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EXPLICIT DESCRIPTION OF CONTACT TRANSFORMATIONS
OF SECOND ORDER

Takahiro Noba, Kazuhiro SHIBUYA and Takahiko YosSHIMOTO

Abstract

The aim of this note is to explicitly describe contact transformations on the 2-jet space with one
dependent variable using the canonical coordinate system.

1. Introduction

Let (M,N,p) be a fibered manifold with m-dimensional fibers. Namely,
p: M — N is a surjective submersion such that dim N =#n and dim M =m +n. Let
J¥(M, N, p) denote the bundle of k-jets of local sections of (M, N, p). The k-jet bundle
J¥(M,N,p) has a canonical differential system C*. Then a contact transformation
of JK(M,N,p) is defined by a diffeomorphism which preserves the canonical differ-
ential system CK. A classical theorem due to Bicklund ([1]) demonstrates that the
pseudo-group of local contact transformations of JX(M,N,p) is isomorphic with
the pseudo-group of local contact transformations of J'(M,N,p) if m =1 and with
the pseudo-group of local diffeomorphisms (i.e. point transformations) of M if m > 2.
In [25], Yamaguchi proved the above statement in its global form through the geo-
metrization of jet bundles. Thus there is a marked distinction between m =1 and
m >2. In particular, in case m =1, J'(M,N,p) is a 2n+ l-dimensional standard
contact manifold. In this case, it is well-known that every local contact transformation
on J'(M,N,p) can not be a prolonged point transformation.

Under the above historical background, in the present note, we describe explicitly
the contact transformations of J2(M, N, p) in case m = 1 in terms of the local canonical
coordinate system. Our expression enables us to recognize specifically the difference
between the pseudo-group of prolonged first-order contact transformations and the
pseudo-group of prolonged point transformations. We would like to mention that
our expression can be applied to a practical approach for the discovery of interesting
pseudo-groups. In case n =1, there have been studied deeply various subgroups of
contact pseudo-groups and the corresponding equivalence problems of ordinary dif-
ferential equations, e.g. point transformations, fiber-preserving maps, area-preserving
maps, Painlevé type transformations, web type transformations, etc ([5], [6], [21], [8],
[12]). On the other hand, in case n >2, such previous studies are limited ([13]).
Because of this situation, the applicability of our present work is expected. We are
also interested in the application of our expression to transformations of geometric
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solutions with various properties, e.g. geometric singularities for solutions ([14], [15],
[16)).

Now we would like to touch on the significance of the present note. The topics
covered in this note have been discussed by great pioneers in past ([1], [2], [3], [7], [9],
[10]). However, their classical articles are not written very carefully and are not very
easy to read. Therefore, it is important to clearly explain these topics from a modern
perspective. In regard to this matter, our argument is elementary and very detailed.
In this sense, it can be expected that this note will play a role of a lecture note in this
research field.

Throughout the present note, we always assume the differentiability of class C* and
sometimes use the terminology in [25].

Acknowledgments. The first author was supported by JSPS KAKENHI Grant
Number 20K03633.

2. Contact transformations of the 1-jet bundle

Let M be a manifold of dimension n+ 1. We consider the Grassmann bundle
J(M,n) over M consisting of all n-dimensional contact elements to M. Namely,
J(M,n) is defined by J(M,n) = |J Jy, Jx = Gr(Tx(M),n), where Gr(Ty(M),n) denotes

xeM

the Grassmann manifold of n-dimensional subspaces of T.(M). Let I} : J(M,n) — M
be the bundle projection. The canonical differential system C on J(M,n) is the dif-
ferential system of corank 1 defined by

- (115).
Clu) = (1) (u) = {ve T,(J(M,n) | (IT;),(v) € u} C Tu(J(M,n)) —= Tu(M),
where 71} (u) = x for ue J(M,n). The pair (J(M,n),C) is called the geometric 1-jet
space. A diffeomorphism @ of J(M,n) onto itself is called a contact transformation
of first order if it preserves the canonical differential system C, ie., &,C=C. We
emphasize that (J(M,n),C) is the standard contact manifold of dimension 2n+ I.
Hence (J(M,n),C) has a local canonical system (J'(n,1),C'). Namely, J!(n,1) is
the coordinate space J'(n,1) := {(x;,z,p;)|1 <i<n} and C':={wy =0} is the ca-

n
nonical contact structure described by the defining 1-form wy :=dz — > p; dx;. This

i=1
local canonical system (J'(n,1),C!) is called the 1-jet space for n independent and
one dependent variables. In the same way as above, if a (local) diffeomorphism
¢:J'(n,1) — J'(n, 1) satisfies ¢,C' = C!, then ¢ is called a (local) contact transfor-
mation of first order. Now we put J%(n,1) := {(x;,z)|1 <i<n}. Then the natural
projection 7} : J'(n,1) — J°(n,1) defined by =} (x;,z, p;) = (x;,z) gives a local structure
of I7} : J(M,n) — M. In this note, we mainly use the above (local) fibration z} for the
purpose of calculating the explicit form of the following prolonged diffeomorphisms
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([20]). The first-order contact prolongation of a (local) diffeomorphism ¢ : J%(n, 1) —

