
ABSTRACT

Title of dissertation: Secure and Private Data Aggregation
in Wireless Sensor Networks

Gelareh Taban, Doctor of Philosophy, 2008

Dissertation directed by: Professor Virgil D. Gligor
Department of Electrical and Computer Engineering

Data aggregation is an important efficiency mechanism for large scale, resource

constrained networks such as wireless sensor networks (WSN). Security and privacy

are central for many data aggregation applications: (1) entities make decisions based

on the results of the data aggregation, so the entities need to be assured that the

aggregation process and in particular the aggregate data they receive has not been

corrupted (i.e., verify the integrity of the aggregation); (2) If the aggregation ap-

plication has been attacked, then the attack must be handled efficiently; (3) the

privacy requirements of the sensor network must be preserved.

The nature of both wireless sensor networks and data aggregation make it par-

ticularly challenging to provide the desired security and privacy requirements: (1)

sensors in WSN can be easily compromised and subsequently corrupted by an ad-

versary since they are unmonitored and have little physical security; (2) a malicious

aggregator node at the root of an aggregation subtree can corrupt not just its own

value but also that of all the nodes in its entire aggregation subtree; (3) since sensors

have limited resourced, it is crucial to achieve the security objectives while adopting

only cheap symmetric-key based operations and minimizing communication cost.

In this thesis, we first address the problem of efficient handling of adversarial

attacks on data aggregation applications in WSN. We propose and analyze a de-

tection and identification solution, presenting a precise cost-based characterization

when in-network data aggregation retains its assumed benefits under persistent at-

tacks. Second, we address the issue of data privacy in WSN in the context of data

aggregation. We introduce and analyze the problem of privacy-preserving integrity-

assured data aggregation (PIA) and show that there is an inherent tension between

preservation of data privacy and secure data aggregation. Additionally, we look at

the problem of PIA in publish-subscribe networks when there are multiple, collab-

orative yet competing subscribers.

Secure and Private Data Aggregation
in Wireless Sensor Networks

by

Gelareh Taban

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2008

Advisory Committee:
Professor Virgil D. Gligor, Chair/Advisor
Professor John Baras
Professor Gang Qu
Professor Charles Silio
Professor Mark Austin

c© Copyright by
Gelareh Taban

2008

Dedication

To Bahareh and Hossein Tabatabaei,

I am extraordinarily privileged to be your sister.

You were . . .

. . . born to catch dragons in their dens

And pick flowers

To tell tales and laugh away the morning

To drift and dream like a lazy stream

And walk barefoot across sunshine days.

James Kavanaugh “Sunshine Days and Foggy Nights”

ii

Acknowledgments

This dissertation has benefitted tremendously from the discussion, wisdom and

support of many individuals.

First and foremost, I am deeply indebted to my thesis advisor Professor Virgil

Gligor for his support and advice. Professor Gligor’s mentoring and insight has

helped shape my outlook and approach to research and beyond. I have been very

fortunate to have had the opportunity to work closely with him.

I have also had the great fortune to benefit from the mentoring and advice of

Professor Jonathon Katz. His classes and advice have guided me in my studies of

cryptography and provable security.

I wish to thank my friends and colleagues —Rakesh Bobba, Dr. Omer Horvitz,

Dr. Himanshu Khurana, Radostina Koleva, Soo Bum Lee, Marci Meingast, Dr. Kazuhiro

Minami, and Ji Sun Shin—who have served as peer mentors and collaborators

throughout my studies.

There are numerous other friends, faculty and staff who have made my grad-

uate experience one that I will cherish forever. Thank you.

I consider myself extraordinarily privileged to have as my mother, friend, ad-

visor and colleague, Dr. Reihaneh Safavi-Naini; and as my husband, friend and

colleague Dr. Alvaro A. Cárdenas. They provided amazing and unwavering sup-

port, love, patience and encouragement throughout this often-stressful and eventful

period in my life. You have been an inspiration to me and aspired me to dream big

and achieve bigger. I am also deeply grateful to my uncle and friend, Dr. Hamid

iii

Safavi for his endless love and support.

During my graduate studies I have been generously supported by US Army

Research Laboratory and the UK Ministry of Defence under Agreement Number

W911NF-06-3-0001 and by the US Army Research Office under Contract W911NF-

07-1-0287 at the University of Maryland. Their support has made this work possible,

and I am grateful for their generosity.

iv

Table of Contents

List of Figures viii

1 Introduction 1
1.1 Reliable Data Aggregation . 3

1.1.1 Related Work . 6
1.1.2 Our Contributions . 7

1.2 Privacy in Secure Data Aggregation 8
1.2.1 Motivating Example . 11
1.2.2 Related Work . 12
1.2.3 Contributions . 14

1.3 PIA in Publish-Subscribe Systems . 15
1.3.1 Prior Work . 18
1.3.2 Our Contributions . 21

1.4 Thesis Organization . 23

2 Preliminaries 24
2.1 Wireless Sensor Networks . 24
2.2 Data Aggregation Models . 26

3 Efficient Handling of Integrity Attacks 29
3.1 System Model . 29
3.2 Adversary Model . 30
3.3 Performance Measure. 31
3.4 Identification Algorithm . 31

3.4.1 Partition Test . 34
3.4.2 Group SHIA . 37

3.4.2.1 Analysis . 39
3.4.3 Computing Aggregate . 40
3.4.4 Security Analysis . 40

3.5 A Theoretical Model for Cost Analysis 42
3.5.1 Cost Upper Bound Definition 42
3.5.2 Results . 44

3.5.2.1 Upper bound when n is a power of m 44
3.5.2.2 Upper bound when n is not a power of m 46

3.5.3 A Numerical Example . 50
3.5.4 Lower Bound and Average of Partition Cost 52

3.5.4.1 Average Cost . 52
3.5.4.2 Lower Bound Cost 53

3.5.5 Rational Adversary: Bounded Presence 54
3.6 Conclusion . 56

v

4 Privacy-preserving Integrity-assured Data Aggregation 57
4.1 Single Aggregator Model . 57
4.2 Privacy . 57

4.2.1 Privacy vs. Confidentiality. 59
4.3 PIA Security Models . 59

4.3.1 Integrity-Verification . 60
4.3.2 Privacy Preservation . 61

4.4 Aggregation Functions . 61
4.5 PIA Solution 1 . 62

4.5.1 Assumptions. 63
4.5.2 Protocol Description. 63
4.5.3 Analysis . 65
4.5.4 Discussion . 66

4.6 PIA Solution 2 . 66
4.6.1 Protocol Description . 68

4.6.1.1 Encryption . 68
4.6.1.2 Aggregation-Verification 70
4.6.1.3 Decryption . 72

4.6.2 Analysis . 72
4.7 PIA Solution 3 . 74

4.7.1 Basic PIA Solution 3.1 . 75
4.7.2 Improved PIA Solution 3.2 . 77

4.8 Conclusion . 79

5 PIA in Publish-Subscribe Systems for Multiple Subscribers 80
5.1 System model . 80

5.1.1 Assumptions . 80
5.1.2 Security Properties . 82
5.1.3 Security Model . 83

5.2 Basic Scheme . 84
5.2.1 Protocol Overview . 85

5.2.1.1 Aggregation-Commit 87
5.2.1.2 Verification . 88

5.2.2 Verification by Multiple Subscribers 90
5.2.3 Analysis . 90

5.3 Collaborative Protocol . 93
5.3.1 First Attempt . 94
5.3.2 Collaborative Scheme . 95

5.3.2.1 Protocol Overview 96
5.3.2.2 Setup . 96
5.3.2.3 Aggregate-Commit-Prove 97
5.3.2.4 Collaborate-Verification 99
5.3.2.5 Proof Protocol . 100

5.3.3 Analysis . 101
5.4 Future Directions . 103

vi

A Optimized Bijective Rule 105

B Key Establishment in Heterogeneous Self-Organized Networks [TSN07] 107
B.0.1 Related Work . 109
B.0.2 Our Contribution . 111

B.1 System Model . 112
B.1.1 Trust Model . 113
B.1.2 Authentication . 114

B.2 Layered Key Pre-Distribution (LKD) Scheme 114
B.2.1 Neighborhood Discovery Phase 115
B.2.2 Secure Shared Key Discovery (SSKD) 116
B.2.3 Securing Bitmap Transmission 117
B.2.4 Cluster and Group Key Generation 118
B.2.5 Join and Leave . 119

B.3 Correctness Analysis . 120
B.4 Security Model and Analysis . 124
B.5 Simulation and Discussion . 128

Bibliography 132

vii

List of Figures

1.1 Integrity attack in data aggregation 2

1.2 The interaction between the aggregation integrity and privacy problems. 9

1.3 An example AMI architecture . 11

1.4 The difference between centralized and distributed aggregation in-
tegrity verification models. 13

1.5 Summary of PIA Solutions . 14

1.6 Publisher-subscriber model . 16

1.7 A smart electric grid with multiple competing electric suppliers . . . 18

1.8 PIA adversary and security models for (a) single and (b) multiple
subscriber model. 22

2.1 Applications of wireless sensor networks 25

2.2 Single aggregator and in-network aggregation models 27

3.1 Example execution of the identification algorithm 32

3.2 Path traces in identification trees . 47

3.3 Cost of the identification scheme, as a function of partition degree. . . 51

3.4 Aggregate availability, as a function of partition degree m. 52

3.5 Dependence of partition cost on attack distribution 53

3.6 Bounding (a) partition cost and (b) total cost for binary identification
algorithm. 54

4.1 Single aggregator model . 58

4.2 Relationship between confidentiality and data privacy 59

4.3 PIA Solution 1 . 64

4.4 PIA Solution 2 . 68

viii

4.5 Bucket distribution transformation in OPES 69

4.6 The difference between centralized and distributed aggregation in-
tegrity verification models. 75

4.7 PIA Solution 3 . 75

4.8 PIA Solution 4 . 77

5.1 Publisher-subscriber model . 81

5.2 PIA pub-sub solution for single subscriber 86

5.3 Example aggregation graph . 89

5.4 PIA pub-sub solution for collaborative subscribers 95

5.5 Construction of the commitment trees during the aggregate-commit
phase. 98

A.1 Numerical cost example for bijective partition rule 106

B.1 Probability of establishing an l-secure channel. 123

B.2 Analysis of LKD scheme . 130

ix

Chapter 1

Introduction

Data aggregation is an important primitive in wireless sensor networks (WSN).

Data aggregation is a process that collects data from different sources and expresses

the data, based on specific variables, in a summarized format. By eliminating redun-

dant or unnecessary information from transmitted data streams, data aggregation

can drastically improve the communication efficiency of a sensor network. This is es-

pecially desirable in resource-constrained networks, such as WSN, where it has been

shown that radio energy dominates total energy expenditure on a sensor [RSPS02].

A significant risk of data aggregation however is that a node that is captured

by an adversary can report arbitrary values as its aggregation result, thereby cor-

rupting not only its own measurements but also that of all the nodes in its entire

aggregation sub-tree. As a consequence, an adversary who captures nodes selec-

tively and strategically (e.g., close to the BS, refer to Figure 1.1), can corrupt the

entire network aggregation process, while incurring minimal cost and effort. This is

called the aggregation integrity problem.

In this work, we focus on two issues related to the aggregation integrity prob-

lem.

1

f

f f

aggregator
sensor

x=a+b w=c+d+e

y=x+w

a b c d e

f

f f

aggregator
sensor

x=a+b w=c+d+e

y'

a b c d e

(a) Data aggregation (b) Adversary compromising one aggregator node.

Figure 1.1: Adversary attacking data aggregation (where aggregation function is

sum). By compromising one node, the adversary can control the data of the other

nodes in the network.

1. Reliable Data Aggregation: How can we efficiently handle integrity at-

tacks in a data aggregation application? This includes not just detection of

an attack, but also appropriate response to the attack. In particular, does

in-network data aggregation retain its assumed efficiency benefits when it is

applied in an adversarial setting?

2. Data Privacy: In many sensor applications, it is crucial that the privacy of

the sensed values is preserved with respect to querying entities that receive

the network data aggregate. How can we preserve the privacy of sensor data

from the querying entities, while said entities also verify the integrity of the

aggregation process? What are the tradeoffs between privacy and security in

data aggregation?

This thesis presents advances on both the above issues. Towards reliable data

2

aggregation, we provide a scheme where an attack against the integrity of data

aggregation is not only detected but also identified. We analyze the scheme and

present a cost-based characterization of the scheme that shows when data aggre-

gation no longer provides its assumed efficiency benefits. Towards preserving data

privacy in integrity-assured data aggregation, we first define and model the problem

and present several classes of solutions. Our analysis of the solutions shows that

there exists an intrinsic tradeoff between data privacy and integrity-assured data

aggregation.

Additionally, we consider the problem of privacy-preserving integrity-assured

data aggregation in publish-subscribe networks (defined in Section 1.3) which share

many characteristics with WSN. In particular, we consider the scenario where there

are multiple competing subscribers who want to determine the integrity of an aggre-

gate result. We present a collaborative solution where privacy-preserving integrity-

assured data aggregation can be achieved fairly across all subscribers. In the rest of

this chapter, we provide an informal, comprehensive account of our contributions.

1.1 Reliable Data Aggregation

To achieve reliable data aggregation, and, in particular, to assure the integrity

of aggregation process, it is important (i) to detect an adversary’s presence in the

network (i.e., by discovering aggregated-data corruption) and (ii) to identify and

remove (i.e., revoke [CGPM05]) the captured nodes which corrupt data aggregates.

Most recent work on secure data aggregation has focused exclusively on effi-

3

cient detection of integrity breach in the aggregation process; e.g., [HE03, CPS06,

YWZC06, PSP03, FD08]. While detection of integrity breach is the first necessary

step to achieving secure data aggregation, it does not provide a fully adequate re-

sponse to malicious-node behavior; i.e., detection of integrity breach alone does not

unambiguously identify and remove specific malicious nodes from the network. Ex-

clusive reliance on detection of corrupt aggregate results would leave the network

unprotected against repeated attacks that deny service to the BS. An effective ap-

proach to handling this problem would (i) identify corrupted nodes and remove them

from the aggregation tree (e.g., by node revocation), and (ii) ensure continued, but

gracefully degraded aggregation services, even during an attack period. Identifica-

tion and removal of corrupted nodes has the added benefit of acting as a deterrent

against some potential adversaries who might avoid the risk of being identified.

Problem. We consider an aggregation scenario where a subset of nodes is corrupted

by an adversary. A corrupted node can (i) insert a false data into the network or

(ii) if it is an aggregating node, output a false aggregation result. The goal of the

corrupted node is to convince the base station to accept an invalid value. Since the

network cannot protect against the insertion of incorrect aggregation values without

assuming specific distributions on the environmental data [Wag04, YWZC06], we

simply assume that all valid sensor inputs r must be within a given range r1 < r < r2.

Our objective is to (i) detect an attack in the network, (ii) identify malicious nodes,

(iii) ensure graceful degradation of the aggregate with respect to the number of

corrupted nodes in the network, while retaining the efficiency advantages of data

4

aggregation.

A straight-forward method of achieving the first three stated objectives without

retaining in-network aggregation, henceforth called the baseline scheme, would be to

detect the presence of malicious behavior in the network [FD08, CPS06], and then

require each node to directly transmit their data without aggregation along with a

message authentication code (MAC) to the BS. By eliminating in-network aggrega-

tion, we would trivially remove any attacks on the aggregation process. The BS can

then identify any malicious nodes that inject false data by range testing the received

data. If the corrupted nodes are persistently malicious, the BS can identify all cor-

rupted nodes. Furthermore, the BS itself could reconstruct the network aggregate

by disregarding the data received from all malicious nodes and finally guarantee

the correctness of the reconstructed aggregate based on the security of the MAC

protocol and data-validity verification. Although the baseline scheme would satisfy

the first three objectives mentioned above, it would do so at the cost of removing

in-network data aggregation and its associated communication efficiency. For this

reason, we do not consider the baseline scheme to be a useful solution. Nevertheless,

it constitutes a practical lower bound on the performance of any secure aggregation

solution satisfying our three objectives above. That is, an efficient solution must

have better performance than the baseline scheme; otherwise, the baseline scheme

becomes preferable, and the entire notion of in-network data aggregation ceases to

be useful, in hostile environments.

5

1.1.1 Related Work

Chan et al. [CPS06] propose a fully distributed aggregation verification algo-

rithm, called the Secure Hierarchical In-network Aggregation (SHIA), which detects

the existence of any misbehavior in the aggregation process. The algorithm per-

fectly satisfies its objective as a detection mechanism; however it is not intended

to address our problem as it aims neither at the identification and removal of ad-

versary nodes nor at providing continuous, but gracefully degraded, service under

attack. Similarly, the work of Frikken and Dougherty [FD08], which improves the

performance of SHIA, aims only at the detection of attacks against the aggregation

process.

In contrast to SHIA, Hu and Evans [HE03] and Yang et al. [YWZC06] propose

detection algorithms that also allow identification of corrupted nodes. However

because both approaches use centralized verification, the incurred communication

cost approaches that of the baseline scheme—O(n) for a network of size n—when

in-network data aggregation ceases to be useful. In contrast, the cost of our scheme

is logarithmic in n.

Another solution which uses a centralized approach is proposed by Haghani et

al. [HPP+07] who extend SHIA. A corrupted node is detected via successive polling

of the layers of a commitment tree (generated during the aggregation process) by

the BS. Although this work is closest to ours in spirit, it differs in three fundamental

ways. First, it incurs a high cost as it not only relies on centralized identification

but also each run of the algorithm identifies only one malicious node at a time. In

6

the worst case, to detect c malicious nodes in a network of size n, O(nc) messages

are generated per link. Second, the performance analysis and adversary model

presented [HPP+07] does not include a comparison with the baseline scheme where

identification of adversary nodes incurs a cost of only O(n). Hence, it is unclear

at what point the proposed scheme ceases to be useful and the baseline scheme

becomes preferable. Finally, Haghani et al. do not provide network service during

the period of the attack.

Group Testing. The identification of corrupted nodes is directly related to the

problem of group testing, which strives to identify defective items of a given set

through a sequence of tests. Each test is performed on a subset of all items and

indicates whether the subset contains a defective item. In combinatorial group

testing, it is assumed that the number of defectives in a set is constant. This

number can be either known or unknown at the time of testing. Group testing is

efficient when the number of defectives in a sample space is small compared to the

total number of samples [DH00]. This is an analogous setup to untrusted sensor

networks which are characterized as large, densely packed network of sensor nodes.

1.1.2 Our Contributions

In Chapter 3, we propose a divide-and-conquer approach to tracing and remov-

ing malicious nodes from the network which achieves the three objectives stated

above. Briefly, our approach recursively (i) partitions suspicious subsets of the

network, (ii) runs a given ‘test’ in each partition to check the correctness of the

7

sub-aggregation values, (iii) if the result reveals possible node corruption, the set

is tagged as suspicious; otherwise, it is considered to be good and the associated

sub-aggregate value is retained. Hence, our algorithm allows for the incremental

reconstruction of lost data from sub-aggregated value, over the course of its execu-

tion. The algorithm terminates when it has isolated all the malicious nodes in the

network. The partition test is a primitive which we use in secure aggregation.

The identification algorithm is designed and optimized with respect to the

communication cost for an arbitrary number of malicious nodes. We prove the cor-

rectness of the algorithm and evaluate its performance using an analysis method

inspired by the field of combinatorial group testing [DH00]. Our results illustrate

the relationship between the efficiency of malicious-node identification and the num-

ber and distribution of these nodes. In particular, we define a precise cost-based

threshold when in-network data aggregation ceases to be useful in hostile environ-

ments.

1.2 Privacy in Secure Data Aggregation

The principal approach in verifying the integrity of data aggregation is to

recompute the aggregate using the original, raw sensed (measured) data, and verify

that the alleged aggregate is identical or close enough to the recomputed value

[DDHV03, HE03, PSP03, GSW04, YWZC06].

This type of verification however is in direct conflict with data privacy pro-

tection. By allowing a verifier access to the original data, all privacy is lost. We

8

f
y

Adversary 1 goal:
Falsify aggregation result y
User goal:
Verify aggregate y is correct

f
y

Adversary 2 goal:
Learn individual sensor data
Sensor goal:
Preserve sensor data privacy

f
y

User must be able to verify
that aggregate y is correct,
without breaching the
privacy of sensor data.

(b) Integrity-assured Aggregation

(c) Privacy-preserving Aggregation

(d) Privacy-preserving Integrity-assured Aggregation

f
y

(a) Data Aggregation
Aggregator uses sensor
data to compute aggregation
function f and forwards
aggregate y to user.

Figure 1.2: The problems of (b) data aggregation integrity and (c) privacy-

preserving aggregation have previously been considered as independent problems.

In this work, we analyze the relationship and tension that exists when (d) these two

problems interact.

consider a scenario where a WSN is deployed remotely from a querying user (Fig-

ure 1.2a). The owner of the network controls the access of the user to the network

data by allowing the user to learn only specific statistics of the data. Here data

aggregation is also used as a privacy primitive since it controls the disclosure of the

information measured in the network. The user wants to verify the integrity of the

received aggregate y (Figure 1.2b) and to perform such verification, the user needs

access to individual sensor data. At the same time, however, the network owner

9

does not want the user to access the raw data for privacy reasons (Figure 1.2c).

We are interested in the tension that results between preserving data privacy and

verifying aggregate integrity (Figure 1.2d). We refer to this problem as the Privacy-

preserving, Integrity-assured data Aggregation (PIA) problem.

Privacy. Preserving privacy is important in applications where the behavior of

individuals or businesses can be deduced from sensed data in a monitored environ-

ment. It is often easy to deduce sensitive information based on seemingly innocuous

sensed data; e.g., the behavior of a household can be tracked or profiled by mon-

itoring their electrical usage [Har89]. Since sensing is in effect a passive act—as

it can be done without the knowledge of the observed party or environment—the

observed party has very limited ability to control the extent of information that

is disclosed by the sensors. Hence maintaining the privacy of sensed data can be

important to parties in the sensed environment. Similarly, sensor data privacy can

be important to a service provider that provides service based on the status of the

network-sensed data. The service provider may want to guarantee the privacy of the

observed party as it can face liability from regulators and customers. Hence both

service providers and their customers must rely on the network owner/operator to

provide sensor-data privacy. Unless privacy challenges are addressed by the sensor

network owner/operator, wide-spread adoption of WSNs in many applications will

be impeded by both the customers’ and the service-providers’ legitimate concerns.

10

1.2.1 Motivating Example

To further motivate the PIA problem, consider the advanced metering infras-

tructure (AMI) [Fol08]. An AMI is a system that consists of a large scale sensor

network of advanced meters that measure a consumer’s energy usage. This infor-

mation is then sent via wired or wireless links to utilities and service providers, and

used for example (i) to assist in a change in energy usage of the customers from

their normal consumption patterns as a response to changes in price or (ii) to ser-

vice the customer with a more efficient and reliable energy service. Because of the

large amount of data that is generated as well as the fact that in many scenarios

service providers only require high-level statistical information, the measured data is

aggregated before being transmitted to the providers. Since decisions that providers

make based on collected information have great economic promise, it is crucial for

providers to ensure that the measured data is aggregated correctly.

Meter Data
Management

Agency Independent
System

Operator

Energy
Service
Provider

Advanced
Meter

Mesh Net

Billing and
Outage Data

Bidding/
Negotiation

Real-time
prices

Figure 1.3: An example AMI architecture

11

At the same time, utilities and service providers in AMI systems must handle

privacy concerns from customers and political opposition [Fol08]. AMI directly puts

privacy interests at risk because its core purpose is to collect information related

to a particular household or business. Meters can collect usage data as well as

detailed status and diagnostic information from networked sensors and smart appli-

ances. These data can show directly when and where people are present, as well as

what they are doing. Hence, providers must be able to verify the integrity of data

aggregation without breaching user privacy.

