
Boston University
OpenBU http://open.bu.edu
Earth & Environment BU Open Access Articles

2022-07-27

A high spatial resolution land
surface phenology dataset for

AmeriFlux and NEON sites

This work was made openly accessible by BU Faculty. Please share how this access benefits you.
Your story matters.

Version Published version
Citation (published version): M. Moon, A.D. Richardson, T. Milliman, M.A. Friedl. 2022. "A high

spatial resolution land surface phenology dataset for AmeriFlux and
NEON sites." Scientific Data, Volume 9, Issue 1, pp.448-.
https://doi.org/10.1038/s41597-022-01570-5

https://hdl.handle.net/2144/46048
Boston University

https://www.bu.edu/library/share-your-open-access-story/


1Scientific Data |           (2022) 9:448  | https://doi.org/10.1038/s41597-022-01570-5

www.nature.com/scientificdata

a high spatial resolution land 
surface phenology dataset for 
ameriFlux and NEON sites
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Vegetation phenology is a key control on water, energy, and carbon fluxes in terrestrial ecosystems. 
Because vegetation canopies are heterogeneous, spatially explicit information related to seasonality in 
vegetation activity provides valuable information for studies that use eddy covariance measurements 
to study ecosystem function and land-atmosphere interactions. Here we present a land surface 
phenology (LSP) dataset derived at 3 m spatial resolution from PlanetScope imagery across a range of 
plant functional types and climates in North america. the dataset provides spatially explicit information 
related to the timing of phenophase changes such as the start, peak, and end of vegetation activity, 
along with vegetation index metrics and associated quality assurance flags for the growing seasons of 
2017–2021 for 10 × 10 km windows centred over 104 eddy covariance towers at AmeriFlux and National 
Ecological Observatory Network (NEON) sites. these LSP data can be used to analyse processes 
controlling the seasonality of ecosystem-scale carbon, water, and energy fluxes, to evaluate predictions 
from land surface models, and to assess satellite-based LSP products.

Background & Summary
The AmeriFlux network1, which is part of the global FLUXNET2 network of eddy covariance towers, is 
an important tool for measuring land-atmosphere exchanges of carbon, energy, and water at local to global 
scales3,4. The network uses eddy covariance instruments and standardized data processing techniques to pro-
vide non-destructive measurements of ecosystem fluxes at high temporal resolution, which makes it a unique 
and powerful tool for studying how ecosystems are influencing and responding to climate change1–4. However, 
analysing and interpreting how measured fluxes are affected by local environmental conditions, and particularly 
spatio-temporal variation in local vegetation properties, is challenging. Many eddy covariance towers now have 
PhenoCams5,6, which provide valuable information and imagery that can be used to characterize and monitor 
canopy conditions in the vicinity of towers. However, PhenoCams have fixed and limited fields of view that only 
capture local conditions in the camera field of view or region of interest. Given the important role of vegetation 
phenology in controlling fluxes of carbon, water, and energy, spatially explicit information related to vegeta-
tion phenology has significant utility for studies that use eddy covariance tower data to quantify and interpret 
land-atmosphere interactions and their role in ecosystem function and weather and climate processes7–10.

Remote sensing has been used for several decades to monitor and map the land surface phenology (LSP) 
of terrestrial ecosystems11–14 and has also been used to estimate models of land-atmosphere fluxes calibrated 
to eddy covariance measurements15–18. Until recently, however, the temporal frequency of image acquisitions 
required for this latter application has constrained these studies to using coarse spatial resolution imagery (e.g., 
MODIS at 500 m), which limits their utility for understanding how local variability in landscape properties 
influence fluxes. Bolton et al.19 recently demonstrated that harmonized Landsat and Sentinel-2 data can provide 
high-quality LSP information at 30 m spatial resolution, but even this resolution fails to capture fine-scale varia-
tion (i.e., below 30 m) in phenology and vegetation cover (related to, for example, species composition or patchy 
vegetation structure) that can influence land-atmosphere fluxes20–22.

