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Numerous detailed topographic measurements, which must be periodically repeated, are 

required to characterize stream bank and channel geometry. Light Detection and Ranging 

(LiDAR) is becoming more widely used, but its accuracy for change detection in and 

around small streams is not well quantified.  Two LiDAR and one ground-surveyed 

elevation data sets are compared for a thickly vegetated riparian area in the Maryland 

Piedmont.  Interpolated surfaces (prediction maps) and estimates of their uncertainty 

(standard error maps) are created from the point data using kriging. The LiDAR 2006 

elevations are compared to ground-survey to evaluate accuracy. LiDAR 2002 and 2006 

elevations are compared to evaluate the potential for change detection. When the 

estimated LiDAR system error is included in hypothesis testing, no statistically 

significant elevation differences are found between 2002 and 2006. Conclusions about 

geomorphic change based on LiDAR scenes should account for error and uncertainty in 

the data collection and processing. 
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Chapter 1. Introduction 

 Geomorphic changes along a riparian zone or within a stream channel that results 

from either natural or anthropogenic factors are difficult to measure in situ. Property 

access, dense vegetation, topography, weather, and cost can restrict measurements needed 

to assess these changes. Topographic changes along stream banks, changes in channel 

geometry, and detection of degradation and aggradations within the channel require 

numerous detailed measurements along transects and longitudinally within the stream 

bed. These measurements must be repeated periodically to assess change.  

 These traditional methods of assessing stream channel geometry are very spatially 

and temporally limited. It is difficult to assess changes over long time periods, along 

lengthy stream reaches, and throughout large stream networks. The actual process of 

surveying land to determine topography requires numerous measurements in the field. 

When evaluating changes to stream channels and adjoining riparian zones, transects 

across the stream channel must be measured to make inferences about the channel 

geometry between transects. Longitudinal surveys along the stream channel must be 

completed to identify thalwegs, pools, riffles, beds, bars, and other stream geomorphic 

features. These measurements and the use of other techniques such as pebble counts can 

help to develop conclusions about the change in channel geometry and the impact of 

flow. 

These fluvial geomorphic changes may be a natural progression caused by stream 

flow or due to anthropogenic effects such as urbanization within the watershed. Changes 

to stream geometry both from a cross-sectional and plan view require that regular 

measurements be completed. In an effort to improve the spatial and temporal resolution 
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of fluvial geomorphic studies and ensure accuracy that is acceptable for change detection, 

there has been a rapid increase in the use of Light Detection and Ranging, which is 

known as LiDAR.  

LiDAR is an active remote sensing technology that is emitted and collected on an 

aerial platform such as an airplane or helicopter. The high frequency lasers are emitted at 

a rate of up to 70,000 pulses per second covering the Earth’s surface with a dense posting 

(point placement) of LiDAR points. Each point has x, y, and z values that indicate its 

position and elevation. These points are used to create an interpolated surface such as a 

Digital Elevation Model (DEM) or a Triangulated Irregular Network (TIN) which depict 

elevations on the Earth’s surface. The use of a fine resolution, LiDAR-derived DEM or a 

TIN to detect change in stream channel geometry and within the riparian zone could 

provide the accuracy and spatial and temporal resolution needed for this purpose. 

If LiDAR is to be used to determine changes in fluvial geomorphology and 

channel geometry, then its accuracy must be ensured. Accuracy is a relative term that 

depends on the use of the LiDAR data. For example, less accuracy is needed when 

delineating a watershed or identifying a channel than for the determination of geomorphic 

changes to a channel. The use of a 30-meter DEM is acceptable, in most cases, for 

delineating a watershed. However, changes to a stream bank or channel will probably not 

be visible at that resolution. In addition, objects on the Earth’s surface such as vegetation, 

logs, and structures must be considered when trying to determine bare-ground for 

identifying topography. These objects return LiDAR pulses and must be removed when 

identifying the bare-ground.  
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The area in which this study occurred is known as the Clarksburg Special Project 

Area (CSPA) which is located outside an area that is transitioning from rural to high 

density suburban residential and mixed land use (Figure 1-1). The CSPA is intensely 

studied and monitored by the Montgomery County Department of Environmental 

Protection for the impacts of urbanization on stream biology and chemistry and by the 

United States Environmental Protection Agency (USEPA) to map development and 

placement of anthropogenic surface structures such as roads, buildings, and parking lots 

to determine changes in topography associated with urbanization, the changes in stream 

 

Figure 1-1. Satellite classification of urban land cover, 1970s to 2000 showing the CSPA 
outlined in yellow, T. Jarnigan (personal communication, March, 2006). 
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flow, surface and groundwater relationships, and the effects of these surface alterations 

on the biological and chemical properties of these waters. In an effort to find better ways 

of improving the analysis of topographic changes, especially how urbanization affects 

stream geomorphology and its impacts on hydrologic analysis and surface mapping, the 

USEPA obtained three overflights collecting LiDAR datasets over three years: 2002, 

2004, and 2006. High-resolution aerial photography, satellite imagery and geographic 

information processing were used to develop mapping of surface features including 

topography (Jarnigan and Jennings, 2004). 

The steps that are required to collect and process LiDAR data can cause errors. 

The identified errors for most LiDAR data are caused by the LiDAR system, 

interpolation between LiDAR points, ground survey error used to verify LiDAR points, 

errors caused by sloping terrain, and errors due to land cover (Hodgson, 2004). The total 

accumulation of these errors can result in significant differences between actual surface 

elevations and those as determined by LiDAR. 

The objectives of this study were: 

1. To evaluate the accuracy of LiDAR-derived elevations relative to in situ 

ground-based measurements along the banks of a small stream and in its 

vegetated floodplain in the CSPA, and 

2. To investigate the utility of LiDAR-derived elevations for change 

detection in this location. 

 Two comparisons of LiDAR-derived surfaces were completed. In the first 

comparison, LiDAR-derived surfaces created from LiDAR data collected in 2006 were 

compared to surfaces derived from ground-surveyed points. The identification of the 
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error should indicate the acceptability of LiDAR as a technology that can provide 

topographic measurements used to determine geomorphic changes within the channel and 

along the banks and bordering riparian zone. In the second comparison, LiDAR-derived 

surfaces from overflights in 2002 and 2006 were compared to determine if changes in the 

topography were statistically significant. 

The error that results from the collection and processing of LiDAR data has been 

examined quantitatively by Hodgson (2004). Hodgson identified interpolation between 

data points as a source of error. In this study, interpolation error can occur in both 

Triangulated Irregular Networks (TINs) and rasters created from LiDAR and ground-

surveyed points. The quantitative evaluation of the interpolation error between data 

points is completed using Ordinary Kriging to create prediction and standard error 

rasters. Using the difference rasters, that is, LiDAR 2006 minus LiDAR 2002 and LiDAR 

2006 minus ground-surveyed points, it is possible to determine where the differences are 

statistically significant.  
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Chapter 2. Literature Review 

 

Geomorphic changes in stream channels are assessed using in-situ and remote 

methods. This chapter reviews the various methods and summarizes efforts to date in the 

study area (Clarksburg Special Protection Area, specifically Soper’s Branch). 

 

2.1 Transect Methods 

 The use of transects to determine stream channel changes at cross sections and 

longitudinally along the stream bed in the direction of flow has been the traditional 

approach for determining the extent of bank and bed erosion and deposition. These 

transects are established at specific locations along a stream reach where erosion and 

deposition are more likely to occur. For example, erosion during high flow is likely to 

occur at the outside of a meander bend and deposition is likely to be on the inside of the 

bend (Leopold, 1964).  These series of transects can then be used to determine change, 

evaluate locations for stream bank and bed reinforcement and determine stream 

hydraulics when engineering stream restoration projects.  

The lateral migration of the stream channel over time requires numerous in situ 

measurements of the physical conditions of the stream and a comparison to some initial 

benchmark. These measurements must be continually recorded so that biological, 

chemical and physical conditions within the stream can be monitored. The frequent 

monitoring of these transects provides valuable data that can be used for: 

• Monitoring trends in fluvial and geomorphic condition over time 

• Quantifying environmental impact 
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• Assessing stream and watershed response to management 

• Providing channel and flow facts for water allocation 

• Supporting resource inventories (habitat, water quality, vegetation) 

• Tracking cumulative effects for entire drainage areas 

• Contributing to regional, national, and international databases (Harrelson, 1994). 

The vertical and horizontal changes to the bank and bed along the cross-sectional 

transect are usually determined by standard surveying methods which include measuring 

the change in elevation at points along the transect (Figure 2-1).  A longitudinal profile 

requires many of the same types of measurements but extending from one cross-sectional 

transect to another downstream paralleling the stream bed (Figure 2-2). The longitudinal 

profile includes measurements of key features such as the location and depth of thalwegs, 

riffles, pools and point bars (Harrelson, 2004). However, these measurements are time-

consuming, spatially limited and require inferences about the reach between the cross-

sectional reference points. 

Figure 2-1. Diagram of Stream Cross-section Survey (Harrelson, 1994) 

 
 

Reference points such as established monuments with known latitude, longitude 

and elevation above some datum are used for comparison to previously recorded 

measurements. These reference points are either position-fixed naturally-occurring and/or 
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anthropogenic structures (boulders, bridge piers, buildings) that can be used to site a 

monument (permanent reference point with established coordinates and elevation) 

(Figure 2-3). The monuments are established at both sides of the channel at some 

determined distance from the top of bank and are used to establish the ends of each cross-

sectional transect. 

 

 
Figure 2-2. Longitudinal Profile and plan view of riffle and pool sequence (Harrelson, 
1994) 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
Figure 2-3.  Positioning of a transect using a fixed location and setting of a rebar 
monument (Harrelson, 1994) 
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These physical measurements can be used to classify a stream type according to 

various classification systems. The most widely used is the Rosgen Classification scheme 

which ranks streams by numerous criteria including landscape level (headwater, 

intermediate, meander, braided, etc.), pebble count or sediment size collected from the 

bed , slope of the bank and other factors that must be determined in the field (Harrelson, 

1994; Rosgen, 1994). This classification system is then used to predict the behavior of the 

stream and the expected changes to the banks and bed over time. 

Channel geometry based upon measurements at the transects can also be used to 

determine the hydraulics of the stream at that transect and to assess geomorphic change 

over time (Figure 2-4). This has been the traditional approach used to measure fluvial 

geomorphic changes within a stream reach associated with factors such as urbanization, 

impervious surfaces, land use, land cover, best management practices and specific storm 

events. These in situ measurements are time-consuming and spatially restrictive.  They 

are applicable to a limited reach near the transects. Extensive interpolation is required to 

extend these measurements to other locations in and around the stream. 

 

Figure 2-4. Cross-sectional profile determined from a transect survey (Harrelson, 1994). 
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In addition to the low spatial and temporal resolution of these in situ 

measurements, acceptable accuracy is needed for measurements in the x, y plane and in 

the z-direction. The evaluation of fluvial geomorphic changes requires accurate 

measurements in three dimensions. That is, x, y and z values must be within an 

acceptable accuracy to ensure that the measurements reflect current surface elevations 

and that future measurement will detect changes in surface topography. 

Measuring distances and elevations using either a transit and stadia rod (rod with 

marked elevations used to determine the elevation and distance at a point) or laser survey 

equipment is often very accurate. The acceptable error depends on the use of the survey 

but for river surveying an acceptable error is 0.02 feet when closing the survey. The 

closure of the survey is the completion of the survey of all points turning the angles from 

the established location of the total station or stadia. An example of an equation used to 

estimate allowable error is Equation 2-1 (Harrelson, 1994). 

 Acceptable error = 
  
0.007 total _ distance

100
  (Equation 2-1) 

where, 

  total distance = the total distance measured in the closure of the survey 

 

2.2 Digital Elevation Models 

 A Digital Elevation Model (DEM) is a grid of pixels that are used to represent the 

elevation of the Earth’s surface with each pixel having a value indicating the elevation 

within that pixel. The resolution is determined by the size of each pixel. Many DEM 

grids are available at 10 m and 30 m resolution; thus, the reported elevation is an average 

or representative value over 100 or 900 sq m, respectively. This resolution is acceptable 
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for most hydrologic analyses including watershed delineation, surface runoff and stream 

flow calculations. However, geomorphic changes of a stream channel may not be visible 

at these resolutions thus requiring finer resolution.  

 Digital elevation models are created using ground survey data, cartographic 

digitization of contour data and/or photogrammetry. The most common technique is 

photogrammetry which uses aerial photographs taken in the line of flight to determine 

surface elevations. Photogrammetry includes several methods that are accurate for 

measuring surface elevations and horizontal distances. A single aerial photograph can be 

used to determine the elevation of features in the photograph or multiple photographs can 

be used to determine surface elevations over a broader spatial extent (Jensen, 2000). 

 A single aerial photograph can be used to measure surface elevations including 

the height of buildings, hills, and mountains and the depth of ravines and depressions 

through a technique called relief displacement. [The following explanation is taken from 

Jensen (2000).]  In a vertical aerial photograph, an object is displaced from the principal 

point (PP) of the photograph. The principal point of the photograph is the exact point on 

the Earth where the optical axis of the camera was pointing when the photo was taken. 

An object that lies above the local datum (the plane passing through the principal point) 

is displaced outward from the principal point if the object’s elevation is above the local 

datum and toward the principal point if the object’s elevation is below the local datum. 

The amount of relief displacement is related to the height (h) of the object or surface 

elevation is given by 

 
r

Hdh ×=   (Equation 2-2) 
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The amount of relief displacement is d, the radial distance from the displaced image and 

the principal point is r and the altitude of the camera above the datum is H.  The relief 

displacement, d, is the horizontal measurement between the top of the object and its 

bottom as measured on the aerial photograph. The radial distance, r, is the measurement 

between the top of the displaced object and the principal point (Figure 2-5). 

Exposure station, L d
r
a b 

  H 
B

h
B

PP A
 

Figure 2-5. Measurement of height from a single vertical aerial photograph of a building 
(Jensen, 2000) 
 

The use of a single aerial photograph does not provide the spatial resolution 

needed to develop a digital elevation model but it does demonstrate a technique that 

clearly shows the relationship between relief displacement and elevations above some 

datum. Another more widely used technique for determining surface elevations from 

aerial photographs is stereoscopic measurements using two adjacent photographs within 

the line of flight. Software algorithms have been developed to use this technique to 

convert digitized aerial photographs into digital elevation models (Jensen, 2000). 

Aerial photographs in a flight line usually overlap by 60% along the flight path. 

This overlap allows objects that are in both of the neighboring photographs to be seen 

from different views, which can then be used to determine the elevations of these objects. 
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Each photograph has a principal point and a conjugate principal point. A conjugate 

principal point (CPP) is the principal point on a photograph that will overlap to a point on 

its neighboring photograph within the line of flight. The alignment of the CPP for one 

photograph and the PP from the neighbor establishes the line of flight. The overlap of the 

two photographs can be viewed stereoscopically to determine elevations.  

 Stereoscopic viewing gives the perception of depth and can be viewed using 

different methods but all with the same purpose, determination of surface elevation. The 

neighboring aerial photographs within the line of flight indicate a change in position of an 

object (hill, building, mountain, etc.) from one photograph to another as the forward 

progress of the plane causes a shift of the object across the camera’s focal plane. This 

change in location of the object from one photograph to the other is called x-parallax. The 

relationships of the x-parallaxes allow for the determination of elevations as shown in 

Equation 2-3. 

                              
)(

)(
0 dpP

dphHh +
×−=     (Equation 2-3) 

The height of the object is h0, the altitude of the aircraft above-ground-level is  

(H-h) where ground-level is the top of object whose elevation is being determined, the 

absolute stereoscopic parallax at the base of the object being measured is P and dp is the 

differential parallax.  

 These values are determined by first superpositioning each of the 

neighboring photographs so that the principal points of each are superimposed over one 

another. This will allow the movement of the objects across the film plane to be 

measured. The parallax of a point is the difference of the distance of the point from the 

principal point in each photograph. The top and bottom of the objects each have a 

  
13 



parallax. The absolute stereoscopic parallax is determined by measuring the distance 

from the PP to the CPP of each photograph and then using the mean of these two 

measurements as P. The differential parallax (dp) is the difference of the x-parallax of the 

top of the object and the x-parallax at the bottom of the object (Figure 2-6).   

a’b b’

Xb=-3.606” 

Pb=-3.339” 

Pa=-3.55” 

Xa=-3.820” 

Xa’=-0.267” 
Xb’=-0.267” 

o a

 

Figure 2-6. Computing height by measuring the stereoscopic x-parallax by 
superpositioning neighboring photographs in the line of flight (Jensen, 2000) 
 

 The superpositioning technique for determining surface elevations from aerial 

photography along a flight path demonstrates the complexity of the methodology. 

