TRANSFERRING PERFORMANCE GAIN FROM
SOFTWARE PREFETCHING TO ENERGY REDUCTION

Deepak N. Agarwal*, Sumitkumar N. Pamnani*, Gang Qu, and Donald Yeung
Electrical and Computer Engineering Department and Institute for Advanced Computer Studies
University of Maryland, College Park, MD 20742 USA
* Microprocessor Verification, AMD, M/S - 615, 5204 East Ben White Blvd Austin, TX 78741 USA

Abstract

Performance-enhancement techniques improve CPU speed, but at
higher cost to other valuable system resources such as power and
energy. We study this trade-off using software prefetching as the
system performance-enhancement technique. We first demonstrate
software prefetching provides an average 36% performance boost
with 8% more energy consumption and 69% higher power on six

memory-intensive benchmarks. However, when we combine prefetch-

ing with a (unrealistic) static voltage scaling technique, the perfor-
mance gain afforded by prefetching can be traded off for savings
in power/energy consumption. In particular, we observe a 48% en-
ergy saving when we slow down the system with prefetching so
as to match the performance of the system without prefetching.
This suggests a promising approach to build low power systems
by transforming traditional performance-enhancement techniques
into low power methods. We thus propose a real time dynamic
voltage scaling (DVS) algorithm that monitors a system’s perfor-
mance and adapts the voltage level accordingly while maintaining
the observed system performance. Our dynamic DVS algorithm
achieves a 38% energy saving without any performance loss on our
benchmark suite.

1 Introduction

Low power and low energy design is important for battery-operated
portable systems such as personal computing devices, wireless com-
munication and imaging systems. Interestingly, many such systems
are not hungry for performance since they are already “fast enough”
to satisfy end user’s desire (e.g. the physical limitation of human
visual and auditory systems). One natural question is what will be
the role, if any, of traditional high-performance techniques such
as pipelining, caches, prefetching, and branch prediction in low-
power system design. In this paper, we propose a generic approach
that first improves system’s performance and then transfers the per-
formance enhancement to power/energy saving. We illustrate this
by combining software prefetching and dynamic voltage scaling.

Prefetching is a latency tolerance technique, which is gener-
ally used to overcome the gap between processor cycle time and
memory access latency. In prefetching, cache miss penalty is elim-
inated by generating prefetch requests to the memory system to
bring the data into the cache before the data value is actually used.
It can be triggered either by a hardware mechanism, or by a soft-
ware instruction or by a combination of both. Several prefetching
techniques have been proposed in the past solely to increase per-
formance [3, 4, 5, 6, 7]. While hardware prefetching needs extra
hardware resources, software prefetching approaches rely on data
access patterns detected by static program analysis and allow the
prefetching to be done selectively and effectively.

Dynamic voltage scaling (DVS) is a technique that varies the
supply voltage and clock frequency based on the computation load
to provide desired performance with the minimal amount of en-
ergy consumption. We focus our discussion on the multiple volt-
age DVS systems where a set of predefined discrete voltages are
available simultaneously due to their simplicity of implementation

0-7803-8251-X/04/$17.00 ©2004 IEEE

IT - 241

and effectiveness in power reduction. When the execution time in-
formation is available, there exist optimal algorithms to achieve the
maximal energy saving on such multiple voltage system [10, 12].
Without knowing task’s real execution time, voltage can also be
scaled based on system level information such as current computa-
tion load and predicted future behavior [9, 11, 13].

We investigate the power/energy vs. performance tradeoff of
software prefetching in this paper. In particular, we consider a
multiple-voltage system that executes software programs and pro-
pose a framework that automatically transfers any “excess” perfor-
mance enhancement (provided by prefetching) to energy reduction.
At the heart of this approach is an on-line algorithm that moni-
tors the system’s performance and adjust the system voltage ac-
cordingly to save energy without causing noticeable performance
degradation. Although we illustrate this by software prefetching
and DVS, our approach is generic and applicable to any combina-
tion of high-performance and low-power techniques. In this sense,
system designers can and should consider traditional performance-
enhancement techniques when designing low power systems.