Several recent studies have demonstrated that commercially available PlanetScope imagery can be used to 
monitor and map LSP at fine spatial resolution, thereby providing new opportunities to exploit high spatial 
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resolution LSP measurements for studies that require spatially explicit information related to vegetation phe-
nology23–26. PlanetScope imagery is acquired by a constellation of CubeSats (180 + as of 2022), and provides 
daily imagery in four bands spanning the visible and near-infrared wavelengths at a nominal spatial resolution 
of 3 m27. Although PlanetScope data do not have the radiometric fidelity and geometric accuracy28,29 of publicly 
available medium spatial resolution imagery from Landsat 8 and Sentinel-2, the higher spatial and temporal 
resolution of PlanetScope imagery creates new opportunities to investigate a wide array of land surface proper-
ties and processes. For example, Moon et al.26 used PlanetScope imagery in association with the LSP algorithm 
developed by Bolton et al.19 and reported that LSP metrics estimated using PlanetScope imagery show strong 
agreement with LSP metrics derived from high-quality publicly available 30 m satellite imagery (i.e., Landsat 
8 and Sentinel 2) and from PhenoCams. Their results demonstrated that PlanetScope imagery captures useful 
information related to vegetation phenology at 3 m spatial resolution across a range of ecosystem types26, and 
that fine-scale variation in landscape properties arising from land use, water bodies, species composition, and 
vegetation structure results in substantial spatial variation in phenology that is not captured at medium spatial 
resolution (i.e., 30 m).

Building on the proof-of-concept provided by Moon et al.26, here we present a new LSP dataset derived from 
3 m spatial resolution PlanetScope imagery covering 104 AmeriFlux and NEON sites that encompass a wide 
range of plant functional types, biomes, and climates regimes in North America (Fig. 1). The dataset includes 
standard LSP metrics that are commonly derived from remote sensing such as the day of year corresponding 
to the start, peak, and end of vegetation greenness, along with metrics that provide the maximum, amplitude, 
and growing season sum of the two-band Enhanced Vegetation Index30 (EVI2) and associated quality assurance 
flags. Data for the period 2017 to 2021 for areas that encompass the flux footprint and surrounding landscapes 
at each tower site (10 × 10 km = 108 m2) are included in the dataset. To document and illustrate the quality of 
these data, we present results from a comprehensive assessment using two independent data sources: (1) LSP 
metrics from the Multisensor Land Surface Phenology dataset, which is derived from Harmonized Landsat 8 
and Sentinel-2 imagery31; and (2) phenometrics from the PhenoCam V3 Dataset.

Methods
Site selection. We selected 104 sites covering a range of ecological, land cover, and climate conditions 
across North America (Table 1). These sites were selected because they are part of either the National Ecological 
Observatory Network (NEON) or AmeriFlux network, all have PhenoCams, and each has at least one year of 
available flux data between 2017 and 2021. Among the included sites, 44 are part of the NEON.

PlanetScope image database compilation. The LSP metrics included in the dataset are derived from a 
database of daily 3 m PlanetScope imagery. To compile this database, a Python script was created to search, request, 
and download imagery using Planet’s RESTful API interface (https://developers.planet.com/docs/apis/data/).  
For each site, the area of interest (AOI) was defined using a GeoJSON file that prescribed a 10 by 10 km box 
centered over the flux tower at each site. Each GeoJSON was then used to submit search requests to the API. As 
part of the search process, the following filters were applied to ensure that good quality images with adequate 
clear sky views and high-accuracy geolocation were downloaded: (1) quality category identified as ‘standard’; (2) 
cloud cover less than or equal to 50%; and (3) ground control is ‘true’. Filtering was performed using all available 

Fig. 1 Geographic distribution of sites included in the PLSP dataset across North America. Each site includes 
data from a 10 × 10 km square centred over one AmeriFlux or NEON site (n = 104). Note that several adjacent 
sites are not distinguishable on the map. The background map shows the IGBP land cover type from the MODIS 
Land Cover Type product35.
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PlanetScope ‘PSScene4Band’ imagery from 2016 to 2022. Once the API completed the search, the Python script 
read the search results, submitted orders, and the selected imagery was downloaded from Planet’s cloud-based 
system to local storage. During execution of the Python script, a log file was created to keep track of successful 

Site Code Site Full Name Site Code Site Full Name

PR-xGU NEON Guanica Forest US-Var Vaira Ranch

PR-xLA NEON Lajas Experimental Station US-Vcm Valles Caldera Mixed Conifer

US-ALQ Allequash Creek Site US-Vcp Valles Caldera Ponderosa Pine

US-ARM ARM Southern Great Plains site US-Vcs Valles Caldera Sulphur Springs Mixed Conifer

