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Apoptosis and autophagic cell death are the two most prominent morphological 

forms of programmed cell death that occur during animal development.  While 

much is known about the mechanisms that regulate apoptosis, relatively little is 

known about autophagic cell death.  The steroid hormone ecdysone coordinates 

  



multiple cellular processes during metamorphosis in Drosophila, including cell 

differentiation, morphogenesis and death.  E93 is necessary and sufficient for 

larval tissue cell death during metamorphosis, including autophagic cell death of 

salivary glands.  Here we characterize new mutant alleles of a dominant wing vein 

mutation Vein-off (Vno), and provide evidence that E93 and Vno are related.  Our 

data also indicate that E93 functions in steroid regulation of both cell 

development and death during metamorphosis.  E93 encodes a helix-turn-helix 

DNA binding motif and binds to specific regions of salivary gland polytene 

chromosomes.  We have used genetic and genomic approaches to identify 

downstream targets of E93.  We have identified numerous candidate E93 target 

genes using DNA microarrays, and have generated transgenic animals to identify 

downstream target genes of E93 by chromatin immune precipitation.  We show 

that one putative E93 target gene, hippo (hpo), is required for salivary gland cell 

death.  The Wts/Hpo tumor-suppressor pathway is a critical regulator of tissue 

growth in animals, but it is not clear how this signaling pathway controls cell 

growth.  Our data indicate that salivary gland degradation requires genes in the 

Wts/Hpo pathway.  Wts is required for cell growth arrest and autophagy in dying 

salivary glands, and regulates the degradation of this tissue in a PI3K-dependent 

manner. 
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Chapter 1 

Introduction 

1.1 Significance of cell growth, survival and cell death 

Cell growth, cell division and cell death are important determinants of cell and organ size 

and also tissue homeostasis (Conlon and Raff, 1999).  Disruption in the crucial balance 

between cell growth, division and death can cause a variety of disorders including cancer 

and neurodegenerative diseases (Thompson, 1995).  While the relationship between the 

cell cycle and cell death has been intensely studied, the relationship between cell growth 

and cell death is not that well characterized. 

 

1.2 Forms of programmed cell death  

Programmed cell death was initially defined as a series of events that finally leads to the 

death of a cell (Lockshin and Williams, 1965).  This descriptive definition of 

programmed cell death was validated when it was shown that genes are required for this 

process, and that they can be placed into an order of action based on genetic epistasis 

analyses (Ellis and Horvitz, 1986).  Morphological studies of dying cells in developing 

vertebrate embryos resulted in the classification of three types of physiological cell death 

on the basis of location, morphology and dependence on lysosomes (Schweichel and 

Merker, 1973).  The first type is widely known as apoptosis, and usually occurs in 

isolated dying cells.  Activation of caspases, fragmentation of DNA, cytoplasmic 

blebbing and engulfment of the dying cell by a phagocyte are the hallmarks of apoptotic 

cell death (Clarke, 1990; Kerr et al., 1972).  The second morphological form of cell death 
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is known as autophagic cell death, and usually occurs when a group of cells or entire 

tissues are destroyed (Clarke, 1990).  Autophagic cell death is associated with the 

formation of autophagosomes and self-digestion of cytoplasmic components, including 

organelles, in absence of phagocytes.  The third morphological type is known as non-

lysosomal cell death, and is characterized by swelling of cavities with membrane borders, 

followed by degeneration without lysosomal activity. 

 

1.3 Genetic regulation of apoptosis 

Apoptosis is a conserved process that plays an important role during animal development 

and tissue morphogenesis by destroying and removing unwanted cells and tissues 

(Baehrecke, 2002; Jacobson et al., 1997; Raff, 1992).  Genetic studies of programmed 

cell death in the nematode Caenorhabditis elegans led to the discovery of the core cell 

death genes ced-3, ced-4, and ced-9 (Ellis and Horvitz, 1986) (Figure 1).  Ced-3 is the 

homologue of mammalian caspases which are cysteine proteases (Alnemri et al., 1996; 

Villa et al., 1997).  Proteolytic cleavage of caspases plays an important role during 

mammalian programmed cell death (Cryns and Yuan, 1998).  Ced-4 is the homologue of 

mammalian Apaf-1, which is a caspase-9 cofactor in the presence of cytochrome c and 

ATP, and this complex is commonly known as the apoptosome (Li et al., 1997; 

Rodriguez et al., 1999; Zou et al., 1997).  Ced-9 is a member of the BCL-2 family of the 

cell death regulators (Hengartner and Horvitz, 1994; Vaux et al., 1992).  Bcl-2 family 

proteins were initially characterized as pro-apoptotic that impact Apaf-1 activity, but the 

exact mechanism of action remains unclear (Adams and Cory, 1998; Levine and 

Kroemer, 2008). 

 2 
 



 

 

 

 

 

Figure 1. The apoptotic pathway is conserved in worms, flies and mammals.  

Programmed cell death is activated by many stimuli including steroid hormones, cell-

lineage information, growth factors, membrane-bound death receptors, and DNA damage 

induced by radiation.  CED-9 (Bcl-2) inhibits activation of CED-3 (Caspases) by binding 

to CED-4 (Apaf-1).  Death signals release CED-4 and cause activation of CED-3, a 

caspase that regulates apoptosis.  In flies, Reaper, Hid and Grim (RHG) proteins interact 

with IAPs and prevent IAPs from inhibiting caspases so that they can activate apoptotic 

cell death. 
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Drosophila contains apoptosis factors that are conserved in organisms that are as 

different as worms and humans (Abrams, 1999; Aravind et al., 2001) (Table 1).  Seven 

caspases are present in Drosophila. Dredd, Dronc and Dream/Strica are apical caspases 

and Drice, Daydream, Decay and Dcp-1 are effector caspases (Chen et al., 1998; Dorstyn 

et al., 1999a; Fraser and Evan, 1997; Song et al., 1997; Vernooy et al., 2000).  In 

Drosophila, the only Ced-4/Apaf-1 homologue Ark, is required for the activation of 

Caspase-9 –like homologue Dronc (Dorstyn et al., 1999b; Kanuka et al., 1999; Rodriguez 

et al., 1999; Zhou et al., 1999).  The inhibitors of apoptosis (IAP) Diap1 and Diap2 are 

the known caspase inhibitors in Drosophila (Hay et al., 1995).  The cell death inducer 

genes head involution defective (hid), reaper (rpr), grim and sickle have also been 

identified and molecularly characterized (Chen et al., 1996; Grether et al., 1995; White et 

al., 1994).  Ectopic expression of each of these genes is sufficient to induce caspase-

dependent programmed cell death (Chen et al., 1996; Grether et al., 1995; Hay et al., 

1995; White et al., 1996).  Whereas, removal of these three genes by using ~300 kb 

deletion Df(3L)H99 in Drosophila blocks programmed cell death (White et al., 1994).  

Genetic studies have indicated that rpr, hid, grim and sickle activate caspases by 

inhibiting DIAP1 and this is similar to the interaction between mammalian Omi/Htra2 

and Smac/Diablo with XIAP (Hay et al., 1995; Liu et al., 2000; Srinivasula et al., 2002; 

Wu et al., 2000; Yoo et al., 2002).  Rpr, Hid, Grim and sickle contain limited but critical 

sequence homology with mammalian Smac/Diablo and Omi/Hrta2 (Liu et al., 2000; Wu 

et al., 2000).  While the mechanisms that mediate apoptotic cell death are relatively well 

known, little is known about the regulation of autophagic programmed cell death.  
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Table 1. Cell death genes are conserved in diverse organisms  

 

(Adapted from Baehrecke, 2002) 
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1.4 Autophagy  

Autophagy is a catabolic process that delivers substrates to the lysosome for degradation.  

While the ubiquitin-proteasome system is involved in the destruction of short-lived 

proteins, autophagy is used for sequestration of long-lived proteins and cytoplasmic 

components in the lysosome (Klionsky and Emr, 2000).  Although three forms of 

autophagy have been described, only macroautophagy (hereafter referred to as 

autophagy) has been associated with autophagic programmed cell death (Baehrecke, 

2002; Reggiori and Klionsky, 2002).  Macroautophagy involves the formation of 

isolation membranes that enclose cytoplasmic cargo to form autophagosomes, that fuse 

with lysosomes where hydrolases degrade their cargo (Klionsky, 2007).  

 

Screens for genes that are required for the formation of autolysosomes and 

lysosomal degradation of substrates resulted in the discovery of the core genes that are 

required for autophagy (Scott et al., 1996; Thumm et al., 1994; Tsukada and Ohsumi, 

1993).  The mechanisms that regulate autophagy have been best characterized in the yeast 

Saccharomyces cerevisiae (Klionsky and Emr, 2000; Ohsumi, 2001).  Under nutrient-

limiting conditions, autophagy is induced in yeast as a survival mechanism.  Autophagy 

is regulated by the class I and class III phosphatidylinositol 3-kinase (PI3K) signaling 

pathways in Drosophila and other higher organisms (Petiot et al., 2000) (Figure 2). TOR 

(Target of Rapamycin), a member of the class I PI3K pathway inhibits autophagy under 

nutrient rich conditions by influencing Atg1 kinase (Kamada et al., 2000; Matsuura et al., 

1997).  The class III PI3K/Vps34 signaling complex that contains Vps15 and Atg6 

(known as Beclin1 in mammals) positively regulates the formation of isolation 
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membranes from the pre-autophagosomal structure by regulating two ubiquitin-like 

conjugation pathways (Kihara et al., 2001; Kim et al., 1999; Liang et al., 1999).  Atg 8 

(LC3 in mammals) and Atg12 ubiquitin-like conjugation pathways are required for 

autophagosome formation (Kabeya et al., 2000; Reggiori and Klionsky, 2002).  Atg 4 

encodes a cysteine protease that cleaves Atg8. This proteolysis is essential to expose a 

conserved carboxy-terminal glycine of Atg8 and its lipidation (Kirisako et al., 2000).  

Atg8 and Atg12 are conjugated with the E1-like protein Atg7, and then get transferred to 

the E2-like proteins Atg3 and Atg10 respectively (Mizushima et al., 1998; Shintani et al., 

1999).  Atg12 associates with the Atg5 and Atg16 protein on forming isolation 

membranes (Mizushima et al., 2003; Suzuki et al., 2001).  Although it is not completely 

clear what the Atg12/Atg5/Atg16 complex does, it has been speculated that it facilitates 

membrane bending and assembly during autophagosome formation since this complex 

disassociates once autophagosomes form.  By contrast, Atg8 is conjugated to the lipid 

phosphatidylethanolamine, and is associated with both isolation membranes and 

autophagosomes until fusion with lysosomes (Ichimura et al., 2000).  

 

Autophagy functions in multiple processes in higher animals, including 

Drosophila, such as nutrient recycling during starvation (Rusten et al., 2004; Scott et al., 

2004), host defense during bacterial infection (Yano et al., 2008), and programmed cell 

death during development (Berry and Baehrecke, 2007).  Previous studies have 

demonstrated that flies with mutations in either atg8 or atg18 and flies expressing 

adominant negative form of Atg1, fail to induce autophagy (Scott et al., 2007; Scott et al., 

2004). In addition, recent studies in Drosophila have shown that  the autophagy genes 
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atg2, atg3, atg6, atg7, atg8, atg12 and atg18 are required for proper degradation of 

salivary gland cells (Berry and Baehrecke, 2007). The basic mechanism of autophagy is 

similar in yeast and other higher organisms (Mizushima, 2007).  One difference in 

multicellular organisms is that autophagy is regulated by components of insulin/class I 

phosphoinositide 3-kinase (PI3K) pathway (Arico et al., 2001; Petiot et al., 2000).  In 

Drosophila, for example, starvation induces autophagy in larval fat body that is mediated 

by components of the class I PI3K pathway including Akt, PTEN, TSC1, TSC2, TOR 

and also conserved components of Atg machinery (Scott et al., 2004).  It is not clear if 

this pathway always influences autophagy in all tissues, and under all cellular contexts in 

higher animals, but in Drosophila the class I PI3K pathway regulates autophagy in both 

fat and salivary glands (Neufeld and Baehrecke, 2008).    
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Figure 2. Genetic regulation of autophagy.  Autophagy degrades components of the 

cytoplasm by the formation of an isolation membrane around cytoplasmic cargo, forming 

the autophagic vacuole that docks and fuses with the lysosome, followed by degradation 

of the cargo by lysosomal hydrolases.  Starvation triggers autophagy by modulating TOR 

signaling.  TOR inhibits autophagy by modulating atg genes that are required for 

autophagic vacuole formation. Class III PI3K, Atg6 (Beclin 1) and Atg8 and Atg12 

ubiquitin-like conjugation systems are critical regulators of autophagic vacuole 

formation.  This figure is adapted from Baehrecke, 2005. 
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1.5 Regulation of cell growth 

The insulin/class I PI3K/TOR signaling pathway is well established as a regulator of cell 

growth, and also contains potent oncogenic activators (Kozma and Thomas, 2002).  

Nutrient availability triggers the production of insulin–like growth factors by 

neurosecretory cells in the brain, and then these secreted growth factors are transported 

by the circulatory system to their target cells where they are bound by the insulin receptor 

(InR) (Fernandez et al., 1995).  Binding of insulin to the insulin receptor leads to its 

autophosphorylation and subsequent phosphorylation of the insulin receptor substrate 

proteins (IRS) (Chico in flies) (Bohni et al., 1999) (Figure 3).  This leads to the activation 

of the catalytic subunit of class I PI3K pathway Dp110 (Leevers et al., 1996).  Activated 

Dp110 converts phosphatidylinositol-4, 5-P (2) (PIP2) to the second messenger 

phosphatidylinositol-3, 4, 5-P (3) (PIP3), and thereby activates AKT/protein kinase B 

(PKB) (Rameh and Cantley, 1999).  The lipid phosphatase PTEN is a negative regulator 

of the PI3K pathway that converts PIP3 to PIP2 (Gao et al., 2000; Goberdhan et al., 1999; 

Huang et al., 1999).  In the PI3K signaling cascade, the cytoplasmic protein kinases 

Akt/PKB contains a phosphoinositide-interacting domain known as the pleckstrin 

homology (PH) domain.  When the PI3K pathway gets activated, PH domains bind to 

PIP3 on the plasma membrane and activates downstream kinase signaling cascade 

(Lietzke et al., 2000; Oatey et al., 1999).  Active phosphorylated Akt modulates growth 

by regulating the Target Of Rapamycin (TOR) pathway via the tuberous sclerosis 

complex (TSC).  The TSC1 and TSC2 complex functions to activate the GTPase Rheb 

(Ras homolog enriched in brain) that is a positive regulator of growth (Gao X, 2001; 

Saucedo et al., 2003; Stocker et al., 2002).  Rheb regulates the conserved TOR kinase that 
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is a central component of the nutrient sensing mechanism in multicellular organisms.  

TOR mediates a wide variety of processes including cell growth, protein translation, 

metabolism, autophagy and others (Arsham and Neufeld, 2006; Scott et al., 2004).  In 

mammalian cells, the translational activity of TOR culminates by regulating ribosomal 

protein S6K and the translational repressor 4E-BP1 (Raught et al., 2004).  

 

The influence of the class I PI3K signaling pathway is clearly demonstrated by 

the analyses of mutant phenotypes.  In Drosophila, mutations in components of the 

insulin signaling cascade, including InR, chico, Akt/PKB, and PDK1(3-phosphoinositide-

dependent protein kinase-1), give rise to developmentally delayed and smaller flies due 

to decrease in cell number and cell size (Bohni et al., 1999; Brogiolo et al., 2001; 

Rintelen et al., 2001).  S6K mutant flies also have reduced body size like other members 

of Inr pathway, but these flies have decreased cell size, without reduction in cell number 

(Montagne et al., 1999).  In humans, loss of the tumor-suppressor gene PTEN is observed 

in endometrial cancers and glioblastomas (Sulis and Parsons, 2003).  Tuberous sclerosis 

complex (TSC) is an autosomal–dominant disorder in human characterized by the 

formation of benign tumors in various tissues (Pan et al., 2004).  Significantly, mutations 

in Akt and p110 are among the most common genetic alterations in breast and colon 

cancer (Wood et al., 2007).  
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Figure 3. Simplified model of the Insulin/PI3K pathway.  The insulin induced class I 

PI3K signaling pathway regulates growth by influencing autophagy, protein synthesis 

and apoptosis.  Positive regulators of autophagy (green) in this pathway include PTEN, 

TSC1 and TSC2.  Whereas, negative regulators of autophagy (red) include insulin 

receptor, PI3K/DP110, Akt/PKB, Rheb, Tor.  Blue color indicates modified PIP3 lipids. 

