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Hepatitis E virus (HEV) causes several outbreaks of hepatitis in humans. 

Many aspects of HEV pathogenesis are not well understood. The HEV ORF3 product 

(henceforth known as vp13) is a multifunctional protein essential for infection of 

animals. To better understand the vp13 functions, this study was performed. We 

observed that vp13 protein was associated with the microtubules (MT) in transfected 

cells. Mutational studies revealed that both hydrophobic domains at the N-terminal 

region of vp13 are required for the vp13-MT interaction. Our studies also showed that 

HEV vp13 protein increased the stability of the MT, activated the apoptotic pathway, 

and, increased the levels of tumor suppressor gene p53 and its downstream effector 

p21Cip/WAF1 in the transfected cells. However, no noticeable effect on cell survival was 

observed. These results indicated that HEV vp13 protein may act as a viral regulatory 

protein.  
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Chapter 1: General Background 

 

Hepatitis E virus (HEV) is a single-stranded positive-sense RNA virus that is 

classified as the sole member of the genus Hepevirus (Emerson et al., 2004; Emerson & 

Purcell, 2003). HEV is the causative agent of hepatitis outbreaks in developing countries 

and sporadic cases of acute hepatitis in developed countries (Emerson et al., 2004; 

Emerson & Purcell, 2003). It is transmitted by feco-oral route, mainly through 

contaminated water, although perinatal and parenteral routes have been documented. 

HEV infection is more common among young adults and the mortality rate ranges from 

0.5 to 3%. A fulminant form of hepatitis E that occurs in pregnant women, especially in 

their third trimester of gestation, is a striking feature of HEV infection and can lead to up 

to 20% mortality rate for the infected woman. (Purcell & Emerson, 2001).  

 

There are four major genotypes of HEV strains and a single known serotype. 

HEV is a zoonotic agent and animal HEV strains in swine and chicken are found in the 

U.S. (Haqshenas et al., 2001; Meng et al., 1997). Swine HEV was isolated in US, Japan 

and many other countries and their sequences were identified to be similar to locally-

characterized human HEV isolates. HEV was also isolated from wild deer and 

undercooked deer meat (Li et al., 2005; Tei et al., 2003). These data show that HEV is 

indeed a zoonotic virus and domestic swine, wild deer and boars are potential reservoirs 

of HEV in nature (Goens & Perdue, 2004). Other species with reported susceptibility to 

HEV infection include sheep (Usmanov et al., 1994), rat (Maneerat et al., 1996) and 

mouse (Karetnyi Iu et al., 1993).  
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The genome of HEV is about 7.2 kb in length and consists of three open reading 

frames (ORF) (Tam et al., 1991). ORF1 encodes a nonstructural polyprotein that includes 

the RNA-dependent RNA polymerase. ORF2 encodes the capsid protein – a major 

structural protein in the virion. ORF3 encodes a phosphoprotein that was found to be 

essential for experimental HEV infection in macaques and pigs (Graff et al., 2005; Huang 

et al., 2007). The exact functions of vp13 in HEV infection remain unknown though a 

number of studies have found that it may play a role in cellular signaling pathways (Kar-

Roy et al., 2004; Korkaya et al., 2001; Moin et al., 2007; Tyagi et al., 2002; Tyagi et al., 

2005; Tyagi et al., 2004; Zafrullah et al., 1997).  

 

Attempts to gain more insights into HEV infection, pathogenesis or basic viral 

replication mechanisms have been hindered by several reasons that include lack of an 

effective in vitro cell culture system and a suitable animal model. Therefore, propagation 

of HEV and studies of virus replication still rely upon non-human primates or cells 

transfected with cloned replicons of HEV (Emerson et al., 2001; Panda et al., 2000). To 

specifically study the function of individual HEV proteins, scientists rely on 

overexpression of these proteins in mammalian cells transiently or stably. Due to lack of 

efficient cell culture for HEV propagation, functional study of ORF3 in HEV biology and 

infection has been limited, and therefore, the function of the protein is not yet clearly 

defined. Hence, this study was performed in an attempt to gain insights into the roles of 

HEV vp13 protein in viral pathogenesis.  
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In the following sections, literature on HEV is reviewed, background for this 

study is introduced, results and discussion are presented accordingly.  
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Chapter 2: Literature Review 

 

Hepatitis, or inflammation of the liver, is a serious illness that often leads to very 

high mortality in human beings. There are several etiologies for hepatitis among which 

infectious agents play a significant role. Several bacteria and viruses directly or indirectly 

lead to liver damage. Common etiological agents of viral hepatitis include: Hepatitis A 

virus (Picornaviridae), Hepatitis B virus (Hepadnaviridae), Hepatitis C virus 

(Flaviviridae), Hepatitis D virus (unclassified agent) and Hepatitis E virus (Hepeviridae). 

  

2.1 Introduction on Hepatitis E 

Hepatitis E is now recognized as an important public health problem in 

developing countries. It has been reported that, an estimated one-third of world’s 

population has been infected with Hepatitis E virus on the basis of seroprevalence. It has 

been a common cause of major epidemics of water-borne hepatitis in Southeast Asia for 

at least 50 years. The disease was previously referred as enterically transmitted non-A, 

non-B hepatitis. Hepatitis E is caused by infection with HEV, a non-enveloped, single-

stranded, positive-sense RNA virus. Hepatitis E virus is transmitted primarily via the 

fecal-oral route (Panda et al., 2007). Other documented routes of transmission include 

parenteral transmission, zoonotic food-borne transmission and vertical transmission. 

Several reports have suggested the possibility of a parenteral mode of 

infection/transmission for HEV (Chauhan et al., 1993). Hepatitis E is primarily a water-

borne disease, and contaminated water and food supplies have been implicated in major 

outbreaks (Arankalle et al., 1994). 
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 HEV causes acute and sporadic viral epidemics but usually rare chronic 

infections. Clinical cases occur predominantly in developing countries in Asia, Africa, 

and Mexico (Purcell & Emerson, 2001). Recently, hepatitis E has also been recognized 

frequently in industrialized countries where it was not thought to be endemic. The 

existence of autochthonous hepatitis E in developed countries like France, Germany and 

England indicates that hepatitis E is no longer an imported disease (Buisson & Nicand, 

2006; Dalton et al., 2007; Preiss et al., 2006). Onset of symptoms usually occurs about 28 

to 36 days post-infection (Balayan et al., 1983). Typical signs and symptoms of hepatitis 

E include jaundice, malaise, anorexia, abdominal pain, vomiting and hepatomegaly.  It is 

usually an acute self-limiting disease, running a course of few weeks. In uncomplicated 

cases, recovery usually takes place within a month. Recently, more cases of persistent 

HEV infection with chronic hepatitis and cirrhosis are reported in patients with reduced 

immune surveillance as induced by chemotherapy or post-transplant immune suppression 

(Khuroo & Khuroo, 2008). 

 

HEV causes an unusually fulminant form of hepatitis in pregnant women, especially in 

their third trimesters of pregnancies (Khuroo et al., 2004). Mortality rate in these cases 

are approximately 20%. HEV-induced damage to Kupffer cells in the liver may allow for 

damage to the liver from endotoxins produced by intestinal gram-negative bacteria, 

which is referred as a kind of Schwartzman-like phenomenon and has been postulated as 

a possible reason for the high incidence of fulminant hepatitis in pregnant women (Goens 

& Perdue, 2004) . It has also been reported that 30-100% of fetuses or infants acquire the 

virus from their HEV-infected mothers (Khuroo et al., 1995; Kumar et al., 2001; Singh et 
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al., 2003). HEV is also responsible for sporadic fulminant hepatitis in adults and children 

(Nanda et al., 1994). 

 
2.2 Biology of Hepatitis E Virus 

The unavailability of a suitable culture system for laboratory propagation of HEV 

has largely hampered better understanding of HEV biology. Conventional cell culture 

techniques to cultivate this virus have so far not been successful. However, some 

continuous cell lines such as A549, 2BS, HepG2, KMB17 and BEL7402 have been 

useful to some extent since they are reported to be slightly susceptible to HEV (Huang et 

al., 1992; Le et al., 2001; Li et al., 1995), but hardly used or repeated elsewhere due to 

their extremely low efficiency or other unknown reasons. A549, human lung carcinoma 

cell line has been used on numerous occasions to isolate and cultivate HEV by some 

investigators (Huang et al., 1995; Huang et al., 1992; Le et al., 2001; Wei et al., 2000). 

Recently, a group from Japan reported the propagation of HEV in hepatocarcinoma cell 

line (PLC/PRF/5) with a very long cultivation time over two months  (Takahashi et al., 

2008). Many cell lines, including Vero and HeLa cells, do not seem to be sensitive to 

HEV replication (Le et al., 2001). Several research groups are actively searching for a 

suitable cell culture system for in vitro propagation of HEV. An alternative approach has 

been widely pursued by several research groups around the world by using HEV 

replicons or RNA transcripts. In 2004, Emerson et al reported the detection of viral 

antigen and the recovery of infectious virus from transfected PLC/PRF/5 and Huh-7 cells. 

These findings show that HEV can replicate in a limited number of cell lines of hepatic 

origin. However, these are not robust systems and HEV still remains an extremely 
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difficult virus to study in vitro (Purcell & Emerson, 2001). The replicon approach has 

been helpful in studying basic mechanisms of HEV replication and other biological 

characteristics.  

 

Several species of non-human primates have been utilized in studies involving 

disease reproduction and transmission and also for amplification of HEV. Experimental 

infections have been carried out in non-human subjects like chimpanzees, cynomolgus 

macaques, rhesus macaques, pig tail monkeys, African green monkeys, tamarins, owl 

monkeys and squirrel monkeys (Ray et al., 1991; Tsarev et al., 1993). The most useful 

subjects are cynomolgus and rhesus monkeys. Other animals such as pigs (Balayan et al., 

1990; Usmanov et al., 1991), rats (Maneerat et al., 1996)  and chickens (Haqshenas et al., 

2002; Huang et al., 2002a) have also been reported to be susceptible to HEV infections. 

Though the animals experimentally infected with HEV usually show biochemical and 

histological evidence of hepatitis, surprisingly, they do not develop clinical disease and 

therefore do not mimic human infections (Longer et al., 1993).  

 

Extensive sequence divergence is found among HEV strains isolated around the 

world. Phylogenetic analyses have classified HEV isolates into four major genotypes. 

Genotype 1 (Asia, North Africa) was initially thought to infect only humans, but a report 

from Cambodia showed that it was also detected from a pig (Zhang et al., 2008). 

Genotype 2 is prevalent in Mexico and Southern Africa. Genotype 3 (North and South 

America, Europe, Asia) is prevalent in swine herds and humans all over the world, and 

Genotype 4 (Asia) has a wide host range, from human to swine and some other animals 
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(Schlauder & Mushahwar, 2001). Cross protection between HEV genotype 1 and 4 has 

been demonstrated in rhesus macaques (Huang et al., 2008). 

 

           It is believed that an environmental reservoir of HEV exists, especially in the 

endemic areas, resulting in recurrent epidemic episodes. However, HEV is thermally 

much less stable than hepatitis A virus (Emerson et al., 2005). HEV is very fragile under 

conditions of high salt concentrations, freeze thawing and pelleting (Bradley et al., 1992). 

Individuals who have sporadic or sub-acute/sub-clinical hepatitis E could also be a 

potential reservoir for HEV. Numerous studies have indicated the presence of HEV in 

feces of swine, and identified HEV antibodies in sera of pigs (Clayson et al., 1995; Meng 

et al., 1998b; Meng et al., 1997), cattle (Favorov et al., 2000), sheep (Favorov et al., 

2000), goats (Favorov et al., 2000), horses (Saad et al., 2007), and rodents (He et al., 

2002; Kabrane-Lazizi et al., 1999a; Karetnyi Iu et al., 1993), further suggesting the 

possibility of several animal reservoirs. The isolation of Swine HEV (Meng et al., 1997) 

and Avian HEV (Haqshenas et al., 2001) further confirms the existence of animal 

reservoirs. Swine isolate and US strain of human HEV shows 99% sequence identity 

(Meng et al., 1997). HEV isolates of genotype 3 are grouped into three phylogenetic 

clusters, with the highest nucleotide identity being 94.4-100% between human and swine 

isolates in each cluster (Takahashi et al., 2003).  Experimental evidence of cross-species 

infection between human and swine HEV isolates have been reported (Meng, 2003). 