US-Bi1 Bouldin Island Alfalfa US-WCr Willow Creek

US-Bi2 Bouldin Island corn US-Whs Walnut Gulch Lucky Hills Shrub

US-BMM Bangtail Mountain Meadow US-Wjs Willard Juniper Savannah

US-BRG Bayles Road Grassland Tower US-Wkg Walnut Gulch Kendall Grasslands

US-CF1 CAF-LTAR Cook East US-xAB NEON Abby Road

US-CF2 CAF-LTAR Cook West US-xAE NEON Klemme Range Research Station

US-CF3 CAF-LTAR Boyd North US-xBL NEON Blandy Experimental Farm

US-CF4 CAF-LTAR Boyd South US-xBN NEON Caribou Creek - Poker Flats Watershed

US-Ha1 Harvard Forest EMS Tower US-xBR NEON Bartlett Experimental Forest

US-Ha2 Harvard Forest Hemlock Site US-xCL NEON LBJ National Grassland

US-HB1 North Inlet Crab Haul Creek US-xCP NEON Central Plains Experimental Range

US-HB2 Hobcaw Barony Mature Longleaf Pine US-xDC NEON Dakota Coteau Field School

US-HB3 Hobcaw Barony Longleaf Pine Restoration US-xDJ NEON Delta Junction

US-Ho1 Howland Forest US-xDL NEON Dead Lake

US-ICs Imnavait Creek Watershed Wet Sedge Tundra US-xDS NEON Disney Wilderness Preserve

US-KFS Kansas Field Station US-xGR NEON Great Smoky Mountains National Park

US-Me2 Metolius mature ponderosa pine US-xHA NEON Harvard Forest

US-Me6 Metolius Young Pine Burn US-xHE NEON Healy

US-MMS Morgan Monroe State Forest US-xJE NEON Jones Ecological Research Center

US-Mpj Mountainair Pinyon-Juniper Woodland US-xJR NEON Jornada LTER

US-Myb Mayberry Wetland US-xKA NEON Konza Prairie Biological Station-Relocatable

US-NC2 NC_Loblolly Plantation US-xKZ NEON Konza Prairie Biological Station

US-NC3 NC_Clearcut#3 US-xLE NEON Lenoir Landing

US-NC4 NC_AlligatorRiver US-xMB NEON Moab

US-Ne1 Mead-irrigated continuous maize site US-xML NEON Mountain Lake Biological Station

US-Ne2 Mead-irrigated maize-soybean rotation site US-xNG NEON Northern Great Plains Research Laboratory

US-Ne3 Mead-rainfed maize-soybean rotation site US-xNQ NEON Onaqui-Ault

US-NR1 Niwot Ridge Forest US-xNW NEON Niwot Ridge Mountain Research Station

US-PFa Park Falls US-xPU NEON Pu’u Maka’ala Natural Area Reserve

US-Rms RCEW Mountain Big Sagebrush US-xRM NEON Rocky Mountain National Park

US-Ro4 Rosemount Prairie US-xRN NEON Oak Ridge National Lab

US-Ro5 Rosemount I18_South US-xSB NEON Ordway-Swisher Biological Station

US-Ro6 Rosemount I18_North US-xSC NEON Smithsonian Conservation Biology Institute

US-Rws Reynolds Creek Wyoming big sagebrush US-xSE NEON Smithsonian Environmental Research Center

US-Seg Sevilleta grassland US-xSJ NEON San Joaquin Experimental Range

US-Ses Sevilleta shrubland US-xSL NEON North Sterling

US-Sne Sherman Island Restored Wetland US-xSP NEON Soaproot Saddle

US-Snf Sherman Barn US-xSR NEON Santa Rita Experimental Range

US-SRG Santa Rita Grassland US-xST NEON Steigerwaldt Land Services

US-SRM Santa Rita Mesquite US-xTA NEON Talladega National Forest

US-Syv Sylvania Wilderness Area US-xTE NEON Lower Teakettle

US-Ton Tonzi Ranch US-xTL NEON Toolik

US-Tw1 Twitchell Wetland West Pond US-xTR NEON Treehaven

US-Tw3 Twitchell Alfalfa US-xUK NEON The University of Kansas Field Station

US-Tw4 Twitchell East End Wetland US-xUN NEON Univ. of Notre Dame Environmental Research Center

US-Tw5 East Pond Wetland US-xWD NEON Woodworth

US-UMB Univ. of Mich. Biological Station US-xWR NEON Wind River Experimental Forest

US-UMd UMBS Disturbance US-xYE NEON Yellowstone Northern Range

Table 1. List of AmeriFlux and NEON sites included in the dataset. .
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and failed orders. If an order failed, the script was run again targeting the specific order that failed. The resulting 
dataset included over 1.8 million unique files with, on average, 3,885 scene images for each site (i.e., the number 
of images, on average, that overlap part of each 10 by 10 km site), and had a total volume of 62.2 TB.