This figure is adapted from Baehrecke, 2005. 
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1.6 Warts/Hippo signaling pathway 

Recent genetic studies in Drosophila have unveiled the Warts (Wts) / Hippo (Hpo) 

tumor-suppressor pathway as an important regulator of tissue growth in animals (Fig 4: 

Drosophila Wts signaling Pathway).  The core components of this pathway are conserved 

in mammals and their deregulation has been linked to cancer (Edgar, 2006).  Wts, also 

known as the Large tumor suppressor (Lats), encodes a kinase of the nuclear Dbf-2 

related (NDR) family, and was the first component to be identified in this tumor 

suppressor pathway (Justice et al., 1995; Xu et al., 1995).  wts homozygous mutant 

animals exhibit a dramatic tissue over-growth phenotype in a variety of fly epithelial 

tissues (Justice et al., 1995; Xu et al., 1995).  Subsequent screens for genes that regulate 

tissue growth resulted in the isolation of additional members of the Wts signaling 

pathway.  Fat, Merlin (Mer), Expanded (Ex), Hpo, Salvador (Sav) and Mats are members 

of this kinase cascade that have a strikingly similar overgrown phenotype when they are 

clonally deleted in developing eye and wing tissues in developing Drosophila (Bennett 

and Harvey, 2006; Cho et al., 2006; Hamaratoglu et al., 2006; Harvey et al., 2003; 

Kango-Singh et al., 2002; Lai et al., 2005; Pantalacci et al., 2003; Silva et al., 2006; 

Tapon et al., 2002; Udan et al., 2003; Willecke et al., 2006; Wu et al., 2003).  The Ste-

20/MST2 family protein kinase Hpo along with the WW-repeat protein Sav 

phosphorylates and activates Wts (Harvey et al., 2003; Pantalacci et al., 2003; Tapon et 

al., 2002; Udan et al., 2003; Wu et al., 2003).  The Mob superfamily protein Mats (Mob 

as tumor suppressor) physically interact with Wts to stimulate its kinase activity (Lai et 

al., 2005).  
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These genes negatively influence the cell cycle regulator Cyclin E to restrict cell 

proliferation, and negatively regulate the Drosophila inhibitor of apoptosis protein 

DIAP1 to promote apoptosis, to facilitate the appropriate final size of tissues.  Therefore, 

recessive mutations in this pathway result in excess cell division and decreased cell death, 

resulting in over-grown tissues. 

 

Yorkie (Yki) is a downstream effector of the Wts/Hpo signaling cascade that is a 

positive regulator of tissue growth (Huang et al., 2005).  Yki is the Drosophila ortholog 

of YAP (Yes-associated protein) in mammals and has been characterized as a non-DNA 

binding transcriptional coactivator (Yagi et al., 1999).  In Drosophila, Wts 

phosphorylates and inactivates Yki by exclusion from the nucleus in a Hpo/Sav-

dependent manner (Dong et al., 2007; Huang et al., 2005; Oh and Irvine, 2008).  Over-

expression of Yki recapitulates the tissue over-growth phenotype of loss-of-function 

mutations in members of the Wts/Hpo signaling pathway (Dong et al., 2007; Huang et al., 

2005).  Yki interacts with the TEAD/TEF family DNA-binding transcription factor 

Scalloped (Sd) to regulate transcription of diap1 (Wu et al., 2008; Zhang et al., 2008), 

and presumably other downstream targets of the Wts signaling pathway, including cell 

cycle regulator cyclin E and cell growth regulator microRNA bantam (Harvey et al., 

2003; Nolo et al., 2006; Pantalacci et al., 2003; Thompson and Cohen, 2006; Udan et al., 

2003; Wu et al., 2003).  Sd directly binds to Yki and forms a transcriptional complex to 

regulate Wts-pathway responsive genes.  Sd overexpression enhances whereas 

inactivation decreases the overgrowth phenotype that is induced by Yki (Wu et al., 2008; 

Zhang et al., 2008).  The inactivation effect of Sd indicates that requirement of Sd may 

 14 
 



 

vary according to cell type (Zhang et al., 2008).  Sd was initially identified as a DNA-

binding partner of Vestigial (Vg), a gene required for wing formation (Halder et al., 

1998).  Sd and Vg together regulate the transcription of target genes involved in wing 

pattern formation (Halder et al., 1998).  It is not clear how Sd select different binding 

sites and target genes.  

 

The microRNA (miRNA) bantam has also been identified as a key downstream 

target of Wts/Hpo/Yki signaling pathway (Nolo et al., 2006; Thompson and Cohen, 

2006).  miRNAs are small RNAs of usually 21-23 nucleotides long that direct 

posttranscriptional regulation of  its target genes expression (Ambros, 2001).  bantam 

was identified in a gain-of-function genetic screen in Drosophila to identify tissue growth 

regulators (Hipfner et al., 2002).  Tissues that overexpress bantam are larger than wild-

type tissues.  Conversely, a loss-of –function mutation of bantam gives rise to smaller 

than normal animals (Brennecke et al., 2003; Hipfner et al., 2002).  bantam also 

influences apoptosis during development by inhibiting translation of the pro-apoptotic 

gene hid (Brennecke et al., 2003).  Although bantam, and other components of the 

Wts/Hpo pathway, influence tissue and animal size, it is not completely clear how they 

influence cell growth that is a key requirement of increased cell division and, therefore, 

tissue growth control. 

 15 
 



 

 

Figure 4. Existing model of Wts/Hpo signaling pathway.  In response to some 

unknown signal, plasma membrane proteins Mer and Ex interact with each other and 

activate downstream Wts/Hpo signaling pathway.  Hpo with the help of Sav 

phosphorylates and activates Wts.  Wts physically interacts with Mats and phosphorylates 

and inhibits Yki.  Yki transcriptionally regulates downstream target genes cycE, bantam, 

mer and ex.  Yki also interacts with Sd to regulate transcription of diap1.  
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1.7 Salivary gland model of autophagic cell death 

Drosophila larval salivary glands provide an ideal in vivo model system to study steroid 

regulated developmental autophagic cell death.  Drosophila is one of the most 

extensively studied higher eukaryotic model organisms.  The highly conserved and 

molecularly well characterized genome of Drosophila, along with its relatively short 

generation time, provides an excellent opportunity to do molecular and genetic analysis 

(Rubin and Lewis, 2000). 

 

 Steroid hormones regulate various biological processes, such as growth, 

development, metabolism, and reproduction, in higher eukaryotes.  Components of the 

steroid signaling pathway are conserved between Drosophila and vertebrates (Thummel, 

1995).  20-hydroxyecdysone (ecdysone) is the only biologically active steroid hormone 

present at physiologically active titers in Drosophila.  A pulse of ecdysone at the end of 

larval development triggers growth arrest and the onset of metamorphosis that is marked 

by puparium formation.  This pulse of ecdysone initiates the morphogenesis of adult 

structures and also causes destruction of the larval midgut and larval muscles (Jiang et al., 

1997).  The subsequent pulse of ecdysone 10-12 hours after puparium formation causes 

the prepupal-pupal transition that is marked by eversion of the future adult head (Sliter 

and Gilbert, 1992), and triggers larval salivary gland programmed cell death (Jiang et al., 

1997). 

 

The degradation of Drosophila salivary glands is very rapid and is completed by 

16 hours after puparium formation (Jiang et al., 1997).  Morphological studies of dying 
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salivary glands show that they die with an autophagic cell death morphology, and have 

increased numbers of autophagosomes associated with their destruction (Berry and 

Baehrecke, 2007; Lee and Baehrecke, 2001).  Although caspases are traditionally 

associated with the apoptotic cell death, several markers of apoptosis including activation 

of caspases, fragmentation of DNA , presence of processed caspase-3 and cleavage of the 

caspase substrate nuclear lamin are observed during autophagic cell death of salivary 

glands (Lee and Baehrecke, 2001; Martin and Baehrecke, 2004).  The partial inhibition of 

salivary gland cell death by expression of the bacuolovirus inhibitor of caspases p35 (Lee 

and Baehrecke, 2001; Martin and Baehrecke, 2004), as well as in dronc, drice, and ark 

loss-of-function mutants (Berry and Baehrecke, 2007; Muro et al., 2006), suggests that 

caspases are involved in the destruction of salivary glands and that other factors must 

contribute to the death of these cells.  Consistent with these conclusions, both caspases 

and autophagy (atg) genes are induced by ecdysone during autophagic cell death of 

salivary glands (Lee et al., 2003).  Significantly, the combined inhibition of caspases and 

autophagy leads to an almost complete inhibition of salivary gland degradation than 

inhibition of either caspases or autophagy alone (Berry and Baehrecke, 2007).   

 

The mechanisms of ecdysone signaling have been well studied in Drosophila 

salivary glands (Thummel, 1996).  Ecdysone exerts its effect on the developmental 

processes through a heterodimer of Ecdysone Receptor (EcR) and Ultraspiracle (Usp) 

nuclear receptors (Thomas et al., 1993; Yao et al., 1992) (Figure 3).  The ecdysone 

receptor complex then activates the transcription of a small set of early regulatory genes, 

including Broad-Complex (BR-C), E74A, and E75 (Burtis et al., 1990; DiBello et al., 
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1991).  These early genes regulate the transcription of a larger set of late genes that are 

thought to play a more direct roles in development (Urness and Thummel, 1995), 

including salivary gland cell death. βFTZ-F1, an orphan nuclear receptor is transcribed 

just prior to the increase of ecdysone titer that triggers larval salivary gland cell death 

(Broadus et al., 1999; Woodard et al., 1994).  βFTZ-F1 acts as a competence factor for 

the prepupal response to ecdysone and enables this steroid to induce BR-C, E74A and the 

stage specific cell death gene E93 (Broadus et al., 1999; Lee et al., 2002; Woodard et al., 

1994).  These primary response genes then regulate the transcription of genes that play a 

more direct role in cell death, including the apoptosis factors rpr, hid, croquemort (crq) , 

ark, drice and dronc, and autophagy genes, during larval salivary gland destruction (Lee 

et al., 2003; Lee et al., 2000).  Mutations in BR-C, E74 and E93 prevent salivary gland 

cell death, and also alter transcription of these cell death and atg genes (Jiang et al., 2000; 

Lee et al., 2003; Lee et al., 2000). 
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Figure 5. Model for ecdysone regulated salivary gland responses during 

metamorphosis.  The ecdysone level rises at the end of the third larval instar, larvae stop 

feeding and form prepupae, and the EcR-Usp receptor complex activates the BR-C and 

E74 genes that regulate the late genes involved in the synthesis and secretion of glue.  

Ten hours later the subsequent rise in ecdysone titer triggers pupation and ecdysone 

receptor complex with the help of competence factor βFTZ-F1 activate the BR-C, E74, 

and E93 early genes.  BR-C, E74, and E93 regulate the caspases, growth and autophagy 

genes and leads to the death of the salivary glands. This figure is adapted from 

Baehrecke, unpublished. 
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E93 is a critical ecdysone-triggered early response gene, and it is the only gene 

that is both necessary and sufficient for salivary gland cell death (Lee et al., 2000).  In 

addition, recent studies have shown that salivary gland cell growth arrest is a critical 

determinant of autophagic cell death in this tissue, as maintenance of growth by 

expression of either activated Ras, Dp110 or Akt is sufficient to suppress autophagy and 

inhibit salivary gland cell death (Berry and Baehrecke, 2007).  Here I continue 

investigation of the function of E93 in the regulation of autophagic cell death, and 

identify putative transcriptional targets of this helix-turn-helix transcription regulator, 

including hpo.  Significantly, the Wts/Hpo pathway is required for cell growth arrest, and 

proper levels of caspase activity and autophagy in dying salivary glands.  In addition, I 

show that Wts-dependent cell growth arrest is mediated by the class I PI3K pathway, and 

that this appears to occur in a manner that is independent of Yki and the linear Wts/Hpo 

signaling pathway that has been described in developing adult tissues. 
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Chapter 2 

Characterization of the relationship between E93 and Vno 

2.1 Abstract 

The steroid hormone ecdysone regulates multiple cellular processes during 

metamorphosis in Drosophila, including cell differentiation, morphogenesis and death.  

E93 is necessary and sufficient for larval tissue cell death during metamorphosis, and E93 

is induced by ecdysone in a stage- and tissue- specific manner in dying larval cells.  By 

contrast, the dominant wing vein mutation Vein-off (Vno) causes patterning defects in 

adult structures, such as the eye, leg, wing and antenna.  Here we characterize new Vno 

mutant alleles, and provide evidence that E93 and Vno are related.  E93 and Vno 

mutations map to the same region of the genome in 93F, and are both pupal lethal.  

Although Vno and E93 mutant alleles complement each other, such that trans-

heterozygous individuals survive to adulthood, they both contain molecular lesions in the 

E93 open reading frame.  Hetero-allelic combinations of Vno cause defects in steroid 

regulated salivary gland degradation in Drosophila.  These data indicate that E93 

functions in steroid regulation of both cell development and death during metamorphosis. 

 

Introduction 

Programmed cell death is an essential process that is used to maintain cellular and tissue 

homeostasis by removing unneeded cells during development (Jacobson et al., 1997).  

Programmed cell death is conserved in organisms that are as different as worms and 

humans (Aravind et al., 2001).  While the mechanism that integrate cell death and cell 
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division are relatively well studied, less is known about the relationship between cell 

death and cell differentiation. 

  

Steroid hormones are important regulators of animal development and 

programmed cell death (Baehrecke, 2000; Evans-Storm and Cidlowski, 1995).  Various 

human disorders including breast, ovarian and prostate cancers have been linked with the 

dysfunction of stroid-triggered programmed cell death (Thompson, 1995).  Little is 

known about how steroids regulate cell-specific responses, such as differentiation and 

death, and the fruit fly Drosophila melanogaster provide an excellent system to study this 

relationship.   

 

At the end of third larval instar stage, an increase in the steroid hormone 20-

hydroxyecdysone (ecdysone) induces puparium formation and the onset of 

metamorphosis.  During this early stage in metamorphosis, ecdysone triggers adult 

structures, such as wings and legs, to undergo differentiation and morphogenesis, while 

larval tissues such as the midgut are destroyed by programmed cell death (Bodenstein, 

1965; Robertson, 1936).  A rise in steroid hormone 12 hours after puparium formation 

triggers future adult head eversion and synchronized degradation of larval salivary glands 

(Jiang et al., 1997).  Previous studies have shown that caspases and autophagy both 

function during Drosophila salivary gland autophagic cell death (Berry and Baehrecke, 

2007; Lee and Baehrecke, 2001; Martin and Baehrecke, 2004).  
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Ecdysone is bound by the EcR and USP hetrodimeric receptor complex (Thomas 

et al., 1993; Yao et al., 1992) and acts with the competence factor βFTZ-F1  to regulate 

transcription of the primary response genes BR-C , E-74A, E93 (Broadus et al., 1999; Lee 

et al., 2002; Woodard et al., 1994).  The ecdysone-regulated genes EcR, usp, βFTZ-F1, 

BR-C, E74 and E93 are required for larval salivary gland programmed cell death 

(Broadus et al., 1999; Hall and Thummel, 1998; Jiang et al., 2000; Restifo and White, 

1992).  βFTZ-F1, BR-C, E74 and E93  influence transcription of  the secondary response 

cell death genes rpr, hid, dark, dronc and  drice during salivary gland autophagic cell 

death (Jiang et al., 2000; Lee et al., 2000; Restifo and White, 1992).  While βFTZ-F1, 

BR-C, and E74 appear to influence both the destruction of larval structures and formation 

of adult structures during metamorphosis (Broadus et al., 1999; Fletcher and Thummel, 

1995; Fortier et al., 2006; Lee and Baehrecke, 2001; Restifo and White, 1992), E93 

appears to function more specifically in the destruction of larval tissues (Lee et al., 2000). 

 

The ecdysone regulated E93 gene is induced in a stage- and tissue-specific 

manner preceding developmental programmed cell death of larval tissues (Baehrecke and 

Thummel, 1995; Lee et al., 2000).  E93 encodes a novel nuclear protein that binds to 

specific sites in the polytene chromosome, and is required for autophagic cell death (Lee 

and Baehrecke, 2001; Lee et al., 2000).  Although mutations in E93 are known to 

influence the RNA levels of genes that function in apoptosis and autophagy, it is not clear 

how E93 differs from other ecdysone responsive genes, such as BR-C and E74, so that it 

specifically regulates the death of larval cells. 
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The Drosophila wing is a classic model system for studying genetic control of 

pattern formation in a cellularized and proliferating epithelial tissue.  Adult Drosophila 

wings have a simple pattern of five longitudinal and two transverse veins.  Many wing 

mutants have been identified that affect normal shape and size of the wing, or the normal 

pattern of veins.  Wing vein mutant defects may result from a failure in the 

developmental process of either wing or vein differentiation, or both (Díaz-Benjumea and 

García-Bellido, 1990).  Vno mutants, also known as Tp (3;3) 89E;93F;96F, have a gap in 

longitudinal veins, and enhance the phenotypes of other wing vein mutants, such as 

rhomboid, without significantly affecting the size of the wing (Díaz-Benjumea and 

García-Bellido, 1990).  Vno mutants also influence the patterning of several additional 

adult structures, including the eye, antenna, abdomen and leg (Muskavitch, Duncan and 

Baehrecke unpublished).  These Vno adult patterning mutant defects were mapped to the 

93F5 breakpoint of the Tp (3;3) 89E;93F;96F strain (Baehrecke, unpublished), and 

recessive pupal lethal mutations were isolated that fail to complement Tp (3;3) 

89E;93F;96F (Lee et al., 2000); Baehrecke, unpublished), but complement the lethal 

phenotype of  E93 mutants.   

 

Here we have characterized three new alleles of Vno.  Animals that are trans-

heterozygous for different recessive vno mutant alleles fail to undergo salivary gland cell 

death, but Vno mutants complement E93 mutant alleles when evaluated for a salivary 

gland destruction phenotype.  These new Vno alleles possess molecular lesions in E93, 

and the Tp (3;3) 89E;93F;96F break point maps near the 5’ end of a recently reported 

alternative form of E93 (E93B) (Mou, Duncan, and Duncan, unpublished).  Expression of 
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either E93A or E93B is sufficient to induce premature salivary gland cell death.  Vno 

mutants also posses adult wing vein defects, and have cell death defects in eye imaginal 

discs.  Together these data suggest that Vno and E93 is the same gene with complex 

regulation that influences both larval salivary gland autophagic cell death, and adult 

pattern formation. 