Avian HEV shows 50% sequence identity to human HEV and is considered to be placed 

in a separate genotype 5 (Haqshenas et al., 2001; Huang et al., 2004). 
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HEV belongs to the family Hepeviridae, genus hepevirus. It shares some 

similarity in virion size and structure with members of the family Caliciviridae and hence 

was initially classified under that family (Miller, 1995). However, HEV was later 

removed from this family since its genome organization was found to be very different 

from that of the members of the Calicivirus family. Based on the presence of homologous 

regions present across the genome and the production of subgenomic RNA during 

replication, HEV was once thought to be a non-enveloped alpha-like virus (Purdy et al., 

1993). Phylogenetic analysis of the RNA helicase and RNA-dependent RNA polymerase 

(RdRp) regions of HEV denoted that HEV formed a distinct group, closer to rubella virus 

(family Togaviridae) than to the members of Caliciviridae (Koonin et al., 1992). Finally, 

the virus was assigned into a separate family Hepeviridae (Emerson et al., 2004). 

 

Due to lack of efficient cell culture system and a useful animal model, the HEV 

replication mechanism was proposed on the basis of similarities and sequence homology 

to other better characterized positive-sense RNA viruses (Reyes et al., 1993). The 

genomic RNA in HEV replicates through a negative-strand RNA intermediate. The 

presence of both positive and negative-strand HEV RNA are identified in the liver of 

rhesus monkeys experimentally infected, while only positive strand RNA was found in 

the serum and bile, where only mature virions are expected in an experimental study 

using rhesus monkeys (Nanda et al., 1994). In another study using swine animal model, 

replicative negative-strand HEV RNA was detected in the small intestines, lymph nodes, 

colons, and livers  indicating the possibility of HEV replication in tissues other than  liver 

(Williams et al., 2001). For initiation of HEV replication, cap-dependant translation has 
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been shown to be essential. (Kabrane-Lazizi et al., 1999b). It has been demonstrated by 

RNA-protein interaction study, the specific binding of purified and refolded recombinant 

HEV RdRp protein to the 3′ end of its RNA genome containing the poly(A) stretch 

(Agrawal et al., 2001). Though several reports have attempted to elucidate the replication 

mechanism of HEV, the many unknowns remain. 

 

 

 

2.3 Molecular Virology 

HEV genome is a positive-sense, single-stranded RNA genome that is 

approximately 7 kb long (Fig. 1). It is a non-enveloped virus that has a diameter of 27-34 

nm. The virus particles were first visualized in stool samples using immune electron 

microscopy (Balayan et al., 1983). Virus preparations from stool samples revealed a 

virion density of 1.29 g/ml in potassium tartarate and glycerol gradient (Bradley et al., 

1992). 

 

The first full-length genome sequence of HEV was determined in 1991 for a 

strain from Burma (Tam et al., 1991). HEV genome is 7.2 kb in size with three open 

reading frames (Aye et al., 1992; Kabrane-Lazizi et al., 1999b; Purdy et al., 1993; Tam et 

al., 1991; Yin et al., 1994). At the 5  terminus of the genome is a 28-nucleotide (nt) long 

small untranslated region (UTR) which forms a hairpin structure (Huang et al., 1992). 

The genomic RNA of HEV also possesses a methylated cap at its 5  terminus (Kabrane-

Lazizi et al., 1999b; Zhang et al., 2001). The 3  end of HEV is polyadenylated and a 68 
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nt long UTR precedes the poly A tail (Tam et al., 1991). These 5  and 3  cis acting 

elements are believed to play important roles in viral replication and transcription 

(Agrawal et al., 2001; Purdy et al., 1993). In infected liver cells of an experimentally 

infected monkey, two subgenomic viral RNA of 3.7 and 2.0 kb in length were detected, 

in addition to full-length genomic RNA (Fig. 1B). These subgenomic RNA share the 

same 3’ terminus. 

 

 

ORF1, that begins approximately 30 nt downstream of the 5´ end of the RNA, is 

5073-5124 nt long and encodes the non-structural proteins (Purcell & Emerson, 2001). 

The coding region of ORF1 contains a methyltransferase domain, Y domain, papain-like 

cysteine protease domain, proline-rich hinge or spacer region, X domain, helicase and 

RNA-dependent RNA polymerase (RdRp) domains (Koonin et al., 1992). The 

methyltransferase and RdRp activities of ORF1-encoded protein have been demonstrated 

(Agrawal et al., 2001; Magden et al., 2001). Helicase and protease activities, however, 

have not been shown yet. The functions of the Y and X domains also remain unknown. 

The methyltransferase domain is believed to be responsible for RNA capping as 

ORF1 
ORF2 

ORF3 

HEV genome: 7.2 kb single-stranded +RNA  

5’UTR 3’UTR 
A(n)

A. 

AAA
AAA
AAA

7.2 kb (genomic) 
3.7 kb (subgenomic) 

2 kb (subgenomic) 

B. 

M7G-cap 

Fig. 1 Genome organization of hepatitis E virus (A) and 
viral RNAs (B).  A. The HEV genome encodes three 
open reading frames.  B. The genomic RNA is capped. 
Three viral RNAs were found in the liver of 
experimentally infected monkey. 
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evidenced by the presence of a 5’ cap structure on the viral genome (Kabrane-Lazizi et 

al., 1999b; Zhang et al., 2001). The RNA helicase of HEV is ~38 kDa (Panda, 2000) and 

found to contain all the conserved motifs of helicase superfamily I. The HEV helicase, as 

other helicases, probably promotes the unwinding of RNA-RNA duplexes during the 

process of genomic replication and transcription. The RdRp of HEV is about 36 kDa and 

is probably involved in early stages of viral replication (Panda, 2000). HEV RdRp 

possesses characteristics similar to that of other positive sense animal and plant viruses 

(Fry et al., 1992; Koonin et al., 1992). It was shown that the HEV RdRP specifically 

binds to the 3’ end of the viral RNA and directs the synthesis of complementary RNA 

(Agrawal et al., 2001). 

 

ORF 2 encodes the viral major capsid protein - the major viral immunogenic 

protein. The capsid protein has high basic amino acid (aa) content (Jameel et al., 1992; 

Tam et al., 1991). Both non-glycosylated (~74 kDa) and glycosylated (~88 kDa) forms of 

the capsid protein were observed in transfected cells (Jameel et al., 1992; Tam et al., 

1991). However, the functional role of the glycosylation is not known. A signal sequence 

is present at the N-terminal region of the protein (Zafrullah et al., 1999). Major epitopes 

exist in the capsid protein and ORF2 is highly conserved (Khudyakov Yu et al., 1994). 

Therefore, most serological tests are based on ORF2 product.  ORF2-endcoded protein 

has been expressed in several protein expression systems namely, E. coli (Li et al., 1997; 

Panda et al., 1995); insect cells (He et al., 1993; Li et al., 1997; Robinson et al., 1998), 

and mammalian cells (Carl et al., 1994; Jameel et al., 1996; Torresi et al., 1999).  
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Graff et al demonstrated that a bicistronic subgenomic mRNA encodes both the 

ORF2 and ORF3 products (Graff et al., 2006). The subgenomic RNA is capped and 

initiated at nt 5122 downstream of the first two methionine codons in ORF3 and two 

closely spaced methionine codons in different reading frames were used for the initiation 

of ORF3 and ORF2 translation.  In this report, they showed that the sizes of ORF2 and 

ORF3 products of genotype 4 do not differ in size from those of other three genotypes as 

it was previously thought.  

 

ORF3-encoded protein (vp13) is a phosphoprotein that plays a major role in cell 

signaling pathways (Sehgal et al., 2006). vp13 was shown to be not necessary for 

infection of hepatoma cells in vitro (Emerson et al., 2006b). However, a recent study by 

Huang and colleagues showed that an intact ORF3 is required for infectivity in pigs 

(Huang et al., 2007). The latter group also observed that a single mutation at the third in-

frame AUG of ORF3 completely abolishes virus infectivity in vivo, indicating that the 

third in-frame AUG in the junction region is required for virus infection and is the 

initiation site for vp13. A cis-acting element at the start of the ORF is shown to be 

required for replication and this sequence is highly conserved across all four mammalian 

genotypes of HEV (Graff et al., 2006). 

 

2.4 Animal HEV and epidemiology 

HEV RNA or HEV antibodies have been found in various animal species. HEV in 

swine and in avian species have been isolated and relatively well studied. Hence, 

literature of swine and avian HEV are reviewed in the following sections. 
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2.4.1 Swine HEV 

HEV infection among domestic pigs was first reported in Nepal (Clayson et al., 

1995). Subsequently, a novel swine HEV was identified and characterized(Meng et al., 

1997). Swine HEV is closely related to the human HEV. Their studies also showed that 

swine HEV is a ubiquitous agent and most of the pigs, in the Midwestern part of US that 

are 3 months or older are seropositive for swine HEV. Currently, swine HEV is endemic 

to the North American commercial swine population (Goens & Perdue, 2004). 

Epidemiological studies have also shown that swine HEV is present in various parts of 

the world (Chandler et al., 1999; Hsieh et al., 1999; Wu et al., 2000).  

 

 Pigs infected with swine HEV do not exhibit clinical signs of the disease. The 

characteristics of infection such as route of infection, transmission, virus tropism, clinical 

course, virus shedding etc. have been studied in pigs that were either naturally or 

experimentally-infected (Choi & Chae, 2003; Kasorndorkbua et al., 2004; 

Kasorndorkbua et al., 2003; Meng et al., 1998a; Meng et al., 1998b; Williams et al., 

2001). Experimentally-infected animals did not show any clinical disease or show 

abnormal levels of liver enzyme (Meng et al., 1998a). Some of these studies also showed 

that swine HEV replicates in tissues other than the liver (Williams et al., 2001). In an 

attempt to determine if pregnant pigs suffer from fulminant hepatitis, like pregnant 

women, pregnant gilts were infected with swine HEV through the intravenous route 

(Kasorndorkbua et al., 2003). However, the inoculated animals did not exhibit any 

clinical symptoms. On the other hand, studies have shown that swine HEV can infect 

non-human primates and vice versa (Meng et al., 1998b), indicating a zoonotic potential 
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of swine HEV. Indeed, some studies have also shown that swine handlers are at an 

increased risk of getting HEV infection (Meng et al., 1999; Meng et al., 2002).  

 

Swine HEV is widely present in commercial pig populations around the world. 

And, swine HEV is genetically and antigenically closely-related to human HEV genotype 

3. Collectively, these findings not only emphasize the zoonotic potential of swine HEV 

but also its adverse implications in xenotransplantations. Hence, there is an increased 

need for research on swine HEV, especially with respect to its zoonotic potential. Since 

swine HEV is ubiquitous and the infected-animals appear apparently normal without 

much decrease in their productivity, there is no immediate demand for development of 

diagnostics or vaccines. 

 

2.4.2 Avian HEV 

 A novel HEV was isolated from US chickens suffering from hepatitis-

splenomegaly syndrome (Haqshenas et al., 2001). The virus was found to be closely 

related to, but distinct from, other HEVs and was named avian HEV. The individual 

genes of avian HEV were found to show 47-61% amino acid identities with those of 

other HEVs (Haqshenas et al., 2001). The complete genomic sequence of an avian HEV 

was first published in 2004 and  found to be 6654 nt long, 600 nt shorter than human and 

swine HEVs (Huang et al., 2004). The isolates of avian HEVs also exhibit considerable 

sequence divergence among themselves (Billam et al., 2007; Sun et al., 2004a). Unlike 

swine HEV, avian HEV was unable to infect and produce disease in non-human primates 

(Huang et al., 2004). However, avian HEV was able to infect and seroconvert turkeys 

(Sun et al., 2004b). It would be interesting to test if swine HEV can infect chickens or 
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vice versa. Serological studies show that avian HEV is widespread in the US poultry 

population (Huang et al., 2002b). Avian HEV is also detected in a layer flock in Ontario, 

Canada (Agunos et al., 2006). 

