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This dissertation reports the study of complex systems from two very different

fields. The dissertation is divided into two parts. The first part involves study of an-

gular magnetoresistance in quasi-one-dimensional organic conductors and graphene

bilayers (chapter 2 and 3). The second part is devoted to the modeling and empirical

study of personal income distribution (chapter 4 and 5).

First, we study the effect of crystal superstructures, produced by orientational

ordering of the ReO4 and ClO4 anions in the quasi-one-dimensional organic con-

ductors (TMTSF)2ReO4 and (TMTSF)2ClO4, on the angular magnetoresistance

oscillations (AMRO) observed in these materials. Folding of the Brillouin zone

due to anion ordering generates effective tunneling amplitudes between distant

chains. These amplitudes cause multiple peaks in interlayer conductivity for the

magnetic field orientations along the rational crystallographic directions (the Lebed

magic angles). Different wave vectors of the anion ordering in (TMTSF)2ReO4 and

(TMTSF)2ClO4 result in the odd and even Lebed angles, as observed experimen-



tally. When a strong magnetic field is applied parallel to the layers and perpendic-

ular the chains and exceeds a certain threshold, the interlayer tunneling between

different branches of the folded electron spectrum becomes possible, and interlayer

conductivity should increase sharply. This effect can be utilized to probe the anion

ordering gaps in (TMTSF)2ClO4 and (TMTSF)2ReO4. An application of this effect

to κ-(ET)2Cu(NCS)2 is also briefly discussed. Next, we study AMRO in graphene

bilayers. We calculate the interlayer conductivity and investigate the effects of a

parallel magnetic field on the low energy bands of graphene bilayer.

Next, we analyze the data on personal income distribution from the Australian

Bureau of Statistics. We compare fits of the data to the exponential, log-normal,

and gamma distributions. The exponential function gives a good (albeit not per-

fect) description of 98% of the population in the lower part of the distribution.

The log-normal and gamma functions do not improve the fit significantly, despite

having more parameters, and mimic the exponential function. We find that the

probability density at zero income is not zero, which contradicts the log-normal

and gamma distributions, but is consistent with the exponential one. The high-

resolution histogram of the probability density shows a very sharp and narrow peak

at low incomes, which we interpret as the result of a government policy on income

redistribution. We also analyze data on individual income from Internal Revenue

Service and University of Maryland. Finally, we discuss a model which captures the

two-class structure of income distribution in the USA.
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Chapter 1

Introduction

1.1 Angular magnetoresistance oscillations

The quasi-one-dimensional (Q1D) organic conductors (TMTSF)2X (where TMTSF

is tetramethyltetraselenafulvalene, and X represents a monovalent anion, such as

PF6, ClO4, or ReO4) have very interesting physical properties, including the quan-

tum Hall effect and possibly triplet superconductivity [1, 2]. Fig. 1.1 shows the

schematic diagram of Q1D conductors. These materials consist of parallel conduct-

ing chains along the x axis, arranged in layers with the interchain spacing b along

the y axis and the interlayer spacing c along the z axis. The electron tunneling

amplitudes between the TMTSF molecular sites ta À tb À tc are estimated as 250

meV, 25 meV, 1.5 meV [1].

These materials exhibit the angular magnetoresistance oscillations (AMRO),

where resistivity strongly changes as a function of the magnetic field orientation.

Fig. 1.2, 1.3 and 1.4 show the three basic types of AMRO: the Lebed magic angles

[3, 4, 5, 6, 7, 8] for the magnetic field rotation in the (y, z) plane, the Danner-

Kang-Chaikin (DKC) oscillations in the (x, z) plane [9, 10], and the third angular

effect in the (x, y) plane [11, 12, 13]. The Lebed oscillations manifest themselves

as sharp peaks in the interlayer conductivity σzz occurring when the magnetic field

points from one chain to another along a rational crystallographic direction, as
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Figure 1.1: The figure shows the schematic diagram of quasi-one-dimensional organic

conductors. TMTSF molecules form long conducting chains (shown by red and blue

lines), arranged into layers with interchain spacing b and interlayer spacing c.

illustrated in Fig. 1.5. Approximating the triclinic crystal lattice of (TMTSF)2X by

the orthogonal one, the magic Lebed angles can be written as

By

Bz

c

b
=

n

m
⇔ sin ϕ tan θ =

n

m

b

c
, (1.1)

where n and m are integer numbers, and B = (Bx, By, Bz) = B(sin θ cos ϕ, sin θ sin ϕ, cos θ)

is the magnetic field. Experimentally, the Lebed effect is the most pronounced for

m = 1. Lee and Naughton [14, 15] studied AMRO for generic orientations of B,

where all three effects coexist. They found that the Lebed oscillations are enhanced

when Bx 6= 0 [14], and the DKC oscillations still exist in the presence of By 6= 0

[15].
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Figure 1.2: Figure shows the oscillations in the interlayer resistance Rzz as a function

of the orientation of the magnetic field (rotated in the (x, y) plane). Lebed Magic

Angles are the angles at which sharp dips are observed in Rzz. The plot was obtained

from Ref. [6].

Figure 1.3: The figure shows the oscillation in Rzz, when the magnetic field is rotated

in the (x, z) plane (Danner-Kang-Chaikin oscillations). The plot was obtained from

Ref. [9].
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Figure 1.4: The figure shows the oscillation in Rzz, when the magnetic field is rotated

in the (x, y) plane (Third Angular Effect). The effect is best seen for pure (x, y)

rotation (θ = 0). The plot was obtained from Ref. [14].
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Figure 1.5: A view along the chains of a Q1D metal with the anion ordering at a

wave vector Q. The filled and open circles represent the chains with the energies

±Eg. (a) (TMTSF)2ReO4, Q = (0, 1/2, 1/2). (b) (TMTSF)2ClO4, Q = (0, 1/2, 0).
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Although initially the different types of AMRO were treated as separate phe-

nomena, a unified picture emerged in recent years due to substantial experimental

and theoretical progress. A three-dimensional visualization of the experimentally

measured σzz(B) [16] demonstrated that the different types of AMRO can be viewed

as modulations of the basic Lebed resonances. Measurements with carefully placed

electric contacts [17] proved that AMRO exist only in the transverse resistance Rzz

and not in the longitudinal resistance Rxx along the chains. Theory always predicted

this difference, but many experiments observed AMRO in Rxx as well because of

mixing between different components of the conductivity tensor. AMRO were found

not only in the dc conductivity, but also in the ac conductivity at microwave fre-

quencies [18, 19]. The ac measurements were interpreted in terms of the so-called

period orbit resonance (POR) [20], which is a generalization of cyclotron resonance

to more complicated (e.g., open) Fermi surfaces [21]. The ac resonances occur at the

angles depending on frequency ω and deviating from Eq. (1.1) [18, 19], so the Lebed

magic angles are not truly magic [22, 23]. This observation eliminates theoretical

scenarios proposing a radical change in the ground state of the system depending on

the magnetic field orientation along the magic or non-magic angles. This conclusion

is also supported by the absence of any angular effect in NMR [24].

Given these experimental facts, AMRO most likely represent some sort of a

resonance effect in the dc and ac transport coefficients. The first theoretical cal-

culation along these lines was done in Ref. [25] using the Kubo formula with the

electron wave functions for a magnetic field in the (y, z) plane. This quantum-

mechanical calculation was then generalized to include the Bx component of the

5



magnetic field [26] and the anion superstructure of (TMTSF)2ClO4 [27, 28]. In an-

other theoretical approach, the Boltzmann kinetic equation was solved for a constant

relaxation time τ by using quasiclassical electron trajectories on the Fermi surface

[12, 13, 14, 15, 20, 21, 29, 30, 31, 32]. This solution can be written in a general form

using the so-called Shockley tube integral [33] or the Chambers formula [34], see also

Ziman’s book [35]. In the third theoretical approach, the interlayer conductivity was

calculated using a perturbation theory in the electron tunneling amplitude between

two layers [36, 37, 38]. In this approach, AMRO originate from Aharonov-Bohm

quantum interference in interlayer tunneling in the presence of a magnetic field [38].