However, the collection of data in the x, y and z direction must be accurate if the 

determination of a DEM is to simulate the surface topography. The first step in the 

creation of an accurate DEM is to collect x, y and z ground data by using either ground 

surveying or Global Positioning Systems (GPS). These points can be used to rectify aerial 

images that may have terrain-induced errors. Once these displacement errors are 
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corrected, the orthoimage (correctly georectified image) can accurately reflect all surface 

locations. These orthoimages can be used as a backdrop for the development of layers 

within a Geographic Information System (GIS) map and for measuring distances needed 

to create DEMs.  

 The accuracy of a digital elevation model is dependent upon the x, y and z points 

that are extracted from a photogrammetric image. The photogrammetric image that has 

been rectified will allow for the creation of an accurate three-dimensional model of the 

terrain. However, accuracy is affected by the presence of trees, buildings, bridges, 

overpasses and other objects that extend above the ground level. These objects are 

viewed by algorithms as surface features and compute the differential parallax and 

surface elevations using these objects as surface features. Therefore, the removal of these 

objects from the DEM must occur if a more accurate DEM is to be developed (Jensen 

2000). 

 The DEM is determined based upon calculations used to determine surface 

elevations such as the x-parallax relationship and the corrections made to the surface 

elevations where objects such as buildings or trees have distorted the elevation. Once the 

corrections are made, the spatial resolution of the DEM can be determined by the 

accuracy and number of surface points used for elevation calculations within a grid.    

 Many DEMs used for hydrologic analysis are based on remotely sensed data with 

a low point density. These DEMs usually have a resolution of approximately 30 m which 

indicates that a 30 m x 30 m pixel will have the same elevation throughout the pixel. 

While this is suitable for many hydrologic determinations, it is not suitable for evaluating 

fluvial geomorphic change along a stream reach or within the channel since many of 

  
15 



these vertical and horizontal changes occurs within smaller distances (< 3 m).  The 

potential inaccuracy of DEMs and the lower spatial resolution limits their use for 

topographic change detection especially in fluvial areas where changes can be difficult to 

detect. 

 Digital Elevation Models are frequently used by Earth scientists and hydrologists 

to develop models to predict hydrology, erosion, and landscape evolution with strong 

dependence on the integrity of the DEMs. These scientific studies are based on the 

assumption that the accuracy of the DEMs is suitable for predictive studies in these 

fields. The most often used DEM is a two-dimensional array of numbers that represent 

elevations along a spatially distributed grid. However, Walker and Willgoose (1999) 

analyzed 10 m resolution DEMs for comparison to ground-surveyed data.  They found 

that these DEMs are not accurate enough in most cases to predict drainage area and 

stream networks. They found that published DEMs indicated significantly different 

stream networks and drainage basins than those determined by ground-surveyed data. 

Width and cumulative area measurements made by the DEMs consistently fell outside the 

90% confidence interval that was determined by ground surveyed data in 60% of the 

compared positions. This suggested that hydrologic properties including geomorphic 

measurements are poorly estimated by DEMs. However, the accuracy of slope-area 

relationships was more acceptable with only 40% of the compared positions falling 

outside of the 90% confidence interval. Walker and Willgoose (1999) indicated that 

further study would be needed before a general conclusion on DEM accuracy could be 

made. However, they did indicate that the accuracy was dependent upon post-processing 

of the DEMs, differences in accuracy based on terrain and grid sizes. The use of DEMs 
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for the determination of geomorphic change was not supported in their study and 

identifies questions about accuracy even at 10 m resolution which is finer than used in 

many hydrologic models. 

The most accurate digital elevation models are not suitable for the fine vertical 

and horizontal measurements needed in change detection studies of fluvial areas.  The  

United States Geological Survey (USGS) produces DEMs that have a spatial resolution 

of 10 m with a vertical accuracy of 7 m and horizontal accuracy of 10 m (Hans, 2003).             

One example of the benefits of greater spatial resolution DEMs is to determine 

surface elevations in the design of highways. The design of highways could be 

significantly improved if the DEM spatial resolution was increased. LiDAR has been 

investigated as a technology that could produce finer spatial resolution DEMs for 

highway design and for the delineation of smaller watersheds that are now excluded from 

the drainage area being considered in highway design. These smaller drainage areas have 

an impact at a more local level on the hydraulic design of highway projects. For example, 

smaller culverts are now either not seen due to the lower resolution DEMs or are filled as 

sinks and improperly considered in the overall flow when determining the drainage in an 

area (Hans, 2003). Even though these finer resolution DEMs are used for hydrologic and 

hydraulic analyses during highway design, they still do not provide the accuracy needed 

to determine change for fluvial geomorphic studies since small horizontal and vertical 

changes may not be detected.  

 

 

 

  
17 



2.3 Light Detection and Ranging (LiDAR) 

 Total Station surveying techniques used to determine surface elevations along a 

stream transect or within a riparian zone are accurate within acceptable engineering 

standards but are very spatially limited. Digital elevation models provide better spatial 

coverage but often lack the resolution needed to measure changes within stream channels 

and along areas bordering the riparian zone.  In an effort to improve spatial and temporal 

resolution, i.e., more frequent evaluation of changes over larger areas, the use of a new 

technology is showing promise. Light Detection and Ranging known as LiDAR, is fast 

becoming the remote sensing technology of choice for providing point data with high 

spatial and temporal resolution at a reasonable cost. Topography can be determined from 

these points by developing a Triangulated Irregular Network (TIN) or a digital elevation 

model (DEM) with fine spatial resolution (≤0.5 feet). 

 LiDAR may provide accurate point measurements that can be used to determine 

elevation at specific points on the Earth’s surface with enough accuracy for detecting 

fluvial features.  These LiDAR measurements are used to assess storm water control 

design, flood control, geomorphic changes, and generally any assessment that requires 

data with x, y and z coordinates (Hodgson, 2004).  

2.3.1 LiDAR Sensors and Positioning 

 Airborne LiDAR uses an active sensor to capture point data with x, y and z values 

and in many cases with an intensity measurement. The LiDAR system is composed of 

three primary parts that together provide the data to determine elevation at a point: 

1. a laser scanning system  

2. global positioning system (GPS)  
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3. inertial measuring unit (IMU)   

The laser scanning system consists of an emitting diode that produces the laser, which is 

a beam of light at a very specific high frequency. The receiver in the system receives the 

return pulse from the emitted laser after it contacts and is reflected from the surface 

feature. The distance from the scanner to the surface feature is determined by specific 

calculations that include the speed of light and the time that the emitted laser takes to 

reach the surface feature and return to the receiver. The use of a pulse laser system is best 

for determining topography of the surface since a pulse laser emits a small diameter laser 

in the near infrared region of the electromagnetic spectrum. These narrow pulses allow 

for greater penetration of obstacles such as forest canopies and other vegetation allowing 

the laser to reach bare-ground and obtain ground surface data. The near infrared portion 

of the electromagnetic spectrum will allow the laser to be more easily reflected over land 

surfaces even though it is partially absorbed by water resulting in an undetectable signal 

(Burtch, 2002).  

 It is important to understand the LiDAR sensing technology, not only to 

comprehend the data collection process, but to understand the likely error inherent in the 

actual scanning and data collection. The LiDAR system, which includes error in both 

data collection and processing, is a key factor in determining overall LiDAR data error 

(Hodgson, 2004). The laser scanner can emit up to 70,000 pulses per second, collecting 

the scan data using a scanning mirror that rotates transverse to the line of flight. The scan 

angle for the mirror ranges from 20˚ to 30˚ from nadir (point on the Earth from the 

emitting diode that is normal to the Earth’s surface). The laser scan signal creates an area 

or footprint on the ground that can vary in diameter from 24 to 60 cm.  The smaller 
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footprint increases the ability of the laser to penetrate through vegetation and to reach the 

ground. It is this ground measurement that is used to determine surface elevation. The 

actual footprint is referred to as the instantaneous field of view (IFOV); it varies in size 

and shape based upon the angle from nadir and the altitude of the scanner above ground 

level (AGL). As the angle from nadir increases, the footprint increases in size and  

becomes elongated and ellipsoidal (Figure 2-7). At nadir, the IFOV is smaller and 

circular. While each IFOV is an area and not a point, each is usually referred to as a 

point.  

 

 

 
Figure 2-7. Example of Instantaneous Field of View at different scan angles (Burtch 
2002) 
 

 

The scan rate must be fast enough to prevent gaps and to allow for a uniform 

distribution of data over the targeted site. The swaths or width of laser points extends 

from approximately 2,500 to 3,000 feet perpendicular to the line of flight. The number of 

laser points emitted per second depends on the type of scanner and varies depending on 

the signal emission frequency (measured in kHz, where 1 kHz equals 1,000 pulses per 

  
20 



second). Most modern scanners emit pulses at 10 to 70 kHz. This pulsing rate will 

determine the point density over one pass of the target area (Burtch, 2002). 

2.3.2 Determining the Position of LiDAR Points 

 The determination of the x, y coordinates is necessary to locate the horizontal 

position of each laser measurement. The determination of these coordinates is made by 

the use of a Global Positioning System (GPS) that is located near the scanner. The 

location is determined as the return pulse is received by the sensor and is offset by the 

location of the GPS from the sensor. The GPS provides x, y information in a specific 

projection that is relevant to the target area and data use (Hodgson, 2005). 

 The movement of the aircraft platform must be considered when determining the 

x, y and z coordinates for each laser point. The aircraft movement can cause variations in 

these points requiring that adjustments be made before recording the data. These small 

angular variations are due to the pitch, yaw and roll of the aircraft (Figure 2-8). These 

   

Figure 2-8. Pitch, yaw and roll of the aircraft. 
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position variations are recorded by the Inertial Measurement Unit (IMU); the coordinates 

and elevations can then be corrected by an analyst using these IMU measurements to 

determine the orientation of the scanner at the time the point data was received. An 

example is shown in Figure 2-9A. If the scan angle was 10º to the right of the flight 

direction when the laser signal was emitted and the height above the surface at nadir was 

1000 m, then the return distance for the signal would be 1015.43 m from the location of 

the center of the IFOV as determined by 

  S = D·sin10º = 176.33 m    (Equation 2-4) 

where S is the ground distance from the vertical to the center of the IFOV (Figure 2-9B). 

If there was an additional 1º tilt of the aircraft, the scan angle would change to an 11º 

angle resulting in a return distance of 194.38 m (Figure 2-9B). This difference is 17 m, 

requiring that the IMU accurately measure the change in the scan angles in all three 

directions if the georeferencing is to be correct. In some instances the corrections are  

pitch
yaw 

roll 

                      A       B 

Figure 2-9. Example of roll on the LiDAR signal (Burtch, 2002) 
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made directly by the IMU and others are made as the flight–collected data is post-

processed (Burtch, 2002). 

 

2.3.3 Post-processing of LiDAR Data 

      The LiDAR returns are collected by the in-flight receiver and are adjusted for the 

variations caused by the aircraft movement. However, the data received in-flight must be 

post-processed to ensure that the actual returns reflect the desired surface features. As the 

LiDAR pulse strikes an object on or above the ground, it can be totally absorbed, 

partially absorbed or totally reflected. The returns can come from tree canopies, mid-level 

branches and surface features such as logs or rocks that are not indicative of bare-ground. 

If the bare-ground topography is needed, then data points that resulted from other returns 

must be eliminated from that data set. The returns that represent the top of a forest 

canopy could be saved as a separate data set. 

Since each LiDAR pulse can emit up to 70,000 points that are returned up to five 

times per point depending on the surface features, extensive post-processing is required 

to ensure that the data collected in flight is separated to represent the appropriate surface 

feature. The analysis and processing of the in-flight data is performed with a combination 

of software algorithms and manual expertise (Burtch, 2002). 

 

2.4 LiDAR Error 

2.4.1 Determination of Horizontal and Vertical Error 

 Location and elevation error can result from data collection and processing, 

causing the accuracy of LiDAR data to be insufficient for many of the uses mentioned 
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previously. The detection of topographic changes requires that horizontal location (x, y) 

and elevation (z) be accurate within some standard determined for the particular 

application. For example, the Federal Emergency Management Agency (FEMA) has 

several efforts underway to determine floodplain mapping to establish flood mitigation 

efforts. FEMA has established acceptable root mean-squared error (RMSE) for vertical 

accuracy of 20 cm for coastal areas and 25 cm for inland areas (Hodgson, 2004). The 

RMSE is always calculated by determining the difference between ground-measured 

point elevation (surveyed elevation at or near the specified LiDAR point coordinates) and 

the LiDAR-derived point elevation. Some studies actually use Total Station surveying of 

specified bare-ground LiDAR points and designate these as ground-truth data (actual 

ground elevations at the specified point), while other studies survey random locations in 

the target area and compare these elevations to the bare-ground LiDAR points. The 

random selection of survey locations introduces interpolation error that must be 

considered and is discussed later. The RMSEz is calculated as follows, where Z is either 

at a LiDAR point or within the targeted area near LiDAR points, n is the total number of 

points and ZLiDAR is the elevation at a LiDAR point: 

 

 RMSEObservedLidarPts =
Zlidar − Zsurvey( )2∑

n
                  (Equation 2-5) 

 

2.4.2 System Error 

As discussed earlier, the LiDAR system is the first potential source of error. The 

error is inherent in the collection process and is associated with the Global Positioning 

System (GPS) onboard the aircraft, the inertial measurement unit (IMU) used to monitor 
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the pointing direction of the laser and also within the inertial navigation unit (INU) used 

to estimate positions between the GPS fixes (Hodgson, 2004). The forward movement of 

an aircraft in the line of flight, the pitch, roll and yaw associated with the flight, the pulse 

of laser light from a height of 1200 to 3000 ft. AGL and the determination of the location 

of as many as 70,000 points per pulse makes data collection susceptible to error. This 

positional error can occur horizontally (x, y) and vertically (z). Determining if horizontal 

error has occurred can be difficult since ground measurements do not reflect the error but 

may actually augment the error by using the horizontal location determined by the 

airborne GPS as the location for verifying vertical error. If specific ground points can be 

identified then horizontal error can be assessed. Typical assessments of horizontal error 

would include the use of building corners, flag poles and other fixed locations on flat 

surfaces such as roads or roofs to determine the horizontal offsets (Burtsch, 2002).  

2.4.3 Labeling Error 

 The measurement of surface elevations requires that ground points be identified 

and other laser returns be removed from the data set. Since a typical LiDAR system can 

emit up to 70,000 pulses per second with the possibility of as many as five times that 

number of returns, it important to be able to identify the returns and their source (ground, 

canopy, mid-level tree structure). Identifying the source of these returns is called 

labeling. 

 Each laser pulse can have multiple returns as the laser reaches different surface 

features. For example, four or five returns per pulse from a forested location are not 

unusual. The first return could be from the top of canopy, second return from branches 

within the tree, third return from the herbaceous understory and finally the fourth return 
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could be the bare ground. The identification of each of these returns is a potential source 

of additional error. The identification of bare-ground returns is done by software 

algorithms and/or manual interpretation of the LiDAR points. Human error and 

algorithmic interpretation of points can add to the identification error. This error is known 

as labeling error. In his study of LiDAR error, Hodgson (2004) refers to the combination 

of LiDAR system and labeling error as LiDAR system error. This is the elevation error at 

LiDAR points caused by mislabeling and/or laser pulse height measurement error.  