In this paper, we explore the inherent tension that results between preserving

data privacy and verifying aggregate integrity. That is, we aim at providing solutions

that enable both aggregate-integrity verification and preservation of sensor data

privacy.

1.2.2 Related Work

Existing security solutions in data aggregation deal with two general problems:

confidentiality and aggregation integrity. The objective of data confidentiality in ag-

gregation is to ensure that the data transmitted by sensor nodes cannot be discovered

by unauthorized entities in the system.

Various solutions have been proposed for preserving aggregate-data confi-

dentiality, including handling hop-by-hop [WGS06] and end-to-end confidentiality

[CMT05]. These solutions, however, neither preserve the integrity of the aggre-

gated data nor provide mechanisms for detecting aggregate-data corruption. That

12

f
y

Centralized Integrity Verification

User verifies y by
recomputing f(x1,...,xn)
If values match, then user
accepts y

f
y

Distributed Integrity Verification
Each sensor verifies y by
recomputing f(x1,...,xn)
If all sensors agree, then
user accepts y

Figure 1.4: The difference between centralized and distributed aggregation integrity

verification models.

is, a user that receives an aggregate is unable to verify the validity of the aggrega-

tion process and ensure that a malicious aggregator node has not compromised the

process.

Various solutions for aggregate-integrity verification have been proposed in

both the single aggregator model [PSP03, DDHV03, ZDL06, Wag04] and the “in-

network” aggregator model [HE03, CPS06, GSW04, YWZC06, DDHV03, TG08],

which uses a hierarchy of aggregators. These solutions fall into two classes: central-

ized and distributed integrity verification (see Figure 1.4). Although the integrity

of the aggregate is verified in both classes by recomputing the aggregation function

using the raw data, the classes differ in who performs the aggregation recomputation.

In centralized verification [HE03, PSP03, GSW04, YWZC06], the querying

user receives the raw data to determine if the aggregate has been computed cor-

rectly. In contrast, in distributed verification [CPS06, FD08], the sensor nodes

13

homomorphism
based

Integrity
Verif.
Cost

Functions
SupportedPrivacy

perfect

comparison
based

O(log n)

O(n)

O(1)
perfect

distribution

decomposable

all

Centralized
Integrity
Verif.

Distributed
Integrity
Verif.

Scheme

1

2

3.1

3.2

Figure 1.5: Summary of PIA solutions, where n is the network size. ‘Integrity

verification cost’ upper bounds the number of messages received and transmitted by

each sensor.

themselves recompute the aggregation function using the measurements of the other

sensors. If all nodes agree with the same result, the aggregation is considered secure.

The main advantage of the distributed approach to centralized is the spreading of

the communication through out the network for in-network aggregation.

1.2.3 Contributions

In Chapter 4, we define the problem of Privacy-preserving Integrity-assured

Aggregation (PIA). Although the problems of aggregation integrity verification and

privacy preservation have been independently considered in the past, this is the first

work that analyzes the interaction of these two problems. We analyze the attack

models and derive the security requirements, focusing on the single aggregator model

(Figure 1.2a).

We propose four distinct symmetric-key solutions that address this problem.

14

Our results, summarized in Figure 1.5, clearly show that there is an intrinsic tension

between providing sensor data privacy and integrity verification algorithms.

In the centralized integrity verification model, the tradeoff appears between

the measure of data privacy and the set of aggregation functions that the integrity

assurance algorithm supports. In particular, to achieve perfect data privacy—i.e.,

not leak any data—we cannot use a large subset of aggregation functions, including

comparison based functions such as maximum. We can only support comparison

based functions if we weaken the privacy requirement and preserve privacy of only

the distribution of the data.

In the distributed verification model, privacy is traded off for an expanded

range of aggregation functions supported by the integrity-verification algorithm,

as well as its associated communication cost. For example, to support all possible

aggregation functions and maintain privacy, the cost of aggregation becomes so high

that the assumed aggregation benefits (i.e., reduced communication cost) disappear.

1.3 PIA Problem in Publish-Subscribe Systems

The privacy-preserving integrity-assured data aggregation (PIA) problem is

relevant in many publish-subscribe (pub-sub) system. A pub-sub system [BHGB07,

CRW01, RPS06, SBC+98] consists of a large number of publishers submitting in-

formation to the system and a (smaller) set of subscribers who register to receive

publications of interest. Such systems often cover wide-area networks and involve

thousands of publisher as well as routing nodes that forward published data to tar-

15

Routing Network

Subscribers

Aggregated
Data

Network Gateway
Routing Nodes
Publisher Nodes

Figure 1.6: Publisher-subscriber model

get subscribers. Pub-sub systems have many applications, from smart electric grid

systems [sma] to stock quotes to building management systems (BMS) [KNSN05].

Data aggregation is important in such systems because it can improve both the

privacy and the efficiency of the system. In many scenarios, subscribers need only

high-level statistical information derived from the publishers’ raw data. For exam-

ple, BMSs keep track of aggregate occupancy information for sections of buildings.

Furthermore, it is possible that publishers do not want to disclose their confidential

raw data to the subscribers. Computing and disseminating only the aggregate of

the data—that is, removing all but the necessary information—allows the privacy of

the published data to be observed against unauthorized subscribers. The efficiency

benefits of data aggregation in the routing network of the pub-sub system is also

important as pub-sub systems can consist of thousands of publisher nodes.

The PIA problem is a major challenge in such aggregation systems. Since

wide-area pub-sub systems usually span multiple administrative domains, publisher,

routing and subscriber nodes do not always trust each other. A malicious (routing)

16

aggregator node can effectively control the data of all the publisher nodes in its

aggregation subtree. Such an attacker can then trick the monitoring applications

(that act as subscribers) into making unsafe control decisions by providing incorrect

aggregates. Subscribers therefore need to ensure that the data aggregation process

performed by the untrusted routing nodes is correct; i.e. ensure the integrity of the

aggregation process. This verification needs to be done such that the confidentiality

of the raw data from the publishers is preserved. In other words, subscriber should

be able to verify the integrity of the aggregate without the publishers’ raw data.

In this part of the thesis, we study the PIA problem for multiple subscribers in a

pub-sub system. In particular, we consider a setting where multiple subscribers need

to verify the correctness of an alleged data aggregate in a competitive environment—

that is, a subscriber who gets this information before others can gain a decided

competitive (e.g. economic) advantage.

As an example, consider the pub-sub system used in the smart electric grid

system. Here publishers are electricity meters in many home (where the meters are

connected to a wide-area network), and each publisher (i.e., a meter) reports the

real-time power demand of each household. Subscribers of the pub-sub system are

electricity suppliers that receives the aggregate power demand of each geographical

region in a wide service area. Since those electricity suppliers compete with each

other in the electricity market, a supplier of electricity can get a distinct economic

advantage if it obtains a true aggregate power demand in a timely manner when

others do not. For example, such a supplier can change the price structure for

17

Advanced
Meters

(Publishers)

Routing Network

Competing
Electricity
Suppliers
A, B, C

(Subscribers)

A

B

C

Figure 1.7: A smart electric grid with multiple competing electric suppliers.

electricity by considering a rapid shift of the power demand.

When we provide an integrity-assured aggregate to multiple subscribers, we

need to consider a new threat model with malicious subscribers. A malicious sub-

scriber can perform a wide variety of attacks. For example, it can try to cheat

the other subscribers by convincing them that a valid aggregate is actually invalid.

It can also mount a denial-of-service attack by stopping the validity proof to go

through. This attack is specially strong when the adversary is stealthy, i.e., can

escape detection. In this problem, we focus on a stealthy attacker whose goal is to

cheat by convincing other subscribers in the system of a false aggregation integrity

verification result and do this without detection.

1.3.1 Prior Work

Although many researchers [Khu05, Mik02, PEB06, PEB07, OP01, RR06,

SL07, WCEW02, ZS06] have studied security issues for pub-sub systems, there is

18

very little security research for those that support in-network aggregation. Ahmad

et al. [AK06] developed a secure additive aggregation protocol in a large-scale overlay

network. Their protocol uses an additively homomorphic public-key cryptosystem

to protect confidential data from intermediate aggregation nodes. However, their

scheme does not address the issue of integrity discussed in this paper.

No existing aggregation solution considers either collaborative subscribers or

fairness in aggregation verification. The work closest to ours in spirit is by Minami et

al. [MLWB08] who recently proposed an integrity-assured data aggregation scheme

for pub-sub systems. Each subscriber can verify the integrity of the aggregation

process independently. Since the proposed system also requires all subscribers to

share the same secret, a malicious subscriber can convince other subscribers of an

invalid aggregate value. The authors address this problem using a delayed verifica-

tion approach in which a trusted third party (TTP) synchronizes the disclosure of

a secrets for verifying an aggregate to each subscriber at each round of publication.

The existence of such a TTP and the synchronous communication channel may not

be practical in scenarios consisting of multiple untrusted domains. Furthermore the

TTP introduces a single point of failure in the system, which we want to avoid.

In the area of sensor networks, a number of secure aggregation schemes [CMT05,

CPS06, GSW04, HLN+07, PSP03] have been proposed. None of the solutions deal

with the problem of multiple sink nodes (i.e., base stations). Furthermore, a sensor

network has a different communication model from that of a pub-sub system. In

particular, all entities, including sensors, base station and the querying user have

bidirectional communication channels and the base station or the user can use an

19

authenticated broadcast. In contrast, an authenticated broadcast is inefficient in

a pub-sub system, and it could cause a long latency for the delivery of an aggre-

gate. Also, many pub-sub systems define privileges for the publication of data to

prevent an adversary from performing a denial-of-service attack by sending bogus

messages. Such pub-sub systems assume unidirectional communication between the

routing network and the subscribers, that is, subscribers cannot send messages to

publishers or routing nodes of the pub-sub system.

An interesting approach towards integrity-assured data aggregation in sensor

networks is the distributed verification approach proposed by Chan et al. [CPS06].

Chan et al.’s scheme, SHIA, allows a BS to verify the integrity of the in-network

aggregation process within a sensor network by sharing the responsibility of the

verification by all the sensor nodes in the network. SHIA, however, requires com-

munication from a BS to the sensor network, while a pub-sub system does not

usually support such backward communication channels from subscribers to routing

nodes of the system because of various reasons such as efficiency. Additionally, SHIA

does not consider the case where multiple base stations (i.e., subscribers) receive the

same aggregate data.

Haber et al. [HHSY06] address the problem of verifying the integrity of ag-

gregate queries on outsourced databases. They develop a verification protocol that

allows a user to verify the integrity of the sum of multiple values in a database

without seeing those individual values. This query is processed by an untrusted

service provider that is different from the trusted database owner. Since a single

database owner provides all of the individual values for the sum, their protocol can

20

ensure the integrity of the sum by providing the user with a Merkle hash tree of

commitments to the individual values, so that the user can verify the authenticity of

those commitments with a digital signature on the root node of the hash tree created

by the database owner. This solution of constructing a single digital signature on

multiple commitments is not applicable to our problem, since each individual data

is provided by a different publisher.

1.3.2 Our Contributions

Our goal in Chapter 5 of this thesis, is to design a privacy-preserving integrity-

assured aggregation solution that is both collaborative and fair. A scheme is collab-

orative if a subscriber can verify the validity of an alleged aggregate if and only if

when all other subscribers are available and have received the alleged aggregate and

proof of aggregation correctness. We introduce the notion of fairness : subscribers

verify the integrity of an alleged aggregate so that they can either all correctly verify

the aggregation process or they can detect all cheating subscribers.

We develop a new PIA protocol for multiple subscribers in a pub-sub sys-

tem. Our scheme is based on the aggregate-commit-prove framework of Chan et

al. [CPS06] and Przydatek et al. [PSP03] where each node constructs an aggregate

value and commitment structure that incorporates their own published data. Our

scheme allows multiple subscribers to verify the integrity of an aggregate in a collab-

orative and fair way, without assuming to have a trusted third party. Our scheme

focuses on the sum aggregation function, which extends easily to other aggregation

21

functions, such as count and min/max [CPS06].

In our aggregation protocol, secret key shares are distributed amongst the

subscribers so that when the shares are combined together, the integrity of the ag-

gregation process can be verified. This is equivalent to an (n, n)-threshold secret

sharing scheme. Thus, a group of subscribers can verify the integrity of an aggre-

gate if and only if every subscriber collaborates following our protocol; a strictly

smaller subgroup cannot learn any information about the integrity of the aggregate.

Furthermore, publisher and routing nodes construct a commitment value for each

subscriber that forces them to act honestly. If any subscriber misbehaves and does

not follow the protocol, they are detected and identified by the other subscribers.

(a) PIA adversary and security models

(b) PIA adversary and security models for multiple users

f
y

Desired Security Properties:
(1) Integrity of aggregation assured
 (against integrity adversary)
(2) Privacy of sensors preserved
 (against privacy adversary)

Integrity
adversary

Privacy
adversary

f
y

. . .

Integrity
adversary

Privacy
adversary

Subscriber
adversary

Desired Security Properties:
(1) Integrity of aggregation assured
 (against integrity adversary)
(2) Privacy of sensors preserved
 (against privacy adversary)
(3) Fairness of subscriber computation
 (against subscriber adversary)

Figure 1.8: PIA adversary and security models for (a) single and (b) multiple sub-

scriber model.

22

We propose a new security model with three types of adversaries: (i) a stealthy

integrity-adversary that compromises aggregating nodes with the aim of falsify-

ing the aggregation result; (ii) a privacy-adversary that compromises subscribers

with the aim of learning the raw published values; and (iii) a stealthy subscriber-

adversary that compromises subscribers with the the aim of falsifying the aggrega-

tion verification result. This model is summarized in Figure 1.8. We analyze our

protocol in this security model and formally prove the security of our scheme in this

model.

1.4 Thesis Organization

This thesis is organized as follows. In Chapter 2.1, we present a short overview

of wireless sensor networks and the role and modeling of data aggregation in sensor

networks. In Chapter 3, we address the problem of resilient data aggregation in an

adversarial setting. Chapter 4 addresses the problem of privacy-preserving integrity-

assured data aggregation (PIA) and in Chapter 5 we look at the application of the

PIA problem in a publish-subscribe system.

23

Chapter 2

Preliminaries

2.1 Wireless Sensor Networks

Wireless sensor networks (WSN) are ad hoc networks formed by typically

large numbers of small sensing devices with the ability to communicate amongst

themselves and also with an external base station. The sensors could be scattered

randomly in harsh environments such as a battlefield or deterministically placed at

specified locations. The sensors coordinate among themselves to form a communi-

cation network such as a single multihop network or a hierarchical organization with

several clusters and cluster heads.

The development of WSNs was originally motivated by military applications

such as battlefield surveillance. However, wireless sensor networks are now used in

many civilian application areas where there exists distributed interaction between

sensors and the physical environment. Example applications include (i) wildfire

tracking and monitoring [MCP+02, DS05], (ii) surveillance systems and burglar

alarms, (iii) health and biomedical monitoring systems such as monitoring the

health status of cattle stocks on farms [BKM04, SCD+05], (iv) disaster recovery

systems such as monitoring the health of buildings or incremental shifts of ice and

snow in alpine mountains, (v) industrial automation or supervisory control and

data acquisition systems (SCADA) [KAB+05], (vi) traffic control [CCT05] or (vii)

24

Field

sensor wireless communication

(a) Habitat monitoring

MV/LV Transformer

HV/MV Transformer

Backbone

sensor

(b) SCADA systems such as power grid

sensor wireless communication

(c) Healthcare

Figure 2.1: Applications of wireless sensor networks

military warfare[AGHS01] (see Figure 2.1). Many of these systems consist of a

distributed network of nodes that measure (sense) the environment from different

vantage points; a global view of the network can be constructed by a base station

for an outside user by collecting the sensed data and upon analysis of the emergent

properties, appropriate action can be initiated.

In addition to one or more sensors, each node in a WSN is typically equipped

with a radio transceiver or other wireless communications device, a small microcon-

troller, and an energy source, usually a battery. The size of a single sensor node

can vary from shoebox-sized nodes down to devices the size of grain of dust. The

25

cost of sensor nodes is similarly variable, ranging from hundreds of dollars to a few

cents, depending on the size of the sensor network and the complexity required of

individual sensor nodes. Size and cost constraints on sensor nodes result in cor-

responding constraints on resources such as energy, memory, computational speed

and bandwidth. [RM04] provides an overview of the range of current sensor devices.

Sensor nodes are generally characterized by their constrained resources, high failure

rates and low physical security and unattended operation.

2.2 Data Aggregation Models

WSNs are generally assumed to be large scale networks where large amounts of

data can be generated. Since sensor nodes are energy constrained it is inefficient for

all the sensors to transmit their raw data directly to the base station. In addition,

data generated from neighboring sensors is often redundant and highly correlated.

Data aggregation attempts to collect the most critical data from the sensors and

make it available to the base station in an energy efficient manner. In such a

setting, certain nodes in the network, called aggregators, collect raw data from the

sensors, aggregate the data locally and forward only the data aggregate to the base

station.

Network aggregation is generally classed into two distinct models: the single

aggregator model and the in-network aggregator model, see Figure 2.2.

The single aggregator model considers a setup of n sensor nodesN = {s1, ..., sn}

and one aggregator node A which is in direct contact with each sensor. At some

26

f

f f

y

f

y

user aggregator
sensor

Single Aggregator Model In-network Aggregation Model

user

Figure 2.2: Single aggregator and in-network aggregation models

point each sensor node takes a measurement and sends this data to the aggregator.

The goal of the aggregator is to compute an aggregate value y that summarizes the

sensor readings x1, . . . , xn using the aggregation function f : thus y = f(x1, · · · , xn).

The aggregate value is then forwarded to an external user U or a base station (BS),

possibly in response to a query.

This simplified and abstract model of the aggregation network inherently ig-

nores the structure of the multi-hop network and assumes that each sensor node has

a separate and authenticated link to either the base station or the user. The result-

ing communication reduction is limited to the link between the aggregator and the

external user. The single aggregator model is therefore not scalable to large sensor

deployments.

In order to reduce both energy and communication bandwidth in the net-

work, it is useful to move the integration and filtering of data into the network

itself. In-network aggregation is a mechanism for adopting multiple and hierarchi-

27

cal aggregators within the network. The in-network aggregator model assumes the

following.

Consider a multi-hop network of n sensor nodesN = {s1, ..., sn} which consists

of a set of aggregating nodes A and a set of sensing nodes S, where A,S ∈ N and

A ∪ S = N . For simplicity, we ignore other states of nodes within the network

such as idle or simply forwarding. We assume that A ∩ S 6= ∅ as a sensor can both

sense and aggregate. Although the network can contain multiple base stations, we

assume that the aggregation round is in response to query from one base station.

We present the network using the following parameters: (N ,A,S).

Aggregation is implemented over a hierarchical routing topology, which can

be based on clusters, chains, trees or grids. In general, in-networking aggregation

assumes a tree-based topology based on a spanning tree over all the nodes in the

network rooted at the base station. The properties of the spanning tree, such as

minimum energy or delay, are considered outside the scope of this work.

28

Chapter 3

Efficient Handling of Integrity Attacks

In this Chapter, we address the problem of integrity attack detection and

response in a data aggregation application in WSN.

3.1 System Model

Consider a multihop network of untrusted sensor nodes and a single trusted

BS. The system administrator or user that resides outside the network interacts

with the network through the BS interface. For brevity, subsequently we refer to

any requests made by this external entity via the BS, as simply requests by the BS.

We assume that each sensor has a unique identifier v and a unique secret key shared

with the BS, Kv. The sensor network continuously monitors its environment and

measures some environmental data. We divide time into epochs; during each time

epoch, the BS broadcasts a data request to the nodes in the network and nodes

forward their data response back to the BS. Data can be forwarded individually or

as an aggregate.

We model node corruption in the network as a function of the number c and

the distribution of the corrupted nodes. Each sensor node v belongs either to the

good set G or the malicious or corrupted set M . A network instance is defined as

N = {∀v in network : v ∈ G ∨ v ∈ M} where |M | = c and G = N \ M . The

29

collection of all N for a given c, constitutes a family of networks Nc.

For the purpose of computing the aggregate, we assume that the sensed envi-

ronment (e.g., temperature) changes minimally with respect to the duration of the

identification algorithm. This is a practical assumption as once malicious activity is

detected, the identification algorithm is promptly executed. Moreover the algorithm

terminates after a small, constant number of rounds.

3.2 Adversary Model

We assume that the network is deployed in an adversarial environment where

the adversary can corrupt an arbitrary number of nodes. Once a node is corrupted,

the adversary has total control over the secret data of the node as well as the sub-

sequent behavior of the sensor node. We assume that a corrupted node persistently

misbehaves by inducing the BS to accept an ‘illegal’ value. An illegal value is defined

based on the adversary objectives which is to induce the BS to accept a data value

which is not already achievable by direct data injection.

A direct data injection attack occurs when an adversary modifies the data

readings reported by the nodes under its direct control, under the constraint that

only legal readings in [r1, r2] are reported [CPS06]. In the case of a single data values,

this means that the data value transmitted is outside the legal reading of [r1, r2].

This is called a false data injection attack. In the case of data aggregation, the

objective of the adversary is to tamper with the aggregation process such that the BS

accepts an aggregation result which is not achievable by the direct data injection. We

30

refer to this type of attack as a false aggregation attack. An aggregation protocol is

considered secure if the adversary cannot successfully launch such an attack [CPS06].

3.3 Performance Measure.

We use link cost as a metric to analyze our algorithm. Link cost is defined

as the total number of messages transmitted over a particular link in the network

and is important as it determines how quickly nodes in the network exhaust their

energy supply. Such nodes are often core to the connectivity or the functionality of

the network and their loss can lead to network partitioning or denial of service.

3.4 Identification Algorithm

The main objective of our algorithm is to recursively isolate the malicious

nodes in the network and thus render the adversary inoperative. The algorithm is

initiated once misbehavior is detected in the network (e.g., via [CPS06]) and is exe-

cuted over a number of rounds, following an intuitive divide-and-conquer approach.

In each round the algorithm partitions the suspicious subsets of the network and

performs a partition test on the newly formed groups. The number of subsets a

suspicious group is partitioned into is called the partition degree. The partition test

consists of nodes aggregating their data and verifying the integrity of their aggre-

gation process. The test has two outputs: ‘pure’ if all the nodes in the partition

are good and ‘impure’ if there is at least one malicious node in the group. The

algorithm terminates when there are no remaining impure groups.

31

1-12

5-8

1-8

7,8

8

9-12

1-4

5,6

7

(c) Only node 8 is compromised.
Identification corresponds to Fig (a)

1-12

9-12

11,129,105-81-4

1-8

11107,85,62,31,2

1 3 5 8

(d) Identification tree when nodes
1, 3, 5, 8, 10 and 11 are compromised.

2 4 6 7

9 12

(b) The unpruned identification tree

1-12

9-12

12

11,129,105-81-4

1-8

119 107,85,62,31,2

1 2 3 4 5 6 7 8

Round 1

Round 2

Round 3

Round 4

pure
impure

Misbehavior detected
somewhere in network

Round 2 Round 3

(a) Recursive isolation of captured nodes.

Round 1 Round 4

Compromised
Node

Pure aggregating
partition

Impure aggregating
partition

Figure 3.1: Identification algorithm on an input of 12 nodes, m = 2.