All these three seemingly different theoretical approaches produce the same final

results and are essentially equivalent.

Interestingly, the model of a Q1D bilayer in a magnetic field [38] is mathemati-

cally equivalent to a superconducting qubit driven by an ac electric field and detuned

by a dc field [39, 40, 41, 42, 43]. The Mach-Zehnder interference pattern found for

the superconducting qubit (the so-called Bessel staircase) [39, 40] is essentially the

same as the AMRO pattern in Q1D conductors derived from the Aharonov-Bohm

quantum interference [38]. The same equations also describe laser cooling of trapped

ions [44]. The similarity in the behavior of these systems demonstrates that quantum

coherence in the Q1D organic conductors at low temperatures is as high as in the

superconducting qubits and ion traps, which are actively considered for applications

in quantum computing and quantum information.

6



1.2 Personal income distribution

The study of income distribution has a long history. More than a century ago,

Pareto [45] proposed that income distribution obeys a universal power law (valid for

all time and countries)

P (x) ∝ Cx−α, (1.2)

where P (x)dx is the probability to find income in the interval x, to x+dx, α is called

the Pareto index, and C is the normalization constant. Subsequent studies found

that this conjecture applies only to the top 1÷3% of the population. The question

of what is the distribution for the majority (97÷99%) of population with lower in-

comes remains open. Gibrat [46] proposed that income distribution is governed by

a multiplicative random process resulting in the log-normal distribution. However,

Kalecki [47] pointed out that such a log-normal distribution is not stationary, be-

cause its width keeps increasing with time. Nevertheless, the log-normal function

is widely used in literature to fit the lower part of income distribution [48, 49, 50].

Yakovenko and Drăgulescu [51] proposed that the distribution of individual income

should follow the exponential law analogous to the Boltzmann-Gibbs distribution

of energy in statistical physics. They found substantial evidence for this in the sta-

tistical data for USA [52, 53, 54, 55]. Also widely used is the gamma distribution,

which differs from the exponential one by a power-law prefactor [56, 57, 58]. For a

recent collection of papers discussing these distributions, see the book [59].
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1.3 Outline of the Thesis

The outline of the thesis is as follows. In chapter 2 we study the effect of crystal

superstructures, produced by orientational ordering of the ReO4 and ClO4 anions in

the quasi-one-dimensional organic conductors (TMTSF)2ReO4 and (TMTSF)2ClO4,

on the angular magnetoresistance oscillations (AMRO) observed in these materials.

In chapter 3 we discuss the angular magnetoresistance oscillations in graphene

bilayer. We also study the low energy band structure of graphene bilayer in the

presence of a parallel magnetic field.

In chapter 4 we analyze the data on individual income from Australia. We fit

the data with different functions used to describe distribution of individual income

and compare the quality of the fits.

In chapter 5 we analyze data on individual income from IRS and university of

Maryland. We also discuss a stochastic model that captures the two-class structure

of income distribution is the USA.
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Chapter 2

Angular magnetoresistance oscillations in quasi-one-dimensional

organic conductors in the presence of a crystal superstructure

Despite substantial progress in understanding of AMRO in Q1D conductors, some

experimental results remain unexplained. One open problem is the angular oscilla-

tions of the Nernst effect [60]. Another unresolved problem is the angular minimum

and saturation of the interlayer resistivity Rzz observed for a magnetic field in the

y direction [7, 16, 15, 61]. Although the manifestations of AMRO are qualitatively

similar in all members of the (TMTSF)2X family, direct comparison of the measure-

ments in (TMTSF)2PF6, (TMTSF)2ClO4, and (TMTSF)2ReO4 shows substantial

differences [61].

For a magnetic field rotation in the (y, z) plane with Bx = 0, only three

strong Lebed peaks in σzz with n = 0, ±1 are observed in (TMTSF)2PF6 [7, 61]

(see Fig. 1.2 ). When special care is taken to ensure that Bx = 0, the very weak

peaks with n = ±2 in (TMTSF)2PF6 disappear completely [16]. In contrast, in

(TMTSF)2ReO4, strong Lebed oscillations are observed up to n = ±11 [62] (see

Fig. 2.1). In (TMTSF)2ClO4, the Lebed oscillations are much weaker in amplitude

than in (TMTSF)2PF6 and (TMTSF)2ReO4 [61], but many Lebed resonance can be

detected after differentiation of the data with respect to the angle of rotation [4, 5].

The strength of the DKC oscillations is also very different in these materials. The

9



Figure 2.1: Figure shows the AMRO in (TMTSF)2ReO4 as a function of the orienta-

tion of the magnetic field. For a magnetic field rotation in (y, z) plane, many-strong

Lebed oscillations are observed at odd Lebed angles. The plot was obtained from

Ref. [62].

DKC oscillations are quite strong in (TMTSF)2ClO4, where they were originally

discovered [9]. In (TMTSF)2PF6, Ref. [10] found very weak DKC oscillations, but

Ref. [61] found them to be substantial. However, in (TMTSF)2ReO4, the DKC

oscillations are extremely weak and almost invisible [61]. This dramatic difference

in manifestations of AMRO in the three materials requires a theoretical explanation.

When a magnetic field is rotated in the (y, z) plane at Bx = 0, the theoretical

calculations cited above show that the Lebed peaks in σzz can exist only for those

magic angles (n,m) where the interchain tunneling amplitudes in the directions

nb+mc are present [25, 63]. It is reasonable to expect that the interplane tunneling

amplitudes in (TMTSF)2PF6 exist between the nearest and next-nearest chains in

10



the c and c ± b directions (see Fig. 1.5). This would explain why only the Lebed

resonance with n = 0, ±1 are observed in (TMTSF)2PF6. However, many magic

angles with big numbers n are observed in (TMTSF)2ClO4 and (TMTSF)2ReO4. It

is hard to imagine that direct electron overlap exists between the chains separated

by 11 interchain distances.

One way to resolve this problem is to take into account the nonlinear electron

dispersion along the chains. (All theoretical papers cited above make a linearized

approximation for the electron dispersion along the chains.) The first attempt in

this direction was made in Ref. [64], and a more systematic study was presented in

Refs. [65, 66]. The nonlinearity can indeed generate an effect similar, albeit not com-

pletely equivalent, to presence of many interchain tunneling amplitudes. However,

the nonlinearity alone is not sufficient to explain the differences in AMRO between

the three compounds. Another problem is the absence of the DKC oscillations in

(TMTSF)2ReO4. One might think that quantum coherence is too low in this mate-

rial, but the existence of 21 Lebed oscillations clearly refutes this idea [62]. We see

that a detailed theoretical understanding of AMRO in the (TMTSF)2X materials is

challenging and requires additional ideas.

We believe that the key to understanding of the differences in AMRO is the

presence of anion ordering in (TMTSF)2ClO4 and (TMTSF)2ReO4 and its absence in

(TMTSF)2PF6. PF6 is an octagonal centrosymmetric anion, which does not experi-

ence any orientational ordering at low temperatures. In contrast, ClO4 and ReO4 are

tetragonal anions without inversion symmetry. Because their crystal sites have inver-

sion symmetry, these anions have two different orientations of the same energy. At

11



low temperatures, the anions experience orientational ordering and produce crystal

superstructures [1] with the wave vectors Q = (0, 1/2, 0) in (TMTSF)2ClO4 (under

ambient pressure) and Q = (0, 1/2, 1/2) in (TMTSF)2ReO4 (under pressure greater

than about 10 kbar), as shown in Fig. 1.5. Formation of a crystal superstructure af-

fects electron spectrum by folding the Brillouin zone. In this chapter, we show that

reconstruction of the electron dispersion caused by the anion ordering generates ef-

fective tunneling amplitudes between many distant chains. This effect explains why

many Lebed angles are observed in (TMTSF)2ReO4 and (TMTSF)2ClO4, but not

in (TMTSF)2PF6. It also explains why the magic angles (1.1) are observed only

for odd n in (TMTSF)2ReO4 [62] and only for even n in (TMTSF)2ClO4 [4, 5] at

m = 1. We also explain the differences in the DKC oscillations within the same

framework.