2.4.4 Slope Error 

 Slope error is an elevation error caused by the incorrect horizontal location of a 

LiDAR point on a slope resulting in a vertical error, most often due to the system errors 

previously mentioned (Peng and Shih 2006). Slope changes in riparian zones and along 

stream channels are important for assessing topographic and channel changes that can be 

used to determine the impacts of land use, storm events and other factors on the 

hydraulics and geomorphology of a stream and riparian zone. If horizontal error occurs 

on a slope, the elevation error can be significant and is maximized as a function of slope 

by a simple trigonometric relationship: 

Elevation error = tan θ · Horizontal Displacement     (Equation 2-6) 

 For example, the elevation error caused by a 100-cm horizontal displacement on a  
 
10° slope (θ) can be up to ± 18 cm. The maximum error occurs when the displacement is 

perpendicular to the contour line (Figure 2-10). Horizontal displacement parallel to a 

contour line will not result in elevation error since the elevation is constant along the 

contour line (Hodgson, 2004). However, a point that moves either up or down the slope 

away from the location where it should have been positioned will have an elevation that 
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is either greater or less than it would have had at the correct position. This error is caused 

by the incorrect horizontal positioning (x, y location) due to the system error in the 

scanner. Incorrect horizontal positioning on a flat surface will not result in an elevation 

error but on a slope, the error can be significant for that point. This elevation error can 

further complicate interpolation of elevations between points. 

Vertical 
error 

Horizontal 
error

Laser energy reflected 
from here 

θ 

Apparent x, y position 
of LiDAR point is here

X-Dimension

z- Dimension 

 

 Figure 2-10. Effects of Terrain Slope on observed error (Hodgson, 2004) 

2.4.5 Point Density 

 Point density is also important for deriving accurate DEMs from the LiDAR data. 

As the point density increases, the accuracy of the resulting DEM increases. This 

improved accuracy is the result of reduced interpolation between points. (Obviously, 

point density has no effect on the accuracy of individual points, which are still 

susceptible to LiDAR system error.) The density of the observation points depends on the 

pulse rate (kHz), the nominal posting (spacing between points at nadir), land-cover type 

and accuracy of identifying bare-ground points through the labeling process. Adequate 
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point density is essential for ensuring that the target area is covered and that voids in data 

are minimized. The current LiDAR systems produce pulses at 70 kHz creating up to 

70,000 data points per pulse, thus reducing voids and increasing point density with 

respect to previous systems (Hodgson 2004). 

2.4.6 Interpolation Error 

 The surface elevation between points is determined by interpolating between 

measured elevations, such as LiDAR points or ground points. Interpolation is a prediction 

of the elevation between points through the use of a specific algorithm or methodology. 

In ArcMap, there are several methods used to determine interpolated surfaces. These 

include the use of known points with x, y and z values to create a Triangulated Irregular 

Network (TIN), conversion of a TIN to a grid or raster, creation of a grid or raster 

directly from points and ordinary kriging or cokriging to predict surface elevations based 

on geostatistics. The interpolation of the surface elevation between measured points 

introduces additional error that must be considered. 

Digital elevation models do not generally have the spatial resolution needed to 

measure small changes in stream channel geometry. However, by using LiDAR points 

and creating a triangulated irregular network, it may be possible to detect these changes.  

A Triangulated Irregular Network (TIN) is a method to create the appearance of a  

3-dimensional surface from irregularly spaced (x, y, z) measurements. The TIN is created 

by using a dataset that includes points with x, y and z values partitioning the geographic 

space into triangular planes formed by nodes (vertices) connected by edges using 

Delaunay triangulation. Delaunay triangulation creates a mesh of contiguous, non-

overlapping triangles. Each triangle’s circumscribing circle contains no data points from 
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the dataset in its interior. Topographic lines, where the surface changes abruptly such as 

ridge lines, top of stream banks and roads should be incorporated as break lines when 

creating the TIN (ESRI, 2006).  

The TIN can be converted to a raster with a specified resolution so that it can be 

used in calculations. A raster is a grid of cells each having an integer or floating point 

value to represent discrete or continuous data, respectively. For elevation, the raster cell 

values are floating point since elevation is a continuous variable. Rasters can also be 

created from point data without the intermediate step of creating a TIN. Each method is 

acceptable but consistency should be used when creating the rasters.  

Ordinary Kriging can be used to create interpolated continuous surfaces 

determined by autocorrelation (the statistical relationship among measured points).  The 

Kriged continuous surface predicts the elevation values where no points exist. The points 

closest to the interpolated surfaces have a greater weight in the prediction algorithm. 

However, the weights are based not only on the distance between the measured points but 

also on the overall spatial arrangement among the measured points (ESRI, 2007). 

The location of LiDAR points is random while ground-surveyed points can be 

positioned to address specific topographic measurements. For example, the top of bank, 

bottom of bank, break lines, surface anomalies, geomorphic features and other 

identifiable features can be identified and measured during a ground survey. The 

randomness of LiDAR introduces the possibility of additional interpolation error between 

points.  
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2.4.7 Error Budget for LiDAR Data 

In summary, the sources of error in the collection of LiDAR points for the 

production of DEMs or TINs include: elevation error caused by the sensor system 

measurement, horizontal error caused by the sensor system, labeling errors that can be 

caused by software or manual misidentification of bare-ground points and interpolation 

error caused by incorrect determination of elevations between points.  The impact of 

these errors can be significant and limit some LiDAR data sets from consideration for use 

in fluvial geomorphic change detection.  

 Research to identify all of the possible sources of error in LiDAR data sets is 

continuing. However, specific errors that result during each of the steps taken to develop 

a LiDAR data set are being more clearly identified. In their research to identify and 

quantify errors occurring during each step of LiDAR data gathering, Hodgson and 

Bresnahan (2004) separated what they identified as error sources. By separating each 

error source, they were able to develop an error budget that quantified the error observed 

in a LiDAR-derived TIN. Root Mean Squared Error (RMSE) analysis was used to 

evaluate the observed TIN error in four specific sub-error categories: 

1. LiDAR system 

2. Ground survey 

3.  Vertical effect due to horizontal displacement on a slope  

4. Interpolation  

The RMSE for the observed TIN that resulted from the LiDAR dataset was calculated as: 

 RMSEobservedTIN = RMSElidarsystem
2 + RMSEsurvey

2 + RMSEhoriz,slope
2 + RMSEinterp

2  

(Equation 2-7)    
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Equation 2-7 assumes that the sources of error are statistically independent.                                                     

Ground Survey error (RMSEsurvey) was attributed to errors that occurred during 

Total Station surveying of LiDAR elevations at the exact coordinates of each LiDAR 

point. These errors were typical of errors that occur during a topographic Total Station 

survey and did not contribute significantly to the observed error. For example, a survey 

error of 5 cm RMSEz resulted in only a 0.8 cm observed error in the field (Hodgson, 

2004). Elevation errors of 3 to 4 cm during surveying are common. 

 An evaluation of the horizontal error (RMSEHorz,slope) as a function of slope is 

shown in equation 2-8. The equation shows that steeper slopes result in greater horizontal 

error. Most LiDAR data companies advertise that horizontal error is a function of altitude 

estimated as 1/1000th of the altitude above ground level (AGL). Since many LiDAR 

flights are between 1,200 m and 3,000 m, the horizontal error can be 120 to 300 cm. 

Therefore, using a mean slope that ranged from 1.67° to 4.15° and a mean horizontal 

error of 120 cm, the RMSEhoriz, slope resulted in a horizontal error of 2.5 to 6.2 cm 

(Hodgson, 2004).  

     (Equation 2-8)       

This horizontal error is attributed to the LiDAR system and results from the changes in 

angle off nadir caused by the scan angle and the pitch, yaw and roll of the aircraft, as well 

as errors in adjustments to compensate for the angle differences. 

 Interpolation error (RMSEinterp) is inherent when using a DEM or TIN to 

determine elevations between measured points, since the elevations between points are 

interpolated manually or by software algorithms. This is another potential error identified 
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by Hodgson (2004) that contributes to the combined total error of the LiDAR-derived 

elevations between measured points in the developed TIN. Hodgson and Bresnahan’s 

(2004) process for evaluating interpolation error requires that specific LiDAR points be 

surveyed and then removed so that adjoining points could then be connected by an edge 

in the TIN. The elevation of the edge is then interpolated and compared to the surveyed 

elevation of the removed point which was at a location between the endpoints of the edge 

(Figure 2-11).   

 

Figure 2-11. Evaluation of interpolation error by removing points and cross-validating 
(Hodgson 2004) 
 

 This technique used by Hodgson and Bresnahan (2004) is a cross validation 

approach that created TINs using both the surveyed and non-surveyed LiDAR points. 

Each of the surveyed points was then removed one at a time and a new TIN was created. 

The surveyed elevation of the removed point was then compared to the interpolated edge 

that intersected that point. This was repeated for every surveyed point in the dataset and 

the RMSE was calculated using these points and the interpolated edge in the TIN. This 

cross validation technique is commonly used for linear interpolation across triangular 

faces of a TIN (Hodgson 2004). 
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 Hodgson (2004) showed an increase in total RMSE caused by interpolation 

during the creation of a TIN from the LiDAR points. All of the land cover categories with 

the exception of deciduous forests showed an increase in total RMSE with a range of 0.4 

cm to 3.3 cm. The RMSE of the deciduous forests decreased from 25.9 cm to 23.5 cm.  

Significance of these errors was tested using a paired t-test which indicated a significant 

difference between the mean absolute error observed at the LiDAR reference points and 

the mean absolute interpolated error. 

The accuracy of LiDAR data is also affected by land cover. Specifically, the type of 

vegetative cover affects the density of LiDAR points since fewer points are actually 

determined to be bare-ground when vegetative cover is dense or highly varied. Certain 

types of vegetation such as a deciduous or coniferous forest would be expected to reduce 

bare-ground points since many pulses may be reflected from the canopy and under story. 

Other land covers such as low grass, high grass, herbaceous vegetation, low trees and 

pavement would be expected to permit more pulses to reach the ground, increasing point 

density and improving the accuracy of TINs and DEMs developed from these points. 

 A study was conducted by Peng (2006) with LiDAR points being collected during 

leaf-on conditions. The post-processing of this data set removed the vegetation to obtain 

bare-ground data used to determine the surface elevation. It was shown through 

regression analysis that there was a strong relationship between vegetative cover and 

LiDAR point accuracy. However, the accuracy was due to the reduced point postings 

with decreased point postings producing less error. The reduced point spacing distances 

were a function of vegetation cover (Peng, 2006).  
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A previous study with leaf-off conditions was conducted by Hodgson, Jensen, et. al. 

(2005). In this study, the last returns were assumed to be the best candidates for bare-

ground points. All other returns were eliminated from consideration.  The ground return 

data set was then evaluated using a moving neighborhood window where ground points 

were selected based on their elevation with respect to their neighbors. During this step, 

previously labeled ground points could be removed and new ground points could be 

added to the bare-ground data set. This is a highly labor intensive process that requires 

manual analysis using orthoimagery and human three-dimensional visualization. This 

process was used in both leaf-off and leaf-on post-processing for determination of bare-

ground points (Hodgson, 2005). The RMSE for elevation of LiDAR data points by cover 

type for two different leaf-off studies are shown in Tables 2-1 and 2-2. 

 The overall elevation Root Mean Square Error (RMSE) for leaf-off conditions as 

determined in the study by Hodgson and Bresnahan (2004) was found to be 21.1 cm.  The 

RMSE ranged from 17.2 to 25.9 cm depending upon the land-cover categories. It was 

found that deciduous trees exhibited the highest RMSE at 25.9 cm and high grass and 

pavement the lowest at 18.9 cm. The RMSE for the other land-covers are shown in Table 

2-1. 

Table 2-1. Observed LiDAR Elevation Error (cm) for leaf-off data (Hodgson, et.al. 2004) 
 

Cover Type 

 Pavement Low 
Grass 

High 
Grass 

Brush/Low 
Grass Evergreen Deciduous 

RMSE 
Observed 

LiDAR pts 
18.9 22.5 18.9 23.3 17.2 25.9 
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In this study, the differences in RMSE due to land cover showed both expected 

and unexpected results (Table 2-1). The pavement error was small as expected since the 

LiDAR pulses are not attenuated or blocked by cover. However, the evergreen forest had 

a lower error than pavement. This was partially explained by the nature of the evergreen 

forest in this study. The authors explained that the forest -- composed of mostly Southern 

pines -- reduced ground cover due to the heavy layer of needles on the forest floor. The 

Southern pine canopy was very open to sunlight, and thus LiDAR pulses, since the lower 

branches continually die back as the tree grows. This open canopy and clear forest floor 

allow for two good returns that identify the forest canopy and the bare-ground.  Hodgson 

(2004) used a t-test to determine the statistical significance of the differences in errors 

between the pavement and pine forest. He determined that the error difference between 

the pavement and the pine forest was not statistically significant. He did not provide an 

explanation for the observed lower error in the pine forest than the pavement. 

The low and high grasses showed moderate observed RMSE as well. This RMSE 

is thought to have been caused by the difficulty in labeling bare-ground points due to 

returns from stubble remaining during the winter months when the LiDAR points were 

collected. The multistory structure of brush and deciduous forest even during winter 

Table 2-2. Observed LiDAR Elevation Error at Points and Interpolation Error at Points 
(Elevation in cm) (Hodgson, 2004) 

Cover Type 

 Pavement Low 
Grass 

High 
Grass Scrub/Shrub Pine Deciduous 

RMSE 
Observed 

LiDAR pts 
22.6 14.5 16.3 36.1 27.6 27.3 

RMSE 
Observed in 

TIN 
22.1 25.8 22.2 26.6 17.6 23.5 
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months demonstrated the difficulty in removing multiple returns from the trees and 

understory which may have blocked pulses from reaching the bare-ground (Hodgson 

2004). 

 Using the observed LiDAR measurements summarized in Table 2-2, Hodgson 

(2004) found that pine and deciduous forest cover showed greater RMSE than both the 

low and high grass cover. Pavement actually showed a greater error than the grass cover-

types. Hodgson (2004) stated that the error differences may have resulted from the 

significantly lower point density of scrub-shrub, pine and deciduous cover types. The 

lower density of points resulted from the elimination of returns from the complex 

vegetative structure in these cover-types. In addition to point density, horizontal error was 

identified as another source of error which has been shown to increase with slope. 

Hodgson indicated that these errors could possibly be overcome by using higher pulse 

rates to increase point density and reducing the AGL of the flight to reduce horizontal 

error. The error associated with denser vegetation is consistent with other studies 

including those conducted with leaf-on conditions (Hodgson, 2004).  

 Both of these studies showed that land cover has an impact on the ability of 

LiDAR pulses to reach bare-ground and return this value to the sensor. Hodgson (2004) 

indicated that land cover affects point density which is directly related to the removal of 

points that are not identified as bare-ground points during the labeling process. When 

specifying the parameters (flying height, forward speed, pulse rate, etc.) for LiDAR data 

collection, a primary goal is to ensure that point density is high after the point removal 

process so that bare-ground interpolation is minimized. There should be a high point 

density for the various land covers after vegetation removal if accuracy is to be 
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maintained. As shown in Table 2-3, the post spacing did vary by land cover with the 

lowest density in the evergreen and deciduous forests. This lower density was directly 

related to the interception of pulses by the vegetative structure (canopy, branches, under 

story) (Hodgson 2004). 

 
Table 2-3. Density of LiDAR ground returns by cover type (Hodgson, 2004) 

 
Cover Type 

 Pavement Low grass High grass Brush/Low 
Trees 

Evergreen Deciduous 

Area per 
Observation 
(m2) 

7.67 6.28 5.43 6.28 10.80 8.46 

Regularized 
Post Spacing 
(m) 

2.77 2.51 2.33 2.51 3.28 2.91 

 
 

 
2.4.8 Statistical Significance of Differences in Mean Absolute Errors by Land Cover 
Types  

In his accuracy assessment based on the observed error at LiDAR points that were 

surveyed, Hodgson (2004) conducted an independent samples t-test using the mean 

absolute error to determine if the differences in errors between pairs of land-cover 

categories were statistically significant (Table 2-5).  The significance level for the t-test 

was 0.05. The mean absolute error by land cover category is shown in Table 2-4. 

