost for n = 20,000 
Iteration Total Cost ($) Improvement (%) Calculation Time (sec) Memory Usage (MB)

0 426879 NA NA NA 
1 414166 2.98% 21015 42.0 
2 404754 5.18% 27275 33.0 
3 400482 6.18% 28118 54.5 
4 399845 6.33% 40699 30.0 
5 395834 7.27% 321298 51.0 
6 392277 8.11% 124007 38.0 
7 382670 10.36% 41836 38.0 
8 373945 12.40% 89141 48.0 
9 366639 14.11% 123059 48.0 
10 364364 14.64% 98058 37.5 
11 359484 15.79% 59005 62.0 
12 359257 15.84% 70345 50.0 
13 359257 15.84% 57528 50.0 
14 359257 15.84% 45415 50.0 

 
As the number of pairings generated per iteration increases, the total cost 

decreases as expected.  However, the calculation time also increases dramatically. 

The total calculation time before convergence when n is 20,000 is about 318.6 hours, 

which is about 12 continuous days.  With the memory usage occasionally above 50 

megabytes, running the heuristic when n is 20,000 requires a dedicated machine for 

efficient performance.  Increasing the number of pairings per iteration for the 

heuristic further would eventually require more random access memory or a more 

efficient method of data storage in order to generate a converged solution. 
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 While significantly more time and memory resouces are required to solve this 

problem with the larger population size, the results provide a larger savings in cost as 

well.  For longer-term crew scheduling, these results may be preferred, despite the 

longer calcalution time. 

Figure 5 - 3. Improvement in ACN Total Cost for n = 20,000 
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5.3 EFN Results 

5.3.1 EFN Results for n = 2,000 

The general behavior of the heuristic results for the EFN data when the 

population size is limited to 2,000 is largely the same as that of the ACN data.  The 

final solution of $209,378 dollar per week was almost 12 percent better than the 

original total cost.  Over one year, this solution provides a savings of $1,477,008 

dollars per year. Compared to the ACN problem, these EFN results have a greater 

reduction in cost.   
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The heuristic for the EFN data with a 2,000 population limit converges at 

iteration 13.  As with the previous results, there is steady improvement through each 

iteration.  After iteration 13, no cost reduction is observed.   

 
Table 5 - 8. Improvement in EFN Total Cost for n = 2,000 

Iteration Total Cost ($) Improvement (%) Calculation Time (sec) Memory Usage (MB)
0 237782 NA NA NA 
1 229224 3.60% 4830 2.1 
2 225144 5.31% 3787 3.7 
3 223059 6.19% 1446 1.3 
4 221095 7.02% 5561 3.3 
5 220022 7.47% 3295 1.5 
6 218381 8.16% 9351 1.8 
7 217917 8.35% 3883 1.1 
8 214853 9.64% 4534 2.0 
9 212645 10.57% 7448 2.9 
10 211725 10.96% 2586 2.1 
11 210513 11.47% 1045 3.3 
12 209378 11.95% 4463 2.9 
13 209378 11.95% 1225 2.3 

 

The total calculation time for convergence was about 14.8 hours.  Although 

the EFN problem, with 1,044 duties, is the smallest of the four partitioned problems, 

the calculation time is longer than that for the corresonding ACN problem.  The 

longer calculation time may result from the less optimized EFN crew schedule.  Since 

there is more room for improvement, the heuristic uses more time to find a better 

solution.  

Memory usage for the EFN problem with a 2,000 population size limit is also  

similar to the ACN results.  The memory usage varied based on the average length of 

the pairings generated, but did not show a consistent trend from iteration to iteration.  
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The memory usage generally remained relatively low, and there were no issues with 

memory shortage througout the solution process. 

 
Figure 5 - 4. Improvement in EFN Total Cost for n = 2,000 
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5.3.2 EFN Results for n = 4,000 

As the population size limit is increased to 4,000 for the EFN problem, the 

cost reduction increases.  The new final solution is $188,925 dollars per week, which 

is a 21.0% improvement over the original solution.  The corresponding annual 

savings is $2,540,564 dollars per year.  This cost savings is significantly more than 

that of the corresponding ACN problem, which again suggest that the original EFN 

problem was less optimized.   

The solution for this problem reached convergence after 15 iterations.  Again, 

the improvements are steady over each iteration, with larger improvements initially 

and smaller improvemntes until convergence.   

The calculation time for this problem was approximately 42.6 hours, over 

twice the calculation time for the the same problem with a 2,000 population size limit.  
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The relatively long calculation time would not be appropriate for short-term crew 

scheduling and planning.  However, this calculation time may be acceptable for 

longer-term scheduling decisions.   

The memory usage for the EFN problem with a 4,000 pairing limit ranged 

from 1.1 to 10.9 megabytes per iteration.  Memory usage was again not as issue for 

the computer throughout the solution process.  

 
Table 5 - 9. Improvement in EFN Total Cost for n = 4,000 pairings 

Iteration Total Cost ($) Improvement (%) Calculation Time (sec) Memory Usage (MB)
0 237782 NA NA NA 
1 224511 5.58% 8752 4.8 
2 218177 8.24% 15240 5.8 
3 214955 9.60% 9102 3.3 
4 211922 10.88% 12574 3.0 
5 210254 11.58% 8786 5.6 
6 207699 12.65% 10438 3.0 
7 204605 13.95% 8675 4.4 
8 202239 14.95% 7220 3.5 
9 198811 16.39% 14382 1.7 
10 197375 16.99% 7628 4.7 
11 195500 17.78% 8819 4.0 
12 193734 18.52% 10836 1.1 
13 190253 19.99% 12397 1.1 
14 188929 20.55% 11103 10.9 
15 188925 20.55% 7428 10.8 

 

The heuristic found the solution with a 12 percent reduction in total cost by 

the sixth iteration and within 18 hours.  In comparison the problem  with a 2,000 

pairing limit found the solution with a 12 percent reduction in approximately 15 

hours.  However, the larger limit allowed for more iterations before convergence, and 

ultimately a 20.6 percent improvement. These results suggest that while the larger 
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population size limit requires a longer calculation time and more intensive memory 

usage, the larger set of generated pairings results in a better final solution. 

Figure 5 - 5. Improvement in EFN Total Cost for n = 4,000 
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5.3.3 EFN Results for n = 20,000 

As was the case for the ACN problem, the final solution for the EFN problem 

with a 20,000 population size limit provides the largest cost reduction.  The total 

improvement over the original cost is 25.7 percent. The final solution for this problem 

is  $176,781 per week, which results in $3,172,052 dollars saved per year.   

Convergence of the solution for this problem was reached within 15 iterations.  

There was again steady improvement over each iteration, with larger improvements 

initially and smaller improvements until convergence.  

The calculation time for this problem was approximately 330.9 hours.  The 

longer calculation time suggests that because more pairings need to be generated and 

stored, the heuristic also finds many more infeasible pairings.  An examination of the 

pairings created during the solution process confirms that many more infeasible 
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pairings are created and removed when the population size limit is larger.  This long 

calculation time would not be appropriate for short-term crew scheduling, but may 

still be acceptable for long-range scheduling.   

The memory usage in calculating the solution for this EFN problem with a 

20,000 population size limit was not as intenstive as that of the correspnding ACN 

problem.  The smaller memory usage may be a result of the smaller problem size. 