In contrast to the previous theories of AMRO for the anion superstructure

of (TMTSF)2ClO4 [27, 28, 31, 65], we take into account the direct effect of anion

ordering on the interlayer tunneling amplitude, which is especially important for

(TMTSF)2ReO4. In this way, we can capture the characteristic features of AMRO in

the three compounds without invoking the nonlinearity of the longitudinal electron

dispersion [65, 66].

In the second part of this chapter (Sec. 2.5), we study the effect of a strong

magnetic field parallel to the layers. We show that, when By is strong enough and

exceeds a certain threshold related to the anion gap Eg, the interlayer tunneling

between different branches of the folded electron dispersion becomes possible, and

σzz should increases sharply. Experimental observation of this effect would allow
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direct measurement of Eg. This effect can be also applied to study the interband

tunneling in κ-(ET)2Cu(NCS)2. A theory of this effect cannot be formulated within

the framework of quasiclassical orbits on a warped Fermi surface. We calculate

interlayer conductivity in the presence of anion ordering using the quantum limit,

where the electron wave functions are confined to the layers due to a strong parallel

magnetic field [67, 68, 69, 70].

2.1 Calculation of interlayer conductivity

The general form of the electron dispersion in a Q1D metal is

ε(k) = ±h̄vF (kx ∓ kF ) + ε⊥(ky, kz), (2.1)

where the energy ε is measured from the Fermi energy, and k = (kx, ky, kz) is the

electron wave vector. Here we linearize the dispersion along the chains with the

Fermi velocity vF near the Fermi wave vectors ±kF . There are two sheets of the

open Fermi surface, but we present calculations only for the sheet with +vF . Since

tc ¿ tb, we can expand the transverse dispersion ε⊥ to the lowest order in the

interlayer tunneling amplitude tc

ε⊥(ky, kz) = 2tbεy(kyb) + 2tcf(kyb) cos(kzc). (2.2)

For a simple model with electron tunneling between the nearest chains in the absence

of a superstructure, Eq. (2.2) reduces to the standard tight-binding expression with

εy(ky) = cos(kyb) and f(kyb) = 1. However, we will show in Secs. 2.3 and 2.4 that a

nontrivial function f(kyb) appears in the interlayer tunneling term in the presence
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of anion ordering. This effect was not considered in previous literature and plays

crucial role in our consideration.

We calculate the interlayer conductivity by solving the Boltzmann kinetic

equation under the relaxation time approximation [35]

∂g(k)

∂t
= eE · v(k)

(
−∂f 0

∂ε

)
− g(k)

τ
, (2.3)

where g(k) is the deviation of the local distribution function from the local equilib-

rium distribution function, e is the electron charge, E(t) = Re[Eeiωt] is the applied,

time-dependent electric field, f 0 is the Fermi distribution, and τ is a relaxation time.

The above equation has the solution

g(k(t)) = e

t∫

−∞
dt′e−(t−t′−iω)/τv(k(t′)) ·E

(
−∂f 0

∂ε

)
. (2.4)

The current density in an energy band is defined as

J = e
∫ dk

(2π)3
v(k)g(k). (2.5)

Substituting Eq. (2.4) into Eq. (2.5) we get

J = 2e2
∫ dk

(2π)3
v(k(t))

t∫

−∞
dt′e−(t−t′−iω)/τ

(
−∂f 0

∂ε

)
v(k(t′)) ·E, (2.6)

where the factor of 2 comes from the two spin projections. If the temperature is

sufficiently low that T ¿ εF , then −∂f 0/∂ε in Eq. can be replaced by δ(εF − ε(k)),

and we get the interlayer conductivity

σzz = 2e2
∫ dk

(2π)3
vz(k

(t))

t∫

−∞
dt′e−(t−t′−iω)/τvz(k

(t′)) δ(εF − ε(k)). (2.7)

Since the transverse dispersion ε⊥ is much smaller than the dispersion along the

chain, from Eq. (2.1) we get ε(k) ≈ h̄vF (kx ± kF ). Substituting this expression in
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Eq. (2.7) and integrating with respect to kx we get the Shockley tube integral [35]

σzz =
4e2

h̄

∫∫ dk(0)
y dk(0)

z

(2π)3vF

0∫

−∞
dt vz(k

(0))vz(k
(t))et(1/τ−iω). (2.8)

To obtain the interlayer conductivity from the above formula, we need the

time dependence of vz. From the dispersion relation (2.1), we obtain the electron

velocity v = ∂ε/h̄∂k

vx = vF , vy ≈ 2tb
h̄

dεy

dky

, vz = −2tcc

h̄
f(kyb) sin(kzc). (2.9)

In the quasiclassical approximation, the time-dependent electron wave vector k(t)

follows the equation of motion

h̄
dk(t)

dt
= ev(t) ×B, (2.10)

where e is the electron charge, and the magnetic field B is in the SI units. Given

that vx = vF À vz, we find

dk(t)
y

dt
≈ −evF Bz

h̄
, k(t)

y = −ωct

b
+ k(0)

y , ωc =
ebvF Bz

h̄
, (2.11)

where ωc is the analog of the cyclotron frequency for the open Fermi surface. The

equation of motion for kz is

dkz =
e

h̄

(
vF Bydt− 2tbBx

h̄

dεy

dky

dt

)
. (2.12)

Using dky/dt from Eq. (2.11), we get

ck(t)
z = B′

yωct + B′
xεy(k

(t)
y ) + ck(0)

z , (2.13)

where we introduced the dimensionless parameters

B′
y =

By

Bz

c

b
, B′

x =
Bx

Bz

2tbc

h̄vF

. (2.14)
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The variables B′
y and B′

x are proportional to the tangents of the magnetic field

projections onto the (y, z) and (x, z) planes, respectively.

Substituting Eqs. (2.9), (2.11), and (2.13) into Eq. (2.8), we find the real part

of σzz

σzz =
e2t2cc

π2h̄3ωcvF b
Re

∑

∓

2π∫

0

dφ

∞∫

0

dη f(φ)f(φ + η) (2.15)

× exp{iB′
x[εy(φ)− εy(φ + η)]− η[1/ωcτ − iB′

y ∓ iω/ωc]},

where φ = bk(0)
y and η = −ωct. Expanding the periodic functions f(φ) eiB′xε(φ) in

Eq. (2.15) into the Fourier series with the coefficients

An(B′
x) =

1

2π

2π∫

0

e−inφf(φ)eiB′xεy(φ) dφ, (2.16)

we obtain

σzz

σ0

=
1

2

∑

∓

∞∑

n=−∞

|An(B′
x)|2

1 + (ωcτ)2(n−B′
y ∓ ω/ωc)2

. (2.17)

Here σ0 = (4e2t2cτc)/(πh̄3vF b) is the interlayer dc conductivity at B = 0, and the

± terms represent contributions from the two sheets of the Fermi surface. In the

rest of the chapter, we shall focus on the dc conductivity σzz at ω = 0, although

Eq. (2.17) also gives the ac conductivity.