By distributing the localization of the malicious nodes, the scheme simply

keeps track of the lower bound on the number of malicious nodes in the network

and increases the bound only when the findings of the scheme up to that point imply

that this is valid.

Algorithm 1 Identification

Input: All the nodes in the network N ∈ Nc, partition degree m > 1, where integer m is

the number of partitions a group divides into in each iteration.

Output: A result set M of malicious nodes and a result set G of good nodes, such that

M ∪G = N

Let t = 1 be the lower bound on the number of malicious nodes in the network and

S = ∪ti=1Si denote the current set of suspicious nodes, S1 = N .

1. For j = 1, · · · , t, BS requests partition Sj to be divided into m disjoint partitions

(using partition rule viz. Algorithm 2). The collection of subdivided sets form the current

32

collection S. Set t to be the cardinality of set S.

2. For j = 1, · · · , t, if |Sj | > 1, the nodes in partition Sj partition themselves into

groups of size n
m and execute partition test. BS verifies the purity of each partition.

3. The BS learns the status of each node for the following round (details are provided

in the next section). For j = 1, · · · , t, if Sj is pure (i.e., all the nodes are good), then

G = G ∪ Sj; else if Sj is impure (i.e., there is at least one misbehaving node) and a

singleton set, then M = M ∪Sj and decrement t. Adjust the indices of the remaining sets,

{Sj} appropriately, to include only sets that are impure and non-singleton. If t > 0, go to

step 1 (next round), else quit as all malicious nodes have been traced.

We can model the divide-and-conquer approach of Algorithm 1 as the pruning

process of an m-ary tree T where each tree vertex is associated with a partition test.

The root of tree T is associated with the input set N and each round i is associated

with level (i+ 1) of the tree. This is because the identification algorithm is initiated

when misbehavior is detected in the network and therefore the test at level 1 has

been already executed. If a partition X is tested pure, then all the descendants of

the associated vertex are pruned; otherwise the set X is re-partitioned. Fig. 3.1(b)

presents an unpruned identification tree for a network of 12 nodes and partition

degree m = 2. Fig. 3.1(c) and (d) show how the tree can be pruned when the

network contains one and six corrupted nodes respectively. Fig. 3.1(a) shows how

the identification tree corresponds to the recursive isolation of the captured nodes

on the physical network.

Next we define a novel partition rule which generalizes the bijective rule of Du

and Hwang [DH93] (see Appendix A). This algorithm partitions the network such

33

that the identification tree contains at most one incomplete subtree. Intuitively

a complete tree of n nodes executes less or equal number of tests than an incom-

plete tree of n nodes as the complete tree contains less vertices (where each vertex

corresponds to one test).

Algorithm 2 Partitioning Rule

Input: Set X, maximum number of partitions m.

Output: Result sets {Xi}, such that ∪Xi = X.

Let i = 1 denote the new subset (Xi) to be determined.

1. Choose Xi to contain mdlogm |X|e−1 nodes.

2. Update set X = X \Xi to exclude the newly formed subset. If less than m subsets are

formed and X has more than m− 1 nodes, then increment i and go to Step 1.

Else if X is not a singleton set, increment i and add the remaining nodes in X to Xi.

Else if X is a singleton set, then X cannot be partitioned anymore.

3.4.1 Partition Test

The test that nodes perform in each newly formed partition is a fundamental

step in our algorithm. There are two types of tests depending if the partition is a

singleton or otherwise.

Tests for Non-singleton Partitions. In all non-singleton partitions (parti-

tions containing more than one node), data is aggregated and the partition leader

directly transmits the partition aggregate (via multi-hop) to the BS, which veri-

fies the integrity of the aggregation process and hence the integrity of the nodes

within that partition. In the general case, Algorithm 1 can be composed with any

34

aggregation-verification algorithm that does not depend on a fixed partition and

provides provable guarantees. Next we show how we can modify SHIA to satisfy

these conditions.

SHIA extends the aggregate-commit-prove framework of [PSP03]. In the

aggregate-commit phase of the algorithm, a cryptographic commitment tree (hash

tree) is built based on the sensor readings and the aggregation process. This forces

the adversary to choose a fixed aggregation topology and set of aggregation results.

In the prove phase of the algorithm, each sensor independently verifies that the

final aggregate has incorporated its sensed reading correctly. Specifically each sen-

sor reconstructs the commitment structure and ensures that the adversary has not

modified or discarded the contributions of the node.

SHIA cannot be used as is because it assumes that the BS knows the exact

set of nodes which are alive and reachable. Instead, we propose a new algorithm

Group SHIA (GSHIA) which includes two additional properties. First, nodes can

organize themselves into groups of size g, where g is arbitrarily defined by the BS.

This can be easily achieved as the ‘delay aggregation’ approach of SHIA develops

an aggregation tree one node at a time. Since the root node of the aggregation tree

knows the size of its subtree, it can declare a partition complete when it has g nodes

or it cannot add any more nodes to its partition.

In GSHIA, the BS can also verify the integrity of the aggregation process for

a group of unknown size and membership set. This property can be implemented

through the use of a Bloom filter [Blo70] that summarizes the membership infor-

mation of the partition. The BS then verifies the membership set by exhaustively

35

searching through the possible nodes. The change we propose places most of the

membership resolution burden on the BS, which is generally assumed to be power-

ful. However we can reduce the computation burden by noting that Algorithm 1 is

nested (i.e., each new partition is a proper subset of an older impure partition) and

therefore the space of possible partitions in each round is reduced by a factor of m.

Further improvements can be made if the BS knows the topology of the network

a priori, using efficient schemes such as [SBD02]. For protocol details as well as

analysis and further improvement strategies, we refer the reader to [TG08].

An alternative approach to the above modification is to use the original SHIA

algorithm and make the additional assumption that the BS knows the topology of the

network prior to the detection period. The BS can then deterministically partition

the network for a given m and transmit this information to each sensor. When

an impure group is detected, nodes divide themselves according to the specified

partitioning. Although this method is simpler and more efficient, the additional

assumption is not always practical as sensor networks often have dynamic topologies

due to the short life span of the sensors.

Tests for Singleton Partitions. If a partition contains exactly one sensor node,

the node v transmits its measured data xv along with a MAC tag σv computed using

Kv. Upon receiving 〈v, xv, σv〉, the BS verifies the tag and ensures that xv is valid.

The BS assumes node v has misbehaved if xv is not in the correct range but the tag

verifies correctly.

36

3.4.2 Group SHIA

For the sake of brevity, we only describe the differences between SHIA and

GSHIA and we refer the reader to [CPS06] for details and analysis of SHIA. GSHIA

has four main phases: query dissemination, grouping, aggregation-commit and result

checking.

Query Dissemination. The request message the BS broadcasts also includes the

following grouping information: the size of the new partitions as well as the ID of

the groups that were found impure in the previous round.

Aggregation-Commit. Nodes within a group compute a cryptographic commit-

ment structure over their data values and the aggregation process as in SHIA. Also

to allow the resolution of the group memberships, each leaf vertex also computes a

Bloom filter that probabilistically summarizes the node membership set. The filter

is then forwarded to the parent internal vertex, who aggregates the filters using the

bit-wise or function. Additionally each leaf vertex computes an authentication tag

over a fixed message and forwards this to its parent node. The tags are aggregated

using the bit-wise xor function to form the group tag. The group filter and tag are

used by the BS to determine the group membership sets.

Grouping. In this phase, node grouping is conducted through the selection of leader

nodes for each group. This phase is executed in parallel with the aggregation-commit

phase. Whenever a node performs the aggregation and commitment operations, it

also determines if it is a group leader by comparing the group size with the target

size broadcast by BS in the request message. If a node is selected as group leader,

37

then all the nodes in its subtree which do not as yet belong to a group become its

group members. The group leader then computes a message authentication code

(MAC) and forwards the group aggregates and commitments along with the MAC

to the BS without further aggregation along the way. If the node is not selected

a group leader, it simply forwards its aggregation and commitment values to its

parent node, where they are aggregated further. In this way, groups are iteratively

generated starting from the leaf nodes and approaching the BS or the root of the

network spanning tree. At the end of the aggregation-commit process, all remaining

nodes which do not belong to a group are grouped together with the BS acting as

their group leader.

Result Checking. At the end of the aggregation-commit and grouping phases, each

group leader has reported their aggregation results and commitment values to the

base station. The base station first determines the group size and the membership

set of each group. This is done by narrowing down the potential membership sets

of a group based on the location of the group leader, the group size and the group

Bloom filter. The correct membership set can be verified by the aggregated group

tag. Once the membership set of a group has been determined, the group size can

also be verified. The BS then authenticates the final commitment values of each

group and disseminated them to the respective groups.

The result checking is the distributed verification process as in SHIA, where

each group verification code is forwarded to the BS by the group leader. When the

BS receives all the group confirmation codes, it accepts the group aggregates if it

38

can verify that all group members have individually verified the correctness of the

aggregation protocol. The BS discards any group aggregate which is not verified

by all group members and classifies the associated group as suspicious. The final

network aggregate is computed over all groups which are deemed correct.

3.4.2.1 Analysis

Communication Complexity. The aggregation verification process has a link

congestion of O(log2 n) where n is the size of the group [CPS06]. GSHIA intro-

duces the following additional messages in the query dissemination and aggregation-

commit phases of the scheme: (1) group IDs, (2) Bloom filter output and (3) group

tag. Messages (2) and (3) are fixed size and message (1) depends on the number

of active partitions in the network, m. Thus the final link congestion for GSHIA is

O(log2 n+m).

Security Analysis of Grouping. We must show that a malicious node cannot

force the BS accept a false grouping. A group membership set is summarized via

the Bloom filter. The BS can verify that the filter output has not been changed by

verifying the validity of the group tag, which is the xor of the MACs of the group

members. Assuming that the MAC scheme is secure, then a malicious node can

at best forge the group tag with negligible probability. Hence if the BS can verify

the group tag associated with the Bloom filter and ensuring that each node in the

network belongs to at most one group, it knows with overwhelming probability that

the grouping is correct.

39

3.4.3 Computing Aggregate

An important feature of our algorithm is that the network aggregate can tol-

erate malicious nodes and in fact, the aggregate degrades gracefully with the attack.

In particular, dual to the intuition that the algorithm recursively isolates the cor-

rupted nodes, is that the algorithm also increasingly identifies the uncorrupted nodes

in the network. The BS can then use the data from the nodes determined to be

uncorrupted to reconstruct the network service.

Recall our assumption that the sensed environment of the network does not

change during the protocol execution. Thus we can improve the quality of the

network aggregate in each successive round by incorporating the aggregates of newly

found pure groups. Algorithm 3 shows how the aggregate is updated when the

aggregation function is sum. We can easily extend this to other low-order statistics

functions, such as min/max, averaging, etc.

Algorithm 3 Aggregate Update in Round i

Input: Aggregate Ψi−1 from round i − 1, set {Ψ[j]} of the aggregates of all pure

partitions from round i.

Output: Aggregate Ψi of round i, where Ψi = Ψi−1 +
∑

j Ψ[j].

3.4.4 Security Analysis

In the following, we first show the correctness of the proposed algorithm and

in Section 3.5, we propose a mathematical framework to analyze the communication

cost associated with providing our security solution.

40

Theorem 3.4.1 Given an input set of nodes N and partition degree m, Algorithm

1 outputs two resulting sets of corrupt nodes M and of good nodes G, M ∪G = N .

• (Completeness) If corrupt node v ∈ N , then v ∈M , i.e. no false negatives.

• (Soundness) If node v ∈M , then v is corrupt, i.e. no false positives.

Proof: Let T be the identification tree that Algorithm 1 generates. For any

corrupted node v ∈ N , any vertex u in T which contains v, tests impure. This

is because a corrupted node is persistently malicious and the partition test t(·) is

perfect (i.e., the test result is always correct). Each impure vertex in T is either

divided into smaller partitions if it is a non-singleton set, or is added to the set M

if it is a singleton set. Since the algorithm converges when t = 0 or when there are

no more impure non-singleton partitions, then by convergence time the algorithm

must have found all corrupt nodes and added them to set M . Thus the algorithm

is complete.

Additionally, the algorithm is sound since if node v ∈ M , then there exists a

vertex u in identification tree T which is associated with a singleton set {v} and

that {v} is impure. Thus v must be malicious. 2

Corollary 3.4.1 Algorithm 1 isolates all c corrupt nodes within dlogm |N |e rounds.

We can trivially prove this as the leaf at the highest level of identication tree

T denes the round duration of the algorithm. In particular note that T is rooted at

a vertex associated with node set N and the root node (at level 1) is processed in

round 0. Also in each round, the active vertices are divided into m equal partitions

41

and at most one of the partitions contains a smaller number of nodes. It is thus

easy to see that T has leaves on levels dlogm |N |e+ 1 and dlogm |N |e.

3.5 A Theoretical Model for Cost Analysis

In this section, we derive the cost associated with the security guarantees of

the proposed protocol. We first formulate the communication cost in terms of an

optimization problem. We then analytically solve this problem by introducing a

novel mathematical framework, inspired by [DH00, FT99] and evaluate our results

using an example network of 4096 nodes. For a complete analysis of the problem,

finally we look at the best and average case cost of the system.

The link cost of the algorithm is a function of the number of partitions that

are generated in each round (referred to as partition cost) as well as the aggregation-

verification cost of each partition (referred to as the test cost of each partition). It

is important to distinguish between the two costs because partition cost is charac-

terized solely by the identification algorithm, whereas test cost is a function of the

aggregation-verification primitive adopted and can be improved upon. We empha-

size that the total cost derived in this section are based on the use of GSHIA as our

primitive.

3.5.1 Cost Upper Bound Definition

Let N be a network instance with c corrupted nodes, N ∈ Nc, input to the

algorithm and let the algorithm terminate in τ = dlogm |N |e rounds. Let P (i,m,N)

42

denote the number of partitions in round i where each partition is of size T (j,m,N),

j = 1, · · · , P (i,m,N). We formulate the total communication cost G(m,N, c) of

the algorithm as:

G(m,N, c) =
τ∑
i=0

P (i,m,N)∑
j=1

T (j,m,N) (3.1)

Worst case cost of the algorithm is the maximum cost of the algorithm for all

distributions of c corrupt nodes in the network:

G(m, c) = max
N∈Nc

C(m,N, c) (3.2)

The optimization problem for the identification algorithm is defines as:

G(c) = min
m>1

G(m, c) (3.3)

The parameters which achieve G(c) are called the minimax parameters of the iden-

tification algorithm. The goal of the network administrator is to find the minimax

parameter m for a given network N without knowing the number of corrupt nodes

c.

The primary parameter in Equation 3.3 is partition degree m. Towards solving

Equation 3.3 we consider the effect of m on the different components of cost. Test

cost for singleton and non-singleton groups are O(1) and O(log g) (refer to Appendix

A) respectively, where g is the size of the group. Thus test cost is logarithmically

related to 1/m.

In the following, we present some results relating m with partition cost. This

is of particular interest as our results can be applied to other divide-and-conquer

43

algorithms. In fact the isolated problem of optimizing partition cost is equivalent to

an instance of combinatorial group testing problem, where the number of defectives

is unknown and we optimize the algorithm to minimize the number of tests per-

formed. Inspired by group testing results for m = 2 [DH93], we extend the results

for the general m-ary case. To the best of our knowledge this is the first time the

m-ary case has been considered.

3.5.2 Results

3.5.2.1 Upper bound when n is a power of m

We first prove the upper bound of the partition cost for different m-ary iden-

tification algorithms, where the number of nodes in the network n is a power of m

and then compute the upper bound of the total cost of the identification scheme

when n is a power of m.

Theorem 3.5.1 Let n be a power of m > 1. Then for c corrupted nodes in n

nodes, 1 ≤ c ≤ n, the number of partitions generated is tightly upper bounded by

m
1−m +mc(log n

c
+ 1

m−1
).

Proof: Let T be the m-ary identification tree whose root vertex is associated with

a set of size n, which is a power of m. According to the algorithm, every internal

vertex must be associated with an impure set and there must exist exactly c impure

leaves. We sum up the total number of pure leaves in T as follows. Let u denote

the height of tree T , u = logm n. Each level i has mi−1 vertices, where at most

c are impure. Level v = dlog ce is the first level with at least c vertices and let

44

w = v − log c. The total number of impure nodes γ in T is:

γ =
v∑
i=1

mi−1 + c(u− v + 1)

=
(1−mv)

1−m + c(log n− (w − log c) + 1)

=
1

1−m + c(log
n

c
− w + 1− mw

1−m)

≤ 1
1−m + c(log

n

c
+

m

m− 1
)

since 0 ≤ w < 1 and f(w) = −w − mw

1−m is a convex function. For 0 ≤ w ≤ 1,

f(w) is maximized at w = 0, 1, where f(0) = f(1) = 1
m−1

. Thus there are at most

γ − c = 1
1−m + c(log n

c
+ 1

m−1
) impure internal nodes in T . Each internal node has

exactly m children, so T has at most m
1−m +mc(log n

c
+ 1

m−1
) nodes. 2

Theorem 3.5.2 Let n be a power of m > 1. Then for c corrupted nodes in the n

nodes, 1 ≤ c ≤ n/m, the total cost G(m,n, c) of the identification algorithm is upper

bounded by
∑u

i=1H[i] where H is a sequence of length u = dlogm ne:

H[i] =

mi−1(log n

mi−1 + 1) if i < v

mc (log n
mi−1 + 1), if i ≥ v

(3.4)

where v = dlogm ce and log denotes log2.

Proof: Let tree T be the m-ary identification tree whose root vertex is associated

with a set of size n. Let sequence element H[i] represent the total cost of the

identification algorithm in level i of the identification tree T . Each level i of T has

mi−1 vertices, where at most c are impure. Also each vertex at level i has exactly

n
mi−1 nodes. Level v of T is the first level where T has at least c vertices. Therefore

at level i < v, all mi−1 vertices are impure. Since each test has a cost of at most

45

(log p+m), where p is the number of nodes tested, the total cost of each level i < v

is upper bounded by mi−1(log n
mi−1 +m). Now consider level i ≥ v. Then each level

has at most mc impure nodes of size mi−1. Therefore total cost of each level i ≥ v

is upper bounded by mc(log n
mi−1 +m). 2

3.5.2.2 Upper bound when n is not a power of m

In the general case when n is not a power of m, we cannot use the approach of

[DH93] (solved for m = 2) as the number of possible ways the corrupted nodes are

distributed within each subtree explodes (analogous to the combinatorial, ball in the

bucket problem). Instead we propose a novel model, inspired by the work of Fiat

and Tassa [FT99] in the context of dynamic traitor tracing (DTT)1. We introduce

the notion of a path trace, defined with respect to a particular corrupted node. The

path trace traces the identification path of that node in the identification tree T .

Informally we say a path trace D for corrupted node u is rooted at the vertex v in

tree T that the identification algorithm separates it from the other corrupted nodes

in the network. The trace includes all the vertices in the path between v and the

leaf vertex associated with set {u}. Therefore each time an impure vertex v′ in T

has more than one impure child, then the algorithm learns that the node set at v′

contained more than one corrupted node, and thus a new tree trace D′ is generated.

Fig. 3.2 shows the paths generated for an example identification tree. Note that

although a path trace is not unique to a given node, the set of path traces generated

1The DTT model differs to ours as in each of its rounds, only one node misbehaves.

46

impure

pure

1-16

9-16

15,16

13-169-125-81-4

1-8

13,147,85,6

5 6 7 8 13 14

1-16

5-8

1-8

5,6

5

D1
Length=4

7,8

8

D2
Length=1

9-16

13-16

13,14

13

D3
Length=3

14

D4
Length=0

Figure 3.2: Path traces for corrupted nodes 5, 8, 13 and 14.

is unique. We can therefore determine the set of path traces in a network without

associating them to a particular corrupted node.

Lemma 3.5.1 A path trace of length ` generates m` partitions where there are m

partitions of sizes {m`−i}, i = 1, · · · , `.

Proof: The path trace is a path on an m-ary tree and each internal vertex on the

path has (m − 1) other siblings that are also tested. Also a path trace of length `

has a root vertex associated with m` nodes. Thus at level i of the path, the vertex

is associated with m`−i nodes. 2

Consider identification tree T generated by Algorithm 1, for n nodes.

Lemma 3.5.2 Let n = mh where h ∈ Z+. Then define sequence P as:

P = {h, {h− 1}m−1, {h− 2}m(m−1), {h− 3}m2(m−1), · · · } (3.5)

where {y}x denotes the value y repeated x times. The first c elements in P represent

the tight upper bound on the length of the path traces generated when n contains c

corrupted nodes.

47

Proof: Since n contains at least one corrupted node, the first path trace D1 is

rooted at the root of T and thus has length h. A new path trace is generated any

time a vertex in T contains more than one impure child. To find the upper bound

on the length of the path traces, each trace should be generated in as early a round

as possible. On level 2 of T (round 1), up to (m− 1) path traces can be generated

of length (h− 1); at level 3, up to m(m− 1) path traces can be generated of length

(h − 2), and so on. In general, in level i, up to mi(m − 1) path traces of length

(logm n − (i − 1)) can be generated. Since one path trace is associated with each

corrupted node and there are c corrupted nodes, the set of lengths associated with

the generated path traces can be represented by the first c elements of P . 2

Theorem 3.5.3 Let mh−1 < n < mh where h ∈ Z+. Then define sequence P ′ as:

P ′[i] =

P [i] if i < x

P [i]− 1 if (i > x & P [i] > 0)

0 otherwise

(3.6)

where P is the sequence defined in Equation 3.5 and the index

x =
⌈n−mh−1

m− 1

⌉
(3.7)

The first c elements in P ′ represent the tight upper bound on the length of the

path traces generated when n contains c corrupted nodes.

Proof: It is trivial to show that the number of internal nodes at level h − 1 is

defined by x. Then there are (mh−1 − x) leaves in level (h − 1) and (n −mh−1 +

48

x) leaves in level h. To find the upper bound of the lengths of the path traces,

min(x, c) of the path traces are associated with a corrupted node at level (h +

1) and thus they correspond to the identification tree for mh nodes. The path

traces corresponding to the remaining corrupted nodes have leaves at level h and

correspond to a identification tree for mh−1 nodes. 2

We can use Theorem 3.5.3 to derive the tight upper bound on the total cost of

the identification algorithm. Consider identification tree T generated by algorithm 2,

for a network of n nodes. Let T contain α complete m-ary trees and one incomplete

m-ary tree, with respective depths d1, · · · , dα+1. Let P1, · · · , Pα+1 correspond to the

set of potential path traces for each of the (α+1) respective subtrees using Lemmas

3.5.1 and 3.5.2. Then let sequence P be composed of the non-increasing ordered

set of the path traces {Pi, · · · , Pα+1}, i.e. P = {h, (h − 1)a1 , (h − 2)a2 , · · · }, where

a1, a2, · · · are dependent on the size of the subtrees. If n contains c corrupted nodes,

then the length of the generated path traces are bounded by the first c elements in

P . We can use Lemma 3.5.1 and sequence P to compute the size and number of

the partitions that Algorithm 2 generates in the worst case and derive total cost by

summing the cost of the c path traces.

Finally we derive a closed form expression for the loose upper bound on the

total cost of the network. This is purely for the purposes of comparison of our work

with existing solutions.

Theorem 3.5.4 For c corrupted nodes in a network of size n, the identification

algorithm has a communication link cost of O(c2 log3 n).