 

 It is believed that as in the case of swine HEV, avian HEV might also cause 

inapparent subclinical infections in chickens. Avian HEV seems to produce disease in 

older birds, especially broiler breeders, from 30 to 72 weeks of age. Affected birds 

showed enlarged liver and spleen, regressed ovaries and red abdominal fluid (Riddell, 

1997). Infected young birds, on the other hand, usually did not show any clinical 

symptoms (Sun et al., 2004a; Sun et al., 2004b). A systematic study was conducted to 

assess the pathogenesis and replication of avian HEV in experimentally-infected birds 

(Billam et al., 2005). The authors observed that the virus was able to produce gross and 

microscopic lesions in the liver and was able to produce slight increase in liver enzyme 

levels (Billam et al., 2005). A recent attempt to study vertical transmission of avian HEV 

has shown that though the virus is present in the egg white, there is no evidence of 

vertical transmission for avian HEV (Guo et al., 2007a). It is interesting to note that 

though human HEV has been observed to exhibit vertical transmission, both swine and 

avian HEV do not show such transmission. Since avian HEV is a newly identified agent 

and does not seem to cause clinically important disease in birds, very few research efforts 

have been taken for developing vaccines or other control measures. The only study till 

date was using a recombinant capsid protein to provide protection in chicken (Guo et al., 

2007b).  
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2.5 Pathogenesis and pathology 

Most of the knowledge currently gained regarding the pathogenesis and pathology 

of HEV has largely been through experimental infections of animals. Infection is 

primarily through the feco-oral route. However, parenteral routes of infection have also 

been postulated (Arankalle & Chobe, 1999; Khuroo et al., 2004; Wang et al., 1993). 

HEV infections are usually acute with no chronic states.  The virus is presumed to 

replicate primarily in the liver (Tsarev et al., 1992) . With fecal-oral transmission, 

jaundice occurs after a short viremic period and elevated serum alanine transaminase 

(ALT) levels (Jameel, 1999). Clinical symptoms occurs at this stage and includes 

jaundice, anorexia, hepatomegaly, abdominal pain and tenderness, nausea and vomiting 

and fever (Goens & Perdue, 2004). The incubation period ranges from 3 to 8 weeks with 

an average of 40 days (Purcell & Emerson, 2001; Yarbough, 1999). The virus is excreted 

in bile and passed out in feces, which then serves as a source of infection for new 

individuals.  

 

Experimental infection of non-human primates with HEV has also led to 

important information about the course of illness, virus excretion, changes in liver 

enzyme profile, histological changes in liver etc. (Arankalle et al., 1995). HEV infections 

have very low mortality rate of about 1% in normal individuals, but higher than those 

with HAV infections, 0.2% (Goens & Perdue, 2004). However, in pregnant women the 

mortality can reach as high as 20%, which is believed to be due to an abnormal immune 

reaction in these subjects (Jameel, 1999; Purcell & Emerson, 2001). 
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Major histopathological changes that occur during HEV infections are focal 

necrosis, similar to those in drug-associated toxicity, with minimal infiltration of 

inflammatory cells (Purcell & Emerson, 2001; Tsarev et al., 1994). The liver lesions are 

assumed to be immunologically mediated rather than virus-induced damage (Emerson 

and Purcell, 2006). Two important histological features of HEV infection considered to 

differentiate hepatitis E from hepatitis A are the development of chronic cholestasis and, 

the tendency of liver parenchymal cells to organize in pseudoglandular formations 

(Goens & Perdue, 2004; Purcell & Emerson, 2001). As it is presumed that the virus 

replicates in the liver, HEV is subsequently found in bile, in large quantities (Purcell & 

Emerson, 2001; Tsarev et al., 1992). From the bile, it is passed out in feces, which then 

serves as a source of infection for new individuals. The shedding precedes the onset of 

clinical signs, coinciding with increasing serum ALT and the progression of clinical signs 

(Jameel, 1999; Tsarev et al., 1992). In experimental infections of macaques, anti-HEV 

IgM is detected approximately 3-4 weeks after infection and continued to be detectable 

up to 3 months (Tsarev et al., 1994). Further, these findings are consistent with reports in 

humans (Emerson & Purcell, 2003; Jameel, 1999; Purcell & Emerson, 2001). Following 

IgM, anti-HEV IgG is detected which peaks several weeks later and can be detected for 

many months and years after infection (Arankalle et al., 1999; Yarbough, 1999). In 

chronic liver disease patients, acute HEV infection can trigger severe liver 

decompensation, which can lead to hepatic encephalopathy and renal failure (Kumar et 

al., 2004). 
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The characteristic feature of HEV infection when compared to other hepatitis 

viral infections is the increase in incidence of fulminant hepatic failure (FHF) 

complicated by encephalopathy and disseminated intravascular coagulation in HEV-

infected pregnant women (Jameel, 1999; Khuroo & Kamili, 2003; Madan et al., 1998). 

The disease severity increases with the gestation and is reflected by increased mortality 

rate (Khuroo & Kamili, 2003; Singh et al., 2003). Vertical transmission rates range 

between 30-100% (Khuroo et al., 1995; Kumar et al., 2001; Singh et al., 2003). FHF 

could not be reproduced in pregnant monkey models, however (Purcell & Emerson, 

2001). A Schwartzman-like phenomenon refers to the disseminated intravascular 

coagulation occuring from a second endotoxin assault. The phenomenon is worsened by 

the reticuloendothelial blockage and has been accounted for the FHF in HEV-infected 

pregnant women. It has been shown that pregnant women are sensitive to such an 

endotoxin-mediated effect (Goens & Perdue, 2004). Recently, it has been reported that 

the high mortality rate in pregnant women is associated with immunological changes, 

which include downregulation of the p65 component of nuclear factor  kappa B and a 

predominant T-helper type 2 (Th2) bias in the T cell response (Navaneethan et al., 2008). 

Understanding the biology of HEV is needed to know about the detailed pathogenesis of 

FHF in pregnant women.   

 

2.6 Public health concern 

Water-borne transmission of HEV is considered one of the major routes of 

transmission of HEV and, most surveys have shown that fecally-contaminated drinking 

water was implicated in outbreaks and cluster of cases (Mushahwar, 2008). Findings 
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from a study on the prevalence of HEV in water showed that one of five pretreatment 

sewage samples collected from Washington, DC was positive for HEV by RT-PCR 

(Mushahwar, 2008). Recent reports have also shown that transmission is not only through 

fecal-oral but also through ingestion of  undercooked infected meat (swine or wild 

animals) or through infected blood products (Bihl & Negro, 2008).   

 

            It is now strongly believed that HEV is a zoonotic pathogen. The possibility that 

swine hepatitis E virus can infect humans poses risks in xenotransplantations. In Japan, 

the first direct evidence of zoonotic transmission of HEV was documented in two 

outbreaks involving human consumption of raw wild boar liver and raw deer meat; one 

patient died (Tei et al., 2003; Yazaki et al., 2003).  HEV was found in 1.9 percent of 363 

packages of raw pork liver from grocery stores in Japan and one HEV isolate from 

packaged liver was identical in sequence to the HEV isolated from a patient with hepatitis 

(Yazaki et al., 2003). It was also demonstrated that Hepatitis E was transmitted by blood 

transfusion from a donor infected via the zoonotic food-borne route (Matsubayashi et al., 

2004). Anti-HEV antibodies have been detected in a number of animal species including 

pigs (Clayson et al., 1995; Favorov et al., 2000; Meng et al., 1998a; Meng et al., 1997), 

cattle (Favorov et al., 2000), sheep (Favorov et al., 2000), goats (Favorov et al., 2000), 

horses (Saad et al., 2007), rodents (He et al., 2002; Kabrane-Lazizi et al., 1999a; Karetnyi 

Iu et al., 1993), and cats (Okamoto et al., 2004), suggesting that there could be a large 

animal reservoir of HEV. Meng et al. (Meng et al., 2002) reported that swine 

veterinarians were one and a half times more likely to seroconvert to HEV infection, 

although clearly multiple sources of exposure can exist. A recent study showed that there 
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was a 5.4 times increased risk to people exposed to swine than unexposed for HEV 

infection (Galiana et al., 2008). Workers in wastewater treatment plants were also found 

to have antibodies to HEV (El-Esnawy et a., 1998). All these data demonstrate the 

zoonotic implications of HEV infection. Moreover, autochthonous HEV infections in 

developed countries may be due to zoonotic infection (Christensen et al., 2008; 

Matsubayashi et al., 2004; Wichmann et al., 2008). Normally, HEV infections are acute 

and self-limiting, but several reports have shown persistent HEV infection with chronic 

hepatitis and cirrhosis in patients with reduced immune surveillance due to chemotherapy 

or post-transplant immunosuppression (Bihl & Negro, 2008; Gerolami et al., 2008; 

Haagsma et al., 2008; Schildgen et al., 2008).  

 

2.7 Diagnosis 

Diagnosis of HEV is usually based on epidemiological characteristics of the 

outbreak and by exclusion of other liver diseases such as hepatitis A and B. Also, if any 

travel to HEV endemic region was involved, HEV should be suspected (Goens & Perdue, 

2004). Similarly, increased incidence of fulminant hepatitis during pregnancy and water-

borne outbreaks probably indicates HEV infection (Hamid et al., 1996). Commercial test 

kits to detect IgG and IgM antibodies to HEV are available in Europe, Asia and Canada, 

but not in USA (Emerson et al., 2006a). Though immunoelectron microscopy is an ideal 

method to detect virus particles in fecal specimens, it is still not a very sensitive test 

(Ticehurst et al., 1992). Molecular methods such as RT-PCR using specific primers are 

also useful in detecting viral RNA in serum, fecal or environmental samples such as 

water etc. The existing assays to detect antibodies to HEV are enzyme immunoassays that 
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use recombinant proteins or synthetic peptides representing antigenic domains from 

ORF2 and ORF3. Ahn et al. (Ahn et al., 2006) observed that real-time RT-PCR was more 

sensitive than conventional RT-PCR. Recently, a microarray-based nano-amplification 

technique was developed as a rapid means to detect HEV (Liu et al., 2006). However, 

serological methods still remain the best choice to detect HEV (Emerson et al., 2006a), 

given the low sensitivity and laborious nature of immunoelectron microscopy (Goens & 

Perdue, 2004). And the sensitivity of the real time RT-PCR technique depends on a 

proper match between the HEV strain and the PCR primers used in the assay. 

 

2.8 Treatment, prevention and control 

No specific treatment is available. General treatment is usually supportive. 

Currently there is no vaccine available for HEV control. ORF2 product contains 

important epitopes that can induce neutralizing antibodies and has been the focus for 

vaccine development (Purcell et al., 2003). Tsarev and colleagues found that both 

passively and actively acquired anti-HEV antibodies can protect cynomolgus monkeys 

(Tsarev et al., 1994).  Two doses of HEV vaccine containing recombinant HEV capsid 

protein (56 kDa) expressed in insect cells partially protected rhesus monkeys from 

hepatitis E following intravenous challenge 6 or 12 months after vaccination (Zhang et 

al., 2002). Different fragments of ORF2 were evaluated in their ability to protect rhesus 

monkeys against acute hepatitis. All  three fragments used in the study were found to 

protect the challenged animals (Ma et al., 2002). Partial ORF2 was expressed in 

transgenic tomatoes and the recombinant antigens derived from them were found to have  

immunoactivity (Ma et al., 2003). Administration of human papillomavirus virus-like 
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particles containing HEV ORF2 gene into mice intramuscularly induced immune 

responses to both HEV and human papilloma virus (Renoux et al., 2008). Recently, in a 

study that used a combined vaccine for HAV and HEV, the inactivated HAV component 

of the vaccine was observed to increase the immunogenicity of HEV recombinant protein 

component (Dong et al., 2007). A candidate vaccine containing recombinant ORF2 

protein has currently passed phase II trial in Nepal, the region endemic to HEV infection. 

The vaccine contains the purified polypeptide produced in insect cells infected with a 

recombinant baculovirus containing a truncated ORF2 protein. It was found to be safe 

and immunogenic in volunteers in Nepal (Shrestha et al., 2007). It was noted that virus-

like particles from HEV capsid protein were not used in this study though the capsid 

protein tends to form VLP.  