 
Table 5 - 10.  Improvement in EFN Total Cost for n = 20,000 

Iteration Total Cost ($) Improvement (%) Calculation Time (sec) Memory Usage (MB)
0 237782 NA NA NA 
1 221545 6.83% 68819 18.6 
2 213360 10.27% 42877 11.3 
3 209278 11.99% 73045 7.9 
4 205482 13.58% 73144 13.9 
5 203381 14.47% 59625 10.5 
6 199885 15.94% 88067 7.1 
7 195849 17.64% 106279 18.6 
8 193622 18.57% 81091 21.4 
9 188764 20.61% 54666 12.6 
10 187140 21.30% 107976 10.6 
11 185302 22.07% 109732 20.1 
12 182354 23.31% 63469 14.1 
13 178233 25.04% 117309 18.6 
14 176781 25.65% 92790 8.1 
15 176781 25.65% 52471 16.7 

 
Increasing the population size limit from 2,000 to 4,000 resulted in a total cost 

improvement from  about 12 percent to 21 percent.  However, further increasing the 

population size limit to 20,000 only increased the improvement in total cost to about 

26 percent.  This problem also found the final solution for the 2,000 population limit 

problem within four iterations and the solution for the 4,000 population limit problem 

within 10 iterations.  These solutions also took longer to find using this larger 
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population size limit, which is due to the large number of pairings that must be 

generated and stored.   

Figure 5 - 6. Improvement in EFN Total Cost for n = 20,000 
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5.4 ACS Results 

5.4.1 ACS Results for n = 2,000 

The results for the ACS problem solved with a population size, n, of 2,000 are 

shown in Table 5-7 and Figure 5-7.   The final solution for the ACN problem was a 

3.02 percent improvement over the original cost of $631,892 dollars per week.  This 

savings corresponds to an annual savings of $991,952 dollars per year.  The 

improvement for this ACS problem is smaller than that of the corresponding ACN 

problem, which suggests that the AC schedule in the northern partition has more 

potential for improvement.  These results also imply that the original AC crew 

schedule for the southern partition was less optimized. 

As with all previous results, the improvements in total cost increase over each 

iteration.  This problem converged at the sixteenth iteration. There was also near 
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convergence between the sixth and seventh iteration, which may suggest that there 

may be further improvements if the heuristic continues to run past the defined 

convergence criterion.   

The calculation time for this problem was approximately 18.8 hours, longer 

than the 9.72 hours for the ACN problem.  Although this problem was smaller in size, 

it may have required a longer calculation time because there was less potential for 

improvement, and the heuristic spent more time searching for new, feasible pairings.    

The memory usage for the ACS problem with a 2,000 pairing limit ranged 

from 4.0 to 5.7 megabytes per iteration.  Memory usage was again not as issue for the 

computer throughout the solution process. 

 
Table 5 - 11. Improvement in ACS Total Cost for n = 2,000 

Iteration Total Cost ($) Improvement (%) Calculation Time (sec) Memory Usage (MB)
0 631892 NA NA NA 
1 629204 0.43% 4324 5.2 
2 627457 0.70% 4546 5.4 
3 625612 0.99% 4174 4.4 
4 624272 1.21% 4397 5.5 
5 621120 1.70% 3853 5.5 
6 619841 1.91% 4580 5.6 
7 619750 1.92% 4229 5.7 
8 617240 2.32% 3915 4.5 
9 616257 2.47% 4620 5.3 
10 614544 2.75% 4410 5.6 
11 613912 2.85% 4337 5.4 
12 612902 3.01% 4143 4.5 
13 612882 3.01% 3568 5.1 
14 612816 3.02% 4134 4.1 
15 612816 3.02% 4303 4.0 
16 612816 3.02% 4303 4.0 
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Figure 5 - 7. Improvement in ACS Total Cost for n = 2,000 
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5.4.2 ACS Results for n = 4,000 

As the population size limit is increased to 4,000 for the ACS problem, the 

final solution becomes $580,140 dollars per week.  This solution is an improvement 

of 8.2 percent, or $2,691,104 dollars saved per year.  This cost savings is more than 

that of the corresponding ACN problem, which suggests that the original ACS 

problem was less optimized.   

The solution for this problem reached convergence after 15 iterations.  Again, 

the improvements are steady over each iteration, with larger improvements initially 

and smaller improvements until convergence.   

The calculation time for this problem was approximately 34.2 hours, nearly 

twice the calculation time for the the same problem with a 2,000 population size limit.  

The relatively long calculation time would not be appropriate for short-term crew 

scheduling and planning.  However, this calculation time may be acceptable for long-

term scheduling.  
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Table 5 - 12.  Improvement in ACS Total Cost for n = 4,000 

Iteration Total Cost ($) Improvement (%) Calculation Time (sec) Memory Usage (MB)
0 631892 NA NA NA 
1 620518 1.80% 9293 10.4 
2 617738 2.24% 9174 10.8 
3 615020 2.67% 8450 8.6 
4 612240 3.11% 9495 11.1 
5 606174 4.07% 7747 11.1 
6 602699 4.62% 9922 11.1 
7 592778 6.19% 8739 11.4 
8 590629 6.53% 8412 8.8 
9 588860 6.81% 8990 10.7 
10 584879 7.44% 9689 11.2 
11 582920 7.75% 8756 10.7 
12 582415 7.83% 8557 8.9 
13 580140 8.19% 7645 10.2 
14 580140 8.19% 8218 8.3 
15 580140 8.19% 8535 8.3 

 

The memory usage for the EFN problem was more intensive than the same 

problem with a 2,000 pairing limit.  The memory usage ranged from 8.3 to 11.2 

megabytes per iteration.  Although the memory usage was higher, it was not an issue 

for the  test computer throughout the solution process. 

The heuristic found the solution from the 2,000 pairing limit problem within 

four iterations and in 34.2 hours.  This calculation time was faster than that of the 

2,000 pairing limit problem but required more memory usage.  These results may 

have been because the heuristic created more “good” feasible pairings in a shorter 

amount of time.  
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Figure 5 - 8. Improvement in ACS Total Cost for n = 4,000 
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5.4.3 ACS Results for n = 20,000 

The final solution for the ACS problem with a 20,000 population size limit 

provides the largest cost reduction.  The total improvement over the original cost is 

18 percent. The final solution for this problem is  $518,467 per week, which results in 

$5,898,100 dollars saved per year.   

Convergence of the solution for this problem was reached within 13 iterations.  

There was again steady improvement over each iteration, with larger improvements 

initially and smaller improvements until convergence.  

The calculation time for this problem was approximately 62.7 hours.  The 

longer calculation time seems to confirm that because more pairings need to be 

generated and stored, the heuristic also finds many more infeasible pairings.  The 

heuristic spends more time creating and removing these infeasible pairings.  This long 
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calculation time would not be appropriate for short-term crew scheduling, but may 

still be acceptable for long-range scheduling.   