2 Software Prefetching for Energy Reduction

Our goal is to build a framework that automatically transfers any
performance enhancement to energy reduction. Such transfer re-
quires: (1) No performance degradation. We should use only
the performance gain from whatever high-performance design tech-
nique for power/energy saving. The system’s original performance
should be maintained, if not enhanced. (2) Minimum re-design ef-
fort. The effort to integrate this transfer to existing system should
be kept at the minimal level. In the remainder of this section, we
discuss this in the context of prefetching (for high performance)
and dynamic voltage scaling (for low power).

2.1 Software Prefetching

We have already mentioned software prefetching in the introduc-
tion. This section illustrates how application code is instrumented
with the prefetch instructions. Several algorithms have been pro-
posed for this purpose [5, 6], and their effectiveness depends on
the type of memory references performed by the application code.

1. A(N,N,N),B(N,N,N)

2. do j=2,N-1
3. doi=2N-1
4. AGj) = 0.25 * (B(i-1,j) + B(i+L1,j) + B(i,j-1) + B(i,j+1))

Figure 1: Affine array traversal code from the 2D Jacobi kernel.

Figure 1 illustrates the affine (linear) array traversal, the most
common memory reference pattern, code from the 2D Jacobi ker-
nel. Figure 2 illustrates the same code after instrumenting using
Mowry’s algorithm [6]. In addition to software prefetching for
affine array accesses, we also consider applications with software
prefetching for indexed array and pointer-chasing accesses in our
experiments. We use the algorithm in [6] for prefetching indexed
array references and the technique proposed in [5] for pointer-
chasing accesses. Due to space limitations, we omit detailed ex-

ISCAS 2004

planation and examples of these techniques and refer the reader to
the cited papers for more details.

1. A(N,N,N),B(N,N,N)

2. do j=2,N-1

3. doi=2,N-1 // Prologue Loop
4. prefetch(&Bl[i][j])

5. prefetch(&BI[i][j+11)

6. prefetch(&Bl[i][j-1])

7. prefetch(&A[i][j])

8. doi=2,N-PD-1,step=4

9. prefetch(&B[i+PD][j])

10. prefetch(&B[i+PD][j+1])
11. prefetch(&B[i+PD][j-11])
12. prefetch(&A[i+PD][j])

// Unrolled Loop

13. A(ij)=0.25 * (B(i-1,j) + B(i+1,j) + B(i,j-1) + B(i,j+1))

4. AGi+1,j) = 0.25 * (B(i,j) + B(i+2.j) + B(i+1,j-1) + B(i+1,j+1))
15, A(i+2.) = 0.25 * (B(i+L,j) + B(i+3.j) + B(i+2,j-1) + B(i+2,j+1))
16, A(i+3.) = 0.25 * (B(i+2.)) + B(i+4.j) + B(i+3,j-1) + B(i+3,j+1))

17. doi=N-PD,N-1
18. A(i,j) = 0.25 * (B(i-1,j) + B(i+1,j) + B(i,j-1) + B(i,j+1))

// Epilogue Loop

Figure 2: 2D Jacobi kernel from Figure 1 instrumented with soft-
ware prefetches using Mowry’s algorithm. The instrumented code
contains a prologue loop, an unrolled “steady-state” loop, and an
epilogue loop.

2.2 Transferring Performance Gain to Energy Saving

Let ' and t be the times to run an application with and with-

out prefetching, respectively. The ratio % measures the perfor-
mance gain by prefetching. The optimal way to reduce energy is
to use voltage v’ such that the gate delay, which is proportional
to (Udd’livt,h,)27 will be increased by a factor of ti/ Therefore, the

application can still finish at time ¢ with software prefetching. On
multiple voltage systems when v’ is not available, the most energy-
efficient way is to run at a slightly higher voltage v; for some
time and then reduce the voltage to the next lower level v2, where
v1 > v’ > v9, such that the execution terminates at ¢ [10, 12].

However, the transfer from performance gain to energy saving
never comes this easily. First, we may suffer user-perceivable per-
formance loss although we will not delay the completion time of
the application. For example, if most successful prefetchings occur
in the second half of the execution, then running at a voltage lower
than reference (plus the penalty for failed prefetchings) slows down
the process and we will constantly fall behind during the first half
of the execution. Although (successful) prefetchings will eventu-
ally help us to catch up, this slow down may be noticeable and
becomes unacceptable. Moreover, this is not practical for real-time
applications because selecting the proper voltage scaling strategies
requires knowledge about ¢ or ¢'.