 

2.3 Results 

Identification of new Vno alleles 

Vno alleles were isolated along with E93 mutants from an ethane methyl sulfonate 

(EMS)–induced screen for lethal mutations that fail to complement a deficiency for the 

E93 region, Df(3R)93FX2 (Lee et al., 2000).  A total of 11,134 F2-mutagenized lines 

were screened for lethality, and 29 lines which define 11 lethal complementation groups 

were isolated.  Only two of these complementation groups were pupal lethal.  The first 

complementation group consists of three alleles dies early during pupal development.  

Detailed phenotypic and molecular characterization has revealed that these are E93 

mutants. E931 causes a C-terminal nonsense change at the position 994 of the E93 

coding sequence, whereas, E932 and E933 mutants cause a significant reduction of E93 

RNA levels (Lee et al., 2000). 

 

The second complementation group that is comprised of three alleles die late 

during pupal development, and failed to complement dominant wing-vein mutant 

Tp(3;3)Vein-off.  Thus, they are called vno ((vnoe18, vnoe31 and vnoe47).  Recently, Dr. Ian 

Duncan’s laboratory has shown that these mutants have molecular lesions in the E93 
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open reading frame.  These vno mutants contain nonsense changes resulting from C to T 

transitions in glutamine codons at positions 360, 545 and 783 of the 1165 codon open 

reading frame (Mou, Dutta, Duncan, Lee, Baehrecke and Duncan, unpublished).  A P-

element insertion Vno allele [l(3)ry93] is also available, and excision lines of this P-

element result in a wide variety of adult patterning defect phenotypes (Baehrecke, 

unpublished).  

 

The initial molecular characterization of the E93 gene revealed that it encodes a 

9.5 kb mRNA that spans over 50 kb of genomic DNA (Figure 6) (Baehrecke and 

Thummel, 1995).  Later, the Drosophila genome project identified an alternate cDNA 

that lacks the 5’exon of the 9.5 kb RNA, and has three additional exons with the most 

distant 5’ exon lying 26 kb upstream of 5’ end of 9.5 kb RNA.  We (and Flybase) are 

referring to the 9.5kb RNA as “E93A” and the recently discovered transcript as “E93B”.  

This alternate E93B transcript encodes a protein that lacks the N-terminal 9 amino acids 

of the”E93A” protein and instead its 5’ alternate exon encodes a sequence of 32 amino 

acids.  The Duncan laboratory also mapped the Tp(3;3)Vno breakpoint and the l(3)ry93 

insertion site.  The Tp(3;3)Vno breakpoint lies approximately 34 kb upstream of the 

E93A transcript, and 8 kb 5’ to the 5’-most exon of E93B transcript.  The P-element 

l(3)ry93 allele is inserted into a Doc element which in turn inserted into another Doc 

element that is approximately 2-3 kb upstream of the presumed transcription start site of  

the “E93A” transcript and it lies within one of  the introns of the E93B transcript (Figure 

6).  These data indicate that vno and E93 are related. 
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Figure 6. Molecular characterization of vno mutants.  E93 and vno mutant lesions 

occur in a common region of protein coding sequence of two alternative protein forms 

E93B (Top) and E93A transcript (Bottom).  Approximate position of the Tp(3;3)Vno and 

l(3)ry93 and vno and E93 mutations are shown. 
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Phenotypic characterization of vno mutants revealed adult patterning defects, 

including loss of bracts on the legs, abdominal bristle polarity and cuticle pigmentation 

patterning defects, wing vein loss and rough eyes (Mou, Dutta, Duncan, Lee, Baehrecke 

and Duncan, unpublished).  The dominant Tp(3;3)Vno mutant allele was originally 

recovered and named because when it is heterozygous with wild type and over balancer, 

the second and fourth wing veins possess gaps (Díaz-Benjumea and García-Bellido, 

1990) (Figure 7A and 7B).  Homozygous Tp(3;3)Vno mutant escapers lack all wing 

veins except for the third (Sturtevant and Bier, 1995).  Loss of one copy of this gene by 

combining the newly isolated vnoe31 allele with a balancer chromosome does not 

influence wing vein formation (Figure 7C).  Combination of Tp(3;3)Vno and the 

recessive vno mutant allele vnoe31 lack all veins except the third (Figure 7D).  These data 

indicate that E93 functions in the development of adult structures.  In addition, these 

data suggest that the Vno and E93 mutant classes may affect alternate transcript and 

protein forms. 
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Figure 7. Vein-off wing vein phenotypes (A and B). Heterozygous Tp(Vno) with either 

wild-type Canton S (Cs) (A) or a balancer chromosome TM6B (B) possess wing vein 

gaps.  (C) The recessive vnoe31 mutant combined with a balancer chromosome TM6B has 

no wing vein defects. (D)  The recessive vnoe31 mutant combined with Tp(Vno) lacks 

several veins.  

 

 30 
 



 

Vno mutants influence salivary gland degradation 

Our data indicate that E93 and Vno are related.  Since E93 mutants exhibit defects in cell 

death during metamorphosis, we tested if these vno mutants also exhibit defects in 

salivary gland degradation.  In control animals, salivary glands are completely degraded 

24 hours after puparium formation (Figure 8A and Table 2).  By contrast, E931 in 

combination with the deficiency Df(3R)93FX2 completely inhibits salivary gland 

degradation as reported earlier (Figure 8B and Table 2) (Lee et al., 2000).  Salivary 

glands are almost completely degraded in either vno alleles in combination with a 

deficiency Df(3R)93FX2 (Figure 8C and Table 2), or homozygous vno mutants (Figure 

8D and Table 2).  However, animals that are trans-heterozygous for vno mutations and 

E931 do not have any salivary gland persistence (Figure 8E and Table 2).  Surprisingly, 

hetero-allelic combinations of any of the three recessive vno alleles results in inhibition 

of salivary glands degradation 24 hours after puparium formation (Figure 8F and Table 

2).  These data suggest that a complicated relationship exists between the vno and E93 

alleles that are required for salivary gland degradation.  

 

Caspases are critical regulators of apoptosis, and are induced prior to and function 

during salivary gland cell death (Berry and Baehrecke, 2007; Jiang et al., 1997; Lee and 

Baehrecke, 2001; Martin and Baehrecke, 2004).  Therefore, we tested if DNA 

fragmentation is altered in vno mutants, as this process is regulated by caspases in 

salivary glands (Lee and Baehrecke, 2001).  Although E93 mutant salivary glands fail to 

degrade, they do initatiate DNA fragmentation following the rise in ecdysone that 

triggers cell death.  As expected, TUNEL-positive nuclei were detected in control 
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animals during salivary gland autophagic cell death at 13.5 hours after puparium 

formation (Figure 8G).  Caspase-dependent DNA fragmentation was also detected in 

vno mutant salivary glands at 13.5 hours after puparium formation even though these  

cells fail to be degraded (Figure 8H).  These data indicate that caspases are active in vno 

mutant salivary glands. 
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Figure 8. Trans-heterozygous vno mutants have salivary gland autophagic cell 

death defects.  (A-F) Paraffin sections of animals 24 hours after puparium formation.  

(A) Salivary glands are completely degraded in control animals.  (B) E93 mutants have 

persistent salivary glands.  (C and D) Salivary glands are almost completely degraded in 

vno/Df animals and in vno homozygous mutants.  (E) Hetero-allelic combination of E93 
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and vno also did not have any presence of salivary gland remnants.  (F) Hetero-allelic 

combination of vnoe18/vnoe47  has persistent salivary gland tissue.  

(G-H) Visualization of DNA fragmentation by TUNEL assay during salivary gland cell 

death.  TUNEL-positive nuclei were detected in salivary glands at 13.5 hours after 

puparium formation in control (G) and hetero-allelic combination of vno mutant salivary 

glands (H).  Red circles outline the persistent salivary gland tissue in the pupae. 
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Table 2: The percent of pupae with salivary gland phenotype 
 (n> 20 pupae/genotype) 

 

Genotype 
 

Intact/condensed 
salivary glands 

Fragmented 
salivary 
glands 

No glands 
 

vnoe18/Cs 
 0 20 80 

E93e1/Df 100 0 0 
    

vnoe18/Df 10 40 50 
    

vnoe31/Df 0 35 65 
    

E93e1/Vnoe18 13 20 67 
    

vnoe18/vnoe31 71 29 0 
    

vnoe31/vnoe47 54 46 0 
    

vnoe47/vnoe18 34 66 0 
    

vnoe31/vnoe31 36 64 0 
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Ectopic expression of Vno is sufficient to induce premature salivary 

gland cell death 

Previous studies have shown that expression of E93A is sufficient to induce programmed 

cell death (Lee et al., 2000).  Therefore, we investigated if ectopic expression of E93B is 

sufficient to cause premature destruction of salivary glands.  In UAS-E93B/Canton S 

control animals, salivary glands are present 6 hours after puparium formation (Figure 

9A).  By contrast, expression of E93B in a salivary gland-specific manner induces 

premature degradation of salivary gland by 6 hours after puparium formation (Figure 

9B).  This result prompted us to investigate whether expression of E93B is sufficient to 

rescue salivary gland cell death defects caused by mutations in E93 (Figure 9C).  Indeed, 

expression of E93B in salivary glands in a E931/ Df(3R)93FX2 genetic background 

suppressed the E93 mutant degradation defect in this tissue 24 hours after puparium 

formation (Figure 9D).  Animals that are trans-heterozygous for different vno alleles 

possess defects in salivary gland degradation (Figure 9E).  Therefore, we tested if 

ectopic-expression of E93A is sufficient to rescue this vno salivary gland degradation 

phenotype.  Significantly, expression of E93A in salivary glands attenuated the salivary 

gland persistence phenotype of vno mutants (Figure 9F).  These data indicate both E93A 

and E93B are sufficient to induce cell degradation of salivary glands. 
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Figure 9. Ectopic-expression of vno is sufficient to cause premature degradation of 

salivary glands.  Histological sections of animals at 6 hours (A and B) and 24 hours (C-

F) after puparium formation.  (A). In control animals, salivary glands are present at 6 

hours after puparium formation.  (B) Ectopic expression of E93B in a salivary gland-

specific manner leads to premature degradation of salivary glands.  (C) E931/Df mutants 

have salivary gland cell death defects, but expression of E93B in a salivary gland-specific 

manner rescues normal degradation of salivary glands (D).  (E) vno mutants exhibit cell 

death defects that are rescued by expression of E93A in a salivary gland-specific manner 

(F).  Red circles outline the persistent salivary gland tissue in the pupae. 
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vno functions in eye cell death 

The Drosophila pupal retina has served as a model system to analyze cell death during 

development (Wolff and Ready, 1991).  The rough eye phenotype that is observed in vno 

mutants prompted us to investigate whether trans-heterozygous vno mutant animals 

exhibit cell death defects in the developing pupa.  While the retinal lattice structure is 

normal in wild-type eye disc at 60 hours after puparium formation (Figure 10B), eye 

discs from vno mutants have cell death defects (Figure 10C).  In vno mutant eye disc, 

cone cells that are usually specified during the larval stage appeared to be normal, but a 

failure in the programmed cell death of secondary and tertiary pigment cells results in an 

irregular eye pattern.  
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Figure 10. vno causes cell death defects in developing eyes.  (A) Schematic 

representation of ommatidium (60 hours after puparium formation) adapted from Wolf 

and Ready, 1991.  Cone cell (a), bristle (b), primary pigment cell (c), secondary pigment 

cell (d) and tertiary pigment cell (e) are indicated in the figure.  (B and C) Mid-pupal 

retina stained with anti-Disc-large antibody to visualize cell outlines.  (B) Control retina 

exhibits perfect hexagonal structure of retinal lattice. (C) trans-heterozygous vno mutants 

exhibit cell death defects in the retina and have excess secondary and tertiary cells.  
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2.4 Discussion 

As expected, our studies indicate that vno mutants affect adult wing vein formation.  To 

our surprise, vno is also required for autophagic cell death of Drosophila salivary glands.  

In addition, these mutants also influence proper formation of several adult structures, and 

in the eye the defect appears to be at least partly caused by a defect in cell death.  The 

early ecdysone responsive gene E93 is a critical regulator of programmed cell death 

during Drosophila metamorphosis, and given the cell death phenotypes it seems logical 

that vno mutants have lesions in this gene.  E93 is expressed in a stage and tissue specific 

manner in response to the steroid hormone ecdysone, and it regulates the transcription of 

several genes that are known to function in cell death, including apoptosis and autophagy 

genes (Baehrecke and Thummel, 1995; Lee et al., 2003).  It is not clear, however, 

whether E93 is required for the regulation of target genes that specify the development of 

various imaginal tissues. 

 

The newly characterized vno mutants are lethal at the pharate adult stage, and they 

cause multiple defects in legs, eyes, wings, abdomens and antennae.  Although our 

studies in eyes suggest that these adult tissue defects could be caused by altered cell 

death, the fact that vno mutant adult abdomens have altered bristle polarity and 

pigmentation patterning (Baehrecke, unpublished) suggests the possibility that vno could 

function in the development of adult cells. 

 

Surprisingly, vno mutations were found in the common coding region of E93 even 

though these alleles complemented E93 mutant alleles in the context of survival to 
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adulthood and salivary gland cell death.  There are at least two possible explanations for 

these complicated genetic results.  One possibility is that vno and E93 mutant classes 

affect two different alternate products.  The E93B transcript could be responsible for 

adult patterning, whereas the original E93A transcript may be a critical regulator of the 

steroid triggered programmed cell death during Drosophila metamorphosis.  It is possible 

that combinations of different mutations in a common region may act as a dominant 

negative form.  Although, no evidence is available to support this model other than that 

E93 is a transcription factor, some logical reason must explain these complicated genetic 

results.  Alternatively, it is possible that translational re-initiation could occur in the 

common coding region of E93.  The coding sequence of E93A and E93B transcripts are 

nearly identical apart from their different N-terminal ends.  One piece of evidence 

supporting this re-initiation model is that all of the vno allele mutations are closer to the 

N-terminus than the E931 allele, and the vno alleles that are closer to the C-terminus have 

stronger phenotypes (Mou, Duncan and Duncan, unpublished). 

 

It will be difficult to determine the exact reason for the differences that are 

observed in E93 and vno mutants without a better understanding of the two E93 protein 

forms, and how these forms are regulated.  An additional and important approach that can 

be used to distinguish the difference between E93 and vno mutants is to identify 

downstream targets of the E93A and E93B proteins that regulate imaginal patterning and 

cell death.  Previous studies have shown that steroid regulation of E93 is quite specific 

and has emphasized the expression in dying larval mid-guts and salivary glands 

(Baehrecke and Thummel, 1995; Lee et al., 2000).  It is worth noting that E93 RNA was 
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also detected in imaginal discs (Baehrecke and Thummel, 1995), and E93 protein was 

localized in specific eye imaginal disc and brain cells (Baehrecke, unpublished).  

Therefore, it is possible that E93 might be regulating different target genes depending on 

the tissue and stage during development.  Future studies should resolve how E93 

regulates both adult cell formation and larval cell death, and this should provide 

important insight into how steroids regulate specific cell responses. 

 

2.5 Materials and Methods 

Drosophila Strains 

For loss-of-function studies, E93e1, vnoe18, vnoe31, vnoe47, Df(3R)93FX2, Tp(3;3)Vno 

strains were analyzed.  For ectopic expression studies, UAS-E93A and UAS-E93B 

(kindly provided by Ian Duncan) were analyzed. Canton-S wild-type was used as a 

control. 

 

Salivary Gland Histology 

Animals of the indicated genotypes were aged to 6 and 24 hours after puparium 

formation at 250C, fixed in FAAG, dehydrated, embedded in paraffin, sectioned and 

stained with Weigert’s Hematoxylin and Pollack Trichrome and analyzed using Zeiss 

Axio Imager.Z1 (Muro et al., 2006).  TUNEL assay was performed using the Apoptag kit 

(Chemicon) with semi-thin paraffin sections of the embedded tissue as previously 

described (Wang et al., 1999), and examined using Zeiss Axio Imager.Z1.  For TUNEL 

assays, a minimum of 10 pupae were examined for each genotype.  For all other 

experiments, a minimum of 20 pupae were analyzed for each genotype. 
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Immunohistochemistry 

For immunohistochemistry, vnoe18/Canton-S control and vnoe18/vnoe47 experimental 

animals were aged to 60 hours after puparium formation at 250C and eye imaginal discs 

were dissected.  Eye discs were fixed with 4% paraformaldehyde/heptane for 20 minutes 

at room temperature and rinsed three times each with methanol and phosphate buffered 

saline containing 0.1% Tween-20 (PBST).  The eye discs were then blocked in phosphate 

buffered saline containing 1% BSA and 0.1% Tween-20 (PBSBT) for 2 hours at room 

temperature and incubated with mouse anti-Disc large (1:200) (Developmental Studies 

Hybridoma Bank) (Parnas et al., 2001) primary antibody for overnight at  40C. The 

following day, eye discs were washed for 2 hours in PBSBT and incubated with 

appropriate fluorescent secondary antibody for 2 hours at room temperature at dark.  The 

following procedures were performed at room temperature in absence of light.  After 

secondary antibody staining, the eye discs were washed for another 30 minutes then 

mounted with Vectashield (Vector Laboratories) and imaged using Zeiss Axiovert 

confocal microscope. 
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Chapter 3 

Identification of targets of E93 

3.1 Abstract 

E93 is required for steroid-triggered autophagic cell death of salivary glands.  E93 

encodes a putative helix-turn-helix DNA binding motif, and this motif is conserved in 

organisms that are as different as worms and humans.  Mutations in E93 cause alterations 

in RNA transcript levels, including regulators of caspases and autophagy genes.  Here we 

have used genetic and genomic approaches to identify downstream targets of E93.  We 

have identified numerous candidate E93 target genes using DNA microarrays.  We have 

also generated transgenic animals to identify downstream target genes of E93 by 

chromatin immune precipitation.  We show that one of these putative E93 target genes, 

hippo (hpo), is required for salivary gland cell death. 

