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Abstract—We propose a video-based transfer learning approach for predicting problem outcomes of students working with an
intelligent tutoring system (ITS) by analyzing their faces and gestures. The ability to predict such outcomes enables tutoring systems to
adjust interventions and ultimately yield improved student learning. We collected and released a labeled dataset of 2,749
problem-solving interaction samples of 54 students working with an intelligent online math tutor. Our transfer-learning challenge was
then to design a representation in the source domain of images obtained from the Internet for facial expression analysis, and transfer
this learned representation for human behavior prediction in the domain of webcam videos of students in a classroom environment. We
developed a novel facial affect representation and a user-personalized training scheme that unlocks the potential of this representation.
We designed several variants of a recurrent neural network that models the temporal structure of video sequences. Our final model,
named ATL-BP for Affect Transfer Learning for Behavior Prediction, achieves a relative increase in the mean F-score of 50% over the
state-of-the-art method on this new dataset. We also propose an additional set of annotations to predict students’ engagement while
solving a specific problem, and present models that can predict such engagement.

Index Terms—Transfer Learning, behavior prediction, engagement prediction, intelligent tutoring system, video classification.
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1 INTRODUCTION

Research on developing intelligent tutoring systems (ITS)
is a promising avenue for improving learning and educa-
tion [1], [2], [3]. Previous work has shown that real-time sig-
nals from students can be used to improve their learning [4],
[5], [6]. Predicting whether students are having trouble with
problems can allow an ITS to provide interventions, such
as providing hints or encouragement, which could help the | Face Analysis
students understand or solve the problem, thus improving Network bt
learning outcomes.

MathSpring [1] is a popular online browser-based ITS
that uses multimedia to encourage and support students
as they solve math problems. Figure 2 shows the student
interactive interface of MathSpring. Using the MathSpring
ITS, a dataset named MathSpringSP [7] was collected, which
includes 1,596 segmented videos of study sessions of stu-
dents interacting with the ITS. Each problem tackled by
a student has an associated outcome label automatically
annotated by the ITS. Some example labels are skipped, solved
on first try, solved with hint, among others. In this work we
address the problem of predicting the outcome label from a  Fig. 1. Our proposed Affect Transfer Learning for Behavior Prediction
video feed of the student while they are solving problems. ‘(ATL_—BP) modgl for predicting the behavior of sFudents working with an
As facial expressions and gestures are important cues for intelligent tutoring system. For the source domain task of affect recogni-
. . tion (left), an affect network is trained to extract an affect representation
inferring problem outcomes, we propose to learn an affect ¢, images of faces, which is used for classifying eight expressions. We
representation using in-the-wild images for facial expression  employ this trained affect network for solving the target-domain problem

recognition, and transfer it to the task of predicting learning of student outcome prediction. The target-domain ATL-BP model (right)
consists of three components, the trained affect network, a facial analy-
sis network, and an LSTM.
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Fig. 2. MathSpring Interface. A sample MathSpring problem is pre-
sented in the figure. Problems are either multiple choice, short an-
swer, or check-all-that-apply. When students are solving problems, hints,
worked-out examples, tutorial videos, and formulas related to the prob-
lem are available from the corresponding buttons on the left. On the
right, a learning companion (Jane) encourages and supports students
when they make mistakes.

outcomes of students. Having a model that can successfully
predict outcomes while a student completes a problem can
help the ITS provide interventions such as hints or encour-
agement when the student is having difficulties.

Facial and gesture analysis are valuable tools for pre-
dicting emotions, but the question of how to use them
for predicting student performance with an ITS remains
challenging since cues can be very subtle or ambiguous.
A smile, for example, does not necessarily mean that the
student is happily solving an exercise. Instead, it could
indicate a student’s embarrassment for not knowing the
answer to a question. Moreover, in our experience, trying
to obtain valid ground truth labels of the student videos
from human annotators is a futile experimental task because
humans have a very low accuracy rate when predicting
problem outcomes from video. Just like automated facial
analysis tools, human annotators struggle with interpreting
the ambiguity in and limited amount of information given
by student gestures.

Prior research in transfer learning for facial analysis tasks
mostly focuses on transfer learning for the same task in
order to bridge domain gaps such as personalization of a
prediction system to specific individuals [8], [9], [10], [11],
[12], [13], improving results on a benchmark by fine-tuning
neural networks that are pre-trained on external datasets
for a similar prediction task [14], or improving results by
pre-training on a related facial analysis task [15], [16]. In
contrast, our work tackles the more challenging transfer
learning across domains and tasks, which is a form of
transductive transfer learning [17]. Specifically, we tackle the
problem of learning a representation in the source domain
of in-the-wild pictures for the task of facial expression
analysis and transferring this learned representation to the
task of human behavior prediction in the domain of webcam
videos in a controlled environment (Figure 1). While prior
work has explored transfer learning from facial analysis
to behavior analysis, for example, using VGG-Face facial
recognition embeddings to predict driver distraction [18],
our work is, to the best of our knowledge, the first to
propose leveraging an affect representation, learned using
a deep neural network, for a behavior prediction task. Our

learned affect representation is general and can be used not
only for predicting problem outcomes on an ITS, but in
any human behavior prediction problem where affect and
expression are important cues.

The largest obstacle in training an end-to-end deep
learning model for behavior analysis problems is the fact
that data are relatively scarce, which increases the risk of
overfitting. As a first step to alleviating the data problem, we
present MathSpringSP+, an extended version of the Math-
SpringSP dataset, which is roughly double the size of the
original dataset. Next, we propose a novel facial affect rep-
resentation for behavior prediction problems that is learned
from a large affect classification dataset. We show that, by in-
corporating this affect embedding, we can obtain improve-
ments compared to more traditional deep face embeddings
such as the VGG-Face facial recognition embedding [19].
We developed a two-layer Long Short Term Memory (LSTM)
model [20] that takes into account the temporal structure
of the problem and successfully leverages our affect em-
bedding. We show that, by conducting user-personalized
training where a small portion of a student’s initial captured
data is used to fine-tune the model, our method outperforms
the previous state-of-the-art method [7] by 50%. We present
a video dataset of problem-solving interactions of children
and show that finetuning the ATL-BP affect network using
children face images further improves the performance.
Finally, we augment the set of annotations for the dataset
to include the perceived engagement (‘Looking at screen,’
"Looking at paper,” and ‘Wandering’) of the students while
working on MathSpring. In this paper, we expand on our
previous work [21] and summarize the comprehensive set
of contributions as follows:

o We present MathSpringSP+: a large labeled dataset of
student interactions with an intelligent online math
tutor consisting of 68 sessions, where 54 students
solved 2,749 problems in total. We make this dataset
publicly available 1.