J%(n, 1) is the unique (local) contact transformation ¢ : J!(n,1) — J'(n, 1) satisfying

nlop) =gponl. In the rest of this section, we calculate the explicit form of ¢! in

terms of the canonical coordinate of J'(n,1). Let oW : (x;,z, pi) — (Xi(xi,2), Z(x;,2),
P; = Pi(x;,z,p;)) denote the first-order contact prolongation of a diffeomorphism
¢ (x;,2) — (Xi(x;,2),Z(x;,2)). This prolongation ¢!} of ¢ satisfies V) (C!) = C!,
that is,

dz — Z P; dX; = f(dz — Zpi dx,) for a nonzero function f(x;,z, p;)
i=1 i=1

@izx,dxiﬁ-szz—iP,-(zn: ), dX; + )d>:f<d2—ipidx,ﬁ>

j=1

= <Zz - zn:Pi(Xf)z> dz + zn: <Zx/ - Zn:Pi(Xi)x,>d>€f =f (dz - zn:Pi dxj)-
i=1 j=1 i=1 j=1

Hence the coordinate functions X; and Z satisfy

Zy, — ZPi(Xi)xl = —/m Z;Pi(Xi)xl -=Z
= =

‘c,, Z P ),” _fpn Z P wc” fpn = an

- ZP,-(X,-)Z =/ Y PX). [ =2Z-
i=1 i=1
These conditions can be summarized as
(Xl)xl e (Xﬂ))q P1 Pl ZX]
(1) . . . . — .
(Xl )xn U (Xl’l)x,l Pn P” Zxrl
(X1), - (X)), 1)\~ Z:
We put
(X])x] (Xl),x, (Xl)z (Xl)xl e (Xn)xl P1 : Z-’Cl
I
: : ) : : T
Klp)=| ' . A= -
(Xn)x] (Xn)v,, (Xn)z (Xl),\,, : ( )x,, Pn | ZXn
D1 Pn -1 (Xl); </Yﬂ)z -1 : Z;
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If there exists a solution (Py,...,P,,—f) of the equation (1), (Py,...,P,,—f) is unique
by the following argument. We assume the existence of a solution of (1). Then an
equality rank K(p) = rank #"(¢) holds. Here, if the rank of K(¢) is less than n+ 1,
then all minors of order (n+1) x (n+1) of #'(p) are equal to 0. In particular, we

(X1)x1 e (Xn)x1 Z,,

have : : * | =0. Since ¢ is a diffeomorphism, this is a contra-
(X1),, - (Xn), Zs,
(Xl)z (Xn)z Z.

diction. Thus we have an equality rank K(p) = rank #'(¢p) =n+ 1, ie., |K(p)| #0.
By Cramer’s rule, we obtain the expression of the unique solution of (1):

(X)), - (Ki)y, Za (), - (K, M
P, = 1 : : : : : o, f=- 7ol :
KON (x), - () Za (K)o (X pa K ()l
(Xl)z e (A/,‘,l): ZZ (A/f+1): e (A/”)z -1
(X1),, - (X)), (X)),
where Jg is the Jacobian matrix of ¢, ie., Jp:= : : :
(Xn)xl e (Xn)x,, (Xn):
Zo o Zy Z.

To summarize the above discussion, we obtain the following statement.

THEOREM 2.1. Let ¢: (x;,z) — (X;, Z) be a diffeomorphism and ¢V : (x;,z, p;) —
(X;, Z, P;) be the first-order contact prolongation of ¢p. We take any point v of J'(n,1).
The first-order contact prolongation ¢V of ¢ can be defined at v if and only if |K(p)| # 0
at v. Under this condition |K(p)| # 0, we have the description of P

(X] )xl e (Xvi—l)xl ZX] (Xv[+l)x1 U (Xﬂ)xl D1
) . . )
(2) P] — . . . . . . .
KO ), - Xy, Ze (Xa)y, - (X, pa
(Xl)z e (A/l'*l)z ZZ (A/Prl)z e (Xn)z _1

Now we look a little deeper into the above condition |K(¢p)| # 0.

PROPOSITION 2.2. Let w be any point of J°(n,1). The following three conditions
are equivalent.
(i) At any point v in the fiber (né)fl(w), we have |K(p)| # 0.
(i) We have (K(,11)1(9), -, Kui1)n(@)) = 0 at w, where K, 1y (1 <k <n) is the
cofactor of the (n+ 1,k)th element of K(p).
(i) We have ((X1),,...,(Xy).) =0 at w.

z
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By taking the contraposition of the above, the following three conditions are also
equivalent.

(i)' There exists a point v in the fiber (né)_l(w) such that |K(p)| = 0.

(i) We have (Kpyi)1(9),-- - Kpsin(p)) #0 at w.

(i) We have ((X1),,...,(Xn).) #0 at w.