Figure 3 illustrates our online DVS algorithm, which guides the
selection of operating voltage to simultaneously achieve low power
consumption and performance guarantee. The algorithm periodi-
cally conducts real time profiling to estimate the performance gain
by prefetching and transfers it to energy reduction by DVS.

For each N instructions, we execute the first M instructions
with prefetching and the next M instructions without prefetching.
The latter can be achieved by treating prefetch instructions as NOPs.
Assuming that they take (cp) and (cnp) cycles respectively, the
prefetching gain can be calculated in step 6. If prefetching does
not provide us any performance gain, we use the maximum voltage
to execute the next W instructions (without prefetching) before we
start profiling again (step 9). Note that we turn off prefetching be-
cause it does not help and we use the maximum voltage to avoid
performance loss.

When we identify performance gain, we keep prefetching on
for the rest instructions while scaling the operating voltage (steps

1. repeat for each N instructions till the completion of the application {
2. execute M instructions with prefetching;
3. ¢p = number of cycles for the execution of these M instructions;
4. execute the next M instructions without prefetching;
5. cnp = number of cycles for the execution of these M instructions;
6. gain = 2.

M
7. if(gain < 0)
8. execute W instructions at the maximum voltage;
9. goto step 2;
10. repeat for the rest instructions { /* profiling done. */
11. update presentsqving and cumulativesqvings

12. if (presentsqving > cin) voltage_down();
13. if (presentsquing < 0) {

14. if (cumulativesqving > cen) voltage_down();
15. else voltage_up();

16. }

17. }

18. }

Figure 3: Pseudo code for the real time profiling DVS algorithm.

10-17). We compute how much ahead we are as compared to no-
prefetching counterpart, which equals to the difference between
prefetching gain and the slow down due to running at a lower fre-
quency. (presentsqvings) keeps track the performance gain (CPU
saving) since last update and is added to the (cumulativesavings)-
We scale voltage down when we are saving fast (step 12) or we
still have lots of savings (step 14). We scale voltage up only when
we are saving currently (step 13) and do not have sufficient savings
(step 15). Otherwise, the current voltage is kept.

We use the following parameters during our simulation: N =
100k instructions (profiling frequency); M = 5k instructions (pro-
filing period); ¢t = 50 us (threshold savings); W = 5k instruc-
tions (waiting time before re-profiling when there is no prefetching
gain). They are set to prevent the application from spending more
than a small percentage of its total execution time in profiling. We
claim the features of low-power and performance-guarantee of the
proposed algorithm. The word “almost” in Claim 1 can be removed
if prefetching has no negative impact in system’s performance. De-
tailed proofs are omitted due to space limitations, but both claims
are nicely validated by the simulation.

Claim 1. The proposed algorithm guarantees (almost) no perfor-
mance loss compared to the execution at the reference voltage with-
out prefetching.

Claim 2. The proposed algorithm converges to the optimal voltage
setting when prefetching’s gain is estimated accurately.

3 Experimental Methodology and Evaluation

We use software prefetching to improve application performance.
All the benchmarks used are instrumented with software prefetch-
ing. The performance of these optimized codes was then mea-
sured on a detailed architectural simulator. The performance boost
achieved was later traded to the power savings by voltage scaling.

[[Application | Problem Size [Memory Access Pattern ||
IRREG 14K node mesh Indexed array
MOLDYN 13K molecules Indexed array
NBF 14K node mesh Indexed array
MATMULT | 200x200 matrices | Affine array
JACOBI 200x200x8 grid Affine array
HEALTH 5 levels, 500 iters | Pointer-chasing

Table 1: Summary of benchmark applications.