The Lebed effect corresponds to the resonant peaks of σzz in Eq. (2.17) achieved

at B′
y = n, where the condition (1.1) for m = 1 is satisfied. In a simple model

without anion ordering, where εy = cos(kyb) and f = 1, Eq. (2.16) reduces to

An(B′
x) = inJn(B′

x), where Jn is the Bessel function. In this case, Eq. (3.7) repro-

duces the result found in Refs. [38, 36, 37, 26, 32]. However, the coefficients Jn(B′
x)

vanish for n 6= 0 at Bx = 0, so there are no Lebed oscillations in this model for
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a magnetic field rotation in the (y, z) plane. The DKC effect originates from the

oscillations of Jn(B′
x) vs. B′

x in the numerator of Eq. (2.17).

Interestingly, Eq. (2.17) with |An|2 = J2
n(B′

x) and ω = 0 is exactly the same

as the equation that describes the Mach-Zehnder interference in a superconducting

qubit driven by an ac electric field and subjected to a dc bias [39, 40]. The two states

of the qubit correspond to the two adjacent layers of a Q1D conductor coupled by

the tunneling amplitude tc. The frequency of the ac field for the qubit maps to the

frequency ωc in Eq. (2.11), the detuning of the qubit maps to B′
yωc = ecvF By/h̄,

and the amplitude of the ac modulation maps to B′
x in Eq. (2.14). The contour plot

of Eq. (2.17) shown in Fig. 2 of Ref. [38] is exactly the same as in Refs. [39, 40]

and represents the so-called Bessel staircase. The same equation also appears in the

theory of laser cooling in ion traps [44]. This correspondence is not just a math-

ematical curiosity, but reflects profound similarity between these highly coherent

quantum system, where the oscillatory patterns are caused by phase interference

due to applied electric and magnetic fields.

2.2 Interlayer conductivity in (TMTSF)2PF6 without anion order-

ing

Let us first discuss the case of (TMTSF)2PF6, which does not have anion ordering.

In order to observe more than one Lebed angle, we need to introduce the tunnel-

ing amplitude t′c between next-nearest neighboring chains, as shown in Fig. 1.5(b).
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Including this term in the transverse dispersion (2.2), we find for (TMTSF)2PF6

εy(φ) = cos φ, f(φ) = 1 + 2
t′c
tc

cos φ, φ = bky. (2.18)

In a more general case, where the amplitudes tn corresponding to the tunneling

vectors c + nb are present, the transverse dispersion relation can be written as

ε⊥(ky, kz) = 2tb cos(kyb) + 2
∑

l

tl cos(kzc + lkyb). (2.19)

Eq. (2.18) is the special case of Eq. (2.19) with t0 = tc and t±1 = t′c.

Generalizing the derivation presented in Sec. 2.1 to the transverse dispersion

relation (2.19), we find that the interlayer conductivity σzz is given by Eq. (2.17)

with the following coefficients An [71]

An(B′
x) =

1

tc

∑

l

in+ltlJn+l(B
′
x). (2.20)

In the case of (TMTSF)2PF6, Eqs. (2.16) and (2.18) or Eq. (2.20) give

An(B′
x) = inJn(B′

x) + in+1 t′c
tc

Jn+1(B
′
x) + in−l t

′
c

tc
Jn−1(B

′
x). (2.21)

Substituting Eq. (2.21) into Eq. (3.7), we find the following results for AMRO in

(TMTSF)2PF6:

When B′
x = 0, i.e. we consider a magnetic field rotation in the (y.z) plane,

only the terms with n = 0 and n = ±1 have non-zero coefficients An in the sum in

Eq. (3.7). These terms give rise to the Lebed peaks at n = 0 and n = ±1 with the

heights proportional to t2c and (t′c)
2.

When we consider the DKC oscillations at B′
y = 0, i.e. for a magnetic field

rotation in the (x.z) plane, the sum in Eq. (2.17) is dominated by the term with

18



n = 0, because the other terms have the big factor (ωcτ)2 in the denominator.

Keeping only the term with n = 0 and using Eq. (2.21), we can write approximately

σzz(B
′
x)

σ0

≈
∣∣∣∣∣J0(B

′
x) + 2i

t′c
tc

J1(B
′
x)

∣∣∣∣∣
2

. (2.22)

When t′c = 0, Eq. (2.22) vanishes for the angles where J0(B
′
x) = 0, which is a

manifestation of the DKC oscillations. However, in the presence of t′c 6= 0, Eq. (2.22)

does not vanish for any angles, so the DKC oscillations are partially suppressed,

although some modulation of σzz vs. B′
x remains. We see that the presence of

tunneling amplitudes tl to more distant chains enhances the Lebed oscillations, but

suppresses the DKC oscillations. This conclusion was already made in Ref. [38].

2.3 Anion ordering in (TMTSF)2ReO4

The ReO4 anions order with the wave vector Q = (0, 1/2, 1/2) under pressure. This

causes the energies of the odd and even chains to split by ±Eg, as illustrated in

Fig. 1.5(a). The Hamiltonian of interchain tunneling is described by a 2× 2 matrix

representing the even and odd chains [72]:

H⊥ =




Eg 2tb cos(kyb) + 2tc cos(kzc)

c.c. −Eg


 . (2.23)

The eigenvalues of the matrix (2.23) give the transverse electron dispersion relation

ε⊥ = ±
√

[2tb cos(kyb) + 2tc cos(kzc)]2 + E2
g . (2.24)

Expanding Eq. (2.24) to the zeroth and first order in tc, we find the functions εy(ky)

and f(ky) in Eq. (2.2)

εy(φ) = ±
√

cos2 φ + (Eg/2tb)2, φ = bky, (2.25)

19



f(φ) = ± cos φ√
cos2 φ + (Eg/2tb)2

. (2.26)

The function f(φ) (2.26) is close to a square wave for Eg/tb ¿ 1, as shown in Fig.

2.2(a). Its Fourier coefficients An, given by Eq. (2.16) with B′
x = 0, are non-zero

only for odd n and decay as 1/n. Transforming Eq. (2.2) from the momentum space

to the real space, we find that the Fourier coefficients of f(kyb) generate effective

interplane tunneling amplitudes along the vectors c + nb with odd n, which are

shown in Fig. 1.5(a) by the arrows. Initially, the model has only the tunneling

amplitudes tb and tc between the nearest chains, but the anion ordering generates

effective tunneling amplitudes between many chains. The higher-order expansion

of Eq. (2.24) in tc would generate effective tunneling amplitudes along the vectors

mc + nb with m and n of the same parity between the sites of the same type,

either open circles or closed circles in Fig. 1.5(a). However, one should keep in mind

that this heuristic real-space picture [62] is an oversimplification, and an accurate

calculation in the momentum space should be performed as described above. In Fig.

2.3 we show the normalized dc conductivity calculated from Eq. (2.17) for B′
x = 0

and ωcτ =
√

50 using the Fourier coefficients An from Eq. (2.16). Since An 6= 0 only

for odd n, therefore σzz has peaks only at the odd Lebed angles. as shown in Fig.

2.3 and observed in (TMTSF)2ReO4 [62]. The higher-order expansion of Eq. (2.24)

in tc would generate peaks at the Lebed magic angles with m and n of the same

parity in Eq. (1.1), as observed in Ref. [62]. Because of the anion superstructure,

Eq. (2.24) is highly non-linear in cos φ, so its Fourier expansion generates a big

number of harmonics, which produce a big number of Lebed peaks in AMRO. This
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Figure 2.2: (a) Plot of the function f(φ) given by Eq. (2.26). (b) Plot of the second

term in f(φ) given by Eq. (2.29). In both plots, Eg/2tb = 0.1.

is the qualitative reason why so many Lebed peaks are observed in (TMTSF)2ReO4,

in contrast to (TMTSF)2PF6, which has no anion superstructure.