 
Table 2-4. Observed Absolute LiDAR Elevation Error by cover type (Hodgson, 2004) 

Cover Type 

 Payment Low 
Grass 

High 
Grass 

Brush/Low 
Trees 

Evergreen Deciduous 

N 120 137 98 98 119 82 
Mean 
Absolute 
Error (cm) 

14.9 16.8 15.9 18.9 12.9 20.3 
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Table 2-5. Significance Levels for Difference between Mean Absolute Error by Land 
Cover (Hodgson, 2004) 

 

 Pavement Low Grass High Grass Brush/Low 
Trees 

Evergreen 

Low Grass 0.250     
High Grass 0.495 0.609    
Brush/Low 
Trees 

0.020 0.083 0.019   

Evergreen 0.190 0.022 0.042 0.035  
Deciduous 0.006 0.106 0.028 0.531 0.000 

 
 The significance levels of the differences between the errors for each cover type 

are shown in Table 2-5.  The mean absolute errors that are significantly different at the 

5% level between the cover types are as follows:  pavement and brush/low trees, 

pavement and deciduous forest, low grass and evergreen, high grass and brush/low trees, 

high grass and evergreen, high grass and deciduous, brush/low tress and evergreen, and 

evergreen and deciduous. The brush/low trees are a multi-story cover that causes 

problems when trying to eliminate points that are not considered bare-ground. The 

deciduous category also poses problems when trying to identify the bare-ground since the 

vegetative structure, under story and possible presence of some leaves during the data 

collection period of this study obscured the bare-ground. The high grasses also caused 

problems in bare-ground identification most likely due to the thick stubble that remained 

during senescence making bare-ground identification difficult (Hodgson, 2004). Complex 

vegetative multi-story cover creates a point cloud (points that are returned from different 

elevations) that must be carefully evaluated to identify bare-ground points and remove 

those points that result from returns within the vegetative structure. 
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2.5 Using LiDAR in Fluvial Topography 

 The complexity of a riparian zone (multistory vegetation, thick under story, logs  

and brush, etc.) and the frequent and severe slope changes within the channels of streams 

complicate the determination of LiDAR elevation error at specific points (Figure 2-12).  

 

 

Figure 2-12.  Photo of Sopers Branch just south of the bridge and parking lot 
 

The presence of a very heterogeneous vegetative cover in the riparian zone would tend to 

make bare-ground points difficult to obtain and the steep banks often present in stream 

channels would make elevation error caused by horizontal offsets more severe based on 
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studies by Bowen (2002), Hodgson (2005) and Peng and Shih (2006).  Bowen (2002) 

found that the RMSEz over all terrain types was 43 cm and was largely attributable to 

horizontal error that had an RMSEx, y of 1 to 2 m in areas with variable terrain and large 

topographic relief. Algorithms used to remove non-ground returns from the riparian 

vegetation proved less effective possibly due to the thin linear configuration of the 

riparian zone. If vegetation removal algorithms are less effective, then bare-ground points 

are less dense and less accurate for determining topography (Bowen, 2002).  

 The assessment of river corridor topography is essential for predicting and 

evaluating the effects of discharge and stage on the habitat of aquatic and riparian 

organisms. This topographic assessment is also essential for determining parameters used 

in the hydraulic analysis of streams for predicting geomorphic changes, designing 

highways, and flood and erosion control and water resource management. The data that 

has been used for most studies has been in the 1:24,000 scale providing data at the 

watershed scale. However, for determination of these hydraulic parameters and more 

accurate measurement of topographic changes at the stream reach scale, data is required 

at the 1:5,000 scale. LiDAR is capable of providing topographic details at this scale, 

assuming that bare-ground points are correct (Bowen, 2002). 

 In his study to evaluate the potential use of LiDAR for measuring river corridor 

topography, Bowen (2002) used LiDAR data collected in a study area in northeast Utah 

in October, 1999. This area was located along the Green River and was characterized by 

the presence of different soils, slopes and vegetation.. The primary vegetation was 

sagebrush (Artemisia tridentata), salt cedar (Tamarix ramosissima) and Russian Olive 

(Elaegnus angustifolia). It was not possible to measure the elevations at specific LiDAR 
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point locations. Adjustments made to the x, y locations during data collection and post-

processing made it impossible to know the exact location of the LiDAR points. However, 

the ground survey locations within the study area were selected in an effort to represent 

each soil and terrain type (brush, sand, cobble, slope, etc.). More than one location for 

each terrain type was selected and in situ measurements were collected using a Trimble 

4800 GPS to identify x, y and z coordinates. The error of this GPS system is 

approximated to be ±3 cm (x, y, z). 

 The location for an in situ evaluation was both point comparisons (circular areas 

with the specified terrain type) and transects perpendicular to the main river channel. The 

number of ground points collected at each location varied due to topography, channel 

geometry, topographic complexity and the ability to collect the points. There were eleven 

point locations and seven transects. 

 Bowen (2002) used four statistical error measurements to compare the LiDAR 

elevations with the ground GPS elevations: Root Mean Square Error (RMSE), Absolute 

Mean Error (ABSE), Mean Error (ME) and Maximum Error (MAXE). Each was 

calculated as follows: 

( )
n

gpslidar ZZ
RMSEz

∑ −
=

2

    (Equation 2-9) 
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The deviations of the LiDAR elevations from the GPS elevations taken in the 

field weremeasured by the root mean error (RMSEz) and the absolute mean error 

(ABSEz). Any overestimation or underestimation was counted as errors in these 

measures. The overall bias of the LiDAR data to overestimate or underestimate 

elevations from the ground GPS data is measured in the mean error. The largest deviation 

of the LiDAR elevations to the ground GPS elevations are measured in the maximum 

error. 

 In this study, Bowen (2002) block corrected any systematic bias that may have 

been caused by setup, calibration, or measurement errors in either the LiDAR or ground 

GPS data by subtracting the mean error from the original LiDAR dataset. The mean error 

was -44 cm. The Komolgorov-Smirnov test was used to determine if the error 

distributions were normal by terrain type. A Kruskal-Wallis rank test was used to test the 

hypothesis that error magnitude was the same for different terrain types (Bowen, 2002). 

 The results using the original data prior to block correcting showed that the 

elevation error (RMSEz) was larger than the advertised specifications of 15 to 20 cm. 

RMSEz was significantly above these values. The block corrected data was still much 

higher than the advertised specifications but the error was reduced (Table 2-6). 

 

Table 2-6. Elevation Errors between LiDAR data and ground data 

 Error Statistic Original Data (cm) Block Corrected Data (cm) 

RMSE 62 43 

ABSE 56 22 

ME -44 0 

MAXE 191 233 
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 The large maximum error compared to the mean error indicated the presence of 

large outliers in the LiDAR data. Error values for the the cobble terrain type were 

normally distributed (p>0.05). Error values for brush, sand, and slope terrain were not 

normally distributed (p<0.05). Errors differed across terrain type with the largest RMSEz 

for the slope terrain type (RMSEz = 111 cm). This error was followed by sand  

( RMSEz = 53 cm), cobble (RMSEz = 19 cm) and brush (RMSEz = 9 cm). The largest 

range of errors was in the slope terrain type and the largest number of outliers was found 

in the sand terrain. Transect measurements near the active channel indicated the greatest 

LiDAR overestimation where there were steep bank slopes and dense riparian vegetation. 

In more open terrain, cross sections showed lower LiDAR elevations than GPS 

measurements while some showed only slight variations in the elevation and profile 

shape (Bowen, 2002). 

 Block correction was found to be an acceptable method of reducing the effects of 

systematic bias caused by setup and calibration errors in LiDAR and ground GPS 

systems, errors found in the ground GPS network, and errors introduced during data 

processing. The mean error (bias) was used to block correct the LiDAR data resulting in a 

RMSEz that was 30 percent less than if not corrected. Bowen (2002) indicated that this 

correction stressed the importance of collecting at least a minimal number of ground 

survey points to make the block corrections (Bowen 2002). 

 

2.6 Using LiDAR to Identify First Order Stream Channels 

In other studies, LiDAR is being accepted as a more accurate alternative to high 

resolution DEMs and to National Elevation Dataset (NED) 7.5 minute quadrangle maps 
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developed by the United States Geological Survey (USGS).  Comparisons of several 

elevation data sets and their respective errors were prepared by the Maryland Department 

of Natural Resources in part to find a better method for identifying first order streams in 

the Piedmont region. The elevation errors for each of the three methods are shown in 

Table 2-7 (Smith, 2006). 

 
     Table 2-7. Vertical and Horizontal Accuracy of Three Data Sources (Smith, 2006) 

Source data Map Scale Vertical 
Accuracy 
(RMSEz) 

Horizontal 
Accuracy 
(RMSEx,y) 

DEM Size 

LiDAR 1:2,400 0.185 cm 2 m 2 m 
Photogrammetric 
1.5 m contours 

1:2,400 0.75 m 2 m 5 m 

NED 7.5 minute 
quads 6 m 
elevation 
contours 

1:24,000 5 m 12 m 30 m 

  

 

2.7 Use of LiDAR to Determine Erosional Changes of Bedrock Channels 

 In their study to determine the erosion of a bedrock channel of the Holtwood 

Gorge along the Susquehanna River over time, Ruesser and Bierman (2007) used LiDAR 

data to create 1 m Digital Elevation Models (DEMs) over a specific geologic period. 

These fine resolution DEMs were used to develop a three-dimensional image of the 

channel geometry. The image could then be used to infer the volume of material that was 

removed from the bedrock during incision events. The determination of the volume was 

difficult without LiDAR because of the complexities of using transect data and 

interpolating along a 500 meter reach. The DEMs were used to make determinations of 

erosional changes during the late Pleistocene period.  
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 The LiDAR data required significant calibration to adjust for differences between 

the actual GPS points and the underlying grid cells that resulted from LiDAR data. The 

differences between the GPS elevations and the underlying DEMs  at the two control 

points were 33.39 m and 33.42 m. In order to ensure an accurate comparison of the GPS 

ground point elevations and the LiDAR-derived DEMs, the elevation of the DEMs was 

raised by an average of the two differences (33.40 m).  

 In contrast to previous studies, the filtered data (data with only bare-ground 

points) showed greater error than unfiltered data. The RMSEz and the Δz (Δz = LiDAR – 

GPS) for the filtered data were 3.26 m and 2.20 m, respectively, while the unfiltered 

RMSEz and Δz were 1.4 m and 0.85 m. The greater error of the filtered data is thought to 

be the result of the algorithms used to filter the data and the very steep slopes along the 

terraces of the channels in this study area. The algorithms used to remove points not 

thought to be bare-ground are designed to look at vegetative cover as the source of the 

point cloud and not consider the elevation due to rock outcroppings.  

 The ground conditions in the bedrock channels of the Holtwood Gorge are 

markedly different than the usual riparian zones reviewed by Hodgson (2005) and others. 

In their studies, Hodgson (2004, 2005), Peng (2006) and others collected LiDAR and 

ground points in vegetated riparian zones with dense brush and trees. Algorithms 

designed to remove the vegetation in order to reveal bare-ground do not distinguish 

between rock outcroppings, terrace remnants (boulders) and other major variations in 

surface elevation. The result is removal of surface features that should have been 

identified as bare-ground but were identified as vegetation.  This is a very important point 

when evaluating LiDAR datasets. The bare-ground must be carefully compared to 
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orthoimages and include field data collection to verify the actual surface, especially on 

surfaces with low vegetation and rocky surface features (Reusser 2007). 
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Chapter 3. Methodology 

 

Two comparisons are performed in this study: 

1. LiDAR data collected in 2006 to ground-surveyed data collected in 2006 

(evaluation of accuracy). 

2. LiDAR data collected in 2006 to LiDAR data collected in 2002 (change 

detection). 

 This chapter describes the location and characteristics of the study site, the data 

used, and the Geographnical Information Systems (GIS) data analysis tools applied. 

Interpolation and statistical analysis methods are summarized. Because many of the 

analytical steps involved explanatory maps of intermediate results, details of these steps 

are interleaved with intermediate and final results in Chapter 4.  

 

3.1 Study Area 

The study area is located in the Sopers Branch watershed north of Washington, D.C. , 

in the Clarksburg Special Protection Area (CSPA) in Montgomery County, Maryland. 

Special Protection Areas (SPAs) are locations within Montgomery County, Maryland, 

that have been identified as having existing high quality or unusually sensitive water 

resources or other environmental features and where proposed land uses would threaten 

these resources or features in the absence of special water quality protection measures 

that would require controls as the land use changes. For example, specific Best 

Management Practices (BMPs) would be required as land use changes from rural 

agricultural, forest or grasslands to suburban and urban land uses. In Montgomery 
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County, there are four SPAs: Upper Rock Creek, Upper Paint Branch, Piney Branch, 

and Clarksburg.  SPAs are designated by the County Council, but can be proposed by 

concerned individuals from the public and government agencies (Special Protection 

Areas, 2008). 

The CSPA is the focus of a collaborative research effort by the United States 

Environmental Protection Agency (USEPA) Environmental Photographic Interpretation 

Center (EPIC) and the Montgomery County Department of Environmental Protection 

(DEP). The USEPA EPIC research has been led by Dr. Taylor Jarnagin. EPIC has studied 

the impacts of urbanization within the CSPA watershed to determine the correlation 

between the impacts of the development and the mitigation of local BMPs on 

hydrological, biological, and chemical parameters of water resources within the CSPA. 

EPIC has two primary research objectives: 

1) Develop high resolution watershed mapping, aerial photography, satellite 

imagery, GIS mapping and processing, BMP placement and development 

mapping over time 

2) Monitor biological and physical stream parameters such as chemical and 

biological stream monitoring, streamflow and precipitation gauging and weather 

parameters over time (Jarnagin, 2006) 

The Montgomery County Department of Environmental Protection (DEP) has been 

monitoring area streams since 1996 to determine changes in water quality and biology 

and to evaluate best management practices (BMPs) to determine if they have successfully 
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limited the impact of development on water resources. The lead researcher for 

Montgomery County DEP is Keith VanNess. 

Within the CSPA, the Area of Interest (AOI) for the present study is 0.93 acres, 

with its centroid at 1226352 Easting and 585888.4 Northing in the NAD 1983 State Plane 

Maryland FIPS 1900 Feet projection. Sopers Run is a small stream flowing through the 

AOI bordered by a riparian zone consisting of a deciduous forest with a dense brush and 

shrub understory. Two small drainage ditches enter the stream, one from the east bank 

and one from the west bank. A bridge crosses the stream at the north side of the AOI and 

a road runs along the west bank of the stream to an asphalt parking lot (Figure 3-1). 

 

3.2 LiDAR Data Collection 

The LiDAR data sets used in this study were provided by the Canaan Valley 

Institute, which was commissioned by the USGS/USEPA/Montgomery County DEP 

collaborators. The two LiDAR datasets were collected during overflights of the CSPA in 

2002 and 2006. 
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Figure 3-1. CSPA showing the Area of Interest (inside red rectangle) with the parking lot, 
stream and surrounding riparian zone. (Image source: Canaan Valley Institute, 2006) 
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 3.2.1 LiDAR 2002 General Specifications 

The 2002 LiDAR data used in this study were collected in December, 2002 during 

leaf-off conditions with clear skies in the watershed that includes the Clarksburg Special 

Protection Area. The flight covered an area of 8,584 acres including the CSPA. The 

Clarksburg overflight area was divided into fifty tiles with various posting densities 

dependent upon flight parameters and conditions. The specified posting interval was 0.8 

meters (2.62 feet). The tile used for this study has an area of 11,015,658 square feet and 

is identified as tile 48 (Figure 3-2). 

The LiDAR system was an Optech-ALTM-2025 that emitted pulses at a rate of 28 

KHz. The flight altitude above ground (AGL) was 2500 feet. The laser wavelength was 

1064 nm (near infrared). The survey utilized Global Positioning System (GPS), Laser 

Rangefinder (LiDAR) and Inertial Measurement Unit (IMU) technologies to develop a 

digital terrain model. The LiDAR data was post-processed to identify first returns and last 

returns. The last return was processed to identify bare-ground (Airborne 1, 2002). 

 

3.2.2 LiDAR 2002 Calibration 

A pre-flight calibration was conducted on December 12, 2002 to ensure both 

horizontal and vertical accuracy. The calibration was conducted by flying sixteen lines 

with known positions and elevations to determine any bias in first and last returns. The 

first returns were found to have a -11 cm bias and the last returns a -7 cm bias against 

known ground controls. Pitch and roll were also adjusted and calibration values used in 

the flight are shown in Table 3-1. 
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Figure 3-2. Clarksburg Special Protection Area showing tiles where LiDAR 2002 data 
were collected. Tile 48 is the location of the Area of Interest for this study. 
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Table 3-1. Final calibration values after adjustments were made from the calibration 
flight (Airborne 1, 2002). 