3.1 Experiment Setup

Table 1 lists the six benchmarks, representing three classes of data-
intensive applications, along with their problem sizes and memory
access patterns. Irreg is an iterative PDE solver for an irregular

IT - 242

Processor Model
(600 Mhz)

Cache Model
(1 cycle = 1.25 ns)

Memory Sub-System Model

Issue Width 8 || Integer Latency 1 cycle
Instruction Window Size 64 || Floating Add/Mult/Div Latency 2/4/12 cycles
Load-Store Queue Size 32 || Branch Predictor gshare
Fetch Queue Size 32 || Branch Predictor Size 2048 entries
Integer/Floating Point Units 4/4 || BTB Size 2048 entries
LI/L2 Cache Size 16K-split/512K-unified || L1/L2 Associativity 2/4 cycles
L1/L2 Cache Block Size 32/64 bytes || L1/L2 Latency 1/10 cycles
L1/L2 MSHRs 8/16 || L1/L2 Write Buffers 8/16
DRAM Banks 32 || Row Access Strobe 22.5ns
Memory System Bus Width 64 bytes || Column Access Strobe 22.5ns
Address Send 7.5ns || Data Transfer (per 8 bytes) 7.5 ns

Table 2: Simulation parameters for the processor, cache, and memory sub-system models. Latencies are reported either in processor cycles or in nanoseconds.

Application | No Prefetch (1.6V) Prefetch (1.6V) Prefetch (1.5V) Prefetch (1.4V) Prefetch (1.25V) Prefetch (1.1V)
time energy time energy | time energy | time energy | time energy | time energy
IRREG 2238 845 1429 9.09 17.20 6.60 21.65 4.59 28.58 2.80 43.30 1.49
MOLDYN 22.23 7.36 10.99 6.50 1324 470 16.65 3.29 2198 2.01 33.30 1.07
NBF 13.21 5.46 09.28 645 11.10 4.69 14.07 3.25 18.57 1.99 28.14 1.05
JACOBI 14.04 499 09.87 4.96 11.89 3.60 1496 2.49 19.75 1.51 29.90 0.80
MATMULT 86.74 405 5275 394 63.55 28.6 79.93 19.8 105.5 12.1 159.8 6.40
HEALTH 1045 2.32 07.05 3.13 0849 227 10.68 1.57 14.10 9.60 21.36 5.09

Table 3: Static voltage scaling: numbers in bold indicate the performance and power when there is no significant loss in performance.
(execution time is in the unit of ms and energy in the unit of 107 Watts*cycle).

mesh; Moldyn is abstracted from the non-bonded force calculation
in an NIH system; NBF is from the GROMOS molecular dynamics
code; The next two applications are from the SPEC/NAS bench-
mark suite; and Health is taken from the OLDEN benchmark suite.

We use Wattch, an architectural level power analysis tool [1],
and SimpleScalar sim-outorder, a detailed simulator supporting out-
of-order issue and execution [2], to track different units accessed
per cycle and hence record the total energy consumed for a given
application. Wattch power model is based on 0.35um process tech-
nology parameters with clock gating. Prefetching frequently issues
memory requests and thus increases memory activity. Therefore,
it is crucial to have a detailed memory model. Table 2 gives the
baseline memory sub-system model we build to replace the simply
memory model in the SimpleScalar sim-outorder simulator.

We use Transmeta’s Crusoe processor, running at 600MHz and
1.60V, as the baseline processor. For voltage scaling, we adopt five
different voltages: 1.60V, 1.50V, 1.40V, 1.25V and 1.10V/, which
provide frequencies of 600MHz, 500MHz, 400MHz, 300MHz, and
200MHz respectively [8]. Finally, our technique requires only a
few counters and their power dissipation is also considered during
the simulation by Wattch.

3.2 Experimental Evaluation

100+

801 Mem
Overhead

| [

601

401

Normalized Execution Time

201+

NP P NP P NP P NP P NP P NP P

IRREG
Figure 4: Execution time breakdown for annotated memory instructions.

MOLDYN NBF JACOBI MM HEALTH

Prefetching Performance. Figure 4 plots, for each application, the
execution time with prefetching (labeled “P”) normalized to that
without prefetching (labeled “NP”). “Busy” is the execution time
(without prefetching) on a perfect memory system where all mem-
ory accesses are completed in one cycle; “Mem” represents the ad-
ditional memory access time on our non-perfect memory system
model (Table 2). “Overhead” is the prefetching overhead in execu-
tion time. The real numbers of the total execution times are also
shown in Table 3, the 2nd and 3rd column under “zime”. One can

see that on average software prefetching is capable of boosting the
performance by 36.04%.