 
3.2 Introduction 

The two most prominent forms of programmed cell death that occur during development 

are apoptosis and autophagic cell death (Clarke, 1990; Schweichel and Merker, 1973).  

Apoptosis, the most thoroughly studied form of programmed cell death, is characterized 

by activation of caspases, nuclear condensation, cytoplasmic blebbing and finally 

phagocytic engulfment of the dying cell where degradation is completed by the lysosome 

(Clarke, 1990; Kerr et al., 1972).  By contrast, cells dying by autophagic cell death are 

usually not phagocytosed, contain large numbers of autophagosomes, and appear to use 

their own lysosome for degradation.  While the molecular and biochemical mechanisms 
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that regulate apoptosis have been well characterized, far less is known about the 

autophagic cell death.  

 

Drosophila larval salivary glands provide an excellent in-vivo model system to 

study steroid triggered autophagic cell death during development.  A rise in the steroid 

hormone 20-hydroxyecdysone (ecdysone) 10-12 hours after puparium formation induces 

synchronized cell death of this tissue.  Salivary glands are then rapidly degraded by 16 

hours after puparium formation (Jiang et al., 1997).  The ecdysone receptor complex acts 

with the competence factor βFTZ-F1 to regulate transcription of the primary response 

genes E93, Broad-Complex (BR-C), and E74 (Broadus et al., 1999; Woodard et al., 

1994).  Mutations in either βFTZ-F1, E93, BR-C,or E74 prevent degradation of salivary 

glands, and impact the transcription of the secondary response cell death genes, including 

rpr, hid, crq, ark, drice, dronc during autophagic cell death (Broadus et al., 1999; Jiang et 

al., 2000; Lee et al., 2003; Lee et al., 2002; Lee et al., 2000; Restifo and White, 1992).  

Significantly, genome-wide studies of dying salivary glands indicate that over 932 genes 

that are induced 5-fold or greater following the rise in ecdysone that triggers salivary cell 

death.  However, we do not know how most of these genes are regulated, how they are 

influenced by the primary ecdysone response genes, and if they function in dying salivary 

glands. 

 

rpr, hid, and grim reside in a single genetic interval Df(3L)H99 that is required for 

apoptosis in Drosophila (Chen et al., 1996; Grether et al., 1995; White et al., 1994), and 

expression of either  rpr, hid, or grim is sufficient to induce caspase-dependent 
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programmed cell death (White et al., 1996; Chen et al., 1996; Grether et al., 1995).  Rpr, 

Hid and Grim activate caspases by inhibiting the Drosophila inhibitor of apoptosis 1 

(DIAP1) (Goyal et al., 2000; Wang et al., 1999).  Although caspase proteases are 

traditionally associated with apoptotic cell death, they also participate in autophagic cell 

death of salivary glands (Jiang et al., 2000; Lee and Baehrecke, 2001; Martin and 

Baehrecke, 2004).  Expression of the bacuolovirus inhibitor of caspases, p35, blocks 

DNA fragmentation and cleavage of the caspase substrate nuclear lamin, but it fails to 

completely inhibit salivary gland degradation (Lee and Baehrecke, 2001; Martin and 

Baehrecke, 2004).  Recent studies have shown caspases and autophagy genes function in 

an additive manner in the regulation of autophagic cell death during development (Berry 

and Baehrecke, 2007).  However, it is not clear how caspases and autophagy genes are 

regulated during salivary gland cell death. 

 

Coordination between cell proliferation and cell death is crucial to maintain 

homeostasis and avoid tumor growth in multicellular organisms (Conlon and Raff, 1999; 

Green and Evan, 2002).  Significantly, studies in salivary glands suggest that growth 

arrest is required for salivary gland degradation.  Recent genetic studies in Drosophila 

have identified members of the conserved Warts (Wts)/ Hippo (Hpo) tumor-suppressor 

pathway as an important regulator of cell proliferation, cell death and tissue growth in 

higher animals (Edgar, 2006; Harvey et al., 2003; Udan et al., 2003; Wu et al., 2003).  

hippo (hpo), the Drosophila homologue of the mammalian Ste20-like kinases MST1/2, 

mutations result in severe tissue over-growth phenotype in fly epithelial tissues (Harvey 

et al., 2003; Udan et al., 2003; Wu et al., 2003).  hpo is required for proper termination of 
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cell proliferation and induction of apoptosis by negatively regulating expression of the 

cell cycle regulator Cyclin E and the Drosophila inhibitor of apoptosis protein (DIAP1).   

 

E93 is necessary and sufficient for autophagic cell death of salivary glands (Lee et 

al., 2000).  Here we have developed approaches to identify E93 target genes in 

Drosophila.  Transgenic strains were developed that will enable the use of the adult eye 

as a system to screen for genetic modifiers of E93-induced cell death.  Expression of E93 

is sufficient to induce cell death in the adult eye that is caspase-dependent and suppressed 

by expression of DIAP1 and p35.  We have also identified candidate E93 target genes by 

analyzing DNA microarray data that was previously generated from purified wild-type 

and E93 mutant salivary glands.  Myc-tagged E93 transgenic flies were produced so that 

targets can be identified that are directly bound by E93 using in-vivo chromatin immune-

precipitation (ChIP).  hpo was identified as a candidate target gene of E93 that is required 

for autophagic cell death of salivary glands. 

 

3.3 Results 

E93 encodes a conserved DNA-binding protein 

E93 contain a helix-turn-helix motif in the pipsqueak super-family of DNA binding 

proteins (Siegmund and Lehmann, 2002).  This domain of  the pipsqueak protein binds to 

the GAGA sequence (Lehmann et al., 1998).  The putative DNA binding motif of E93 is 

conserved in honey bees (Apis melllifera), nematodes (Caenorhabditis elegans), mice 

(Mus musculus), human (Homo sapiens), and other species (Figure 11). 
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Figure 11. Alignment of the putative DNA binding helix-turn-helix motif of E93.  

The E93 helix-turn-helix motif is conserved in fly (D. melanogester), honey bee (A. 

melifera), worms (C. elegans and C. briggsae), mouse (M.musculus) and human 

(H.sapiens).  Red color indicates the conserved region. 
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In order to identify candidate E93 downstream target genes during ecdysone-

induced programmed cell death, total RNA was isolated from wild-type Canton S and 

homozygous E93 mutant salivary glands dissected from stages before (8 hours after 

puparium formation), during (12 hours after puparium formation), and after (14 hours 

after puparium formation) ecdysone-triggered autophagic cell death.  It is important to 

note that 14-hour wild-type samples were compared to 16-hour E93 mutant samples to 

compensate for a developmental delay in E93 mutants.  Three independent samples of 

salivary gland RNAs were collected for each stage and genotype, and were used to 

hybridize Affymetrix Drosophila oligonucleotide GeneChips (Clough et al., 

unpublished).  By comparing these microarray data, we have identified 100 genes that 

increase 3-fold or greater in wild-type, but lack 80% of this increase in magnitude in E93 

mutant salivary glands (Table 3).  For example, if a gene has increased 50-fold in wild-

type salivary glands following the rise of ecdysone, but it has increased only 10-fold or 

less in E93 mutant salivary glands, it qualifies as a candidate target gene. 

 
The bioinformatics resource DAVID (http://david.abcc.ncifcrf.gov/) was used to 

identify the genes on this list that are involved in cell death (Table 4).
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FlyBase 
Number CG 

number 
 

Symbol 
 
 

 
Name 

 
Function 

Fold 
change in 
8-12 hour 
wild-type 

Fold lower in 
E93 mutant 

 
FBgn0031780 CG31641 stai stathmin Microtubule binding 89.80828 -101.5936673 
FBgn0039160 CG5510 CG5510 CG5510 unknown 41.88506 -51.18956274 
FBgn0039861 

 
CG1800 

 
Pasha 

 
 

partner of drosha 
Double stranded RNA-

binding protein 
25.51393 

 
-36.19648694 

 
FBgn0003997 CG5123 w/hid Wrinkled Apoptotic cell death 20.27389 -35.36975803 
FBgn0030749 

 
CG9968 

 
Anxb11 

 
 

Annexin B11 
calcium-dependent 

phospholipid binding 
20.38541 

 
-35.09839935 

 

FBgn0000277 
 

CG1367 
 

CecA2 
 

 
 

Cecropin A2 

antibacterial humoral 
response, defense 

response to bacterium 
and fungi 

28.55832 
 

-33.51341193 
 

FBgn0027053 
 

CG14884 
 

CSN5 
 

 
COP9 complex 

homolog subunit 5 
 

NEDD8 activating 
enzyme activity, glial 

cell migration 25.79928 
 

-33.51341193 
 

FBgn0035925 
 

CG5797 
 

 
Fhos 

 

 
Fhos 

 
actin binding 39.4313 

 
-32.4967204 

 
 

FBgn0033569 
 

CG12942 
 

CG12942 
 

 
CG12942 

 
zinc ion binding 41.79952 

 
-30.08789165 

 
FBgn0031165 CG1726 CG1726 CG1726 unknown 33.39228 -27.43180745 

Table 3: Candidate E93 target genes 
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FBgn0005278 
 

CG2674 
 

M(2)21AB 
 

 
Minute (2) 21AB 

methionine 
adenosyltransferase 

activity, ATP binding 
28.64328 

 
-27.43180745 

 
FBgn0028932 CG16890 CG16890  unknown 35.20285 -26.8052641 
FBgn0030396 CG2556 CG2556  unknown 18.6407 -26.19303102 
FBgn0029681 CG15239 CG15239  unknown 21.21859 -22.627417 
FBgn0037290 CG1124 CG1124  unknown 21.49505 -21.77264 
FBgn0034584 

 
CG9364 

 
Treh 

 
Trehalase alpha, alpha-trehalase 

activity 
37.49159 

 
-21.43983982 

 

FBgn0038279 CG3837 CG3837 
 insulin-like growth 

factor receptor activity 22.52979 -20.62992494 

FBgn0000276 
 

CG1365 
 

CecA1 
 

 
Cecropin A1 

defense response to 
bacterium, fungi; 

autophagic cell death 
20.78107 

 
-19.39721707 

 

FBgn0037925 
 

CG17309 
 

Csk 
 

 
C-terminal Src 

kinase 

protein tyrosine kinase 
activity, protein binding 16.43628 

 
-18.8087665 

 

FBgn0028563 CG8714 sut1 
 

sugar transporter 1 
glucose transmembrane 

transporter activity 17.38712 -15.87724714 

FBgn0035945 CG5026 CG5026 

 protein 
tyrosine/serine/threonine 

phosphatase activity 18.32045 -15.04394583 
FBgn0039139 CG5933 CG5933  RNA methylation 20.18139 -14.92852786 

FBgn0029598 
 

CG3981 
 

Unc-76 
 

 
Unc-76 

axon cargo transport; 
phagocytosis, 
engulfment 

12.92712 
 

-14.36458536 
 

FBgn0040916 CG11465 CG32758 CG32758 protein binding 10.28611 -12.99603834 

FBgn0013272 
 

CG5820 
 

Gp150 
 

 
Gp150 

Catalytic activity ; 
protein binding 

14.91459 
 
 

-12.79739068 
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FBgn0040594 
 

CG11957 
 

CG33111 
 

 
CG33111 

oxidoreductase activity; 
transition metal ion 

binding 
11.73839 

 
-12.21948105 

 
FBgn0033125 CG12846 Tsp42Ed Tetraspanin 42Ed unknown 9.061594 -12.12573253 
FBgn0033495 CG12214 CG12214  Protein binding 11.82955 -12.03270326 

FBgn0039767 CG2218 CG2218 
 ubiquitin-protein ligase 

activity, protein binding 9.55297 -12.03270326 

FBgn0039775 
 

CG12088 
 

PH4αEFB 
 

prolyl-4-
hydroxylase-alpha 

EFB 

 
iron ion binding 8.846552 

 
-11.66766888 

 
FBgn0038826 CG17838 CG17838  mRNA binding 10.72322 -11.3137085 
FBgn0039506 CG5938 CG5938  unknown 10.32306 -11.22690912 
FBgn0035350 CG16757 Spn Spinophilin Protein binding 8.830099 -11.22690912 
FBgn0036980 

 
CG5701 

 
RhoBTB 

 
       RhoBTB 

 
GTPase activity; GTP 

binding 
14.46451 

 
-11.05530304 

 
FBgn0032497 CG6043 CG6043  unknown 15.85181 -10.97048616 
FBgn0040551 CG11686 CG11686  unknown 9.530369 -10.23582552 

FBgn0032482 
 

CG5547 
 

Pect 
 

Phosphoethanolamin
e cytidylyltransferase

ethanolamine and 
derivative metabolic 

process 
10.16727 

 
-10.15729572 

 

FBgn0031915 
 
 

CG12789 
 
 

santa-
maria 

 
 

scavenger receptor 
acting in neural 

tissue and majority 
of rhodopsin is 

absent 

 
defense response; 

autophagic cell death 11.5246 
 
 

-9.550362907 
 
 

FBgn0034453 
 

CG11228 
 

Hpo 
 

 
hippo 

Cell proliferation; 
programmed cell death 

8.783213 
 

-9.477092009 
 

FBgn0037728 CG16817 CG16817  unknown 12.80588 -9.119083836 
FBgn0031011 CG8034 CG8034  unknown 10.72574 -8.774599838 
FBgn0040595 CG11945 CG33111  oxidoreductase activity 7.862507 -8.707280636 
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FBgn0011712 
 

CG6625 
 

Snap 
 

Soluble NSF 
attachment protein 

phagocytosis, 
engulfment 

8.097467 
 

-8.707280636 
 

FBgn0033923 CG8603 CG8603  cell morphogenesis;  12.92094 -8.5741877 

FBgn0036518 CG7396 
RhoGAP7

1E 
 

RhoGAP71E 
 

signal transduction 12.63751 -8.314073808 

FBgn0037929 CG14714 CG14714 
 protein tyrosine 

phosphatase activity 6.553712 -8.1241801 

FBgn0030038 CG1440 CG1440 
 cysteine-type 

endopeptidase activity 6.277776 -8 
FBgn0035773 

 
 

CG8580 
 
 

Akirin 
 
 

 
akirin 

muscle development; 
positive regulation of 

innate immune response 
9.664861 

 
-7.697790695 

 
FBgn0031814 

 
CG9528 

 
Retm 

 
       real-time 

 
phosphatidylinositol 
transporter activity 7.249794 -7.237821637 

FBgn0028539 CG7559 CG31731  ATPase activity 6.381196 -7.237821637 
FBgn0027569 

 
CG7207 

 
CG7207 

 
 protein serine/threonine 

kinase activity 
8.176829 

 
-7.018248889 

 
FBgn0031972 

 
CG7221 

 
Wwox 

 
Wwox 

 
oxidoreductase activity 6.631816 

 
-6.857951863 

 
FBgn0014010 

 
CG3664 

 
Rab5 

 
Rab-protein 5 GTP binding; GTPase 

activity 
9.874033 

 
-6.857951863 

 

FBgn0038065 CG6359 CG6359 
 phosphoinositide 

binding; 9.255649 -6.701316026 

FBgn0001229 CG4190 Hsp67Bc 
Heat shock gene 

67Bc 
unknown 

6.028816 -6.701316026 

FBgn0004237 
 

CG12749 
 

Hrb87F 
 

Heterogeneous 
nuclear 

ribonucleoprotein at 
87F 

alternative nuclear 
mRNA splicing 5.159589 

 
 

-6.701316026 
 
 

FBgn0030890 CG7536 CG7536  unknown 6.47413 -6.598884755 

 53 
 



 

FBgn0032405 CG14946 CG14946  oxidoreductase activity 5.325153 -6.498019171 

FBgn0020647 CG5405 KrT95D 
Krueppel target at 

95D 
protein targeting to 

Golgi 7.138432 -6.252548939 

FBgn0039061 CG6747 Ir 
Inwardly rectifying 
potassium channel 

potassium ion transport 
8.018547 -6.252548939 

FBgn0036185 CG7346 CG7346  ATPase activity 6.343171 -6.204579047 
FBgn0039607 CG11754 CG11754  GTPase binding 6.41744 -6.204579047 

FBgn0028523 CG5888 CG5888 
 transmembrane receptor 

activity 7.600425 -6.109740524 
FBgn0035595 CG10668 shep alan shepard RNA binding 6.283281 -6.062866266 
FBgn0030838 CG5445 CG5445  unknown 9.072999 -6.01635163 
FBgn0039751 CG1983 CG1983  unknown 8.820586 -5.74466284 

FBgn0026084 
 

CG4944 
 

Cib 
 

 
ciboulot 

cytoskeleton 
organization and 

biogenesis 
7.803261 

 
-5.656854249 

 

FBgn0015776 CG9258 nrv1 
nervana 1 cation transmembrane 

transporter activity 4.516945 -5.61345456 
FBgn0036685 CG6664 CG6664  unknown 4.090698 -5.61345456 

FBgn0032123 
 

CG3811 
 

Oatp30B 
 

Organic anion 
transporting 

polypeptide 30B 

 
organic anion transport 4.25453 

 
-5.570387835 

 
FBgn0035107 

 
CG1216 

 
mri 

 
mrityu autophagic cell death; 

potassium ion transport 
4.251947 

 
-5.48524308 

 

FBgn0039808 CG12071 CG12071 
 phagocytosis, 

engulfment 4.64741 -5.443160001 

FBgn0037231 
 

CG9779 
 

CG9779 
 

 phagocytosis, 
engulfment; protein 

transport 
8.20215 

 
-5.443160001 

 