Proor. First of all, we prove the equivalence between (i) and (ii). We assume
that (ii) is false, that is, (K(41)1(9),..., Kus1)u(9)) # 0 at w. There exists a number
k (1 <k <n) such that K, (p) #0. We use the cofactor expansion along the
(n+1)th row to evaluate [K(p)l, ic. |K(9)= Kiuin(@)p1 + -+ Koueu(0)pn —
Kui1yne1)(@). By taking the point v in the fiber (né)_l(w) defined by pi =
K(n+l)(n+1)((p)

K (o)
the statement (i) is false. Thus we obtain the implication (i) = (ii). Conversely, we
assume that (i) is true, that is, (K(11)1(@),...,Kut1)u(p)) =0 at w. Then we have
Ky (@) # 0 at any point v in the fiber (z)) ' (w) by the calculation;

, =0 ({=1,....,0k—=1,k+1,...,n), we have |K(p)| =0 at v. Namely

(X)), - (X)), (X).
0#lpl=| -
(X’l)xl U (X”)xy, (X”)Z
le . ZX” ZZ

= K1 (9)Zx, + - + Ky 1)n(9) Z, + K1) (n11)(0) Z:
= K1)t () Z-.

We have |K(¢p)| #0 at v by the following cofactor expansion of |K(¢)|;

IK(9)| = K1y (@) p1 + -+ + Kui1)n (@) n — K 1)(n1) () = =K1y (n1) () # 0.

Hence we obtain the implication (i) = (i). The above discussion proved the equiv-
alence (i) < (ii).

Next we prove the equivalence between (ii) and (iii). The implication (iii) = (ii)
follows directly from the expression of K(¢). Hence it is sufficient to prove the impli-
cation (ii) = (iii). We assume the condition of (i), that is, (K,+1)1(®), .., Kur1)n(®))

(X)), - (X)),
=0 at w. We put W := K(n+1)(n+l)((p): . Let W be the

(K)o (X,
cofactor of the (7, j)th element of W and adj(W) be the adjugate matrix of W. In the
same way as the discussion of the proof of the implication (ii) = (i), we have || # 0
and [|adj(W)| #0. By the assumption K1) (¢) =0, we have
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(Xl)w (X")xz
0= [Kpyi(p)| =
(Xl)x” (Xl’l)rn
(X1). (Xn).
(Xz)\v (Xl’l)rz (Xl)vz (Xn—l)x2
= (=" D@ (D ().
(Xz)x,, e (Xn)x,, (Xl )x” (Xf’lfl)x,,
= (=D)" W), + -+ W (X))
We also perform the same calculations for K, 12(9),...,Kpui1a(p). Summarizing
these calculations, we have the following simultaneous equations;
Wi o Wn (X1). (X1).
: : =adjw)| : |=o.
Wln e Wnn (1\/,1): (Xn)z
(Xl)z
Then the condition |adj(W)| # 0 derives the unique solution : =0. Thus we
(Xn)z
obtain the implication (ii) = (iii) and the equivalence (ii)<> (iii). O

By using the above proposition, we characterize the local behaviors of the domains
of the first-order contact prolongations 1. Let wy := ((x;)y,20) be a base point in
J%(n,1). Roughly speaking, the shapes of the domains of the first-order contact
prolongations can be classified into the following three types.

Type A: We assume that the condition (i)’ is true at the point wy. Then the
condition (i)’ is also true around wy by the equivalent open conditions (i)’ and (iii)’.

ExampPLE 2.3. We consider a diffeomorphism ¢ :J%(n,1) — J%(n, 1) defined by
Xi=z Xi=x; (i=2,...n) and Z=x;. By the calculation of |K(p)|, we have

/!

|K(p)| = —p1. Hence any point wo in J%(n,1) satisfies the condition (i)’

Type B: We assume that the condition (i) is true at the point wy. This case can
be divided into the following two cases.

Type B-1: There exists a neighborhood U of wy which satisfies the following
situation. The condition (i) holds at any point in U.

ExampLE 2.4. We consider a diffeomorphism ¢ :J%(n,1) — J%(n, 1) defined by
Xi=xi41, Xo=x1 (i=1,...,n—1) and Z =1z Similarly, we have |K(p)|=
(—1)("“) # 0. Hence any point wy in J%(n, 1) satisfies the condition (i).
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g —— <(‘ri)07207pi)
=)

— [K(¢)] #0
__t S EWl=0

Figure 1. Type A

NL==4=-=0
|K ()] #0

M

e

p—
— 1=

damush
N

D

((xi)o, 20)

Figure 2. Type B-1

Type B-2: For any neighborhood U of wy, there exists a point w:= (x;,z) in U
satisfying the condition (i)’.

EXAMPLE 2.5. We consider a diffeomorphism ¢ :J%(n,1) — J%(n, 1) defined by

1 .
X) =x —Ezz, Xi=x; (i=2,...,n) and Z =z. Similarly, we have |K(p)| = zp; — L.

Hence any point wy in the hypersurface {z =0} of J%(n, 1) satisfies the condition (i).
On the other hand, any point wy in the open domain {z # 0} of J%(n,1) satisfies the
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m |K(p)| #0
>~
4 [K(p) =0

((wi)o, 20)

Figure 3. Type B-2

!

condition (i)’. Actually, it is sufficient to take a point vy in the fiber (n(l))fl(w())

e 1
satisfying p; = —.
z

Through the discussion in this section, we note that the combination of Theorem
2.1 and Proposition 2.2 derives the following characterization.