 
 Original Value from 

Optech 
New Value 12/11/02 

Pitch -0.004 -0.004 

Roll -0.001 -0.0124 

Offset 0.00 0.00 

Scale 0.9923 0.9916 

TIM1 first pulse -0.334 -0.404 

TIM2 last pulse -0.243 -0.353 

 

3.2.3 LiDAR 2006 General Specifications 

The 2006 LiDAR data used in this study was collected on March 18, 2006 during 

leaf-off conditions with no snow cover and clear skies in the watershed that includes the 

Clarksburg Special Protection Area.  The flight covered the entire area of the CSPA 

which was approximately 50 square kilometers. The CSPA was divided into thirty tiles 

with various posting densities dependent upon flight parameters and conditions.  

The LiDAR system was an Optech-ALTM-3100 that emitted pulses at a rate of 

64.4 KHz. The flight altitude above ground (AGL) was 2500 feet. The laser wavelength 

was 1064 nm (near infrared). The survey utilized Global Positioning System (GPS), 

Laser Rangefinder (LiDAR) and Inertial Measurement Unit (IMU) technologies to 

develop a digital terrain model. The LiDAR data was post-processed to identify first 

returns and last returns. The last return was processed to identify bare-ground. 

The tile used for this study has an area of 339,351 square meters and is identified 

as tile 236NW14 (Figure 3-3). There was a total of 4,158,042 LiDAR points collected for  
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Figure 3-3. Clarksburg Special Protection Area showing tiles where LiDAR 2006 data 
were collected. Tile 236NW14 is the location of the Area of Interest for this study. 
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Figure 3-4. CSPA showing LiDAR 2006 point density (1.17 per square meter) within the 
AOI 
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this tile with a posting density of 12.25 points per square meter.  The total number of 

points within this tile identified as bare-earth was 397,317 with a posting density of 1.17 

points per square meter (Figure 3-4) (Canaan Valley Institute, 2006).  

 

3.2.4 LiDAR 2006 Calibration 

A pre-flight calibration was conducted to ensure vertical and horizontal accuracy. 

The calibration was conducted by flying multiple strips along an airport runway and over 

a building with 5,000 pre-surveyed GPS ground points. This calibration was found to 

meet the vendor specifications for both horizontal and vertical accuracy as follows: 

1. Horizontal accuracy: 1/2000 × altitude with 1 σ 
2. Vertical accuracy: 

a. <15cm at 1200 m with 1 σ 
b. <25cm at 2000 m with 1 σ  
c. <30 cm at 3000 m with 1 σ 
 

3.2.5 LiDAR bare earth processing 

Each LiDAR pulse is returned to the aerial sensor with as many as five returns, 

dependent upon the specific surface features (trees, shrubs, grass, concrete, etc.) that the 

pulse contacts. The LiDAR last returns were identified as bare-ground during post-

processing by the data provider, Canaan Valley Institute. These LiDAR points covered 

the entire CSPA in thirty tiles as specified by Montgomery County DEP and USEPA.  

 
3.3. Ground Survey Data Collection 

The AOI was surveyed on March 22, 2006, using a total station creating a dataset 

of 604 points with x, y, and z coordinates. The field surveying and surveying data 

processing were provided by personnel from Johnson, Mirmiran and Thompson 

Engineers (JMT). These surveyed points were intended as the “ground truth” to evaluate 
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the accuracy of surface features derived from the LiDAR points. These bare-ground 

points are important for identifying surface topography and fluvial geomorphic change, 

as well as, determining error within the datasets. Errors in the ground survey — and its 

ultimate utility as “ground truth” — are discussed in Chapter 5. 

 

3.4 Selection of Points from LiDAR Data 

The LiDAR datasets for 2002 and 2006 include hundreds of thousands of points 

for each tile within the CSPA. This data are in an (x,y,z) format that include the 

longitude, latitude and elevation at the point. Since the Area of Interest is much smaller 

than the tile, a subset of the LiDAR datasets was selected using Microsoft ACCESS 

database management software to reduce the points to those that are located within the 

AOI for analysis. The method used to select only those LiDAR points within the AOI is 

as follows: 

1. Create a Microsoft ACCESS database. 
2. Create a new table. 
3. Import a table (LiDAR text file) with the delimited fields into the table. 
4. Create a SQL query to select those records that are within the AOI. Use the 

North and South extents of the AOI for the Y limits and the East and West 
boundaries for the X limits in the “where” clause of the SQL statement, as 
follows: 

 
To select LiDAR 2006 points within the AOI: 
 
 SELECT * FROM Tile48 
 WHERE (Y > 585778.375989 and Y < 585978.375989  
 and X >1226239.703921 and X < 1226464.703921); 
 
To select LiDAR 2002 points within the AOI: 
 
 SELECT * FROM Tile50 
 WHERE (Y > 585778.375989 and Y < 585978.375989  
 and X >1226239.703921 and X < 1226464.703921); 
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5. Run the query and export the results to a delimited text file with the X, Y, Z 
and I column headings. 

6. The text file of selected points is now ready for import to the Geographical 
Information System (GIS) software (see below).  

 
The number of LiDAR points actually used to assess the bare-ground surface 

within the AOI for this study was 2,137 (for 2006) and 1,149 (for 2002). 

 

3.5 Geographical Information System (GIS) 

The Geographical Information System (GIS) software environment used in this 

study is ESRI’s ArcGIS 9.2 (ESRI 2008). A GIS uses different data types to represent 

different kinds of information. The steps in processing and analyzing the LiDAR and 

Ground Survey data required several of these data types, as well as conversions between 

different data types. The basic types are described here, and further details are given 

together with specific steps and intermediate results in this Chapter and in Chapter 4. 

3.5.1 Data types in a GIS 

The ArcGIS data types used in this study include the following: 

1. Tabular data: Geographic objects that are used in a map to represent features on 

the surface are stored and managed in tables. These tables contain information 

that is the basis of the geographic features and allow the information to be 

visualized, queried, and analyzed using tools within the ArcGIS software. All 

tables contain rows with the same columns in a specific table. Each colun stores a 

specific data type (number, date or character) that is used to represent a 

characteristic of the feature. For example, LiDAR points contain four fields that 

are used to help identify the location, elevation and intensity of each point. The 

columns are given names such as X, Y, Z and I. 
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2. Vector/point data: Vector is a data structure, used to store spatial data. Vector 

data is comprised of lines or arcs, defined by beginning and end points, which 

meet at nodes. Vector features are frequently used geographic data types that are 

well-suited for such features as boundaries, road center lines, breaklines, stream 

channel locations and generally any features that can be represented by lines, 

polygons or points. A feature is simply an object that stores its geographic 

representation, which is typically a point, line, or polygon, as one of its properties 

(or fields) in the row (ESRI 2008). Examples in this study include the Area of 

Interest and boundary polygon used to specify targeted areas. 

3. Shapefile data: Shapefiles are a simple format for storing the geometric location 

and attribute information of geographic features. Geographic features in a 

shapefile can be represented by points, lines, or polygons (areas). Examples in 

this study are the LiDAR points that are saved as shapefiles and the polygons that 

are used to mask areas for use in calculations. 

4. Raster data: Raster data is represented as a series of pixels represented in a grid. 

The actual digital imagery can be represented as a series of pixels arranged in a 

grid. A combination of these pixels will create an image that can represent various 

measurements at a given location on the surface. For example, in this study, 

rasters are used to represent the elevation across the surface with each pixel 

representing the elevation within the area covered by that pixel. These grids can 

represent temperature, slope and other criteria. 

          Raster data type consists of rows and columns of cells, with each cell storing     

 a single value. Raster data can be images (raster images) with each pixel (or cell) 
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 containing a color value. Additional values recorded for each cell may be a 

 discrete value, such as land use, a continuous value, such as temperature, or a null 

 value if no data is available. While a raster cell stores a single value, it can be 

 extended by using raster. 

3.5.2 Importing LiDAR and Ground Surveyed Points into ArcMap 9.2 

The text files containing (x,y,z) data for LiDAR 2006, LiDAR 2002, and Ground 

Survey were imported into ArcMap as tabular data by using Tools>Add X, Y data. The 

data were then added as “Event Layers” and exported as Point Shapefiles to be added as 

Shapefile Layers for further visualization and analysis. Within ArcMap 9.2, the LiDAR 

datasets were further subsetted by the polygon defined by the Ground Surveyed points. 

 

3.6 Interpolation 

To obtain a map of elevation, it is necessary to interpolate between the irregularly 

spaced (x,y) points of the measured data, whether LiDAR or Ground Surveyed. . 

Interpolation is defined as the estimation of values (elevation in this study) at locations 

between actual points with known values. Extending the estimations some distance 

beyond existing points creates an extrapolated surface. Two interpolation methods are 

used in this study: Triangulated Irregular Network (TIN) and Optimal Interpolation 

(Kriging). Tools in ArcGIS 9.2 to implement these methods are introduced below. 

 

3.6.1 Triangulated Irregular Network (TIN) 

It is fairly straightforward to produce a TIN (see Section 2.4.6) from point data in 

a GIS. The TIN creates edges and planes connecting adjacent points. The TIN surfaces 
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were created with the following ArcMap 9.2 toolset: ArcToolBox,>3D Analyst>TIN 

creation and TIN Edit using each point dataset (LiDAR 2006 or ground-surveyed points) 

to specify the nodes of each triangle created by Delaunay triangulation. 

The graphical representation of a TIN provides an interpolated view of the surface 

that is visually appealing, showing the elevation, slope and aspect of the triangular planes 

formed by the Delaunay Method. How accurately these planes describe the actual terrain 

depends on the location of the measured points. In a ground survey, the survey team can 

visually identify key landscape features that will improve accuracy and interpolation. For 

example, identifying breaklines along the top and bottom of a stream bank can improve 

the determination of the slope, improving accuracy, if ground-surveyed points are 

collected there. The use of breaklines and the identification of critical points such as 

those at the bottom of the bank will also improve the accuracy of the elevations within 

the plane formed by the connection of these points. The slope, elevation and aspect of the 

planes formed by the Delaunay triangulation algorithm will be more representative of the 

actual surface. While ground-surveyed points can be targeted, LiDAR points will fall at 

random locations that will not clearly identify important breaklines. The location of the 

LiDAR points occurs randomly since the points are not specifically positioned within the 

landscape but fall as the laser swath moves across the terrain. These LiDAR points could 

actually fall some distance from the top of bank. If these points are included with other 

points that fell within the stream bed away from the bottom of the bank then interpolation 

between these points will create an edge and plane with a slope that does not accurately 

reflect the actual slope. The error in the slope affects the elevation of points in the plane 
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which is determined by joining the edges that were formed by connecting these points 

(Fig. 3-5). 

A GIS comparison of two TINs gives a qualitative measure of elevation 

differences; it can show regions where one data set lies above or below the other. 

However, this information is not sufficient for a quantitative analysis of these differences. 

It was necessary to convert the TIN vector data, consisting of nodes and edges, to a data 

format that provides elevation values at every point on a regular grid. Differences in 

elevation were quantified by converting the LiDAR and ground survey TINs to rasters. 

The value associated with each pixel is the interpolated elevation of the surface at that 

pixel, as determined from the respective TIN. 

The TINs were converted to rasters using ArcMap 9.2 toolsets as follows: 

ArcToolBox >3D Analyst>Conversion>From TIN, and TIN to Raster. The input TINs 

were the LiDAR or Ground-Surveyed TIN, the output data type was “float,” appropriate 

 
Ground-surveyed points and 
interpolated edge from top of 
bank to bottom of bank 

LiDAR points and interpolated 
edge from top of bank to bed of 
stream. 

 
 
Figure 3-5. Stream channel cross-section showing the differences in slope interpolation 
between a ground-survey using a visually-identified breakline point at the top of bank and a 
surveyed point at the bottom of bank and randomly-located LiDAR points 
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for continuously-valued data, the method was “linear,” which calculates cell values by 

linear interpolation of the TIN nodes and edges, and the sampling distance was a cell size 

of 0.5 feet. 

The exact alignment of the cells in each grid is necessary for accurate processing. 

The lower left corner of each cell must align for all grids that need to be compared. This 

is accomplished by setting the Environment Settings as follows: Environment>General 

Settings>Extent>Same as any other grid used for comparison. In this analysis, the raster 

converted from the Ground-Surveyed TIN was assigned the same extent as the raster 

previously converted from the LiDAR TIN. 

 

3.6.2 Optimal Interpolation (Kriging) 

Because interpolated data are used to make judgments about locations between surveyed 

points, the error due to interpolation must be evaluated. The difference between the 

rasterized TINS does not provide estimates of uncertainty. This is because the automated 

TIN interpolation technique in ArcMap 9.2 does not generate error bars. An alternative is 

to apply Optimal Interpolation, or Kriging. Kriging produces both a continuous 

interpolated surface (prediction map) and estimates of uncertainty in that surface 

(standard error map). With this information, the analyst can account for uncertainty in 

interpolated quantities and in calculations (such as differences) based on them. 

The use of Kriging allows for the creation of interpolated continuous surfaces 

together with estimated uncertainty in those surfaces, based on geospatial statistics.  

Kriging procedures are available in the Geostatistical Analyst tools in ArcGIS 9.2. 

Kriging uses autocorrelation (the statistical relationship among measured points) to create 
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a continuous surface that predicts the elevation values where no points exist. The points 

closest to the interpolation location have a greater weight in the prediction algorithm, as 

would be expected. However, the weights are based not only on the distance between the 

measured points and the prediction location but also on the overall spatial arrangement 

among the measured points. To use the spatial arrangement in the weights, the spatial 

autocorrelation function must be quantified (ESRI, 2007). 

 Kriged prediction and standard error maps from the LiDAR and Ground-Surveyed 

points were generated using the ArcMap tool, Geostatistical Wizard, Ordinary Kriging, 

Prediction Map. (An alternative would have been to apply methods proposed by Hodgson 

[2004] and Peng [2006] to estimate uncertainty in interpolated elevations; however, the 

automated Kriging tool was judged to be more efficient for this study’s purposes.) 

The Kriged prediction maps (shapefile features) were created using the LiDAR 

and ground-surveyed points and Geostatistical Analyst in ArcMap 9.2. To use this 

toolset, the analyst must choose one of several possible variogram functions (exponential, 

spherical, circular …). The tool also provides the option of fitting the surface with a 

polynomial of a specified order before analyzing the autocorrelation; this step helps to 

address the problem of non-stationarity in the spatial data. The analyst selects a specific 

semivariogram model (including a regression step, a particular semivariogram shape, and 

the choice of nugget or no nugget, whether or not to include anisotropy). The 

Geostatistical Analyst automatically fits the selected variogram to the data, and provides 

goodness of fit tools so the analyst can select the best of the candidate models. 

The Kriged prediction standard error maps (shapefile features) are created using 

the LiDAR and ground-surveyed points. The ArcMap tool used to produce Ordinary 
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Kriged Prediction Standard error Maps from the LiDAR points and ground-surveyed 

points is Geostatistical Wizard> Ordinary Kriging> Prediction Standard error Map.   

 

3.6.3 Creating Rasters from the Kriged Prediction and Standard error Maps 

The ArcMap kriging routines produce results in a “Geostatistical Layer” format. 

The quantitative comparison of the LiDAR-derived and ground survey-derived Kriged 

Prediction Maps required that each prediction map be converted to a raster so that 

analysis could be performed using ArcMap’s Raster math.  

To convert a Geostatistical Analyst Output Layer (Kriged prediction map or 

Kriged prediction standard error map) to a raster, the ArcMap 9.2 toolset used is 

ArcToolBox>Geostatistical Analyst>GA Layer to Grid. The parameters were set as 

follows: 

1. Input Geostatistical Layer: The Kriged prediction map or Kriged prediction 
standard error map for the LiDAR and Ground points 

2. Output Surface Grid: The output raster for each prediction map or prediction 
standard error map 

3. Output Cell Size: Set to 0.5 feet or use an existing grid 
4. # of points in the cell (horizontal): set to 1 for these grids 
5. # of points in the cell (vertical): set to 1 for these grids 
6. Environments>General Settings>Extent>Same as other grids that are to be 

compared. This aligns cells in the various grids so that raster math is accurate 
on a cell by cell basis. 

 

3.7 Comparing Elevations Based on LiDAR 2006 and Ground Surveyed Data 
 

The 2006 LiDAR and Total Station Ground Survey data were collected within 4 days of 

each other. The Total Station data are used as ground truth to evaluate the accuracy of the 

LiDAR data in the vicinity of Sopers Branch. This section describes the analysis steps in 

this comparison. 
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3.7.1 Correcting for Systematic Error  

The LiDAR data points have a difference in elevation and position from the 

Ground-Surveyed data in most cases. The differences may include both a random and a 

systematic component. Before proceeding to analyze random errors, the presence of 

systematic error was detected and corrected by analyzing the elevation data for the 

asphalt parking lot, where both the ground-surveyed and LiDAR data would be expected 

to be most accurate. 