49

Proof: Consider the detection tree corresponding to the identification algorithm,

which is of height log n (Theorem 3.4.1). Then for the worst distribution of compro-

mised nodes in the network, there exists at most mc partitions in each level. Since

partition cost is O(log p) for a partition of size p, then the total cost can be loosely

bounded by:

mc

logn∑
i=0

log
n

mi
= mc

(
logn∑
i=0

log n−
logn∑
i=0

logmi

)

= mc

(
log2 n− logm

logn∑
i=0

i

)

= mc(log2 n− logm log n

2
(log n+ 1) = O(c log2 n)

Since according to Theorem 3.5.1 partition cost of n nodes is O(c log n), then

total cost is bounded by O(c2 log3 n). 2

3.5.3 A Numerical Example

To gain a better intuition of the results, we compute the cost associated with

handling an adversary attack in a network of 4096 nodes (where c nodes are compro-

mised) and analyze the graceful degradation of the network service. For test cost,

we use the cost derived by [CPS06] as the more efficient bound of [FD08] is not a

fixed cost characteristic.

Fig. 3.3(a) and 3.3(b) graph the maximum partition cost and total cost of the

m-ary identification scheme, for different m. The baseline scheme is used in the

graphs as a lower bound for when the proposed identification scheme is effective

and efficient. Fig. 3.3(a) verifies the intuition that for a fixed number of corrupted

50

100 200 300 400 500 600 700
0

2000

4000

6000

8000

Number of compromised nodes

Pa
rti

tio
n

co
st

Upper bound of partition cost ! 4096 nodes

m=64

Baseline
scheme

m=4
m=2

m=8

(a) Partition Cost

! 10 1! 20
0

2000

4000

6000

8000

9000

Number of compromised nodes

To
ta

l c
os

t

Upper bound of total cost ! 4096 nodes

m=2
m=4Baseline

scheme

m=64
m=8

(b) Total Cost

Figure 3.3: Cost of the identification scheme, as a function of partition degree.

nodes in the network c, the number of generated partitions increases with the par-

tition degree m. This increase plateaus when the the identification scheme needs

to test every single vertex on the identification tree. The performance of the m-ary

identification scheme is best shown in Fig. 3.3(b) where the link cost for different

m is compared with the baseline. It is clear that to optimize total cost, a network

administrator choose an appropriate partition degree depending on probability of

attack, vulnerability of the network as well as the necessary rapidity of the response

(as response time is O(logm n)). Fig. 3.3(b) also shows that test cost is the dominant

term in total cost. This is promising as test cost is only dependent on the cost of

the aggregation-verification primitive. More efficient primitives yield better results.

Fig. 3.4(b) and 3.4(b) shows the rate of improvement of the network service

over the course of identification. Data is normalized by only looking at the number

of nodes that contribute to the aggregate in a particular round. The maximum

available data for a network of size n with c corrupted nodes, is n− c. In particular

51

2 4 6 8 10 12
0

1000

2000

3000

4000

5000

Rounds

D
at

a
Av

ai
la

bi
lit

y
(#

 o
f s

en
so

rs
)

Aggregate Availability ! 4096 Nodes, m=2

c=2
c=4

c=8
c=16

c=1

(a) m=2

1 2 3 4 5 6
0

1000

2000

3000

4000

5000

Rounds

D
at

a
Av

ai
la

bi
lit

y
(#

 o
f s

en
so

rs
)

Aggregate Availability ! 4096 Nodes, m=4

c=1

c=8

c=16

c=2

c=4

(b) m=4

Figure 3.4: Aggregate availability, as a function of partition degree m.

we note that if we fix c, as m is reduced, data becomes available in later rounds.

This is because in the worst case, the first c partitions generated are corrupt.

3.5.4 Lower Bound and Average of Partition Cost

Up to now, we have focused on the upper bound or worst case partition cost.

To gain an understanding for the behavior of the algorithm in practice, it is impor-

tant to also analyze the lower bound and average behavior of the partition cost.

3.5.4.1 Average Cost

Computing the average partition cost when the number of malicious nodes in

the network is fixed leads to a state space size exponential in the number of nodes in

the network. To see this, observe that the number of possible states in each round is

equivalent to the classic combinatorial balls-in-the-buckets problem where the balls

and the buckets correspond to the nodes and partitions in the network respectively;

52

furthermore there are two types of balls (good nodes and bad nodes). Then the total

number of possible states can be computed by the product of the number of states

in each round. This leads to a combinatorial explosion in the number of states and

therefore is hard to compute exactly.

3.5.4.2 Lower Bound Cost

The lower bound of the partition cost can be obtained by minimizing the

number of vertices in the detection tree T . According to the algorithm, every internal

vertex of T must be associated with an impure set and there must exist exactly c

impure leaves. Partition cost can be minimized when both the number of pure leaves

and the internal vertices in T are minimized. Figure 3.5 presents two different

distributions of 3 compromised nodes in the network which yield maximum and

minimum partition cost.

1-16

9-16

15,16

13-169-125-81-4

1-8

13,149,10 11,127,85,62,31,2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1-16

9-16

5-81-4

1-8

2,31,2

1 2 3 4

1-16

9-16

13-169-125-81-4

1-8

9,10 11,127,85,62,31,2

1 2 7 8 11 12

(b) Minimum partition cost (c) Maximum partition cost(a) Original Detection tree

impure

pure

Figure 3.5: Partition cost depends on how the compromised nodes are distributed

in the network.

Figure 3.6(a) graphs the lower and upper bounds of the partition cost of the

identification algorithm in a network of 1024 nodes for different number of com-

promised nodes. As expected this results in much smaller cost than the worst case

53

scenario and the cost increase is almost linear in the number of compromised nodes

in the network. Indeed the intersection of the detection partition cost and the cost

of the trivial scheme changes from 128 compromised nodes to 512. This means that

the partition cost of the detection scheme is less than the total cost of the trivial

scheme for up to 512 compromised nodes. Figure 3.6(b) presents the lower and

upper bounds of the total cost of the identification algorithm. In the best case, the

performance of the identification algorithm is better than the trivial case even up

to 96 compromised nodes. However in the worst case, the scheme performs worst

than trivial scheme when simply 3 nodes are compromised.

0 200 400 600 800 1000
0

500

1000

1500

2000

Number of compromised nodes

Pa
rti

tio
n

co
st

Bounding partition cost for binary detection ! 1024 Nodes

Lower bound

Baseline
scheme

Upper bound

(a)

1 20 40 60 80 100 120
500

1000

1500

2000

2500

Number of compromised nodes

Pa
rti

tio
n

co
st

Bounding total cost for binary detection ! 1024 Nodes

Upper bound

Baseline scheme

Lower bound

(b)

Figure 3.6: Bounding (a) partition cost and (b) total cost for binary identification

algorithm.

3.5.5 Rational Adversary: Bounded Presence

We have clearly shown that the cost of the detection scheme is directly related

to the distribution of the compromised nodes on the aggregation tree. Detection

54

cost increases as nodes are more uniformly distributed along the aggregation tree.

In particular, detection cost is maximized when the c compromised nodes are dis-

tributed such that they generate c disjoint subsets in as early a round as possible2.

In contrast, cost is minimized when the compromised nodes are distributed so that

they form a contiguous cluster and therefore generate the c disjoint subsets in as

late a round as possible.

The intuition is evident as follows. Let nodes be identified according to their

geographical locations on a one dimensional axis, such that nodes u1 is neighbor to

u2, which is in turn neighbor to u3 and so on. Cost is minimized when an adversary

compromises a contiguous cluster of nodes u1, · · · , uc. Of course not every clustering

of nodes results in optimal cost since a cluster can span multiple detection subtrees.

For example in Figure 3.5 cost of detection would be distinctly different if instead of

compromising nodes u1, u2, u3, which results in minimum partition cost, the cluster

of nodes u7, u8, u9 were compromised. Therefore, although compromising a cluster

of nodes does not always result in minimum cost, it does save significant cost.

The above observation is indeed promising as a rational adversary compro-

mises nodes that minimize its cost and maximize its benefit. It is rational behavior

for an adversary to compromise a cluster of neighboring nodes (i.e., have a bounded

presence) than to uniformly compromise nodes across the whole network. Com-

promising uniformly requires not only a greater deal of network access, but also

increased risk of physical detection. We can therefore conclude that in the event of

an attack, it is more likely for the detection cost to be closer to the lower bound

2This round number corresponds to the value of parameter v in Theorem 3.5.2.

55

(best case) than the upper bound (worst case).

3.6 Conclusion

Adversary attacks against data aggregation in ad hoc networks can have disas-

trous results, whereby a single corrupted node can affect the perceived measurements

of large portions of the network by the BS. Current approaches to handling such

attacks either aim exclusively at the detection of attack or provide inefficient ways of

identifying corrupted nodes in the network, with respect to the baseline scheme; i.e.,

it is more efficient if sensor data is not aggregated at all. In this work, we presented

a group-based approach to handling adversary attacks in aggregation applications,

that identifies corrupted nodes while ensuring continuous, but gracefully degraded

service during the attack period. Our analysis results in a precise cost-base charac-

terization of when in-network aggregation retains its assumed benefits in a sensor

network operating under persistent attacks. Our scheme is most effective when the

adversary has corrupted a small fraction of the nodes in the network.

Although our work provides promising results in divide-and-conquer handling

of attacks in aggregation applications, we have assumed a simplified adversary

model. In the future, we plan on generalizing our model to account for non-persistent

adversaries as well as allowing for identification error to decrease identification effi-

ciency.

56

Chapter 4

Privacy-preserving Integrity-assured Data Aggregation

4.1 Single Aggregator Model

We consider the setting where n sensors are deployed in some area, remotely

from a user U . Sensors monitor and measure their environments and respond to

the statistical queries of the user. An aggregator node A is used as an intermediary

between the user and the sensor nodes that aggregates the sensor data and forwards

the query response to the user. The aggregator can be thought of as a third party

that computes an aggregation function f on the input sensor data x1, . . . , xn where

xi is the measurement of sensor si. The aggregator forwards the aggregate y =

f(x1, · · · , xn) to the user U .

We assume that all nodes have direct access to the aggregator node. All mes-

sages exchanged between the sensor nodes and the user, pass through the aggregator.

4.2 Privacy

Privacy in the single aggregator model can be preserved with respect to either

an untrusted external user, aggregator or mutually distrustful sensor nodes. Privacy

issues can range from individual measurements and transactional privacy to node

identification, count, location or even sensing scheduling. In this work, we focus only

57

x1

xn

··· A
y′ user U

y = f(x1, · · · , xn)

Figure 4.1: Single aggregator model

on preserving the privacy of measured data with respect to the user. Henceforth,

our use of the term ‘privacy’ implicitly implies ‘data sensed by individual nodes’.

A spectrum of privacy goals can be defined based on the controlled disclosure

of private data. This controlled revelation may become an acceptable trade-off given

the different efficiency and confidence requirements of a system as well as different

aggregation function to be computed.

In this work, we define two distinct privacy goals. Perfect privacy is achieved

when the adversary does not obtain any information about {xi} other than what it

can deduce from the aggregate.

Distribution privacy is achieved when the adversary does not learn any

information about the distribution of the data {xi}, other than what it can deduce

from the aggregate.

For clarity of definition, consider a sensor network where the environment to

be sensed follows a probability distribution function h(x). Let xi be the sensed data

of sensor si. To achieve perfect privacy, other than what user U can learn from the

aggregate, U should not learn xi; to achieve distribution privacy, U should not learn

h.

Distribution privacy allows the protection of sensed data against attacks such

58

C = Confidentiality
P = Data Privacy

C P

Figure 4.2: Relationship between confidentiality and data privacy

as tight estimation attack [AKSX04], where the aim of the adversary is to success-

fully determine a tight estimation of a secret plaintext, given its ciphertext. The

tight estimation attack is clearly a relaxation of the security requirements of the

ciphertext only attack (COA), where the aim of the adversary is to determine any

information about a challenged ciphertext.

4.2.1 Privacy vs. Confidentiality.

In the context of aggregation applications, data confidentiality and data pri-

vacy, although related, are two distinct notions; viz., Figure 4.2. Privacy addresses

not just data confidentiality but also hides any other information that can be re-

vealed about the data, such as its distribution or various statistics. In contrast,

confidentiality only deals with achieving perfect hiding of the data items and there-

fore can be considered to be a building block used to preserve privacy.

4.3 PIA Security Models

PIA deals with two distinct problems: privacy-preservation and aggregation

integrity-assurance. Each problem is from the viewpoint of a different entity in the

system and therefore has a separate adversary model and associated security goal

that must be achieved.

59

4.3.1 Integrity-Verification

In the aggregation integrity-assured model, the user U wishes to verify the

integrity of the aggregation process performed by an untrusted aggregator A.

Assume a polynomially bounded integrity-adversary that can corrupt the ag-

gregator node A. The integrity-adversary can completely control the actions of A

and learn any information residing on it.1 The integrity-adversary’s goal is to make

the user accept a false aggregation result in a stealthy manner; i.e., not be detected

by the user. The security goal of the user is to prevent stealthy attacks and ensure

that the reported aggregate y′ is “close enough” to the true aggregation value y—the

accuracy of the aggregate depends on the verification efficiency we want to achieve.

Definition 4.3.1 An aggregation scheme is perfectly secure if the adversary is un-

able to induce the user to accept an incorrect aggregation result.

This definition is a stricter than the security definition provided by Chan et

al. [CPS06] as in our scenario, sensors are trusted. Chan et al.’s definition accounts

for untrusted sensors by allowing the presence of direct injection attacks—a direct

data injection attack occurs when a malicious sensor node modifies the measured

data it reports.

Approximation security was proposed by Pryzdatek et al. [PSP03]:

1In a more general model, the adversary can also corrupt a fraction of the sensors in the network

and falsify the measurement value they report. Detection of such misbehavior however requires

prior knowledge of the data distribution or applications/semantic specific knowledge. In this work,

we don’t address this type of attack since we do not make any assumptions on prior knowledge

information.

60

Definition 4.3.2 An aggregation scheme is (ε, δ)-approximation secure if the re-

ported aggregate y′ is bound by (1 − ε)y ≤ y′ ≤ (1 + ε)y and the probability that a

malicious aggregator is not detected is upper bounded by δ.

4.3.2 Privacy Preservation

In the privacy-preserving model, sensor nodes wish to preserve the privacy of

their information with respect to the untrusted external user U .

Assume a polynomially bounded privacy-preserving adversary that can corrupt

user U . The privacy-adversary can completely control the actions of the user and

learn any information residing on it. Similar to the integrity-adversary, we do not

bound the actions of the privacy-adversary, but limit the computational power and

time of the privacy-adversary (polynomial in the security parameter). The goal of

the attacker is to learn more about the measured data {xi} of the sensors {si} than

what is specified by the privacy goal.

Definition 4.3.3 An aggregation scheme is private if U does not learn any infor-

mation about the measured data {xi} defined by the privacy goal, other than what it

can deduce from the aggregate y.

4.4 Aggregation Functions

We define the following categories of aggregation functions: decomposable and

comparison-based.

61

A decomposable function f(x1, . . . , xn) can be expressed as:

f(x1, · · · , xn) = φ(g1(x1, · · · , xn), · · · , gm(x1, · · · , xn))

where φ, g1, . . . , gm are some other functions. We say f is decomposed into functions

g1, . . . , gm. Such functions are intrinsically hierarchical.

A comparison-based function f(x1, · · · , xn) can be computed by an algorithm

which only uses the comparison operations greater-than and less-than. Quantile

functions are instances of comparison-based functions.

4.5 PIA Solution 1

In the first PIA solution, we show how perfect data privacy can be achieved

for a general class of functions in the centralized integrity verification model. Our

solution uses homomorphic encryption to hide the data.

An encryption scheme E is homomorphic if it allows meaningful manipulation

of ciphertexts; i.e., by performing a specific algebraic operation � on the ciphertext,

one can perform operation ⊗ on the plaintext; i.e., E(x1)� E(x2) = E(x1 ⊗ x2).

Such capability seems a natural fit for data aggregation as it allows an aggre-

gator to operate on encrypted data. Depending on the desired aggregation function,

an appropriate homomorphic encryption scheme can be selected.

Existing schemes e.g., [CMT05] however, are not resilient against adversaries

that attack the integrity of the data as homomorphic encryptions are malleable by

design. Our proposed scheme combines homomorphism and message authentication

codes (MAC) to construct an authenticated encryption scheme for the aggregator

62

model. Note that to obtain a secure authenticated encryption scheme, the order in

which the two primitives are composed is crucial.

In the following, we consider the sum aggregation function, which allows the

computation of additive functions such as mean and standard deviation. This re-

quires an encryption scheme which is homomorphic over the addition operation.

This approach can be easily extended to other homomorphic operations, such as

multiplication.

4.5.1 Assumptions.

Let (Ke, E ,D) be a perfectly private, symmetric-key additively homomorphic

encryption scheme where Ke is the key generation algorithm, Ek(·) is the encryption

algorithm using key k and Dk(·) is the decryption algorithm using k. An example

scheme is proposed by Castelluccia et al. [CMT05]

We also assume the existence of a MAC protocol (Km,M,V) secure against

existential forgeries in a chosen message attack, where Km is the key generation

algorithm, Mk(·) is the tag generation algorithm using key k and Vk(·) is the tag

verification algorithm using k. An example instance of a secure MAC protocol is

the HMAC [BCK96].

4.5.2 Protocol Description.

In the setup phase, a trusted third party generates and distributes an en-

cryption key kei and a MAC key kmi to each sensor node si. The user is given the

63

User
(ke

U , {km
i }i=1···n)

〈xi, ci, σi〉

Sensor
si(xi, km

i , ke
i)

Aggregator

ci = Eke
i
(xi)

σi =Mkm
i

(ci)

y = f(x1, ..., xn)
σ = ⊕σi

c̃ = c1 + ... + ci

Verify y = Dke
U
(c̃)

Verify σ = ⊕Mkm
i

(ci)

〈{ci}n
i=1, σ, y〉

Figure 4.3: PIA Solution 1

encryption master key keU =
∑n

i=1 ki and also MAC keys kmi for i = 1, . . . , n. Note

that the user cannot deduce any information about the individual sensor encryption

keys using keU .

Sensor si encrypts its data xi and computes a MAC tag σi over ci and forwards

them to the aggregator. The aggregator computes the data aggregate y and the

MAC aggregate using the xor function and forwards 〈{ci}ni=1, σ, y〉 to user. The

user verifies the correctness of the alleged aggregate y by decrypting the sum of the

ciphertexts {ci}ni=1 using keU . If the aggregate verifies, it verifies the aggregate MAC

tag to ensure the aggregator has not changed the data ciphertexts.

64

4.5.3 Analysis

Theorem 4.5.1 PIA solution 1 is perfectly private.

Given that the encryption scheme is perfectly private, the user cannot learn

any information about raw data xi from the individual ciphertexts ci, except what

is revealed by the aggregate, which in this case is simply the sum of the ciphertexts.

Next we show security of the system against the integrity-adversary. Intu-

itively, the scheme is secure because the composition of a perfectly private encryption

scheme and an existentially unforgeable MAC scheme results in an authenticated

encryption scheme which is INT-PTXT (“integrity of plaintext”) secure.

Theorem 4.5.2 PIA solution 1 is perfectly secure.

Proof: We need to show that an integrity-adversary cannot induce the user U

to accept an incorrect aggregation result y′ such that y′ 6= ∑n
i=0 xi. According to

the protocol, U accepts y′ if first, ciphertext c̃ =
∑n

i=1 ci decrypts to y′ and second,

the aggregate tag σ verifies correctly. Since semantic security of the encryption

scheme is only intended against a passive adversary, the integrity-adversary has the

capability of modifying ciphertext ci without being detected. However the integrity-

adversary can induce U to accept the second test if and only if it can forge a valid

MAC tag for ci. Assuming that the MAC protocol is existentially unforgeable, then

the integrity-adversary can succeed at best, with negligible probability. 2

65

4.5.4 Discussion

Although a homomorphic based scheme is perfectly private, the approach lim-

its the aggregation functions that can be supported—in particular, only functions

that the encryption scheme is homomorphic over are supported. An additive homo-

morphic scheme supports functions such as add, average and standard deviation. All

other functions are not supported, including the large set of comparison-based func-

tions, such as min/max or median. This is because an encryption scheme which is

perfectly secure or COA-secure cannot be homomorphic over a comparison function

[RAD78] as the adversary can learn information about the order of the ciphertexts

and thus break the scheme.

An indirect effect of the scheme’s inability to support comparison operators is

that a range bound cannot be placed on the measured data, in order to bound the

effect of malicious sensors.

Finally, the scheme is highly efficient given the resource constrained sensor

nodes. In fact, each sensor sends the aggregator three values. The bulk of the

communication O(n), is between the aggregator and the user, which generally have

improved resources. However for large n, the scheme can still be inefficient.

4.6 PIA Solution 2

PIA Solution 1 shows that perfect privacy can be achieved in the centralized

integrity verification model but at the expense of limiting the aggregation functions

that are supported.

66

In PIA Solution 2, we show a tradeoff between measure of privacy and the type

of aggregation function that the integrity verification can support. In particular, we

show how, in the centralized integrity verification model, we can support comparison

operator and quantile functions. The k-quantile of a data set is the point at which

k fraction of the values in the set are below a given point. For instance, the 0.5-

quantile (also called the median) is the point at which 50% of the data fall below.

Quantiles functions are especially useful in adversarial environments where

the attacker can compromise sensor nodes and transmit false data values. Detection

of such attacks, without prior knowledge of the data distribution, is very hard.

Recently, Wagner [Wag04] showed that the median of a data set is more resilient

in adversarial environments than the mean because unlike the mean, an adversary

cannot freely dictate the median of the data set.

Recall from Section 4.5 that any perfectly private encryption scheme used to

hide the data from the user excludes the support of comparison-based aggregation

functions, such as the quantile function. However we observe that by relaxing our

notion of privacy we can support comparison-based aggregation functions. In par-

ticular, by adopting an order preserving encryption scheme (OPES) we can preserve

the privacy of the distribution of the data—OPES preserves the order of the data;

i.e., any pair of plaintexts x1, x2, where x1 < x2, encrypt to ciphertexts c1, c2, such

that c1 < c2.

PIA Solution 2 uses an OPES scheme to verify the integrity of comparison-

based aggregation functions. The scheme, shown in Figure 4.4, works in three stages:

67

Decrypt cagg

Find aggregate cagg of {c}
Commit to {c} as cmt

〈cagg, cmt〉
Verify cagg

Encrypt ci = EK(xi)
 〈ci〉

Aggregator A User USensor si (K) {
{

{
1

2

3

Figure 4.4: Overview of PIA Solution 2

1. Encrypt: Sensors encrypt their data using an OPES with a master secret

key shared by all the nodes in the network. The encrypted data set C is sent to the

aggregator.

2. Aggregation-Verification: The aggregator determines the aggregate

cagg of the encrypted data set C and engages the user in a protocol, to verify the

correctness of the alleged encrypted aggregate cagg.

3. Decrypt: The user queries the sensors to decrypt cagg and find the plain-

text of the data aggregate.

4.6.1 Protocol Description

4.6.1.1 Encryption

We need an encryption scheme which takes as input a target distribution and

transform the plaintext values in such a way that the transformation preserves the

order while the transformed values follow a target distribution. In addition, our

68

Bm

B1
Bf

1

Bf
m Bt

m

Bt
1

Stage 2: Flatten Stage 3: Transform

Figure 4.5: Bucket distribution transformation in OPES

adversary can have access to all ciphertext values and does not have any other

information, including any special information about the domain of the plaintext

data. This closely corresponds to the scenario of a remotely deployed sensor network

and a user querying the sensed data.