 
Table 5 - 13. Improvement in ACS Total Cost for n = 20,000 

Iteration Total Cost ($) Improvement (%) Calculation Time (sec) Memory Usage (MB)
0 631892 NA NA NA 
1 598907 5.22% 20464 21.0 
2 584311 7.53% 12289 16.5 
3 582857 7.76% 18205 27.5 
4 580772 8.09% 16110 30.0 
5 580077 8.20% 14237 25.5 
6 571862 9.50% 16275 19.0 
7 553980 12.33% 9203 19.5 
8 543048 14.06% 14153 24.0 
9 532748 15.69% 17548 24.0 
10 525608 16.82% 16656 18.5 
11 518467 17.95% 23549 31.0 
12 518467 17.95% 23549 25.0 
13 518467 17.95% 23549 25.0 

 
The memory usage in calculating the solution for this EFN problem with a 

20,000 population size limit was not as intenstive as that of the correspnding ACN 

problem.  The smaller memory usage may be a result of the smaller problem size. 

Increasing the population size limit from 2,000 to 4,000 resulted in a total cost 

improvement from  about three percent to eight percent.  Further increasing the 

population size limit to 20,000 resulted in a larger improvement in total cost of about 

18 percent.  This problem also found the final solution for the 2,000 population limit 

problem within one iteration and the solution for the 4,000 population limit problem 

within four iterations.  These solutions did take longer to find using this larger 

population size limit, which is due, in part, to the large number of pairings that must 

be generated and stored.   

 



 

 72 
 

Figure 5 - 9. Improvement in ACS Total Cost for n = 20,000 
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5.5 EFS Results 

5.5.1 EFS Results for n = 2,000 

The EFS problem with a limit of 2,000 pairings had a reduction in total cost of 

10.2 percent.  The final solution was $405,200 dollars per week, equivalent to 

$2,387,840 dollars saved per year.  The improvement for this EF problem was again 

greater than that for the corresponding AC problem.  These results seem to confirm 

that there is more room for improvement for the EF CSPs. 

 The solution for this problem converged in thirteen iterations. As was the case 

for the other problem runs, there were larger improvements initially and steady cost 

reductions until convergence.  

 
The calculation time for this problem was about 11.2 hours.  Although 

relatively fast compared to the larger problems, this calculation time would only be 

appropriate for longer-term crew scheduling. 
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 The memory usage for this EFS problem ranged from 2.0 to 3.1 megabytes 

per iteration.  These memory usages are relatively low, and there were no memory 

issues during the running of these problems. 

 
Table 5 - 14. Improvement in EFS Total Cost for n = 2,000 

Iteration Total Cost ($) Improvement (%) Calculation Time (sec) Memory Usage (MB)
0 451120 NA NA NA 
1 436859 3.16% 2733 2.6 
2 429811 4.72% 2559 2.6 
3 427455 5.25% 3843 2.4 
4 424801 5.83% 614 2.7 
5 423703 6.08% 3380 2.6 
6 421195 6.63% 4732 2.5 
7 417493 7.45% 1018 2.9 
8 415738 7.84% 5797 3.1 
9 413269 8.39% 6177 2.4 
10 409951 9.13% 2775 2.2 
11 408127 9.53% 378 2.0 
12 405200 10.18% 4121 2.3 
13 405200 10.18% 2015 2.9 

 
  

Figure 5 - 10. Improvement in EFS Total Cost for n = 2,000 
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The EFS problem has 1,049 duties, similar to the problem sizes of the EFN 

and ACS problems, with 1,044 and 1,067 duties, respectively.  The results for this 

problem had a larger improvement and shorter calculation time the ACS problem.  

This problem also had a similar, although smaller, improvement and shorter 

calculation time than the EFN problem.  These results may suggest that there is larger 

potential for improvement for this EFS problem. 

5.5.2 EFS Results for n = 4,000 

As the population size limit is increased to 4,000 for the EFS problem, the 

final solution becomes $368,584 dollars per week.  This solution is an improvement 

of 18.3 percent, or $4,291,872 dollars saved per year.  This cost savings is more than 

that of the corresponding ACS problem, which suggests that the original EFS 

problem was less optimized.   

The solution for this problem reached convergence after 11 iterations.  Again, 

the improvements are steady over each iteration, with larger improvements initially 

and smaller improvements until convergence.   

The calculation time for this problem was approximately 34.2 hours, nearly 

twice the calculation time for the the same problem with a 2,000 population size limit.  

The relatively long calculation time would not be appropriate for short-term crew 

scheduling and planning.  However, this calculation time may be acceptable for long-

term scheduling.   

The memory usage for the EFS problem was more intensive than the same 

problem with a 2,000 pairing limit.  The memory usage ranged from 4.5 to 6.5 
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megabytes per iteration.  Although the memory usage was higher, it was not an issue 

for the  computer throughout the solution process. 

Table 5 - 15.  Improvement in EFS Total Cost for n = 4,000 

Iteration Total Cost ($) Improvement (%) Calculation Time (sec) Memory Usage (MB)
0 451120 NA NA NA 
1 422493 6.35% 8689 5.0 
2 407980 9.56% 5348 5.7 
3 403855 10.48% 5107 5.6 
4 398430 11.68% 5132 6.2 
5 396458 12.12% 11350 5.5 
6 390862 13.36% 8868 5.2 
7 383859 14.91% 9737 5.8 
8 380685 15.61% 5145 6.5 
9 376065 16.64% 11090 4.8 
10 368584 18.30% 6684 4.5 
11 368584 18.30% 11520 4.7 

The heuristic found the solution from the 2,000 pairing limit problem within 

three iterations and in 5.31 hours.  This calculation time was faster than that of the 

2,000 pairing limit problem but required less memory usage.  These results suggest 

that this problem is a good candidate for crew schedule improvements. 

Figure 5 - 11. Improvement in EFS Total Cost for n = 4,000 
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5.5.3 EFS Results for n = 20,000 

The final solution for the EFS problem with a 20,000 population size limit 

provides the largest cost reduction.  The total improvement over the original cost is 

27.9 percent, the largest improvement for all of the partitioned problems. The final 

solution for this problem is  $325,212 per week, which results in $6,547,216 dollars 

saved per year.   

Convergence of the solution for this problem was reached within 14 iterations.  

There was again steady improvement over each iteration, with larger improvements 

initially and smaller improvements until convergence.  

The calculation time for this problem was approximately 86.3 hours, which is 

shorter than that of the corresponding north partition problems, but longer than the 

ACS problem with the 20,000 population size limit.  

The memory usage in calculating the solution for this EFN problem with a 

20,000 population size limit was not as intenstive as that of the correspnding ACN 

problem.  The smaller memory usage may be a result of the smaller problem size. 

Increasing the population size limit from 2,000 to 4,000 resulted in a total cost 

improvement from  about 10 percent to 18 percent.  Further increasing the population 

size limit to 20,000 resulted in a larger improvement in total cost of about 28 percent.  