COROLLARY 2.6. Let ¢:J%n,1) — J°n,1) be a diffeomorphism. The first-order
contact prolongation ¢V of ¢ can be defined at any point in J'(n,1) if and only if ¢
is a fiber-preserving diffeomorphism for the natural fibration J%(n,1) — R" defined by
(X1, yXn,2) — (X1,...,X,). Here a fiber-preserving diffeomorphism can be described
by the form ¢(x;,z) = (Xi(x1,...,%X0), Z(X1, ..., %Xn,2)).

3. Contact transformations of the 2-jet bundle

Let (J(M,n),C") be a geometric 1-jet space which has the local canonical system
(J'(n,1),C"). We take a local contact form = around any point u e J(M,n). An
n-dimensional subspace v of the tangent space T,(J(M,n)) is called an integral ele-
ment of C! if v C C'(u) and dw|, =0. Since (J(M,n),C") is the 2n + 1-dimensional
standard contact manifold, this integral element v is a Lagrangian subspace of the
symplectic vector space (C(u),dw). We consider the Lagrangian Grassmannian bundle
L(J(M,n)) over J(M,n). Namely, L(J(M,n)) is defined by L(J(M,n))= |J L,

ueJ(M,n
where each fiber L, is the Lagrangian Grassmannian manifold. Let I7 12 cL(J (]\/([ , n))) —
J(M,n) be the bundle projection. Then the canonical differential system E of corank
n+1 on L(J(M,n)) is defined by

E(v) = (1) (0) © (L (M, ) % 7,(7(M, ),
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where IT7(v) =u for ve L(J(M,n)). The pair (L(J(M,n)),E) is called the geo-
metric 2-jet space. A diffeomorphism @ of L(J(M,n)) onto itself is called a con-
tact transformation of second order if it preserves the canonical differential system
E, ie, &.E=E. As in the case of the geometric 1-jet space, (L(J(M,n)),E) has
a local canonical system (J%(n,1),C?). Namely, J?(n,1) is the coordinate space
J2(n,1) = {(x1,z, pi, pyi) | 1 <i<j<n} and C?:={wy=1w; =0} is the canonical

n
second-order contact structure described by the defining l-forms wg :=dz — Y p; dx;
i=1

and w; := dp; — Z pij dx;, where 1 <i <n, p; = pj;; ([26]). This local canonical system

(J2(n,1),C?) 1s called the 2-jet space for n independent and one dependent vari-
ables. In the same way as above, if a (local) diffeomorphism ¢ : J?(n,1) — J*(n,1)
satisfies ¢,C? = C?, then ¢ is called a (local) contact transformation of second order.
We also have the natural projections =7 :J%(n,1) — Jl(n,1) and =3 :J?%(n,1) —
JOn,1) defined by ni(x;,z,pi, pij) = (xi,z,p;) and =n :=mn}on? respectively. The
fibration 73 : J?(n,1) — J'(n,1) — J%(n,1) gives a local structure of the (geometric)
fibration 713 :=I1} o IT? : L(J(M,n)) — J(M,n) — M. As in the case of Section
2, we mainly use the (local) fibration 73 for the investigation of the contact pro-
longations.

3.1. Second-order contact prolongations of diffeomorphisms

The second-order contact prolongation ¢ :J%(n,1) — J?(n,1) of a (local) dif-
feomorphism ¢ :J%n, 1) — J%n,1) is the unique (local) contact transformation
@2 J2(n, 1) — J%(n,1) satisfying 7?0 p? = pM on?, where o) :J (n, 1) — J'(n,1)
is the first-order contact prolongation of ¢. In this subsectlon, we calculate the explicit
form of the second-order contact prolongation of a (local) diffeomorphism.
Now we prepare some fundamental properties for the determinant to be used in
subsequent discussions. However, we omit the proofs.

ProrosITION 3.1. Let m, n be natural numbers, h, | be non-negative integers,
l<k<nand 1 <ij<---<ip<n We put

by by
a;:="(a; ay - ay) (1<i<m), B:=(b - b):=] : S,
bnl bnl
af ="(an; an - oay),  bfi="(by; by, -+ by) (1<j<I),
Cl‘[l e ci[/l
Bi:=(bf -+ Bf), C:=| : co

C[/\»l e Ci/(ll
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where m+1=n+1, 1 +h+1=k. Then we have the equality;

a) a a,, B
|af‘ Bk C| |aé‘ Bk C| |ak Bk C| 0

m

=0.