image processing. To ensure that high-quality image time series were used to generate LSP metrics, we 
used PlanetScope per-pixel quality assurance information to exclude pixels that had low quality in all 4 bands 
(i.e., blue, green, red, and near-infrared). Specifically, we excluded pixels where the Unusable Data Mask (layer 
‘umd’) was not 0 (i.e., we retained pixels that were not cloud contaminated or located in non-image areas) and 
pixels where the Usable Data Mask (layer ‘umd2’) is 0 (i.e., we retained pixels that were not contaminated by 
snow, shadow, haze, or clouds). We then cropped all the images to exclude pixels outside of the 10 by 10 km win-
dow centered over each tower. We selected this window size based on published results showing that 80% of the 
average monthly footprint at eddy covariance towers ranges from 103 to 107 square meters22. Note that the swath 
for PlanetScope imagery often did not cover entire sites and some sites (e.g., the tall tower at US-Pfa) have larger 
footprints than other sites. Similarly, most sites had multiple PlanetScope image acquisitions on the same day. 
To create image time series, we mosaiced all available imagery at each site on each date, and, under the assump-
tion that geolocation error was non-systematic and modest, we created a single image for each date using the 
mean surface reflectance for pixels with multiple values on the same day. The resulting database of daily surface 

Layer Name Description Units Scale Factor Valid Range Fill value

NumCycles Number of phenological cycles detected in 
target year Number of cycles 1 0–6 32767

First Vegetation Cycle: Largest EVI2 amplitude cycle Phenology Timing Metrics

OGI Onset Greenness Increase (Date of 15% 
greenness increase)

Day of year (January 1 of target 
year = 1) 1 −181–548 32767

50PCGI 50 Percent Greenness Increase (Date of 50% 
greenness increase)

Day of year (January 1 of target 
year = 1) 1 −181–548 32767

OGMx Onset Greenness Maximum (Date of 90% 
greenness increase)

Day of year (January 1 of target 
year = 1) 1 −181–548 32767

Peak Date of Cycle Peak Day of year (January 1 of target 
year = 1) 1 1–366 32767

OGD Onset Greenness Decrease (Date of 10% 
greenness decrease)

Day of year (January 1 of target 
year = 1) 1 −181–548 32767

50PCGD 50 Percent Greenness Decrease (Date of 50% 
greenness decrease)

Day of year (January 1 of target 
year = 1) 1 −181–548 32767

OGMn Onset Greenness Minimum (Date of 85% 
greenness decrease)

Day of year (January 1 of target 
year = 1) 1 −181–548 32767

Vegetation Indices

EVImax Maximum EVI2 during vegetation cycle — 0.0001 0–10000 32767

EVIamp EVI2 Amplitude during vegetation cycle — 0.0001 0–10000 32767

EVIarea Integrated EVI2 during vegetation cycle — 0.01 0–32766 32767

Second Vegetation Cycle: Second Largest EVI2 amplitude cycle Phenology Timing Metrics

OGI_2 Onset Greenness Increase (Date of 15% 
greenness increase)

Day of year (January 1 of target 
year = 1) 1 −181–548 32767

50PCGI_2 50 Percent Greenness Increase (Date of 50% 
greenness increase)

Day of year (January 1 of target 
year = 1) 1 −181–548 32767

OGMx_2 Onset Greenness Maximum (Date of 90% 
greenness increase)

Day of year (January 1 of target 
year = 1) 1 −181–548 32767

Peak_2 Date of Cycle Peak Day of year (January 1 of target 
year = 1) 1 1–366 32767

OGD_2 Onset Greenness Decrease (Date of 10% 
greenness decrease)

Day of year (January 1 of target 
year = 1) 1 −181–548 32767

50PCGD_2 50 Percent Greenness Decrease (Date of 50% 
greenness decrease)

Day of year (January 1 of target 
year = 1) 1 −181–548 32767

OGMn_2 Onset Greenness Minimum (Date of 85% 
greenness decrease)

Day of year (January 1 of target 
year = 1) 1 −181–548 32767

Vegetation Indices

EVImax_2 EVI2 maximum during vegetation cycle — 0.0001 0–10000 32767

EVIamp_2 EVI2 Amplitude during vegetation cycle — 0.0001 0–10000 32767

EVIarea_2 EVI2 area during vegetation cycle — 0.01 0–32766 32767

Quality Assurance (QA)

QA Quality Assurance for first vegetation cycle — 1 1–4 —

QA_2 Quality Assurance for second vegetation cycle — 1 1–4 —

numObs Number of days with clear observations in 
calendar year Days 1 0–366 32767

Table 2. Product table.

https://doi.org/10.1038/s41597-022-01570-5
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reflectance images were sorted in chronological order, sub-divided into 200 sub-areas at each site (i.e., 0.5 km2 
each), and then stored as image stacks to facilitate parallel processing to estimate LSP metrics, where each image 
stack included all images from July 1, 2016 through January 31, 2022.