This problem also found the final solution for the 2,000 population limit problem 

within two iterations and the solution for the 4,000 population limit problem within 

five iterations.  These solutions did take longer to find using this larger population 

size limit, which is again due, in part, to the large number of pairings that must be 

generated and stored.   
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Table 5 - 16.  Improvement in EFS Total Cost for n = 20,000 

Iteration Total Cost ($) Improvement (%) Calculation Time (sec) Memory Usage (MB)
0 451120 NA NA NA 
1 408132 9.53% 20454 37.6 
2 386471 14.33% 18604 40.3 
3 380637 15.62% 20197 32.1 
4 372106 17.51% 12211 41.6 
5 368414 18.33% 25964 37.4 
6 361112 19.95% 21737 43.8 
7 349903 22.44% 24118 41.3 
8 345466 23.42% 17906 44.6 
9 337987 25.08% 33731 30.7 
10 327850 27.33% 17173 27.3 
11 326759 27.57% 20907 32.2 
12 325702 27.80% 22562 34.1 
13 325212 27.91% 30019 39.3 
14 325212 27.91% 25010 34.1 

 
 

 
Figure 5 - 12. Improvement in EFS Total Cost for n = 20,000 

 

250000

300000

350000

400000

450000

500000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

To
ta

l C
os

t 
($

)

Iteration

 



 

 78 
 

5.6 Sensitivity Analysis  

5.6.1 Description of Results 

The memory usage graphs in this section suggest that as the pairings per 

iteration increase, memory usage and calculation time all increase as well.  Further 

increasing the number of pairings per iteration would cause the calculation times to 

exceed weeks from start to convergence.  While calculation times may be irrelevant 

in practical, long-term application of a final solution, memory usage could be a 

realistic limitation because stored pairings would fill the random access memory of a 

typical computer. Any more data that is stored would then need to be accessed from 

the hard disk, significantly increasing the calculation time of the program. 

 
Table 5 - 17. Comparison of ACN Results by Number of Pairings  

n Iterations Total 
Cost ($) 

Improvement 
(%) 

Calculation 
Time (sec) 

Memory 
Usage (MB) 

2000 13 407868 4.45% 35011 61.3 
4000 15 395309 7.40% 105537 148.6 
20000 14 359257 15.84% 1146799 341.5 

 

Figure 5 - 13. ACN Improvement and Calculation Time by Number of Pairings 
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Each of the different data sets behave somewhat differently as pairings per 

iteration increases.  The ACN results in Table 5-17 and Figure 5-13 show that when 

the number of pairings is doubled from 2,000 to 4,000, the improvement in total cost 

is moderate.  When the pairing limit is further increased by tenfold to 20,000, the 

improvement is less.  As the improvement increases, the calculation time increases at 

a faster rate.  If calculation time is not of concern, it appears an appropriate limit on 

the number of pairings is approximately 20,000 pairings. 

 As the number of pairings is doubled, the memory usage also has a moderate 

increase (Figure 5-14).  However, as the number of pairings increases to 20,000, the 

graph shows that memory usage also increases at a faster rate than the improvement 

rate.  An appropriate limit on the population size is also approximately 20,000 based 

on the memory usage results.  Comparing Figures 5-13 and 5-14, it appears that the 

calculation time increases faster than the memory usage.   

 
Figure 5 - 14. ACN Improvement and Memory Usage by Number of Pairings 
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 The results for the EFN problems are summarized in Table 5-18.  The rate of 

improvement for the EFN problem is less than that for the ACN problem (Figure 5-

15). Again, the calculation time increases at a faster rate than the improvement rate.  

Figure 5-15 suggests that a balance between better improvement in total cost and the 

calculation time is approximately 16,000 pairings. 

 

Table 5 - 18. Comparison of EFN Results by Number of Pairings  

n Iterations Total 
Cost ($) 

Improvement 
(%) 

Calculation 
Time (sec) 

Memory 
Usage (MB) 

2000 13 209378 11.95% 53454 30.2 
4000 15 188925 20.55% 153380 67.7 
20000 15 176781 25.65% 1191360 210.1 

 
 
 

 
Figure 5 - 15. EFN Improvement and Calculation Time by Number of Pairings 
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Similar to the EFN results for the calculation time, the EFN memory usage 

also increases at a faster rate than the rate of improvement.  Also, similar to the ACN 

results, the increase in memory usage appears to be slower than the increase in 

calculation time as the population size limit increases.  Figure 5-16 shows that a 
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balance between the increased improvement and increased memory usage uses about 

20,000 pairings as the population size limit. 

Figure 5 - 16. EFN Improvement and Memory Usage by Number of Pairings 
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 The ACS problem results are summarized in Table 5-19.  As the population 

size limit increases, the calculation time for the ACS problem also increases (Figure 

5-17).  The rates of the calculation time and improvement increases are more similar 

for this problem.  An appropriate balance between the better improvement in total 

cost and the longer calculation time appears occur when the population size is set at 

about 20,000 pairings. 

 
Table 5 - 19. Comparison of ACS Results by Number of Pairings  

n Iterations Total 
Cost ($) 

Improvement 
(%) 

Calculation 
Time (sec) 

Memory 
Usage (MB) 

2000 16 612816 3.02% 67836 79.8 
4000 15 580140 8.19% 123087 151.6 
20000 13 518467 17.95% 225789 306.5 
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Figure 5 - 17. ACS Improvement and Calculation Time by Number of Pairings 
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Similarly, as the population size increases, the rate of increased memory usage 

is faster than the rate of better improvements in total cost (Figure 5-18).  However, 

unlike for the ACN and EFN problems, the increase in memory usage appears to be 

faster than that of the calculation time.  The balance of improvement increase and 

memory usage increase uses a population size limit of approximately 10,000 pairings. 

 
Figure 5 - 18. ACS Improvement and Memory Usage by Number of Pairings 
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The EFS problem results are summarized in Table 5-20.  For this problem, the 

calculation time also increases faster than the improvement when the population size 

is increased (Figure 5-19).  The point that balances the improvement increase and 

calculation time increase seems to occur when the limit on the population size is 

above 20,000 pairings.  This is the highest of all four partitioned problems. 

  

Table 5 - 20. Comparison of EFS Results by Number of Pairings 

n Iterations Total 
Cost ($) 

Improvement 
(%) 

Calculation 
Time (sec) 

Memory 
Usage (MB) 

2000 13 405200 10.18% 40140 33.2 
4000 11 368584 18.30% 77150 54.7 
20000 14 325212 27.91% 310592 516.4 

 
 

Figure 5 - 19. EFS Improvement and Calculation Time by Number of Pairings 
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 The EFS problem memory usage also increases at a faster rate than the 

improvement as population size increases (Figure 5-20).  The memory usage also 

appears to increase faster than the calculation time.  As with the calculation time 
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results, an appropriate limit on the population size based on the memory usage data is 

above 20,000 pairings. 

 
Figure 5 - 20. EFS Improvement and Memory Usage by Number of Pairings 
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5.6.2 Population Size  
 

As previously discussed in this section, the improvement in total cost, 

calculation time, and memory usage all vary with the population size, n.  As the 

population size limit increases, the CSP becomes more difficult to solve due to 

several reasons.  First, increasing the population size makes it more difficult to find 

feasible pairings.  Feasible pairings are those pairings that do not violate any of the 

problem constraints and that are not already in the restricted subset of pairings.  Since 

many “good” pairings are likely to have been found and have entered the restricted 

subset in later iterations, it becomes increasingly harder to find new pairings to enter 

to subset.   
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Second, a larger population size means that the restricted subset is also larger.  

The final integer program that must be solved by CPLEX has more pairings, which in 

turn, results in longer calculation times.  In all four partitioned problems, the 

calculation time increased as the population size increased (Tables 5-17, 5-18, 5-19, 

and 5-20).   