The parking lot is a relatively flat, asphalt-covered surface with no overlying 

vegetation or other objects to interfere with the pulses and returns (Fig. 3-6). Therefore, 

in the absence of any systematic error, the LiDAR and ground elevations for the parking 

lot would be expected to agree. A consistent difference in elevations over this surface 

 
 

 
 
Figure 3-6. Parking Lot within the AOI at Soper’s Run with the March 22, 2006 
Survey team. (Photo: K. Brubaker)
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would be interpreted as systematic error that affects the entire LiDAR scene. 

The difference between the LiDAR 2006 raster and the Ground-Surveyed raster 

over the area identified as the parking lot was determined using ArcMap 9.2 Raster Math 

with the following toolset: ArcToolbox>3D Analyst>Raster Math>Minus. The input 

rasters were the LiDAR 2006 raster and the ground point raster. All grid cells outside the 

parking lot were masked out using a binary raster mask. These steps resulted in a raster 

map of differences (LiDAR 2006 – Ground Surveyed) over the parking lot, with all other 

grid cells set to the “No Data” value. 

The mean of the parking lot difference raster was found by examining the 

ArcMap statistical properties of the parking lot difference raster. (In the ArcMap 9.2 

Table of Contents, right click on the parking lot difference raster and the General tab to 

see the values of the raster properties.)  

The mean difference between the LiDAR and ground parking lot rasters was used 

to correct the elevations in the LiDAR raster covering the entire ground point polygon. 

This adjustment was made by using ArcMap 9.2 Raster Math to subtract the mean of the 

parking lot difference raster from the LiDAR-derived raster covering the ground point 

polygon. The adjusted LiDAR-derived raster was created by using ArcMap 9.2 with the 

following toolset: ArcToolbox,>3D Analyst>Raster Math>and Minus. The input values 

were  the LiDAR 2006 raster that had been masked to fit the ground point polygon, and a 

constant value equal to the mean parking lot difference 

The difference between the adjusted LiDAR-derived raster and the ground-

surveyed raster covering the ground point polygon is the first step in determining the 

accuracy of LiDAR in measuring surface topography. The difference raster indicates the 
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pixel-by-pixel difference between the adjusted interpolated LiDAR and the interpolated 

ground-surveyed elevation. The difference raster was created by using ArcMap 9.2 with 

the following ArcMap 9.2  toolset: ArcToolbox,>3D Analyst>Raster Math>and Minus. 

The first input raster is the adjusted LiDAR 2006 raster, the second input raster is the 

Ground Surveyed raster. The second input (Ground Surveyed) is subtracted from the first 

(LiDAR 2006). 

The systematic error correction using the mean parking lot difference was applied 

to both TIN-based and Kriging-based difference analysis. 

 

3.7.2 Statistical Hypothesis Test for Elevation Differences 

The LiDAR 2006 and Ground Surveyed point data were collected nearly 

simultaneously (Mar. 18 and Mar. 22, 2006, respectively). The difference between the 

interpolated LiDAR surface elevations, adjusted for systematic error, and the interpolated 

ground-surveyed surface elevations should be zero. This zero difference would indicate 

that the LiDAR elevations, after being adjusted for systematic error, are the same as the 

elevations determined by the Total Station ground survey. However, if the difference 

between the LiDAR and ground-survey rasters is different from zero, then it must be 

determined if these differences are due to random error introduced by the measurement 

system or by the interpolation; that is, whether the differences are statistically significant. 

Using the Kriged prediction standard error rasters as determined from the LiDAR and 

Ground-Surveyed points, it is possible to perform a quantitative hypothesis test on the 

differences on a grid cell basis. 
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The null hypothesis can be stated as: the difference between LiDAR and ground-

surveyed elevations at a given location (grid cell) is zero (H0: d = 0). A Z-test can be used 

to test this null hypothesis. The Z-test is used to test the null hypothesis because ArcMap 

9.2 Geostatistical Analyst is used to determine the standard error of the difference of the 

elevations at each cell within the interpolated surfaces, using the kriging equations and 

the specified semivariogram. The z-statistic is calculated cell by cell using this standard 

error map. The t-test was not used since the standard error is not calculated from a sample 

and the degrees of freedom are not known for each cell. The hypothesis can be stated as 

follows: 

H0: d = 0 

HA: d ≠ 0 

where, 

d = the difference between the LiDAR and ground-surveyed    

elevations at a particular cell or pixel of the raster. 

The calculation of the z-test statistic is shown in Eq. 3-1. 

SE
dz 0−=                    (Equation 3-1) 

where, 

 0 = the hypothesized difference (0 for all raster cells) 

SE = the standard error of the difference between the adjusted 

LiDAR and ground-surveyed surfaces for that cell or pixel 

(Equation 3-2, below) 
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The null hypothesis is rejected if Z lies in the region of rejection, defined for this 

two-tailed test by 

 Z > Zcritical 

where Zcritical is defined by the selected level of significance, α. This study applies α 

equal to 0.05 and Zcritical = 1.96, consistent with the common understanding of error bars 

as plus or minus approximately two standard errors. 

The Kriged standard error rasters created using the Geostatistical Analyst and 

conversion process described above can be used to calculate the standard error of the 

difference between the LiDAR and ground-surveyed surfaces: 

SE2
diff,interp = SE2

LiDAR,interp + SE2
Ground,interp                 (Equation 3-2) 

Each standard error raster (LiDAR and ground-surveyed) is squared using ArcMap 9.2, 

ArcToolBox>Spatial Analyst Tools>Math>Square. The resulting rasters are added using 

ArcMap 9.2, ArcToolBox>Spatial Analyst Tools>Math>Plus. This raster math results in 

a raster of the standard error of the difference squared (SE2
diff). Taking the square root of 

this raster will create a raster of standard error values for the difference of the adjusted 

LiDAR and ground-surveyed rasters (SEdiff); this can be calculated with the following 

toolset: ArcMap 9.2, ArcToolBox>Spatial Analyst Tools>Math>Square Root. The 

standard error of the difference (SEdiff) raster is used to calculate a raster of Z-test 

statistics using equation 3-1. 

The z-statistic raster is calculated by using the following ArcMap toolset: 

ArcToolBox>Spatial Analyst Tools>Math>Divide. Input raster 1 is the raster of the 

difference between the adjusted Kriged Prediction LiDAR and the Kriged Prediction 

Ground point raster. The adjusted Kriged Prediction LiDAR raster is the Kriged Lidar 
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raster minus the adjustment from the mean of the parking lot difference of the Kriged 

Prediction LiDAR raster and ground-surveyed Kriged Prediction raster. Input raster 2 is 

the raster of the standard error values as determined by taking the square root of equation 

3-2 but using the raster math procedures described above. The resulting raster has a z-

statistic value for each cell. The cells can then be classified based on the upper and lower 

bounds of the region of acceptance. 

The Z-test statistic raster provides a geospatial analysis of the locations within the 

difference raster (LiDAR – ground) where the differences are significantly different from 

zero at a level of significance of 0.05. Following equation 3-1, the adjusted difference 

raster is divided by the standard error raster to create a raster of values where each cell 

within the raster has a value for the Z-statistic at that cell. Since the level of significance 

is 0.05, the acceptance region must fall within the lower and upper bounds of -1.96 and 

1.96, respectively. That is -1.96 < z < 1.96. Where values of the z-statistic fall within the 

region of acceptance, the differences are considered not to be significantly different from 

zero. Any cells where the z-statistic falls outside this range are considered to be 

significantly different from zero – that is, we are reasonably certain that the difference is 

real, and not an artifact of errors introduced by interpolation. 

 

3.7.3 Inferring LiDAR system error by comparing LiDAR and Ground 

It is important to note that the standard errors calculated for the LiDAR and 

Ground Survey cell elevations in the previous section represent only the uncertainty in 

measurement introduced by the interpolation procedure – in other words, only the fourth 

term under the radical in Equation 2-6. Imposing the assumption that the differences 

  
71 



should be zero in all cells, we can then attribute the remaining differences to LiDAR 

system error, ground survey error, and slope error. 

LiDAR system error can be considered independently of interpolation and 

ground-survey error. LiDAR system error results from measurement error in the 

instrumentation, which can include error in the horizontal and vertical positioning of the 

LiDAR points. This error due to the data collection system is described in Section 2.4. 

The pitch, yaw and roll of the aircraft, slope of the surface and GPS and IMU error are 

included in this measurement error. The other source of LiDAR system error is incorrect 

labeling of points. Since LiDAR pulses often have four or five returns for each pulse, it is 

necessary to identify if the last return is bare ground. If these bare-ground points are 

mislabeled, then additional error is included in the LiDAR system error. 

If the LiDAR system error and the ground-surveyed error were accounted for in 

the difference between the Kriged prediction standard error rasters as determined from 

the LiDAR and ground-surveyed points, then the z-test statistic would indicate that the 

null hypothesis would be accepted for all cells within the ground point polygon. There 

would be no cells outside of the region of acceptance since, the difference in the 

elevations of the LiDAR and ground-surveyed cells would be zero.  

 The critical standard error value for a given cell – that is, the value of SE required 

to cause acceptance of the null hypothesis (the difference between the LiDAR 2006 and 

ground-surveyed surfaces are equal to zero for that cell) – can be determined as follows:  

Zcritical = |elevation LiDAR – elevation ground|             (Equation 3-3) 
                                       SEcritical 
  

SEcritical = |elevation LiDAR – elevation ground|           (Equation 3-4) 
                                       Zcritical 
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 The value of the Z-statistic which separates the region of acceptance from the 

region of rejection for a specified level of significance is known as the Z critical value. In 

this study, the level of significance is 0.05, which has a Z critical value of 1.96. 

Therefore, using a Z critical value of 1.96, it is possible to determine the critical standard 

error (SEcritical) from Equation 3-4 that would be necessary to ensure that the null 

hypothesis is accepted. 

ArcMap 9.2 Raster Math can be used to find the the critical standard error 

(SEcritical) at each cell in the map by dividing absolute value of the difference between the 

interpolated adjusted LiDAR surface elevations and the interpolated ground-surveyed 

surface elevations by the Zcritical  (1.96). 

The total error for LiDAR and ground-surveyed elevations is determined by 

equations 3-5 and 3-6, respectively. The total error for both datasets includes system and 

interpolation error as shown in the following equations:  

Total LiDAR error:              SE2
L,total = SE2

L,system + SE2
L,interp            (Equation 3-5) 

Total Ground-survey error:  SE2
G,total = SE2

G,system + SE2
G,interp         (Equation 3-6) 

In Eq. 3-5, “L,system” error is used to refer to all sources of error discussed in Section 

2.4 (sensor, position, slope, labeling, etc.) Since the standard error of their difference 

equals the sum of the squares of the standard errors for the LiDAR and ground systems, it 

is possible to back-calculate to obtain the square of the LiDAR system error that would 

be required to make the standard error of the difference equal the critical SE: 

 

    

SEdiff
2 = SEL, total

2 + SEG, total
2

= SEL,system
2 + SEG,system

2 + SEL, interp
2 + SEG, interp

2

= SEL,system
2 + SEG,system

2 + SEdiff,interp
2

 (Equation 3-7) 
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    SEL,required
2 = SEcrit

2 − SEdiff,interp
2 − SEG,system

2
  (Equation 3-8) 

The standard error of the ground survey system used in this study is 5 cm which is 

larger than the 3.1 cm error cited for total station surveying by Hodgson, 2004. This 

converts to approximately 0.16 feet. This value squared is 0.026 ft2, which is small 

relative to the errors attributable to the critical standard error and the interpolated error.  

The required LiDAR system error, SE2
L, required can be calculated by using 

equation 3-8 with Raster Math in ArcGIS 9.2. The squared standard error of the 

difference due to interpolation (SE2
diff) has already been calculated (Eq. 3-2) and the 

square of the standard error of the ground system (SE2
G, system) is assumed to be 0.026 ft2 

based on the assumed vertical total station survey error. This operation gives a raster of 

cell-by-cell values of what additional squared error (above and beyond interpolation and 

ground survey error) would be required to make the Z statistic in that pixel lie within the 

region of acceptance in the hypothesis test – in other words, to conclude that the 

measured difference is not statistically significant (that it is due to random errors in 

measurement and interpolation rather than to a real difference). 

In order to characterize the random errors due to slope, labeling, etc., in this 

terrain, a single value for the required LiDAR system error is desirable. The maximum 

value of SE2
L, required is chosen to account for all errors that may occur. This value, if used 

in calculating the SE2
diff (Equation 3-7), will result in acceptance of the null hypothesis 

for every cell in the difference grid. The square root of the square of the standard error of 

the difference (SE2
diff) can then be used as an estimate of the LiDAR system accuracy in 

dense understory riparian areas such as Sopers Branch. 
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3.7.4 Error Budgets 

 The total squared standard error of the difference between LiDAR and Ground-

Surveyed elevation can be expressed as the sum of four parts: SE2 for the LiDAR system, 

SEG, system2 for the Ground system and square of the standard error of each of the 

interpolated maps (SE2
L, int and SE2

L, int). It is of interest to determine the fraction that 

each component contributes to the total squared standard error:    

                   

 
    

SEL,system
2

SEDiff , tot
2 +

SEG,system
2

SEDiff , tot
2 +

SEL,interp
2

SEDiff , tot
2 +

SEG,interp
2

SEDiff , tot
2 =1.0         Equation 3-9 

 where, 

  SE2
L,system = square of the standard error of the LiDAR system 

  SE2
G, system = square of the standard error of the ground-survey system 

  SE2
L, interp = square of the standard error of the LiDAR interpolation 

SE2
G, interp = square of the standard error of the ground-survey interpolation 

SE2
Diff, tot = square of the standard error of the total error of the difference 

          

Using Equation 3-9 and ArcMap 9.2 Raster Math, it is possible to calculate and map the 

above fractions. For each ratio, the square of the corresponding squared standard error 

raster is divided by the squared standard error of the total. The assumed value for the 

Ground system, and the inferred value for the LiDAR System (based on Section 3.8) are 

used in this analysis. 

 The ratios are determined using ArcMap 9.2 Raster Math, ArcToolBox>Spatial 

Analyst Tools>Math>Divide. Input 1 is the raster corresponding to the appropriate 

numerator in Eq. 3-9, and Input 2 is the total standard error of the difference (LiDAR 

minus Ground) which is determined by Equation 3-10. The ratios will differ from cell to 

cell in the analysis grid, due to differences in the standard error of interpolation. 

  
75 



 

3.8 Testing for Geomorphic Change from 2002 to 2006 using LiDAR 

The comparison of LiDAR datasets collected in 2002 and 2006 allow for the 

evaluation of fluvial geomorphic change detection over this time period. As mentioned, 

the increased spatial and temporal resolution of LiDAR can greatly improve the ability to 

detect change over large geographic areas and with more frequent regularity. Comparing 

2006 and 2002 LiDAR-derived features could indicate fluvial geomorphic changes at the 

study site. However, change that is detected must be tested to ensure that it is statistically 

significant, that is, observed differences are physical and not artifacts of random errors in 

measurement and interpolation. In this study, these two LiDAR datasets were used to 

determine what changes in elevation have occurred over this four year period. These 

changes in elevation can be used to assess geomorphic changes within and along the 

stream channel and within the riparian zone. The 2002 and 2006 LiDAR datasets were 

compared for the same area within the CSPA. These LiDAR datasets were obtained by 

overflights of the CSPA as described in Sections 3.2. The 2006 LiDAR dataset used in 

this comparison is the same as that compared to the ground-surveyed point elevations as 

described in Sections 3.6 and 3.7 

The LiDAR 2002 dataset was reduced to the extent of the AOI using Microsoft 

ACCESS as described in Section 3.4. Since all comparisons of surface elevations must 

have the same surface coverage within the AOI, the 2002 LiDAR points were clipped to 

the ground point polygon as described in Section 3.5.  

The steps described in Sections 3.7.1 through 3.7.2 were repeated for the LiDAR 

2006 and LiDAR 2002 data sets, to detect changes in elevation between 2006 and 2002.  
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Instead of comparing a kriged LiDAR map to a kriged ground point map, the procedure 

was now applied to compare the two LiDAR maps, as follows:  

1. Create TINS, and compare the TINS qualitatively. 

2. Convert the TINS to rasters, correct for systematic error, and calculate a raster 

difference. 