Fig. 2.4 shows a contour plot of ln(σzz/σ0) vs. B′
x and B′

y, as calculated from

Eq. (3.7) using Eqs. (2.16), (2.25), and (2.26). The conductivity is maximal at

the vertical lines corresponding to the odd Lebed magic angles. At a fixed Lebed

angle, the weak modulation of σzz vs. B′
x (along a vertical line) corresponds to the

DKC oscillations. Fig. 2.4 shows that the DKC oscillations are very weak, because

the coefficients An(B′
x) (2.16) do not have zeros vs. B′

x in the presence of anion

ordering, unlike the Bessel functions Jn(B′
x) in a simple model. This is a theoretical
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Figure 2.3: Normalized interlayer conductivity σzz/σ0 calculated from Eq. (2.17)

for (TMTSF)2ReO4 and plotted vs. B′
y at B′

x = 0, shown in the linear (left) and

logarithmic (right) scales.

explanation of why the DKC oscillations in (TMTSF)2ReO4 are very weak and

barely detectable experimentally [62].

2.4 Anion ordering in (TMTSF)2ClO4

In the case of (TMTSF)2ClO4, in order to observe multiple Lebed angles, we need

to take into account the tunneling amplitude t′c introduced in Sec. 2.2 and shown in

Fig. 1.5(b). For the anion ordering with Q = (0, 1/2, 0), the interchain tunneling is
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at ωcτ =
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50.
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described by the Hamiltonian

H⊥ =




Eg + 2tc cos(kzc) cos(kyb)[2tb + 4t′c cos(kzc)]

c.c. −Eg + 2tc cos(kzc)


 . (2.27)

The eigenvalues of the matrix (2.27) give the transverse electron dispersion relation

ε⊥ = 2tc cos(kzc)±
√

cos2(kyb)[2tb + 4t′c cos(kzc)]2 + E2
g . (2.28)

Expanding Eq. (2.28) to the zeroth and first order in tc and comparing with Eq.

(2.2), we find εy(φ) to be the same as in Eq. (2.25) and

f(φ) = 1± t′c
tc

2 cos2 φ√
cos2 φ + (Eg/2tb)2

. (2.29)

Only the second term in Eq. (2.29) generates the coefficients An with n 6= 0

when substituted into Eq. (2.16) at Bx = 0. For Eg/tb ¿ 1, this term is close to a rec-

tified cosine signal, as shown in Fig. 2.2(b), and its Fourier coefficients decay as 1/n2

for large n. It has non-zero Fourier coefficients only for even n, thus σzz vs. B′
y has

peaks at the even Lebed angles, as shown in Fig. 2.5 for B′
x = 0 and observed exper-

imentally in (TMTSF)2ClO4 [4, 5]. Because the second term in Eq. (2.29) is highly

nonlinear in cos φ, it generates many harmonics and many Lebed peaks. However,

they decay with the increase of n faster in (TMTSF)2ClO4 than in (TMTSF)2ReO4.

Moreover, because t′c is small, the Lebed oscillations in (TMTSF)2ClO4 are weak,

in agreement with the observations in Refs. [4, 5, 61]. As discussed in Sec. 2.2, the

DKC oscillations are controlled by the coefficient A0(B
′
x) in Eq. (2.17). The first

term in Eq. (2.29) gives the main contribution to A0(B
′
x), proportional to J0(B

′
x).

Thus, the DKC oscillations are relatively strong in (TMTSF)2ClO4, as observed in

Refs. [9, 61], although they are somewhat reduced by the second term in Eq. (2.29).
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We conclude that the different types of anion ordering in (TMTSF)2ReO4 and

(TMTSF)2ClO4 can indeed explain the characteristic features of AMRO in these ma-

terials. In (TMTSF)2ReO4, the Lebed oscillations are strong and numerous, but the

DKC oscillations are very weak. In (TMTSF)2ClO4, the Lebed oscillations are nu-

merous, but weak, whereas the DKC oscillations are relatively strong. On the other

hand, there is no anion superstructure in (TMTSF)2PF6. This material exhibits a

few, but strong, Lebed oscillations and partially suppressed DKC oscillations.

2.5 Interband tunneling in a strong magnetic field parallel to the

layers

Folding of the Brillouin zone due to anion ordering produces two branches (or two

bands) of the electron dispersion, which we label by the index α = ± according to

the sign in Eq. (2.25). The Fermi surfaces of the two bands, obtained from Eq. (2.1),

are shown by the two solid lines in Fig. 2.6 for Eg/tb = 0.1. (This picture is for the

Fermi surface sheets near +kF .)

In this section, we study interlayer conductivity in a strong magnetic field

(Bx, By, 0) parallel to the layers. We use the formalism developed in Refs. [36, 37, 38]

and calculate σzz between just two layers, i.e. for a bilayer. Assuming that tc is very

weak, one can argue that, in the lowest order in tc, the interlayer conductivity of a

bulk multilayer crystal is determined by the interlayer conductivity between a pair

of layers [72].
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due to an in-plane magnetic field. The Fermi surfaces for each layer (the solid lines

and the dashed lines) consist of two bands separated by the gap 2Eg/vF due to

anion ordering and labeled + and −.
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The tunneling Hamiltonian between layers 1 and 2 is

Ĥc = tc

∫
ψ̂†2(r) ψ̂1(r) eiχ(r)d2r + H.c., (2.30)

χ(r) =
ec

h̄
Az(r), Az(r) = Bxy −Byx, (2.31)

where ψ̂1,2 are the electron destruction operators in the layers 1 and 2. Here Az is

the vector potential of the in-plane magnetic field, and χ(r) is the corresponding

gauge phase accumulated in the process of tunneling across the interlayer spacing c.

Substituting Eq. (2.31) into Eq. (2.30) and using momentum representation in the

(x, y) plane, we observe that the in-plane wave vector of the electron changes from

k to k + q in the process of tunneling [38], where the vector q is

q = (qx, qy) =
ec

h̄
(By,−Bx). (2.32)

Thus, the Fermi surfaces of the second layer are shifted by the vector q relative to

the Fermi surfaces of the first layer as shown by the two dashed lines in Fig. 2.6. A

similar picture was discussed for closed Fermi surfaces in semiconducting bilayers in

Refs. [36, 73, 74, 75].

The interlayer conductivity σαβ
zz between the bands α and β is given by the

following expression [36, 76]

σαβ
zz =

e2t2cc

h̄π

∑

k

|Mαβ|2S(k, EF )S(k + q, EF ), (2.33)

where Mαβ = 〈ψ(2)
α (k+q)|ψ(1)

β (k)〉 is the scalar product between the in-plane electron

wave functions belonging to adjacent layers. These matrix elements are discussed in

more detail in Appendix 2.7. The total interlayer conductivity is the sum over all

bands σzz =
∑

αβ σαβ
zz . The function S(k, EF ) is the spectral density of the in-plane
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electron Green function evaluated at the Fermi energy EF as a function of the wave

vector k [36, 76]

S(k, EF ) =
2Γ

[EF − ε(k)]2 + Γ2
, (2.34)

where Γ = h̄/2τ is the relaxation rate, and ε(k) is the electron dispersion within

the layer.