Third, since more pairings must be stored and the larger integer programs are 

more difficult to solve, the overall computer program requires more intensive 

memory usage.  Again, the results from all four partitioned problems indicated 

increasing memory usage as the population size increased (Tables 5-17, 5-18, 5-19, 

and 5-20).   

Although increasing the population size makes the CSPs more difficult to 

solve, the improvement of the solutions also improve.  The ACN results suggest that 

the population size should be set at approximately 20,000 pairings.  The EFN and 

ACS results show that the population size may be set at about 18,000 and 15,000 

pairings, respectively.  Lastly, the EFS results suggest using a population limit above 

20,000 pairings.  There does not appear to be a strong relationship between the 

number of duties and a good population size limit.  It is possible that the population 

size depends on the existing crew schedule and how much potential there is for 

improvement.   Based on the problems in this thesis, it is difficult to generalize what 

population size is appropriate for CSPs other than those studied.   

5.7 Complete Network Results 

The complete network results combine the north and south partitions into a 

single network.  The crew type partitions of EF and AC crew remain relevant.  As a 
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result, the two separate CSPs were solved for these sets of crew types.  The heuristic 

was applied to each problem with a population size of 2,000 pairings.  Increasing the 

population size to 3,000 and 4,000 rendered the problems unsolvable using the 

proposed heuristic.  The computer program stalled due to memory shortage issues 

each time the heuristic was applied with these larger population size limits.   

The final solution of the AC problem provided a 2.85 percent improvement 

over the original total cost (Table 5-21, Figure 5-21).  This improvement was less 

than those for the four partitioned problems.  This problem required longer 

calculation time and more intensive memory usage. 

The final solution of the EF problem was a 3.0 percent improvement over the 

original total cost (Table 5-22, Figure 5-22).  This improvement was also less than 

those for the four partitioned problems, and the problem required longer calculation 

time and more intensive memory usage.   

 
Table 5 - 21. Improvement in AC Total Cost for n = 2,000 pairings 

Iteration Total Cost ($) Improvement (%) Calculation Time (sec) Memory Usage (MB)
0 1110099 NA NA NA 
1 1107361 0.25% 72193 47.2 
2 1107209 0.26% 63493 46.9 
3 1106776 0.30% 84883 50.1 
4 1105041 0.46% 73043 58.0 
5 1102586 0.68% 83493 54.9 
6 1099312 0.98% 105739 55.1 
7 1096907 1.20% 96953 78.0 
8 1094468 1.43% 87030 65.4 
9 1090529 1.79% 95673 57.6 
10 1086357 2.18% 97756 62.3 
11 1085850 2.23% 10765 66.9 
12 1082909 2.50% 92531 67.7 
13 1079799 2.80% 74958 78.5 
14 1079302 2.85% 75798 64.9 
15 1079316 2.85% 86797 53.5 
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Figure 5 - 21. Improvement in AC Total Cost for n = 2,000 
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Table 5 - 22. Improvement in EF Total Cost for n = 2,000 pairings 
Iteration Total Cost ($) Improvement (%) Calculation Time (sec) Memory Usage (MB)

0 709902 NA NA NA 
1 705684.3 0.59 63715 83.0 
2 704386 0.78 101421 76.1 
3 703510.5 0.90 72754 52.5 
4 700452.6 1.33 99301 65.9 
5 698536.5 1.60 130417 72.9 
6 695009.7 2.10 75379 43.0 
7 694921.6 2.11 107807 50.0 
8 694343.8 2.19 42961 61.4 
9 693670.4 2.29 49557 69.9 
10 691778.2 2.55 55344 61.0 
11 689400 2.89 42536 62.0 
12 688856.2 2.96 73966 48.8 
13 688621.3 3.00 43646 55.0 
14 688621.3 3.00 62691 83.9 
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Figure 5 - 22. Improvement in EF Total Cost for n = 2,000 
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Both AC and EF problem results had similar improvements of about three 

percent over the original total cost.  Applying the heuristic to these full network 

problems did not provide as much cost reduction as solving the separate ACN, ACS, 

EFN, and EFS partitions.  The total network data runs are inefficient because the 

heuristic currently cannot search across a large network and compare generated 

pairings before solving the restricted problems in CPLEX.  A possible improvement 

to the heuristic could be implementing a dynamic search function that would further 

filter generated pairings based on location before solving the optimization problems 

in CPLEX. 

5.8 Comparison of All Results 

 To summarize all of the findings from this study, Table 5-23 lists the results 

for all 14 problems solved.  By examining partitioned problem results by crew type, it 

is evident that the largest improvements were seen for the EFN and EFS problems 

using a population size of 20,000 pairings.  The partitioned EF problems also had 

better final solutions than the ACN and ACS for the cases with population size limits 
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of 2,000 and 4,000 pairings.  The original, partitioned EF crew schedules may have 

been the least optimal, and thus, had larger potential for improvements.  The 

partitioned EF problems were also smaller than the partitioned AC problems, which 

may have facilitated better improvements.   

 When comparing the partitioned problems by region, the northern region 

results were better when the population size was 2,000.  However, when the 

population size was increased to 4,000 and 20,000, the southern region results had 

larger improvements. The northern regions improvements may have been better for 

the smaller population size limit because of the larger number of duties for these 

problems.  With more duties, the heuristic was able to find more “good” pairing 

combinations.  However, the overall results appear to indicate that the southern region 

generally had larger improvements.   

Table 5 - 23. Complete Table of Results 

Problem 
Number 

of 
Duties 

Population 
Size, n 

(pairings) 
Improvement 

(%) 
Calculation 

Time (hours) 
Memory 

Usage (MB) 

ACN 1178 2000 4.5% 9.7 61.3 

ACN 1178 4000 7.4% 29.3 148.6 

ACN 1178 20000 15.8% 318.6 341.5 

EFN 1044 2000 12.0% 14.8 30.2 

EFN 1044 4000 21.0% 42.6 67.7 

EFN 1044 20000 25.7% 330.9 210.1 

ACS 1067 2000 3.0% 18.8 79.8 

ACS 1067 4000 8.2% 34.2 151.6 

ACS 1067 20000 18.0% 62.7 306.5 

EFS 1049 2000 10.2% 11.2 33.2 

EFS 1049 4000 18.3% 21.4 54.7 

EFS 1049 20000 27.9% 86.3 516.4 

AC 2245 2000 2.9% 333.6 906.9 

EF 2093 2000 3.0% 266.3 885.4 
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As the population size increased, the calculation time and memory usage also 

increased.  However, a direct relationship between the calculation time and memory 

usage was not observed.   While generally problems that required longer calculation 

time also required more intensive memory usage, these variables were not directly 

related.  The memory usage was found to be related to the number of duties, the 

population size, and the “fitness” of the random pairings generated by the heuristic. 

The results from solving the full networks confirm that as the number of 

duties increases, the heuristic becomes less effective at improving the crew schedules.  

The larger AC problem had the smallest improvement, while the nearly as large EF 

problem had the second smaller improvement in total cost.  These problems also 

required much longer calculation times, on the order of days, than the smaller 

problems with the same population size limit.  As expected, the resulting memory 

usage for such large problems was far more intensive than the smaller, partitioned 

problems.  Increasing the population size for these problems was ultimately limited 

by the computer memory constraints. 