o We present a novel affect transfer learning represen-
tation that can be used for behavior prediction tasks.
We are the first to model the temporal structure of
video sequences of students solving math problems
using a recurrent neural network architecture.

o Our proposed Affect Transfer Learning for Behavior
Prediction (ATL-BP) model outperforms the previous
state-of-the-art method by 50%.

o We show that finetuning the ATL-BP affect network
using children face images further improves the per-
formance on MathSpring Children Dataset, a dataset
of children problem-solving interactions collected in
the same manner as MathSpringSP+.

o We collected additional frame-wise labels of student
engagement and trained models to demonstrate the
possibility of successfully predicting engagement.
This would enable future exploration of how affect,
engagement, and learning outcomes correlate. We
also make this additional set of labels publicly avail-
able !.

1. https:/ /www.cs.bu.edu/faculty /betke/research/learning/
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2 RELATED WORK

Intelligent Tutoring Systems: ITSs have been eval-
uated and shown to produce learning gains [22], [23],
[24], [25], [26], [27]. One meta-analysis shows test score
improvements from the 50th to 75th percentile [28]. Some
ITSs have been shown to match the success of one-on-one
human tutoring and students using these tutors outperform
students from conventional classes in 92% of the controlled
evaluations and perform twice as high as for students using
typical (non-intelligent) systems [29], [30], [31].

Prior research has analyzed user affect, emotions and
expressions from interactions with educational games [32]
or intelligent tutoring systems [22], [33], [34], [35], [36], [37],
[38], [39], [40], [41], [42], [43]. In certain cases the predicted
affect information is used to improve learning. For example,
Strain and D’Mello [44] have studied the role of emotion in
ITS engagement, task persistence, and learning gain. Gaze
prediction has also been used in an effort to respond to stu-
dents’ boredom and to perform interventions [22]. Further,
relationships between visual facial Action Unit (AU) fac-
tors and self-reported traits such as academic effort, study
habits, and interest in the subject have been studied [40].

In contrast to this body of work, our work focuses on
using predicted deep affect embeddings that are learned
from a large facial affect dataset to improve behavior pre-
diction in an ITS. Behavior prediction can be useful in
improving learning by tailoring the interventions of the ITS
to the predicted actions of the student. To the best of our
knowledge, our work is the first to use an affect embedding
for behavior prediction in an ITS.

Interventions in an Online Tutor: Prior research
has examined the impact of several interventions in ITS to
improve student outcome and affect, specifically, affective
messages delivered by avatars and empathetic messages
that responded to students’ recent emotions [3]. Interven-
tions in the MathSpring ITS led to improved grades in state
standardized exams [45] as well as influenced students’
perceptions of themselves as learners [46]. Empathetic char-
acters that provide interventions generate superior results
both to improve student interactions with the system, ad-
dress negative student emotions, and in the overall learn-
ing experience [47]. Predicting outcomes of problems for
students is a valuable source of information for planning
and executing ITS interventions for improving learning [48],
[49]. For example the ITS could provide hints when the sys-
tem predicts that the student will not be able to successfully
complete the problem.

Predicting Exercise Outcome: Joshi et al. [7] pre-
sented a first attempt at tackling the problem of exercise
outcome prediction. They did not explore deep learning
representations but used traditional facial analysis features
such as head pose, gaze and facial action units (AUs). They
also did not attempt to model the temporal component
of the videos, which is a rich source of information, and
instead opted to summarize features from a video into one
single feature vector. The method by Joshi et al. [7] can be
considered the previous state of the art in student outcome
prediction, and, thus, our experimental results include a per-
formance comparison between this method and our models.

Fig. 3. Data capture setup for the MathSpringSP+ dataset. The student
completes intelligent tutor problems on a laptop while being recorded
with the laptop camera. The student may use a pad and pen to solve the
problems. If the student writes with the right hand, as here, the pad is
located to the right of the laptop, and the Go-Pro camera is also placed
to the right so that the students’ upper body and face can be recorded
during the completion of the problems.

3 DATASETS

In order to build an ITS capable of understanding student
behavior and producing interventions, it is critical to build
tailored datasets that allow development of behavior un-
derstanding techniques. To this end, we present datasets
of students from different age groups interacting with the
online tutor MathSpring [1]. Specifically, MathSpringSP+
Dataset includes videos of college students, and MathSpring
Children Dataset comprises videos of sixth grade students.
We make MathSpringSP+ Dataset publicly available.

The datasets were collected with informed consent by
participants. Our institution’s Internal Review Board (IRB)
has approved the human subject research and the data
collection process.

3.1 MathSpringSP+ Dataset

In this work, we expand the MathSpringSP dataset de-
scribed by Joshi et al. [7], following the same data collection
protocol. The extended dataset MathSpringSP+ is roughly
double the size of the original MathSpringSP dataset.

Data Collection. MathSpringSP+ consists of Webcam
and GoPro videos that are recorded while college students
solve math problems using the online tutor MathSpring [1]
on a laptop. The webcam is positioned on the laptop and
films the student at a frontal angle. Figure 3 illustrates our
data capturing setup (for right-handed students). For right-
handed students, the GoPro video cameras are placed on the
right above the students” pad of paper. When students look
down to use their paper and pencil to work solving prob-
lems, the GoPros capture the view of the students’ faces. For
left-handed students, the GoPro cameras are placed on the
left. The GoPro and webcam cameras are synchronized. At
the beginning of each session, a few seconds of the desktop
clock are recorded by the GoPro camera and then a movie
clapper is clapped in front of the webcam camera allowing
both the cameras to hear and record the clap. Before stu-
dents start to solve math problems, they are asked to finish
an oral expressiveness baseline survey and a pre-survey. The
baseline expressiveness survey contains questions such as
"What is your least favorite school subject? Why do you
dislike it so much?’. Students read the questions out loud

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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and then they click submit to move through questions.
For the pre-survey, students need to give the Likert rat-
ing (‘'This is VERY MUCH/MOSTLY/SOMEWHAT/NOT
MUCH/NOT LIKE me’) for each question. An example of a
pre-survey question is ‘I have overcome setbacks (obstacles
on the way) to conquer an important challenge.’