Creation of daily EVI2 time series. To estimate LSP metrics we adapted the algorithm described by Bolton 
et al.19, which was originally implemented to estimate LSP metrics from harmonized Landsat and Sentinel-2 
(HLS) imagery, for use with PlanetScope imagery. Prior to LSP estimation, daily images of the two-band 
Enhanced Vegetation Index30 (EVI2) data were generated from PlanetScope imagery and then interpolated to 
create smooth time series of daily EVI2 values at each pixel in three main steps. First, sources of variation related 
to clouds, atmospheric aerosols, and snow were detected and removed from the EVI2 time series at each pixel 
based on data masks provided with PlanetScope imagery (described above) and outlier detection criteria (i.e., 
de-spiking and removing negative EVI2 values). Second, we identified the ‘background’ EVI2 value (the mini-
mum EVI2 value outside of the growing season) based on the 10th percentile of snow-free EVI2 values at each 
pixel. Any dates with EVI2 values below the background value were replaced with the background EVI2. Third, 
penalized cubic smoothing splines were used to gap-fill and smooth the data to create daily EVI2 time series 
across all years of available data. Complete details on these steps are given in Bolton et al.19. This approach has 
been tested and shown to yield PlanetScope EVI2 time series that are consistent with both EVI2 time series from 
HLS imagery and time series of the Green Chromatic Coordinate (GCC) from PhenoCam imagery26. We used 
the EVI2 instead of other vegetation indices such as the Enhanced Vegetation Index (EVI) or the Normalized 
Difference Vegetation Index (NDVI) because EVI2 is less sensitive to noise from atmospheric effects relative to 
EVI and is less prone to saturation over dense canopies and noise from variation in soil background reflectance 
over sparse canopies relative to the NDVI30,32. Thus, phenological metrics from EVI2 time series tend to have 
better agreement with PhenoCam observations than corresponding metrics from NDVI33.

identifying phenological cycles. Prior to estimating LSP metrics, we first identity unique growth cycles by 
searching the period before and after each local peak in the daily PlanetScope EVI2 time series. To be considered 
a valid growth cycle, the difference in EVI2 between the local minimum and maximum was required to be at 
least 0.1 and greater than 35% of the total range in EVI2 over the 24-month period centered on the target year ± 6 

Fig. 2 Greenup dates and EVI2 seasonal amplitudes in 2019. Each column represents a different site. Left: US-
Ro5 (cropland); middle: US-NC2 (pine plantation); and right: US-Tw5 (wetland). The upper row shows the day 
of year corresponding to 50PCGI and the lower row shows the EVI2 amplitude at each 3 m pixel. The spatial 
extent for each image is 10 by 10 km.

https://doi.org/10.1038/s41597-022-01570-5
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months. The start of each growth cycle is restricted to occur within 185 days before the peak of the cycle and at 
least 30 days after the previous peak. The same procedure was applied in reverse at the end of the cycle to con-
strain the range of end dates for each growth cycle. This procedure is applied recursively over the time series until 
each local peak has been assessed and all growth cycles (with associated green-up period, peak greenness, and 
green-down period) are identified in the time series at each pixel. As part of this process, the algorithm provides 
the number of growth cycles identified for each year in the time series.

Retrieving LSP metrics. LSP metrics are estimated for each pixel in up to two growth cycles in each year. 
If no growth cycles are detected, the algorithm returns fill values for all timing metrics, but does report values for 
the four annual metrics: EVImax, EVIamp, EVIarea, and numObs (see below). If more than two growth cycles are 
detected, which is rare but does occur (e.g., alfalfa, which is harvested and regrows multiple times in a year), the 
algorithm records 7 LSP metrics for each of the two growth cycles with the largest EVI2 amplitudes. The resulting 
dataset includes seven ‘timing’ metrics that identify the timing of greenup onset, mid-greenup, maturity, peak 
EVI2, greendown onset, mid-greendown, and dormancy. These metrics record the day of year (DOY) when the 
EVI2 time series exceeds 15%, 50%, and 90% of EVI2 amplitude during the greenup phase, reaches its maximum, 
and goes below 90%, 50%, and 15% of EVI2 amplitude during the greendown phase. In addition, the algorithm 
records three complementary metrics that characterize the magnitude of seasonality and total ‘greenness’ at each 
pixel in each growth cycle: the EVI2 amplitude, the maximum EVI2, and the growing season integral of EVI2, 
which is calculated as the sum of daily EVI2 values between the growth cycle start- and end-dates (i.e., from 
greenup onset to dormancy).