PrOPOSITION 3.2. The exterior derivative of a determinant satisfies

ﬁl fln dfll fiZ fln fll ﬁn—l dfln
d =] Dl N}
ﬁﬂ T ﬁm dfnl _fnZ T fnn fnl T fnnfl dfnn
We also prepare the useful explicit formula of the partial derivatives (P,»)p]_ of P; in

a first-order contact prolongation ¢ : (x;,z, p;) — (X;, Z, P;). By using the description
(2), we calculate

(X)y o (K, Ze (X)), 0 (X)), p
1
(3) (Pi)pj I : : : : : :
|K(¢)| (Xl)x,, (‘Xvi*l)xn an (A/Prl)x,, (Xn)xn Pn
(Xl): T ()(i*l)z ZZ (A’YiJrl)z T (Xn)z -1 i
(X1)y, - (K Ze (X)), 0 (X)), p
1
_ : : : : K
KOP ||, o O, Ze Gy o O |
(X1). o (X)), Z: (X)), - (X). -1,
X))y, o (Kim)y, Zv (K)o (Xa)y,
(XI)X” (A/ifl)x” Zy, (va+1)x,, (Xn)x” Pn
(X)), - (Xim). Z: (Xi). - (X)), -1

Here each term of the above can be transformed as follows. First of all, we
transform

(X)y, - (Ki)y, Za (), - (K, M
(X, - (K, Ze (X),, - (Xa)y, P
X)), - (X)), Z (X)), - (X)), -1
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— (_1)‘/+I’l+l

— (_1)i+j+l’l

(Afi—l )Xl le (A/H'l )xl
Xict)y, Zo (Xiga),
(Afi—l )x/_ ZXj (A/H*l )xj
(Xvifl)x]ur] Xj+1 (X1+1 )xj“
(‘le'*l)x,, ZXn ()G+1)xn
(Xic1). Z. (Xi).
(Xl)).l (A/l'*l)xl le
(Xl)xj—l (/Yifl)xjil Zx,;l
(Xl)xjH (X}*l)xjﬂ ZX.HI
(Xl )x,l (A/llfl )x,, an
(X1). (Xic1). 2
ZXI (Xl)xl (A/'i—l)xl
Zy, (X)), (Xi1)y
Z«‘Cj+l (Xl)xjH ()(f*l)xﬁl
an (Xl )x,l (A/i*l),xn
ZZ (Xl )z (A/l* 1 )z

X1

(Xa)

(X")Xf—l
(X»)

%j

(X”)xj“

(A/l”;l)x,,
(Xit1).

We denote the determinant in the last description by A;.

following transformation different from the above.

(X1),,

(X)),
(X1)

z

of Second Order

11

(." Prop. 3.2)

(=

(X")x,l

Next we perform the

(Xic1)y, Zw (Xip1)y, (Xu)y, M

(A/ifl )Xn Zx,, (/Yi+l )Xn (X")x,, Pn

(Xic1).  Z: (Xin). (X,). -1
(Xl)xl (Xifl)xl (A/i+1)x1 (Xn)xl ZXI P1
(Xl-)\c” (Xi;l)x,l (‘le#.l)xn (X’:l)x,, Z.Xn Pn
(X1). (Xic1).  (Xiv), X,). zZ. -1
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Finally we expand the term [K(p)],;

(X)y, (X, O
(Xl)x] e (Xn)xl 1 (Xl)x,,l T (X")X,,l 0
. T (X, (X, 1
K _ . . . — Xj ;/
| ((p)|p/ (X])x’l . (Xn)xn Pn Prop. 3.2 (Xl)xjﬂ e (X”)xjﬂ 0
(). - (). -1, ;
(XI)X" (X’l)x,, 0
(Xl)v (Xn)z O
(Xl)xl (Xn))q
' (Xl)x/,l (Xn)x/,l
= (_1)j+n+l (Xl)x/-l (Xn)xj+1
(X1),, (Xn)y,
(X1) (Xn).
(‘le')‘q (Xl )x] (/Yl'*l)x] (AfiJﬁl)xl (Xn)x]
o (A/l)x/,l (Xl)x/,l (A/ifl)xj,l (/\/Prl)xj,l (X”)x/,l
= (_1)l+]+’1 ()Q),YHI (Xl)x/H e ()(i*l)x,url (Xile)x,‘H T (Xn)x,url .
(A/i)x,, (Xl )x,, e (‘Xl'*l)x,, ()(iJfl)x,, T (Xﬂ)x,,
(X).  (X). - (X).  (Xp). - (X))

We also denote the determinant in the last description by A4,. Thus we have the
following form of (P;), by substituting these expansions into (3).

(Xl)xl T (‘Xﬂ)xl D1

1 (1)t :
|K(¢)|2 (Xl)xn (Xn)x” Pn
(X)), - (Xa), -1

@ (P, =
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(Xl )xl e (Xifl)xl (‘XiJfl)xl T (X")Xl Zx‘

n (_1)‘,‘+1 : : : :
(Xl)x,, T (A/i—l)x,, (AX'H-I)x,, e (Xn)x,, an
(X1), - (X)), (Xipr), - (X)), Z:
(X)), 0 (Xa)y,
(_1)i+j+n+1 ) : : :
=———| —4i
K ()| (X1),, - (X,

X))y, o Xi)y, (Xa)y, o (Xa)y, 2y
+ (_1)i+n : . .
(Xl)x,, o (‘Xvifl)xn (‘le'le)x,, U ()(11))6,, an
(X1). - Xio)., (X)), - (X)), Z

Now, by using Proposition 3.1, we also have the following condition;