3. Use Geostatistical Analyst to perform Ordinary Kriging, creating prediction maps and 

standard error maps. 

4. Correct the kriged maps for systematic error, and create a difference map by 

subtracting LiDAR 2006 from LiDAR 2002 to detect change.  

3. Create a map of pixel-by-pixel total standard error of the difference, using the kriging 

standard errors for LiDAR 2006 and LiDAR 2002, and the LiDAR system error, as 

inferred from the analysis in Section 3.7.3. 

4. Determine which, if any, pixels exhibit statistically significant differences of either 

sign using the two-sided Z test. The standard error used to determine statistical 

significance of the difference of the LiDAR 2006 and 2002 rasters is found using 

Equation 3-10. The square root of this raster is used to determine the Z-statistic and 

includes system and interpolation error for both LiDAR datasets. (Negative differences 

indicate erosion and positive differences aggradation). 

   Equation 3-10 

5. Analyze the contribution of the various error sources in terms of a total error budget. 

    SEL06−L02
2 = SE06, interp

2 + SE02,interp
2 + SE06,system

2 + SE02,system
2
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Chapter 4. Results and Analysis 

This chapter presents the intermediate and final results of implementing the steps 

described in Chapter 3. Most steps are illustrated with GIS-produced maps. 

 
4.1 Comparison of Surfaces Derived from LiDAR 2006 and Ground-surveyed Points 

The first comparison, LiDAR measurements to nearly simultaneous ground 

measurements in 2006, was intended to evaluate the accuracy of LiDAR topography of a 

small stream and its densely vegetated riparian area. Two point datasets were used to 

create the surface elevation features: LiDAR 2006 and Ground-Surveyed. 

 

4.1.1. Comparing LiDAR Bare-ground Points and Ground-Surveyed Points 

Since the entire tile was not needed to assess the surface features within the AOI, 

the LiDAR points were clipped to the AOI boundaries using ArcMap 9.2. The toolset 

used to clip these points was ArcToolBox>Analysis Tools>Extract>Clip. Since the 

ground surveyed points covered only part of the total AOI, any surfaces created from 

these ground points would be much smaller and could not be compared to the larger 

surfaces created from the LiDAR points. To ensure that surface features created from 

both datasets (LiDAR and ground-surveyed) covered the same area, a polygon shapefile 

(ground point polygon) was created to outline the perimeter of the ground-surveyed 

points (Fig. 4-1). This polygon includes the stream channel, the road running parallel to 

the stream, the bridge, the parking lot and the surrounding riparian zone. The ground 

point polygon was then used as the clip feature to create clipped datasets, which included  
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Figure 4-1. Ground point polygon (green outlined polygon) containing the ground-
surveyed points. This polygon was used to clip an area used for comparison of LiDAR 
and ground survey-derived surface features and grids. 
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points that were located only within the ground point polygon. The clipped subset of the 

LiDAR 2006 data is shown in Fig. 4-2. These clipped datasets could then be used to 

create features that represented the bare-ground surface within the ground point polygon.  

 

4.1.2 Creation of TINs for LiDAR 2006 and Ground Survey 

The point datasets (shapefiles) were used to create Triangulated Irregular 

Networks (TINs, see Section 2.4.6) representing the 3-D ground surface within the 

ground point polygon for each dataset. These TINs were then delineated (trimmed) to 

remove long edges that lay outside the ground point polygon. These edges resulted from 

the concave shape of the bounding polygon, and do not represent actual terrain. The 

toolset to delineate these TINs was as follows: ArcToolBox>3D Analyst Tools>TIN 

Creation, and Delineate TIN Data Area. The edited TINs using the ground-surveyed and 

LiDAR points are shown in Figs. 4-3 and 4-4, respectively. The interpolated elevations of 

the stream bed, banks, riparian zone, parking lot and surrounding area are visible in these 

maps. The edges and faces of the triangular planes are assigned elevation values when the 

Delaunay triangulation algorithm is used to create the TINs. The ArcGIS Identify Tool 

gives an elevation at points within the TIN. 

Since the TIN surface is interpolated by the Delaunay Method, the density of 

points affects the detail of the TIN surface and the accuracy of the interpolated surface 

between points. The LiDAR 2006 dataset within the ground point polygon has a denser 

posting than the ground-surveyed dataset. This is important since greater distances 

between points increase the interpolation between those points. Denser point postings 

mean less interpolation. 
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Figure 4-2. Ground point polygon showing the clipped LiDAR 2006 points. 
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Figure 4-3. Triangulated Irregular Network (TIN) derived from ground-surveyed data and 
delineated to the ground point polygon. 
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Figure 4-4. Triangulated Irregular Network (TIN) derived from LiDAR 2006 data and 
delineated to the ground point polygon.  

 

 

  
83 



4.1.3 Elevation Differences Using TINs  

 The GIS can show qualitatively the differences between two TINs (Fig. 4-5). This 

map was created using ArcMap 9.2 toolset: ArcToolBox>3D Analyst Tools>TIN 

Surface>TIN Difference. There appear to be large regions in the Area of Interest where 

the LiDAR and Ground Surveyed maps are not in agreement. However, these differences 

cannot be quantified using the TIN data structure. In addition, mathematical operations 

necessary to quantify systematic and random errors cannot be performed.  

To allow mathematical analysis of the data as interpolated by the TIN, the TIN 

maps were converted to rasters, as described in Section 3.6.1. A grid cell dimension of 

0.5 ft was assigned (grid cell area 0.25 ft2). The raster versions of the TINs for the 

LiDAR 2006 and Ground Survey, respectively, appear as Figs. 4-6 and 4-7. 

 

4.1.4 Quantitative Comparison of TIN-derived rasters 

Using the toolsets in ArcMap 9.2, it was possible to determine the elevation 

differences across the surfaces. However, before subtracting rasters, it was necessary to 

adjust the LiDAR 2006 raster for systematic error as described in Section 3.6.2. The 

mean difference of the LiDAR 2006 and Ground-Surveyed TIN-derived rasters over the 

parking lot surface was -0.16556 feet (Fig. 4-8). The elevation differences over the 

parking lot are approximately normally distributed, with a standard deviation of about 

0.11 ft. (Fig. 4-9). The constant value -0.16556 ft was subtracted from each pixel of the 

LiDAR 2006 raster. The adjusted LiDAR 2006 raster was used in the remaining analysis. 
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Figure 4-5. ArcMap-generated TIN difference map (LiDAR 2006 minus Ground-
 Surveyed). Only qualitative information is provided. 
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Figure 4-6. Raster created from the LiDAR 2006 point TIN. Grid size is 0.5 ft. 
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Figure 4-7. Raster created from the Ground-Surveyed TIN. Grid size is 0.5 ft. 
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Figure 4-8. Parking lot difference raster was calculated by subtracting the ground survey-
derived raster from the LiDAR 2006-derived raster and multiplying by the parking lot 
mask (mean difference = -0.16556 feet) 

  
88 



Raster math was used to subtract the ground-surveyed raster from the adjusted 

LiDAR 2006 raster. The difference at each pixel is represented in a difference raster (Fig. 

4-10). The smallest differences are on the parking lot surface as would be expected, with 

the greatest differences in the stream channel and at the banks. The elevation differences 

range from -2.60 to 2.62 feet with a mean difference across the ground point polygon of 

0.10493 feet. The greater differences in and along the channel are most likely attributable 

to slope error. The bed along the stream bank was incised and the bank was vertical and 

undercut in many locations. This would lead to error in the interpolated LiDAR 

measurements since the LiDAR points are randomly positioned while the surveyed points 

are taken at specifically identified fluvial geomorphic features such as top and bottom of 

bank (Section 3.6.1, Fig. 3-7). 

Histogram of Parking Lot Difference Raster(L2006-ground)
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Figure 4-9. Histogram showing the distribution of elevation differences in the parking 
lot (LiDAR 2006 minus Ground Surveyed), minimum value -0.74 ft, maximum value 
0.16 ft., mean value -0.16556 ft. 
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Figure 4-10. Difference raster showing the elevation differences between the rasters 
created from the LiDAR 2006 TIN and the ground-surveyed TIN. 
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 4.1.5 Interpolating Point Elevation Measurements with Kriging 
 
As discussed in Section 3.4.8, subtracting the TIN-interpolated LiDAR 2006 and Ground-

Surveyed maps gives an estimate of elevation differences over the study area, but does 

not provide uncertainty, or error bars, on those estimates. To address this lack, the 

interpolation procedure was repeated using Optimal Interpolation (Kriging). The 

specified and calculated model settings are shown in Table 4-1 for the LiDAR 2006 data, 

and in Table 4-2 for the Ground Survey data (The procedures used in ArcMap 9.2 are 

summarized in Section 3.4.8). The different autocorrelation functions reflect underlying 

differences in the two sets of point data. 

 The kriged elevation (prediction) maps for the LiDAR 2006 and Ground Survey 

data appear, respectively, as Figures 4-11 and 4-12. 

 

4.1.6 Creating Ordinary Kriged Standard error Maps  

A standard error map is produced for both the LiDAR and the ground survey 

points. In each case, care was taken to supply the same parameters for the autocorrelation 

model (semi-variogram) as used in the prediction map (Tables 4-1 and 4-2). The ArcMap 

Geostatistical Analyst makes this process fairly automatic by storing the model 

information with the shapefile data. (An alternative method for creating the Ordinary 

Kriged Standard error Maps is to right-click the name of the Kriged Prediction Map in 

the ArcMap Table of Contents and click on Create Prediction Standard error Map. This 

creates the standard error map with the same parameters and methods used to create the 

Ordinary Kriged Prediction Map.) The standard error maps produced by the 

Geostatistical Analyst appear as Figs. 4-13 and 4-14. 
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Table 4-1.  Geostatistical Analyst (GA), Ordinary Kriging Prediction Map Setting and 
Calculated Values Using  LiDAR 2006 Points 
 
Setting or Model Parameter Specified by Analyst Calculated by GA 
Transformation None  
Order of trend removal None  
Model Spherical  
Search Direction None  
Lag size 2  
Number of lags 12  
Partial sill  1.1508 
Neighbors to include 50  
Include at least Off  
Major range  23.7065 
Sector type One sector  
Regression function  Y = 0.948x + 6.33 
Root Mean Squared Error  0.1898 
Average standard error  0.3512 

 
 
Table 4-2.  Geostatistical Analyst (GA), Ordinary Kriging Prediction Map Setting and 
Calculated Values Using  Ground Survey Points 
 
Setting or Model Parameter Specified by Analyst Calculated by GA 
Transformation None  
Order of trend removal None  
Model Spherical  
Search Direction None  
Lag size 2  
Number of lags 12  
Partial sill  1.8485 
Neighbors to include 50  
Include at least Off  
Major range  15.3646 
Sector type One sector  
Regression function  Y = 0.896x + 39.963 
Root Mean Squared Error  0.6841 
Average standard error  0.7833 
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Figure 4-11. Ordinary kriged prediction map created from LiDAR 2006 points. 
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Figure 4-12. Ordinary kriged prediction map created from ground-surveyed points. 
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Figure 4-13. Ordinary kriged standard error map created from LiDAR 2006 points. 
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Figure 4-14. Ordinary kriged standard error map created from ground-surveyed points. 
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The standard error maps clearly show that the uncertainty introduced by 

interpolation is smallest closest to the measurement points, as would be expected. These 

maps also show that the denser posting of the LiDAR points (Fig. 4-13) caused less 

standard error than the less dense ground-surveyed points (Fig. 4-14). The highest 

standard errors occur at locations on the surface where the point density is lowest or 

where the distance between the points is greatest. In Fig. 4-13, the standard error is 

greater within the stream channel since LiDAR pulses were not returned from the water 

due to absorption of the laser. This creates a gap in the points at those locations leading to 

increased interpolation and greater error in the determination of elevation differences 

between LiDAR and ground pixels at those locations. 

The features produced by the Geostatistical Analyst were converted to rasters 

using the techniques described in Section 3.6.1. The raster versions of the prediction 

maps are shown in Figs. 4-15 and 4-16, and the raster versions of the standard error maps 

in Figs. 4-17 and 4-18. Visually, the raster versions (Figs. 4-15 through 4-18) appear very 

similar, if not identical, to the corresponding Geostatistical Analyst features (Figs. 4-12 

through 4-15). However, the underlying data structure is very different, and the raster 

format is necessary for any further mathematical operations on the interpolated maps. 

The raster converted from the kriged LiDAR 2006 prediction was adjusted for systematic 

error by subtracting the mean difference (-0.15892 feet) between the LiDAR 2006 kriged 

prediction raster and the ground point kriged prediction raster over the parking lot surface 

(Fig. 4-19).
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Figure 4-15. Ordinary kriged raster derived from the ordinary kriged prediction map 
created from LiDAR 2006 points 
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Figure 4-16. Ordinary kriged raster derived from the ordinary kriged prediction map 
created from ground-surveyed points 
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Figure 4-17. Ordinary Kriged Prediction Standard error raster created from the Kriged 
prediction standard error map using LiDAR 2006 points. 
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Figure 4-18. Ordinary Kriged Prediction Standard error raster created from the Kriged 
prediction standard error map using ground-surveyed points. 
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Figure 4-19. Ordinary Kriged parking lot difference raster (Kriged LiDAR 2006 raster 
minus kriged Ground-Surveyed raster over the parking lot surface). Mean elevation 
difference for (Lidar-Ground) is -0.15892 ft. 
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The raster showing the difference between the adjusted LiDAR 2006 kriged 

prediction raster and the ground-surveyed prediction raster is shown in Fig. 4-20. The 

mean elevation difference is 0.23773 feet. The largest differences in elevation between 

the adjusted LiDAR 2006 Kriged Prediction raster and ground-surveyed Kriged 

Prediction raster are along and within the stream channel. The smallest differences 

between the two rasters are at the parking lot. The greater differences near the stream are 

most likely due to steep slopes along the bank that were not accounted for in the 

interpolation between the LiDAR points. The incision of the stream bed and the erosion 

along the bank created nearly vertical bank slopes at locations along the studied reach. 

These steep and often vertical slopes were accounted for in the ground-survey by creating 

a breakline. However, the LiDAR points fell at random locations often several feet away 

from the top and bottom of bank. Also, since the frequency of the LiDAR laser was in the 

near infrared spectrum, the water within the stream channel absorbed the laser and did 

not reflect points. The absorption of near infrared LiDAR pulses by water would likely 

lead to interpolation to points that were reflected from such stream channel locations as 

point bars, rocks or dry beds.  The ground survey included points at the top of bank and at 

top of water within the channel, as well as, on point bars, rocks and dry bed locations. 

The location of the returned LiDAR points would create interpolated stream bank slopes 

that were not indicative of the actual bank slopes. 

 

4.1.6 Testing for Elevation Differences  

The z-statistic was calculated on a pixel-by-pixel basis across the prediction surface using 

the methods described in Section 3.7.3. Using a level of significance of 
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Figure 4-20. Raster showing the difference between adjusted Kriged LiDAR 2006 raster 
and kriged Ground-Surveyed raster. 

  
104 



0.05, the surface locations were significantly different from zero along the stream bank 

and near the channel. The other locations within the ground point polygon did not have 

elevation differences between the Kriged LiDAR 2006 raster and the Kriged ground-

surveyed raster that are significantly different from each other (Fig. 4-21). The areas 

where the z-statistic was within the region of acceptance (-1.96 < z <1.96) included most 

of the riparian area, the parking lot and most of the locations within and adjacent to the 

stream channel. These areas show no statistically significant differences in elevation 

between the Kriged raster created from the ground-surveyed points and the Kriged raster 

created from the LiDAR 2006 points. The areas where the z-statistic was outside the 

region of acceptance (z < -1.96 or z > 1.96) are either on or in close proximity to the bank 

or in the stream channel. This may have been due to the steep bank caused by erosion 

and/or the random placement of the LiDAR points and the interpolation error caused by 

these points. The gap of LiDAR points within the channel due to absorption by the water 

may have increased the standard error and increased the elevation difference. Since the z-

statistic is the ratio of elevation difference to standard error, an increase in elevation 

difference could lead to greater Z-values. The elevation differences are greater in many 

locations within the stream channel (Fig. 4-20).  