By partitioning the large problem by crew type and by region, the heuristic 

was successful in producing improved crew schedules within an acceptable amount of 

time.  Examining the results indicated that the heuristic successfully replaced less 

efficient pairings with more efficient pairings.   

Table 5-24 shows examples of inefficiencies in the current Amtrak schedules.  

The two cases shown in Table 5-24 are extracted from the original EFN schedule and 

are examples of poorly scheduled pairings.  The first pairing only has two duties, 

which is equivalent to 6.67 hours of on-board, train work.  This pairing also has only 
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one, three hour away period. Despite working for so few hours in the weekly 

schedule, the crew member is guaranteed payment for 40 hours per week.  As a result, 

the additional time must be paid for by Amtrak. Pairings with such few duties are a 

detriment to total cost because of the salary guarantee that Amtrak provides.  An 

examination of the original schedules found many pairings with few duties.  In the 

improved crew schedules, many of these small pairings can be combined with other 

pairings to create more efficient work schedules. 

 
Table 5 - 24. Examples of Inefficient Pairings 

Pairing 1 (from EFN schedule) 
Duty Day From To Departure Time Arrival Time Train Hours 

1 4 BOS NHV 15.20.00 17.45.00 3.25 
2 4 NHV BOS 21.08.00 23.50.00 3.42 
     TOTAL 6.67 

 
Pairing 2 (from EFN schedule) 

Duty Day From To Departure Time Arrival Time Train Hours 
1 7 BOS NHV 15.00.00 17.39.00 3.48 
2 7 NHV BOS 21.50.00 00.13.00 3.10 
3 3 BOS NYP 12.15.00 15.45.00 4.33 
4 3 NYP BOS 19.00.00 22.35.00 4.45 
5 4 BOS NYP 12.15.00 15.45.00 4.33 
6 4 NYP BOS 19.00.00 22.35.00 4.45 
7 5 BOS NYP 12.15.00 15.45.00 4.33 
8 5 NYP BOS 19.00.00 22.35.00 4.45 
9 6 BOS NHV 13.45.00 16.08.00 3.22 
10 6 NHV BOS 18.35.00 21.05.00 3.20 
     TOTAL 39.34 

 

The second pairing in Table 5-24 has a large amount of duties, essentially 

representing the opposite case from the first pairing.  In this example, the total on-

board, train hours is 39.34 hours, which is already almost equivalent to the regular 40 

hours of work per week.  When all of the paid away time and meal reimbursement is 
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added, this crew member is being paid for over 40 hours per week, with additional 

hours being paid at the one-and-one-half overtime rate.  Pairings such as this example 

with many duties are also a detriment to total cost because overtime costs.  Ideally, 

most pairings would have the same amount of duties, and all of the pairings together 

would satisfy the work requirements for every Amtrak train in the network. 
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Chapter 6:  Conclusions 

 

6.1 Summary of Results 

This thesis accomplished the goal of applying a genetic algorithm-based 

column generation heuristic to the passenger rail crew schedule problem for Amtrak’s 

Northeast Corridor.  As a part of the thesis, the schedule for trainperson and engineer 

(T&E) crew members in the Northeast Corridor was improved by applying the 

heuristic to a set partition problem (SPP) integer program formulation of the CSP.  

Specifically, the schedule pertains to conductors, assistant conductors, engineers, and 

firemen based in one of 16 total crew bases and serving a total of 32 release stations 

in the Northeast Corridor.  Due to the complex work policies, union rules, and 

payment regulations, the crew scheduling problem (CSP) for the Northeast Corridor 

is highly constrained.  While the constraints reduce the total number of feasible 

pairings, modeling the constraints becomes a difficult task.  This thesis accomplished 

the goal of using the proposed heuristic to solve this large, real-world problem within 

a reasonable amount of computation time and computer memory resource. 

 The results of this thesis indicate that there are potential cost-savings in the 

Amtrak Northeast Corridor T&E crew schedule.  While some crew pairings were not 
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included in the analysis due to the data reduction steps in the process, the results show 

that total cost of crew payment can be reduced.   

 In order to confirm that the proposed heuristic is successful at improving the 

crew schedule, small problems based on the real-world data were developed.  In 

addition to solving the small problems using the heuristic, the problems were 

formulated as full SPP integer programs and solved to optimality.  The results from 

the comparison of the optimal and heuristic results showed that the heuristic can 

produce optimal or near-optimal solutions.  For the larger problems, the heuristic did 

not find optimal solutions, although the heuristic solution was within 0.5 percent of 

the optimal solution.  Additionally, the heuristic produced solutions in significantly 

less computation time and with less computer memory usage.  As a result, the 

heuristic achieved the goal of improving the crew schedules within reasonable time 

and computer memory resources. 

 The proposed heuristic in this thesis was applied to the two separate types of 

crew for the two portions of the Northeast Corridor network (northern and southern 

region, as previously defined) as well as to the entire network.  For the segmented 

problems (EFN, ACN, EFS, and ACS problems) with approximately 1000 duties 

each, the heuristic was applied using population size limits of 2,000, 4,000, and 

20,000 pairings.  The results indicated that the larger population size of 4,000 

produced schedules with larger improvements, but at the cost of computation time 

and computer memory.  The results with the larger population size of 20,000 

confirmed that a lower cost schedule could be obtained, although computation time 

drastically increased.  Finally, the heuristic was also applied to the full Northeast 
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Corridor for each set of crew types (EF and AC problems), which included 

approximately 2,000 duties each.  Due to the large problem size and resulting 

calculation time, these problems were solved with a population size limit of 2,000. 

 When the EFN, ACN, EFS, and ACS segmented problems were solved with a 

limit of 2,000 pairings, the improvements in total cost ranged from three percent to 12 

percent.  Computation time ranged from nine to 19 hours, which is reasonable given 

the large size of the problem.   Memory usage was also within reasonable limits, 

ranging from 30 to 80 megabytes.  When the limit on pairings was doubled to 4,000 

pairings, the improvements in total cost nearly doubled as well.  The percentage 

improvements ranged from seven to 21 percent.  However, computation time also 

nearly doubled to 21 to 43 hours.  Even larger improvements were seen when the 

original limit on the number of pairings was increased tenfold to 20,000 pairings.  

The improvements were then ranging from 16 to 28 percent.  The computation time 

also increased to 63 to 86 hours, or 2.6 to 13.6 days.  These computation times may 

be acceptable in practice for long-range scheduling in the real world.  However, for 

short-term planning, these computation times may be long.  These computation times 

are also excessive for tactical planning.  

The improvements to the crew schedule in this work were for weekly 

schedules.  As a result, the overall annual savings was found to be significant.  The 

results show crew scheduling optimization is a viable option for reducing operating 

costs for Amtrak.   Especially in the Northeast Corridor, where ridership has 

increased in 2008 due to rising fuel costs and greater dependence on public 

transportation, Amtrak must find ways to reduce operating costs.  The work in this 
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thesis shows that a significant amount of crew salary cost is directed to crew payment 

for overtime and salary guarantees.  While perfectly optimized crew schedules are not 

be possible due to unforeseen changes in schedules and other factors, overall costs for 

crew payment can be reduced to provide annual savings.   