FBgn0004108 CG9704 Nrt 
Neurotactin central nervous system 

development 5.802057 -5.318838054 
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FBgn0036770 CG5485 Prestin Prestin sulfate transport 6.276281 -5.197355625 

FBgn0004865 CG18023 Eip78C 

Ecdysone-induced 
protein 78C 

instar larval or pupal 
development; regulation 

of transcription 7.85306 -5.117912761 
FBgn0038634 CG7696 CG7696  nucleic acid binding 4.795585 -5.0396842 
FBgn0029914 CG4558 CG4558  unknown 5.979403 -5.0396842 

FBgn0035651 CG10977 CG10977 
 structural molecule 

activity 4.994462 -4.886796029 
FBgn0037468 CG1943 CG1943  unknown 5.238079 -4.630317464 
FBgn0039276 CG11938 CG11938  unknown 4.169655 -4.630317464 

FBgn0035975 
 

CG4384 
 

PGRP-LA 
 

Peptidoglycan 
recognition protein 

LA 

innate immune response 
3.627978 

 
-4.630317464 

 

FBgn0031458 CG2855 aph-1 
anterior pharynx 

defective 1 
Notch signaling pathway

4.082617 -4.489848193 

FBgn0015218 CG4035 eIF-4E 
Eukaryotic initiation 

factor 4E 
cell cycle process; 

programmed cell death 4.679505 -4.489848193 
FBgn0035285 CG12025 CG12025  unknown 6.923085 -4.387299919 

FBgn0033438 CG1794 Mmp2 
Matrix 

metalloproteinase 2 
Oogenesis; proteolysis 

4.499345 -4.353640318 
FBgn0034669 CG13487 Fili Fish-lips protein binding 4.278448 -4.353640318 
FBgn0035346 CG1146 CG1146  unknown 4.851819 -4.28709385 
FBgn0003048 CG3443 pcx pecanex unknown 4.308572 -4.254203036 
FBgn0027572 CG5009 CG5009  fatty acid beta-oxidation 4.122932 -4.157036904 
FBgn0030996 CG14194 CG14194  unknown 6.241548 -4.125143894 

FBgn0035119 CG7020 DIP2 
DISCO Interacting 

Protein 2 
transcription factor 

binding 6.987394 -4.125143894 
FBgn0033688 CG8877 prp8 prp8 nuclear mRNA splicing 4.290658 -4.125143894 
FBgn0039623 CG1951 CG1951  protein kinase activity 5.246137 -4.093495568 
FBgn0014020 CG8416 Rho1 Rho1 GTPase activity 6.650376 -4.06209005 
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FBgn0003731 
 

CG10079 
 

Egfr 
 

 
Epidermal growth 

factor receptor 

organ morphogenesis; 
epidermal growth factor 

receptor activity 
3.311506 

 
-4.030925477 

 
FBgn0029529 CG13365 CG13365  unknown 3.683852 -4.030925477 
FBgn0036092 CG6491 CG6491  unknown 3.210079 -4.030925477 

FBgn0036556 CG5830 CG5830 
 phosphoric monoester 

hydrolase activity 5.282832 -4.030925477 

FBgn0032342 
 

CG4713 
 

l(2)gd1 
 

lethal (2) giant discs 
1 

sensory organ 
development; wing disc 

morphogenesis 
3.563145 

 
-3.969311785 
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Flybase 
number 

CG 
number 

Gene 
 

Function 

Salivary gland autophagic cell death, programmed 
cell death, salivary gland development, cellular 

developmental processes, cell differentiation 
FBgn0000276 

 
CG1365 

 
cecropin a1 
 

Salivary gland autophagic cell death, programmed 
cell death, salivary gland development, cellular 

developmental processes, cell differentiation 
FBgn0035107 

 
CG1216 

 
cg1216-pc, isoform c 

 
Salivary gland autophagic cell death, programmed 

cell death, salivary gland development, cellular 
developmental processes, cell differentiation 

FBgn0025697 
 

CG12789
 

cg12789-pa, isoform a 
 

FBgn0027053 
 

CG14884
 

cop9 complex 
homolog subunit 5 

 

Metamorphosis, larval development, organ 
morphogenesis, cell development and differentiation 

FBgn0003731 
 

CG10079
 

epidermal growth 
factor receptor 

 

EGFR signaling, Metamorphosis, larval 
development, organ morphogenesis, cell development and 

differentiation 
Salivary gland autophagic cell death, programmed 

cell death, salivary gland development, cellular 
developmental processes, cell differentiation, cellular 

developmental processes, cell differentiation 
FBgn0015218 

 
CG4035 

 

eukaryotic initiation factor 
4e 
 

Salivary gland autophagic cell death, programmed 
cell death, salivary gland development, cellular 

developmental processes, cell differentiation 
FBgn0034453 

 
CG11228

 
Hippo 
 

FBgn0039767 
 

CG2218 
 

ld28173p 
 

Protein ubiquitination, ubiquitine cycle, protein 
modification by small protein conjugation, 

Table 4. Candidate genes to be verified by Chromatin immunoprecipitation 
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EGFR signaling, Metamorphosis, larval 
development, organ morphogenesis, cell development and 

differentiation 
FBgn0003731 

 
CG10079

 
lp05058p 
 

FBgn0033438 
 

CG1794 
 

matrix 
metalloprotease 2 

 

Salivary gland autophagic cell death, programmed 
cell death, salivary gland development, cellular 

developmental processes, cell differentiation 
FBgn0004108 

 
CG9704 

 
Neurotactin 
 

cellular developmental processes, cell 
differentiation 

FBgn0014010 
 

CG3664 
 

rab-protein 5 
 

cellular developmental processes, cell 
differentiation 

FBgn0014020 
 

CG8416 
 

ras-like GTP-
binding  protein rho1 

 

EGFR signaling, Metamorphosis, larval 
development, organ morphogenesis, cell development and 

differentiation 
Salivary gland autophagic cell death, programmed 

cell death, salivary gland development, cellular 
developmental processes, cell differentiation, protein 

ubiquitination, ubiquitine cycle, protein modification by 
small protein conjugation, 

FBgn0003997 
 
 

CG5123 
 
 

wrinkled/hid 
 
 

FBgn0039767 
 

CG2218 
 

at27758p 
 

Protein ubiquitination, ubiquitine cycle, protein 
modification by small protein conjugation, 
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Identification of Hpo as a E93 target that functions in salivary gland cell 

death 

We have identified hippo (hpo) as a putative E93 target gene based on analyses of our 

microarray data.  To validate the presence of hpo RNA in salivary glands, I examined if 

hpo RNA is present in purified dying salivary glands by northern blot hybridization 

(Figure 12A).  hpo transcript is expressed at stages preceding and following the rise in 

ecdysone that triggers autophagic cell death of Drosophila salivary gland.  Therefore, I 

tested if expression of a hippoRNAi construct (hpo-IR) (Pantalacci et al., 2003) in 

salivary glands prevented degradation of this tissue.  In UAS-hpoIR/wild-type control 

animals, salivary glands are completely degraded at 24 hours after puparium formation 

(Figure 12 B).  By contrast, knockdown of hpo (hpo-IR) in a salivary gland specific 

manner lead to incomplete degradation of salivary glands in 40% of the specimens at 24 

hours after puparium formation (Figure 12C).  These results indicate that hpo functions in 

autophagic cell death of salivary glands. 
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Figure 12. hpo is required for salivary gland cell death.  (A) Northern blot showing 

that Hpo is present in salivary glands at 6, 8, 10, 12 and 14 hours after puparium 

formation. Hybridization of rp49 as a control for loading.  (B and C) Paraffin sections of 

pupae 24 hours after puparium formation.  (B) Salivary glands are completely degraded 

in control (UAS-hpoIR/Canton S) animals. (C) Expression of hpo-IR in a salivary gland 

specific manner causes incomplete degradation of salivary glands.  Red circles outline the 

persistent salivary gland tissue in the pupae. 
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Development of approaches to identify E93 targets 

E93 is required for ecdysone-triggered autophagic cell death of salivary glands, and 

expression of E93 is sufficient to induce cell death in both salivary glands (Lee et al., 

2000) and embryos (Lee and Baehrecke, 2001).  Unfortunately, progeny of crosses 

between UAS-E93 and eye GAL4 drivers, including GMR-GAL4 and Eyeless-GAL4, die 

during metamorphosis (Lee and Baehrecke, unpublished).  We assume that this pupal 

lethality is caused by “leaky” GAL4 expression, and wanted to test whether expression of 

E93 is sufficient to induce cell death in the eye as this could be used to screen for 

suppressors of E93-induced cell death.   

 

The  E93 open reading frame was inserted into the pGMR (glass multimer 

reporter) vector for specific expression in the Drosophila eye (Hay et al., 1994).  

Expression of E93 in the developing eye gave a smaller rough eye with blister like 

phenotype (Figure 13A).  Expression of either DIAP1 or p35 in the eye has no impact on 

normal adult eye structure (Figure 13B and 13C) (Hay et al., 1995; Hay et al., 1994).  

Caspases function in salivary gland cell death (Jiang et al., 1997; Lee and Baehrecke, 

2001; Martin and Baehrecke, 2004).  Therefore, we tested if co-expression of DIAP1 in 

the eye (GMR-DIAP1) with E93 is sufficient to suppress the eye phenotype that is 

induced by GMR-E93.  Indeed, Drosophila eyes expressing both E93 and DIAP1 have a 

normal eye (Figure 13D).  Similarly, co-expression of E93 and p35 in an eye specific 

manner also suppressed the rough eye phenotype induced by E93 (Figure 13E).  Together 

these results indicate that expression of E93 is sufficient to induce caspase-dependent cell 
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death in the adult eye.  Furthermore, these results suggest that the GMR-E93 strains 

produced in this study could be used to screen for suppressors of E93 that could be 

targets of this novel regulator of cell death.  Unfortunately, such an approach may not 

distinguish direct targets of E93, but the identification of mutations in genes that are 

required for E93-induced cell death would be extremely useful. 
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Figure 13. Expression of E93 induces caspase-dependent eye cell death.  Scanning 

electron microscopy (SEM) images of control and experimental fly eyes, with lower 

panels showing magnification of ommatidia.  (A) Expression of E93 causes a rough eye 

phenotype.  (B) Eyes expressing DIAP1 are normal.  (C) Eyes expressing p35 have minor 

abnormalities in bristle orientation.  (D) Eye degeneration that was induced by E93 was 

suppressed by co-expression of DIAP1.  (E) Expression of p35 suppresses the rough eye 

phenotype induced by E93. 
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E93 contains a putative helix-turn-helix DNA binding motif (Siegmund and 

Lehmann, 2002), and this suggests that this protein directly regulates genes that function 

in cell death.  We have taken multiple approaches to identify E93 binding sites in putative 

target genes.  We have obtained nucleotide sequences 1000 and 2000 bp upstream of the 

transcription start site of the candidate E93 target genes (Table 3), and entered those 

sequences into Improbizer (http://www.soe.ucsc.edu/~kent/improbizer/improbizer.html) 

and MEME (http://meme.sdsc.edu/meme/intro.html) to identify common motifs that may 

be putative E93 binding site. As a control, we also examined nucleotide sequences 1000 

and 2000 bp upstream of the transcription start site of the genes that are transcribed in 

dying salivary glands but their levels are not so much altered during cell death in wild-

type and E93 mutant salivary glands.  This helped us to eliminate common elements 

(such as TATA box) in many genes from true candidate E93 binding sites.  Although we 

managed to identify sequences that may be candidate E93 binding sites, the lack of 

consistency across the E93 target genes decreased our confidence in this computational 

approach (Alva and Dutta, unpublished).  We have also tried to identify E93 binding site 

by reverse mobility shift assay (Urness and Thummel, 1990), but we were unable to 

identify direct targets of E93 by this approach due to technical difficulties.  Therefore, we 

decided to consider an alternative in-vivo chromatin immuno-precipitation assay (ChIP) 

approach to identify E93 target genes. 
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We generated transgenic animals that express full length of E93 protein fused to 

Myc-tag on both N- and C- termini that can be used for ChIP.  Previous studies have 

shown that expression of E93 is sufficient to induce premature degradation of salivary 

glands (Lee et al., 2000).  Therefore, we tested if expressions of Myc-tagged versions of 

E93 are sufficient to induce a similar phenotype.  Control animals that contain UAS-E93-

Myc combined with wild-type Canton S have intact salivary glands 6 hours after 

puparium formation (Figure 14A).  By contrast, experimental animals that express E93-

Myc in a salivary gland-specific manner lack this tissue 6 hours after puparium formation 

(Figure 14B).  Importantly, we were able to express full-length 213-kDa E93 protein 

using Myc-tagged E93 transgenic animals during embroyogenesis (da-GAL4/UAS-E93-

Myc), while controls (UAS-E93-Myc/Canton-S; da-GAL4/Canton-S) lacked this protein 

expression (Figure 14C).  Together these data indicate that expression of E93 is sufficient 

to induce cell death, and our data suggests that we can use ChIP to identify E93 targets in 

vivo. 

 66 
 



 

 

Figure 14. Ectopic expression of Myc-tagged E93 is sufficient to induce salivary 

gland cell death.  (A-B) Paraffin sections of animals staged 6 hours after puparium 

formation.  (A) In control animals (UAS-E93Myc/Canton S), salivary glands are present.  

(B) Expression of E93-Myc in a salivary gland-specific manner induces early cell death.  

(C) Immunoblot showing that full length E93 protein is expressed in experimental 

(daughterless-GAL4/ UAS-E93Myc) embryos, but not in control animals containing 

either the GAL4 driver (daGAL4/Cs) or the UAS transgene (UAS-E93-Myc/Canton S). 
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3.4 Discussion  

Although much is known about the mechanisms that control apoptotic cell death, less is 

known about the regulation of autophagic cell death.  Genetic analyses have revealed that 

E93 is required for steroid triggered autophagic programmed cell death in Drosophila 

salivary glands.  Here we show that expression of E93 in the Drosophila eye is sufficient 

to induce caspase-dependent cell death.   We have identified putative E93 target genes 

using DNA microarrays, and preliminary results suggest that it will be possible to 

identify direct E93 targets using ChIP. 

 

In order to identify genes that function in the E93-induced autophagic cell death 

of salivary glands, we have taken a genomic approach by analyzing whole genome DNA 

microarrays.  We have identified 100 gene transcripts that increase 3-fold or more in 

mRNA levels in wild-type salivary glands following the rise in ecdysone, but lack >80% 

or more of this change in RNA transcript level in E93 mutant salivary glands.  The 

identification of a large number of genes with reduced RNA levels in E93 mutants 

suggests that E93-induced transcription may play an important role in cell death.  It is 

promising to see that a large number of the genes that were identified using this approach 

have been previously associated with programmed cell death and salivary gland 

development (Table 4).  We are using these putative target genes to identify in vivo E93 

targets by ChIP.  
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ChIP is a well-established procedure to investigate the in vivo interaction between 

DNA binding proteins and their target DNA (Orlando and Paro, 1993).  ChIP involves 

chemical cross-linking of DNA-protein in living cells.  Transcriptional regulation is 

complex in Drosophila and other organisms.  While our DNA microarray approach has 

identified possible targets of E93, ChIP will enable us to determine if these are target 

gene promoters that are directly bound by E93 (Orlando et al., 1997).  We hope to take 

advantage of whole-genome DNA microarrays along with ChIP (ChIP-chip) to create a 

high-resolution whole genome map of in vivo interactions between E93 and its target 

genes. 

 

We identified hpo as a putative target of E93 that is required for autophagic cell 

death.  Members of the Wts/Hpo tumor-suppressor signaling pathway regulate cell 

division, cell death and tissue growth (Harvey et al., 2003; Udan et al., 2003; Wu et al., 

2003).  Previous studies suggested that cell growth arrest is required for autophagy and 

degradation of salivary glands, as maintenance of growth by expression of either 

activated Ras, Dp110 or Akt was sufficient to inhibit these processes (Berry and 

Baehrecke, 2007).  These were artificial experiments based on over-expression of growth 

regulators, however, and the identification of hpo as a candidate regulator of salivary 

gland cell death may provide insight into how growth arrest is regulated in salivary 

glands.  Until now, studies of salivary glands have suggested that their death is regulated 

by a steroid-triggered transcriptional mechanism.  The identification of hpo (a kinase) 

suggests that it is possible that both transcriptional and post-translational mechanisms 

 69 
 



 

need to be integrated to regulate autophagic cell death.  Additional studies are required to 

determine the relationship between cell growth and cell death, and how these processes 

are integrated.   

3.5 Materials and Methods 

Generation of GMR-E93 and Myc-tagged E93 constructs 

For the generation of GMR-E93, we isolated the E93 open reading frame (ORF) by 

restriction digestion with KpnI and NdeI from an existing E93-pBluescript construct.  We 

used one restriction enzyme at a time to isolate the E93 ORF, made that end blunt by T4 

DNA polymerase treatment. Agarose gel-purified E93 ORF was then ligated into 

linearized pGMR vector (Hay et al., 1994).For generating N- and C-termini Myc-tagged 

E93 constructs, the 4 kb E93 ORF was PCR amplified from wild-type genomic DNA, 

and introduced into the recombination based Drosophila Gateway Vector system to 

obtain the final construct. All constructs were sequenced to determine the integrity of the 

E93 ORF and Myc fusion proteins.  P-element-mediated transformation of these 

constructs into wild-type w1118 Drosophila melanogaster was performed using standard 

procedures by BestGene Inc (Rubin and Spradling, 1982). 