Students work on solving math problems for 30—40
minutes or approximately 50 problems. The number of
problems solved is variable between sessions depending on
the rate at which each student solves problems. We divide
each student’s video session into shorter video segments,
where each segment is associated with an individual math
problem. Each math problem video clip has an associated
problem outcome y, recorded in the log files of the ITS [7].
This problem outcome is automatically labeled by the soft-
ware using a rule-based algorithm that chooses from the
following seven possible student outcomes:

o ATT (attempted): Student did not see any hints and
solved the problem after one incorrect attempt

o GIVEUP: Student tried to answer the problem or
asked for a hint but ultimately skipped the problem

e GUESS: Student did not see hints, but solved the
problem after more than one incorrect attempts

e NOTR (not read): Student performed some action,
but the first action was too fast for the student to
have read the problem

e SHINT (solved with hint): Student eventually sub-
mitted the correct answer after seeing one or more
hints

e SKIP: Student skipped the problem without asking
for a hint or attempting to answer the problem

e SOF (solved on the first attempt): Student answered
correctly on the first attempt, without seeing any
hints

Dataset Details. Examples of the variation in student
facial expression throughout the process of answering prob-
lems in the math tutor are shown in Figure 4. We note
that expressions can be very subtle. Expressions can also
be ambiguous: a frown can mean that the student is very
focused and will solve the problem correctly or that they are
having difficulties with the problem. Expression intensities
and variance depend on the individual, and it is challenging
to generalize to different identities. Finally, our method has
to deal with hand gestures, face occlusions and extreme pose
changes, some of which are shown in Figure 4. A total of 24
students participated in the extended study, compared to 30
in the original study. We note that the dataset only includes
individuals who have provided written consent that their
data may be used publicly for research purposes. Several
students participated in multiple sessions. Each session
lasted approximately one hour. In total, 30 student sessions
were recorded, which yielded 1,153 problem samples. Thus,
the extended MathSpringSP+ dataset contains videos of a
total of 54 unique students, 68 student sessions and 2,749
problem samples. This amount of data almost doubles the
original MathSpringSP dataset, which contains 38 student
sessions and 1,596 problem samples. A detailed breakdown
of the relative sizes of MathSpringSP and MathSpringSP+ is
shown in Table 1.

TABLE 1
Size comparison of our extended MathSpringSP+ dataset compared to
MathSpringSP

MathSpringSP MathSpringSP+
Individual Students 30 54
Student Sessions 38 68
Problem Samples 1,596 2,749

3.2 MathSpring Children Dataset

Besides expanding the previous MathSpringSP dataset, we
further collected a dataset of sixth grade students who
used MathSpring in Latin America following the same data
collection protocol. MathSpring Children Dataset presents
videos of students from a younger age group, allowing us
to explore the generalizability of our behavior prediction
models to different age groups.

Fifty-one sixth grade students and their teachers used a
version of MathSpring translated into Spanish for 2 months
in their daily classes (Figure 5). With their corresponding
parental consent, students who used MathSpring in three
different schools in Argentina were videorecorded. This
dataset contains 58 sessions, over 35 hours of facial expres-
sions of 11-year-old children using MathSpring to practice
math problem solving as part of their regular mathematics
classes in either Spanish-speaking or bilingual schools. Fol-
lowing the same data processing and annotation steps, 968
recorded problem-solving interaction samples as well as the
seven problem outcome annotations have been collected.

4 METHOD
4.1 Problem Formulation

The dataset consists of labeled video pairs (X,y), where
the video X is a time series of RGB frames X = {X, | ¢ =
1...T'} of a student solving a problem, and the scalar label y
indicates the outcome class for that problem. The task is a
7-label classification problem, i.e., y € {1,...,C}, for C =T.

4.2 The Proposed ATL-BP Framework

The proposed ATL-BP model consists of three main compo-
nents (Figure 1), the affect network trained for the source
domain problem of affect recognition, a facial analysis net-
work, and an LSTM. We also study variants of our model
by either removing the affect network or replacing it with a
face recognition network.

4.2.1 Source Domain Learning

Our challenge was to determine how to leverage state-of-
the-art affect recognition techniques to compute an output
label y from the input video X. Affect recognition models
provide affect estimates from images of faces that typi-
cally show strong emotions, e.g., the fear expressed in the
women'’s face on the left in Figure 1. We used a ResNet-
50 network [50] and the AffectNet dataset [51], which
contains more than one million facial images collected “in
the wild” from the Internet, to solve the source domain
problem of predicting eight emotions (neutral, happiness,
sadness, surprise, fear, disgust, anger, and contempt), plus
the two classes (uncertain, and non-face). We employ this
trained affect network to solve the target-domain problem
of student outcome prediction.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 4. Example face-cropped images from the MathSpringSP+ dataset showing the evolution of student expressions. In particular we notice
changes in head pose, hand gestures, face occlusion and facial gestures throughout the videos. Expressions in videos can be very subtle, as well

as ambiguous, making the prediction problem challenging.

Fig. 5. Sixth grade students are working on MathSpring in their class-
room. The figure shows the classroom layout and data capture setup of
our MathSpring Children Dataset.

4.2.2 Feature Extraction

First, from the last layer of the trained affect network,
ATL-BP extracts a fixed-size embedding of size 8,192, com-
puted for each frame X, and compresses it into a lower-
dimensional vector p(X,) by learning the weights for a
fully-connected neural network layer ¢, (Figure 1, magenta).
The intuition behind having this learnable linear layer that
compresses the representation is that the LSTM can strug-
gle with very large representations (>1,000 in this case),
especially since it has to also learn the temporal relationship
between these vectors. To make the task easier for the LSTM
(which has 200 hidden units per layer), we reduced the
representation. We found that this improved performance
and that training convergence was faster in early iterations.

Second, ATL-BP uses a facial analysis model to extract fa-
cial Action Unit (AU) presence and intensity, gaze direction,
and head pose for each frame X;. We note these traditional
facial analysis features as ¢ (X:) (Figure 1, green). We chose
the OpenFace 2.0 model [52] to compute student head
position, head pose, gaze, facial AU presence, and facial AU
intensity from individual frames in each video segment.