6.2 Summary of Contributions 

The work in this thesis contributed the following to the area of rail crew 

scheduling.  First, the work included the development and application of a new 

genetic algorithm-based column generation heuristic to a real world passenger rail 

crew scheduling problem.  The research in passenger rail crew scheduling, especially 

within North America, is sparse.  As previously discussed, the existing literature on 

passenger rail crew scheduling has primarily been for applications in Europe and 

Asia, where there are stronger passenger rail markets.   In particular, there is limited 

research on crew scheduling improvement and optimization for Amtrak.   

Second, many other rail crew scheduling applications did not include the 

complex payment regulations that were a part of the problem in this work.  Few other 

CSPs have the case in which there is overtime pay, guaranteed salary, away pay, 

lodging, and meals.  The constraints specific to the Amtrak problem are not 

applicable in many other situations.  However, the improvements seen from the 

proposed solution method in this thesis show that genetic algorithm-based column 

generation heuristics have potential for solving large, real world CSPs.   

Finally, the results of this thesis indicate that Amtrak can reduce operation 

costs by improving crew schedules.  While there may be other union regulations that 



 

 97 
 

may restrict some possible pairings, further research is merited based on the results of 

this work. 

6.3 Implications of Findings 

 The overall findings of this study were that improvements can be made to 

Amtrak’s Northeast Corridor crew schedules.  Many implementation details would 

need to be considered when creating and implementing new crew schedules. 

First, some work regulations were not considered in the constraints of this 

thesis.  Amtrak may allow more senior crew members to select certain schedules and 

duties as a way of rewarding loyal employees.  Additionally, seniority may be a factor 

when assigning extra board duties. 

The crew schedule improvements in the thesis were most applicable to long-

term scheduling since the calculation times for the best solutions were on the order of 

days.  However, shorter-term scheduling may be necessary to accommodate crew 

members taking leave, holidays, and other irregular absences.  Scheduling would also 

need to take into account altered train schedules for special events or due to weather 

and other emergencies.  These considerations lead to the area of robust crew 

scheduling. 

Second, the comfort of crew was not considered in this work.  As a result, 

efficient pairings that were selected for the improved crew schedules may be pairings 

that are excessively long in actual practice.  A pairing might be good in terms of 

Amtrak’s operating costs, but may prove to be demanding for crew members.  While 

union regulations restrict the most undesirable work schedules, demanding schedules 

may still be possible.  Especially in the Northeast Corridor, where many trips are 
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relatively short in length, pairings may require a crew to travel on several short train 

trips in a single shift.  The constant boarding, on-board work, and disembarking may 

be too demanding for actual schedules.  Demanding schedules are not only harmful to 

crew health and morale, but they can also affect train safety.  Overly tired crew 

members may not be fully capable of executing the work responsibilities. Therefore, 

the improved crew schedules found in this work would still need to be examined by 

management to determine if they are reasonable. 

Third, prior to implementing new crew schedules, crew experience and skills 

must also be considered.  Certain train duties and yard work may require specific 

experience or skills. Again, crew experience was not taken into consideration in the 

improved schedules for this thesis. 

Lastly, implementation of a new crew schedule with fewer required crew 

members may not be possible.  Significantly downsizing staff is unlikely a viable 

option despite savings in cost.  Instead, crew scheduling may be done for future 

expected work requirements in which additional crew members are needed.  Another 

option would be to incorporate an additional constraint of using all available crew 

members in any new crew schedules. 

6.4 Future Work 

The results of this research indicated potential for using a genetic algorithm-

based column generation technique for crew scheduling.  This study used a simple 

genetic algorithm with a single, randomly-selected crossover point and mutation of a 

single duty.  Further studies may examine more complex genetic algorithms, which 

may result in a more efficient heuristic. 
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Based on the results of this research, further work may be considered for 

improving or optimizing Amtrak crew schedules.  The work in thesis simplified the 

CSP by examining specifically the Northeast Corridor and by segmenting this 

corridor into two sections, a northern and southern section.  For this thesis, the 

Northeast Corridor was selected because it is the most heavily used corridor in the 

Amtrak network.  Future work may consider improving crew schedules for other 

corridors in the network or the entire Amtrak network as a whole.  Because the trains 

in the Northeast Corridor travel relatively short distances, pairings for these crew 

schedules require more duties and possibly more time away.  Amtrak trains in the 

Midwest and Western United States typically travel longer distances, so the crew 

schedule improvements and potential cost-savings may differ for these corridors. 

This thesis also studied only the T&E crew members since this set of crew 

comprises a large portion of Amtrak employees and because the union and payment 

regulations for this crew set are the same.  Future research in Amtrak crew scheduling 

may examine the on-board services crew members, which are the crewpersons that 

are responsible for food, cleaning, and other services on trains.  The union and 

payment regulations are more lax for this crew set.  For example, these crew members 

may be away from their crew base for a longer period of time and typically work on a 

single train rather than switching trains throughout a crew pairing. 

 In addition, the results from this thesis show that the proposed heuristic 

produces improvements within time and memory constraints for longer-term 

scheduling and planning.  Since some of the problems required several days of 

running the heuristic, the solution method would not be applicable for tactical and 
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shorter-term crew scheduling.  Future work may address the tactical CSP and real-

time crew dispatching.  These problems differ in that crew and train information is 

gathered in real-time, and the new crew schedule results are needed for immediate 

use.  This requires faster, more powerful solution methods that can produce 

improvements in a very short time period.    The tactical CSP is an important problem 

in rail and transit crew scheduling due to unforeseen problems such as train delays, 

mechanical train problems, crew absence, among many other problems.  Each of 

these problems requires a quick solution that minimizes the impact on and cost of the 

rail system.  In addition, another area of research for crew scheduling is that of 

designing robust schedules.  These CSPs aim to find crew schedules that are more 

flexible to emergencies and other changes in work requirements and crew availability.   

 Further research in passenger rail crew scheduling is important as rail 

becomes a more attractive option for traveling in the United States.  With increasing 

fuel costs and greater environmental responsibility, Amtrak ridership may increase in 

the future.  At the same time, Amtrak continues to face criticism for low revenues and 

high operating and maintenance costs of the system.  Crew scheduling improvements 

offer an area for reducing costs since a large portion of the operating costs is for 

paying Amtrak employee salaries.  Additionally, as the demand for Amtrak trains 

increases or decreases in different corridors, Amtrak crew requirements for trains will 

require adjustments.  As a result, future work may also examine the effects of 

marginal changes in the schedule on costs and how these schedules can be improved. 
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KEY HOME SCHD_EFF DTL_RPT_LOC DTL_RLSE_LOC DEPART_TIME ARRV_TIME 