 



 

 24 
 

Chapter 3: Introduction and Research Objectives 

 

3.1 Introduction on HEV ORF3 

HEV ORF3 encodes a phosphoprotein (vp13) with an approximate molecular 

mass of 13 kDa (Tam et al., 1991). vp13 has not been found in HEV virions. Recently, it 

was reported that a monoclonal antibody against vp13 reacted with  HEV virions released 

from infected cells, but not the virions in feces (Takahashi et al., 2008), which needs to 

be confirmed. The translation of ORF3 is initiated at the third in-frame initiation codon 

AUG, 23 bases downstream of the termination codon of ORF1 (Graff et al., 2006; Huang 

et al., 2007). ORF3 also contains the cis-reactive element at 5’end, which is essential for 

infectivity of macaques and pigs. Most of the knowledge about HEV vp13 has been 

obtained mainly from overexpression of the protein in cells transfected with the vp13 

expression plasmid. The exact functions of vp13 in HEV infection remain unclear though 

a number of studies have found that it may play a role in cellular signaling pathways 

(Kar-Roy et al., 2004; Korkaya et al., 2001; Moin et al., 2007; Tyagi et al., 2002; Tyagi 

et al., 2005; Tyagi et al., 2004; Zafrullah et al., 1997). 

 

The HEV vp13 was also detected as a dimeric form of 26-28 kDa in size in in 

vitro expression (Zafrullah et al., 1997). It may be because that vp13 can form 

homodimers through a C-terminal 43-amino-acid interaction domain (Tyagi et al., 2001). 

The dimerization domain overlaps with the SH3 binding and phosphorylation site, 

indicating that it may play a role in signal transduction pathways. The N-terminal portion 

of the vp13 contains two hydrophobic domains with cysteine rich residues and the C-
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terminus contains proline rich residues (Zafrullah et al., 1997). The C-terminal half of 

vp13 contains a src homology 3 binding domain and MAPK site. vp13 activates MAPK 

and ERK, and binds but does not activate Src kinase via its proline-rich domain (Kar-Roy 

et al., 2004; Korkaya et al., 2001). Furthermore, vp13 also interacts with other SH3 

domain containing proteins that are upstream modulators of important mitogenic 

signaling pathways involved in cell survival. A recent report showed that vp13 inhibits 

epidermal growth factor receptor (EGFR) trafficking and STAT3 nuclear translocation, 

suggesting a role for vp13 in promoting cell survival (Chandra et al., 2008). In an ORF3-

expressing stable Huh-7 cell line, vp13 was able to protect the cells from mitochondrial 

depolarization and death by upregulation of voltage-dependent anion channel gene and 

hexokinase I (Moin et al., 2007). However, siRNA-mediated knockdown of ORF3 gene 

in the stable cells led to only slight reduction of the number of cells that survived 

staurosporine-induced cell death. Collectively, these data suggest that vp13 may 

contribute to HEV pathogenesis by promoting cell survival.  

 

Deletion and site-directed mutagenesis studies found that Ser-80 was the 

phosphorylation site for vp13 by mitogen-activated protein kinase (MAPK) (Zafrullah et 

al., 1997). The phosphorylated form of vp13 has been shown to interact with non-

glycosylated form of the major capsid protein encoded by ORF2 (Tyagi et al., 2002).  But 

it was found that this phosphorylation site was not required for HEV replication in 

experimental infection of monkeys as a mutant HEV replicon lacking this site still caused 

viremia and seroconversion (Graff et al., 2005). 
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Yeast two-hybrid system was used to screen a human liver cDNA library for 

proteins interacting with ORF3. vp13 was found to interact with Bikunin, a serine 

protease inhibitor with immunosuppressive property and to hemopexin, an acute phase 

protein with inflammatory role (Tyagi et al., 2005). One of the other ORF3-interacting 

partners isolated and identified is hemopexin, a 60 kDa acute-phase plasma glycoprotein 

with a high binding affinity to heme (Ratra et al., 2008). Hydrophobic domain II was 

found to be responsible for the interaction. These findings suggest that vp13 may act as a 

viral regulatory protein. Together, all these data indicate the multifarious roles played by 

vp13 in HEV pathogenesis and highlight the need to characterize further the functions of 

vp13.  

 

In addition to its presumed role in cell signaling, HEV vp13 has also been found 

to be associated with the cytoskeleton. In vp13-transfected COS-7 cells, vp13 was found 

to partition with the cytoskeletal fraction (Zafrullah et al., 1997). Deletion of N-terminal 

hydrophobic domain of vp13 abolished this association. However, the nature of 

interaction and the vp13-binding proteins required for this association are not known. 

 

Due to lack of efficient cell culture for HEV propagation, functional study of 

vp13 in HEV biology and infection is limited. It was reported that vp13 is essential for 

HEV infection in Macaques and pigs (Graff et al., 2005; Huang et al., 2007). An 

infectious cDNA clone of HEV was used to study the roles of ORFs 2 and 3 in HEV 

replication and infection (Graff et al., 2005). A frame-shift mutation at the 5’terminus of 

ORF3 in the replicon abolished ORF2 protein production. An ORF3-null mutant did not 
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produce a detectable infection in rhesus macaques (Graff et al., 2005), indicating the 

requirement of ORF3 for HEV infection. A mutant with a C-terminally truncated ORF3 

of swine HEV infectious clone was not infectious in pigs and a single mutation at the 

third in-frame AUG of ORF3 abolished the virus infectivity in vivo, indicating the ORF3 

product is essential for HEV infection (Huang et al., 2007). These experiments 

demonstrated that HEV vp13 may play an essential role in HEV infection. Further 

investigation is warranted to elucidate the mechanisms.   

 

Therefore, to further study vp13, we performed preliminary study on vp13 

subcellular location and found that vp13 expression co-localizes with cellular 

microtubules. To further confirm the interaction of vp13 with microtubules and 

understand the mechanisms and potential consequences, we conducted further 

experiments to provide more insights on the multifarious roles of vp13 and thereby 

advance our understanding of HEV pathogenesis. This study was conducted to examine 

vp13 subcellular location, the functional significance of the vp13 association with the 

cytoskeletal network, the cellular binding partners required for this association, nature of 

the interaction and, the effects of this association. 

 

3.2 Research objectives  

The specific objectives in the present study on vp13 protein of HEV are:  

 1. To define the interaction of vp13 protein with microtubules (MT)  

 2. To determine the effect of vp13 protein-MT interaction in cell growth.  
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Chapter 4: Materials and Methods  

  

4.1 Cells. 

Cell lines HeLa, COS-7, and Huh-7 were maintained at 37°C in Dulbecco’s 

Minimum Essential Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) 

and penicillin-streptomycin mixture and L-glutamine. Huh-7 cells are human hepatoma 

cell line.  

  

4.1.1 Establishment of vp-13 expressing stable cell line 

Cells that have stable expression of vp13 would be more suitable for 

characterizing HEV vp13 than those that only have transient expression of vp13. 

Therefore, we generated HeLa cells stably-expressing vp13. Briefly, HeLa cells grown to 

confluence were transfected with VenusN1-H3 plasmid using FuGeneHD (Roche 

Diagnostics, Indianapolis, IN). After 24 h, the cells were trypsinized and seeded into a 60 

mm tissue culture plate at a density of 30,000 cells/ml and were grown under G418 (400 

µg/ml) selection. Resistant clones that expressed vp13 fusion protein were selected by 

live fluorescent microscopy and the positive clones were expanded under G418 selection. 

Two clones were finally selected for this study. Western blot analysis with GFP- and 

vp13-specific antibodies showed that both clones had high level expression of vp13 

protein. PCR amplification and sequencing confirmed the presence of intact ORF3 

sequence in the stable cells. 
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4.2 Chemicals and antibodies 

Microtubule destabilizing drug nocodazole (NOC), dynein inhibitor sodium 

vanadate (Na3VO4), Taxol and Trichloroacetic acid (TCA) were purchased from Sigma, 

St Louis, MO. ATP and GTP were purchased from Promega. For all experiments 

involving NOC treatment, the cells were treated with the drug at a concentration of 10 

µM for 4 h. Taxol was used at a concentration of 40 µM. Sodium vanadate was used at a 

concentration of 100 µM. 

  

Antibody against HEV vp13 was a kind gift from Dr. X-J Meng (Virginia 

Polytechnic Institute and State University, Blacksburg, VA). Commercially-available 

antibodies were used for other proteins tested for in this study – β-tubulin, GFP, p53, and 

FLAG (Sigma); p21Cip1/WAF1 (Invitrogen); PARP, caspase-8 and -9, and acetylated α-

tubulin (Santa Cruz Biotechnology, Santa Cruz, CA); dynein (Millipore). 

 

4.3 Plasmids and vectors 

 The plasmid pSK-E2 that contains the full length cDNA of HEV genome was a 

generous gift from Susane Emerson, NIAID, NIH (Emerson et al., 2001). VenusN1 and -

C1 vectors that contain an improved version of yellow fluorescent protein named 

“Venus” were kind gifts from Ioanis Bossis, University of Maryland, College Park 

(Nagai et al., 2002). The N1 and C1 nomenclature of the Venus vector denotes the 

presence of the cloning site upstream and downstream of the Venus gene, respectively. 

The plasmid pCMVTag2 vector, used for the expression of FLAG-tagged fusion protein 

in mammalian cells, was purchased from Stratagene. A Myc-tagged p50/dynamitin 
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construct was a kind gift from Richard Vallee, Columbia University, New York, NY 

(Echeverri et al., 1996). 

 

4.4 Transfection 

Transfection experiments were performed on cells grown to 90-95% confluence 

in 12-well plates. The cells were transfected with 2 µg of the vp13 expression plasmid or 

a similar amount of empty vector in a volume of 100 µl of Opti-MEM (Invitrogen) per 

well. Transfection was carried out with FuGeneHD (Roche Diagnostics, Indianapolis, 

IN), according to the manufacturer’s instructions. Cells treated with only the transfection 

reagents served as mock-treated controls. Cells were harvested at 24 h after transfection, 

unless otherwise specified and utilized for further analysis. 

 

4.5 Construction of vp13 plasmids.  

HEV ORF3 was amplified from pSK-E2 by PCR using Venus N1-H3 For and 

Venus N1-H3 Rev primers (Table 1) that contain restriction sites of EcoRI and BamHI, 

respectively. The forward primer was designed to begin from the third in-frame initiation 

codon AUG in ORF3 that was recently found to be an authentic translation initiation 

codon for this gene (Huang et al., 2007). The PCR-amplified product was digested with 

the two enzymes, and then ligated to a VenusN1 vector, using T4 DNA ligase (Promega), 

upstream of the Venus reporter gene. The ligation mixture was transformed into DH5α 

competent cells and positive clones were selected by PCR. Cloning was further 

confirmed by restriction enzyme digestion and bidirectional nucleotide sequencing using 

an ABI 3100 DNA sequencer (Applied Biosystems). The recombinant plasmid, 
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VenusN1-H3, was used in the following studies. The ORF3 gene was also similarly 

cloned into VenusC1 vector to confirm the expression pattern.  

 

The ORF3 gene was also cloned into pCMVTag2 vector for expression of FLAG-

tagged fusion protein in mammalian cells. PCR primers used for the cloning were 

designed similarly as above to include restriction enzyme sites and make sure ORF3 gene 

was in-frame with FLAG sequence in the vector. The presence of ORF3 gene in the 

recombinant plasmid pCMV-H3 was confirmed by DNA sequencing.  

 

  

 

 

 

 

 

 

Fig 2. Construction of HEV ORF3 expression plasmids. The ORF3 of HEV (H3) was 

cloned into Venus N1 vector, upstream of the Venus reporter gene (N1-H3) using the 

indicated restriction enzymes. Similarly, H3 was also cloned into Venus C1 vector, 

downstream of the Venus reporter gene (C1-H3). Additionally, H3 was also cloned into 

pCMV vector, to determine if the Venus fusion could affect H3 expression pattern. 
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Table 1. Oligonucleotides used in construction of ORF3 expression plasmids 

 

All the forward primer sequences contained restriction site for EcoRI enzyme (italicized 

and underlined), while all the reverse primer sequences contained restriction site for 

BamHI enzyme (underlined).  