For our main ATL-BP model we devised a feature rep-
resentation that is based on concatenating the outputs of
our proposed affect representation and the facial analysis

Face Analysis

Network

c(E(X7) ll//(Xr)

TP =

ATL-BP w/o Transfer Learning ATL-BP w/ VGG-Face Embedding

Fig. 6. Model variants. ATL-BP without transfer learning removes the
affect network. ATL-BP with VGG-Face embedding replaces the affect
network by a face recognition model.

components:

A(X1) = ca(p(Xy)) ® P(Xy),

where @ is the concatenation operation. The compressed
embedding ¢, (p(X})) is 100-dimensional. The full feature
vector ¢(X;) is 149-dimensional for every frame X;.

4.2.3 Temporal Modeling

Finally, in order to model the temporal nature of the videos,
we designed a unidirectional 2-layer LSTM classifier h with
200 hidden units that processes the feature vector ¢(X:)
frame by frame and produces the final estimate of student
outcome y (Figure 1, orange).

4.2.4 Model Variants

We designed and studied two variants of our model (Fig-
ure 6). The first variant is ATL-BP without transfer learning.
In this model, we removed the affect network, and the
LSTM directly interprets the output ¢ of the facial analysis

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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network. For the second variant ATL-BP with VGG-Face em-
bedding, we replaced the affect network by a face recognition
model in order to extract face related features. We selected
the pre-trained VGG-Face network [19], which computes an
embedding & of dimension 2,622. ATL-BP compresses the
feature representation £(X), computed by this network for
each video frame X, using another fully-connected layer
¢y, into ¢, (€(X¢)). The LSTM then interprets the output
cy(€(X¢)) concatenated with the output ¢ of the facial
analysis network.

5 EXPERIMENTS

We present experiments on problem outcome prediction
on the MathSpringSP+ dataset and MathSpring Children
Dataset. These experiments study our contributions, which
include incorporating temporal information from video
streams by using an LSTM and using our affect transfer
learning representation. The experiments also show how
user-personalized training unlocks the effectiveness of our
affect representation. We also study early prediction as well
as present ablation studies for the dimensionality reduction
that is accomplished by the proposed fully-connected layer.
In this work we limit ourselves to the webcam video of the
student. Finally, we include additional frame-wise labels of
student engagement and present experiments showing the
possibility of successfully predicting such engagement.

5.1 Implementation Details

We implemented all our models in PyTorch. All the experi-
ments were conducted on an NVIDIA GeForce GTX TITAN
X GPU. For facial analysis model, we used the official
implementation” of OpenFace. We used its command line
interface to extract head pose (three-dimensional location
and rotation), three-dimensional eye gaze, and facial action
units (the presence and the intensity of 18 pre-defined facial
action units) for each video. We used default values for all
the parameters of the facial analysis toolkit. Overall, a 49-
dimensional feature vector is extracted for each video. We
then standardized all the features by removing the mean
and scaling to unit variance to obtain the final feature vector
1. We also share the details of training the affect network
and training ATL-BP for outcome prediction as follows.

5.1.1 Training the Affect Representation Network

For source domain affect training, we selected a ResNet-
50 network. We pre-trained the affect network on a subset
of 50,000 randomly sampled images from the AffectNet
dataset and validated the network on 5,000 randomly se-
lected images. We limited ourselves to a subset since the
dataset contains more than one million examples. Note that
our training and validation data subsets are not the same as
used by [51]. On our subset, our network achieves a mean
accuracy of 47.3%, which is close to the accuracy reported
by [51] on their skew-normalized validation set of 54%,
and much higher than the random baseline of 9.0%. The
relatively low accuracy scores can be accounted for by data
that is unbalanced, noisy, and overall challenging.

2. https:/ / github.com/TadasBaltrusaitis/OpenFace

We used CNN based face detector from dlib [53] for both
the source domain pre-training and feature extraction. We
detected and cropped the face in the image and fed it into
the affect network. We extracted the target domain affect
features from our videos by performing inference of the
affect network on every frame. We chose a granularity of
three frames per second, down from 30 frames per second
in our videos, in order to save on processing time and
storage space. We found that this granularity was a good
compromise between performance and cost. The affect net-
work uses each frame as an input and the last-layer features
are extracted as a vector of dimension 8, 192.

We trained the affect network with the Adam optimizer
with a learning rate of 3 x 1074, 51 of 0.9, and B2 of 0.999.
The standard batch normalization layers of the ResNet-50
were used and fixed throughout training.

5.1.2 Training ATL-BP to Predict Exercise Outcome

For each frame used, the feature vector computed is
d(Xt) = Y(Xy) B ca(p(Xyt)). The original dimension of
p(X}) is 8,192, and we further reduced it to 100 by a linear
compression layer c,. We observed that the dimensionality
reduction due to the compression layer stabilizes training
and improves performance. The feature vector ¢ is used to
train the LSTM with two stacked layers. We adopted a 2-
layer LSTM because we found that it provided the most
appropriate model complexity to learn reasonable complex
temporal features and achieved the best performance for
our video dataset. One layer LSTM is too simple to capture
the complex features, while more layers lead to overfitting
issues. Moreover, recent success of Transformers [54] in
computer vision [55], [56] has demonstrated the potential of
applying Transformers in behavior prediction tasks. We be-
lieve that Transformers would provide performance benefits
when applied to our task of problem outcome prediction,
especially due to the long range dependencies that they are
able to capture. Therefore, a natural next step, which we
leave for future work, will be to replace the LSTM with
Transformers in our model.