We use the OPES scheme of Agrawal et al. [AKSX04] proposed originally for

database encryption. The scheme only uses addition and multiplication operations

and has been shown to be practical for MICA2 motes [AGW05].

OPES works in three stages. We briefly outline each stage below and refer the

reader to [AKSX04] for the details.

1. Model. Distinct data values from both the input and the target distribu-

tions are first partitioned into buckets that capture the statistical information about

the distributions. The distribution in each bucket is then modeled as a linear spline,

where the spline for a bucket [xl, xh) is simply the line connecting the densities at

the two end points of the bucket.

2. Flatten. The plaintext data set X is transformed into a flat data set F

69

such that the values in F are uniformly distributed.

3. Transform The flat database F is transformed into the cipher data set

C such that the values in C are distributed according the target distribution. The

target distribution is chosen so that the adversary is forced to make large estimation

errors.

For further details of OPES, we refer the reader to [AKSX04].

4.6.1.2 Aggregation-Verification

Once the data is encrypted and forwarded to the aggregator A who aggregates

the data, the user U initiates an aggregate integrity verification algorithm. There

are two approaches to verify the integrity of an alleged aggregate y, differing in the

verification accuracy that they provide.

If a user desires perfect verification (e.g., in [DDHV03]), then the user requires

access to all the raw sensor data x1, · · · , xn in order to recompute and check if

y
?
= f(x1, · · · , xn). In this case the aggregation integrity verification algorithm

is straightforward: the aggregator simply forwards the user an alleged ciphertext

aggregate cagg and the complete set of data ciphertexts c1, . . . , cn. The user can thus

verify the correctness of cagg for any comparison-based aggregation function using the

individual data ciphertexts. However, in some scenarios, the high communication

overhead between the aggregator A and the user U (linear in the number of sensors

in the network) might not be desirable. This is in particular the case, if the network

is large.

70

To reduce the communication between A and U , Przydatek et al. [PSP03]

propose an aggregate-commit-prove framework where a user samples a subset of the

raw data and computes an approximation of the aggregate to ensure that the alleged

aggregate is “close enough” to the approximation. This framework can be used to

verify any function that can be approximated by uniform sampling of data.

For our purposes however, we use the set of aggregation-verification schemes

(called SIA) of Przydatek et al. [PSP03] as they improve the proof efficiency of

functions such as quantile, median and min/max. SIA offers a tradeoff between the

accuracy of the approximation and the communication cost between A and U . We

refer the reader to [PSP03] for the details. In the following, we briefly describe the

framework, with special attention to the median function.

Upon receiving the encrypted data ci from each sensor si over an authenticated

channel, A first computes the aggregate and then forms a commitment over the

collected data using a Merkle hash tree. This forces A to choose a fixed set of data

values. The aggregator then forwards the aggregate and the commitment to U .

The user then engages the aggregator in a proof protocol where it verifies that A

has used the data provided by the sensors and that the aggregate provided is close

enough to the true aggregate.

As an example, we describe the interactive proof U initiates with A to be

assured of the integrity of an alleged median value. Let A and U communicate over

authenticated channels.

Algorithm 4 MedianCheck [PSP03]

71

Input: network size n, alleged aggregate y, commitment h, ε-approximation accu-

racy

1. U verifies that the committed sequence is sorted and that all the elements in

the sequence are distinct. This is done by selecting two elements xi, xj from random

positions in S and ensuring that xi < xj if i < j.

2. U verifies that y is (close to) the median of the committed sequence. Here,

the user selects elements from random positions in the committed sequence and en-

sures that the elements picked from the first and second half of the sequence are

respectively smaller and bigger than y.

Output: If both tests are valid, Accept.

Else, with probability at least (1− 1/e) > 1/2, Reject.

4.6.1.3 Decryption

Up to now, the user has verified the correctness of the encrypted aggregate c

alleged by the aggregator. If c is incorrect, the user terminates the protocol; else if c

is correct, the user decrypts the value by querying the appropriate sensor to obtain

the corresponding aggregate plaintext.

4.6.2 Analysis

Theorem 4.6.1 PIA Solution 2 achieves distribution privacy.

Proof: In addition to the aggregate value, user U sees only encrypted data. U

obtains a set of ciphertext values during the aggregate-verification stage. How-

72

ever, since U does not have access to the decryption secret key and the original

OPES scheme perfectly hides the distribution of the sensor data (for proof refer

to [AKSX04]), then U cannot learn any information about the distribution of the

original data. 2

Theorem 4.6.2 In PIA Solution 2, the user can verify that the alleged aggregate

is the ε-approximation of the median with probability at least 1− 1/e, by requesting

O(log n/ε) elements from the aggregator.

Proof: Once the sensor nodes submit their encrypted data to the aggregator A

and A commits to the data by constructing a Merkle hash tree, the aggregator

cannot later change the ciphertext values. This is because of the collision-resistant

property of the hash function used in the Merkle hash tree. We use Theorem 2

from [PSP03] to prove that the user can verify with said probability that the alleged

ciphertext median is ε-approximation of the median of the ciphertext data set C.

This is because the encryption scheme preserves the order of the data. Once this is

verified, U queries the appropriate sensor to decrypt their ciphertext. Since sensor

nodes are honest, U obtains the valid median plaintext. 2

Lemma 4.6.1 PIA Solution 2 supports comparison-based aggregation functions and

requires O(1) communication per sensor.

Although we described the integrity verification scheme for the median func-

tion, we can easily extend the scheme for k-quantile type functions by changing

73

the k-separating of the committed sequence. In general, this framework is use-

ful for any aggregation function which can be approximated by uniform sampling

[PSP03, BYKS01] and which relies only on the comparison operation.

4.7 PIA Solution 3

Next we focus on the distributed integrity verification model (refer to Fig-

ure 4.6) and show how we can achieve perfect privacy and integrity assurance. Recall

that this model transfers the recomputation of the aggregate to the sensor nodes.

Consequently, the solution is intrinsically privacy preserving as the user never needs

to access the raw data; i.e., the solution is private without requiring any additional

privacy preserving mechanisms such as encryption. However as we will show, this

privacy comes at the expense of increases communication between the sensor nodes

and depending on the application, this communication might neither be desired or

even feasible.

The distributed integrity verification approach was first proposed by Chan et

al. [CPS06] for in-network aggregation. In their proposed Secure Hierarchical In-

network Aggregation (SHIA) scheme, a commitment is constructed over the aggre-

gation process, forcing the integrity-adversary to choose a fixed aggregation topology

and set of aggregation results. Once the aggregation process is complete, each sen-

sor independently reconstructs the commitment tree and ensures that the adversary

has not modified or discarded the contributions of that node.

74

f
y

Centralized Integrity Verification

User verifies y by
recomputing f(x1,...,xn)
If values match, then user
accepts y

f
y

Distributed Integrity Verification
Each sensor verifies y by
recomputing f(x1,...,xn)
If all sensors agree, then
user accepts y

Figure 4.6: The difference between centralized and distributed aggregation integrity

verification models.

U

s1 s2 s3 s4

A

verifies alleged aggregatesi
y

f
by recomputing
using
If agree on alleged
aggregate y, then U accepts y.

s1, s2, s3, s4

x1, x2, x3, x4

f(x1, x2, x3, x4)

Figure 4.7: PIA Solution 3: Basic distributed integrity verification, where xi is the

data of sensor si

4.7.1 Basic PIA Solution 3.1

We adapt distributed integrity verification from the in-network aggregation

model to the single aggregator model. We refer to the direct adaptation of SHIA as

the basic solution, as seen in Figure 6.

Algorithm 5 Basic PIA Solution 3.1

Let ki be a MAC key shared between si and U . Let H denote a secure cryptographic

75

hash function.

1. A computes h = H(y, s1, x1, . . . , sn, xn) and sends 〈y, h〉 to U , where y is

the alleged aggregate.

2. U sends an authenticated broadcast 〈h〉 to all sensors si.

3. si gets from A pairs (sj, xj), ∀j 6= i. si computes aggregation function

y′ = f(x1, . . . , xn) and commitment hi using the data pairs. If hi = h, then si sends

ci = H(ki, OK) to U .

4. If U verifies that all sensors si agree with the value h, then the alleged

aggregate y is correct.

Theorem 4.7.1 Basic PIA Solution 3.1 is perfectly private and perfectly secure.

The scheme can support any aggregation function, at the cost of O(n) messages per

sensor.

Proof: The security of the basic scheme against an integrity-adversary can be

reduced to the security of SHIA proven in [CPS06]. Additionally, given that the

hash function is one way, U doesn’t get any information on the sensor measurements,

thus scheme is perfectly private.

The scheme can support any aggregation function since sensors have access

to all the raw data. However, this means that each node receives O(n) messages

during the integrity verification algorithm. 2

Remark. The high communication cost of the scheme eliminates the assumed

efficiency benefits of aggregation.

76

f

f f

U

A

s1 s2 s3 s4

y verifies alleged aggregate
by recomputing
using

If agree on alleged
aggregate y, then U accepts y.

s1, s2, s3, s4

s1

s2 & f(x3, x4)
f(x1, x2, x3, x4)

Figure 4.8: PIA Solution 4: Improving efficiency by introducing a logical aggregation

tree within the aggregator node.

4.7.2 Improved PIA Solution 3.2

We now propose an algorithm that improves the efficiency of the integrity

verification algorithm but at the cost of limiting the aggregation functions that

can be supported. This is done by introducing a logical aggregation tree within

the aggregator node as seen in Figure 4.8. Accordingly, to recompute the network

aggregate, each node would require log n values instead of n values. We consider

the aggregation function sum.

Algorithm 6 Improved PIA Solution 3.2

Let ki be a MAC key shared between si and U . Let H denote a secure cryptographic

hash function.

1. A constructs a logical binary aggregation tree T where the leaf vertex vi is

associated with sensor si, with label `i = (1, xi, si). The internal vertex vi has label

`i = (ci, ai, hi) = (c1 + c2, a1 + a2, H(ci, `1, `2)) where `j = (cj, aj, hj), j = 1, 2 are

labels of the leaf vertices of vi. Then A sends `k to U where vk is the root of T .

2. U sends an authenticated broadcast of h to all sensors si.

77

3. A sends si the labels of all siblings of the vertices that are on the path

from si to the root of T . This allows si to recompute the label of the root of T and

verify the correctness of h. If h is correct, then si sends ci = H(ki, OK) to A which

aggregates the values using the xor operation before forwarding to U .

4. If U verifies that all sensors si agree with the value h, then the alleged

aggregate y is correct.

Theorem 4.7.2 Improved PIA Solution 3.2 is perfectly private and perfectly secure.

The scheme supports all decomposable aggregation functions at the communication

cost of O(log n) per sensor.

Proof: The security proof of the algorithm closely follows that of SHIA [CPS06].

The proof outline is as follows: Commitment h of the root node of T forces the

adversary to choose a fixed set of leaf vertices labels. If any internal vertex vi of T

does not compute sub-aggregate ai correctly, then it will be detected by the sensors

as either (1) the disseminated label doesn’t match the computed one, or (2) h is not

verified. User U can detect if any sensors does not agree with h as the HMAC tag

can be forged with at best negligible probability.

The scheme is perfectly private as the hash function is secure and U doesn’t

get any other information about {xi}.

The integrity verification algorithm requires each node si to recompute the

sub-aggregates of the internal vertices on the path from si to the root node of T .

Since T has n leaf vertices, then the path length is log n. Thus si receives O(log n)

messages.

78

Finally, the solution can only support decomposable functions which allow

for the construction of the hierarchical aggregation tree T . Such functions include,

mean, standard deviation, count and min/max. 2

4.8 Conclusion

As large sensor networks become prevalent in everyday life, privacy becomes

a critical issue that must be addressed. In this chapter, we point out the role of

privacy in integrity-assured data aggregation. We define the problem and analyze

the security model. We then investigate the tradeoff between privacy and aggregate

integrity verification in the single aggregator model. Our results, summarized in

Figure 1.5, show a clear tension between the privacy of the sensed data from the

user and the cost of the integrity verification. This cost consists of both the com-

munication incurred by sensor nodes as well as the range of aggregation functions

that can be supported by the integrity verification algorithm.

79

Chapter 5

PIA in Publish-Subscribe Systems for Multiple Subscribers

In this chapter we address the problem of privacy-preserving integrity-assured

aggregation in publish-subscribe systems for multiple subscribers, where subscribers

can gain a competitive advantage if they can obtain verified aggregate information

before the others. Our solution distributes the verification functionality so that the

scheme satisfies the fairness property in the sense that subscribers can either all

correctly verify the aggregation process or they can detect all cheating subscribers.

We then formally analyze the security properties of our scheme against various

attack models.

5.1 System model

5.1.1 Assumptions

We assume that a pub-sub system consists of a large set of publisher and

routing nodes in a routing network, while a small set of subscribers exist outside

of the routing network, as shown in Figure 5.1. When a subscriber subscribes to

the aggregate sum of data maintained by a set of publishers, the pub-sub system

constructs a routing tree along which routing nodes perform in-network aggregation.

Exactly how the pub-sub system should compute this routing tree is out of the

scope of this paper—our aggregation protocol is independent of the routing path

80

Routing Network

Subscribers

Aggregated
Data

Network Gateway
Routing Nodes
Publisher Nodes

Figure 5.1: Publisher-subscriber model

computation algorithm.

After the routing path is established, each publisher pi publishes a variable vi

periodically synchronizing with the other publishers; that is, all the publishers pub-

lish their variables of each round with a sequence number n. This data is forwarded

along a routing tree where each routing node performs in-network data aggregation.

Each routing node aggregates variables with the same sequence number and sends

the aggregated variable to its parent node in the routing path. If each publisher pi

for i = 1 to n publishes a variable vi, each subscriber eventually receives from the

root routing node of the routing tree an aggregate sum
∑n

i=1 vi(n) at each round n.

Each entity, which manages either a publisher, a subscriber, or a routing node,

has a unique identifier. Every pair of publisher pi and subscriber sj share a pair-

wise secret Kj
i . Note that publishers in our system model are more tightly coupled

with subscribers than in many existing pub-sub systems; each subscriber explic-

itly specifies which publishers should provide raw data for the aggregate sum in a

subscription request. We also assume that subscribers know the routing topology

81

within the routing network. This is an acceptable assumption since publisher nodes

are generally long lived and the routing topology is not dynamic.

Our aggregation protocol requires bidirectional communication channels among

publishers and routing nodes inside the routing network. However, although the

routing network forwards messages from routing nodes to subscribers, it does re-

ceive messages from those subscribers to either routing nodes or publishers.

5.1.2 Security Properties

In this paper, we study the problem of data privacy and integrity in a publisher-

subscriber setting. A pub-sub system that supports in-network aggregation should

satisfy the following security properties:

• Data privacy: Each subscriber learns only the aggregate of a set of published

data and no other information about the individual published data.

(We assume that publishers trust the routing nodes with respect to the privacy

of their data.)

• Aggregation integrity: A subscriber can verify the correctness of the alleged

aggregate without seeing raw data from the publishers.

• Fairness: Each subscriber can verify the integrity of the aggregate if and

only if all the other subscribers who also subscribe to that aggregate function

collaborate correctly.

A malicious subscriber who deviates from the protocol is always detected and

identified.

82

5.1.3 Security Model

We consider three different types of adversaries who try to violate the security

properties in Section 5.1.2. We also define security of the system with respect to

each adversary.

Privacy adversary (p-adversary) attacks the privacy of raw data from publishers.

Such an adversary is typically a subscriber who resides outside of the rout-

ing network and thus cannot access any messages within the routing network

except for those forwarded to the adversary from routing nodes in the network.

We consider that the system is secure against the p-adversary if at best, the

adversary can learn only the aggregate and no other information about the

individual published data.

Integrity adversary (i-adversary) attacks the security of the aggregation process.

The integrity-adversary can compromise a number of routing nodes in an

routing tree. Once a node is corrupted, the adversary has total control over

the private data of that node as well as its subsequent behaviors. On the

other hand, we assume that publishers are not part of an adversary against

subscribers because publishers can always modify the aggregated data by pro-

viding malicious input data while otherwise following the aggregation protocol

properly.

The objective of the adversary is to tamper with the aggregation process such

that subscribers accept an aggregation result, which is not the correct aggre-

83

gate of the publishers’ raw data. An aggregation protocol is considered secure

if the adversary cannot successfully launch such an attack.

Subscriber adversary (s-adversary) can compromise one or more subscriber nodes.

Once compromised, the adversary has subsequent access to the subscriber’s

private information as well as control over its behaviors. The adversary is ac-

tive, meaning it can deviate from the protocol arbitrarily. The objective of the

s-adversary is to interfere with the collaborative verification of the aggregation

process and convince the other subscribers to accept a false verification result

or prevent them from accepting the correct aggregate.

The system is secure against the subscriber adversary, if at the end of the

protocol, honest subscribers can either correctly verify the integrity of the

aggregation process, or identify the malicious subscribers.

5.2 Basic Scheme

In this section we present our basic secure aggregation protocol for multiple

non-collaborative subscribers for the sum aggregate function. The subscribers do

not interact with each other in the basic protocol. Our scheme allows multiple sub-

scribers to verify the integrity of an aggregate sum independently, while ensuring

that the individual published data remains confidential with respect to the sub-

scribers. Note that the basic scheme described in this section does not satisfy the

fairness property in Section 5.1.2 we require; we will extend the basic protocol in

Section 5.3 to achieve that property.

84

The basic protocol builds based upon the secure hierarchical in-network ag-

gregation (SHIA) scheme developed by Chan et al. [CPS06] for sensor networks.

We adapt it to the publish-subscribe network model by eliminating all subscriber-

initiated communication to the routing network. For the sake of brevity, we mainly

describe the following differences from SHIA.

• Elimination of an authenticated broadcast message from a subscriber, which

corresponds to a base station in a sensor network, to the nodes in the routing

network.

• Support of multiple subscribers to the same sum.

We only give only a high level description (and omit the details) of sub-protocols of

our scheme that are identical to those of SHIA. We refer the reader to the original

paper [CPS06] for further detail.

5.2.1 Protocol Overview

The basic scheme relies on an aggregation-commit-prove framework of SHIA

[CPS06]. Suppose that subscriber node si subscribes to the sum of the values from

publishers p1, . . . , pn in set P . As routing nodes aggregate data from publisher

nodes, they also iteratively construct a structure, which forms a commitment tree

over the published data using a cryptographic hash function. In particular, the pub-

lisher nodes and routing (aggregating) nodes respectively form the leaf and internal

vertices of the commitment tree. The final commitment value is the value of the

root node of the commitment tree. Once the aggregation and commitment phase

85

is complete, each publisher receive the off-path values of the commitment tree from

other routing nodes and recompute the final commitment value. Each publisher

then forms a verification tag that summarizes its view of the aggregation process.

A subscriber can verify that all the published data were correctly aggregated to

the received sum by checking that the views of the aggregation process for all the

publishers are identical.

Routing Network

Subscriber

Aggregated
Data1. Published data is

aggregated and committed

2. Publishers verify the aggregation process,
send to subscriber < agg, vrf tag >

3. Subscriber verify
agg is correct.

Network Gateway
Routing Nodes
Publisher Nodes

Figure 5.2: Overview of the basic scheme, for single subscriber.

The intuition of the protocol is that once the aggregation process is fixed,

each publishers individually ensures that the its data was added to the final aggre-

gate. This is done by rebuilding the aggregate and the commitment structure. If a

malicious aggregator at some point attempts to discard or reduce a legitimate pub-

lisher’s contribution, an inconsistent commitment structure will be generated and

the attack will be detected. This approach ensures a lower bound to be established

for the sum aggregate. An upper bound is also established using a similar approach

and the complement aggregate, defined as
∑

(r− di) where r is the upper bound

of the valid data range and di is the data of publisher i.

The algorithm consists of the following two main stages: aggregation-commit

86

and verification. We assume that an aggregation tree already exists and spans over

the set of the publishers and routing nodes.

5.2.1.1 Aggregation-Commit

This phase is exactly same as that in SHIA. Each publisher node publishes

data to its parent routing node on the routing tree. Once a routing node hears back

from all of its children, it aggregates their data and constructs a new vertex label

in the commitment tree1. The label has the following format:

〈count, value, complement, commitment〉

where count is the number of leaf nodes in the subtree rooted at this routing node;

value is the sum aggregate computed over all the leaves in the subtree; complement

is the aggregate over the complement of the data values; and commitment is a

cryptographic commitment to value of the label and the labels of the child nodes in

the commitment tree.

The labels are defined inductively as follows: There is one leaf vertex up for

each publisher node p, which we call the leaf vertex of p. The label of up consists

of count=1, value=dp where dp is the data value published by p, complement=r −

dp where r is the upper bound on allowable data values, and commitment is the

publisher’s unique ID. Internal vertices represent the aggregation operations, and

have labels that are defined based on the labels of their child vertices. Suppose

an internal vertex has child vertices with the following labels: `1, · · · , `q , where

1Note that the aggregation tree and the commitment tree are identical in our scheme.

87

`i = 〈ci, vi, v̄i, hi〉 for i = 1 to q. Then their parent vertex has label 〈c, v, v̄, h〉 where

c =
∑
ci , v =

∑
vi , v̄ =

∑
v̄i and h = H[N, c, v, v̄, `1, · · · , `q]. Here H is a

cryptographic hash function and N is the session sequence number.

Once the label is constructed, the routing node forwards it to its parent routing

node. Once the routing node at the root of the aggregation tree computes the final

label, it can either forward that label to the subscriber or wait until it also has the

result tags before forwarding.

5.2.1.2 Verification

In this stage, unlike SHIA, our protocol allows a subscriber to verify an aggre-

gate without sending an authenticated broadcast message to the publisher nodes in

the routing network. First, routing nodes disseminate information to the publisher

nodes that allow them to verify that their published data was correctly incorporated

into the aggregate. In particular, each publisher node pj receives the labels corre-

sponding to the set of all the siblings of each of the commitment tree vertices that

are on the path from pj to the root of the commitment tree. Once each publisher

pj reconstructs the label `′r of the root node r of the commitment tree, it computes

the following verification tag for subscriber si:

τ ij = H(Ki
j, N, `

′
r)

where Ki
j is a secret key shared between publisher pj and subscriber si. Notice that

the label `′r computed by pj could be different from the label `r computed at the

aggregation-commit phase in Section 5.2.1.1 if there exist malicious routing nodes

88

A

B

ED
C

F

H

G

Aggregation-commit stage:
!E = 〈1, e, r − e,H(E)〉
!G = 〈2, g, ḡ, H(2, g, ḡ, !D, !E)〉
!H = 〈2, h, h̄, H(5, h, h̄, !A, !F , !G)〉

Verification stage for node E:
Node E receives !D, !F , !A

Constructs !′
H .

Constructs τE = H(Ks
e , N, !′

H)

Subscriber gets 〈!H ,⊕τi〉
Verifies that ⊕τi matches !H

Subscriber S

Aggregator Node
Publisher Node

Figure 5.3: Example aggregation graph for one subscriber S. On the right, we list

the labels of the nodes on the aggregation path of publisher E to the subscriber.

We then show what labels E receives to construct a verification tag τE.

that do not perform aggregation correctly. The verification tags are sent along the

aggregation tree and aggregated along the way with the xor function. Finally, the

root node r of the routing tree forwards its label `r and the xor of all the verification

tags ⊕pj∈Pτ ij to subscriber si. Recall that P is the set of publishers.

Subscriber si can verify that the aggregation of the published data was per-

formed correctly by checking that all the publishers constructed their verification

tags using the correct aggregate and commitment values. Subscriber si first recom-

putes each publisher pj’s verification tag τ ij using the the root label `r and shared

secret Ki
j. If the xor of all the computed tags is equal to that received from the

root routing node, si decides that the aggregate value value is computed correctly.