 

Salivary Gland Histology 

For all studies, animals were reared and maintained at 250C. For controls, wild-type 

Canton-S was crossed to either the experimental UAS-transgenic line, or the 

fkhGAL4/fkhGAL4 line.  Animals of the indicated genotypes were aged to 6 and 24 

hours after puparium formation at 250C, fixed in FAAG, dehydrated, embedded in 

 70 
 



 

paraffin, sectioned and stained with Weigert’s Hematoxylin and Pollack Trichrome as 

previously described (Muro et al., 2006) and examined using Zeiss Axio Imager.Z1 

microscope. 

 

Protein Extracts and Western Blotting  

Protein extracts were collected from embryos in control (wild-type Canton-S crossed to 

either daughterless-GAL4 (da-GAL4) or UAS-E93Myc) and experimental (da-GAL4; 

UAS-E93) animals.  Adults were allowed to lay eggs for 8 hours when embryos were 

harvested with phosphate buffer, washed several times, homogenized in Laemmli buffer 

(0.1% glycerol, 2%SDS, 0.125 M Tris (pH6.8), 0.05% β-mercaptoethanol, and 0.05% 

Bromo-phenol blue) and boiled for 5 minutes at 1000C.  Equal amounts of proteins were 

separated on 10% SDS polyacrylamide gels.  Proteins were transferred to 0.45μm 

Immobilon-P membranes (Millipore) following standard procedures. Duplicate gels of 

identical extracts were also assessed for equal loading and integrity by Coomassie blue 

staining solution (Bio-Rad).  Membranes were blocked in 10% non-fat milk in PBS with 

1% Tween 20 for 1 hour at 370C, washed in PBS containing 1% Tween 20 at room 

temperature and incubated with mouse anti C-Myc (1:200) (Santa Cruz Biotechnology) 

primary antibody for overnight at 40C.  Next day the membrane was washed again in PBS 

containing 1% Tween 20 at room temperature and incubated with HRP-goat-anti mouse 

(1:2000) secondary antibody for 1 hour at room temperature.  The membrane was then 

washed and developed using ECL detection reagents 1 and 2 (Amersham) and exposed to 

film. 

 71 
 



 

 

Northern Blot Analysis 

To determine hpo RNA transcript levels in larval salivary glands during prepupal and 

pupal developmental stages, total RNA was collected from wild-type Canton-S salivary 

glands staged 6, 8, 10, 12, and 14 hours following puparium formation at 250C and 

analyzed by Northern Blot hybridization as previously described (Baehrecke and 

Thummel, 1995).  Northen Blots were hybridized to detect hpo and rp49 as a loading and 

transfer control.  All probes were prepared using random labeling gel-purified DNA 

fragments (Stratagene Prime-It). 

 

SEM 

Fly heads were collected and fixed in 2.5% gluteraldehyde (Electron Microscopy 

Sciences) in PBS, and post-fixed in 1.5% osmium tetroxide (Stevens Metallurgical) in 

PBS.  Samples were then dehydrated in serial dilutions of ethanol, immersed in 

hexamethyldisilizane (Polysciences Inc.) and dried in a dessicator for at least three days.  

Specimens were then mounted onto stubs, coated with gold: palladium using a Denton 

DV-503 vacuum evaporator and analyzed using an AMRAY 1820D scanning electron 

microscope. 
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Chapter 4 

Warts is required for PI3K-regulated growth arrest, 

autophagy and autophagic cell death in Drosophila 

4.1 Abstract 

Cell growth arrest and autophagy are required for autophagic cell death in 

Drosophila.  Maintenance of growth by expression of either activated Ras, Dp110, or Akt 

is sufficient to inhibit autophagy and cell death in Drosophila salivary glands, but the 

mechanism that controls growth arrest is unknown.  While the Warts (Wts) tumor-

suppressor is a critical regulator of tissue growth in animals, it is not clear how this 

signaling pathway controls cell growth.  Here we show that genes in the Wts pathway are 

required for salivary gland degradation, and that wts mutants have defects in cell growth 

arrest, caspase activity, and autophagy.  Expression of Atg1, a regulator of autophagy, in 

salivary glands is sufficient to rescue wts mutant salivary gland destruction.  Surprisingly, 

expression of Yorkie (Yki) and Scalloped (Sd) in salivary glands fails to phenocopy wts 

mutants.  By contrast, mis-expression of the Yki target bantam was able to inhibit 

salivary gland cell death, even though mutations in bantam fail to suppress the wts 

mutant salivary gland persistence phenotype.  Significantly, wts mutant salivary glands 

possess altered phosphoinositide signaling, and decreased function of the class I PI3K 

pathway genes chico and TOR suppressed wts defects in cell death.  Although we have 

previously shown that salivary gland degradation requires genes in the Wts pathway, this 

study provides the first evidence that Wts influences autophagy.  Our data indicates that 
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the Wts pathway components Yki, Sd, and bantam fail to function in salivary glands, and 

that Wts regulates salivary gland cell death in a PI3K-dependent manner. 

 

4.2 Introduction 

Cell growth, division, and death are important determinants of tissue and animal size 

(Conlon and Raff, 1999), and disruption in their balance can lead to physiological 

disorders including cancer (Thompson, 1995).  While the mechanisms that integrate cell 

division checkpoints with cell death are relatively well studied (Lowe et al., 2004), less is 

known about the relationship between cell growth and death. 

 

Apoptosis and autophagic cell death are the two most prominent morphological 

forms of cell death that occur during animal development (Clarke, 1990; Schweichel and 

Merker, 1973).  The mechanisms that regulate apoptosis have been extensively studied, 

but far less is known about autophagic cell death.  Drosophila larval salivary glands are 

an excellent system for investigating autophagic cell death during development.  A rise in 

the steroid hormone 20-hydroxyecdysone (ecdysone) 12 hours after puparium formation 

triggers future adult head eversion, salivary gland cell death, and the synchronized 

degradation of salivary gland cells is completed by 16 hours after puparium formation 

(Jiang et al., 1997).  Both caspases and autophagy are induced following the rise in 

ecdysone that triggers cell death (Lee and Baehrecke, 2001; Martin and Baehrecke, 

2004).  Caspases and autophagy function in an additive manner in dying salivary glands, 

as evidenced by the finding that the combined inhibition of both caspases and autophagy 
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results in a stronger salivary gland persistence phenotype than inhibition of either 

caspases or autophagy alone (Berry and Baehrecke, 2007).  Cell growth stops prior to 

salivary gland cell death, and maintenance of growth is sufficient to suppress both 

autophagy and degradation of this tissue (Berry and Baehrecke, 2007), but the 

mechanism that regulates this growth arrest is not clear.   

 

The insulin-triggered class I phosphoinositide 3-kinase (PI3K) pathway is highly 

conserved and regulates cell and tissue growth (Kozma and Thomas, 2002).  Binding of 

insulin to the insulin receptor leads to the  phosphorylation of the receptor and the insulin 

receptor substrate protein Chico (Bohni et al., 1999).  This phosphorylation cascade 

activates the catalytic subunit Dp110 of the class I PI3K pathway (Kozma and Thomas, 

2002; Leevers et al., 1996).  Activated Dp110 converts phosphatidylinositol-4, 5-P (2) to 

the second messenger phosphatidylinositol-3, 4, 5-P (3) (PIP3).  The pleckstrin homology 

(PH) domain of Akt interacts with PIP3 on the cell membrane and activates the 

downstream effector target-of-rapamycin (TOR), an evolutionarily conserved kinase 

(Wullschleger et al., 2006).  TOR influences a wide range of cellular processes such as 

protein translation, cell cycle progression, growth and autophagy.  Although activation of 

the class I PI3K pathway by expression of either activated Ras, Dp110, or Akt is 

sufficient to inhibit autophagy and degradation of salivary glands (Berry and Baehrecke, 

2007), the mechanism that is responsible for the regulation of PI3K-dependent growth 

arrest in this tissue is not fully understood. 
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Recent studies in Drosophila have identified the evolutionarily conserved Warts 

(Wts) signaling pathway as an important regulator of tissue growth. Wts, Fat, Merlin 

(Mer), Expanded (Ex), Hippo (Hpo), Salvador (Sav), and Mats are members of a kinase 

cascade that negatively regulates tissue growth (Bennett and Harvey, 2006; Cho et al., 

2006; Hamaratoglu et al., 2006; Harvey et al., 2003; Justice et al., 1995; Kango-Singh et 

al., 2002; Lai et al., 2005; Pantalacci et al., 2003; Silva et al., 2006; Tapon et al., 2002; 

Udan et al., 2003; Willecke et al., 2006; Wu et al., 2003; Xu et al., 1995).  Mutations in 

any of these recessive genes causes increased cell division, and several of these mutants 

exhibit decreased cell death.  These Wts pathway defects in cell division and cell death 

are caused by altered levels of the cell cycle regulator Cyclin E and the inhibitor of 

apoptosis DIAP1 (Tapon et al., 2002).  Wts, also known as the large tumor suppressor 

Lats, encodes a NDR family kinase that phosphorylates the transcriptional coactivator 

Yorkie (Yki) (Huang et al., 2005), and inactivates Yki by exclusion from the nucleus 

(Dong et al., 2007).  Yki, the orthologue of mammalian Yes associated protein Yap, is a 

positive regulator of growth, and over-expression of Yki results in overgrowth 

phenotypes in tissues that resemble loss-of-function mutations in members of the Wts 

pathway (Huang et al., 2005).  Yki functions with the TEAD/TEF DNA binding family 

member protein Scalloped (Sd) to regulate transcription of the inhibitor of apoptosis 

diap1 (Wu et al., 2008; Zhang et al., 2008), and presumably other Wts signaling targets, 

including the microRNA bantam and the cell cycle regulator cyclin E (Harvey et al., 

2003; Nolo et al., 2006; Pantalacci et al., 2003; Thompson and Cohen, 2006; Wu et al., 

2003).  While mutations in Wts pathway genes, and over-expression of Yki, cause tissue 
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overgrowth, it is not clear how this pathway influences cell growth, and if the PI3K 

pathway is influenced by this tumor suppressor pathway. 

 

Here we show that wts mutant salivary glands fail to arrest growth, exhibit 

decreased caspase activity, have attenuated autophagy, and are not degraded.  Although 

previous studies indicate that expression of Yki phenocopies wts mutants, this was not the 

case in salivary glands.  By contrast, expression of the Yki target bantam was sufficient 

to induce cell growth and inhibit salivary gland cell death.  However, bantam loss-of-

function mutations failed to suppress the wts mutant salivary gland persistence 

phenotype.  These data suggest that Wts is capable of regulating growth and autophagy 

independent of Yki.  wts mutants had altered PI3K markers and required the function of 

TOR and chico to inhibit salivary gland degradation.  These data suggest that Wts 

influences the PI3K signaling pathway, growth, and autophagy in a manner that is 

distinct from its regulation of Yki.   

 

4.3 Results 

Wts, Sav and Mats are required for salivary gland degradation 

Wts was identified as a protein that is expressed during autophagic cell death of 

Drosophila larval salivary glands using a high throughput proteomics approach (Martin 

et al., 2007).  This was surprising, as we failed to detect wts RNA using DNA 

microarrays (Lee et al., 2003).  Therefore, we investigated whether Wts is present in 

salivary glands, and determined that it is constitutively expressed at stages preceding and 
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following the rise in ecdysone that triggers autophagic cell death (Figure 15A).  

Significantly, 2 forms of Hpo are expressed during stages preceding salivary gland cell 

death, suggesting that phosphorylated Hpo is present in these cells and that this signaling 

pathway is activated (Figure 15 A). 

 

We had previously shown that animals that are homozygous for the hypomorphic 

wtsP2 allele, that is caused by a P element insertion (Justice et al., 1995), are defective in 

salivary gland cell death (Martin et al., 2007).  Since strong loss-of-function wts mutants 

are homozygous lethal prior to the stage of salivary gland cell death, we tested if the 

wtsP2 allele in combination with the stronger X-ray-induced latsx1allele (Xu et al., 1995) 

caused a defect in salivary gland degradation.  In control animals, ecdysone-triggered 

head eversion occurs 12 hours after puparium formation and salivary glands are absent 24 

hours after puparium formation (12 hours after head eversion) (Figures 15B).  By 

contrast, wtsP2/latsX1 mutants fail to degrade salivary glands by 12 hours after head 

eversion (Figure 15C).  Previous studies indicated that hpo is required to complete 

degradation of salivary glands (Martin et al., 2007).  Therefore, we tested if other Wts 

pathway components are required for salivary gland degradation.  While control animals 

had no salivary gland remnants 24 hours after puparium formation (Figure 15D), knock-

down of sav by tissue-specific expression of RNAi (sav-IR) inhibited the degradation 

with 58% of the animals having incompletely degraded vacuolated cell fragments (Figure 

15E).  Similarly, knock-down of mats by tissue-specific expression of RNAi (mats-IR) 

inhibited the degradation with 62% of the animals possessing incompletely degraded 
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salivary gland cell fragments (Figure 15F).  These data indicate that wts, sav and mats are 

required for degradation of salivary glands in Drosophila.  
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Figure 15.  Wts signaling pathway is active and required for salivary gland 

degradation.  (A) Immunoblot showing that Wts and Hpo are present in salivary glands 

at 6, 8, 10, 12 and 14 hours after puparium formation.  (B-F) Paraffin sections of pupae 

12 hours after head eversion.  (B and D) Salivary glands are completely degraded in 

control animals.  (C) Loss of wts in wtsP2/latsX1 inhibits salivary gland degradation.  

Expression of sav-IR (E) and mats-IR (F) in a tissue-specific manner causes incomplete 

degradation of salivary glands. Red circles outline the persistent or degraded salivary 

gland tissue in the pupae.  
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wts influences caspase activity, autophagy and cell growth 

Previous studies have shown that both caspases and autophagy are induced prior to and 

function in salivary gland autophagic cell death (Berry and Baehrecke, 2007; Lee and 

Baehrecke, 2001; Martin and Baehrecke, 2004).  Therefore, we investigated whether 

caspases are altered in wts mutant salivary glands.  Caspase-dependent DNA 

fragmentation was detected by TUNEL assay in both control wtsP2/wild-type and 

wtsP2/wtsP2 mutant salivary glands 1.5 hours after head eversion even though wts mutant 

salivary glands fail to degrade (Figures 16A and 16B).  Although wts mutant salivary 

glands appeared to possess approximately half as many TUNEL-positive nuclei 

compared to controls, the qualitative nature of this assay limits our ability to make strong 

conclusions about caspase activity based on this approach.  Loss of nuclear lamins and 

increased levels of cleaved caspase-3 were also observed in both control and mutant 

salivary glands (data not shown).  In addition, we detected caspase-3-like activity by 

cleavage of the caspase substrate DEVD-AMC in both wtsP2/wild-type control and 

wtsP2/wtsP2 mutant animals 4 hours after puparium formation, although caspase-3-like 

activity was reduced in homozygous mutant animals (Figure 16C).  Together, these data 

indicate that caspases are present but reduced in homozygous wtsP2mutant animals 

compared to controls. 

 

The inhibitor of apoptosis DIAP1 suppresses caspases, functions downstream of 

wts, and DIAP1 was previously shown to be elevated in wts mutant cells (Harvey et al., 

2003; Huang et al., 2005; Pantalacci et al., 2003; Tapon et al., 2002).  Therefore, we 
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tested if expression of DIAP1 is sufficient to inhibit salivary gland autophagic cell death.  

In control animals, salivary glands are completely degraded 24 hours after puparium 

formation (Figure 16D).  By contrast, salivary glands are partly degraded in DIAP1-

expressing salivary glands (Figure 16E), which is consistent with previous studies 

indicating that salivary glands are partially degraded when caspases are blocked by either 

expression of p35, or caspase loss-of-function mutants (Berry and Baehrecke, 2007; Lee 

and Baehrecke, 2001; Martin and Baehrecke, 2004).  Significantly, combined inhibition 

of caspases and autophagy by co-expression of DIAP1 and a dominant negative form of 

Atg1, Atg1KQ, resulted in an almost complete inhibition of salivary gland cell death 

(Figure 16F).  These results support the conclusion that both caspases and autophagy 

function in an additive manner during cell death of salivary glands.   
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Figure 16. Caspases are reduced in wts mutants, and DIAP1-induced inhibition of 

salivary gland degradation is enhanced by reduced Atg1 function.  (A-B) 

Visualization of DNA fragmentation by TUNEL assay. TUNEL-positive nuclei are 

indicated by black arrowheads in both control wtsP2/+ (A) and wts homozygous mutant 

wtsP2/P2 (B) salivary glands.  (C) Cleavage of the caspase-3-like substrate Z-DEVD-AMC 

was measured in whole pupae staged 4 hours after puparium formation in control 

(wtsP2/+), control plus Ac-DEVD-CHO inhibitor, and experimental wtsP2/P2 mutant 

pupae.  Data are presented as the mean ± SE, n = 3/treatment.  (D-F) Paraffin sections 24 

hours after puparium formation.  (D) Salivary glands are completely degraded in control 

animals.  (E) Partial degradation occurs in salivary glands expressing DIAP1.  (F) 

Coexpression of dominant negative Atg1KQ and DIAP1 increases the persistence of 

salivary glands.  Red circles outline the persistent salivary gland tissue in the pupae. 
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The number of autophagosomes increases following the rise in steroid that 

triggers autophagic cell death of salivary glands, and autophagy is required for 

degradation of this tissue (Berry and Baehrecke, 2007; Lee and Baehrecke, 2001).  