Static Voltage Scaling. We run each application at each of the five
available voltages with their corresponding frequencies. For each
run, the voltage is fixed and the prefetching is used throughout the
entire execution. Table 3 reports the execution time (in ms) and
energy reported by Wattch (in 107 Warts*cycle).

First, comparing columns 2 and 3, we see that at the same volt-
age and speed, prefetching completes earlier than no prefetching
for all applications, but consumes more energy in general (8% on
average, the average power overhead is 69%) even after we use
clock gating to turn off all the idle hardware units. This is be-
cause 1) prefetching improves performance and reduces the pro-
cessor stalls and thus keep most hardware units active; 2) prefetch-
ing has overhead in the form of extra instructions and thus wastes
energy when the prefetched data is not used.

However, as we reduce voltage from 1.6V to 1.1V, the com-
pletion time increases but the energy (and power) consumption de-
creases. For each application, the entry in bold identifies the volt-
age setting for static voltage scaling (SVS) to achieve the similar
performance as no-prefetching. On average, we have a 48.72%
energy saving over the non-prefetching version.

We conclude that prefetching enhances application performance
at the cost of higher energy consumption (and much higher on
power which is the ratio of energy over time). However, prefetch-
ing combined with SVS can reduce the energy (and power) while
maintaining a given performance level. Finally, SVS is not prac-
tical for real time systems as it requires the knowledge of actual
execution time to determine the optimal static voltage.

Application | DVS-Power DVS-Gain in SVS-Power SVS-Gain in
Savings % | Performance % Savings % | Performance %

IRREG 39.2 +1.30 45.68 +3.26
MOLDYN 65.0 - 1.00 72.69 +1.12
NBF 8.00 +13.0 40.00 -6.51
JACOBI 38.5 -1.57 50.01 -6.55
MATMULT 522 +3.00 53.11 +7.85
HEALTH 25.8 -2.70 32.32 -2.20

Table 4: Energy saving and performance gain achieved by DVS and
SVS over the non-prefetching version.

Dynamic Voltage Scaling. Table 4 gives the energy savings and
performance gains achieved by the proposed online DVS approach

IT- 243

over the non-prefetching version (the 2nd column of Table 3). Due
to the discrete nature of the five available voltages and frequen-
cies of the baseline Crusoe processor, we are unable to transfer
all the performance gain to energy/power reduction. But our DVS
algorithm is very competitive with the unrealistic SVS approach
across the six applications, where it does manage to transfer all ex-
cept 2.0% of the performance gain by prefetching to a significant
38.11% energy saving.

o 161
S 15p¢:
£ 141
@
g 131
— 12+
@
g 11+
g 10 ;
Total Execution Time: 22.09 ms
IRREG
o 161
S 151+
£ 14t
@2
% 131
=12+
)
s 1.1+
S 10 }
Total Execution Time: 22.45 ms
MOLDYN
o 161
S 151
£ 14}
«
% 131+
= 12+
(o)
& 11+
g 10 I
NBF Total Execution Time: 11.50 ms
@ 1.6 -
2 151+
£ 14f
]
g 13+
— 124+
& 1.1
g 111
S 10 }
Total Execution Time: 14.27 ms
JACOBI
@ 1.6
2 151
£ 14t
@2 3
g 131 =
= 124
) 1.1
g 111
g 10 I
Total Execution Time: 84.14 ms
MATMULT
@ 1.6 -
2 154
£ 14}
«
S 131
o
=12+
Q
g 11
g 10 !
Total Execution Time: 10.74 ms
HEALTH

Figure 5: Voltage profiles of the online DVS algorithm.

Online DVS algorithm. Figure 5 gives the operating voltage level
throughout a complete run of each application. It reveals some
interesting insight of the proposed online DVS algorithm and the
application’s behavior.

As claimed earlier, we expect the DVS algorithm to reach the
optimal voltage level such that the modified code with prefetching
will not run slower than the original code without prefetching. This
is possible only when there exist a voltage level at which the system
can slow down to offset completely the prefetching gain. Moldyn
experiences this steady state behavior. Table 3 indicates that the
completion time of Moldyn at 1.25V (21.98 ms) is very close to
that in the non-prefetching version (22.23 ms). Therefore, after
some initial toggling, DVS algorithm finds 1.25V as the optimal
voltage and stays there. The small performance gain is canceled by
the prefetching overhead.