Specifically, at each instant t, features ¢(X;) are fed to
the 2-layer LSTM. The LSTM is trained on all the video
segments. It outputs a class probability for each problem
outcome. We used the standard implementation of a unidi-
rectional 2-layer LSTM with 200 hidden units from PyTorch.
The LSTM is trained using the cross-entropy loss function.
The Adam optimizer is used for training. We used a learning
rate of 3 x 107° for 30 epochs, and a batch size of 1. We
used a batch size of 1 because we found this improved
generalization compared to any other batch size. We found
large batch sizes degraded performance a great deal. This is
related to findings that stochastic gradient descent (SGD)
with smaller batch sizes finds flatter local minima that
generalize better (at least when training is not extremely
long) [57]. Specifically here this is more important because
the dataset is medium sized and not very large. The learning
rate chosen allows the model to converge in a fair number
of epochs. Any higher learning rate that we explored either
led to early divergence of the model or lesser generalization.
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5.2 Experimental Setup

Model Variations: In addition to our main proposed
ATL-BP, shown in Figure 1 and which we call “ATL-BP
with affect embedding” for clarity, we implemented and
tested two variants of ATL-BP, ATL-BP without transfer learn-
ing and ATL-BP with VGG-Face embedding, as described in
Section 4.2.4. Furthermore, for comparison baselines, we
reproduced the method described by Joshi et al. [7] and
show results for a majority vote classifier. The majority
vote classifier simply selects the most prevalent class in our
dataset, “Solved on First Try,” for every video.

Random Dataset Split: Following the experimental
setup in [7], we performed five-fold cross validation by
randomly shuffling video segments and constructing five
different train and test splits. The train splits contain 80% of
the data while the test splits contain the rest.

Experiments conducted using this random splitting ex-
perimental setup cannot reliably measure generalization to
new users since videos of problems from the same student
can be present in both the training and test set. This means
that the network does not have to learn how to generalize
to a completely new identity. We propose an improved
experimental setup next.

User Generalization Split: In order to test general-
ization to new users we propose a leave-users-out experi-
mental setup where users are exclusively split into either
the training or test set. In other words, we enforce the rule
that no video clips of the same user can be in both the test
and training sets. In this manner we can measure how the
system performs when applied to an unseen user. This is a
substantially more challenging task since the network has
to generalize to new identities and features. We suggest that
all future research on this dataset use this type of setup.
We created five leave-users-out splits for five-fold cross-
validation and train different model variations for each split.

5.3 Results and Discussion

We present results and discussion on predicting seven
problem outcomes on the MathSpringSP+ dataset and the
MathSpring Children Dataset.

ATL-BP Results for Random Splits: Using the ex-
perimental protocol of a random dataset split, our ATL-
BP for problem outcome prediction on MathSpringSP+
achieves an accuracy of 60.2% (Table 2). Compared to the
previous state-of-the-art method [7], this is an increase of
14 percent points (pp) in accuracy. ATL-BP also achieves a
44% relative increase in mean F-score improving from 0.238
to 0.330. The mean F-score is computed by first computing
the individual F-score for all classes and averaging over
all classes. By comparing the results for ATL-BP without
transfer learning and those by Joshi et al. [7], we can see
that by integrating an LSTM architecture that allows for
modeling the temporal component in the videos we can
achieve a marked increase in performance (5.6 pp). We
achieve a further increase in performance by using deep
embeddings (8.6 pp for using the VGG-Face embedding
€), and especially our proposed affect embedding 1 (as
mentioned, 14 pp).

MathSpringSP Results: We conducted experiments
on the original MathSpringSP dataset in order to verify that

TABLE 2
Results for problem outcome prediction on the MathSpringSP+ dataset
using five-fold cross-validation and random data splits

Method Mean F-Score Accuracy
Majority Vote Classifier 0.103 56.1%
Joshi et al. [7] 0.228 46.2%
ATL-BP w/o transfer learning 0.295 51.8%
ATL-BP w/ VGG-Face embedding 0.304 54.8%
ATL-BP w/ affect embedding 0.330 60.2%

TABLE 3
Results for problem outcome prediction on the original MathSpringSP
for ATL-BP following the data setup from Joshi et al. [7]

Method Mean F-Score Accuracy
Joshi et al. [7] 0.270 54.0%
ATL-BP w/ affect embedding  0.362 61.0%

our ATL-BP model with affect embeddings achieves im-
proved results in the same testing environment presented by
Joshi et al. [7]. Our results show a consistent improvement
in mean F-score and accuracy of our method (Table 3).

Early Prediction of Problem Outcome: We experi-
mented with obtaining prediction using only the five first
seconds of each video clip (Table 4). Early outcome predic-
tion is important since the ITS should have time to react
and deliver the intervention should it be decided to do so.
It turns out that to do early prediction is straightforward
using an LSTM since it outputs a prediction at every time
step, as opposed to the method proposed by Joshi et al. [7],
where each video has to be summarized into a fixed-sized
vector before being fed into a multilayer perceptron. We
observe that ATL-BP achieves a large increase (6.7 pp) in
performance over [7]. ATL-BP without transfer learning
obtains the best F-score (0.295) in this experimental setup.

Deep Embedding Dimensionality Reduction: We
performed an ablation study on the fully-connected layer
that is used for reducing the dimensionality of the deep
embeddings that are used as inputs for our LSTM architec-
ture (Table 5). While the mean F-score does not change on
both the VGG-Face and proposed affect embedding ATL-
BP variants, dimensionality reduction does improve the
accuracy of the models by 3.5 pp and 1.5 pp, respectively.

ATL-BP Results for User Generalization: For the
user generalization split of the training and testing data,
we report the mean F-score and mean accuracy in Table 6
for the “Majority Vote Classifier” benchmark, Joshi et al. [7]
and our proposed model with different combinations of em-
beddings. We observe that the temporal modeling improves
results from Joshi et al. [7] substantially (12.1 pp in accu-
racy). We observe that ATL-BP without transfer learning
outperforms the ATL-BP version with our proposed affect
embedding with regards to the F1 score. We hypothesize
that leveraging affect embeddings is more difficult in this
setup since the model does not have access to baseline levels
of expression for each user.

Personalization of Prediction: An effective real-time
tutoring system would benefit from personalizing its predic-
tion using initial data captured from a specific user stream.
People have different emotional and expression baselines
that can be learned using data collected in a trial run of
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TABLE 4
Results for early prediction of problem outcome using only the first five
seconds of video footage on the MathSpringSP+ dataset (five-fold
cross-validation, random data splits).

Method Mean F-Score Accuracy
Majority Vote Classifier 0.103 56.1%
Joshi et al. [7] 0.173 46.7%
ATL-BP w/o transfer learning 0.295 51.8%
ATL-BP w/ VGG-Face embedding 0.239 47.0%
ATL-BP w/ affect embedding 0.270 53.4%

TABLE 5
Embedding dimensionality reduction ablation study. We show results
for problem outcome prediction on the MathSpringSP+ dataset using
five-fold cross-validation and random data splits

Method Mean F-Score Accuracy
ATL-BP w/ VGG-Face 0.304 51.3%
ATL-BP w/ VGG-Face & dim. reduction 0.304 54.8%
ATL-BP w/ affect 0.330 58.7%
ATL-BP w/ affect & dim. reduction 0.330 60.2%

the system. Specifically, we want the model to act on the
variations of our affect embedding compared to the mean
affect embedding, since each person will have a different
baseline expression and thus a different baseline affect em-
bedding. The model does not have any way to integrate this
information without it being personalized for each user.

We propose a personalization scheme in which our
system can be tailored to individual users and can fully
utilize our proposed affect embedding. In this scheme, the
network is fine-tuned on the initial problems corresponding
to 20% of the session for users in the test set for 30 epochs.
Our experiments show that user personalization unlocks the
potential of the affect features (Table 7). ATL-BP with affect
embedding achieves the highest F-score of 0.308 and the
highest accuracy of 55.1% compared to the other methods.
Our full method achieves a relative increase of 50% in mean
F-score as well as an absolute increase in accuracy of more
than 11 pp compared to the previous state of the art [7]. Our
full method also outperforms variants of ATL-BP, which do
not use our proposed affect representation.

Outcome Prediction for Children: As a final exper-
iment we tested our method on a new dataset of children
working on math problems. Results on this Children Dataset
show that our model consistently outperforms the baseline
and previous state-of-the-art method (Table 8).

Since the AffectNet dataset mainly captures facial ex-
pressions of adults, we further finetuned the affect represen-
tation network using two datasets of children facial expres-
sions, LIRIS [58] and CAFE [59], in order to tailor the model
specifically for children. LIRIS contains 208 video clips of 6-
to-12-year-old children showing six basic spontaneous facial
expressions, while CAFE dataset contains 1,192 images of 2-
to-8-year-old children posing for seven facial expressions.
For the LIRIS dataset, we used extracted frames for training
and validation. For both datasets, 90% of images were used
for training and 10% of images were used for validation.
The ResNet affect model achieves 99.1% accuracy and 85.8%
accuracy on the validation set of LIRIS and CAFE dataset
respectively. The trained affect network is then applied on
MathSpring Children videos.

TABLE 6
Generalizing to unseen users from the MathSpringSP+ dataset.
Results for problem outcome prediction on the MathSpringSP+ dataset
using five-fold cross-validation and the more challenging
leave-users-out splits

Method Mean F-Score Accuracy
Majority Vote Classifier 0.102 55.9%
Joshi et al. [7] 0.182 41.9%
ATL-BP w/o transfer learning 0.270 50.3%
ATL-BP w/ VGG-Face embedding  0.246 51.8%
ATL-BP w/ affect embedding 0.251 54.0%

TABLE 7
Results for problem outcome prediction (7-classes) on the
MathSpringSP+ dataset after user personalization (five-fold
cross-validation and leave-user-out splits)

Method Mean F-Score Accuracy

Majority Vote Classifier 0.090 45.3%
Joshi et al. [7] 0.206 43.8%
ATL-BP w/o transfer learning 0.278 48.4%
ATL-BP w/ VGG-Face embedding 0.262 48.7%
ATL-BP w/ affect embedding 0.308 55.1%

We trained three variants of models using LIRIS only
(frames), CAFE only, and a combination of both datasets.
For random data splits, the best model among the three
achieves the highest accuracy (45.2%) and mean F-score
(0.278), improving on the previous state-of-the-art [7]
(13.2 pp absolute increase in accuracy and 38% relative
increase in mean F-score). Leveraging extra children data
further improves the mean F-score and accuracy over our
original transfer learning model pretrained on AffectNet (5.6
pp increase in accuracy and 6.9% relative increase in mean F-
score). For leave-user-out splits, the results also demonstrate
that our model achieves an increase of 13 percent points in
accuracy and 49% relative increase in mean F-score on the
challenging task of predicting problem outcome using only
student face movements and gestures. The prediction task
has 7 classes which contributes to the difficulty.

5.4 Visual Examples

To visually illustrate our prediction of problem outcomes
and understand student behavior, we present visual exam-
ples of an eighth grade student using MathSpring.

The student used MathSpring for one session of around
20 minutes and consented to have his face and screen
recorded. Figure 7 shows the evolution of student expres-
sions and gestures, and their corresponding problem out-
comes. When the student successfully solves the problem on
the first attempt (SOF), we can observe that he focus tightly
on the problem during the period (first row). When he
finally solve the problem correctly, he clenches his fist which
indicates his excitement and passion (second row). When
asking for hints, the student looks confused scratching his
head but still engaged and actively attempts to solve the
problem (rows 3—4). For the last problem (GIVEUP), the stu-
dent gradually gets distracted and presents frustration and
boredom (rows 5-6). These observations are consistent with
our assumption that facial expressions and gestures provide
important cues for inferring students’ learning outcomes.
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TABLE 8
Generalizing to unseen problems. Results for problem outcome
prediction (7-classes) on the MathSpring Children dataset (five-fold
cross-validation, random data splits).

Method Mean F-Score Accuracy
Majority Vote Classifier 0.070 32.3%
Joshi et al. [7] 0.202 32.0%
ATL-BP w/o transfer learning 0.238 33.4%
ATL-BP w/ affect embedding 0.260 39.6%
ATL-BP w/ LIRIS children affect embedding 0.272 45.2%
ATL-BP w/ CAFE children affect embedding 0.273 44.4%
ATL-BP w/ LIRIS+CAFE affect embedding 0.278 45.2%

TABLE 9
Generalizing to unseen users from the MathSpring Children
dataset. Results for problem outcome prediction (7-classes) on the
MathSpring Children dataset (five-fold cross-validation, leave-user-out
splits).

Method Mean F-Score Accuracy
Majority Vote Classifier 0.071 31.8%
Joshi et al. [7] 0.181 29.4%
ATL-BP w/o transfer learning 0.251 34.0%
ATL-BP w/ affect embedding 0.270 37.7%
ATL-BP w/ LIRIS children affect embedding 0.269 41.4%
ATL-BP w/ CAFE children affect embedding 0.268 40.6%
ATL-BP w/ LIRIS+CAFE affect embedding 0.263 42.4%

With our outcome prediction available in real time,
teachers or intelligent tutors would be able to provide
interventions and adjust learning schedules in time, to better
help and assist students.

5.5 Learning Outcome Based on Affect and Engage-
ment

In academic settings, emotion and engagement can be
tightly correlated with learning outcomes and gains [33],
[60], [61], [62]. For example, positive emotions enhance
performance on tasks of problem solving [63], [64]. Emo-
tions such as frustration, boredom, and anxiety negatively
influence learning outcomes of students [44]. To explore the
correlation of emotion, engagement, and learning outcomes,
we collected additional labels of student engagement on our
MathSpringSP+ videos [48]. Specifically, we extract frames
from videos in MathSpringSP+ dataset and annotate each
frame with engagement labels (i.e., ‘looking at their screen,’
‘looking at their paper,” or ‘wandering’). The task is then to
classify each frame into one of three engagement categories.

5.5.1 Student Engagement Dataset

We selected 400 videos of 19 students in MathSpringSP+
dataset who consented to have their data publicly available
for research, and sampled videos frames at one-frame-per-
second (FPS). As a result, a total of 18,721 frames have been
collected for engagement annotations. We used Amazon
Mechanical Turk (MTurk) to label each frame with one of the
following three categories: ‘looking at their screen,” ‘looking
at their paper,’ or ‘wandering.” Each frame was assigned
to three different crowdworkers, and we combined three
crowdworker selections into a single label by majority vote.

The resulting dataset contains 18,721 annotated frames.
However, the class distribution is quite unbalanced: the
‘screen’ class counts 22 times more samples than the ‘wan-
der’ class and three times more samples than the ‘paper’
class (Table 10 (a)). After analyzing the distributions of the

TABLE 10
Student Engagement Dataset Samples Per Class. Column (a)
presents the samples distribution for each class in the real-world raw
data. Column (b) presents the same distribution after down-sampling
and balancing the original dataset. Both versions will be made publicly
available for non-commercial research purposes.

Class Original dataset (a) Balanced dataset (b)
Paper 4,655 638

Screen 13,483 826
Wander 583 509

Total 18,721 1,973

different samples for each class, we notice that the ‘pa-
per’ and ‘screen’ classes contain a large number of similar
frames. We therefore create a second smaller version of the
original dataset by removing the similar samples for each
class and balance the dataset. After selecting and removing
the similar frames, we obtain a more equally distributed
dataset, Table 10 (b), consisting of around 2,000 frame sam-
ples. Finally, we split the balanced dataset into a training
and a testing set. For our test set, 20% of the samples were
selected; the remaining 80% were used for training. In order
to test and train the model on samples coming from different
students, we chose the test samples from only three of the
original 19 students.

5.5.2 Baseline Models

Given the collected, annotated, and balanced student en-
gagement dataset, we then explore different baseline models
to predict student engagement. We mainly compare two
types of baselines: models based on deep convolutional
networks, and models relying on head pose estimation.

Deep Convolutional Networks. We explored different
deep convolutional neural networks for the task of classify-
ing the frames. The architectures we used as the backbone
model are: MobileNet [65], VGG16 [66] and Xception [67].
The backbone models were pre-trained on ImageNet [68].
On top of the pre-trained model, we added the following
custom layers: one 2D global average pooling layer, one
fully-connected layer with 128 neurons and ReLU acti-
vation, and a final output layer with three neurons and
softmax activation. To avoid overfitting, we used multiple
data augmentation techniques at the input layer (Gaussian
noise, color channel changes, and cropping) and neurons
drop-out at the head layers. We compared the performance
of different models using the global and per-class accuracy
scores. After training with frozen weights for the backbone,
we fine-tuned the last layers of the backbone to achieve
better accuracy (the number of layers fine-tuned depends
on the model complexity).

Head Pose Estimation. The head pose is a 3-dimensional
vector (i.e., yaw, pitch and roll) describing the rotation of
the head in Euler angles. We utilize a state-of-the-art head
pose estimation model to obtain accurate 3D head poses and
infer students” engagement states based on values of head
poses. This is intuitive as students’ head poses will differ
greatly when students are either looking at their screen,
looking at their paper, or gaze wandering. While the eye
gaze direction might provide a more accurate estimation
of where the student is looking, it is more difficult to
calculate especially when eyes are occluded. When students
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GIVEUP

Fig. 7. Example face-cropped images showing the evolution of student expressions and gestures, with the corresponding problem outcomes. Top
two rows present the student solved the problem on the first attempt (SOF), 3-4th rows present the student solved the problem with hints (SHINT),
and the bottom two rows present the student tried but ultimately skipped the problem (GIVEUP).

are looking at their paper or gaze wandering, their eyes
could be fully occluded, making it impossible to calculate
eye gaze directions accurately. Therefore, we choose to use
head poses, which are highly correlated to gaze directions
but are more robust and easier to compute, as indicators of
students” engagement states. In addition, extracting a larger
set of features (e.g., head pose, facial action unit, and eye
gaze) might potentially boost the performance of this type
of baseline. However, while this requires delicate feature
selection and engineering, we would not expect a significant
performance improvement. For simplicity, we use head pose
only as a baseline for the task. Specifically, to estimate the
head poses of students, we use a deep neural network
FSA-Net [69] that predicts the head pose based on feature
aggregation and regression. Given a facial image, detected
and cropped using MTCNN [70], a deep cascaded multi-
task face detector, FSA-Net combines feature maps from dif-
ferent layers by spatially grouping and aggregating features
to harvest multi-scale information. The learned meaningful
intermediate features are then used to perform soft stage-
wise regression. Following Ruiz et al. [71], the head pose
estimation model was pre-trained on the 300W-LP synthetic
dataset [72] which contains 122,450 facial images with la-
belled head poses. The dataset synthesized faces across large
poses (above 45°), ensuring that the trained model is robust
to self-occlusion in our student dataset.

Given the predicted 3D head pose (yaw, pitch, and roll)
for each image, we focus on two approaches for baseline
classifiers. Our first method is a conditional approach with
yaw and pitch head angles as the features. By inspecting and

analyzing head pose angles for different classes, we design
three conditions to distinguish head poses as either ‘looking
at their screen’, ‘looking at their paper’, or ‘wandering’.
When students look at their paper, visible positive spikes
in the pitch angle and a negative spike in the yaw angle
could be observed. When students look at their screen, the
yaw and pitch angles are neutral at around 0. Therefore, the
conditions for the conditional classifier are as follows 1) if
the yaw angle is negative and the pitch angle is positive, we
classify the set of angles as ‘looking at their paper’; 2) if the
yaw and pitch poses are both 0.0 +0.05, we classify the set
of angles as ‘looking at their screen’; 3) if both conditions
are not met, we classify the set of angles as ‘wandering’.
Our second approach uses the classical Logistic Regression
to model the probability of a certain class. Each set of head
angles (yaw and pitch of the student’s head pose in a frame)
corresponds to a data point with each data point being
annotated as one of the three labels. We trained a 2-feature
Logistic Regression classifier and each class was weighted
with respect to the class size for balancing the dataset. Cross-
Entropy loss was used as the loss function and Stochastic
Average Gradient Descent as the optimizer.

5.5.3 Experimental Results

We here discuss the accuracy of predicting student engage-
ment for different baselines (Table 11). The deep learning
models show a range of results, 85%-94% accuracy, de-
pending on the model size and number of parameters. It is
important to notice that all the deep learning models reach
similar performances when trained with frozen backbone
weights (between 74-79% test accuracy), but they improve
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TABLE 11

Results. Global accuracy score of predicting student engagement

using different deep learning and head pose estimate approaches.
From these results we can conclude that the deep learning models are
more suitable for task of classifying student engagement compared to
head pose estimators. Also, depending on the complexity of the deep

learning model, we reach different accuracy scores, with the best

results obtained by the model with less complexity, MobileNet.

Method Accuracy (%)
MobileNet (pretrained ImageNet) 94
Xception (pretrained ImageNet) 88
VGGI16 (pretrained ImageNet) 85
Head pose Estimator (Logistic Reg.) 60
Head pose Estimator (Conditional) 55

when we further fine-tune the backbone models. A smaller
model such as MobileNet allows us to fine-tune more layers
without overfitting, compared to deeper or larger models
like VGG16 and Xception. This allows the MobileNet model
to obtain a feature representation of the input images that
is more relevant for this classification task, and by conse-
quence this model reaches a higher final accuracy compared
to the others. The results and training strategy may vary
when we use different dataset configurations. We can also
conclude from the results in Table 11 that all convolutional
neural networks significantly outperform the head pose
estimation strategies. The reason for low accuracy scores
of head pose estimation strategies could be the accumu-
lated errors in the pipeline, such as errors in estimating
head poses, and errors in designing conditional parameters
or training of Logistic Regression. It is also possible that
relying on head poses only is not sufficient to predict the
engagement label. Further details on the per class accuracy
for the best deep learning and head pose estimation models
are given in Figure 8.

5.5.4 Discussion and Future Work

We have shown that our model can successfully predict
student engagement. We suggest that the presented student
engagement dataset and models enable future exploration
of how affect, engagement, and learning outcomes correlate.
While previous work often investigates how emotion and
engagement impact learning outcomes, we are more inter-
ested in using learning outcomes as indicators of emotion
and engagement. As we mentioned in the introduction,
when solving problems, a smile does not necessarily mean a
student is happy, but could mean the student is embarrassed
for not knowing the answer to a question. Relying only
on facial expressions and gestures may not be sufficient
to infer a student’s actual affect and engagement state.
Learning outcomes could serve as an effective indicator
of a student’s real emotion and engagement. For example,
positive outcomes (SOF, SHINT, ATT) could be indicative
of positive learning activities, with paying attention and
positive emotions, while negative outcomes (SKIP, GUESS,
NOTR, GIVEUP) are indicative of negative learning activi-
ties, with inattentive states and negative emotions. With our
publicly available MathSpringSP+ videos and annotations
of student engagement and problem outcome, we facilitate
future investigations of the correlations of affect, engage-
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Fig. 8. Confusion Matrix Comparison. The head pose estimation
model (bottom) obtains a lower per-class accuracy score, compared
to the deep learning model solution MobileNet (top), which not only
reaches an overall higher accuracy but also consistently classifies dif-
ferent classes.

ment and learning outcomes and how to utilize learning
outcomes to help predict affect and engagement of students.

Additionally, while we consider exercise outcome in-
dicative of a student’s actual engagement or disengagement
with a math problem solving activity, the main difficulty is
that this classification label of the student-problem interac-
tion cannot be predicted by our approach until the exercise
is completed and the student clicks on “next problem”
to request a new exercise. We acknowledge that it might
be more beneficial for a student’s learning experience if
we were able to detect the student’s disengagement (such
as being able to understand that the student is looking
away, and their attention has been lost) before the math
problem solving activity has finished, so that MathSpring
could intervene, and potentially change the effort excerted
on the exercise at hand. With our work, we can at least aim
to change the student’s interaction with the new exercise, a
goal we will address in future work.

6 CONCLUSION

We introduce a large labeled dataset of student interactions
with an intelligent online math tutor that consists of 68
sessions, where 54 individual students solved 2,749 math
problems. Using this dataset we design a transfer learning
model ATL-BP that improves problem outcome predictions
for students interacting with the ITS and answering math
problems. By modeling the temporal structure of the videos
with ATL-BP, we achieve a substantial increase in classifica-
tion F-score and accuracy compared to previous state-of-the-
art in this task. Additionally, using a novel affect represen-
tation along with user personalization, we achieve a further
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increase in performance. More generally, these promising re-
sults suggest that leveraging affect representations might be
valuable in behavior analysis applications more generally.
Our final method achieves a 50% relative increase in mean
F-score as well as an absolute 11 percentage point increase in
accuracy compared to previous work. We collected a dataset
of children student interactions and present results on this
dataset. We show that fine-tuning of the Affect network
with age-appropriate images and video further improves
performance in this scenario. These results pave the way
for future improvements in solutions for this task. Finally,
we present additional annotations of student engagement
('Looking at screen’, ‘Looking at paper’, and ‘Wandering’),
which enable future explorations of correlations of learning
outcomes, emotion, and engagement. Future tutor systems
may use our proposed outcome and engagement prediction
model in order to deliver real-time interventions to improve
the learning of students.
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