Fig. 3 Five years of daily variation in vegetation activity at the Jornada LTER site (US-xJR). Images in the upper 
row show the day of year corresponding to the timing of maximum EVI2 in each PlanetScope pixel in 2017, 
2018, and 2021. The PhenoCam is located at the centre of the site. The second row shows PhenoCam images 
acquired on dates corresponding to the maximum EVI2. The bottom panel shows EVI2 time series from a single 
PlanetScope pixel centred over the PhenoCam (dots: raw data; line: smoothing spline fit to data). Note, grey 
areas in the top row correspond to pixels where the seasonal amplitude of PlanetScope imagery did not exceed 
0.1, which was the case for nearly all pixels in 2018.

https://doi.org/10.1038/s41597-022-01570-5
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Quality assurance flags. Quality Assurance (QA) values are estimated at each pixel based on the density of 
observations and the quality of spline fits during each phenophase of the growing season. A QA value of 1 (high 
quality) is assigned if the correlation between observed versus fitted daily EVI2 values is greater than 0.75 and 
the maximum gap during each phase is less than 30 days. A QA value of 2 (moderate quality) is assigned if the 
correlation coefficient is less than 0.75 or the length of the maximum gap over the segment is greater than 30 days. 
A QA value of 3 (low quality) is assigned if the correlation coefficient is less than 0.75 and the length of the maxi-
mum gap over the segment is greater than 30 days. A QA value of 4 is assigned if no growth cycles were detected 
or insufficient data were available to run the algorithm.

Data Records
The PlanetScope Land Surface Phenology (PLSP) dataset34 consists of 24 data layers (Table 2) and spans 5 years 
(2017–2021) for each site. Each site and year of data is saved in a single Network Common Data Form (netCDF) 
file, and the dataset is permanently and publicly available through the Oak Ridge National Lab Distributed 
Active Archive Centre for Biogeochemical Dynamics (https://doi.org/10.3334/ORNLDAAC/2033).

The structure of the dataset is as follows:

<Site Code__Site Full Name>
                            └─── PSLP_<Year>.nc

Here, “Site Code” and “Site Full Name” are the AmeriFlux site code and full site name, respectively, as pre-
sented in Table 1, and “Year” is the year of the estimated LSP metric from 2017 to 2021. Each netCDF file 
includes all 24 data layers for each year. Note that even though the PlanetScope imagery we use to create this 

Fig. 4 Phenological cycles at the Bouldin Island (Alfalfa) site (US-Bi1) in 2019. Images in the upper row show 
the Cropland Data Layer36, the number of phenological cycles, and the day of year corresponding to 50PCGI in 
2019. The PhenoCam is located at the centre of the site. The second row shows PhenoCam images acquired on 
dates corresponding to the points identified by arrows in the bottom panel. The bottom panel shows EVI2 and 
GCC time series from a single PlanetScope pixel centred over the PhenoCam and PhenoCam imagery.

https://doi.org/10.1038/s41597-022-01570-5
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dataset starts in 2016, we exclude this year from the PLSP dataset because the density of EVI2 times series is too 
sparse to estimate phenometrics with high confidence. To facilitate access to the location and boundary of each 
site, we include the GeoJSON file for each site as ancillary data.

technical Validation
A detailed technical validation of LSP metrics from PlanetScope imagery is presented in Moon et al.26. Results 
from that study demonstrated that LSP metrics estimated from PlanetScope image times series show strong 
agreement with LSP records derived from both HLS and PhenoCams, and that LSP metrics from PlanetScope 
capture information related to fine-scale variation in LSP that is not captured in medium or coarse spatial res-
olution LSP datasets26. Below we present additional validation that extends these previous results for the sites 
included in the PLSP dataset. First, we present images showing the mid-greenup date (50PCGI) and the EVI2 
seasonal amplitude for three representative sites included in the dataset. Second, we present results showing 
the timing of peak EVI2 and associated PhenoCam images at the Jornada LTER site (US-xJR), which does not 
exhibit a clear annual cycle of vegetation activity. Third, we present phenological cycles at the Bouldin Island 
Alfalfa site (US-Bi1) to illustrate how our algorithm handles an extreme case with multiple growth cycles within 
a year. Fourth, we compare mid-greenup and mid-greendown dates (i.e., 50PCGI and 50PCGD, respectively) 
from PlanetScope imagery against an independent LSP dataset derived from HLS time series. Specifically, we 
compare the PLSP dataset against V011 of the MSLSP30NA31 data product (hereafter, MSLSP), which is pub-
licly available via NASA’s Land Processes Distributed Active Archive Centre. Fifth, we compare 50PCGI and 
50PCGD from the PLSP dataset against corresponding values estimated from PhenoCam GCC time series.