 

4.1.6 Estimating LiDAR System Error by Reversing the Hypothesis Test 
 
Following the procedures described in Section 3.7.3, the raster of critical standard error 

values was calculated (Fig. 4-22). The largest critical standard error is 1.38 ft as 

calculated using Equation 3-4 and shown in Figure 4-22. The largest interpolated error is 
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Figure 4-21. Map showing the locations where the difference between the interpolated 
LiDAR 2006 and ground-surveyed elevations were within the 95% Confidence Interval 
and where they were exceeded. Brown and blue areas were outside the 95% Confidence 
Interval. The SE of the difference of LiDAR 2006 and ground-surveyed was used. 
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Figure 4-22. Critical standard error raster for the Ordinary Kriged difference raster of the 
LiDAR 2006 and ground-surveyed points. 
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2.56 ft and is shown in Figure 4-20 showing a difference raster calculated by subtracting 

the ground-surveyed raster from the adjusted LiDAR 2006 raster. 

 The required LiDAR system squared error (SE2
required) to achieve the critical 

standard error is determined from Equation 3-8 following the steps defined in Section 

3.7.3. The resulting values are displayed in Fig. 4-23. Negative values occur where the 

calculated SE2 already equaled or exceeded the critical value (that is, where the null 

hypothesis was already accepted based only on interpolation error). The maximum value 

obtained in this calculation is 1.61 ft2. Taking the square root, this implies that the 

standard error of the LiDAR measurements is 1.26 ft, giving a 2-SE error bar of plus or 

minus 2.52 ft. 

 The z-statistic was re-calculated on a pixel-by-pixel basis across the prediction 

surface using Equation 3-8, including the assumed ground survey standard error, and the 

inferred Lidar System error. Using a level of significance of 0.05, there were no areas that 

showed statistically significant differences in elevation between the Kriged raster created 

from the ground-surveyed points and the Kriged raster created from the LiDAR 2006 

points when incorporating these estimates in addition to the interpolation error calculated 

by kriging (Fig. 4-24).  

  
108 



 
Figure 4-23. Additional squared error necessary to obtain Z critical for acceptance of the 
hypothesis of equality. Negative values occur in pixels where the Z statistic was already 
in the range of acceptance. The highest positive value is 1.61. The inferred SE for the 
LiDAR system is 1.26 (square root of 1.61).
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Figure 4-24. Map showing the locations where the difference between the interpolated 
LiDAR 2006 and ground-surveyed elevations were within the 95% Confidence Interval, 
after including the assumed Ground Survey system error and the inferred LiDAR system 
error in calculating the standard error of the elevation difference. The inferred SE of the 
LiDAR system (1.26) was used. 
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4.1.7 Evaluating the Error Budget Components for LiDAR 2006 – Ground 

The ratio of the squared error for each source of error (LiDAR system, ground 

system, and interpolation) was calculated using ArcMap 9.2 Raster Math using the steps 

described in Section 3.7.4. Maps of these ratios are shown in Figures 4-25, 4-26 and 4-27, 

respectively. Because the LiDAR system and Ground system errors are assumed 

constant, the spatial variability is due to interpolation error. The sum of these rasters 

equals a raster of ones as is shown is Figure 4-28.  

 Statistics of the squared error ratio maps are presented in Table 4-3. The mean 

values of the ratios indicate that the greatest contribution to the total squared standard 

error of the difference in elevation between the surfaces derived from LiDAR 2006 and 

ground-surveyed points is the LiDAR system. 

 The mean of the ratio of the square of the standard error to the total error as 

shown in Table 4-3 indicates that the greatest fraction of the total error would be 

attributed to the LiDAR system, and the least to interpolation error  

 

Table 4-3. Statistics of Cell-by-Cell Ratios of Squared Standard Error to the Total 
Squared Error for Each Source of Error, LiDAR 2006-Ground 

 
Source Mean 

 (SE2/SE2
Diff,tot)

 

Maximum 
(SE2/SE2

Diff, tot) 
 

LiDAR Interpolation 0.05 0.26 

Ground Interpolation 0.25 0.60 

LiDAR System 0.70 0.96 
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Figure 4-25. Ratio of SE2 of the LiDAR 2006 system to the total SE2. 
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Figure 4-26. Ratio of SE2 of the LiDAR interpolation to the total SE2. 
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Figure 4-27. Ratio of SE2 of the Ground-survey interpolation to the total SE2. 
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Figure 4-28. Map showing the sum of the ratio rasters, verifying that the sum of the 
squared error ratios is equal to 1 in all grid cells. 
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4.2 Comparison of Surfaces Derived from LiDAR 2006 and LiDAR 2002 Points 
 

 
The second comparison, LiDAR measurements collected in 2006 to LiDAR 

measurements collected in 2002, was intended to evaluate the potential of using LiDAR 

to detect fluvial geomorphic change of a small stream and its densely vegetated riparian 

area over time. The same methods that were used to compare the differences in elevation 

between the LiDAR 2006 and ground-surveyed datasets were used to compare the two 

LiDAR datasets. First, the 2002 LiDAR points were clipped to the ground points polygon 

(Fig. 4-29). Next, a LiDAR 2002 TIN was created (Fig. 4-30) to provide a qualitative 

comparison of the surfaces derived from the two LiDAR datasets, 2002 and 2006 (Fig. 4-

31). 

The LiDAR 2002 TIN was converted to a raster using the methods described in 

Section 3.6.1 so that elevation differences could be determined. The raster derived from 

the LiDAR TIN is shown in Fig. 4-32.  

The difference map is determined by using raster math as described in Section 

3.7.1. The raster derived from the LiDAR 2006 TIN is adjusted for systematic error by 

first determining the mean difference of the LiDAR 2006 and LiDAR 2002 rasters over 

the parking lot area (Figure 4-33) and then subtracting this difference from the LiDAR 

2006 raster. The mean difference over the parking lot was found to be -0.14988 feet.  

The difference raster was created by subtracting the LiDAR 2002 raster from the adjusted 

LiDAR 2006 raster (Figure 4-34). This raster shows the differences in elevation for each 

0.25 ft2 pixel across the surface. The stream channel shows a negative difference 
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Figure 4-29. LiDAR 2002 points within the ground point polygon 
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Figure 4-30. Triangulated Irregular Network (TIN) derived from LiDAR 2002 data and 
delineated to the ground point polygon. 
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Figure 4-31. Qualitative difference of the LiDAR2006 and LiDAR 2002 TINs. 
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Figure 4-32. Raster derived from LiDAR 2002 TIN. 

  
120 



Figure 4-33. Difference raster showing the LiDAR 2006 minus LiDAR 2002 raster over 
the parking lot. The mean difference is -0.14988 feet. 
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Figure 4-34. Raster of the difference between the TIN-based LiDAR 2006 adjusted raster 
and LiDAR 2002 raster. 
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of approximately 2.3 feet along the studied reach. Since the difference raster was 

determined by subtracting the 2002 elevations from the 2006 elevations, the negative 

elevation difference within the channel may indicate that erosion has occurred within the 

channel during this four year period. A field inspection of the stream channel in March 

2006 indicated incision of the channel bed and erosion along the banks. Many locations 

along the stream bank were undercut or vertical. The erosion may be the result of 

increased discharge caused by the Clarksburg urbanization occurring upstream of the 

Area of Interest. There appears to be an increase in elevation along the top of bank and 

within the riparian zone closest to the stream channel. This could be due to sediment 

deposition during flooding. 

However, as with the LiDAR 2006 and the ground-surveyed datasets, the 

elevation differences assessed by using TIN-derived rasters do not provide confidence 

intervals on the differences. Therefore, new difference maps were created using ordinary 

kriging (optimal interpolation). Kriging provides interpolated continuous surfaces, and 

estimated uncertainty in those surfaces. The steps parallel those taken for the first 

comparison (LiDAR 2006 to Ground Surveyed), as described in Section 4.1. The 

semivariogram model parameters assigned and calculated for LiDAR 2002 are given in 

Table 4-4. The same semivariogram is used for LiDAR 2006 as in Table 4.1. 

The Ordinary kriged prediction map and standard error map for the LiDAR 2002 

data are shown in Figures 4-35 and 4-36, respectively. These Geostatistical Analyst 

features were used to create prediction rasters and standard error raster based on the 

LiDAR 2002 data set, shown in Figures 4-37 and 4-38. The LiDAR 2002 raster was 

adjusted by the mean parking lot difference (-0.15298 feet, Fig. 4-39). The difference  
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Table 4-4.  Geostatistical Analyst (GA), Ordinary Kriging Prediction Map Setting and 
Calculated Values Using  LiDAR 2002 Points 
 
Setting or Model Parameter Specified by Analyst Calculated by GA 
Transformation None  
Order of trend removal None  
Model Spherical  
Search Direction None  
Lag size 2  
Number of lags 12  
Partial sill  0.73784 
Neighbors to include 50  
Include at least Off  
Major range  23.7065 
Sector type One sector  
Regression function  Y = 0.986x + 5.498 
Root Mean Squared Error  0.1835 
Average standard error  0.3401 
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Figure 4-35. Ordinary Kriged Prediction Map created from the LiDAR 2002 dataset. 
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Figure 4-36. Ordinary Kriged Standard error Map created from the LiDAR 2002 dataset. 
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Figure 4-37. Ordinary Kriged Prediction Map raster created from the LiDAR 2002 
dataset. 
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Figure 4-38. Ordinary Kriged Standard error Raster created from the LiDAR 2002 
dataset. 
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Figure 4-39. Parking Lot Difference of the Ordinary Kriged Prediction raster (LiDAR 
2006 – LiDAR 2002). Mean Difference is -0.15298 feet which was used to adjust the 
LiDAR 2006 raster for systematic error. 
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between the two Ordinary Kriged rasters (LiDAR 2006 adjusted minus LiDAR 2002) 

was determined and is shown in Figure 4-40. These rasters were then used to calculate 

the z-statistic raster as described in Section 3.5. The z-statistic was calculated on a pixel-

by-pixel basis across the prediction surface using Equation 3-1 where the standard error 

(SE) includes the inferred LiDAR System error for both the LiDAR 2002 and 2006 data 

sets (1.26 ft, as inferred in Section 4.16) and the standard error due to interpolation of 

both LiDAR data sets (Equation 3-10). Using a level of significance of 0.05, there were 

no areas that showed statistically significant differences in elevation between the Kriged 

raster created from the LiDAR 2006 points and the Kriged raster created from the LiDAR 

2002 points when incorporating the standard error estimates of the LiDAR 2002 and 

2006 system in addition to the interpolation error calculated by kriging (Fig. 4-44).  
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Figure 4-40. Map showing the difference of the adjusted LiDAR 2006 surface and the 
LiDAR 2002 surface.
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Figure 4-41 . Map showing the locations where the difference between the interpolated 
LiDAR 2006 and LiDAR 2002 elevations were within the 95% Confidence Interval, after 
including the inferred LiDAR system error for both LIDAR 2006 and 2002 datasets in 
calculating the standard error of the elevation difference. The inferred SE of the LiDAR 
system (1.26 ft) was used. 
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4.2.2 Evaluating the Error Budget Components for LiDAR 2006 – LiDAR 2002 

The ratio of the squared error for each source of error (LiDAR 2006 system, 

LiDAR 2002 system, LiDAR 2006 interpolation, and LiDAR 2002 interpolation) was 

calculated using ArcMap 9.2 Raster Math using the steps described in Section 3.7.4. 

Maps of these ratios are shown in Figures 4-42 through 4-45, respectively. Because the 

LiDAR system errors are assumed constant, the spatial variability is due to interpolation 

error.  

 Statistics of the squared error ratio maps are presented in Table 4-5. The mean 

values of the ratios indicate that the greatest contribution to the total squared standard 

error of the difference in elevation between the surfaces derived from LiDAR 2006 and 

LiDAR 2002 points is the LiDAR system for each LiDAR dataset. 

 The mean of the ratio of the square of the standard error to the total error as 

shown in Table 4-5 indicates that the greatest fraction of the total error would be 

attributed to the LiDAR 2006 and 2002 system, and the least to interpolation error.  

Table 4-5. Statistics of Cell-by-Cell Ratios of Squared Standard Error to the Total Squared Error for 
Each Source of Error, LiDAR 2006-LiDAR 2002  
 

Source Mean 
(SE2/SE2

Diff,tot)
 

Maximum 
(SE2/SE2

Diff, tot) 

LiDAR 
Interpolation 

0.06 0.21 

LiDAR 2002 
System 

0.47 0.50 

LiDAR 2006 
System

0.47 0.50 
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The large percentage of error that results from LiDAR system error requires that 

the proprietary software and the procedures used to label LiDAR points be improved. The 

bare-ground points are labeled by both software algorithms and human analysis but have 

led to such a high percentage of the standard error that it is impossible to determine 

differences in the surfaces derived from the LiDAR 2006 and LiDAR 2002 points. This 

makes change detection over time impossible. If change detection is to be determined by 

comparing the differences in LiDAR-derived surfaces then LiDAR system error must be 

reduced.
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Figure 4-42. Ratio of SE2 of the LiDAR 2006 system to the total SE2. 
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Figure 4-43. Ratio of SE2 of the LiDAR 2002 system to the total SE2. 
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Figure 4-44. Ratio of SE2 of the LiDAR 2006 interpolation to the total SE2. 
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Figure 4-45. Ratio of SE2 of the LiDAR 2002 interpolation to the total SE2. 
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Chapter 5. Conclusions and Discussion 

 

 The primary purpose of this study was to determine the acceptability of LiDAR to 

determine change in topography in and around a small stream. If LiDAR can be used to 

evaluate the differences in elevation over time then spatial and temporal resolution would 

be improved, enabling large geographic areas to be evaluated for change detection over 

time.  

 The results of this study show that differences in interpolated topography within 

and around Sopers Branch are largely attributable to errors in the LiDAR data collection 

and processing, and should not be interpreted as real changes. Accounting for all sources 

of error in the difference map, differences were not statistically significant using a 5% 

significance level.  

 In Tables 4-3 and 4-5, the greatest fraction of the total error is due to the LiDAR 

system. The LiDAR system error was found to be 70% of the total error when 

determining the difference between the LiDAR 2006 and ground-surveyed interpolated 

surfaces while interpolation error was only 30%. When comparing LiDAR datasets from 

2002 and 2006 in the same area, the LiDAR system error was found to contribute 94% of 

the total error. Interpolation error was only 6%, due to the point density of the LiDAR 

data. 

 The LiDAR system error may have included any or all of the following: 

instrumentation measurement error and labeling error caused by software algorithms 

and/or human error. The identification of LiDAR points as bare-ground is an essential 

step in identifying the surface; this is the most likely source of the system error identified 
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in this study. Because of the proprietary nature of the LiDAR data processing, it was not 

possible to examine the raw point data and evaluate the bare earth detection algorithm 

used by the data provider for this study. 

 While LiDAR system error is the dominant error, other errors contribute to the 

total error and have an impact on determining the statistical significance of the elevation 

differences. For example, LiDAR is absorbed by water in the stream and does not reflect 

points from locations where surface water is present. This creates areas that are void of 

LiDAR points, causing increased interpolation error. 

 It is possible that the standard error applied to the ground survey was 

underestimated. The positioning of the survey rod, the type of rod base (flat or pointed), 

and human error in the reading can affect the error. While this error is estimated in the 

literature to be about 3-5 cm, conditions specific to the site can increase this error. 

Assigning a larger value to the ground survey standard error would have resulted in a 

lower estimate of LiDAR system error. 

 The purpose of this study was to determine if LiDAR could be used to determine 

fluvial geomorphic change. The benefits are obvious; increased spatial and temporal 

resolution allowing for measurement of surface elevations over large areas. However, it 

was found that LiDAR system error must be reduced so that accurate topographic 

measurements can be obtained. The diverse vegetation and topography within a riparian 

area seems to increase the LiDAR system error. 

 Change detection cannot be determined over time using LiDAR if the LiDAR 

system error makes the elevation differences statistically insignificant. It is the large 

LiDAR system error that must be reduced if the use of LiDAR is to be acceptable for 
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determining surface elevations and change in those elevations over time. Improvements 

to the various aspects of the LiDAR system are important and include instrumentation 

measurement (location and elevation), labeling and algorithms and manual identification 

of ground points. 

 Users of LiDAR elevation measurements need to account for uncertainty in these 

data before making conclusions about geomorphic change based on visual inspection of 

maps. 
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