(X1)y, - (Xima)y, (X)y, (Xisn)y, -0 (X, Zx, i

(Xl)x,, (Xi—l)x" (Xi)x,, (Xi+1)x” (Xn),\gxn Pn

X)), - (Xim), (X)), (Xin). -+ (). Z: -1
pr (X)), o (X)), (X)), -
pi-t (X1) o (Ximn)y, (Ki)y, -

o - 0 A 0 - 0 A |ps (X)y,  (Ximt)y,, (Xi)

pe (X1),, - (Xim),, (X)),

-1 (). - (X), (), -
(X,  (Xim)y, (Xipn)y, - (Xa)y, Za 1 X)y  (Xa)y, P
PSS N S P -
(), - (i), (K)o (G, Zo 1 (X0, - (%), 1
(X1) Xicr), (Xip), -+ (Xa). Z: -1 (X)), - (X)), -1
p1 (Xl)xl ()G*I),vl ()(f+1)x1 (X”),vl

pi-r (X1)y, o (X))o, (X)), - (Xa)y

G-

ol | pier (X)), o (Xica) g, (K)o (X,
p (X)), o (Xion)y, (X)), - (),

-1 (X)
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(X)), - (X1, (Xig)y, - (X)y, Za 1 X))y, - (X)y, M
— (1) : : : : s Ay — A : : :
(X1),, - (Xin),, (Xip1)y, - (Xa)y, Zx, Pa (X1),, - (Xa)y, Pn
X)), - (Xim), (Xn), - (X)), Z: —1 (X1), - (), -1
X))y, - (Xim)y, (X)), - (X)), m
X)Xy, (K)o (Xa)y P
+ (=Dl | (K1), o (Kn)y, (K)o (Xa)y,, pis |-
X)), - (X)), (X, - (X)), Pa
X)), - (X).  (X). - (X)), -1

By substituting this condition into (4), we have the expansion;

(XD, - (K, (Xn)y, (X)), o
(=1)H (X1)y, (Xir)y, (XKir)y (Xn)y, Pit
(Pi),, = W(*U"V‘N A&y, o Ky, (), o (), P |-
(X)y, 0 (K, (), - (K)o
(X). - Xa). (Xa). 0 (X)), -1

Let K;i(p) be the cofactor of the (i, j)th element of K(¢). Consequently, we obtain the
following simple formula of (Pi)pj.

LemMa 3.3. Let oWV : (x;,z, pi) — (Xi, Z, P;) be a first-order contact prolongation.
Then the partial derivatives (P,-)p/ of P; are given by

[Jol
K(p)|?

(Pi)pjzf sz(ﬁl’) (i,jil,...,l’l).

From now on, let us proceed to the description of the second-order pro-
longation ¢® :J2%(n, 1) — J*(n,1) of a diffeomorphism ¢ :J°%n,1) — J%(n,1). Let
0 ¢ (xi,z, pi, pii) — (Xi(xi,2), Z(x1,2), Pi = Pi(xi,z, pi), Py = Pyj(xi,z, pi, pjj)) denote
the second-order contact prolongation of a diffeomorphism ¢. In the same way as
the discussion of the first-order prolongation ¢!, we examine the pullback equation for
generator 1-forms of C? by ¢®);
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dZ — P, dX, —---— P, dX,
dP, — Py, dX; — --- — Py, dX,
(5) :
dPn_Pnl Xm_"'_PnndXvn
f 0 -~ 0 dz— pydxy — - — ppdx,
NS S || dpr—pudxy — - = piadx,
ﬁ1 ﬁzl e fnn dpn — DPnl Xm — = DPm dxn
where the above functions f(x;,z, pi), fi(Xi,z, pi, py) and fj;(x;, z, pi, pij) satisfy;
/0 - 0
N fuo S
. . .| #0.
Soo I S

In the previous section, we already discussed the first equation in (5).
investigate the remaining equations except for this first equation.
equation for i=1,...,n. The left-hand side can be expanded as

dP; — Py dX| — - -- — Py, dX,

— (i(Pi)xkdxk + (P)).dz + Z pkdpk>

— Pil ( (Xl)xkdX]( =+ (X1)2d2> — e — Pm( (Afn)xkka + (A/,1)Zd2>
k=1

Hence we
We fix the (i + 1)th

k=1

- Z k ’1 Xl) T Pil1(Xn),rk)dxlc

(P, — Pu(Xy). — - )z + Z ) pe i

On the other hand, the right-hand side can be expanded as

fi (dZ - Zpk dxk) + fi <dl)1 - Zplk dxk) + ot S (dpn - ank dxk)
k=1 k=1

k=1

= (~fipk = fapic — - = fapa)dxi + fidz+ Y fix dpr.
k=1 k=1
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Thus we have the following simultaneous equations by comparing both expansions.