Figure 5.3 presents an example routing tree with five publisher nodes, and

shows how the data published by publisher E is aggregated and verified by the

89

subscriber S.

5.2.2 Verification by Multiple Subscribers

We extend the above setting to allow multiple subscribers to verify an aggre-

gation process. Suppose that there are m subscribers s1, . . . , sm in set S. Let us

assume that each publisher pj shares a secret key Ki
j with each subscriber si. At the

verification phase, each publisher pj constructs a separate verification tag τ ij for each

subscriber Si, i.e., τ ij = H(Ki
j, N, `

′
r) for i = 1 to m. Each routing node aggregates

verification tags for each subscriber si separately, using the xor function. Therefore

subscriber si receives tag τ si =
⊕

pj∈P τ
si
i .

5.2.3 Analysis

We prove the our basic scheme achieves the sum integrity property and the

data privacy property in Section 5.1.2. We only consider the case with a single

subscriber node in Section 5.2.1 since, without loss of generality, the arguments

in this section hold for the case with multiple subscribers. We first consider the

integrity property of the scheme. Our proofs for the integrity property rely on the

collision-resistant property of a cryptographic hash function; that is, an adversary

cannot construct the same xor value computed by subscriber si with different input

values (i.e., a different root label `′r or different shared secrets) from those used by

subscriber si.

Lemma 5.2.1 It is computationally infeasible for an adversary who does not know

90

all the shared secrets between the publishers and subscriber si to compute the same

confirmation tag
⊕

pj∈P τ
i
j that subscriber si computes with the shared secrets Ki

j

with publisher pj.

Proof: Suppose that an adversary does not know a shared secret Ki
j between pub-

lisher pj and subscriber si. Since publisher pj’s verification tag τ ij has no correlation

with the other publishers’ tags, the adversary cannot gain any information on xor

of all the verification tags
⊕

pj∈P τ
i
j . 2

Lemma 5.2.2 If xor of all the verification tag ⊕τSp computed by subscriber si is

same as the xor tag provided by the root routing node, then that root node computes

the xor of all the confirmation tags received from the publishers.

Proof: Since the hash function H used to compute a confirmation tag is collision-

resistant, only publisher p who knows a shared secret Ki
j can compute each con-

firmation tag correctly. Therefore, by Lemma 5.2.1, the only way to computes the

correct xor of the tags ⊕τSp is to compute the xor of all the tags provided by the

publishers. 2

Lemma 5.2.3 If xor of all the verification tags
⊕

pj∈P τ
i
j computed by subscriber

si is same as the xor tag provided by the root routing node, then every publisher pj

must have used the same root label `r to compute its confirmation tag τ ij .

Proof: When subscriber si computes the xor of the verification tags
⊕

pj∈P τ
i
j , si

computes each τ ij using the the same root label `r, which si receives from the root

91

routing node. By Lemma 5.2.2, the root routing node obtains the verification tag

for subscriber si by computing xor of all the tags from the publishers. Since the

hash function H is collision-resistant, each publisher must use the same label `r and

a shared secret Ki
j to compute its verification tag τ ij . 2

Lemma 5.2.4 If xor of all the verification tag
⊕

pj∈P τ
i
j computed by subscriber

si is same as the xor tag provided by the root routing node, then subscriber si can

be sure that all the publishers compute the same root label value by recomputing the

commitment tree.

Proof: By Lemma 5.2.3, subscriber si knows that the verification tag received

from the root routing node is computed by taking the XOR of all the publihsers’

correct verification tags. This implies that every publisher recomputed the the same

commitment tree and verified the same root label. 2

Since our basic protocol allows subscriber si to confirm that every publisher

verifies the commitment tree of the same root label, our protocol provides the same

integrity property as that of SHIA [CPS06]. Therefore, we state the following the-

orem regarding the integrity property of our protocol without proof.

Theorem 5.2.1 Let A be the final sum received by the subscriber si. If the sub-

scriber accepts A, then AL ≤ A ≤ (AL +µr) where AL is the sum of the data values

of all the honest publishers, µ is the total number of malicious nodes, and r is the

upper bound on the range of allowable values on each node.

92

We next show that the basic protocol protects the privacy of each publisher’s

data from subscriber si.

Theorem 5.2.2 A subscriber si cannot learn any information on the publishers’

individual values except for the sum A of those values.

Proof: Subscriber si receives only an aggregate sum, the root label `r, and the

xor of the verification tags
⊕

pj∈P τ
i
j . Although both `r and

⊕
pj∈P τ

i
j are computed

using each publisher’s individual values, it is computationally infeasible to obtain

those individual values from the output of the hash function H, which provides the

preimage resistant property. 2

5.3 Collaborative Protocol

In the basic scheme, publishers and routing nodes construct a separate veri-

fication tag for each subscriber. Each subscriber is thus able to individually verify

the integrity of the aggregation process. In this section, we focus on the problem

of collaborative subscribers, with the following properties: (i) subscribers can only

verify the integrity of the aggregate together; otherwise they don’t learn any infor-

mation on the validity of the aggregate; and (ii) any subscriber that misbehaves is

detected and identified.

We propose a solution where we distribute secret key shares amongst the

subscribers so that when the shares are combined with each other, the integrity

of the aggregation process can be verified. This is equivalent to a (n, n)-threshold

secret sharing scheme.

93

To demonstrate the difficulty of our problem, we first show an initial attempt

and illustrate a critical denial of service attack that a malicious subscriber can

launch against the other subscribers. We then present our collaborative solution for

preventing this attack.

5.3.1 First Attempt

We modify the basic scheme for multiple subscribers proposed in the previous

section by requiring the routing nodes to combine all the subscribers’ verification

tags with the xor operation. The combined tag of m subscribers s1, . . . , sm in set

S thus is computed as τ =
⊕

si∈S τ
i.

The combined tag τ can then be verified if and only if all the subscribers col-

laborate to reveal their individual tags as follows. Once each subscriber si receives

message 〈`, τ〉 from the routing network, si computes its individual verification tag

τ i =
⊕

pj∈P H(Ki
j, N, `) where P is the set of publishers. Subscriber si then broad-

casts its individual tag τ i to the other subscribers. Once a subscriber receives the

individual tags of all the other subscribers, it can verify the integrity of the aggregate

sum received from the root node of the routing network. The above solution satisfies

both the sum integrity and privacy properties. Both properties can be proved using

a similar proof to that presented in Section 5.2.3.

The scheme, however, is insecure against malicious subscribers. In particular,

a malicious subscriber can force the verification tag to be verified as invalid, without

detection. To see this, consider a set of m subscribers where subscribers s1, · · · , sm−1

94

Routing Network

Aggregated
Data1. Published data is

aggregated and committed

2. Publishers verify the aggregation process,
send to subscriber < agg, vrf tag, cmt >

3.1 Subscriber verify tag shares
3.2 Subscribers verify agg

Subscribers

Network Gateway
Routing Nodes
Publisher Nodes

Figure 5.4: Overview of the PIA collaborative scheme for multiple subscribers.

are honest and broadcast valid tag shares to the other subscribers, and sm who is

malicious, broadcasts an invalid tag share τm. Since τm is invalid, subscriber si

where 1 ≤ i ≤ m − 1 determines that the combined verification tag is invalid.

However, it is impossible for si to determine if, (i) the tag is invalid because not all

publishers agree with the aggregation process, or (ii) it is invalid because a malicious

subscriber has broadcast a false verification tag. The honest subscribers are thus

denied the service.

5.3.2 Collaborative Scheme

Next we propose a collaborative scheme, which is secure against a privacy-

adversary, an integrity-adversary as well as a subscriber-adversary, defined in Sec-

tion 5.1.3. Intuitively, the scheme builds on our first attempt by first, combining

the individual verification tags so that the aggregate can be verified if and only if all

subscriber submit their true individual tags to the others. Second, the scheme en-

ables subscribers to verify the correctness of submitted tags from other subscribers.

The subscribers are thus forced to behave honestly, or else be detected as malicious.

95

5.3.2.1 Protocol Overview

The collaborative scheme consists of three stages: (i) the aggregation-commit

stage, which is identical to that of the basic scheme, (ii) a modified verification

phase and (iii) a new subscriber-verification stage.

In the verification phase, each publisher pj additionally constructs a commit-

ment to a shared secret Ki
j with a subscriber si. Routing nodes aggregate those com-

mitments to shares by jointly constructing a hash tree. In the subscriber-verification

phase, subscribers first interact to verify the integrity of the aggregation process by

verifying the combined verification tag. If the tag is found to be invalid, each

subscriber must then prove the validity of its submitted tag share using its commit-

ment value. We describe our collaborative verification protocol for m subscribers

s1, · · · , sm in set S and n publishers p1, · · · , pn in set P .

5.3.2.2 Setup

Since our protocol requires each subscriber to disclose its secrets at each round

of publication, we assume that every pair of subscriber si and publisher pj gener-

ates a new shared secret at each round using a pseudo-random number generator

(PRNG) with a shared master secret Ki
j as a seed. A PRNG generates a sequence

of unpredictable values given a seed; i.e., PRNG : Zl × N→ Zl, where l is the size

of a secret. That is, PRNG generates a new secret from a master secret Ki
j and a

session sequence number N of each publication. It is computationally infeasible for

an adversary to deduce a new secret only from a series of previous secrets without

96

knowing a master secret.

5.3.2.3 Aggregate-Commit-Prove

The aggregate-commit-prove phase is identical to that of the basic scheme,

described in Section 4, except for the aggregation of commitments to shared secrets

between publishers and subscribers. In particular, assume that publisher pj has

re-constructed the label ` of the root node of the aggregation tree. Publisher pj

also computes a verification tag τ ij and a commitment cij to a shared secret Ki
j for

subscriber si, for i = 1, . . . ,m:

τ ij = H(Ki
j, N, `)

cij = H(Ki
j, N)

where Ki
j is the secret shared key between publisher pj and subscriber si and N is a

session sequence number. Publisher pj then forwards (τ ij , c
i
j), i ∈ [1,m] to its parent

routing node.

Routing node ak aggregates, with respect to each subscriber, all the com-

mitments and tag values it receives. Suppose a routing node ak has child nodes

v1, · · · , vt and receives message (τ ij , c
i
j)i=1,··· ,m from child node vj. Then routing

node ak performs the following aggregations, for i = 1, . . . ,m:

τ ik = τ i1 ⊕ . . .⊕ τ it

cik = H(ci1, . . . , c
i
t)

Routing node ak then forwards (τ ik, c
i
k), i ∈ [1,m] to its parent routing node.

This continues until the root of the routing tree is reached. The root node of

97

the routing tree, ar, then computes the combined verification tag using the xor

aggregation operation:

τ = τ 1
r ⊕ · · · ⊕ τmr

and forwards 〈τ, c1
r, . . . , c

m
r 〉 to the subscribers. For clarity, we present an example

of the above process in Figure 5.5. The figure shows how the commitment values of

publisher nodes D and E are aggregated along the routing tree.

for i ∈ [1, m]
ci
H = H(ci

A, ci
F , ci

G)

for i ∈ [1, m]
ci
D = H(Ki

D, N)
for i ∈ [1, m]
ci
E = H(Ki

E , N)

for i ∈ [1, m]
ci
G = H(ci

D, ci
E)

ED

G

H

A

F

Subscribers S1, · · · , Sm

〈c1, · · · , cm〉

A

B EDC

F

H

G

Subscribers

Aggregator Node
Publisher Node

Routing Tree

Figure 5.5: Construction of the commitment trees during the aggregate-commit

phase.

Note that the hash tree construction we have presented corresponds to what

is known as the Merkle hash tree [Mer80, Mer89]. In particular, a Merkle hash tree

is used to commit to a set of values, where the committed values correspond to the

tree leaf nodes and the value of the internal nodes is derived from the hash of the

98

values of its child vertices.

5.3.2.4 Collaborate-Verification

Each subscriber si receives 〈`, τ, c1
r, . . . , c

m
r 〉 where ` is the label containing

the alleged data aggregate and commitment over the aggregation process. Each

subscriber si does the following:

1. Using ` and its shared secrets Ki
1, . . . , K

i
n, construct verification tag share τ i.

2. Broadcast tag share τ i to all the other subscribers.

3. Once all tag shares are received, compute combined verification tag τ ′ = τ 1⊕

. . .⊕ τm and check if τ
?
= τ ′.

4. If τ = τ ′, then we can conclude that the aggregation process has been com-

puted correctly and stop.

If τ 6= τ ′, then we must determine if aggregation process is incorrect or there

are malicious subscribers. Therefore, a prove request is broadcast to all the

subscribers.

5. Once a prove request is received, subscribers must prove that they have sub-

mitted valid tag shares. To do this, each subscriber si reveals enough key

information to enable another subscriber sj to verify that commitment value

ci corresponds to the tag share τ i. The details of the proof are presented in

Section 5.2.3.

If malicious subscribers are detected and identified, the protocol is stopped.

99

6. If all subscribers have been verified honest, then we can conclude that the

combined aggregation tag is invalid because an aggregating routing node has

falsified the aggregation process.

5.3.2.5 Proof Protocol

Subscriber si can prove that the submitted verification tag τ i is related to the

commitment value ci by disclosing the set of secret keys that it shares with all the

publisher nodes, i.e., Ki
1, . . . , K

i
n. Then a verifying subscriber sj can verify that the

submitted tag τ i corresponds to the commitment ci by:

1. Checking the validity of the submitted keys by computing the commitment c̃i

using the keys and session sequence number, and checking if ci
?
= c̃i. (We here

assume that each subscriber si knows the topology of the routing network to

compute the same commitment tree, but we can remove this assumption if the

root routing node computes the commitment of all the shared secrets for each

subscriber si.)

2. If ci 6= c̃i, then the submitted keys are invalid and subscriber si is identified

as malicious. Protocol is stopped.

If ci = c̃i, then the submitted keys are correct.

3. Verifying subscriber sj then confirms that the verification tag share submitted

by si is correct by recomputing the share using `,N and the submitted keys.

If tag share does not verify, si is identified as malicious. Protocol is stopped.

Else si is honest.

100

Note that subscribers need to exchange their secrets with each other only

when some subscribers fail to verify the verification tag of an aggregate sum. We

expect this is a rare case since we expect that a pub-sub system removes malicious

subscribers once they are detected.

5.3.3 Analysis

Lemma 5.3.1 An integrity-adversary does not gain any security advantage by mod-

ifying the commitment values.

Proof: The goal of the integrity-adversary is to force the subscribers to accept a

false aggregation value in a stealthy manner. Now consider an integrity-adversary

that not only falsified the aggregation operation but also the commitment values.

An incorrect commitment value ci will only lead to an inconsistency in the proof

protocol submitted by subscriber si and the incorrect conclusion that si is malicious.

Such a conclusion does not add to the security advantage of the integrity-adversary.

2

Because of Lemma 5.3.1, henceforth we assume that the integrity-adversary

does not falsify the commitment value by deviating from the protocol.

We use Theorems 5.2.1 and 5.2.2 from the basic protocol to show that the

aggregation scheme is privacy-preserving and integrity-assured aggregation.

In the following, we assume that all subscribers send messages. A subscriber

that stops the protocol by not sending a message always wins and we therefore

ignore this case.

101

Theorem 5.3.1 Subscriber si can verify a combined verification tag τ if and only

if it receives the correct verification tag of all the other subscribers, given an alleged

aggregate and session sequence number.

Proof: To verify a combined verification tag, each subscriber si independently

constructs its tag share τ i which depends on the secret keys of si, the alleged aggre-

gate and the session sequence number. Note that subscriber si cannot forge the tag

share of another subscriber sj since it does not have access to its keys (this follows

from the security of the cryptographic hash function).

The combined verification tag can only be correctly verified if the computed

combined tag is equal to an ideal value that depends on all the subscriber secret

keys, the alleged aggregate and the session sequence number. If any of these values

are incorrect, then the computed combined tag is not equal to the ideal value and

thus the verification fails. 2

Theorem 5.3.2 A malicious subscriber that deviates from the subscriber-verification

protocol is detected and identified.

Proof: A malicious subscriber can either submit an invalid individual verification

tag or an invalid set of secret keys during the subscriber-verification protocol. If

an invalid set of secret keys is submitted, then the malicious subscriber is always

detected and identified because the keys do not match those that generate the

commitment tree. This follows from the collision-resistance property of the hash

function. If an invalid individual verification tag is submitted, other subscribers can

102

compute the tag with a set of verified secrets and the root label of the aggregation

tree provided from the routing network. Because of the collision-resistance of the

hash function, a malicious subscriber cannot change the set of secret keys used to

generate the commitment. Therefore the malicious subscriber is always detected

and identified if it does not use identical sets of keys for the commitment and the

verification values. 2

Lemma 5.3.2 The subscriber-verification scheme is forward secure; i.e., even when

the subscribers reveal their secret keys, all subsequently executed subscriber-verification

protocols are secure.

Proof: Reduced to the security of the PRNG. 2

5.4 Future Directions

In the future, we plan to extending our work in three main directions. First, we

would like to improve the efficiency of the subscriber-verification protocol. Currently

to verify the honesty of subscribers, the communication cost of each subscriber is

O(nm), where there are n publishers and m subscribers in the network. Although

in this work we assume that subscribers are not energy constrained, it would be

desirable to reduce the communication exchange between the subscribers. Second,

we would like to reduce our trust assumptions, such that the confidentiality of the

raw published data need be preserved with respect to routing nodes as well as

subscribers. Currently our model assumes that publishers trust the routing nodes

103

with respect to the confidentiality of their raw data. Finally, we plan to extend

our secure and verifiable aggregation scheme to support other aggregation functions

such as higher order statistics such as quantiles. Currently we can support only

sum, mean, standard deviation, count and min/max.

104

Appendix A

Optimized Bijective Rule

Du and Hwang [DH93] presented a bijective algorithm, where at each step, if

an impure set X is discovered, then the algorithm bisects X and tests the resulting

two subsets X1 and X2. They propose the following partitioning rule:

Algorithm 7 Optimized Bijective Rule

Input: Set X.

Output: Result sets X1, X2, such that X1 ∪X2 = X.

Bisect X into subsets X1 and X2, where X1 contains 2dlog |X|e−1 nodes and X2 =

X \X1.

This rule partitions the network such that the detection tree is made up of one

complete and one incomplete binary subtree. Figure 3.1 uses this rule to partition

the network of 12 nodes. We refer the reader to the original paper for the proof of

the theorem.

Theorem A.0.1 Given an input set of nodes N, partition degree 2 and the bisecting

rule defined by Algorithm 7, identification algorithm 1 produces at most 2c(log2
|N |
c

+

1) + 1 partitions before outputting all the compromised nodes.

Figure A.1 shows the behavior of the partition cost of the binary identification

algorithm when the Du and Hwang’s partition rule is used and compares this cost

105

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

Number of compromised nodes

Pa
rti

tio
n

co
st

Upper bound of partition cost for binary detection ! 1024 Nodes

Experimental

Analytical

Baseline
scheme

Figure A.1: Comparison of the analytical and experimental bounds with the baseline

solution.

with the total cost of the trivial scheme. The figure shows that when considering

the partition cost of the identification algorithm alone, the identification algorithm

performs better than the trivial solution for up to 128 compromised nodes. Therefore

if an adversary compromises more than 128 nodes in the network (or 1
8
th of the total

nodes in the network) then aggregation is not a useful primitive for a secure and

defensive network.

The figure also compares the analytical partition cost obtained from Theorem

A.0.1 and the numerical partition cost computed experimentally. The numerical

results yield exact results. Although the analytical curve follows the numerical curve

faithfully, it does produce significant error for c > 128, where c denotes the number

of compromised nodes. The experimental curve reaches a plateau at c = 128. This

can be explained as if c = 128, the worst distribution of compromised nodes requires

the testing of every single node; consequently no extra test is required for c > 128.

106

Appendix B

Key Establishment in Heterogeneous Self-Organized Networks

[TSN07]

Traditional ad hoc and sensor network settings generally assume a trusted third

party (TTP) who is trusted with the keying information and enables secure deliv-

ery of keys to the network principals and/or nodes. Security associations, such as

authentication of nodes or securing communication channels, are then bootstrapped

using this information. In key pre-distribution schemes, the TTP allocates keys to

each node prior to deployment either randomly from a key pool [EG02, CPS03],

or by using a well-defined combinatorial structure such as a t-design [LS05] that

ensures the key subsets allocated to the nodes satisfy certain properties.

However, the assumption of a single TTP can be restrictive in scenarios where

the network is self-organized and formed without prior planning. In the following

we list some of the immediate applications that require distribution of trust. The

first example is in disaster response scenarios where a network may be formed with

members belonging to different administrative domains. Furthermore, it might be

impossible to access an outside authority due to the lack of preexisting infrastruc-

ture or inability to contact off-site systems [LMFJ+04]. In such life-threatening

situations, it is not acceptable to deny data from a legitimate principal that might

save someone’s life. Therefore a ‘best-effort’ security model might be appropriate

107

in this scenario, allowing strong guarantees when a single TTP can be established

and weaker guarantees when no TTP can be assumed. Similarly in combat situa-

tions it is essential to allow members of a coalition to join and form collaborative

groups. In such dynamic coalitions there is typically no single TTP prior to or

during deployment.

Existence of a TTP is also in immediate conflict with privacy enhancing ap-

plications. As sensor and ad hoc testbeds have been deployed, it has become clear

that user privacy can be easily compromised as a side effect to seemingly innocuous

applications [CP03]. For example a humidity sensing network can also be used to

monitor activity in a room as the human body effectively alters the room humidity.

Therefore by removing the presence of an all knowing authority (i.e., the TTP),

communication can be made private to the restricted user set.

Finally, to allow the wide adoption of sensor and ad hoc networks in everyday

scenarios, it is desirable to reduce the required knowledge base of network owners.

Customers should be able to purchase a set of nodes that are usable upon purchase

without requiring the presence of a network administrator. Therefore the node

manufacturer can install public data in the nodes that can bootstrap future security

associations.

In the following we focus on the problem of group key distribution in self-

organized ad hoc and sensor networks where no single point of trust exists. A

group key allows nodes to securely communicate with each other and participate

in collaborative tasks. The dynamic property of the network allow new nodes to

join or exiting nodes to leave the group. This is an essential mechanism in the

108

first two applications listed above. We consider heterogeneous networks consisting

of two types of nodes: typical low performance sensor nodes and more powerful

nodes with more computation and communication resources. It has been recently

shown [DL05, Eco] that networks that consist of homogeneous nodes cannot scale

well and also have lower performance compared to networks that include a number

of more powerful nodes. Introducing more powerful nodes also improves reliability

and lifetime of the network [Eco]. Furthermore [TCC+06] showed that pairwise

communication security in the presence of a TTP is not necessarily sacrificed if a

key distribution scheme leverages the existence of more capable nodes.

B.0.1 Related Work

The first work on key pre-distribution in ad hoc network without a TTP is due

to Chan [Cha04]. In this construction each group member individually selects his

keys from a common public key pool in a specified way. The aim of the protocol is to

probabilistically construct a Cover Free Family (CFF) that will ensure shared keys

between nodes. After the key selection phase, nodes follow a shared key discovery

protocol that uses homomorphic encryption to discover nodes’ shared keys. Chan

showed that his scheme allows any two nodes to communicate securely with a high

probability and the system provides security against collusion attack. However,

[WW05] showed that the probability that the constructed structure is a CFF is

very low and so the protocol cannot achieve its stated goal.