AXAN722 ALB 7-Apr-08 NYP ALB 00.30.00 02.45.00 

CXAN722 ALB 7-Apr-08 NYP ALB 00.30.00 02.45.00 

ANH710 NHV 12-May-08 NYP NHV 03.15.00 05.00.00 

CNH710 NHV 12-May-08 NYP NHV 03.15.00 05.00.00 

ABN713 BOS 12-May-08 NHV BOS 05.05.00 07.52.00 

CBN713 BOS 12-May-08 NHV BOS 05.05.00 07.52.00 

APB706 POR 12-May-08 POR BON 06.00.00 08.25.00 

CPB706 POR 12-May-08 POR BON 06.00.00 08.25.00 

AALB716 ALB 7-Apr-08 ALB NYP 06.05.00 08.35.00 

CALB716 ALB 7-Apr-08 ALB NYP 06.05.00 08.35.00 

ASN706 SPG 12-May-08 SPG NHV 06.15.00 08.00.00 

CSN706 SPG 12-May-08 SPG NHV 06.15.00 08.00.00 

ABN756 BOS 28-May-08 BOS NHV 06.40.00 09.08.00 

ABN708 BOS 12-May-08 BOS NHV 06.40.00 09.08.00 

CBN708 BOS 12-May-08 BOS NHV 06.40.00 09.08.00 

ANH706 NHV 12-May-08 NYP NHV 06.55.00 08.29.00 

CNH706 NHV 12-May-08 NYP NHV 06.55.00 08.29.00 

AALB713 ALB 7-Apr-08 NYP ALB 07.15.00 09.50.00 

CALB713 ALB 7-Apr-08 NYP ALB 07.15.00 09.50.00 

ASN702 SPG 12-May-08 SPG NHV 07.20.00 08.55.00 

CSN702 SPG 12-May-08 SPG NHV 07.20.00 08.55.00 

XANH706 NHV 20-Jun-07 NHV NYP 08.11.00 09.55.00 

ANH711 NHV 12-May-08 NHV NYP 08.11.00 09.55.00 

CNH711 NHV 12-May-08 NHV NYP 08.11.00 09.55.00 

APB703 POR 12-May-08 POR BON 08.15.00 10.40.00 

CPB703 POR 12-May-08 POR BON 08.15.00 10.40.00 

AALB719 ALB 7-Apr-08 ALB NYP 08.05.00 10.35.00 

CALB719 ALB 7-Apr-08 ALB NYP 08.05.00 10.35.00 

AAM703 ALB 7-Apr-08 MTR ALB 09.30.00 17.40.00 

CAM703 ALB 7-Apr-08 MTR ALB 09.30.00 17.40.00 

AALB714 ALB 7-Apr-08 NYP ALB 08.15.00 10.40.00 

CALB714 ALB 7-Apr-08 NYP ALB 08.15.00 10.40.00 

ANH712 NHV 12-May-08 NHV BOS 08.33.00 11.10.00 

ANH755 NHV 12-May-08 NHV BOS 08.33.00 11.10.00 

CNH712 NHV 12-May-08 NHV BOS 08.33.00 11.10.00 

ANFL701 ALB 7-Apr-08 NFL ALB 08.35.00 14.50.00 

CNFL701 ALB 7-Apr-08 NFL ALB 08.35.00 14.50.00 

ANFL702 ALB 7-Apr-08 NFL ALB 08.35.00 14.50.00 

CNFL702 ALB 7-Apr-08 NFL ALB 08.35.00 14.50.00 

ASN708 SPG 5-Jun-08 SPG NHV 08.40.00 10.26.00 

CSN708 SPG 5-Jun-08 SPG NHV 08.40.00 10.26.00 

ABN719 BOS 12-May-08 BOS NHV 08.40.00 11.08.00 

XABN703 BOS 12-May-08 BOS NHV 08.40.00 11.08.00 

Sample of Selected Existing AC Crew Schedule Data
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CBN719 BOS 12-May-08 BOS NHV 08.40.00 11.08.00 

CALB718 ALB 7-Apr-08 ALB ALB 00.00.01 00.00.01 

ASN706 SPG 12-May-08 NHV SPG 09.00.00 10.40.00 

CSN706 SPG 12-May-08 NHV SPG 09.00.00 10.40.00 

AZN706 NYZ 12-May-08 NYP NHV 09.00.00 10.44.00 

AZN753 NYZ 12-May-08 NYP NHV 09.00.00 10.44.00 

CZN706 NYZ 12-May-08 NYP NHV 09.00.00 10.44.00 

ANH757 NHV 12-May-08 NHV NYP 09.11.00 10.55.00 

XANH701 NHV 7-Apr-08 NHV NYP 09.11.00 10.55.00 

XCNH701 NHV 7-Apr-08 NHV NYP 09.11.00 10.55.00 

APB706 POR 12-May-08 BON POR 08.50.00 11.15.00 

CPB706 POR 12-May-08 BON POR 08.50.00 11.15.00 

AABF703 ALB 19-May-08 BUF ALB 09.35.00 15.40.00 

CABF703 ALB 19-May-08 BUF ALB 09.35.00 15.40.00 

ABN716 BOS 12-May-08 BOS NHV 09.40.00 12.08.00 

ABN752 BOS 12-May-08 BOS NHV 09.40.00 12.08.00 

XABN701 BOS 12-May-08 BOS NHV 09.40.00 12.08.00 

CBN716 BOS 12-May-08 BOS NHV 09.40.00 12.08.00 

ANFL701 ALB 7-Apr-08 ALB NFS 10.05.00 16.15.00 

CNFL701 ALB 7-Apr-08 ALB NFS 10.05.00 16.15.00 

ANFL702 ALB 7-Apr-08 ALB NFS 10.00.00 16.25.00 

CNFL702 ALB 7-Apr-08 ALB NFS 10.00.00 16.25.00 

AZN754 NYZ 12-May-08 NYP NHV 10.00.00 11.42.00 

XAZN701 NYZ 12-May-08 NYP NHV 10.00.00 11.42.00 

XCZN701 NYZ 12-May-08 NYP NHV 10.00.00 11.42.00 

AALB712 ALB 7-Apr-08 ALB NYP 10.05.00 12.35.00 

CALB712 ALB 7-Apr-08 ALB NYP 10.05.00 12.35.00 

ANH756 NHV 12-May-08 NHV NYP 10.41.00 12.25.00 

ANH709 NHV 12-May-08 NHV NYP 10.41.00 12.25.00 

CNH709 NHV 12-May-08 NHV NYP 10.41.00 12.25.00 

ASN703 SPG 12-May-08 SPG NHV 10.20.00 12.00.00 

CSN703 SPG 12-May-08 SPG NHV 10.20.00 12.00.00 

AAM702 ALB 7-Apr-08 NYP ALB 10.20.00 12.48.00 

CAM702 ALB 7-Apr-08 NYP ALB 10.20.00 12.48.00 

AAM704 ALB 7-Apr-08 ALB MTR 11.05.00 19.10.00 

CAM704 ALB 7-Apr-08 ALB MTR 11.05.00 19.10.00 

ANH708 NHV 12-May-08 NHV BOS 10.46.00 13.07.00 

ANH754 NHV 12-May-08 NHV BOS 10.46.00 13.07.00 

CNH708 NHV 12-May-08 NHV BOS 10.46.00 13.07.00 

AANF705 ALB 7-Apr-08 NFS ALB 10.30.00 19.00.00 

CANF705 ALB 7-Apr-08 NFS ALB 10.30.00 19.00.00 

ASN702 SPG 12-May-08 NHV SPG 11.05.00 12.45.00 

CSN702 SPG 12-May-08 NHV SPG 11.05.00 12.45.00 
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