When Γ is small, i.e., when the electron quasiparticles have a long lifetime

time τ , the spectral function (2.34) can be replaced by a delta function: S(k, EF ) ≈

2πδ[EF − ε(k)]. Substituting this expression into Eq. (2.33), we find

σαβ
zz =

e2t2cc|M̃αβ|2
h̄π

∫∫
dky dkx δ[h̄vF kx + α2tbεy(kyb)]

× δ[h̄vF (kx − qx) + β2tbεy(kyb− qyb)], (2.35)

where the matrix element M̃αβ is evaluated at the points where both delta functions

are satisfied. Integrating Eq. (2.35) over kx, we find

σαβ
zz =

e2t2cc|M̃αβ|2
πh̄2vF

∫
dky δ[gαβ(ky)], (2.36)

where the function gαβ(ky) is

gαβ(ky) = h̄vF qx + 2tb[αεy(kyb)− βεy(kyb− qyb)]. (2.37)

Taking the integral (2.36), we find

σαβ
zz =

e2t2cc

πh̄2vF

∑

k̃y

|Mαβ(k̃y)|2
|∂gαβ/∂ky| , (2.38)

where the sum is taken over the points k̃y where the equation gαβ(k̃y) = 0 is satis-

fied. Notice that the relaxation time τ drops out from Eq. (2.38), so σzz should be

temperature-independent in a strong parallel magnetic field [36].
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Figure 2.7: Phase diagram of interlayer tunneling vs. the normalized in-plane mag-

netic field components By nd Bx. Tunneling between the same and different types

of bands is possible in the upper left and the lower right regions of the diagram,

correspondingly, and not possible in the intermediate region. The thin curves show

the interlayer conductivity σzz calculated using Eq. (2.38) as a function of By for

several values of Bx for the superstructure of (TMTSF)2ReO4.
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Eq. (2.35) shows that a non-zero contribution to interlayer conductivity comes

from the points where both delta functions are satisfied, i.e., the initial and final

states belong to the Fermi surfaces of different layers. Geometrically, these are the

intersection points k̃(1)
y and k̃(2)

y of the solid and dashed lines in Fig. 2.6. Depending

on which Fermi surfaces intersect in Fig. 2.6, electrons can tunnel between different

bands α, β = ± in the folded Brillouin zone. The equation gαβ(k̃y) = 0 has solutions

only in some regions of the (qx, qy) space, as shown by the thick solid lines in Figs.

2.7 and 2.8. Above the diagonal line in Figs. 2.7 and 2.8, the interlayer tunneling is

possible only between the bands of the same type α = β. If qx exceeds the threshold

value

h̄vF qx = ByecvF ≥ 2Eg, (2.39)

the interlayer tunneling between different bands, α = −β, becomes possible in the

lower right region in Figs. 2.7 and 2.8. No interlayer tunneling is possible in the

intermediate region in Figs. 2.7 and 2.8, where the shifted Fermi surfaces in Fig. 2.6

do not cross. The boundaries of the regions are determined by the condition that

the displaced Fermi surface touches the other one.

The plots of the interlayer conductivity σzz, calculated from Eq. (2.38), are

shown in Figs. 2.7 and 2.8 as functions of By ∝ qx for several fixed values of Bx ∝ qy.

We observe that the interlayer conductivity vanishes in the intermediate region and

has peaks at the boundaries. The peaks originate from the increase of the phase

volume in the integral (2.35) when the two Fermi surfaces touch each other. Fig. 2.7

corresponds to the anion superstructure of (TMTSF)2ReO4. We observe that, when
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the magnetic field is applied along the y axis (Bx = 0), the interlayer conductivity

σzz(By) is strongly suppressed until By exceeds the threshold, and then σzz increases

sharply. The value of Eg can be determined from the measured threshold field By

via Eq. (2.39). Fig. 2.8 corresponds to the anion superstructure of (TMTSF)2ClO4.

In this case, the eigenfunctions of different bands α = −β are orthogonal, so the

matrix element M−+ vanishes for qy = 0 (see Appendix 2.7). Thus, in order to

get a nonzero interlayer conductivity in (TMTSF)2ClO4, it is necessary to have a

non-zero component Bx 6= 0, so that qy 6= 0.

According to the measurements in Ref. [19], the Fermi velocity in (TMTSF)2ClO4

is vF ≈ 105 m/s. Substituting this value and the interlayer distance c = 1.35 nm [1]

into Eq. (2.39) and using the maximal stationary field of 45 T available at NHMFL

in Tallahassee, we find the maximal anion gap 2Eg ≈ 70 K that can be probed

using this method. Various estimates of Eg are reviewed in Ref. [77]. Refs. [28, 78]

estimated Eg as 40 ÷ 50 K, so the field of 45 T may be sufficient to exceed the

threshold (2.39) at the ambient pressure. The experiment can be also performed

in pulsed fields or under pressure, where the anion superstructure is progressively

suppressed [79]. Measurements of the interlayer conductivity using pulsed magnetic

fields of 46 T were performed in (TMTSF)2ClO4 [80], but the field was applied close

to the x axis, rather than the y axis, as required for our effect.

A similar analysis can be also applied to the material κ-(ET)2Cu(NCS)2, whose

in-plane Fermi surface is shown in Fig. 2.9. The separation ∆k between the α and

β branches of the Fermi surface can be measured by applying an in-plane magnetic

field in the horizontal direction in Fig. 2.9. This field shifts the Fermi surface of one
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Figure 2.9: The in-plane Fermi surface of κ-(ET)2Cu(NCS)2. The α and β branches

of the Fermi surface are separated by the distance ∆k in the momentum space.
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layer by the vector q shown in Fig. 2.9. The threshold magnetic field, at which the α

branch in one layer starts to touch the β branch in the other layer, can be calculated

from Eq. (2.32). Using ∆k = 0.17 nm−1 and the interlayer distance c = 1.62 nm

[1, 81], we estimate that the threshold magnetic field is of the order of 430 T, which

is beyond the current experimental capabilities.

2.6 Conclusions

We have shown that the modifications of the electron dispersion due to the anion

ordering in (TMTSF)2ReO4 and (TMTSF)2ClO4 generate effective tunneling ampli-

tudes between many distant chains. These amplitudes cause peaks in the interlayer

conductivity σzz at many Lebed magic angles (1.1). The different wave vectors

of the anion ordering, Q = (0, 1/2, 1/2) in (TMTSF)2ReO4 and Q = (0, 1/2, 0)

in (TMTSF)2ClO4, result in the odd and even Lebed magic angles, as observed

experimentally [62, 79]. Our theory also explains why the Lebed oscillations are

strong and the DKC oscillations are weak in (TMTSF)2ReO4, and vice versa in

(TMTSF)2ClO4, as observed experimentally [61].

When a strong magnetic field is applied parallel to the layers, and By exceeds a

certain threshold, then interlayer tunneling between different branches of the Fermi

surface, produced by folding of the Brillouin zone, should become possible. This

effect would be observed as a sharp increase of interlayer conductivity. It can be

utilized for a direct measurement of the anion gap Eg. Theoretical description of

this effect required a quantum-mechanical treatment of the wave functions confined
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to different layers and cannot be achieved within the framework of quasiclassical

electron orbits on a warped Fermi surface.

Experimental observation of the high number of magic angles (up to 21 in

Ref. [62]) demonstrates a very high level of quantum coherence achieved in the

Q1D organic conductors at low temperatures. This is remarkable given that the

(TMTSF)2X materials have strong electron interactions. In different parts of their

rich phase diagram, these materials have the Mott insulating phase and other exotic

phases [1, 2]. It would be very interesting to study what happens to AMRO when

the system is driven toward the Mott state using pressure or other variables.

We point out that the theory of the angular magnetoresistance oscillations

(AMRO) in Q1D conductors is equivalent to the mathematically description of the

Mach-Zehnder interference in a driven superconducting qubit [39, 40] and of laser

cooling in ion traps [44]. Thus, the physics of Q1D conductors may have applications

in quantum engineering well beyond the domain of solid-state material science.

2.7 Calculation of the matrix elements

In this Appendix, we calculate the matrix elements of interlayer tunneling introduced

in Eq. (2.33).