The closest work to our scheme is Luo et al. [LSNBS06] who proposes a prob-

109

abilistic group key management protocol (referred to as LSBS) for ad hoc homo-

geneous networks. The objective of LSBS is to establish a common shared key for

the whole group. The protocol consists of three phases. In the setup phase, each

node randomly selects a set of keys from the key pool and performs a shared key

discovery (SKD) protocol with each neighboring node to discover shared keys. The

group key is generated by special subsets of nodes called initiating groups (IG),

and is distributed by flooding the network. Although LSBS protocol achieves its

stated goal, in practice there are challenges that if not addressed makes the protocol

impractical. In particular, our simulation of LSBS in [TSN07] show the following

shortcomings in the protocol.

Firstly, LSBS implicitly assumes that a single IG is formed where in practice

many IGs may simultaneously exist. In fact our simulation results show that in a

network of 1000 nodes, where each node has a key ring of size 150 keys, we can

form up to 100 IGs. To obtain a single group key for all nodes some mechanism for

negotiation and/or cooperation among IGs is required, which substantially increases

the communication and computation cost which is very undesirable in a resource

constrained network. The solutions also needs to be carefully designed to prevent

security compromise. The communication cost of the shared key discovery (SSD)

phase of the protocol is O(l) where l is the size of the key ring. LSBS requires a

node u to execute the SSD protocol with all of its neighboring nodes. If on average

a node is in the neighborhood of d other nodes, a communication cost of O(d · l) per

node is incurred. For networks with battery powered nodes it is essential to reduce

this cost in order to prolong network lifetime. Finally, LSBS is analyzed using a

110

simple threat model that does not take into account real life threats in a wide range

of application scenarios. The adversary is considered passive and can only eavesdrop

on the communications. Given that the key pool is public, the adversary’s objective

is to either determine the node key or the link key that secures the link between

two nodes. In sensor networks it is common to assume that the adversary can

compromise a subset of nodes and obtain the secret information of the nodes. Such

information includes the key rings of the node and the keys that the nodes share with

their neighbors. This latter information will reduce the effort required for finding

the key rings of uncompromised nodes, and/or the link keys for links between the

compromised node and its neighbor nodes.

B.0.2 Our Contribution

In this appendix, we propose a Layered Key Pre-Distribution (LKD) Scheme

for networks of heterogenous nodes: resource constrained nodes and a small number

of high performance nodes (level 1) which have more resources and are possibly

better protected (e.g., use tamper proof hardware). LKD uses an unbalanced distri-

bution of keys, where high performance nodes are allocated a larger key ring. The

level 1-centric clusters that are formed around result in more efficient generation of

group keys.

We give a probabilistic analysis of the protocol and show that the inclusion

of a small number of more powerful nodes in the network results in constant com-

munication and computation cost, independent of the neighborhood size of a node.

111

We support our analysis via simulation results. We next evaluate the security of the

protocol in a strengthened security model. We argue that with a public key pool

and without a TTP, previous proposed threat models and security metrics such as

network resiliency [CPS03, EG02], which assumed secret key pool and a TTP, are

no longer valid. We update these definitions for our new system and trust model

and define a new security metric called neighbor resiliency. We analyze the security

of both LKD and LSBS under this new threat model. Our analysis shows that

LKD achieves better security than LSBS against node compromising adversaries

because sensing nodes in LKD learn much less information about the nodes in their

neighborhood.

B.1 System Model

We consider the network to be fully self-organized, meaning that there is no

infrastructure (hence no public key (PK) infrastructure). Traditional network mod-

els considered for sensor models not only assume a homogeneous network but also

assume either a grid or a random graph [EG02, CPS03] model where all neighboring

nodes are in communication contact. A more realistic model takes into considera-

tion the various signal-blocking barriers and interference sources such as hills and

buildings that exist in the deployed environment. In practice, deployed nodes are

often segregated into exclusive neighborhoods due to the features of the landscape

[TCC+06]. Our model accounts for this by considering a cluster based network,

where sensor nodes form ad hoc groups around more powerful nodes which act as

112

the backbone of the network. Therefore the sensor nodes connect to the rest of the

network through the powerful ‘gateway’ nodes.

We assume a heterogeneous sensor network of size n consisting of two types of

nodes: sensing or level 2 (L2) nodes which are resource constrained and have limited

storage and energy capabilities and level 1 (L1) nodes which are more capable, with

larger memory, more powerful transceivers and energy source. As a result L1 nodes

can store larger key rings and other state data as well as communicate with a larger

neighborhood of nodes. The network consists of c L1 nodes and (n − c) L2 nodes.

Example L2 nodes are small Berkeley Mica2 motes with 8-bit 4MHz processors and

128 KB memories [MIC]. L1 nodes can be more powerful nodes such as laptops

or other portable devices. Such devices have better physical protection against

compromise, such as the use of tamper resistance hardware. However for simplicity,

we assume the same type of protection for L1 and L2 nodes. We also assume that

each node ui has a unique identifier i.

B.1.1 Trust Model

We assume that the network has no central authority or a single TTP. Each

node essentially acts as its own domain authority. Public information (e.g. the key

pool) is available to all, including malicious parties.

113

B.1.2 Authentication

Since we do not assume any TTP, it is impossible to establish strong authen-

tication and identification amongst network nodes. We weaken our requirements

such that to control the join of malicious nodes to the group, we assume some aux-

iliary identification mechanism for nodes (e.g., node hardware). Details of such a

mechanism is outside the realm of our work.

B.2 Layered Key Pre-Distribution (LKD) Scheme

In this section we describe the LKD scheme to establish both pairwise and

group keys in a self-organized network that does not have a TTP. The heterogenous

network consists of resource constrained nodes (L2) and more capable nodes (L1)

that contain a larger portion of the key pool than L2 nodes. It follows that L1

nodes are able to establish secure links with a larger portion of the nodes. In each

neighborhood, local (l, r)-secure groups are established where l denotes the security

level and r is the minimum number of nodes in the group. We will show later that r

does not effect the security of the protocol and is used for efficiency purposes. Local

groups in a neighborhood together generate a cluster group key which are exchanged

to contributively generate a network group key. We ensure that the key generated

in each layer (i.e. local, cluster or network) is independent. The overall algorithm

consists of the following phases: initial setup, neighborhood discovery, cluster and

group key generation, join and leave.

In the initial setup phase nodes agree on parameters used in the protocol.

114

The system parameters include a public key pool and its partition into κ blocks

of size m each. The security parameter is l which defines the level of link security

by specifying the minimum number of keys two nodes need to share to establish a

secure communication channel. The size of the key rings of L1 and L2 nodes are

also set to kA and kB. We note that these parameters can either be set by the node

manufacturers or during an initial setup phase prior to deployment.

A node ui randomly selects one key from each key block to form a key ring

{Ki
j}kj=1, where k = kA or kB. Let kB = κ. Thus an L1 node needs to choose

multiple keys from each block. Let kA = tkB + s, where t, s ∈ Z. Node selects t

keys from block 1 to (k− s) and select (t+ 1) keys from blocks (k− s) + 1 to block

k (in total s key blocks).

B.2.1 Neighborhood Discovery Phase

In this phase, L1 nodes initially send beacons identifying themselves to their

neighborhood nodes. The beacon message for L1 node ui can take the simple syntax

of < i, L1 > where i is the node identifier.

An L2 node ‘discovers’ an L1 node when it hears its beacon message. To estab-

lish a secure channel with the L1 and help populate L1’s incidence matrix, it runs

a secure shared key discovery (SSKD) protocol, reminiscent of [Cha04, LSNBS06].

This SSKD protocol is essentially a privacy preserving set intersection protocol that

allows the two participating parties to discover their shared keys from their individ-

ual key sets.

115

For L1 node vi, the incidence matrix I i has k columns labeled by the node

keys {Ki
j}kj=1, and one row for each neighbor. I i(j, t) = 1 if Ki

t is shared with node

uj in the neighborhood of vi, and zero otherwise. The incidence matrix of vi can

be used to keep an account of the keys shared by the nodes in L1’s neighborhood,

given that the keys are shared with vi. This property is important as it maintains

the optimal privacy for the neighboring L2 nodes. Specifically vi does not learn any

information about the key ring of its neighboring nodes other than the shared key

information it learns during the execution of the SSKD protocol.

If an L2 node is not directly connected to an L1 node (i.e. it is isolated from

an L2), it simply waits and performs the join protocol after the key establishment

protocol is complete. In this step, L1 nodes also discover each other and establish

an l-secure channel between pairs of nodes. This communication network forms the

backbone of the larger network.

B.2.2 Secure Shared Key Discovery (SSKD)

Consider the case when node uj wants to discover the keys it shares with node

ui. Let ui have keys {Ki
j}li=1 and uj have {Ki

j}mi=1, where l,m ∈ Z. Assume the

existence of a homomorphic encryption scheme, where Ek(m) denotes encrypting

message m using key k. The SSD protocol is as follows:

1. ui forms fi(x) =
∏l
j=1(x−Ki

j) and send to uj the encrypted coefficients, EKi(·).

2. uj computes zg = EKi(rfi(K
j
g)) using the homomorphic property of the encryption

scheme, where r is a random number. uj returns zg to ui.

116

3. ui decrypts zg to obtain rfi(K
j
g). If value is zero, then they have a common key.

4. ui returns to uj an m-bit bitmap with 1 at bits where rfi(K
j
g) = 0 and 0 elsewhere.

In contrast to LSBS, our SSKD protocol requires the nodes to exchange an

m-bit bitmap indicating the shared keys of the participating nodes (step 4). The

main reason for this inclusion is that L1 nodes in LKD can select more than one

key from each block and so nodes must indicate which key in the block is shared or

not, using the bitmap.

B.2.3 Securing Bitmap Transmission

A potential security leakage is the bitmap exchange step of the SSD, which

identifies to an eavesdropper the number of keys shared by two nodes. A smart

adversary can then compromise a neighboring node which shares the most keys

with a target node, as well as reducing the search space for the channel securing

key.

The following protocol takes advantage of the privacy preserving characteris-

tics of a homomorphic encryption scheme such as El Gamal [Gam85]. Assume node

ui wants to privately send a k-bit bitmap b to node uj. We use the multiplicative

homomorphic properties of the El Gamal [Gam85] encryption scheme for ui to send

b to uj. Specifically this property is defined as: EK(m1m2) = EK(m1) × EK(m2)

where EK(m) is the encryption of m using key K.

Let the El Gamal public key of uj be (g, h) and the secret key be (x = loggh).

uj → ui: r, d← {0, 1}∗; Send < C1, C2 >=< gr, hr · d >, (g, h)

117

ui → uj: r′ ← {0, 1}∗; Send < C3, C4 >=< C1g
r′ , C2h

r′ ·m >

uj: bitmap b = C4
Cx3 ·d

Node uj encrypts a dummy message d and sends to ui the ciphertext and its

PK. ui multiplies the bitmap with the ciphertext and randomizes the message using

r′. Using its private key, uj can decrypt the processed ciphertext and obtain the

bitmap. This protocol ensures that the bitmap remains private to ui, uj assuming

the El Gamal encryption scheme is secure.

By loading nodes with a set of random r values and associated gr, hr during

the setup phase it is possible to reduce computation to one exponentiation and

two multiplications per node. Furthermore we note that although we are using PK

cryptography, we do not rely on the existence of a PKI and therefore we preserve

the distributed nature of the network. Finally, we point out that this step is only

performed once or twice by sensing nodes through out their lifetime. [TSN07] shows

further techniques to reduce energy consumption during this step.

B.2.4 Cluster and Group Key Generation

In this phase, L1 nodes vi use their incidence matrix I i to assist the nodes

in their neighborhoods to initiate local (l, r) groups where a minimum of r nodes

share l keys. This is done by finding a set of r rows R and at least l columns L in

the incidence matrix for which an (l, r)-secure subset can be formed. The formation

of the local groups allow vi to communicate to a group of nodes via multicast thus

reducing communication. Also nodes in local groups contribute to the formation of

118

the cluster keys thus preventing the selection of weak keys. Once a local (l, r) group

is formed, vi informs the group members of their group membership using secure

channels. Local group members now can communicate securely using their secret

group key KL, which is the XOR of the group shared keys. Each local group Li in

cluster C contributively generate a partial cluster key KLi
C in order to democratically

agree on a cluster key KC = ⊕i KLi
C .

Potentially two L2 nodes which are not in direct communication can belong

to the same local group. In this case, the L1 node can be used as an intermediate

routing point to forward messages. Also if L1 nodes use directed antennas, L1 node

can group an (l, r) subset together iff they are in the same vicinity.

The group key can be generated similar to the cluster key by requiring nodes

to select a key share for the group key along with the cluster key share. L1 nodes

then exchange the partial group key generated in their neighborhoods to arrive at

the final group key.

B.2.5 Join and Leave

A newly deployed node ui can join the network by establishing an l-secure

channel to a node uj which already belongs to the secure group. uj essentially acts

for ui as the ‘gateway’ to the network. In the case of an L2 node ui leaving the group,

the neighborhood L1 node uses its incidence matrix to determine the effected keys

and purging them. Thus the departing node has no information regarding the key

rings of the nodes in its neighborhood. Due to space constraint, we refer the reader

119

to [TSN07] for more details of these protocols.

B.3 Correctness Analysis

In this section we show the correctness of the LKD protocol. We say that LKD

is correct if the protocol allows the ‘backbone’ L1-network as well as the cluster of

L2 nodes around an L1 node, to be connected and thus functioning with a high

probability. Later we verify our results by simulation.

In our theoretical analysis we limit the key ring size of L1 nodes kA = t ·kB +s

as follows (kB is the key ring size of L2 nodes): t = 1, s = [0..kB]. We analyze the

general case when s can be assigned any value from [0..kB]. We refer the reader to

[TSN07] for the special case when s = kB. To establish an l-secure link, two nodes

share at least l keys. For readability purposes, in the rest of the paper we use the

notation A and B to refer to L1 and L2 nodes respectively.

Let set S consist of the s key blocks from which an L1 node selects two keys

and let S̄ consist of the remaining k− s key blocks. Let PA,B(r, l) be the probability

of r nodes (one L1 node and (r−1) L2 nodes) sharing at least l keys. Let Zx be the

event that r nodes share a key in a given block x. The probability that Zx occurs, is

equal to ps for blocks x ∈ S, and ps̄ for x ∈ S̄. Key collisions for each block can be

modeled as independent Bernoulli trials. The generating function for probabilities

PA,B(r, l) is calculated as the product of two binomials with success probabilities of

120

ps and ps̄:

f(x) = (psx+ (1− ps))s(ps̄x+ (1− ps̄))k−s (B.1)

Proposition B.3.1 The probability that the r nodes share exactly l keys is equal

to the coefficient Cl of the xl term in polynomial Equation B.1, and PA,B(r, l) =∑kB
i=l Ci, where Ci is the coefficient of the xi term in f(x) and kB denotes the size

of the key ring of L2 nodes.1

Proposition B.3.2 Let PA,A(2, l) be the probability of two L1 nodes sharing at least

l keys. Let α, β, γ be non-negative integers satisfying 2α + β + γ = l. Let pi be the

probability of sharing i keys for the first s blocks and p̃i be the probability of sharing

i keys for the remaining k − s blocks. Then:

PA,A(2, l) =
∑
α,β,γ

2α+β+γ=l

(
s
α

)(
s−α
β

)
pα2 p

β
1 p

s−α−β
0 +

(
k−s
γ

)
p̃γ1 p̃

k−s−γ
0 (B.2)

This proposition is based on the fact that the first s blocks can contribute 0, 1 or 2

shared keys per block, and the last (k− s) blocks can contribute 0 or 1 shared keys

per block. In the above formulae, α represents blocks that share 2 keys and β and γ

represent blocks that share only 1 key in S and S̄ respectively. For a more detailed

proof, refer to [TSN07].

Figure B.1(a) compares the probabilities of two nodes establishing an l-secure

channel for different node types, when the key pool is made up of 200 blocks, with a

1Examples to illustrate how the above proposition can be used are provided in [TSN07].

121

block size of five keys. We can see a rapid transition in the probability of establishing

an l-secure channel for different l. Figure B.1(b) generalizes the node pair to groups

of r nodes. It is intuitive that establishing an l-secure channel becomes less probable

as the group size increases. We also note that when there is a high probability for

l-secure channel among r nodes, the probability of establishing a secure channel

between two L1 nodes will be an even higher value. It is also interesting to note that

the phase transition becomes slower as the number of nodes in the group increases.

Figure. B.1(c) graphs the probability of establishing an l-secure channel between an

L1 node and an L2 node for different values of s. The results confirm intuition by

showing that as the key ring of an L1 node becomes larger, the probability of a secure

connection with a L2 node increases. A similar result is verified in Figure B.1(d)

when we consider r nodes, consisting of one L1 node and (r − 1) L2 nodes.

In a more general version of this problem, a node can select extra keys from

any block of its choosing, rather than the first s blocks. It is intuitive that in this

version of the problem, the probabilities of establishing an l-secure channel do not

increase to the same extent as the more special case presented above. We leave the

analysis of this problem as a future exercise.

The graphs presented in this section allow a network administrator to choose

appropriate values for the system parameters. In the following section, we show

how an increased key ring not only increases the probability of establishing a secure

channel (as shown), but also decreases the security of the system. It is therefore

important to achieve the proper balance between connectivity and security. Section

122

! "! #!! #"! $!!
!

!%#

!%$

!%&

!%'

!%"

!%(

!%)

!%*

!%+

#

,-./012342567108290:5;2<
=
13
/
7
/
><>
?:

@13/7/><>?:234205?7/<>56>,A2<!50B-102B67,,0<2/0?C00,2$2,3805
1D$;2.D";29D$!!

EE

FE

FF

L2-L2

L1-L2

L1-L1

(a) Two nodes, kA = 2kB

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of shared keys, l

pr
ob

ab
ilit

y

Probability of establishing l!secure channel between r nodes
r=3,4,5,6 , m=5, k=200

r=3
r=4
r=5
r=6

(b) (r − 1) L2, one L1 node, kA = 2kB

! " # $ % & ' () !*
*

*+!

*+"

*+#

*+$

*+%

*+&

*+'

*+(

*+)

!
,-.-"/-0-.-!*/-1-.-%

23145,-67-89:,5;-05<8/-=

>
,6
4
:
4
?=?
@<

8-.-!

8-.-"

8-.-#

8-.-%

8-.-(

Probability of sharing l keys between an L1 node and an L2 node, for k_A = k_B + s

(c) Two nodes, kA = 2kB + s

! " # $ % & ' () !*
*

*+!

*+"

*+#

*+$

*+%

*+&

*+'

*+(

*+)

, -

./0/#1/2/0/!*1/3/0/#

45367./89/:;<.7=/27>:1/?

@
.8
6
<
6
A?A
B>

:/0/!

:/0/"

:/0/#

:/0/%

:/0/(

Probability of sharing l keys between an L1 node and (r!1) L2 nodes, for k_A = k_B + s

(d) (r − 1) L2, one L1 nodes,kA = 2kB + s

Figure B.1: Probability of establishing an l-secure channel.

123

B.5 gives simulation results to confirm the theoretical results.

B.4 Security Model and Analysis

We analyze the security of LKD against two types of adversaries: (i) Passive

adversary with only access to public data, protocol description and transcript of

node communications; (ii) Node Capturing (NC) adversary with access to all the

information available to a passive adversary, and also the private data of nodes that

it has captured. We do not allow a NC adversary to interact with the nodes. That

is we only consider the case when the adversary uses its information to eavesdrop

on others’ communication. The goal of both adversaries therefore, is to learn the

secret keys between nodes that are used to secure their links.

The security of traditional key pre-distribution schemes that assume the exis-

tence of a TTP [EG02, CPS03, DDH+05, LN03] are based on the facts that (i) the

keys in the key pool are exclusively secret to the TTP, (ii) nodes key ring are private,

and (iii) the link communication is confidential. In this model an adversary cannot

introduce a ‘new’ device into the network because even if there is no authentication

mechanism, it does not have access to the key pool. However by compromising legit-

imate nodes and obtaining their key rings and/or identities, an adversary can gain

entrance into the secure network. The more nodes an adversary compromises, the

more it learns of the key pool and the more effective an attack it can launch against

a target secure channel. This notion is captured by the resiliency of the protocol

against node compromise, where resiliency metric is defined to be “the fraction of

124

links in the network a node-compromising adversary is able to eavesdrop on, as a

result of recovering keys from captured nodes”[CPS03]. A protocol has stronger

security if the adversary is forced to compromise a larger percentage of the nodes

to eavesdrop on a target channel. Also, in [EG02, CPS03] information that an NC

adversary obtains from captured devices combined with the key indices allows him

to gain information about the keys belonging to other network nodes.

The security of the self-organized (SO) protocols do not rest on the secrecy

of the key pool; in fact, the key pool is considered to be public information and

can be accessed by the adversary. This means that if there are no auxiliary means

of authentication, the adversary can introduce a malicious node v with the aim of

extracting key information from a victim node u: v can choose a key ring and run

SKD with u to find out a subset of keys of u (that they share). It can then select a

new key ring and repeat the protocol. After sufficient runs of this, v can learn all the

keys of u. This means that it is crucial to assume a method of node authentication

that prevents the adversary from introducing nodes of its choice. Since this is not

the focus of our paper, we do not consider this scenario and leave it for future work.

The security of the SO protocols is based exclusively on (i) the size of the

key pool and (ii) the security of link keys. In LKD, a NC advesary gains only local

information from a compromised node; that is, it learns only the key ring of the node

and potentially any information it shares with nodes it associates with. In the case

of LKD, a node ui associates only with its neighboring nodes Ni; by compromising

ui an adversary learns not only the key ring of ui but also the keys it shares with its

neighboring nodes. Thus by compromising ui, the adversary can tighten its search

125

space when attacking (i) a link between two nodes where at least one is neighbor

to ui or (ii) the key ring of a node neighbor to ui. We capture this notion in the

following security parameter for the SO model: Neighbor resiliency is defined as

the fraction of the key pool the adversary can discard in its exhaustive key search

to attack a target secure channel, as a result of recovering keys from neighboring

captured nodes. Another security metric we consider is the advantage the adversary

gains in determining the key ring of a node when it is in the neighborhood of a

compromised node.

In the following, we analyze LKD against first a passive and then a NC ad-

versary. An eavesdropping adversary cannot obtain any information about the keys

except to exhaustively guess at the final shared key between nodes. This is because

in the course of the key establishment protocol, no information about the key ring of

the nodes is leaked. The adversary knows that there are N = mk possible keys and

at least l keys from k different possible blocks are used to secure a link. Thus, the

search space for the attacker is equal to
∑k

t=l

(
k
t

)
ml. Similarly, to determine the key

ring of a node of size k, the adversary must exhaustively search
(
k
t

)
ml possibilities.

Due to space constraints, we refer the reader to [TSN07] for the detailed analysis of

LSBS.

Because L2 nodes in LKD do not compute an incidence matrix, a compro-

mised L2 node uc does not leak any keying information about its neighboring nodes.

However the adversary does learn (i) The keys that uc has in common with the L1

node in its cluster, or if it is not connected to an L1 node, the connecting L2 node;

(ii) If it is part of an (l, r)-secure local group, only the keys it shares with all of

126

them.