 

 

Plasmid Primer sequence (5′ to 3′) 

For – GCGAATTCATGGGTTCGCGACCATGCG Venus N1-H3 

Rev – CCGGATCCTTGCGGCGCGGCCCCAGCTGTG 

 

For – GCGAATTCAATGGGTTCGCGACCATGC 

 

Venus C1-H3 

Rev – CCGGATCCTTGCGGCGCGGCCCCAGCTGTG 

 

For – GCGAATTCATGGGTTCGCGACCATGCG 

 
 
Venus N1-H3D1 

Rev – CAGGATCCGTTGGTTGGATGAATATAG 

 

For – GCGAATTCATGGGTTCGCGACCATGCG 

 
 
Venus N1-H3D2 

Rev – CTGGATCCCTGGTCACGCCAAGCGGA 

 

For – GCGAATTCATGCGCCACCGCCCGGTCAG 

 
 
Venus N1-H3D3 

Rev – CCGGATCCTTGCGGCGCGGCCCCAGCTGTG 

 

For – GCGAATTCATGATTCATCCAACCAACCC 

 
 
Venus N1-H3D4 

Rev – CCGGATCCTTGCGGCGCGGCCCCAGCTGTG 

 

For – GCGAATTCAATGGGTTCGCGACCATGC 

 
 
Venus C1-H3NH 

Rev – CTGGATCCTTAGTGGCGCGGGCAGCATAG 
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Various truncation mutants of ORF3 were constructed by cloning fragments of 

ORF3 into Venus vector (Fig 3). Primers were designed accordingly to amplify the 

individual fragments of ORF3 by PCR (Table 1). Cloning was performed, in a manner 

similar to that of full length ORF3, into VenusN1 or Venus C1 vectors.  

 

 

Fig 3. Schematic illustration of ORF3-truncation plasmids. The numbers above each line 

indicate starting and ending nucleotides of ORF3 or truncations. H3 contains the full-

length vp13. H3D1 contains both hydrophobic domains at N-terminal end of vp13, but 

lacks a stretch of 49 aa residues at its C-terminal end. H3D2 contains both the 

hydrophobic domains at the N-terminal region, but lacks 15 aa residues at its C-terminal 

end. H3D3 lacks the first N-terminal hydrophobic domain but contains the second 

hydrophobic domain of vp13. H3D4 lacks both the hydrophobic domains while the 

H3NH construct contains only the first hydrophobic domain at N-terminal end of vp13.  
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4.6 Fluorescence microscopy.  

Cells were seeded directly onto cover slips in cell culture plate, incubated 

overnight, and transfected the next day. Twenty-four hours post transfection, the cells 

were observed directly under fluorescence microscopy (Venus vector-transfected cells) or 

fixed with 1% paraformaldehyde and mounted onto slide with anti-fade mounting 

solution (Invitrogen, Carlsbad, CA) before observation. For the cells treated with NOC, 

culture medium was replaced with medium containing the drug at 24 h post transfection 

and the cells were incubated for an additional 2 h. The NOC was then removed and 

washed twice with PBS, and were observed under fluorescence microscopy. For studying 

the recovery from NOC-treatment, the treated cells were further incubated for 4 h with 

culture medium after the removal of NOC-containing medium.   

 

Immunofluorescence assay (IFA) was carried out as reported previously (Zhang et 

al., 1998) with an rabbit anti-vp13 antibody. A FITC conjugated goat anti-rabbit IgG 

(Invitrogen) was used to detect vp13 by fluorescent microscopy.  

 

4.7 Western blot analysis.  

HeLa cells were transiently transfected with VenusN1-H3 or empty vector. At 24 

h post transfection, the cells were lysed with Laemmli sample buffer. SDS-PAGE and 

Western blot analysis were performed as described previously (Zhang et al., 2007). 

Briefly, the cell lysates were electrophoresed on 12% SDS-polyacrylamide gels. The 

separated proteins were transferred onto nitrocellulose membrane and probed with rabbit 

anti-vp13 antibody. Any specific reaction was detected with goat anti-rabbit IgG 
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conjugated with horseradish peroxidase (Sigma) and the addition of chemiluminescence 

substrate. Chemiluminescence signal was collected by a ChemiDoc XRS imaging system 

(Bio-Rad Laboratories, Hercules, CA). Beta-Tubulin was detected on the same blot 

membranes to normalize protein loading in the analysis. Digital image acquisition and 

densitometry analyses were conducted using Quantity One software (Bio-Rad).  The 

expression of other proteins, tested in this study, was detected in a similar manner using 

corresponding antibodies. 

 

4.8 Cell viability assay.  

Cell viability was determined with CellTiter-Glo® Luminescent Cell Viability 

Assay (Promega, Madison, WI). Briefly, cells were cultured in 96-well plate and 

CellTiter-Glo reagent was added and incubated for 10 minutes at room temperature. The 

luminescence signal was measured with VICTOR3™ Multilabel Counter (Perkin-Elmer, 

Waltham, MA). Relative percentages of luminescence intensity were calculated by 

comparison to mock-treated controls. All experiments were performed at least in 

duplicates and were repeated at least three times. 

 

4.9 Caspase-3 and -7 activity detection.  

  Caspase-3 and -7 activities in the transfected cells were detected using Caspase-

GloTM 3/7 Assay kit (Promega), as the manufacturer’s instructions. Briefly, 50 µl of 

Caspase-Glo reagent was added to each well containing the cells in 50 µl of culture 

media and incubated for 30 minutes at room temperature. The luminescence signal was 

measured using a VICTOR3™ Multilabel Counter (Perkin-Elmer, Waltham, MA) and 
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relative percentages of luminescence intensity were calculated. All caspase assays were 

performed at least in duplicates and were repeated at least three times. 

 

4.10 Real-time PCR.  

Total RNA was isolated from cells lyzed in TRIzol® Reagent (Invitrogen), 

according to manufacturer’s instructions. For quantitative RT-PCR analysis, RNA was 

first treated with RNase-free DNase (Promega) to remove carryover DNA from the RNA 

isolation procedure. Random-hexamer-primed reverse transcription was carried out using 

AMV reverse transcriptase (Promega). Primers for real-time PCR were designed based 

on cDNA sequences of target mRNA. Real-time PCR with SYBR Green detection was 

done as described previously (Patel et al., 2008). The results depicted are averages of 

three independent experiments. 

 

Table 2. Oligonucleotides used in real-time PCR  

Gene Primer 

p53 

 

 

p21 

 

 

For - 5’ TCAACAAGATGTTTTGCCAACTG 3’  

Rev - 5’ ATGTGCTGTGACTGCTTGTAGATG 3’  

 

For - 5’ ATGAAATTCACCCCCTTTCC 3’ 

Rev - 5’ AGGTGAGGGGACTCCAAAGT 3’ 
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4.11 MT isolation and salt-extraction assay.  

MT isolation and salt-extraction assays were performed as described previously, 

with some modifications (Goode & Feinstein, 1994; Pipeleers et al., 1977). Briefly, HeLa 

cells were transfected with C1-H3 DNA and at 24 h post-transfection lysates were 

collected with MT stabilization buffer (100 mM PIPES pH6.9, 5 mM MgCl2, 1mM 

EGTA), both with and without the addition of ATP and GTP. Taxol (40µM) was 

included to artificially stabilize the MT. Cell lysates were collected with a cell scraper, 

transferred to a centrifuge tube, and homogenized with a syringe and 25-gauge needle. 

After 10 min of incubation at 37°C, 2µl of the sample was mixed with trypan blue, and 

checked for at least 95% cell lysis. The sample was then centrifuged at 100,000g for 30 

min at 37°C, using buffers and rotors pre-warmed at 37°C. After centrifugation, the 

supernatant was transferred to a pre-chilled tube and the pellet was resuspended with salt 

extraction buffer (80 mM PIPES pH6.9, 1 mM MgCl2, 1mM EGTA, and 500 mM KCl). 

Taxol was added at 40 µM and the sample was centrifuged again at 100,000 xg for 30 

min at 37°C. After centrifugation, the supernatant was transferred to a pre-chilled tube. 

The pellet was resuspended in MT stabilization (MTS) buffer and then boiled in 1X SDS-

PAGE sample buffer and heated at 95°C for 2 min. The supernatants were precipitated 

with TCA and then analyzed by SDS-PAGE and Western blot using antibodies against 

vp13, acetylated α-tubulin and β-tubulin. For experiments with addition of detergent in 

lysis buffer, the cells were lyzed in buffer PEMT (100 mM PIPES pH6.9, 5 mM MgCl2, 1 

mM EGTA, 0.1%Triton, 0.1%Tween20, 0.001% Antifoam). Cell homogenization and 

centrifugation were done as described above. 
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Fig 4. MT isolation and salt extraction assay. MTS buffer – MT stabililizing buffer; SDS 

– sodium dodecyl sulphate; TCA – tricholoacetic acid 
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Chapter 5: Results  

 

5.1 HEV vp13 protein co-localizes with the MTs.  

HEV ORF3 (H3) was first cloned into VenusN1 vector for expression of vp13-

venus fusion protein. HeLa cells were transfected with VenusN1-H3 plasmid. At 24 h 

after transfection, live fluorescence microscopy was conducted. Under high 

magnification (40X and 63X) and a FITC filter, green filamentous structures were 

observed in the HeLa cells (Fig 5), indicating the expression pattern of vp13 fusion 

protein and its probable co-localization with MTs. When the cells were fixed with 

paraformaldehyde, the expression pattern of vp13 fusion protein was unaltered. There 

was also punctate distribution in the cytoplasm. In contrast, homogeneous bright green 

fluorescence in both cytoplasm and nucleus was observed in cells transfected with empty 

vector (Fig 5).  

 

To determine if the position of H3 in the fusion protein affected its expression 

pattern, H3 was cloned into VenusC1 vector that contains the cloning site downstream of 

the Venus gene. Transfection of HeLa cells with VenusC1-H3 plasmid also showed the 

same pattern as vp13-venus fusion protein described above, but with much more intense 

fluorescence (Fig 5b), indicating that the location of the vp13 protein on the Venus vector 

did not affect or alter the expression pattern. Cells transfected with the empty vector had 

homogeneous bright green fluorescence in both cytoplasm and nucleus, as observed with 

VenusN1 construct.  
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In order to evaluate if vp13 expression pattern differs with the nature of 

expression vector used, H3 was also cloned into PCMV vector. Following transfection of 

HeLa cells with this construct, we observed a similar expression pattern by 

immunofluorescence assay (Fig 5c). These results indicated that the nature of the vector 

used to express the vp13 gene did not alter the expression pattern of vp13 in transfected 

cells.  

 

To determine if the expression of HEV vp13 protein was similar in hepatoma cell 

line since hepatocytes are the primary target cells of HEV, Venus C1-H3 plasmid was 

transfected into Huh-7 cell line. Green fluorescence of filamentous pattern was also 

observed in Huh-7 cell line (Fig 6). The expression of vp13 fusion protein in Huh-7 cells 

appeared in a pattern similar to HeLa cells (Fig 5), though at a lower rate. Therefore, 

HeLa cells were used in all subsequent experiments, unless otherwise specified, for 

assessing vp13 co-localization with MTs.  

 

The vp13 fusion protein expression was also detected by Western blot analysis 

with an antibody against GFP. The size of the vp13-venus fusion protein was ~ 40 kDa, 

while Venus protein alone was 27 kDa (Fig 7A). To further confirm the expression of the 

vp13 fusion protein, a rabbit antibody against HEV vp13 was used in Western blot and 

the band at expected size was detected, while no bands were visible in lysates from 

vector- or mock-transfected cells (Fig 7B). These results confirmed the expression of 

vp13-venus fusion protein in transiently transfected cells.  
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The expression of vp13 in HeLa cells transfected with pCMV-H3 plasmid was 

confirmed by Western blot analysis with rabbit anti-vp13 antibody. Since ORF3 was 

cloned into pCMVTag vector for expression of FLAG-tagged vp13 fusion protein, we 

also performed Western blot with FLAG antibody. However, no specific signal was 

detected (data not shown), which indicated that the vp13 expression in HeLa cells 

transfected with pCMV-H3 was not a FLAG-tagged fusion protein. DNA sequencing 

confirmed that the full-length ORF3 with initiation codon was in frame with FLAG 

sequence in the plasmid. Thus, it was speculated that the translation starts from the 

initiation codon of HEV ORF3 gene, instead of AUG upstream of FLAG tag sequence. 