In the case of (TMTSF)2ClO4, the interlayer tunneling with the amplitude

tc occurs between the chains of the same type, as shown in Fig. 1.5(b) [72]. The
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in-plane Hamiltonians of two adjacent layers are given by the same expression

Ĥ =




Eg 2tb cos(kyb)

2tb cos(kyb) −Eg


 . (2.40)

The eigenvalues λ± and the eigenvectors |ψ±〉 of the Hamiltonian (2.40) are

λ± = ±
√

[2tb cos(kyb)]2 + E2
g , (2.41)

|ψ±(ky)〉 =
1

N±
(λ± + Eg, 2tb cos kyb), (2.42)

Nα =
√

[2tb cos(kyb)]2 + (λα + Eg)2. (2.43)

The matrix elements of tunneling are proportional to the scalar products of the wave

functions in adjacent layers:

M−− = 〈ψ−(ky + qy)|ψ−(ky)〉, (2.44)

M++ = 〈ψ+(ky + qy)|ψ+(ky)〉 (2.45)

for tunneling between the same kinds of bands and

M−+ = 〈ψ−(ky + qy)|ψ+(ky)〉 (2.46)

between different kinds of bands. It is clear from Eq. (2.46) that M−+ vanishes for

qy = 0 because |ψ+(ky)〉 and |ψ−(ky)〉 are orthogonal.

In the case of (TMTSF)2ReO4, the inter-layer tunneling with the amplitude

tc occurs between the chains of different types. The in-plane Hamiltonian of one

layer has the form (2.40), whereas the sign of Eg is reversed in the Hamiltonian H ′

of another layer

H ′ =




−Eg 2tb cos(kyb)

2tb cos(kyb) Eg


 . (2.47)
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The eigenvalues of H ′ are the same as in Eq. (2.41), but the corresponding eigen-

vectors are different

|ψ′±(ky)〉 =
1

N ′±
(λ± − Eg, 2tb cos kyb), (2.48)

N ′
+ = N−, N ′

− = N+. (2.49)

The scalar products of the wave functions in the adjacent layers now are

M−− = 〈ψ′−(ky + qy)|ψ−(ky)〉, (2.50)

M++ = 〈ψ′+(ky + qy)|ψ+(ky)〉 (2.51)

for the same kinds of bands and

M−+ = 〈ψ′−(ky + qy)|ψ+(ky)〉 (2.52)

for different kinds of bands. Now M−+ does not vanish for qy = 0, because |ψ+(ky)〉

and |ψ′−(ky)〉 are not orthogonal.
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Chapter 3

Angular magnetoresistance oscillations in graphene bilayer

3.1 Introduction

Graphene is one atom-thick planar sheet of sp2-bonded carbon atoms that are packed

in a honeycomb crystal lattice which contains two inequivalent sublattices A and

B (two atoms per unit 2D unit cell). It is the two-dimensional building block of

carbon materials of every other dimensionality. It can be stacked into 3D graphite,

rolled into 1D nanotubes, or 0D buckyballs. For decades scientists presumed that

2D graphite sheet could not exist in its free state; they reasoned that its planar

structure would be thermodynamically unstable and possibly curl into carbon soot.

However in 2005 groups in university of Manchester and Columbia university [82, 83]

managed to isolate single graphene sheets and since then there has been a huge surge

in graphene related research.

Even though the graphene sheet is an ideal realization of a two dimensional

system, its properties differ markedly from the well-studied case of quantum wells

in conventional semiconductor interfaces. Some unusual phenomena characteris-

tic of graphene are the following: first, graphene’s conductivity never falls below

a minimum value corresponding to the quantum unit of conductance, even when

concentration of charge carriers tend to zero [82]; second, the integer quantum Hall

effect in graphene is anomalous in that it occurs at half integer filling factors [83];
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and third, in graphene bilayers the plateaus in Hall conductivity occur at the stan-

dard integer positions, but the last (zero-level) plateau is missing [84]. In this

chapter we study, how the unusual properties of graphene manifests itself in angular

magnetoresistance oscillations (AMRO) in graphene bilayers.

The angular magnetoresistance oscillation were originally discovered in quasi-

two-dimensional organic conductors of the (BEDT-TTF)2X family [85, 86]. Upon

rotation of magnetic field B, electrical resistivity oscillates in tan θ, where θ is the

angle between B and the normal to the layers. The oscillations are very strong

and most pronounced in the interlayer resistivity ρz. AMRO are different from

Shubnikov-de Haas (SdH) oscillations, where resistivity oscillates as a function of

magnetic field for a fixed orientation. AMRO typically persists to substantially

higher temperatures than SdH oscillations, so the two effects can be clearly separated

experimentally. In the next section we give the details of the calculation of AMRO
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in metallic bilayers.

3.2 AMRO in metallic bilayers

Consider two independent metallic layers a and b separated by a distance d, as

shown in Fig. 3.1. In a perpendicular magnetic field B = (0, 0, Bz) with the choice

of vector potential A = (0, Bzx, 0), the Hamiltonian in the independent layers a and

b is

Ha,b =
h̄2

2m
k2

x +
h̄2

2m
(ky − eBzx)2 (3.1)

=
h̄2

2m
k2

x +
1

2
mω2

c (x− l2⊥ky)
2

where ωc = eBz/m is the cyclotron frequency and l⊥ =
√

h̄/eBz is the magnetic

length. The eigenfunctions and the corresponding eigenvalues of Ha,b are

ψn(x, y) = eikyyφn(x− l2⊥ky), εn = (n + 1/2)h̄ωc (3.2)

Here φn(x) is a one dimensional harmonic oscillator eigenfunction,

φn(x) = (2nn!
√

πx0)
−1/2 exp

[
−1

2

(
x

x0

)2
]
Hn

(
x

x0

)
, x0 =

√
h̄

mωc

(3.3)

Hn are the Hermite polynomials, and n is a non-negative integer representing the

Landau level. When the possibility of hopping between the layers is included the

two layers are coupled. The electron tunneling between the layers is described by

the Hamiltonian

H⊥ = t⊥
∫

ψ̂†a(r)ψ̂b(r)eieAz(r)d/h̄d2r + H.c. (3.4)

Az(r) = Bxy (3.5)
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where t⊥ is the interplane tunneling amplitude, e is the electron charge, Az(r) is the

vector potential, ψ̂a,b are the electron destruction operators in layers a and b and

r = (x, y). We assume that the interlayer tunneling amplitude t⊥ is small compared

to the Fermi energy in each layer, so it can be treated as a perturbation. In the low-

temperature limit the interlayer conductivity σzz is given by [87]

σzz = σ0

∑

n,n′
ϑ2

n,n′

∞∫

−∞
[−f ′(ζ)]ρa,n(ζ)ρb,n′(ζ) dζ (3.6)

where σ0 is related to the conductivity at zero magnetic field (for the following

calculations we set it equal to 1), f is the Fermi distribution function, ρn is density of

states for the Landau level n and ϑn,n′ = 〈ψa,n|H⊥|ψb,n′〉/t⊥. In the low temperature

limit we can approximate −f ′(ζ) = δ(ζ−µ), where µ is the chemical potential. Then

taking only the diagonal contribution n = n′ in Eq. (3.6), we get

σzz =
∑
n

ϑ2
n,n ρ2

n(µ) (3.7)

We assume that in the low temperature limit the density of states are sharply

peaked around the Landau levels and their spread is much smaller than h̄ωc, the

energy difference between the levels. Under this assumption, if the Fermi surface is

between the Landau levels η and η + 1, then only the terms corresponding to these

two levels will have a significant contribution to the interlayer conductivity. Thus,

we can approximate the interlayer conductivity in Eq. (3.7) by

σzz = σ0

[
ϑ2

η,η ρ2
η(µ) + ϑ2

η+1,η+1 ρ2
η+1(µ)

]
(3.8)

42



Generally there is no accurate analytic expression for ρ(ξ), we assume it has the

form

ρn(ν) = exp

( |ν − n|2
Γ

)
, (3.9)

where Γ is the damping of the levels and ν = h̄k2
F /2eBz is a continuous index. The

matrix element

ϑn,n =

∞∫

−∞
dx

∞∫

−∞
dy φn(x− l2⊥ky)e

ieBxyd/h̄φn(x− l2⊥k′y) eiy(ky−k′y), (3.10)

The integral can be evaluated analytically [88] and we obtain

ϑn,n = e−w2

Ln(2w2), w =
Bxd

2

√
e

h̄Bz

, (3.11)

where Ln(ξ) are the Laguerre polynomials. Substituting Eq. (3.9) and (3.11) in Eq.