Consider three nodes ui, uj and uc. Assume ui ∈ Nc, ui ∈ Nj, and uc is a

compromised node. Let k be the size of the key rings of uc, ui, uj respectively. The

goal of the adversary is to break the secret link between ui, uj. By compromising uc,

the adversary obtained the following information: uc and ui share b keys and do not

share (kc − b). To guess the key ring of ui, the adversaries’ search space is reduced

from mk to mk−b. The search space to exhaustively guess l shared keys between

ui and uj is reduced from
(
k
l

)
ml to

∑l
α=0

(
k−b
α

)(
b
l−α

)
mα. We can easily see that the

search space has been reduced because:

l∑
α=0

(
k − b
α

)(
b

l − α
)
mα ≤

l∑
α=0

(
k − b
α

)(
b

l − α
)
ml =

(
k

l

)
ml (B.3)

Thus the search space to break an l-secure link between ui and uj is equal to:

k∑
t=l

t∑
α=0

(
k − b
α

)(
b

t− α
)
mα (B.4)

However the number of links and nodes to which these reduced probabilities

can be applied to has been decreased dramatically. This is primarily because LKD

does not require an L2 node to connect to every node in its neighborhood. Instead

the number of secure connections an L2 node needs to establish as well as the keys

it shares with neighboring nodes has been reduced to only those that are necessary.

In the event that an adversary compromises an L1 node and the L1 node does

not have any tamper resistant hardware, the adversary gains keying information

about all the nodes in its neighborhood. In this case the adversary gains as much

information as in the LSBS protocol. Since the majority of the nodes in the network

127

are L2 nodes, we can conclude that on average the advantage that an adversary gains

by compromising nodes in LKD has been reduced and therefore LKD is more secure

than LSBS.

B.5 Simulation and Discussion

The simulation assumes a static network of n = 1060 nodes, consisting of 60

L1 nodes and 1000 L2 nodes. This is a reasonable assumption in a dense static

network or a highly dynamic network when nodes move around but in a bounded

region (e.g a group of rescuers in an emergency situation or troops in a battlefield).

We assume that L1 nodes have twice the transmission range RA of L2 nodes RB.

To guarantee network connectivity and thus allow a large portion of the nodes

to participate in the secure group communication, we use the system parameter

relationships derived by [EG02] based on the phase transition theory of Erdös and

Rényi for connected random graphs. For network connectivity, we require that

the neighborhood of each L2 node include 40 other nodes. This is a reasonable

assumption used by [EG02, CPS03, TCC+06]. We also need to guarantee that the

L1-network (the network of L1 nodes) is connected. Using the area needed for 1000

L2 nodes where the neighborhood of each L2 node has on average 40 nodes, we use

60 L1 nodes where each L1 node is neighbor to 10–15 L1 nodes. At the beginning of

the simulation, each node randomly selects a key ring of size kA = 300 for L1 nodes

and kB = 150 for L2 nodes. Nodes can establish an l-secure connection by sharing

at least l keys.

128

We simulated LSBS using the above configuration in [TSN07] by excluding the

L1 nodes. Our results highlighted the shortcomings of LSBS and various practical

issues regarding IG formation that were not dealt with in [LSNBS06]. We summa-

rize these as follows: (1) As the number of shared keys needed to establish a secure

channel decreases, a larger number of initiator groups get created. This leads to high

network communication due to the respective network floods and higher computa-

tion load due to the subsequent encryption and decryption of flooded messages; (2)

There is a sharp transition rate for the number of IGs formed for different key block

sizes m. Fig. B.2(a) shows the jump from very small number of IGs (e.g. m = 5) to

almost 50 IGs when m = 4. However we know that the larger the number of keys

shared between two neighbors, the less resilient the protocol is against neighbor-

compromise. It is thus important to select network parameters such that allow us

to minimize the number of IGs that get created but to also achieve a high degree of

security against both an active and a passive adversary. By introducing hierarchy

in the LSBS scheme, we are able to better control not only the formation of the

local and cluster groups but also the distribution of the group keys. Fig. B.2(b) and

(c) show the probabilities of connection for different local group sizes as well how

much of the neighborhood can establish a pairwise l-secure connection with an L1

node. Our results show that with very high probability, we can achieve a connected

network. In particular, an L2 node can establish a secure connection with an L1

node with very high probability. Fig. B.2(d) graphs the distribution of the size of

the (l, r)-groups centering around each L1 node. Each group on average is made

129

2.5 3 3.5 4 4.5 5 5.5
0

20

40

60

80

100

120

140

160

180

block size, m

IG

 fo
rm

ed

of Initiator Groups Formed for Different Key Block Sizes
l=8, r=4, k=150

(a) LSBS: #IG created for different key block

sizes m

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of shared keys, l

Pr
ob

(e
st

ab
lis

h
se

cu
re

 c
on

ne
ct

io
n)

Prob. of establishing l!secure channel between r nodes, kB=150

r=5
r=4
r=3

(b) LKD: Prob. that one L1, (r − 1) L2 nodes

establish l-secure channel.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of shared keys, l

=
at

io
 o

f @
2

ne
ig

hb
or

s

=atio of neighboring @2 nodes an @1 node can establish an l!secure connection

(c) LKD: Ratio of local L2 nodes that an L1

can establish l-secure channel.

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
0

5

10

15

20

25

30

35

40

*i,e of 1nitiator 6roup, r

:
ou

nt

;istribution of 1nitiator 6roups Around @aAh A!node
k=150, m=5, l=6

(d) LKD: #groups formed for different security

parameters l.

Figure B.2: Analysis of LKD scheme

up of one L1 node and three L2 nodes. We emphasize that the size of a group has

no influence on the security of the group key, rather it ensures a more democratic

process since more nodes contribute to the calculation of the group key.

Comparing the performance of LKD and LSBS protocols, the necessary re-

sources of a sensing node is reduced in LKD as:

Reduced communication load. The L2-network is no longer flooded with all

130

the partial group keys due to the clustering of the nodes and the management of

the local (l, r) groups by the L1 nodes. In particular, each L2 node, with a high

probability, needs to only connect to the neighboring L1 node. Furthermore if it

falls in an (l, r) group, it needs to exchange O(r) number of messages to generate

a partial cluster and group key. Therefore the number of messages that a sensing

node receives and transmits is no longer a function of the neighborhood size.

Reduced computation load. LKD avoids the need for each sensing node to

perform multiple decryption and re-encryptions when transporting the group key.

In addition the management and decision making required for IG formation has been

avoided and made a responsibility of the powerful L1 nodes. In particular in LKD

with a high probability, each sensing node performs the SSKD protocol once with

the neighboring L1 node. In contrast in LSBS nodes executed the SSKD protocol

with every node in their neighborhood (e.g. in our simulation, this would be 40

times).

Reduced storage space. In LKD sensing nodes do not store the incidence matrix

which is of the order O(k · d) where k is the key ring size and d is the size of the

neighborhood. Nodes also do not need to keep an account of the different local

groups or IGs they belong to.

Finally we note that in LKD, the load on each L1 node is at most equal to

the load on every node in LSBS. Also, the number of times LKD floods the network

of L1 nodes is in the same order as the number of floods of the whole network for

LSBS.

131

Bibliography

[AGHS01] David S. Alberts, John J. Garstka, Richard E. Hayes, and David A. Sig-
nori. Understanding Information Age Warfare. Command and Control
Research Program (CCRP) Publications, 2001.

[AGW05] Mithun Acharya, Joao Girao, and Dirk Westhoff. Secure comparison of
encrypted data in wireless sensor networks. In Third International Sym-
posium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless
Networks, pages 47–53, 2005.

[AK06] W. Ahmad and A. Khokhar. Secure aggregation in large scale over-
lay networks. In Proceedings of the 49th Global Telecommunications
Conference, page 2005, 2006.

[AKSX04] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong
Xu. Order preserving encryption for numeric data. In Proceedings of
the 2004 ACM SIGMOD international conference on Management of
data (SIGMOD), pages 563–574, 2004.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash func-
tions for message authentication. In Neil Koblitz, editor, Advances in
Cryptology - Crypto’96, pages 1–15, 1996.

[BHGB07] D.E. Bakken, C.H. Hauser, H. Gjermundrod, and A. Bose. Towards
more flexible and robust data delivery for monitoring and control of the
electric power grid. Technical Report TR-GS-009, Washington State
University, May, 2007.

[BKM04] H. Baldus, K. Klabunde, and G. Müsch. Reliable set-up of medical
body-sensor networks. In In Proceeding of Wireless Sensor Networks,
First European Workshop (EWSN), pages 353–363, 2004.

[Blo70] B.H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970.

[BYKS01] Ziv Bar-Yossef, S. Ravi Kumar, and D. Sivakumar. Sampling algo-
rithms: lower bounds and applications. In Proceedings of 33rd ACM
STOC, pages 266–175, 2001.

[CCT05] Lifeng Chen, Zhanglong Chen, and Shiliang Tu. A realtime dynamic
traffic control system based on wireless sensor network. In ICPPW ’05:
Proceedings of the 2005 International Conference on Parallel Processing
Workshops, pages 258–264, 2005.

132

[CGPM05] Haowen Chan, Virgil D. Gligor, Adrian Perrig, and Gautam Muralidha-
ran. On the distribution and revocation of cryptographic keys in sensor
networks. IEEE Transactions on Dependable and Secure Computing,
2(3):233–247, 2005.

[Cha04] A. Chan. Distributed symmetric key management for mobile ad hoc
networks. In Proc. of Annual Joint Conference of IEEE Computer
and Communication Societies, INFOCOM, volume 4, pages 2414–2424,
March 2004.

[CMT05] Claude Castelluccia, Einar Mykletun, and Gene Tsudik. Efficient ag-
gregation of encrypted data in wireless sensor networks. In Proceedings
of the 2nd Annual International Conference on Mobile and Ubiquitous
Systems: Networking and Services (MobiQuitous), pages 109–117, 2005.

[CP03] H. Chan and A. Perrig. Security and privacy in sensor networks. In
IEEE Computer, volume 36, pages 103–105, Oct 2003.

[CPS03] H. Chan, A. Perrig, and D. Song. Random key predistribution schemes
for sensor networks. In Proc. of Symposium on Security and Privacy,
pages 11–14, May 2003.

[CPS06] Haowen Chan, Adrian Perrig, and Dawn Song. Secure hierarchical in-
network aggregation in sensor networks. In Proceedings of the 13th ACM
Conference on Computer and Communications Security (CCS), pages
278–287, 2006.

[CRW01] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and evaluation of
a wide-area event notification service. ACM Transactions on Computer
Systems, 19(3):332–383, August 2001.

[DDH+05] W. Du, J. Deng, Y. Han, P. Varshney, J. Katz, and A. Khalili. A
pariwise key predistribution scheme for wireless sensor networks. ACM
Transactions on Information and Systems Security, 8(2):228–258, May
2005.

[DDHV03] W. Du, J. Deng, Y. Han, and P.K. Varshney. A witness-based approach
for data fusion assurance in WSN. In Proceedings of the IEEE Global
Telecommunications Conference, 2003.

[DH93] Ding-Zhu Du and Frank K. Hwang. Competitive group testing. Discrete
Applied Mathematics, 45(3):221–232, 1993.

[DH00] Ding-Zhu Du and Frank K. Hwang. Combinatorial Group Testing and
Its Applications. On Applied Mathematics, Volume 12. World Scientific,
second edition, 2000.

133

[DL05] X. Du and F. Lin. Improving routing in sensor networks with heteroge-
neous sensor nodes. In IEEE Vehicular Technology Conference, pages
2528–2532, 2005.

[DS05] D. M. Doolin and N. Sitar. Wireless sensors for wildfire monitoring.
In Proceedings of SPIE Symposium on Smart Structures & Materials /
NDE, 2005.

[Eco] http://www.intel.com/research/exploratory/heterogeneous.htm.

[EG02] L. Eschenauer and V. Gligor. A key management scheme for distributed
sensor networks. In Proc. of 9th ACM Conference on Computer and
Communications Security, pages 41–47, Washington, D.C., USA, 2002.

[FD08] Keith Frikken and Joseph A. Dougherty IV. Efficient integrity-
preserving scheme for hierarchical sensor aggregation. In Proceedings
of the 1st ACM conference on Wireless Network Security, 2008.

[Fol08] Mark F. Foley. The dangers of meter data (part 1). Smart Grid Newslet-
ter, June 2008.

[FT99] Amos Fiat and Tamir Tassa. Dynamic traitor tracing. In Advances in
Cryptology - CRYPTO’99, 1999.

[Gam85] T. El Gamal. A public-key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Transactions on Information Theory,
31(4):469–472, July 1985.

[GSW04] J. Girao, M. Schneider, and D. Westhoff. CDA: Concealed data aggre-
gation in WSN. In ACM Workshop in Wireless Security, 2004.

[Har89] George W. Hart. Residential energy monitoring and computerized
surveillance via utility power flows. IEEE Technology and Society, pages
12–16, June 1989.

[HE03] L. Hu and D. Evans. Secure aggregation for wireless networks. In
Workshop on Security and Assurance in Ad Hoc Networks, pages 384–
392, 2003.

[HHSY06] S. Haber, W. Horne, T. Sander, and D. Yao. Privacy-preserving verifi-
cation of aggregate queries on outsourced databases. Technical Report
HPL-2006-128, HP Labs, December 2006.

[HLN+07] W. He, L. Liu, H. Nguyen, K. Nahrstedt, and T. Abdelzaher. PDA:
Privacy-preserving data aggregation in wireless sensor networks. In 26th
IEEE International Conference on Computer Communications, pages
2045–2053, May 2007.

134

[HPP+07] Parisa Haghani, Panos Papadimitratos, Marcin Poturalski, Karl Aberer,
and Jean-Pierre Hubaux. Efficient and robust secure aggregation for
sensor networks. In 3rd IEEE Workshop on Secure Network Protocols,
pages 1 – 6, Oct 2007.

[KAB+05] Lakshman Krishnamurthy, Robert Adler, Phil Buonadonna, Jasmeet
Chhabra, Mick Flanigan, Nandakishore Kushalnagar, Lama Nachman,
and Mark Yarvis. Design and deployment of industrial sensor networks:
experiences from a semiconductor plant and the north sea. In SenSys
’05: Proceedings of the 3rd international conference on Embedded net-
worked sensor systems, pages 64–75. ACM, 2005.

[Khu05] H. Khurana. Scalable security and accounting services for content-based
publish/subscribe systems. In Proceedings of the 2005 ACM symposium
on Applied computing, pages 801–807, 2005.

[KNSN05] W. Kastner, G. Neugschwandtner, S. Soucek, and M.H. Newmann.
Communication systems for building automation and control. Proceed-
ings of the IEEE, 93(6):1178–1203, June 2005.

[LMFJ+04] K. Lorincz, D.J. Malan, T.R.F. Fulford-Jones, A. Nawoj, A. Clavel,
V. Shnayder, G. Mainland, M. Welsh, and S. Moulton. Sensor networks
for emergency response: Challenges and opportunities. IEEE Pervasive
Computing, pages 16–23, Oct 2004.

[LN03] D. Liu and P. Ning. Location-based pairwise key establishments for
static sensor networks. In Proc. of 1st ACM Workshop on Security
of Ad hoc and Sensor Networks, pages 72–82, Fairfax, Virginia, USA,
2003.

[LS05] J. Lee and D. R. Stinson. A combinatorial approach to key predis-
tribution for distributed sensor networks. In Proc. of IEEE Wireless
Communications and Networking Conference, volume 2, pages 1200–
1205, March 2005.

[LSNBS06] L. Luo, R. Safavi-Naini, J. Baek, and W. Susilo. Self-organized group
key management for ad-hoc networks. In Proc. of ACM Symposium
on Information, Computer and Communications Security (AsiaCCS),
2006.

[MCP+02] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and
John Anderson. Wireless sensor networks for habitat monitoring. In
Proceedings of the 1st ACM international workshop on Wireless sensor
networks and applications, pages 88–97, 2002.

[Mer80] R.C. Merkle. Protocols for public key cryptosystems. In IEEE Sympo-
sium on Security and Privacy, 1980.

135

[Mer89] R.C. Merkle. A certified digital signature. In Advances in Cryptology -
Crypto’89, pages 218–238, 1989.

[MIC] Mica motes. http://www.xbow.com.

[Mik02] Z. Miklos. Towards an access control mechanism for wide-area pub-
lish/subsribe systems. In Proceedings the 22nd International Conference
on Distributed Computing Systems, pages 516–524, 2002.

[MLWB08] Kazuhiro Minami, Adam J. Lee, Marianne Winslett, and Nikita
Borisov. Secure aggregation in a publish-subscribe system. In ACM
Workshop on Privacy in Electronic Society (WPES), 2008.

[OP01] L. Opyrchal and A. Prakash. Secure distribution of events in content-
based publish subscribe systems. In USENIX Security Symposium,
2001.

[PEB06] L.I.W. Pesonen, D.M. Eyers, and J. Bacon. A capability-based access
control architecture for multi-domain publish/subscribe systems. In
International Symposium on Applications on Internet, pages 222–228,
2006.

[PEB07] L.I.W. Pesonen, D.M. Eyers, and J. Bacon. Encryption-enforced access
control in dynamic multi-domain publish/subscribe networks. In In-
ternational Conference on Distributed Event-based Systems, pages 104–
115, 2007.

[PSP03] B. Przydatek, D. Song, and A. Perrig. SIA: Secure information aggrega-
tion in sensor networks. In ACM International Conference on Embedded
Networked Sensor Systems, pages 255–265, 2003.

[RAD78] R. L. Rivest, L. Adelman, and M. L. Dertouzos. On data banks and
privacy homomorphisms. Foundations of Secure Computation, pages
169–178, 1978.

[RM04] Kay Römer and Friedemann Mattern. The design space of wireless sen-
sor networks. IEEE Wireless Communications, 11(6):54–61, December
2004.

[RPS06] V. Ramasubramanian, R. Peterson, and E.G. Sirer. Corona: A high
performance publish-subscribe system for the world wide web. In Sym-
posium on Networked Systems Design and Implementation, 2006.

[RR06] C. Raiciu and D.S. Rosenblum. Enabling confidentiality in content-
based publish/subscribe infrastructures. In Securecomm and Work-
shops, pages 1–11, 2006.

136

[RSPS02] V. Raghunathan, C. Schurgers, Sung Park, and M.B. Srivastava.
Energy-aware wireless microsensor networks. IEEE Signal Processing
Magazine, 19(2):40–50, Mar 2002.

[SBC+98] R. Strom, G. Banavar, T. Chandra, M. Kaplan, K. Miller, B. Mukher-
jee, D. Sturman, and M. Ward. Gryphon: An information flow based
approach to message brokering. In International Symposium on Soft-
ware Reliability Engineering, 1998.

[SBD02] Jessica Staddon, Dirk Balfanz, and Glenn Durfee. Efficient tracing of
failed nodes in sensor networks. In Proceedings of the 1st ACM Interna-
tional Workshop on Wireless Sensor Networks and Applications, pages
122–130, 2002.

[SCD+05] J. A. Stankovic, Q. Cao, T. Doan, L. Fang, Z. He, R. Kiran, S. Lin,
S. Son, R. Stoleru, and A. Wood. Wireless sensor networks for in-
home healthcare: Potential and challenges. In High Confidence Medical
Device Software and Systems (HCMDSS) Workshop, 2005.

[SL07] M. Srivatsa and L. Liu. Secure event dissemination in publish-subscribe
networks. In IEEE International Conference on Distributed Computing
Systems, 2007.

[sma] Challenge and opportunity: Charting a new energy future.
http://www.energyfuturecoalition.org/pubs/app-smart-grid.pdf.

[TCC+06] P. Traynor, H. Choi, G. Cao, S. Zhu, and T. La Porta. Establishing pair-
wise keys in heterogeneous sensor networks. In Proc. of Annual Joint
Conference of IEEE Computer and Communication Societies, INFO-
COM, volume 4, pages 2414–2424, March 2006.

[TG08] Gelareh Taban and Virgil D. Gligor. Efficient handling of adversary
attacks in aggregation applications. In 13th European Symposium on
Research in Computer Security, 2008.

[TSN07] Gelareh Taban and Reihaneh Safavi-Naini. Key establishment in het-
erogeneous self-organized networks. In European Workshop on Security
in Ad-hoc and Sensor Networks, 2007.

[Wag04] David Wagner. Resilient aggregation in sensor networks. In Proceedings
of the 2nd ACM Workshop on Security of Ad Hoc and Sensor Networks,
2004.

[WCEW02] C. Wang, A. Carzaniga, D. Evans, and A. L. Wolf. Security issues and
requirements for Internet-scale publish-subscribe systems. In Annual
Hawaii International Conference on System Sciences, 2002.

137

[WGS06] D. Westhoff, J. Girao, and M. Schneider. Concealed data aggregation for
reverse multicast traffic in sensor networks: Encryption, key distribu-
tion and routing adaptation. IEEE Transactions on Mobile Computing,
Oct 2006.

[WW05] J. Wu and R. Wei. Comments on “Distributed Symmetric Key Man-
agement for Mobile Ad hoc Networks” from INFOCOM’04. Cryptology
ePrint Archive, Report 2005/008, 2005. http://eprint.iacr.org/.

[YWZC06] Y. Yang, X. Wang, S. Zhu, and G. Cao. SDAP: A secure hop-by-hop
data aggregation protocol for sensor networks. In ACM International
Symposium on Mobile Ad Hoc Networking and Computing, pages 356–
367, 2006.

[ZDL06] W. Zhang, S. Das, and Y. Liu. A trust based framework for secure data
aggregation in wireless sensor networks. In Proceedings of the IEEE
SECON, 2006.

[ZS06] Y. Zhao and D.C. Sturman. Dynamic access control in a content-based
publish/subscribe system with delivery guarantees. In IEEE Interna-
tional Conference on Distributed Computing Systems, 2006.

138

	List of Figures
	Introduction
	Reliable Data Aggregation
	Related Work
	Our Contributions

	Privacy in Secure Data Aggregation
	Motivating Example
	Related Work
	Contributions

	PIA in Publish-Subscribe Systems
	Prior Work
	Our Contributions

	Thesis Organization

	Preliminaries
	Wireless Sensor Networks
	Data Aggregation Models

	Efficient Handling of Integrity Attacks
	System Model
	Adversary Model
	Performance Measure.
	Identification Algorithm
	Partition Test
	Group SHIA
	Computing Aggregate
	Security Analysis

	A Theoretical Model for Cost Analysis
	Cost Upper Bound Definition
	Results
	A Numerical Example
	Lower Bound and Average of Partition Cost
	Rational Adversary: Bounded Presence

	Conclusion

	Privacy-preserving Integrity-assured Data Aggregation
	Single Aggregator Model
	Privacy
	Privacy vs. Confidentiality.

	PIA Security Models
	Integrity-Verification
	Privacy Preservation

	Aggregation Functions
	PIA Solution 1
	Assumptions.
	Protocol Description.
	Analysis
	Discussion

	PIA Solution 2
	Protocol Description
	Analysis

	PIA Solution 3
	Basic PIA Solution 3.1
	Improved PIA Solution 3.2

	Conclusion

	PIA in Publish-Subscribe Systems for Multiple Subscribers
	System model
	Assumptions
	Security Properties
	Security Model

	Basic Scheme
	Protocol Overview
	Verification by Multiple Subscribers
	Analysis

	Collaborative Protocol
	First Attempt
	Collaborative Scheme
	Analysis

	Future Directions

	Optimized Bijective Rule
	Key Establishment in Heterogeneous Self-Organized Networks TS07
	Related Work
	Our Contribution

	System Model
	Trust Model
	Authentication

	Layered Key Pre-Distribution (LKD) Scheme
	Neighborhood Discovery Phase
	Secure Shared Key Discovery (SSKD)
	Securing Bitmap Transmission
	Cluster and Group Key Generation
	Join and Leave

	Correctness Analysis
	Security Model and Analysis
	Simulation and Discussion

	Bibliography