Figure 2 shows representative images showing PLSP greenup dates and the seasonal amplitude of EVI2 
for three sites with different landscapes included in the dataset. Each site has a land cover type (assigned 
by AmeriFlux) that is representative of the flux tower footprint. However, as is evident in these images, the 
10 × 10 km2 areas surrounding these sites include a range of vegetation and land cover, which are manifested in 
the LSP data. For example, the primary land cover type for the US-Ro5 site (first column in Fig. 2) is cropland 
and greenup dates for most of the area surrounding the tower at the centre of the image occur around DOY 170. 
However, non-cropland areas (particularly in riparian areas) show greenup dates that are several weeks earlier, 
which reflects the impact of land management on vegetation phenology at the site. Further, the high spatial reso-
lution of PlanetScope imagery captures fine-scale spatial variation in land surface phenology related to fine-scale 
variation in land cover (i.e., vegetated versus non-vegetated areas) associated with buildings, roads, and small 
water bodies. At the US-NC2 site (second column in Fig. 2), pine plantations (green and purple in the top row) 
show earlier greenup dates with low seasonal EVI2 amplitudes, while croplands show later greenup dates with 
large EVI2 amplitudes. The third column in Fig. 2 shows LSP images centred over AmeriFlux site US-Tw5, 
which is located in a wetland and is surrounded by heterogeneous land cover that includes a mix of wetlands, 

Fig. 5 Comparison of PLSP and MSLSP metrics. Each plot compares average values for randomly selected 3 × 3 
pixel windows in the MSLSP dataset against average values for co-located 30 × 30 pixel windows from the PLSP 
dataset (i.e., 90 by 90 m windows). Acronyms for the various LSP metrics are given in Table 2.
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croplands, natural vegetation, and water bodies. Again, the LSP metrics in the PLSP dataset capture fine-scale 
variation in LSP across the site.

Figure 3 presents PLSP images showing the timing maximum EVI2 at the Jornada LTER site in 2017, 2018, and 
2021 (first row), PhenoCam images on dates corresponding to maximum EVI2 from PlanetScope (second row), and 
EVI2 time series from PlanetScope for 2017–2021 (third row). Phenology at this site shows either weak seasonality or 
no clear annual cycle of vegetation activity over the five-year period. In 2017, only 15% of pixels in the 10 by 10 km site 
exhibited sufficient phenological variation to be detected by the PLSP algorithm (i.e., 15% of pixels exhibited seasonal 
EVI2 amplitudes that exceeded 0.1). In 2018, less than 1% of pixels met this criterion. In contrast, over 75% of pixels 
in the site exhibited a measurable phenological cycle in 2021. This pattern is corroborated by PhenoCam images cor-
responding to the date of maximum PlanetScope EVI2 that are shown in the second row of Fig. 3, and demonstrates 
how the PLSP dataset is able to capture relatively subtle year-to-year variation in phenology.

Figure 4 shows PLSP and PhenoCam data from the US-Bi1 site, which is dominated by croplands and includes a 
variety of crop species. The PhenoCam’s field of view faces a field with alfalfa (second row), a crop with short growth 
cycles (generally less than two months) that is harvested multiple times per year. Corn fields occupy most of the land-
scape, exhibit relatively uniform phenology with one growth cycle, and have 50PCGI dates that range from DOY 150 
to 190 (first row). PlanetScope EVI2 and PhenoCam GCC time series both capture the short growth cycles of alfalfa 
(i.e., six growth cycles in 2019; third row). However, due to heuristics encoded in our algorithm (among others, that 
the start of each growth cycle is restricted to occur at least 30 days prior to the peak), the algorithm used to create 
the PLSP dataset does not provide a realistic representation of phenology for the alfalfa fields at this site (i.e., most 
pixels assigned as alfalfa are estimated to have three growth cycles, and the dataset provides phenometrics for only 
two growth cycles). That said, PlanetScope EVI2 time series clearly capture phenological dynamics in the field that 
are consistent with ground-based PhenoCam GCC data. Hence, it should be possible to adjust our algorithm in future 
versions of the dataset to account for locations with more than two growing seasons each year.