We rewrite the above system of equations in matrix form;

ot p
XDy, - (X, 1\ [ Pa Z VpeH
“ (K, - () Pu |
1)y n)y Pn in
n n +
(X, - (), —1) \+ Z i
( l)z
By Cramer’s rule, we obtain the following expression of the unique solution of
(6);
(Xl)xl T ()(J'*l)xl + Z pkpkl j+1)
1
P=—
7 K (p)]
(Xl)xn e <X}71)xn xn + Z p/\pkn j+1) Xn
(Xl)z T (1\?*1)2 (Pi)z ()(j+1)z

for all j (1 <j<n), and

(X1, - (Xa)y, o T Z 1), Pl
1 : :
O] '
(X)), - (X, o T Z ) py Phn
(Xl)z (X”l)z ( l)z

(Pi)xl_Pil(Xl)xl _Pll’l( 11) fpl ﬁlpll_"'_f}npnh
(Pi)xn - Pil(Xl) - Pm( ’T)xn = —fipn — fuPin — - — finPuns
(Pi). — Pu(Xh). — - = Pu(Xu). = fi,

(Pi),, = fin,

(Pi)pn :f;)r

D1
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We substitute the description of (P,»)p/, in Lemma 3.3 into the description of
Pi; |

(X)), 0 (Xo)y, Py, (X)), 0 (Xa)y, M
1 : : : : : :
DK@ ), e ), (P, (), - (), P
X)., - (Xon), (P), (Xw)., - (X), -1
(X)), o (Y1), P (X)), - (X)), P
- |Jo| ) : : : : : :
+ - K ()
;< Ko™ (X)), o (XoD)y P (X)), - (Xa)y,  Pa
(Xl)z (Xj*I)Z 0 ()(j+l)z (Xn)z -1

Moreover, by using the cofactors of K(p), we have

Ky o () pa (K - (N p

. S I
X - Ky pe K o (K)o e 2Ky
X, - (K). 0 (). o (K). -1

Thus we obtain the clear description of Pj;

1 J n n
Py= et (g~ 2SS Ko Katopu | where
1K ()| — i~

K ()|
! (Xl)xl T (A?—])xl (Pi)x] (AGJFI)Xl T (Xn>x1 P
(Xl )xn e (‘X}*l)xn (Pi)x,, (1\/]+1)x" T (Xn)x,, Pn
(X)), - (). (P, (). - (X)), —1

We remark that the equality |A4;|= |4;| follows from the equality P; = Pj;. The
following statement is a summary of the above discussions.

Tueorem 3.4. Let ¢V : (x;,z, pi, pj) — (X3, Z, Pi, P;) be the second-order con-
tact prolongation of a diffeomorphism ¢ : (x;,z) — (X;,Z). We take any point v
of J*(n,1). The second-order contact prolongation ¢ can be defined at v if and
only if |K(p)|#0 at v. Under this condition |K(p)| #0, we have the description

Of Plj,
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(X1)y, o (X1, ot Z Dyl (Xiet)y, o (Xa)y, i
(X1),, (Xj-1)y, )y, Z DpPien (Xjx1)y, o+ (Xu)y,  Pn
(X1). - (X)), (P:)z (Xj1). - (X)), -1

1 IJcﬂI
= | |4l ) Pkl where |A;| = |Ajl.
[K(9)] < ’ lz:kz: / /

REMARK 3.5. We note that the condition |K(¢)| # 0 appears in both Theorem
2.1 and Theorem 3.4. Namely, the open domain D := {|K(¢p)| # 0} C J'(n,1) is the
domain of the first-order contact prolongations ¢!, and the its total space D :=
(72)"(D) is also the domain of the second-order contact prolongations ¢®. Conse-
quently, we obtain the following commutative diagram for contact prolongations under
the condition |K(¢)| # 0;

N @
JAn,1) > D L — J2(n,1)

Jon, 1) —L— JOm, 1).

3.2. General contact transformations of second order

Let us start from the following famous lifting theorem for the contact trans-
formations on 2-jet bundles (c.f. Theorem 3.2 in [24]).

THEOREM 3.6 (Bicklund [1], Yamaguchi [24]). Let (J(M,n), C) be a geometric 1-jet
space (ie. standard contact manifold) and (L(J(M,n)),E) be the geometric 2-jet space.
A first-order contact transformation ¢ :J(M, n) —>J(M, n) induces a unique second-
order contact transformation ¢ : L(J(M,n)) — L(J(M,n)) such that $(v) = ¢, (v) for
ve L(J(M,n)). Conversely a second-order contact transformation Y : L(J(M,n)) —
L(J(M,n)) induces an unique contact transformation ¢ :J(M,n) — J(M, n) such that

Theorem 3.6 was provided by A. V. Backlund in its local form ([1]). After that
Yamaguchi proved the statement in the above global form ([24]). This theorem tells
us that every (local) contact transformation of second order can be realized as a
prolonged first-order (local) contact transformation. Incidentally, in our notation, the
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second-order prolongation ¥ : JX(R",R) — J2(R”",R) of a (local) first-order contact
transformation ¥ : J!(R",IR) — J!'(IR”,R) is also defined as the unique (local) contact
transformation satisfying 77 o y=yo n} from the same argument in the above ([20]).
Based on Theorem 3.6, we give the explicit form of the general second-order contact

transformation as a second-order prolongation .

THEOREM 3.7. Let tﬂ 2 (xi, 2, pi, pij) — (X3, Z, Pi, Pjj) be the second-order prolonga-
tion of a first-order contact transformation \ : (x;,z, p;) — (X;, Z, P;). We take any point
v of J*(n,1). Moreover we put

(X1),, - (M), X), (X)), - (X1),
(Xn)xl U (A/")x,, (Xn)z (Xn)pl e (Xn)p,,
L(lp) = P1 U Pn -1

J4%! Pin O

Pn1 o Pnn -1

The second-order prolongation \y can be defined at v if and only if |[L()| #0 at v.
Under this condition |L(y)| # 0, we have the description of Py,

X))y, o XNy, (Pi)y, (Y1), - (Xu)y, p1opu -+ P
(Xl)xn e (A/}_l)x,, (Pi)xn (IY_/+l)xn T (Xn)x’n Pn Pin - Pm
Py = (). (G (P, (i) e (). -
@) IL(Y) 0
(Xl)pl e (X}—l)pl (Pi)111 (&'4’1 )[71 e (Xn)pl
(X1),, - (Xm1),, (P),, (X)), - (Xn), -1
& dX;.y dP; dXj dx,
dx1 dxl dX1 dx1 dx1
dXx dX,_1 dP; dXj. ax,
_ dx,, dx, dx, dx, dx,,
*#2) (qu> ’
pr l<o,f<n
where i'—ﬁ—f— i— + g 2
v, o Doz &Py



20 Takahiro Nopa, Kazuhiro SHiBUYA and Takahiko YosHMOTO

Proor. The equality (#1) follows from the same argument as in Theorem 3.4, so
we omit the proof. In the following, we prove the equality (#2). Two determinants
on the right-hand side of the equality (#1) can be rewritten as follows;

(X1, - (X)), Py, (X1, - (Xa)y P1oPu - Pa
(Xl)‘c,, (X}*l)x,, (Pf)x,, (X}Jrl)xn (Xn)x,, Pn P - Pm
(Xl)z T (‘X}*l): (Pi): (‘X}Jrl): e (Xﬂ)z -1
Ky o G, P, Gy o ), 0
(A/I)p,7 T ()(]'*I)Pn (Pi)pn ()(]'Jrl)p,, o (Xn)p,, _1
axi dXj1 dp; dXji 1 dx, 0 0 0
dX1 dx1 dX1 dx1 dX1
dX o dX;_ dP; dXi o dXx, 0 0 0
B dx, dx, dx, dx, dx,
X)), o (X). (P), (X)), o (X)), -1
X, o X, 2, K., - x, .0
(Xl )pn e (A/j*l)pn (P[)pn (Xj+1)pn e (X;1)pn _1
ax, = dX. 4P dX | dX,
dxy dxy dxy dx; dx
=(-n" oo |, and
X dX;_ @ dX;i dx,
dx, dx, dx, dx, dx,,
axn. - dx,
dx1 dx1
L) = ()" :
dXx; dx,
dx, dx,

We obtain the equality (#2) by substituting these descriptions into the right-hand
side of (#1). O

REMARK 3.8. Since y is a first-order contact transformation, we remark that the
following condition for P; is in hiding within the above expression of Py;
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(Xl )xl T (X")xl P1 le
: : : P, :

CONENTING SN I z,

(Xl)z (Xn)z —1 : = Z:

(X] )I’l T (Xn)pl 0 P Zpl

-/

(Xl )pn U ()('1)]),, 0 ZPn

(Xl)pl T (Xn)p]
Here if a contact transformation s satisfies the condition : : =0,

(Xl )pl‘l e (Xn)pll

then | becomes a first-order prolongation ¢! of some diffeomorphism ¢.

A comparison between Theorem 3.7 and Theorem 3.4 enables us to understand
elementary the marked differences between the pseudo group of (prolonged) first-order
contact transformations and the pseudo group of (prolonged) diffeomorphisms (point
transformations). A typical example of such a difference is the following Legendre
transformation of general type.

ExaMpLE 3.9. Let I be a nonempty subset of the set {1,...,n}. The Legendre
transformation of general type ¥ : (x;,z, p;) — (X;, Z, P;) is defined by X; := p;, X, := xj,
Z:=z—-Y) pixj, Pi:=—x;, Pj:=p;, where iel, je{l,...,n}\I. In the case of

iel
I={1,...,n} ¥ is the usual full Legendre transformation, otherwise it is the partial
Legendre transformation ([22]). By using Theorem 3.7, we can calculate the second-
order prolongation of these Legendre transformations. For example, the second-order

prolongation of the full Legendre transformation is given by the description Pj; =

—L, where ¢; denotes the cofactor of the (i, j)th element of the matrix
|(p“ﬂ)lsa,/>’5n| .

(Pu[f)lgx,/}gn'

REMARK 3.10. In [4], the author made reference to Klein’s conjecture ([7]): The
group of contact Cremona (i.e. birational) transformations of the projective plane
is generated by the subgroups of the prolonged point transformations and the (full)
Legendre transformations. In this connection, the author proved the following state-
ment. Any polynomial contact automorphism of the 3-dimensional affine space can be
realized as a composition of some number of the prolonged polynomial point auto-
morphisms and the (full) Legendre transformations. In our notation the 3-dimensional
affine space is J'(1,1) and the contact transformation 7T :J'(1,1) — J'(1,1) is said to
be a contact polynomial automorphism if 7 and its inverse 7' are automorphisms
consisting of polynomials.
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