Therefore, we analyzed the number of autophagosomes in dying salivary glands of 

control and wts mutants using the autophagy reporter GFP-LC3.  Interestingly, the 

number of GFP-LC3 puncta were reduced in homozygous wtsP2 mutant salivary glands 

compared to control wtsP2/wild-type salivary glands (Figure 17A - 17C).  Previous 

studies have shown that expression of Atg1 is sufficient to induce autophagy (Berry and 

Baehrecke, 2007; Scott et al., 2007), so we tested if expression of Atg1 in wts mutant 

salivary glands is sufficient to suppress the wts mutant salivary gland degradation 

phenotype.  While control wtsP2/wtsP2 mutant animals all posses salivary glands 24 hours 

after puparium formation (Figures 17D and 17F), expression of Atg1 in salivary glands 

leads to almost complete degradation of this tissue in wtsP2/wtsP2 animals (Figures 17E 

and 17F) even though they had salivary glands during early pupal stages (data not 

shown).  Together these results indicate that decreased autophagy contributes to the cell 

death defect in wts mutant animals.  
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Figure 17.  Autophagy is decreased in wts mutants, and expression of Atg1 rescues 

wts salivary gland persistence.  (A-C) Autophagy is indicated by the presence of GFP-

LC3 puncta (autophagosomes) in salivary glands.  (A and C) Abundant GFP-LC3 spots 

are detected in control salivary glands 1.5 hours after head eversion.  (B and C) wts 

mutant salivary glands possess attenuated autophagy based on the detection of fewer 

GFP-LC3 spots than in control salivary glands.  (D and E) Histological sections 12 hours 

after head eversion.  (D and F) Loss of wts in wtsP2/P2 animals prevent salivary gland 

degradation.  (E and F) Expression of Atg1 in wts mutant salivary glands suppresses the 

persistence phenotype. (F) Quantification of the percent of pupae with persistent salivary 

glands (n > 20 pupae/genotype).  Red circles outline the persistent salivary gland tissue in 

the pupae. 
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Growth arrest is required for induction of autophagy and salivary gland 

degradation (Berry and Baehrecke, 2007).  Therefore, we investigated whether decreased 

autophagy in wts mutants is associated with altered salivary gland cell growth by 

measuring the cell area in control wtsP2/wild-type and experimental wtsP2/wtsP2 salivary 

glands.  While the cell area of control and homozygous wtsP2 mutant salivary gland cells 

were similar at the onset of puparium formation (Figures 18A and 18B), wtsP2mutant 

salivary gland cells were 2.5-fold larger than control salivary glands 6 hours after 

puparium formation (Figures 18C, 18D and 18E).  We observed similar numbers of 

salivary gland nuclei in control wtsP2/wild-type (mean = 117.7, n = 15) and homozygous 

wtsP2 mutants (mean = 118.9, n = 15), and the larval developmental period was similar in 

control and homozygous wtsP2 mutants (Figure 18F).  These data indicate that a failure in 

cell growth arrest at the onset of puparium formation is responsible for the larger size of 

wtsP2mutant salivary gland cells.  

 86 
 



 

 

Figure 18. wts mutant salivary gland cells fail to arrest growth at pupariation.  (A-

D) Paraffin sections of salivary glands.  (A, B and E) Cells of control wtsP2/+ and mutant 

wtsP2/P2 salivary glands are similar in size at puparium formation.  (C, D and E) While 

control wtsP2/+ salivary gland cells have not significantly increased in size by 6 hours 

after puparium formation, mutant wtsP2/P2 salivary gland cells doubled in size during this 

period.  (E) Cell area measurements of control and wts mutant salivary glands are 

presented as fold increase in cell area compared to control salivary gland cells at 
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puparium formation, and are presented as mean ± SE.  (F) Timing of pupariation in 

control (solid line) and wts mutant (dotted line) animals show that they have comparable 

developmental period.  
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Expression of Bantam, but not Yki and Sd, phenocopies wts in salivary 

glands 

The transcriptional coactivator Yorkie (Yki) is phosphorylated by Wts inactivating its 

influence on cell cycle and cell death effectors (Huang et al., 2005).  Yki, the DNA 

binding protein Sd, and their target the microRNA bantam are positive regulators of 

tissue growth (Huang et al., 2005; Nolo et al., 2006; Thompson and Cohen, 2006; Wu et 

al., 2008; Zhang et al., 2008).  Over-expression of either Yki or bantam in developing 

adult eyes phenocopies wts loss-of-function mutants in this tissue (Huang et al., 2005; 

Nolo et al., 2006; Thompson and Cohen, 2006), and expression of Sd enhances Yki-

induced growth and target gene activities (Zhang et al., 2008).  Therefore, we tested if 

expression of Yki in salivary glands prevents the death of this tissue.  Surprisingly, 

expression of Yki fails to inhibit salivary gland degradation (Figure 19B) even though 

expression of this transgene causes overgrowth in developing adult eyes (data not 

shown).  In addition, expression of either Sd alone, or co-expression of Sd and Yki, 

induces premature degradation of salivary glands by 6 hours after puparium (Figures 19C 

and 20A).  Expression of Yki alone failed to induce premature salivary gland cell death in 

animals 6 hours after puparium formation (Figure 19A).  These data indicate that 

expression of neither Yki, Sd, nor Yki and Sd together phenocopies the loss-of-function 

phenotype of wts in salivary glands.  Significantly, our data also indicate that the Wts 

pathway that has been described in developing adult Drosophila tissues is different in 

salivary glands.  To test this possibility, we determined if DIAP1 levels are altered in wts 

mutant salivary glands.  Indeed, DIAP1 protein levels are not altered in homozygous 
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wtsP2 mutants (Figure 19D), further supporting our data that Wts alters salivary gland 

growth and cell death in a Yki- and Sd-independent manner. 
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Figure 19. Expression of Yki and Sd fail to phenocopy the wts salivary gland 

phenotype, and DIAP1 levels are not altered in wts mutants.  (A-C) Paraffin sections 

of animals 6 and 24 hours after puparium formation.  (A) Paraffin sections of animals 

mis-expressing Yki in salivary glands at 6 hours after puparium formation have normal 

salivary glands.  (B) Paraffin sections of animals mis-expressing Yki in salivary glands 

completely lack this tissue 24 hours after puparium formation.  (C) Mis-expression of Sd 

in salivary glands causes premature degradation such that almost no tissue is present 6 

hours after puparium formation.  (D) Immunoblot showing the DIAP-1 levels are similar 
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in control (wtsP2/+) and wts mutant (wtsP2/P2) salivary glands.  The lanes contain salivary 

gland extracts isolated from control and mutant animals staged at 6 hours after puparium 

formation (APF) and 1.5 hours after head eversion (AHE).  Red circles outline the 

persistent and degraded salivary gland tissue in the pupae. 
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Figure 20. Co-Expression of Yki and Sd induces premature degradation of salivary 

glands.  (A-B) Paraffin sections of animals co-expressing Yki and Sd.  Expression of Yki 

and Sd in salivary glands leads to premature degradation of salivary glands at 6 hours 

after puparium formation (A) and salivary glands are completely degraded by 24 hours 

after puparium formation (B). 
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Our data suggests that salivary gland cells are not sensitive to Yki- and Sd-

induced growth, but it is not clear if this is because of differences in the response of Yki 

and Sd target genes, or if Yki and Sd targets are not sufficient to induce the growth and 

inhibit degradation of these cells.  Expression of DIAP1 is sufficient to inhibit complete 

salivary gland degradation (Figure 16E), but DIAP1 does not influence salivary gland 

cell growth (data not shown).  By contrast, mis-expression of bantam in salivary glands 

was sufficient to inhibit salivary gland degradation and induce significant cell growth 

(Figure 21A and data not shown).  Co-expression of dominant negative TOR (TORted) 

with bantam failed to suppress the bantam-induced salivary gland persistence phenotype 

compared to control animals 24 hours after puparium formation (Figures 21B and 21C).  

In addition, loss-of-function mutations in the insulin receptor substrate othologue chico 

also failed to suppress the bantam-induced defect in salivary gland degradation 24 hours 

after puparium formation (Figure 21D).  Consistent with these genetic findings, mis-

expression of bantam is not sufficient to maintain cortical localization of the reporter of 

Class I PI3K activity sensor tGPH sensor (data not shown).  These data indicate that 

expression of bantam, but not Yki, phenocopies the loss-of-function phenotype of wts, 

but does so in a manner that is independent of two conserved genes in the PI3K pathway.  

These data support the conclusion that Yki and Sd target gene promoters, such as bantam, 

may not be active in salivary glands.  Consistent with this conclusion, we failed to detect 

evidence of bantam RNA in late larval and prepupal salivary glands using a bantam 

sensor (data not shown).  In addition, bantam loss-of-function mutants failed to suppress 
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the homozygous wts mutant salivary gland cell death phenotype (Figures 21E and 21F), 

even though bantam mutants animals are smaller as previously described (Hipfner et al., 

2002).  These data support the conclusion that Wts regulates growth and death of salivary 

glands using a mechanism that is different from the pathway that has been described in 

developing adult tissues of Drosophila. 
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Figure 21. bantam mis-expression inhibits salivary gland degradation in a PI3K-

independent manner.  (A-F) Paraffin sections of animals 24 hours after puparium 
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formation.  (A) Animals that mis-express bantam in salivary glands fail to degrade this 

tissue  24 hours after puparium formation.  (B) Salivary glands expressing TORted are 

degraded by 24 hours after puparium formation.  (C) Coexpression of TORted does not 

overcome inhibition of salivary gland removal caused by mis-expression of bantam.  (D) 

chico mutants fail to suppress salivary gland persistence that is induced by mis-

expression of bantam.  (E) Salivary glands are degraded in bantam mutants 

(banΔ1/banL1170).  (F) Salivary glands fail to degrade in wtsP2 and bantam double-mutant 

animals.  Red circles outline the persistent salivary gland tissue in the pupae. 
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PI3K signaling is required for wts to inhibit cell death 

Maintenance of growth by expression of positive regulators of the class I PI3K pathway 

inhibits autophagy and salivary gland degradation (Berry and Baehrecke, 2007).  Since 

Yki and Sd expression failed to phenocopy the wts mutant salivary gland phenotype, and 

bantam appears to regulate growth in a PI3K-independent manner, we investigated if wts 

may influence PI3K signaling.  We monitored PI3K activity in salivary glands using the 

tGPH (tubulin-GFP-Pleckstrin Homology) reporter (Britton and Edgar, 1998; Britton et 

al., 2002).  During the larval feeding stage when animals are growing, tGPH is cortically 

localized in salivary gland cells of both control and homozygous wts mutant animals 

(data not shown). The cortical localization of tGPH is lost in salivary glands of control 

wtsP2/wild-type animals when they stop feeding and growth arrest occurs (Figure 22A).  

By contrast, cortical localization of tGPH was maintained in wtsP2/wtsP2 and wtsP2/latsX1 

mutant animals even after the onset of puparium formation (data not shown) and 

continued during prepupal development (Figure 22B).  Consistent with the larger salivary 

gland cell size of wtsP2mutants (Figures 18C, 18D, and 18E), these data indicate that wts 

mutant salivary gland cells fail to arrest growth at puparium formation.  

 

The maintenance of growth and presence of tGPH at the cell cortex in wts mutant 

salivary glands suggests that the class I PI3K pathway remains activated following 

puparium formation in this tissue.  Activation of Class I PI3K pathway causes 

recruitment of Akt to the plasma membrane where phosphorylated Akt initiates 

downstream signaling via TOR to regulate growth (Wullschleger et al., 2006).  To our 
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surprise, the levels Akt and phosphorylated Akt were very similar in wild-type and wts 

mutant animals following growth arrest of salivary glands at the onset of puparium 

formation (Figures 22C and S2).  However, immuno-localization of phosphorylated Akt 

changed from cortical (Figure 22D) to cytoplasmic in control salivary glands following 

puparium formation (Figure 22E), while much of the phosphorylated Akt remained 

associated with the cell cortex in homozygous wts mutant salivary glands (Figure 22F). 

 

tGPH and phosphorylated Akt localization indicated that the class I PI3K pathway 

is altered in wts mutant salivary glands.  Therefore, we investigated whether wts mutant 

salivary gland degradation is dependent on the PI3K pathway and TOR.  Salivary glands 

are present in control wtsP2/wtsP2 animals that possess a dominant negative TOR (UAS-

TORted) transgene that is not expressed because they lack the fkhGAL4 activator (Figures 

22G).  By contrast, expression of TORted in salivary glands suppressed the wts mutant 

degradation defect in this tissue (Figure 22H).  Similarly, decreased function of the 

insulin receptor substrate encoding gene chico by expression of chico-RNAi in salivary 

glands attenuated the wts mutant salivary gland persistence phenotype (Figure 22I).  

Together these data indicate that Wts is regulating salivary gland degradation in a PI3K-

dependent manner.  
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Figure 22. Wts regulates growth in a PI3K pathway-dependent manner.  (A) 

Salivary glands of control wtsP2/+ animals 6 hours after puparium formation lack cortical 

tGPH indicating that growth has arrested.  (B) wts mutant (wtsP2/P2) salivary glands 

isolated 6 hours after puparium formation possess cortically localized tGPH indicating 

that they have not arrested growth.  (C) Immunoblot showing the levels of Akt and its 

activated form phosphorylated Akt (P-Akt) in wild-type salivary glands during larval and 

pupal stages. The lanes contain salivary gland extracts isolated from feeding larvae (FL), 

wandering larvae (WL), and stages 0, 6, and 13 hours after puparium formation.  (D-F) 

Salivary glands stained with anti-phospho-Akt (P-Akt).  (D) Salivary glands from both 

control (not shown) and wts mutant feeding larvae contain P-Akt that is associated with 

the cell cortex (white arrows).  (E) P-Akt changes localization to the cytosol and is 
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excluded from the cell cortex (white arrows) in control wtsP2/+  6 hours after puparium 

formation.  (F) Although some P-Akt is relocalized in the cytosol, it remains associated 

with the cell cortex (white arrows) in wts mutant salivary gland cells 6 hours after 

puparium formation.  (G-I) Paraffin sections of pupae 24 hours after puparium formation.  

(G) The presence of dominant negative TORted without any GAL4 driver in wts mutant 

animals does not prevent salivary gland degradation.  (H) Expression of TOR ted in 

salivary glands of wts mutant animals results in complete degradation of salivary glands.  

(I) Decreased function of chico by expression of RNAi (chico-IR) in salivary glands 

suppresses the wts mutant persistent salivary gland phenotype.  Red circles outline the 

persistent salivary gland tissue in the pupae. 
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Figure 23. wts mutants do not have altered Akt and P-Akt protein levels in salivary 

glands.  Immunoblot showing level of Akt and its activated form phosphorylated Akt (P-

Akt) in salivary glands during larval and pupal stages in wtsP2 homozygous mutant 

animals.  The lanes contain salivary gland extracts isolated from feeding larvae (FL), 

wandering larvae (WL), 0 and 6 hours after puparium formation, and 1.5 hours after head 

eversion in wtsP2 mutant animals. 
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4.4 Discussion 

Our studies indicate that Wts and other core components of this tumor suppressor 

pathway are required for autophagic cell death of Drosophila salivary glands.  wts is 

required for cell growth arrest, and proper regulation of caspases and autophagy that 

contribute to the destruction of salivary glands.  Although it is well known that cell 

division, cell growth and cell death are important regulators of tissue and tumor size 

(Conlon and Raff, 1999), it has been unclear if a mechanistic relationship exists between 

cell growth and control of cell death.   

 

It is possibile that wts, and associated downstream growth regulatory mechanisms, 

could suppress cell death in other animals and cell types.  Autophagic cell death 

morphology has been reported in diverse taxa (Baehrecke, 2002; Clarke, 1990), but we 

know little about the mechanisms that control this form of cell death, and this is likely 

related to the limited investigation of physiologically relevant of models of this process.  

Here we have used steroid-activated autophagic cell death of salivary glands as a system 

to study the relationship between cell growth and cell death.  It is logical that cell growth 

influences death in salivary glands, as autophagy is known to be regulated by class I 

PI3K signaling that contributes to the death of these cells (Berry and Baehrecke, 2007).  

It is unclear if growth arrest is a determinant of autophagic cell death in other cell types 

and animals, and this is important to resolve because of the importance of growth and 

autophagy in multiple disorders including cancer (Mizushima et al., 2008).  wts mutant 

salivary gland cells fail to arrest growth at the onset of puparium formation, and this 
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suppresses the induction of autophagy.  As previously reported, the inhibitor of apoptosis 

DIAP1 influences salivary gland cell death (Yin et al., 2007) and is one of the best 

characterized target genes of the Wts signaling pathway (Harvey et al., 2003; Pantalacci 

et al., 2003; Udan et al., 2003; Wu et al., 2003), but DIAP1 levels are not altered in wts 

mutant salivary glands.  Significantly, our data provide the first evidence that Wts 

regulates autophagy, and support previous studies indicating that caspases and autophagy 

function in an additive manner during autophagic cell death (Berry and Baehrecke, 2007; 

Lee and Ambros, 2001).  Given the importance of both the Wts pathway and autophagy 

in human health (Dong et al., 2007; Mizushima et al., 2008; Zeng and Hong, 2008), it is 

critical to determine if this relationship exists in other cells. 

 

Cell growth and division are often considered to be synonymous even though they 

are controlled by independent mechanisms.  The Wts signaling pathway must influence 

cell growth, but most studies have emphasized the influence of this pathway on cell 

division and death.  bantam is the only previously studied gene that is regulated by the 

Wts pathway that is known to regulate cell growth (Nolo et al., 2006; Thompson and 

Cohen, 2006).  However, the mechanism of bantam action remains obscure.  Our studies 

suggest the possibility that Wts may regulate growth via different mechanisms, and that 

this may depend on cell context.  It is premature to conclude that bantam regulates a 

completely novel cell growth program, but the fact that mis-expression of bantam 

stimulates cell growth in the absence of changes in a phosphoinositide marker, and that 

chico and TOR fail to suppress the bantam-induced salivary gland persistence phenotype, 
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minimally suggests that this microRNA regulates genes downstream of TOR.  Significant 

progress has been made in the identification of microRNA targets (Burgler and 

Macdonald, 2005; Ruby et al., 2007; Stark et al., 2003), and future studies should resolve 

mechanism underlying bantam regulation of cell growth. 