Figure 5 provides a comprehensive comparison of DOY phenometrics estimated from the MSLSP and PLSP 
datasets that includes data from 101 sites and six day-of-year phenometrics. Three sites were excluded (in Hawaii 
and Puerto Rico) because they were outside of the geographic coverage of the MSLSP dataset. This comparison 
uses average values from co-located 3 × 3 pixel windows from MSLSP images and 30 × 30 pixel windows from 
PLSP images (i.e., covering 90 by 90 m windows for both datasets) for 100,000 randomly sampled points across 
all sites from 2017 to 2019. Overall, there was strong agreement between LSP metrics from the PLPS and MSLSP 
datasets: the minimum correlation (r) is 0.83; the maximum root-mean-square error (RMSE) is 26 days; and 
the maximum bias (i.e., PLSP - MSLSP) is −7.2 days. Agreement was strongest for LSP metrics corresponding 
to the timing of maximum greenness and 50% greenup and greendown (i.e., OGMx, 50PCGI and 50PCGD, 
respectively), and was weakest for LSP metrics representing the start and end of growing seasons (i.e., OGI and 
OGMn), which showed modestly lower agreement and higher RMSEs. These lower agreements for OGI and 
OGMn can be attributed to the fact that these metrics are most susceptible to artefacts from image processing 
such as screening for snow- and cloud-contaminated pixels and determination of background EVI2 values.

As a final basis for assessing the PLSLP dataset, we compared phenometrics from PlanetScope to correspond-
ing phenometrics from PhenoCam GCC time series (Fig. 6). Across 5 years of PLSP measurements and 101 sites, 
the comparison includes PhenoCam imagery from 207 individual cameras (Supplementary Table 1), yielding 
803 and 816 site-years of greenup and geendown dates, respectively. To perform this comparison, we used the 
average value of PLSP metrics for 5 × 5 pixel windows located 30 m north of each PhenoCam camera. We used 
this strategy because over 75% of the PhenoCams we used are oriented to face north. (Supplementary Table 1). 
And, given their proximity, the same PLSP value was used for comparisons of phenometrics from multiple ROIs 
within a single camera scene. Consistent with results comparing LSP metrics from the PLSP dataset against LSP 
metrics from the MSLSP dataset (i.e., Fig. 5), there is strong agreement between PLSP data and phenometrics 
from PhenoCam (r ≥ 0.87; RMSE ≤ 25 days; absolute bias ≤ 4.5 days). Note that even though phenometrics from 
PhenoCam and both PLSP and MSLSP are derived from different vegetation indices (i.e., GCC versus EVI2), 

Fig. 6 Comparison between PLSP and PhenoCam phenometrics. The comparison is based on average values 
for 5 × 5 pixel windows from PLSP images centred over each PhenoCam (i.e., 15 by 15 m). Colors indicate the 
IGBP land cover class assigned to each site by AmeriFlux or NEON.
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previous studies have demonstrated that phenological metrics derived from these two data sources show strong 
agreement19,26. Hence, once again, these results support the conclusion that LSP metrics included in the PLSLP 
dataset accurately capture the seasonality of vegetation activity at high spatial resolution across the sites included 
in the dataset.

Usage Notes
At the time we processed the data (i.e., early 2022), time series of PlanetScope imagery did not cover the first 
six months of 2022. Hence, time series of EVI2 data did not cover the full period required by our algorithm to 
retrieve phenometrics in 2021. To overcome this, we used EVI2 time series data from 2021 in place of data that 
had not yet been acquired (i.e., we filled data from February to June in 2022 using data from 2021). To evaluate 
the impact of this strategy, we performed a sensitivity analysis (results not shown), which indicated that this 
approach had minimal impact on the quality of phenometrics in 2021. Also, unfortunately, our license agree-
ment prevents us from distributing the quality-controlled and gap-filled EVI2 time series that we generated as 
intermediate products, which might also be useful to the community. As a compromise, all the source code that 
we used to generate these data are publicly available on our GitHub repository (see below), which allows inter-
ested readers to generate these data themselves.

code availability
Python and R source code to download and process the PlanetScope imagery and generate the product can be 
obtained through a public repository at https://github.com/BU-LCSC/PLSP. R source code for generating the 
figures in the Technical Validation section is also available on the same repository.
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