Therefore, the pCMV-H3 plasmid was used for expression of vp13 without tag in this 

study.  
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Fig 5. Interaction of vp13 with MT in HeLa cells. Cells were transfected with Venus N1-

H3 (A) or Venus C1-H3 (B), pCMV-H3 vectors and, observed by live fluorescence 

microscopy (A&B) or immunofluorescence (C). Note the filamentous pattern of the vp13 

fusion protein (right panels) when compared to empty vectors (left panels).  
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Fig 6. Interaction of vp13 with MT in Huh-7 cells. Huh-7 cells were transfected with 

Venus N1-H3 and, observed by fluorescence microscopy. Note the filamentous pattern of 

the vp13 fusion protein (bottom panel) when compared to empty vector (top panel). 
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Fig 7. Detection of vp13 fusion protein by Western blot. HeLa cells were transfected with 

VenusN1-H3, and cell lysates were detected for the expression of vp13 fusion protein by 

Western blot using mouse anti-GFP antibody (A) or rabbit anti-vp13 antibody (B). Cells 

transfected with the empty vector or untransfected cells were included as controls. M: 

MagicMark™ XP Western Protein Standard (Invitrogen). 
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5.2 Effect of MT-depolymerizing agents on HEV vp13 expression pattern. 

The pattern of expression of vp13 in the transfected cells indicated that it co-

localizes with MTs. To explore the association of vp13 with the microtubular 

cytoskeleton, we used a reversible MT-destabilizing drug nocodazole (NOC) on vp13-

expressing cells and then observed the expression pattern of vp13. HeLa cells were 

treated with NOC at a non-toxic concentration of 10 µM for 4 h on day 2 after 

transfection with VenusN1-H3 plasmid. When observed by fluorescence microscopy, we 

found that the drug treatment led to disappearance of the filamentous expression pattern 

of vp13 (Fig 8). Green punctate fluorescence was observed along the cell periphery or 

subcellular organelles (Fig 8, top panel).  

 

The effects of NOC are reversible. Therefore, to test if the removal of NOC from 

the cells would restore the vp13 filamentous expression pattern, we washed the cells 

twice with culture medium and observed the cells after 4 h incubation without the NOC. 

Upon removal of NOC, the characteristic green filamentous structures were observed in 

the cells, indicating restored MT nucleation and confirming the co-localization of vp13 

with MTs. Together, these results clearly demonstrated that the expression pattern of 

vp13 fusion protein occurred in a MT-dependent manner. 

 



 

 46 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8. Effect of nocodazole (NOC) on vp13 expression pattern. HeLa cells were 

transfected with VenusN1-H3 plasmid and treated with (top) or without (bottom) the MT-

destabilizing drug NOC for 4 h on day 2 after transfection. The depolymerization of MT 

abolished the filamentous expression pattern of vp13 fusion protein (top), while the 

pattern of vp13 expression remained intact in the untreated cells (bottom).  
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5.3 Determination of the MT-binding region of vp13.  

After finding that vp13 protein interacts with the MT, we attempted to determine 

the region in vp13 that was required for this interaction. We generated four truncated 

versions of ORF3 by PCR and cloned them into Venus vectors (Fig 3). Transfection of 

these plasmids into HeLa cells showed that VenusN1-H3D1 and VenusN1-H3D2 

exhibited filamentous expression pattern similar to the full length vp13 fusion protein, 

though at lower intensity (Fig 9; A, B and F). The rest two plasmids showed homogenous 

expression throughout the cells similar to patterns produced in cells transfected with 

empty vector (Fig 9; C and D). These results indicated that N' portion of vp13 was 

needed for the filamentous expression pattern.  

 

The N' portion of vp13 contains two hydrophobic domains that might be 

responsible for the MT interaction. Therefore, to further define the binding region, we 

cloned the fragment containing the first hydrophobic domain into VenusC1 vector. 

Following transfection, live-cell fluorescence microscopy was conducted and we 

observed only green punctate fluorescence but no filamentous pattern (Fig 9E), indicating 

that the first hydrophobic domain of N' region of vp13 is inadequate for MT interaction. 

Since VenusN1-H3D3 contained sequences of the second hydrophobic domain of N' 

region of vp13 and had homogeneous expression in transfected cells, the second 

hydrophobic domain is also inadequate for MT interaction either. Thus, both hydrophobic 

domains in N' region of vp13 are required for the co-localization of vp13 with MT, as 

shown in truncation construct VenusN1-H3D1.   
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Fig 9. Identification of MT-interacting domain of vp13 protein. Fluorescence images 

from HeLa cells transfected with the VenusN1-H3D1 (A), VenusN1-H3D2 (B), 

VenusN1-H3D3 (C), VenusN1-H3D4 (D), VenusC1-H3NH (E), and VenusN1-H3 (F) 

constructs containing the different ORF3 truncations or full-length ORF3.  
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5.4 Effect of HEV vp13 on MT stability.  

Dynamic instability is a fundamental property of MTs and is critical for diverse 

cellular functions, and is regulated by many factors. It has been shown that persistent 

perturbation of MT dynamics with MT-stabilizing drug taxol or MT-destabilizing drug 

NOC causes significant apoptosis (Sorger et al., 1997). The taxol-perturbation of MT 

induces apoptosis through a mitochondria-dependent pathway (Wang et al., 2000).  

 

Tubulin acetylation is a well established marker of MT stability. Stable MTs 

exhibit much higher extent of tubulin acetylation than dynamic, unstable MTs 

(Westermann & Weber, 2003). Since vp13 interacts with the MTs and hyperacetylation is 

a quantitative indication of changes in MT stabilization, we examined the level of tubulin 

acetylation in HeLa cells transfected with VenusN1-H3, by Western blot using a specific 

antibody against acetylated α–tubulin (Fig 10). Compared to the controls, acetylated α–

tubulin was elevated in HeLa cells transfected with vp13 expression plasmid, pCMV-H3 

(Fig 10A). Densitometry analysis of the band intensities showed that the level of 

acetylated α–tubulin in HeLa cells with vp13 expression was 3.2-fold higher than that in 

mock-treatment control, while the cells transfected with empty vector had a little 

elevation (Fig 10B). The level of acetylated α–tubulin was also checked in Huh7 cells 

using C1-H3 vector and similar results were obtained (Fig 10C). These results indicated 

that expression of vp13 enhanced the stability of MTs, by elevating the levels of 

acetylated α–tubulin in HeLa cells and Huh7 cells. 
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Fig 10. Effect of HEV vp13 on MT stability. A. Western blot detection of acetylated α–

tubulin in HeLa cells (A) and Huh-7 cells (C) transfected with vp13-expressing plasmid 

(vp13 lane), or empty vector or untransfected (mock lane). Detection of β-tubulin in the 

same blot was conducted for normalization.  B. Graphic illustration of densitometry 

analysis of the digital image of “A”. The level of acetylated α–tubulin is presented as 

relative folds in comparison with mock-treatment control. D. Graphic illustration of 

densitometry analysis of the digital image of “C” in relative folds. 
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5.5 Effect of HEV vp13 on cellular p53 levels.  

Because MT dynamics is critical for diverse cellular functions, modulation of 

MTs may result in various biological consequences. p53 tumor suppressor protein has 

been shown to associate with MTs and use the MT-dependent motor complex 

dynein/dynactin for nuclear targeting under conditions of DNA damage (Giannakakou et 

al., 2000). p53 is a key transcription factor that can induce growth-arrest, apoptosis and 

cell senescence. It is a tumor suppressor phosphoprotein that is usually inactive in normal 

cells, but becomes active after being activated by variety of stress types and oncogenes . 

So, we determined the levels of p53 in COS-7 cells expressing vp13. HeLa cells naturally 

contain an inactive p53 (Liang et al., 1995) and, therefore, were not suitable for this 

study. 

  

COS-7 cells were transfected with vp13-expressing VenusN1-H3 plasmid, or with 

empty vector or left untransfected. Lysates were harvested at 24 h post-transfection and 

subjected to SDS-PAGE and immunoblotting using a p53-specific antibody. Our results 

showed that in COS-7 cells expressing vp13, p53 level was elevated compared to those 

transfected with empty vector or untransfected cells (Fig 11A). Densitometry analysis of 

the bands showed that p53 level in the cells with vp13 expression was 2.6-fold higher 

than the vector-transfected or untransfected cells (Fig 11B). These results indicated that 

vp13 expression induced p53 elevation in COS-7 cells, while the empty vector alone did 

not have any effect.  
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Fig 11. Effect of HEV vp13 on levels of cellular p53. A. Western blot with p53 antibody. 

COS-7 cells were transfected with VenusN1-H3 plasmid (vp13), or empty vector (V) or 

left untransfected (M). Lysates were collected and subjected to SDS-PAGE and 

immunoblotting using p53-specific antibody. Tubulin was detected in the same blot for 

normalization. B. Graphic illustration of densitometric analysis of the digital image of 

p53 blot. The p53 protein level is presented as relative folds in comparison with 

untransfected control. 
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To determine if the p53 elevation was due to increased p53 mRNA transcripts or 

protein accumulation, we conducted real time RT-PCR to assess p53 mRNA level in the 

COS-7 cells. In comparison with mock-treated control, cells with vp13 expression had 

more than 2.5 folds higher level of p53 transcripts (Fig 12), while empty vector did not 

cause any significant change.  

 

 

 

 

 

 

 

 

 

 

 

Fig 12. Expression levels of p53 mRNA in vp13-expressing cells. Quantitative RT-PCR 

to assess the transcript levels of p53 was performed and the results are shown as relative 

fold compared with mock-treatment control. 
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5.6 Effect of HEV vp13 on cellular levels of p21Cip1/WAF1.  

Cyclin-dependent kinase inhibitor p21Cip1/WAF1 (p21) is transcriptionally activated 

by tumor suppressor p53. Induction of p21 is essential for p53-mediated arrest of cell 

cycle in G1 phase in response to DNA damage (el-Deiry et al., 1994). Since p53 was 

elevated in cells expressing vp13 (section 4.5), we evaluated the cellular levels of p21, 

the protein which is activated upstream by p53, in vp13-expressing cells (Fig 13). By 

immunoblotting, we found that the p21 levels in COS-7 cells expressing vp13 were 

higher than those in cells transfected with empty vector (Fig. 13A). Densitometric 

analysis showed that p21 levels in vp13-expressing cells were 2.9-fold higher than those 

in untransfected or vector-transfected cells (Fig.13B).  

 

To determine if the p21 protein elevation was due to higher transcription of p21 

mRNA, real time RT-PCR was conducted to assess p21 mRNA level in the COS-7 cells 

transfected with vp13-expressing plasmids. In comparison with mock-treatment control, 

the cells that express vp13 had 2.5-fold higher p21 mRNA level (Fig. 13C), while the 

empty vector did not lead to any change. These results indicated that the mRNA levels of 

p21 were elevated in vp13-expressing COS-7 cells, which correlated with the increased 

p21 protein levels as observed by Western blot. Taken together, these results 

demonstrated that vp13 expression led to p21 elevation, which in turn may inhibit cell 

cycle progression.  
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Fig 13. Effect of HEV vp13 on p21 expression. A. Western blot using p21 antibody. 

COS-7 cells were transfected with VenusN1-H3 plasmid (vp13), or empty vector (V) or 

left untransfected (M). Lysates were collected and subjected to SDS-PAGE and 

immunoblotting using p21-specific antibody. Tubulin was detected in the same blot for 

normalization. B. Graphic illustration of densitometric analysis of the digital image of 

p53 blot. The p53 protein level is presented as relative folds in comparison with 

untransfected control. 
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Fig 13 (Contd.). C. Quantitative RT-PCR to assess the transcript levels of p21 was 

performed and the results are shown as relative fold compared with mock-treatment 

control.  

 

5.7 Effect of HEV vp13 on negative regulator of p53: MDM2.  

As described in section 5.5, our results indicated that the levels of p53 are 

elevated in vp13-expressing cells. The p53 elevation could be either due to a direct effect 

of vp13 on p53 or, due to the interference of vp13 with p53 degradation that indirectly 

leads to elevated p53 levels. MDM2 is an important negative regulator of p53 since it 

acts as an E3 ubiquitin ligase, targeting p53 for proteosome-mediated degradation 

(Kubbutat et al., 1997). Moreover, increase in MDM2 level also acts as a surrogate 

marker of nuclear localization of p53 (Giannakakou et al., 2000). Therefore, we 

evaluated the levels of MDM2 expression in the cells expressing vp13 by Western blot  



 

 57 
 

(Fig 14). We could not detect any detectable increase in MDM2 protein levels in vp13-

expressing cells (Fig 14).  

 

 

 

 

 

 

 

 

 

 

Fig 14. Effect of HEV vp13 on MDM2 expression. Western blot for MDM2 was 

performed on lysates collected from COS-7 cells that were transfected with vp13-

expressing plasmid (H3), or empty vector (V) or left untransfected (M). Tubulin was 

detected in the same blot for normalization. 
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5.8 Activation of apoptotic pathway by HEV vp13.  

One of the consequences of interference of MT dynamics is apoptosis, and 

activation of p53 in turn leads to activation of apoptotic responses (Vousden & Woude, 

2000). Given that vp13 interacts with MT and possibly interferes with MT dynamics by 

altering the level of acetylated tubulin, and that vp13 also increases the levels of p53, it is 

possible that vp13 expression could result in apoptosis. Therefore, we analyzed for 

various events, in vp13-expressing cells, that are characteristic of the apoptotic pathway. 

Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear DNA-binding zinc finger protein 

that influences DNA repair and apoptosis (Kaufmann et al., 1993). Proteolytic cleavage 

of PARP-1 (p116) yields a cleavage product (p85) and considered as a classical hallmark 

for apoptosis. Caspases are proteolytic enzymes that are the central mediators of 

apoptosis. Therefore, we tested for the cleavage of PARP-1 and for the expression of 

caspases in cells that transiently or stably express vp13, to determine if HEV vp13 

activated the apoptotic pathway. 

 

Western blot analysis was performed to evaluate the cleavage of PARP-1 

indicated that in vp13-expressing HeLa cells. Our results indicated that cleavage of 

PARP-1 occurred at an increased level when compared to that in vector transfected or 

untransfected cells (Fig 15A). Densitometric analysis performed to determine the level of 

the cleavage product (p85), indicated that the p85 levels were about 4-fold higher in 

vp13-expressing HeLa cells compared to those in the vector-transfected cells (Fig 15B). 

To further determine the effect of vp13 on apoptosis, we generated HeLa cells that 

stably-expressed vp13, as described in materials and methods (section 3.1.1). We 
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observed PARP-1 cleavage in vp13-positive cells, but not in vp13-negative cells (Fig 

15C). The level of PARP p85 in vp13-positive stable cells was over 60-fold higher than 

vp13-negative cells (Fig 15D).   

 

 

 

 

 

 

 

 

 

Fig 15. Activation of apoptotic pathway by vp13. A. Western blot detection of PARP-1 

cleavage in HeLa cells transfected with pCMV-H3 construct (vp13) or empty vector or 

left untransfected (mock). Cleavage of caspases 8 and 9 was also tested  in the same blot. 

Detection of β-tubulin in the same blots was conducted for normalization. B. 

Densitometric analysis of the digital image of PARP-1 blot. The PARP-1 p85 level is 

presented as relative folds in comparison with empty vector control. C. Western blot 

detection of PARP-1 in stable vp13-positive (vp13+) or -negative (vp13-) and normal 

HeLa cells (mock). D. Densitometric analysis of the digital image in ‘C’.  
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Surprisingly, in HeLa cells that transiently express vp13, Western blot analysis 

indicated that there was no significant change in the levels of upstream initiator caspases, 

caspase-8 and -9, in vp13-expressing cells compared to cells transfected with empty 

vector or untransfected cells (Fig 15A). The caspase-8 subunit p18 or caspase-9 subunit 

p10 was not detected, indicating no cleavage or activation of these two initiator caspases.  

 

For clones of the HeLa cells that stably express vp13, we found that the levels of 

caspase 8 and 9 were similar between the stable cells and control, but the activity levels 

of caspase-3 and -7 in vp13-positive cells was 40% higher than that in vp13-negative 

cells (Fig 16A). We believed that this increased activity of caspases 3 and 7 accounted for 

the increased levels of PARP-1 cleavage observed in these cells. In order to determine if 

the increased caspase activities resulted in any alteration in cell survival and growth, we 

performed a cell viability assay. Our results from the cell growth assay did not detect any 

change in the growth rate of stable HeLa cells of both clones compared to normal HeLa 

cells (Fig 16B). These results indicate that the apoptosis pathway activation by HEV 

vp13 was probably abortive or incomplete.  
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Fig 16. Caspase -3 and -7 activities (A) and cell viability (B) in vp13-positive stable 

HeLa cells. Relative percentage is shown in comparison with normal HeLa cells.  
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5.9 MT isolation and salt extraction assay. 

  Since vp13 colocalized with MTs, we speculated that there could be a physical 

interaction between vp13 and MTs and, therefore, isolated MTs would carry vp13 protein 

along with them. HeLa cells, transiently transfected with vp13-expression plasmid, were 

homogenized in MT-stabilization buffer PEM. The cell lysate was centrifuged to separate 

MTs from free tubulin and other soluble cytoplasmic fraction. Any proteins associated 

with MTs would pellet with them during the centrifugation. SDS-PAGE analysis showed 

that vp13 was in the pellet fraction, but not in the supernatant (Fig 17A), indicating that 

vp13 physically interacted with the MTs. Acetylated α-tubulin was only detected in 

pellet, as expected. Resuspension of the MT pellet in high salt (500 mM KCl) PEMS 

buffer extracts MT-associated proteins (MAP) or MAP-like proteins as the binding of 

these proteins to the MTs is charge-dependent [see review (Maccioni & Cambiazo, 

1995)]. A new round of centrifugation with high salt PEMS buffer was carried out to 

separate MTs from MAP and MAP-like proteins. The vp13 was detected in both the 

pellet and supernatant fractions (Fig 17A). The salt extraction of vp13 from MT pellet 

indicates that vp13 behaves as MAP-like protein and the MT association appeared to 

involve an electrostatic interaction. The presence of vp13 in the pellet after the salt 

extraction indicates that vp13 also associates with subcellular organelles, which is 

consistent with the observation of punctate distribution of vp13 in addition to the linear 

array pattern under fluorescence microscopy (Fig 5). Acetylated α-tubulin was found 

only in pellet fraction. The absence of acetylated α-tubulin in the supernatant after salt 

extraction confirmed the stable polymerization of tubulin  
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Fig 17. Microtubule isolation and salt extraction assay. A. MT isolation with PEM buffer 

and salt extraction. The vp13 protein was detected in the pellet fraction only when the 

cells were homogenized in PEM buffer and MTs were pelleted. A portion of vp13 protein 

was shifted to supernatant fraction after extraction of MT pellet with high salt PEMS 

buffer. A portion of vp13 protein was also detected in supernatant fraction when the cells 

were homogenized in PEM buffer supplemented with ATP and GTP (AG) and MTs were 

pelleted.  Acetylated α-tubulin (Ace-tubulin) was detected only in the pellet fraction in all 

of the experiments. β-tubulin served as loading control. The supernatant fraction (S2) 

after extraction of MT pellet with PEMS buffer does not contain free tubulin. B. MT 

isolation with PEMT buffer and release of vp13 in the presence of the nucleotides. The 

vp13 protein was detected in both the pellet and supernatant fractions when the cells were 

homogenized in PEMT buffer, but in supernatant fraction only if ATP and GTP were 

included in PEMT lysis buffer. Acetylated α-tubulin was detected only in the pellet 

fraction in the experiments. C – Cell lysate; P – Pellet; S – Supernatant. 
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As the supernatant fraction after salt extraction with PEMS buffer contains motor 

proteins, MAP and MAP-like proteins, we speculated that vp13 might associate with 

motor proteins.  The cytosolic motor proteins, dynein and kinesin, can be eluted from 

MTs by nucleotides, ATP and GTP (Paschal et al., 1987). To investigate a possible 

association of vp13 with the motor proteins, MT isolation assay was done in PEM buffer 

supplemented with ATP and GTP. Western blot showed that vp13 was present in both the 

pellet and supernatant fraction (Fig 17A). Dynein was also found in the supernatant 

fraction. The presence of exogenous nucleotides reduced ability of motor proteins to 

interact with MTs, which led to shift of vp13 to supernatant.  

 

From our results, we observed vp13 in the pellet after PEM lysis or salt 

extraction. We speculated that vp13 was also present in subcellular organelles besides 

interacting with MTs and that the lysis buffer PEM was unable to lyze the organelles. 

Thus, we used the PEMT lysis buffer that included Triton X-100, to determine if the 

detergent would release vp13 from the subcellular organelles and, to see if the pellet after 

this lysis with PEMT still contains vp13 or not. Both the pellet and supernatant contained 

vp13 after lysis with PEMT buffer (Fig 17B), as expected. Addition of ATP and GTP in 

this lysis buffer shifted vp13 from pellet to supernatant (Fig 17B), indicating that the 

association of vp13 with the MTs is sensitive to the presence of nucleotides, a property 

similar to other motor proteins. Acetylated α-tubulin was found only in pellet fraction. 

These results collectively indicate that vp13 physically associates with the MTs and this 

association is nucleotide-sensitive. They also indicate that vp13 probably acts as a MAP-

like protein, suggesting a potential association of vp13 with other cellular motor proteins. 
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5.10 Involvement of the dynein motor protein in vp13-MT interaction 

Dynein is a large protein complex and functions as a molecular motor that 

transports various cellular cargo towards the minus end of microtubules (King, 2000). 

Many viruses sequester the dynein machinery of infected cells to move along the MTs to 

reach their replication destinations (Alonso et al., 2001; Mabit et al., 2002; Ploubidou et 

al., 2000; Suomalainen et al., 1999). Furthermore, dynein binding to membranous 

organelles occurs through a second large protein complex, dynactin (King, 2000). Over 

expression of a dynactin subunit, p50/dynamitin, disrupts the dynactin complex and 

thereby dynein function (Echeverri et al., 1996).  

 

Since vp13 colocalizes with MTs and potentially associates with motor proteins, 

we examined the role of dynein motor protein in the vp13 distribution pattern. For this 

purpose, we co-transfected HeLa cells with p50/dynamitin expression plasmid and 

VenusC1-H3 and observed the cells under live fluorescent microscopy at 24 h post-

transfection. We observed that the linear array pattern of vp13 expression was abolished 

in the cells co-transfected with p50/dynamitin plasmid while no such observation was 

made in the cells transfected with vp-13 plasmid only (Fig 18, top panels). Many green 

punctates in cytoplasm were also observed. Sodium vanadate (Na3VO4) is a well-

described inhibitor of dynein activity (King, 2000). Incubation of HeLa cells with a non-

toxic concentration of 100 µM Na3VO4   for 2 h abolished the linear array pattern of vp13 

in the cells expressing vp13 (Fig 18, bottom panels), validating the specificity of the 
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above observations with p50/dynamitin expression. Therefore, these results demonstrate 

an important role of dynein motor protein in the vp13-MT interaction process.   

 

 

 

Fig 18. Involvement of dynein in vp13-MT interaction. HeLa cells were co-transfected 

with VenusN1-H3 and p50/dynamitin constructs (left panels). Fluorescence microscopy 

was conducted 24 h after transfection.  Treatment of these cells with sodium 

orthovanadate (Na3VO4) for 2 h abolished vp13 filamentous expression pattern (bottom 

left). HeLa cells transfected with the vector alone are shown as controls (right panel).  
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Chapter 6: Discussion and Conclusion 

 

HEV is an important virus of public health concern. HEV infections lead to 

several outbreaks in developing countries worldwide. Several aspects of HEV biology 

and pathogenesis are not clearly known due to two main reasons – one, the lack of an 

efficient cell culture system for virus propagation, and two, lack of an animal model 

system. Most of the knowledge currently available is based on studies conducted with in-

vitro synthesized replicons or individual viral proteins expressed in cells. Scientists 

around the world are involved in studying and understanding the various aspects of HEV 

molecular biology, replication and pathogenesis in spite of these limitations.  

 

HEV vp13 is a small phosphoprotein encoded by ORF3. Though it is believed to 

play a regulatory role in viral pathogenesis, its exact functions are not clearly known. 

Several researchers have found that vp13 plays a role in various cellular signaling 

pathways and that it is essential for infectivity in vivo, at least in macaques and pigs. In 

this study, we have attempted to understand and characterize the functional role of the 

vp13 protein. In particular, our work has focused on the interaction of vp13 with the cell 

structural component, mainly the microtubules and the consequences of this interaction. 

We have also studied the effect of vp13 expression on several cellular proteins that are 

involved in cell survival and growth. Our findings indicate that vp13 interacts with the 

MTs, which probably might facilitate HEV trafficking inside cells and enable efficient 

viral infection in vivo.  
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MTs are a major component of the cell structural framework. They are polarized 

filaments that have important roles in various cell functions such as cell shape 

maintenance, cell migration and intracellular transport. Several viruses use the cellular 

cytoskeletal machinery, such as actin, MTs, and their associated molecular motors, to 

traffic to the site of replication, assembly, and release (Dohner et al., 2005; Dohner & 

Sodeik, 2005; Smith & Enquist, 2002). Many viruses such as herpesvirus and 

adenoviruses traffic within infected cells specifically using the MTs (Dales & 

Chardonnet, 1973; Kristensson et al., 1986). The Tat protein of HIV, which is a powerful 

activator of viral gene expression, was also found to target MTs by interacting with 

tubulin and induce apoptosis (Chen et al., 2002). Our findings clearly indicate that vp13 

protein of HEV co-localizes with the MTs. The expression pattern of vp13 was abolished 

when transfected cells were treated with nocodazole, an agent that specifically targets and 

destabilizes the MTs, confirming that vp13 interacts with MTs. 

 

Previous reports have shown that vp13 is present in the cytoskeletal fraction and 

that in vp13 expressing cells, the protein is often seen as “speckles” in the cytoplasm 

(Tyagi et al., 2004; Zafrullah et al., 1997). A recent report shows that vp13 localizes in 

early and recycling endosomes and causes delay in the postinternalization trafficking of 

epidermal growth factor to late endosomes/lysosomes (Chandra et al., 2008). A major 

difference in our experiments was the use of Venus reporter vectors to express vp13 as a 

fusion protein.  Venus vectors contain an improved version of YFP (yellow fluorescent 

protein), named “Venus” (Nagai et al., 2002). YFP is a variant of GFP that has been used 

in various applications in biological studies. Antibody against GFP reacts with YFP and 
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other related variant fluorescent proteins.  One major advantage of venus vector is 

monomeric-expression of the reporter protein, thereby avoiding over-expression and thus 

aggregation. Therefore, our results indicate a filamentous pattern of vp13 expression 

though  a speckled appearance was also visible. However, when a difference vector was 

used, we also observed aggregated proteins in big speckles in HeLa cells. Our results also 

suggest that the Venus fusion protein is a better method to be used for localization 

studies. The expression of vp13 fusion protein in COS-7 and Huh-7 cells also appeared in 

filamentous pattern, although at a lower rate, but the filament lengths were shorter than 

those observed in HeLa cells. The difference in filament length may be due to the 

difference in cell type and MT organization. Since the observation of the filamentous 

pattern was better in HeLa cells, these cells might serve as a better system to study vp13 

distribution and MT interaction.  

 

After our findings demonstrated that vp13 interacts with the MT in a specific 

manner, we determined the specific domains of vp13 that are responsible for this 

interaction. The MT interaction domain of vp13 was located in the two N-terminal 

hydrophobic domains. Both the domains were found to be essential for the interaction, 

since constructs with one of the domains did not show the filamentous expression pattern 

in cells after transient transfection. Interestingly, punctate expression pattern was 

observed in cells transfected with the construct containing the first hydrophobic domain 

of vp13, which indicates that the fusion protein could be expressed in subcellular 

organelles such as endoplasmic reticulum or Golgi. The truncation constructs containing 

H3D3 and H3D4 had homogenous expression throughout the cells (Fig. 4), which 
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indicates that the fusion proteins were soluble in cytoplasm. We also noticed that 

expression of the reporter with full-length vp13 had stronger fluorescence than that of 

truncation constructs containing the two N-terminal hydrophobic domains. It is 

speculated that the full-length vp13 might have a better interaction with MTs. The 

functional significance of vp13-MT interaction, in general, and the importance of the 

individual domains of vp13 for the MT interaction, in specific, need to be studied in 

further detail and could serve as future focus areas of this research. 

 

Acetylation and deacetylation under normal physiological conditions act as 

powerful and dynamic means of controlling MT dynamics. Cross-linking of MTs by 

cellular structures occur along their length or cap on their ends are known to cause 

acetylation and stability on MTs (Westermann & Weber, 2003). MT dynamics, a 

fundamental property of MTs, is critical for diverse cellular functions and regulated by 

many factors. Interference of the dynamics can lead to adverse consequences, including 

apoptosis (Sorger et al., 1997). Having observed that vp13 and MT interact, we continued 

to study the effect of vp13 interaction on MT stability. Therefore, we observed changes in 

MT stability, using the levels of acetylated α-tubulin as an indicator. In vp13-expressing 

cells, MT stability was enhanced, as shown by the elevation of acetylated α-tubulin. 

Thus, our results demonstrate the effect of vp13 on MT dynamics. It would be interesting 

to know if MT stability or levels of acetylated α-tubulin are also elevated in natural viral 

infections. However, our results provide a strong speculation that vp13 could serve as an 

important virulent factor in HEV infections.  
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We detected elevation in PARP-1 cleavage in cells expressing vp13. PARP-1 

cleavage is regarded as a hallmark for apoptosis. It is known that severe DNA damage 

triggers a PARP-mediated apoptosis and PARP-1 cleavage is mediated by caspase-3 

during the late phase of apoptosis (Jin & El-Deiry, 2005). Increased levels of p53 were 

demonstrated during PARP-1 cleavage following DNA damage. In the cells expressing 

vp13, elevation of p53 and caspase-3 and -7 activities were detected and may account for 

the PARP-1 cleavage. However, we did not detect any change in caspase 8 and 9 protein 

level or their cleavage in Western blotting analysis. The result indicates that elevation of 

caspase-3 and -7 was either by other unknown factors instead of caspase 8 and 9, or by 

low level of caspase-8 and -9 activities that was below detection level by Western blot. It 

has also been observed that PARP-1 activation can cause the translocation of apoptosis 

inducing factor from the mitochondria to the nucleus, leading to a caspase-independent 

apoptotic pathway (Yu et al., 2002). Whether such events also occur in vp13-expressing 

cells needs to be investigated. Though the vp13 cells have elevated PARP-1 cleavage, we 

did not observe apoptosis or change in cell viability. The reason could be that vp13 

blocks cytochrome C release (Moin et al., 2007) and vp13 has other functions that 

compromised the vp13 activation of the apoptosis pathway and protected the cells from 

death.  

 

Another important aspect of this work was to determine the effects of vp13-MT 

interaction on several cellular proteins involved in cell cycle. When we analyzed the 

levels of the tumor suppressor protein p53 and cyclin-dependent kinase inhibitor p21 

expression, we observed that the levels of both these proteins were elevated in vp13-
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expressing cells when compared to those that do not have vp13. The vp13 interaction 

with MTs could be the stress factor that led to the p53 elevation. However, our work does 

not exclusively demonstrate the relationship of MT interaction and p53 elevation, since 

vp13 may bind to other cellular factors to activate the p53. As downstream players of 

p53, the levels of p21 and MDM2 were elevated accordingly. Because of its inhibitory 

function in cell cycle progression, p21 elevation was expected to result in slowdown of 

cell growth. However, we did not observe any significant cell growth change in cells with 

vp13 expression. It is known that p21 has dual roles in apoptosis (Pavelic et al., 2008) 

and can inhibit p53-mediated apoptosis (Sohn et al., 2006). Thus, in cells with vp13 

expression, the p21 elevation might inhibit apoptosis. However, other possible reasons 

for the absence of apoptosis in the presence of vp13 should also be considered.  

 

Molecular motors such as kinesin and dynein play important roles in cellular 

trafficking, including trafficking of viruses (Dohner et al., 2005). Cytoplasmic dynein, 

together with its activator dynactin, is a multisubunit macromolecular complex necessary 

for cargo transport. Further, dynamitin (p50) is a component of the dynein complex 

whose overexpression results in disruption of dynein-dependent transport by a dominant-

negative effect (Dohner et al., 2002). In our study, dynein motor function was found to be 

critical for the vp13 colocalization with MTs since over expression of p50/dynamitin 

abolished the vp13 expression pattern. In addition, treatment of cells with sodium 

vanadate, a well-described inhibitor of dynein activity, altered the filamentous pattern of 

vp13 expression. These results indicate that vp13 might bind the dynein motor complex 
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and the binding lead to the colocalization with MTs. However, we do not have direct 

evidence to demonstrate interaction between vp13 and dynein complex. 

  

           To further address the interaction of vp13 with MT, we resorted to a MT isolation 

assay that used detergent and salt treatments. Our results indicated that vp13 interaction 

with MTs occurs through the dynein motor protein complex since vp13 was found in MT 

pellet and extracted from the pellet with high salt buffer. This result was consistent with 

the observation of fluorescence microscopy that showed the vp13 colocalization with 

MTs. In this assay, the vp13 transiently transfected cells were used for MT isolation. The 

presence of vp13 in MT pellet indicated direct interaction of vp13 with MTs. Salt 

extraction of the MT pellet removed vp13, which indicated that vp13 behaved like an 

MAP or MAP-like protein, since high salt buffer did not favor their binding to MTs. The 

presence of vp13 in the supernatant fraction in the presence of ATP and GTP showed that 

vp13 may associate with motor proteins complex. It has been proposed that HEV ORF3 

protein may have a role in virion release (Takahashi et al., 2008). Furthermore, recent 

studies have shown that ORF3 protein was detected on the surface of virions released 

from infected cells, but not those from feces (Takahashi et al., 2008). Our findings that 

vp13 protein interacted with motor proteins indicated that it may utilize the motor protein 

for virion trafficking. We speculate that vp13 interaction with MTs is due to vp13 

binding with other MAP-like proteins because ionic interaction was responsible for the 

interaction and the two N-terminal domains of vp13 were needed for the colocalization 

with MTs. It may be the reason why vp13 was found in cytoskeleton fraction, but 
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immunoprecipitation with tubulin antibody failed to precipitate vp13 (Zafrullah et al., 

1997).  

 

In conclusion, our data demonstrate that vp13 interacts with MTs and interferes 

with their dynamics, which could create a conducive intracellular-environment for the 

establishment of successful HEV infection. The vp13 association with MTs led to 

modulation of MT dynamics by elevating their stability. The association also led to 

activation of apoptosis pathway, shown by elevation of PARP-1 cleavage and caspase-3 

and -7 activities. However, no adverse on cell growth was detected, which might be 

vp13’s other functions aborting the apoptosis induction. Furthermore, we have identified 

the MT-binding regions of vp13 in both the N-terminal hydrophobic domains. Our results 

also showed that vp13 expression in HeLa cells increased the levels of cellular proteins 

p53 and p21. An important finding in this study was the involvement of dynein in vp13-

MT interaction and that vp13 behaves as a MAP-like protein. These results advance our 

understanding of HEV vp13 function. Further studies are needed to elucidate the 

mechanism and the biological effects of the MT modulation. Studying the vp13 

interaction with the MTs and the role of molecular motors dynein and kinesin in the 

interaction will assist our understanding of HEV pathogenesis. Moreover, delineating the 

strategy for viral protein binding to the MTs provides clue to the development of novel 

antiviral drugs that can disrupt intracellular viral trafficking. 
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