 

Recent studies of Wts signaling in Drosophila have identified a linear pathway 

that terminates with Yki and Sd regulation of effector genes that influence cell growth, 

cell division and cell death (Dong et al., 2007; Huang et al., 2005).  Our studies indicate 

that the Wts pathway may not always regulate downstream effector genes via Yki and Sd, 

as Yki expression was not able to phenocopy the wts mutant salivary gland destruction, 

and expression of Sd induced premature degradation of salivary glands.  Although 

bantam expression was sufficient to induce growth and inhibit cell death in salivary 

glands, bantam function was not required for the wts mutant phenotype.  wts mutant 

salivary glands possess altered markers of PI3K signaling, and their defect in cell death is 

suppressed by chico and TOR.  Combined, these results indicate that Wts regulates cell 

growth and cell death via a PI3K-dependent, and Yki- and Sd-independent, mechanism.  

Future studies will determine if Wts regulates cell growth in a PI3K-dependent manner in 

other cells and animals. 
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4.5 Materials and Methods  

Drosophila Strains 

For loss of function studies, wtsP2 (Justice et al., 1995)(), latsX1(Xu et al., 1995), 

chico1(Bohni et al., 1999), and banΔ1 (Hipfner et al., 2002) strains were analyzed.  sav-IR, 

mats-IR and chico-IR stocks were obtained from the VDRC stock center.  For ectopic 

expression studies, UAS-DIAP1 (Hay et al., 1995), UAS-Atg1KQ (Scott et al., 2007), 

UAS-Atg1 (Scott et al., 2007), UAS-Yki (Huang et al., 2005), UAS-Sd (Simmonds et al., 

1998), UAS-Bantam A (Brennecke et al., 2003), UAS-TORted (Hennig and Neufeld, 

2002) were used.  UAS-GFP-LC3 (Rusten et al., 2004) was used as a marker of 

autophagy and tGPH served as a PI3K activity sensor (Britton et al., 2002).  Canton-S 

wild-type was used as a control. 

 

Protein Extracts and Western Blotting  

Salivary glands were dissected from wild-type Canton S and wtsP2 homozygous animals 

staged as feeding larvae, wandering larvae, and 0, 6, 8, 10, 12, and 14 hours following 

puparium formation at 250C.  Salivary glands were homogenized in Laemmli buffer 

(0.1% glycerol, 2%SDS, 0.125% 1M Tris (pH6.8), 0.05% β-mercaptoethanol, and 0.05% 

Bromo-phenol blue) and boiled for 5 minutes at 1000C.  Equal amounts of proteins were 

separated on 10-12% SDS polyacrylamide gels.  Proteins were transferred to 0.45μm 

Immobilon-P membranes (Millipore) following standard procedures.  Blots were stripped 

using low pH stripping buffer (25mM glycine-HCl, pH 2, 15(w/v) SDS) between 

antibodies.  Primary antibodies used were rabbit anti-Wts (1:5000)(Cho et al., 2006), 
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guineapig anti-Hpo (1:2000) (Hamaratoglu et al., 2006), mouse anti-DIAP1 (1:100) (Yoo 

et al., 2002), rabbit anti-Akt (1:1000) (Cell Signaling), rabbit anti-phospho-Drosophila 

Akt (Ser505)(1:1000)(Cell Signaling) and mouse anti-beta-Tubulin 

(1:50)(Developmental Studies Hybridoma Bank). 

 

Caspase Substrate Assays 

The EnzChek Caspase-3 Assay (Molecular Probes) was used for caspase substrate assays. 

Whole wtsP2/Canton-S (control) and wtsP2/wtsP2 (experimental) pupae were staged at 4 

hours after puparium formation, homogenized in lysis buffer and reaction buffer was 

added to the lysates.  After centrifugation, clear lysates were assayed with Z-DEVD-

AMC to detect caspase-3-like activity.  To confirm the specificity of this assay to detect 

caspase-3-like activity, Ac-DEVD-CHO was added to the control (wtsP2/Canton-S) lysate 

as a competitive inhibitor.  All the genotypes for caspase substrate assays were analyzed 

in triplicate. 

 

Salivary Gland Histology 

Animals of the indicated genotypes were aged to 6, 13.5 and 24 hours after puparium 

formation at 250C, fixed in FAAG, dehydrated, embedded in paraffin, sectioned and 

stained with Weigert’s Hematoxylin and Pollack Trichrome as previously described 

(Muro et al., 2006).  TUNEL assay was performed using the Apoptag kit (Chemicon) as 

previously described (Lee and Baehrecke, 2001) and examined using Zeiss Axio 

Imager.Z1 microscope.  For TUNEL assays, a minimum of 10 pupae were examined for 
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each genotype.  For all other experiments, a minimum of 20 pupae were analyzed for 

each genotype.  Cell area measurements were done using ImageJ software (Abraham and 

Shaham, 2004).  Area measurements represent an average of at least 6 cells per salivary 

gland and a minimum of 7 animals for each genotype. 

 

Fluorescence Microscopy 

For autophagy assays, salivary glands of fkhGAL4; UAS-GFP-LC3; wtsP2/wtsP2 

experimental animals and fkhGAL4; UAS-GFP-LC3; wtsP2/wild-type controls were 

isolated 1.5 hr after head eversion, stained with Hoechst 33342, and imaged immediately 

as unfixed tissue using Zeiss Axio Imager.Z1 with apotome.  The numbers of GFP-LC3 

punctate spots were counted using Zeiss image counting software.  To detect PI3K 

activity using the tGPH sensor, tGPH; wtsP2/ wtsP2and fkhGAL4; tGPH/wild-type; UAS-

Bantam A experimental, and tGPH/wild-type salivary glands were dissected from third 

instar larvae, staged 6 hours after puparium formation, and immediately imaged with a 

Zeiss Axio Imager.Z1 microscope.  To count salivary gland nuclei, salivary glands were 

dissected from wtsP2/wildtype control and wtsP2/wtsP2 experimental animals staged 6 

hours after puparium formation.  Dissected glands were then mounted with vectashield 

with DAPI (Vector Laboratories) and imaged using a Zeiss Axio Imager.Z1 with 

apotome.  The numbers of nuclei per salivary gland was determined using Zeiss image 

counting software. 
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Immunohistochemistry 

For immunohistochemistry, wtsP2/Canton-S control and wtsP2/wtsP2 experimental salivary 

glands were dissected from feeding larvae and animals staged 6 hours after puparium 

formation, fixed with 4% paraformaldehyde, and processed according to standard 

procedures (Martin and Baehrecke, 2004).  Rabbit anti-phospho-Drosophila-Akt 

(1:500)(Cell Signaling) and Toto-3 (Molecular Probes) were used to stain salivary glands, 

and they were imaged using Zeiss Axiovert confocal microscope. 
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Chapter 5 
 

 Conclusions and future directions 
 
Cell growth, division and death are determinants of tissue and organ size; yet these 

processes are also influenced by environmental factors, availability of nutrients, 

neighboring cells and genetic factors (Conlon and Raff, 1999).  Disruption of the balance 

between cell proliferation, growth and death can lead to physiological disorders, 

including cancer (Lowe et al., 2004).  Although cell growth is a prerequisite for cell 

proliferation, it is unclear how cell growth and cell death are coordinated to maintain 

tissue and organ size.  Apoptosis and autophagic cell death are the two most prominent 

morphological forms of programmed cell death (Clarke, 1990; Schweichel and Merker, 

1973).  While apoptotic cell death is well characterized, much less is known about 

autophagic cell death and its regulation of animal development.  The recent association of 

autophagy with cancer and neurodegeneration indicates the importance of understanding 

how this catabolic process is regulated during cell death (Baehrecke, 2005; Levine and 

Klionsky, 2004; Yuan et al., 2003).   

 

 We are studying steroid activated autophagic programmed cell death in 

Drosophila melanogaster, using the larval salivary gland as a model.  Salivary gland cell 

death is induced by a rise in the steroid hormone ecdysone 10 - 12 hours after puparium 

formation, and the rapid degradation of this tissue is completed by 16 hours after 

puparium formation (Jiang et al., 1997).  Ecdysone acts through its EcR and Usp 

heterodimeric receptor complex, and with the help of competence factor βFTZ-F1, 
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activates the early cell death genes BR-C, E74A and E93 (Broadus et al., 1999; Lee et al., 

2002; Thomas et al., 1993; Woodard et al., 1994; Yao et al., 1992).  These primary 

response genes then play a more direct role in cell death by influencing apoptotic cell 

death regulators rpr, hid, croquemort, ark, drice and dronc and the autophagy genes atg2, 

atg4, atg5, atg7, atg9 during salivary gland programmed cell death (Lee et al., 2003; Lee 

et al., 2000).    

 

Previous studies identified the ecdysone-regulated E93 gene as a critical regulator 

of the spatial and temporal pattern of programmed cell death during Drosophila 

metamorphosis (Baehrecke and Thummel, 1995; Lee et al., 2000).  A genetic screen for 

lethal mutations in the E93 region resulted in the isolation of three pupal lethal mutations 

that fail to complement Vno, but complement E93 mutants.. The distinct nature of the 

previously described lethal phases, complementation of adult viability, and phenotypes of 

E93 and Vno mutants suggests that these are distinct genes, but our studies suggest that 

both E93 and Vno are mutations in the E93 transcript (Chapter 2).  This is an example of 

intragenic complementation in which two mutations in the same gene complement each 

other. Therefore, our studies indicate E93 is part of a complex genetic locus.  This is not a 

novel concept, as other complex loci have been described in Drosophila including 

bithorax complex by E.B .Lewis (Duncan 2002).  Similar to E93, mutations in 

Antennapedia have multiple complementation groups even though the molecular lesions 

are in the same gene (Duncan and Montgomery, 2002; Duncan and Kaufman, 1974). In 

support of this conclusion, specific allelic combinations of E93vno mutants result in 
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salivary gland phenotypes, but it is not clear why E93vno in combination with a deficiency 

does not result in defects in salivary gland cell death.  While it is possible that one protein 

form of E93 affects larval cell death and the other protein form may influence 

differentiating cells, both E93 and Vno mutations are in common regions of the protein.  

E93 is expressed in a stage and tissue specific manner (Baehrecke and Thummel, 1995; 

Lee et al., 2000), but we do not know if the specific protein forms of E93 are expressed in 

different cells and tissues at distinct stages.  Future studies of E93 forms should help us 

resolve the complexity of E93.  In addition, the identification of targets of these two 

forms of E93 protein will enable us to better understand the relationship between E93 and 

Vno. 

 

Genetic studies indicate that E93 functions in the regulation of steroid-triggered 

autophagic cell death.  E93 encodes a nuclear protein that binds to specific chromosome 

sites in larval salivary gland polytene chromosomes (Lee et al., 2000), but specific target 

genes of this conserved helix-turn-helix protein remain unknown.  The identification of 

downstream targets of E93 should enable us to identify novel cell death regulators and 

signaling pathways.  We have developed tools to identify E93 targets (Chapter 3).  Our 

preliminary characterization of GMR-E93 strains suggests that this tool will be useful for 

future genetic screens to identify suppressors of E93 induced cell death in the eye.  In 

addition, we implemented a genome-wide approach by using DNA microarrays to 

identify candidate E93 downstream target genes (Clough et al., unpublished).  A list of 

candidate E93 target genes was identified using DNA microarrays; we identified a large 
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list of genes that increase following the rise in ecdysone that triggers salivary gland cell 

death, but have reduced induction in E93 mutants.  We also generated transgenic animals 

that express full length of E93 protein that is fused to Myc with the hope that these 

animals can be used for chromatin immuno-precipitation assay (ChIP) (Chapter 3).  

Preliminary results from in-vivo ChIP suggest that E93 binds to genes that function in 

salivary gland cell death, including the caspase dronc (Dutta and Das, unpublished).  We 

have also identified genes that have not been characterized yet.  We hope to study the 

function of these genes in salivary gland cell death by either knocking-down or knocking 

out function of those genes by analyzing either animals expressing RNAi in salivary 

glands or loss-of-function mutants. Future analyses should identify in-vivo interactions 

between E93 and its target genes.  

 

Recent studies have shown that cell growth arrest and autophagy are required for 

salivary gland degradation in Drosophila (Berry and Baehrecke, 2007).  Maintenance of 

growth by expression of either activated Ras, Dp110 or Akt is sufficient to inhibit 

autophagy and block salivary gland degradation, but the exact mechanism of PI3K-

dependent cell growth arrest and its relationship with cell death in this tissue were not 

well understood.  We have shown that wts, hpo, mats and sav are required for complete 

salivary gland degradation (Chapter 4).  wts influences salivary gland cell growth arrest 

and autophagy, and it regulates salivary gland degradation in a class I PI3K-dependent 

manner (Chapter 4).  Our studies argue against the existing linear model of Wts signaling 

pathway in Drosophila that terminates with transcriptional regulators Yorkie (Yki) and 
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Scalloped (Sd) modulating effector genes that influence cell division, growth and death 

(Dong et al., 2007; Huang et al., 2005; Wu et al., 2008; Zhang et al., 2008).  It is critical 

to identify the factor(s) in the PI3K pathway that are phosphorylated and modulated by 

Wts 

 

Members of the Wts/Hpo signaling pathway are conserved in mammals and some 

of them have been implicated in cancer. Wts, a protein kinase, shows significant 

homology with the human myotonic dystrophy kinase. Although mytonic dystrophy is 

commonly defined as a neuromuscular disorder, it has been associated with multiple 

pilomatrixomas, rare epithelial tumors, and other tumors, including neurofibromas and 

parathyroid adenomas (Kopeloff et al., 1992; Reimund et al., 1992). The human 

orthologue of salvador (hWW45), is also found to be mutated in colon and renal cancer 

cell lines (Tapon et al., 2002). Mer is the fly homologue of mammalian 

Neurofibromatosis type-2 (NF2) encoded protein. Mutations in the tumor suppressor gene 

NF2 cause development of tumor in the central nervous system (McClatchey, 2003; 

Rouleau et al., 1993; Trofatter and MacCollin, 1993). Similarly an essential autophagy 

gene Beclin 1, mammalian orthologue of Atg6/Vps30 is a haplosufficient tumor 

suppressor, and Beclin1 mutations are found with high frequency in human ovarian, 

breast and prostate cancers (Qu et al., 2003; Yue et al., 2003). Our studies indicate that 

Wts regulates autophagy, indicating the possible importance of autophagy in cancer. 

Future studies should enable us to understand the intricate balance between cell growth 
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and cell death in other cell contexts and in other higher organisms, and such discoveries 

may help us understand abnormal growth in the context of disorders, including cancer. 

 

5.1 Revised model for genetic regulation of autophagic cell death of 

Drosophila salivary glands 

The rise in the steroid hormone ecdysone that triggers the onset of metamorphosis is 

responsible for termination of larval growth in Drosophila.  Cell growth arrest precedes 

and is required for developmental autophagic cell death of salivary glands (Berry and 

Baehrecke, 2007).  Here, we show that the tumor suppressor pathway that includes Hpo, 

Wts, Mats, and Sav is required for cell growth arrest, autophagy and degradation of 

salivary glands (Figure 24).  One of the most characterized downstream targets of 

Wts/Hpo tumor-suppressor pathway Drosophila inhibitor of apoptosis (DIAP1) is also 

known to be critical regulator of steroid activated salivary gland cell death (Yin et al., 

2007), but DIAP1 levels remain unaltered in wts mutant salivary glands (Chapter 4).  

These data, combined with the fact that expression of neither Yki, Sd, nor Yki and Sd are 

sufficient to inhibit salivary gland cell death, suggests that the Hpo/Wts pathway 

influences salivary gland cell death in a manner that is different from previous models.   

 

Our data indicate that Wts regulates class I PI3K signaling, but the precise 

mechanism of regulation is not clear.  Although either decreased chico function or 

dominant negative TOR are capable of suppressing the wts phenotype in salivary glands, 

it is possible that Wts is regulating this pathway at the level of chico or the insulin 

 115 
 



 

receptor.  Since DIAP1 does regulate salivary gland cell death (Yin et al., 2007), this 

raises another question about how DIAP1 is regulated if Yki and Sd are not involved.  

Previous studies indicate that diap1 and several other regulators of caspases are regulated 

by ecdysone and other regulators of transcription (Jiang et al., 2000; Lee and Baehrecke, 

2001; Yin et al., 2007), and these data indicate that the Wts and ecdysone pathways must 

integrate information that is regulated at the levels of both RNA transcription and post-

translation of proteins.  Therefore, much work is needed to integrate the complex 

biochemical mechanisms that regulate salivary gland autophagic cell death.  In addition, 

other in vivo models of autophagic cell death in flies and higher organism should 

determine if the mechanisms that are discovered in salivary glands occur in other cell 

types and organisms.  
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Fig 24 . Model for autophagic cell detah in salivary glands.  This model provides a 

relationship between steroid signaling, nutrient availability, cell growth and cell death.  

Nutrient availability regulates cell growth and autophagy via Target of Rapamycin 

(TOR).  Wts regulates cell growth and autophagy by modulating PI3K pathway.  Steroid 

signaling also modulates cell death by influencing transcription of many genes including 

regulators of caspases and autophagy.   
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