However, none of the other applications has the same ‘steady
state’ behavior. The main reason is that their required optimal volt-
age levels lie between the available ‘discrete voltage levels’. This
leads to the toggling behavior as one can see in Irreg and MatMult.
Moreover, the application’s dynamic behavior can also lead to a
more irregular shape of the voltage profile. For example, consid-
ering the Health application, Figure 5 clearly shows that the online
DVS algorithm first tries to stabilize at a voltage level between 1.5V
and 1.4V, and then decides to find one between 1.4V and 1.25V in
the second part of execution, where prefetching has reported more
performance gain.

4 Conclusions

We propose a low power system design methodology where DVS
and performance-enhancement techniques are coupled to simulta-
neously reduce energy consumption and provide performance guar-
antees. The developed online DVS algorithm periodically measures
the performance gain delivered by software prefetching, and auto-
matically adapts the voltage level to minimize power while main-
taining the performance level of the original system. Simulation
on real life benchmarks shows that significant energy/power reduc-
tion can be achieved without any performance loss compared to the
system without prefetching.

This approach gives the traditional performance-enhancement
techniques new meanings, namely offsetting or minimizing the per-
formance loss caused by DVS on real time low power systems. We
believe that this is promising and important for high-performance
and low-power computing based on our encouraging results.

References

[1] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations. In ISCA, pages
83-94, 2000.

[2] D. Burger and T. M. Austin. The SimpleScalar Tool Set, Version 2.0.
CS TR 1342, University of Wisconsin-Madison, June 1997.

[3] T. Chen and J. Baer. Effective Hardware-Based Data Prefetching for

High-Performance Processors. Transactions on Computers, Vol. 44,

No. 5, pages 609-623, May 1995.

N.P. Jouppi. Improving Direct-Mapped Cache Performance by the

Addition of a Small Fully-Associative Cache and Prefetch Buffers.

In Proceedings of the 17th Annual International Symposium on Com-

puter Architecture, pages 364-373, Seattle, WA, May 1990. ACM.

M. Karlsson, F. Dahlgren, and P. Stenstrom. A Prefetching Technique

for Irregular Accesses to Linked Data Structures. In Proceedings of

the 6th International Conference on High Performance Computer Ar-

chitecture, Toulouse, France, January 2000.

[6] T. Mowry. Tolerating Latency in Multiprocessors through Compiler-
Inserted Prefetching. Transactions on Computer Systems, 16(1):55—
92, February 1998.

[7] T. Mowry and A. Gupta. Tolerating Latency Through Software-
Controlled Prefetching in Shared-Memory Multiprocessors. Journal
of Parallel and Distributed Computing, 12(2):87-106, June 1991.

[8] Transmeta-corporation. Tm5400 processor specifications.

[9] K. Govil, E. Chan, and H. Wasserman. “Comparing algorithms for dy-
namic speed-setting of a low-power CPU”, ACM International Con-
ference on Mobile Computing and Networking, pp. 13-25, 1995.

[10] T. Ishihara and H. Yasuura. “Voltage Scheduling Problem for Dynam-
ically Variable Voltage Processors,” ISLPED’98: International Sym-
posium on Low Power Electronics and Design, pp. 197-202, 1998.

[11] T. Pering, T.D. Burd, and R.W. Brodersen. “Voltage Scheduling in the
IpARM Microprocessor System,” ISLPED’00: International Sympo-
sium on Low Power Electronics and Design, pp. 96-101, July 2000.

[12] G. Qu. “What is the Limit of Energy Saving by Dynamic Voltage
Scaling?” IEEE/ACM International Conference on Computer-Aided
Design, pp. 560-563, November 2001.

[13] M. Weiser, B. Welch, A. Demers, and S. Shenker. “Scheduling for re-
duced CPU energy”, USENIX Symposium on Operating Systems De-
sign and Implementation, pp. 13-23, November 1994.

[4

finaar

[5

—_

IT - 244

	footer1:

