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Abstract—Fingerprinting is an approach that assigns a unique
and invisible ID to each sold instance of the intellectual property
(IP). One of the key advantages fingerprinting-based intellectual
property protection (IPP) has over watermarking-based IPP is the
enabling of tracing stolen hardware or software. Fingerprinting
schemes have been widely and effectively used to achieve this goal;
however, their application domain has been restricted only to static
artifacts, such as image and audio, where distinct copies can be
obtained easily. In this paper, we propose the first generic finger-
printing technique that can be applied to an arbitrary synthesis
(optimization or decision) or compilation problem and, therefore
to hardware and software IPs.

The key problem with design IP fingerprinting is that there is a
need to generate a large number of structurally unique but func-
tionally and timing identical designs. To reduce the cost of gener-
ating such distinct copies, we apply iterative optimization in an in-
cremental fashion to solve a fingerprinted instance. Therefore, we
leverage on the optimization effort already spent in obtaining pre-
vious solutions, yet we generate a uniquely fingerprinted new solu-
tion. This generic approach is the basis for developing specific fin-
gerprinting techniques for four important problems in VLSI CAD:
partitioning, graph coloring, satisfiability, and standard-cell place-
ment. We demonstrate the effectiveness of the new fingerprinting-
based IPP techniques on a number of standard benchmarks.

Index Terms—Fingerprint, Intellectual property protection, it-
erative optimization, VLSI, watermark.

I. INTRODUCTION

WITH THE RAPID deployment of new process technolo-
gies, the shrinking time-to-market requirement, and

the advances in CAD tool capabilities, core-based design and
software reuse methodologies have attracted a great deal of
industrial and academic interest. Intellectual property protec-
tion (IPP) techniques are an unavoidable prerequisite for the
development and adoption of reuse-based system integration
business models. In such reuse-based IP business models, as
well as the related IPP model, there are two basic types of
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legal entities involved in an IP transaction: provider (seller,
owner) and buyer (user). Another entity, IP intruder, which is
illegal, will attempt to infringe upon the legal entities’ rights1 .
Therefore, it is the goal of IPP to protect both the provider and
the buyer.

Evidently, the IPP develop and working group of the Virtual
Socket Interface Alliance (VSIA) has identified the followings
as the goals of IPP: enable IP providers to protect their IPs
against unauthorized use; protect all types of design data used
to produce and deliver IPs; detect and trace the use of IPs [25].
An effective IPP scheme should provide IP owner the ability to
determine that an unauthorized use has occurred and then, to
trace the source of the theft to protect the owner himself and the
legal IP users. The recently proposed constraint-based water-
marking IPP technique, which we will survey in the next section,
is effective in helping IP providers to detect their IPs and es-
tablish their authorship from illegal copies to discourage piracy
and unauthorized IP redistribution. However, it offers little help
in protecting IP buyer’s legal ownership of a given piece of IP.
IP buyers desire the protection from being “framed” by other
dishonest buyers working in collusion, or by a dishonest IP
provider who sells extra copies of the IP and then attempts to
blame the buyer. This becomes an insurmountable task if all
buyers receive identical copies of the IP. VSIA has also identi-
fied the need of such protection and predicted that fingerprinting
methods would be the key enabling technique.

A simple symmetric scheme extends the idea of water-
marking to fingerprinting for the protection of IP buyers. Each
IP buyer gives IP provider his digital signature (encrypted using
the buyer’s public key). IP provider converts this signature into
fingerprinting constraints and integrates them with the original
design constraints as well as the provider’s own watermarking
constraints. The synthesis tools will then generate a piece of
IP that satisfies all the original design constraints and has both
IP provider’s watermark and the specific IP buyer’s fingerprint
embedded. This allows IP provider to trace individual IP buyer
since each IP becomes unique with the buyer’s fingerprint.
It also protects the buyer in the sense that IP provider can
not resell this realization of the IP to another buyer since the
embedded fingerprint can only be interpreted by the first buyer
via his secret key.

The difficulty of such symmetric fingerprinting protection is
that IP provider most often cannot afford to apply a given wa-

1We mention that a third party IP intruder violates both IP provider and
buyer’s rights, however, any legal entity can also be the IP intruder and violates
the other entity’s rights. For example, if a legal buyer illegally redistributes the
IP he purchased from an IP provider, or if an IP provider sells the IP bound to
a specific user to other users, then IP piracy occurs.
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termarking technique with each buyer’s signature and repeat
the entire design process: creating a large number of different
high-quality solutions from scratch has a clear time and cost
overhead. Hence, the challenge is to develop practical finger-
printing protocols that can provide a number of distinct realiza-
tion of the same IP with reasonable amortized design effort.

In this paper, we lay out the basic requirements for
fingerprinting techniques and propose a generic finger-
printing methodology that applies to arbitrary synthesis
(optimization/decision) problems, and that combines existing
watermarking techniques and iterative approaches to solving
optimization problems. Our approach allows IP owner/provider
to design the IP with his (provider’s) watermark embedded,
in order to obtain an initial “seed” solution. We may view
this initial design as a “from-scratch optimization.” Then, for
each IP buyer, a new fingerprinted optimization instance is
created based on the buyer’s fingerprint and some knowledge
of the current seed solution. Solving this new fingerprinted
instance with an “incremental optimization” yields a different
but functionally identical fingerprinted IP, and is inexpensive
because it leverages the design optimization effort that is
inherent in the seed solution.

II. RELATED WORK

A. IP Watermarking

A major characteristic of IP watermarking, as distinguished
from artifact watermarking, is that it must maintain the correct
functionality of the IP. This is the main reason why IP water-
marking is not trivially achievable. The constraint-based wa-
termarking technique [13] translates a to-be-embedded signa-
ture into a set of additional constraints during the design and
implementation of the IP, in order to uniquely encode the au-
thor’s signature into the IP. The effectiveness of this technique
lies in the large solution space of the optimization problem that
corresponds to the design of the IP: 1) the author’s signature is
added via extra constraints that reduce the solution space and
2) ownership is typically proved via the exceptionally small
probability of obtaining a given solution from the initial solu-
tion space without the benefit of the signature constraints. The
methodology is mathematically sound [21] and has been shown
to yield strong proofs of authorship with little or no loss of so-
lution quality, at the level of behavior synthesis [11], logic syn-
thesis [16], and physical design [14], as well as in FPGA design
[17].

B. Fingerprinting

Fingerprints have been used for human identification for a
long time because of their uniqueness. Protocols have been de-
veloped for adding fingerprint-like marks into digital data to
protect both the provider and the buyers [3], [4], [20]. Such
marks are made by introducing minute errors to the original
copy, with such errors being so insignificant that their effect is
negligible. However, this is not applicable for VLSI design IP
fingerprinting: a minor error can change the functionality of the
IP and render the entire design useless.

To the best of our knowledge, only two published works ad-
dress VLSI design IP protection using fingerprinting. The first

Fig. 1. Basic template for iterative global optimization.

approach is [17] to partition the problem into small parts, and
impose constraints as needed to make solutions for each part
“connectable.” Multiple solutions are found independently for
each part, and a solution to the original problem can be con-
structed by mixing and matching these solutions according to
the buyer’s fingerprint. However, the method is relatively im-
practical (the problem must have a specific (usually, geometric)
structure, the approach can affect solution quality significantly,
and it is vulnerable to collusion since fingerprinted solutions
all have the same structure). The second approach [22] intro-
duces a set of independently relaxable constraints before solving
the problem. Then, once a solution is found, relaxing each con-
straint independently guarantees that a number of distinct solu-
tions can be derived. This is similar to the approach of [17] in
that a fingerprinted solution is obtained by independently com-
bining elements of the solution (either solutions to sub-parts, or
independent relaxations of constraints). The run-time overhead
is almost zero, but many similarities are expected among finger-
printed solutions, making the approach vulnerable to collusion.

Our approach combines the concepts of constraint manipula-
tion and the iterative improvement method for solving hard opti-
mization problems. It is different from the above in that: 1) it can
be applied to any synthesis problem; 2) it requires significantly
less, although still nontrivial, time to generate fingerprinted IP
instances; 3) it maintains the quality of the large number of dis-
tinct copies of the same IP; and 4) it is more secure again collu-
sion attacks.

C. Iterative Optimization Techniques

An instance of finite global optimization has a finite solution
set and a real-valued cost function . Without loss
of generality, global optimization seeks a solution that
minimizes , i.e., . This framework ap-
plies to most combinatorial domains (scheduling, coloring, par-
titioning, quadratic assignment, etc.); continuous optimizations
can also be discretized to yield finite instances. Many optimiza-
tion problems are NP-hard [9], and hence heuristic methods are
often applied which use an iterative approach broadly described
by the iterative global optimization template of Fig. 1.

Typically, in Line 2 is generated by a perturbation to .
That is, is selected from the neighborhood of under a given
neighborhood operator. Example operators include changing a
vertex’s color in graph coloring; swapping two cells in stan-
dard-cell placement; moving a vertex to a different partition
in graph partitioning; etc. Lines 2–4 can be hierarchically ap-
plied to create very complicated metaheuristics. For example,
the Kernighan–Lin [15] and Fiduccia–Mattheyses [7] graph par-
titioning heuristics are both greedy iterative optimizers with re-
spect to a complicated pass move that is itself a move-based
iterative optimization. The complexity of the metaheuristic and
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its sensitivity to perturbations of the instance can be a vehicle
for IPP: given a solution (say, an assignment of vertices to par-
titions) it is typically extraordinarily difficult to identify the in-
stance (say, the weighted edges of a graph over the vertices) for
which a given metaheuristic would return the solution.

The basic idea of the proposed fingerprinting technique is
to embed IP buyer’s signature as additional constraints during
the iterative improvement process of solving the optimization
problem. In addition, we discuss how to extend this idea to de-
cision problems and other problems that are normally not solved
by iterative optimization techniques.

III. FINGERPRINTING OBJECTIVES

A fingerprint, being the signature of the buyer, should sat-
isfy all the requirements of any effective watermark (see [14],
[21] for details): 1) High credibility. The fingerprint should be
readily detectable in proving legal ownership, and the proba-
bility of coincidence should be low. 2) Low overhead. Once
the demand for fingerprinted solutions exceeds the number of
available good solutions, the solution quality will necessarily
degrade. Nevertheless, we seek to minimize the impact of fin-
gerprinting on the quality of the software or design. 3) Re-
silience. The fingerprint should be difficult or impossible to re-
move without complete knowledge of the software or design.
4) Transparency. The addition of fingerprints to software and
designs should be completely transparent, so that fingerprinting
can be used with existing design tools. 5) Part protection. Ide-
ally, a good fingerprint should be distributed all over the soft-
ware or design in order to identify the buyer from any part of it.

At the same time, the IPP business model implies that finger-
prints have additional mandatory attributes:

• Collusion-secure. Different users will receive different
copies of the solution with their own fingerprints em-
bedded. These fingerprints should be embedded in such a
way that it is not only difficult to remove them, but also
difficult to forge a new fingerprint from existing ones (i.e.,
the fingerprinted solutions should be structurally diverse).

• Runtime. The (average) run-time for creating a finger-
printed solution should be much less than the run-time for
solving the problem from scratch. The complexity of syn-
thesis problem and the need for large quantity of finger-
printed solutions make it impractical to solve the problem
from scratch for each individual buyer.

• Preserving watermarks. Fingerprinting should not di-
minish the strength of the author’s watermark. Ideally, not
only should the fingerprinting constraints not conflict with
the watermarking constraints, any hint on the watermark
from fingerprints should also be prevented as well.

From the above objectives, we extract the following key re-
quirements for fingerprinting protocols:

• A fingerprinting protocol must be capable of generating
solutions that are “far away” from each other. If solu-
tions are too similar, it will be difficult for the seller to
identify distinct buyers and it will be easy for dishonest
buyers to collude. In most problems, there exist generally
accepted definitions for distance or similarity between dif-
ferent solutions.

Fig. 2. The generic iterative approach for generating fingerprinted solutions.

• A fingerprinting protocol should be nonintrusive to ex-
isting design optimization algorithms, so that it can be
easily integrated with existing software tool flows.

• The cost of the fingerprinting protocol should be kept as
low as possible. Ideally, it should be negligible compared
to the original design effort.

IV. NEW FINGERPRINTING APPROACH

To maintain reasonable run-time while producing a large
number of fingerprinted solutions, we will exploit the avail-
ability of iterative heuristics for difficult optimizations.
Notably, we propose to apply such heuristics: 1) in an incre-
mental fashion and 2) to design optimization instances that have
been perturbed according to a buyer’s signature (or fingerprint).

Fig. 2 outlines the proposed approach. Lines 1 and 2 generate
an initial watermarked solution using an (iterative) optimiza-
tion heuristic in “from-scratch” mode. Then we use this solution
as the “seed” to create fingerprinted solutions as follows: Line
3 embeds the buyer’s signature into the design as a fingerprint
(e.g., by perturbing the weights of edges in a weighted graph)
to yield a fingerprinted instance. This fingerprinted instance is
then solved by an incremental iterative optimization using as
the initial solution.

This generic approach provides the fingerprinting desiderata
we present above. Comparing to the symmetric fingerprinting
method presented in Section 1, it has the following advantages.

• Shortened run-time. We leverage the design optimiza-
tion effort that is inherent in the high-quality “seed” so-
lution , by using it as the starting point, to reduce the
run-time for reaching the stopping criterion.

• Distinct solutions. The addition of fingerprinting con-
straints will subtly change the problem instance to break
the local minimality of the starting solution and to help
the iterative optimizer to find the fingerprinted solution, a
new local minimum.

• Improved solution quality. Adding fingerprinting con-
straints also changes the optimization cost surface and can
actually lead to improved solution quality, as noted in the
metaheuristics literature [19], [24].

• Alternate starting point. Alternatively, we could use
as the initial solution in Line 5 of Fig. 2. This will

more likely to make all the fingerprinted solutions to be
“far away” from each other and ultimately reduce the
chance of collusion.

Next, we will present specific fingerprinting techniques for
four classes of VLSI CAD problems to show how to apply this
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Fig. 3. Pseudocode of the iterative fingerprinting approach on the partitioning
problem.

approach to: 1) classic iterative optimization algorithms; 2) opti-
mization problems that may not be solved by iterative improve-
ment; and 3) decision problems.

A. Partitioning and Standard-Cell Placement

Given a hyperedge- and vertex-weighted hypergraph
, a -way partitioning of assigns the vertices to

disjoint nonempty partitions. The -way partitioning problem
seeks to minimize a given objective function such as the cut
size, i.e., the number of hyperedges whose vertices are not all in
a single partition. In our partitioning testbed, we use the recent
CLIP FM variant [6] and the net cut cost function.

Fig. 3 depicts how to iteratively construct a sequence of fin-
gerprinted solutions for the partitioning problem. Step 1 finds
a “seed” solution by CLIP FM with multiple starts. This not
only gives IP provider a high quality watermarked solution, but
also demonstrates that our approach can efficiently generate,
from a high quality solution, new solutions of the same or better
quality. Steps 2 and 3 construct a fingerprinted instance based
on user’s fingerprint. Note that for simplicity, we reset all the
hyperedge weights to 20 and change the weights of the selected
hyperedges to 39 or 1 to embed a bit “0” or “1,” accordingly.
When the weights are tightly constrained by the performance
and other design requirements, we should perform such fin-
gerprinting process on the set of hyperedges with loose con-
straints and modify their weights in a less dramatic fashion. Step
4 solves for a fingerprinted solution. We use only one start since
our CLIP FM implementation is deterministic. This results in a
much-reduced run-time to obtain a new solution, comparing to
that for the multiple-start CLIP FM in Step 1. Our experiments
will validate the quality of the new solution, which is expected
to be high because it is based on a carefully selected high-quality
“seed” solution.

Although we use a deterministic CLIP FM implementation, it
is very unlikely for the iterative fingerprinting approach to gen-
erate identical solutions at Step 4 because user’s signature gives
different fingerprinting constraints. In fact, we can use in-
stead of as the starting solution to guarantee the uniqueness
of every fingerprinted solution as in the following standard-cell
placement problem.

Fig. 4. Pseudocode of the iterative fingerprinting approach on the standard-cell
placement problem.

The standard-cell placement problem seeks to place each cell
of a gate-level netlist onto a legal site, such that no two cells
overlap and the wirelength of the interconnections is minimized.
We iteratively construct, as shown in Fig. 4, a sequence of fin-
gerprinted placement solutions according to the following steps
(note that our approach is compatible with the LEF/DEF and
Cadence QPlace based constraint-based watermarking flow pre-
sented in [14]). Note that when we create the new solution in
Step 4, we start with the current solution rather than the
“seed” solution by invoking the Incremental Mode of the Ca-
dence QPlace tool (version 4.1.34). , a local optimal solu-
tion for the fingerprinted instance , loses its local optimality
after we reset the weights of the selected nets in the new finger-
printed instance (Step 3). This enables us to find solutions “far
away” from the “seed” and increases the resilience against col-
lusion attacks. However, all previous fingerprinting constraints
are inherent in the new solution and affect its quality.

B. Graph Coloring

The graph vertex coloring (GC) optimization seeks to color a
undirected graph with as few colors as possible, such that no
two adjacent vertices receive the same color. Most GC algo-
rithms can be classified into three categories: exact [5], con-
structive [10], and iterative improvement [8], [12]. It has been
shown that iterative improvement methods (such as simulated
annealing and generic tabu search) are the most effective for
random graphs while exact coloring is better for real-life CAD-
related graphs [5]. It becomes important and interesting to study
whether the proposed iterative fingerprinting technique is appli-
cable when the underlying optimization algorithm (e.g., exact
algorithm) does not possess the nature of iterative improvement.

Given a graph and an algorithm , a coloring solu-
tion is essentially a partition of vertices into disjoint independent
sets (IS) where all vertices in an IS will be assigned the same
color. Fig. 5 illustrates our approach to iteratively construct a
sequence of coloring solutions from a known (watermarked)
solution . Note that the algorithm does not necessarily
need to be an iterative improvement. To reduce the run-time of
finding a high-quality solution, we create a fingerprinted graph

in Step 3 by: 1) deleting the maximal ISs from the se-
lected ISs; 2) collapsing the nonmaximal ISs to a single vertex;
and 3) embedding user’s fingerprint as additional constraints.
Graph will be colored in Step 4 and the fingerprinted solu-
tion can be easily constructed in Step 5.



212 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 2, FEBRUARY 2004

Fig. 5. Pseudocode of the iterative fingerprinting approach on the graph
coloring problem.

We first mention that the algorithm can be any graph col-
oring algorithm, not necessarily one to follow the iterative im-
provement approach. Secondly, the fingerprinted solution we
obtain in Step 5 will be different from the initial solution
because does not guarantee the satisfaction of the user’s fin-
gerprinting constraints, which are added in Step 3.92 . Finally,
the run-time in obtaining a fingerprinted solution should be less
than that of solving the problem from scratch because we are
coloring a smaller graph where the presumably high-quality
maximal ISs from the original solutions are preserved.

C. Satisfiability

As the final example, we show that the proposed iterative
fingerprinting approach can also be applied to hard decision
problems such as the NP-complete boolean satisfiability (SAT)
problem. The SAT problem seeks to decide, for a given formula,
whether there exists a truth assignment for the variables that
makes the formula true. For a satisfiable formula , a solution
is an assignment of 0 (false), 1 (true), or—(don’t care) to each
of the variables3 . We necessarily assume that the given SAT in-
stance is satisfiable and that it has a sufficiently large solution
space to accommodate multiple fingerprinted solutions.

2We also mention that it is not required to color the fingerprinted graph G
by the same GC algorithmA in step 4. This could pull the new solution further
away from the initial solution S .

3While some SAT solvers give only the truth variables and assume the rest
are all false, other solvers do give don’t care value to variables. If k variables
are assigned don’t cares in a solution, essentially this solution is equivalently to
2 distinct solutions.

Fig. 6. Pseudocode of the iterative fingerprinting approach for the Boolean
satisfiability problem. F (Step 3.3) and F (Step 3.5) are the cofactors of

F w.r.t. variable v .F nv (Step 3.6) is obtained by removing both v and
v from F .

Iterative improvement techniques cannot be applied to gen-
erate new SAT solutions from an existing one4 . Our finger-
printing goal is to efficiently construct a sequence of distinct
solutions from a given solution. We achieve this by iteratively
building and solving “new” SAT instances with (much) smaller
size. Fig. 6 outlines our approach on a formula over boolean
variables . Here we only mention that the re-
duction on run-time is a result of (1) the cofactoration in steps
3.3 and 3.5 as well as in 3.6 which reduce the size of the (finger-
printed) SAT instance and (2) the preservation of the values for
a selected subset of variables which reuses the effort in finding
the initial solution.

V. EXPERIMENTAL RESULTS

We have conducted experiments on benchmark data for the
above four problems. The goal is to verify that the proposed it-
erative fingerprinting approach meets the fingerprinting objec-
tives and requirements as we discussed in Section III. In partic-
ular, we focus our analysis on: 1) the run-time for creating mul-
tiple fingerprinted solutions; 2) the quality of the fingerprinted
solutions (except for the SAT problem as we have explained ear-
lier); and 3) the distinctness among the fingerprinted solutions.

A. Partitioning

We test our fingerprinting method on three standard test
cases corresponding to internal IBM designs from the ISPD-98
Benchmark Suite [1]. Table I reports the size of these designs

4One can develop local search heuristics (e.g., flip the assignment to some
variables and then modify the assignments of others whenever necessary to keep
all the clauses in the formula to be true) to find other solutions by taking advan-
tage of the known truth assignment. However, it is not clear whether any kind
of such heuristics is better than resolve the problem from scratch. This is due
to the intrinsic nature of the SAT problem and the well-known fact that “local
search is as hard as global search.”



CALDWELL et al.: EFFECTIVE ITERATIVE TECHNIQUES FOR FINGERPRINTING DESIGN IP 213

TABLE I
PARTITIONING EXPERIMENTS TEST CASES AND RESULTS

TABLE II
TEST CASES FOR STANDARD-CELL PLACEMENT EXPERIMENT

and the average results of the 20 independent trials (i.e., we
go through Step 2 of the method in Fig. 3 to generate 20
fingerprinted solutions). The Max and Ave columns give the
maximum and average solution cost and the CPU times (on
a 300-MHz Sun Ultra-10 running Solaris 2.6.) to generate
a solution. The last row shows the minimum and average
Hamming distances (i.e., number of transpositions required to
transform one solution into another) over all pairs among the
solutions .

The data show that the fingerprinted solutions: 1) require
much less CPU to generate than the original solutions (by fac-
tors ranging from 18 to 77); 2) are reasonably distinct from each
other and from the original solutions; and 3) can even have better
average quality than the original solutions (which we attribute to
the similarity between our fingerprinting methodology and the
problem-space iterative optimization metaheuristic [19]).

B. Standard-Cell Placement

For standard-cell placement, we have applied our finger-
printing technique to the four industry designs listed in Table II.
For each test case, we generate an initial solution and a
sequence of 20 different fingerprinted solutions ;
for each fingerprinted solution, the previous fingerprinted
solution is used as the initial solution for QPlace Incremental
Mode. Table III gives the summary of results for all four test
cases where we change the weighted sets from 1% to 5%. The
“Original” lines refer to the initial solutions and all other
lines refer to fingerprinted solutions. From this table we can see
that we can reduce the time to generate the next fingerprinted
solution while maintaining the quality as well as producing a
unique solution. Detailed analysis of the solutions can be found
in the technical report [2].

C. Graph Coloring

The proposed GC fingerprinting technique has been tested on
both real-life benchmarks and the DIMACS challenge graph.
The real-life benchmark graphs are converted from register al-
location problem of variables in real codes with known op-
timal solutions [28]. They are easy to color and almost all the
original and fingerprinted graphs are colored instantaneously
with no extra colors. However, the DIMACS challenge graph,

TABLE III
SUMMARY OF RESULTS FOR FINGERPRINTING OF ALL FOUR STANDARD-CELL

PLACEMENT INSTANCES. CPU (mm:ss): RUN-TIME, COST: TOTAL

WIRELENGTH NORMALIZED TO THAT OF THE INITIAL SOLUTION S , DIST.:
MANHATTAN DISTANCES (IN 10 MICRONS) OF S FROM S

TABLE IV
RESULTS FOR COLORING THE DIMACS CHALLENGE GRAPH

WITH ITERATIVE FINGERPRINTING

which is a random graph with 1000 vertices and an edge proba-
bility slightly larger than 0.5, is hard and the optimal solution is
still open [26]. Results on this graph demonstrates not only the
tradeoff between solution quality and fingerprint’s credibility,
but also the run-time saving of the proposed iterative finger-
printing approach in generating new solutions.

We first color the graph once to obtain an 86-color “seed”
solution and then apply the approach in Fig. 5 to build finger-
printed solutions. The fingerprinting constraints are embedded
by the watermarking method “adding edges” [21]. We color
each fingerprinted graph five times. Parameters of the finger-
printed graphs and solutions, along with the average run-time,
are reported in Table IV. The first column gives the percentage
of independent sets to be recolored; the next three columns are
the number of vertices, edges, and the edge probability of the
fingerprinted graph; the “solution” columns show the average
number of colors to color the fingerprinted graph and the best
coloring solution we have found in five tries; the last column is
the average run-time for finding one solution.

We can see that as the number of recolored ISs goes up from
20% to 70%, the fingerprinted graph will have more vertices
to accommodate more fingerprinting constraints. This conse-
quently increases the credibility of the fingerprint. However, the
solution quality, measured by the number of colors used to color
the graph, degrades despite more time being spent to find a so-
lution. The degradation of solution quality is a direct result of
adding more fingerprinting constraints. The longer run-time is
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TABLE V
NUMBER OF UNDETERMINED VARIABLES (VAR.), AVERAGE DISTANCE FROM ORIGINAL SOLUTION (DISTANCE),

AND AVERAGE CPU TIME (IN 1=100THS OF A SECOND) FOR FINGERPRINTING SAT BENCHMARKS

due to the fact that the size of the fingerprinted graph becomes
larger and more structural information from the “seed” solution
is removed as we are recoloring more ISs. Still, we see signif-
icant run-time savings over the original from-scratch run-time
( h) in all cases.

D. Satisfiability

The SAT instances in our experiments, which are generated
from the problem of inferring the logic in an 8-input, 1-output
“blackbox,” are from DIMACS [26]. All instances that we use
are satisfiable and WalkSAT [27] is used as the satisfiability
solver. As described earlier, we start with solving each original
instance to obtain the “seed” solution. Then part of this solution
is preserved according to the user’s fingerprint. This is done by
selecting a subset of the variables, fixing their assignments, and
removing them (along with their complements) from the for-
mula. We find a solution for the smaller fingerprinted instances
and compare the Hamming distance between these solutions and
the original solution. The Hamming distance between two solu-
tions and is defined
as: .

We experiment maintaining the assignments to % of the
variables in the “seed” solution, where goes from 5% to 60%
with an increment of 5%. Table V reports the cases when is
set to be 20%, 30%, and 50%. As indicated from the last two
rows, we are able to find solutions that are 20% different from
the seed with a CPU saving around 40%. Intuitively, as we in-
crease the percentage of preserved variables, one may expect
more run-time reduction and smaller Hamming distance. How-
ever, statistical analysis on the experimental results suggests that
both numbers stay rather stable regardless of the percentage of
variables we preserve. This is due to the following reason. Al-
though the size of the instances, reflected by the “Var.” columns
in the table representing the number of variables in the finger-
printed instances, decreases with the percentage of the vari-
ables preserved, the structural difficulty of these instances in-
creases. The important observation is that the original instances
of the problem have large number of solutions. The difficulty in
solving the fingerprinted instances of smaller size actually in-

creases because the preserved variables are selected randomly
and many initially feasible solutions become infeasible. There-
fore, solvers will spend more time to locate a solution, which
reduces the CPU time saving we are expecting from making the
size of the formula small.

VI. CONCLUSION

Fingerprinting-based intellectual property (IP) protection
mechanism has major advantages over the watermarking-based
IP protection because it provides protection to both the buyer
and seller. The key problem related to the use of fingerprinting
for IP protection is the tradeoff between collusion resilience
and the run-time overhead to generate large number of distinct
IP instances. We have introduced a new generic fingerprinting
technique applicable to the protection of solutions to opti-
mization/decision problems and, therefore, of hardware and
software IPs. By judiciously exploiting partial solution reuse
and the incremental application of iterative optimizers, we have
developed fingerprinting-based IP protection techniques for
the problems of partitioning, graph coloring, satisfiability and
standard-cell placement. The proposed fingerprinting proto-
cols provide high collusion resilience low run-time overhead
simultaneously as we have demonstrated from the experiments.
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