(3.8), we get

σzz =
[
e−2pα2

Lp(4pα
2)

]2
exp

[
−(p− ν)2

Γ

]
+

[
e−2qα2

Lq(4qα
2)

]2
exp

[
−(ν − q)2

Γ

]

(3.12)

where α = w
√

2ν = edBx/2h̄kF , p = Int(ν)+1 and q = p − 1. Fig. 3.2 shows

the contour plot of σzz as a function of α and 1/ν calculated from Eq. (3.12), for

Γ = 0.18. The plot shows a rich pattern of oscillations. For a fixed orientation the

of the magnetic field, the oscillations in the radial direction are the SdH oscillations

and for a fixed magnitude of magnetic field the oscillations in the angular direction

are the AMRO. All these oscillations can be interpreted as a particular manifestation

of Aharanov-Bohm effect [75].

For ν À 1 the ν-th Laguerre polynomial can be approximated by the Bessel
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Figure 3.2: Contour plot of σzz in a metallic bilayer calculated from Eq. 3.12

.

function of order zero

Lν(ξ) ∼= J0

(
2
√

νξ
)

eξ/2, (3.13)

and the zero-th order Bessel function has the asymptotic form

J0(ξ) ≈
√

2/πξ cos(ξ − π/4). (3.14)

Using these approximations we get

ϑν,ν ≈ cos (4να− π/4)√
2πνα

=

√
2

π

cos (dkF Bx/Bz − π/4)√
dkF Bx/Bz

. (3.15)

From the above equation we see that the effective tunneling amplitude vanishes
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periodically with respect to tan θ = Bx/Bz. This gives rise to the peaks in resistivity

in the z direction mentioned in the introduction.

3.3 Graphene energy levels in a perpendicular field

Electrical properties of graphene can be described by a conventional tight-binding

model [89]. The tight-binding dispersion is

ε(k) = ±t
√

1 + 4 cos2 πkya + 4 cos πkya + 4 cos πkya cos πkx

√
3a (3.16)

where t ≈ 2.8eV is the nearest-neighbor hopping amplitude, a ≈ 2.46Åis the lattice

constant, and k = (kx, ky) is the in plane wave vector. There are two bands,

conduction band (corresponding to + sign) and valence band (corresponding to the

- sign). The two bands touch each other at six different points in momentum space.

However, only two (K and K ′) of these six points are independent, and the rest

are equivalent by symmetry. The Hamiltonian at the vicinity of these one of these

points (say K) has the form

H(p) = vF




0 px + ipy

px − ipy 0


 = vF




0 peiθp

pe−iθp 0


 , θp = tan−1(py/px)

(3.17)

where the Fermi velocity vF = 3at/2h̄ ≈ 106m/s. This Hamiltonian is well known in

both condensed-matter and particle physics; in the latter case it is used to describe,

e.g., a 2D massless neutrino. The eigenstates and the corresponding energies are
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given by [90, 91, 92]

|p〉 =
1√
2
eip.r/h̄




beiθp/2

e−iθp/2


 , E = bh̄vF p, (3.18)

where b = 1(−1) for the states above (below) the energy at K. Eq. (3.18) shows that

the electron possesses a two-component vector that gives the amplitude of electronic

wave function on the two sublattice atoms A and B. In a perpendicular magnetic

field B = (0, 0, Bz) the Hamiltonian in the vicinity of the Dirac point K is

H(p) = vF




0 px + i(py − eBzx)

c.c. 0


 , (3.19)

The eigenvectors ψ = {ψA, ψB} and corresponding eigenvalue ε satisfy the equation

vF




0 px ± i(py − eBzx)

c.c. 0







ψA

ψB


 = ε




ψA

ψB


 (3.20)

which simplifies to the operator equation

v2
F (p2

χ + eB2
zχ

2 − eBzh̄)ψA = ε2ψA (3.21)

v2
F (p2

χ + eB2
zχ

2 + eBzh̄)ψB = ε2ψB, (3.22)

where χ = x− l2⊥ky. The above equations have the form of the Schrödinger equation

for a one-dimensional harmonic oscillator. A comparison gives

ψK(χ, y) =




φn(χ)

φn−1(χ)


 eikyy, εn = ±

√
2eh̄v2

F nBz (3.23)

where n ≥ 0 represents the Landau level (φ−1(χ) = 0). A similar calculation gives,

in the vicinity of K ′

ψK′(χ, y) =




φn−1(χ)

φn(χ)


 eikyy, εn = ±

√
2eh̄v2

F nBz (3.24)
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3.4 Interlayer conductivity in graphene bilayer

We assume that the interlayer tunneling amplitude between the graphene layers,

t⊥, is small compared with the interlayer energy scales, so it can be treated as a

perturbation. First we consider the hexagonal stacking, shown in Fig. 3.3(a). In

this case, all atoms in the lower layer are exactly below the atoms in the upper layer.

Then the tunneling between the layers takes place from site A to A′ and B to B′.

Using Eq. (3.4) and (3.23) we get the matrix element

ϑn,n = 2

∞∫

−∞
dχ

∞∫

−∞
dy eieBxdy/h̄

[
φn(χ)φn(χ + s) + φn−1(χ)φn−1(χ + s)

]
eikyye−ik′yy,

(3.25)

where s = h̄(ky − k′y)/eBz. Integrating the above equation with respect to y gives

ϑn,n = 4π

∞∫

−∞
dχ [ φn(χ)φn(χ + s) + φn−1(χ)φn−1(χ + s)] δ

(
ky − k′y +

eBxd

h̄

)

(3.26)

ky is a good quantum number and therefore during tunneling the electron momentum

in y direction is conserved. From the δ function we get the momentum conservation

equation ky = k′y + eBxd/h̄. Substituting this in the above equation we get

ϑn,n = 4π

∞∫

−∞
dχ

[
φn

(
χ +

Bxd

2Bz

)
φn′

(
χ− Bxd

2Bz

)
+ φn−1

(
χ +

Bxd

2Bz

)
φn′−1

(
χ− Bxd

2Bz

)]
.

(3.27)

These integrals can be evaluated analytically to get (ignoring the multiplicative

constants)

ϑn,n = e−w2
[
Ln(2w2) + Ln−1(2w

2)
]

= e−2nα2
[
Ln(4nα2) + Ln−1(4nα2)

]
, (3.28)
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where Ln(ξ) are the Laguerre polynomials. There are two terms corresponding to

tunneling between different kind of sites. The interlayer conductivity is square to

tunneling amplitude and therefore depends on the interference of these two terms.

Substituting Eq. 3.28 in Eq. 3.8 we get

σzz =
[
e−2pα2

(
Lp(4pα

2) + Lp−1(4pα
2)

)]2
exp

[
−(p− ν)2

Γ

]
+

[
e−2qα2

(
Lq(4nα2) + Lq−1(4qα

2)
)]2

exp

[
−(ν − q)2

Γ

]
(3.29)

Fig. 3.4 shows the contour plot of σzz as a function of α and 1/ν, calculated using

Eq. (3.29), for Γ = 0.18. For small parallel field the interlayer conductivity shows

oscillation patterns similar to metallic bilayer but at large field the oscillations are

suppressed. This is because at large parallel fields, the tunneling takes place from

state |p(θ = 0)〉 in one layer to |p(θ = π)〉 in the other layer. Using Eq. 3.18 we see

that 〈p(θ = π)|p(θ = 0)〉 = 0, hence the tunneling is suppressed.

Next we consider the case where the graphene layers are shifted relative to

each other, as shown in Fig. 3.3. This structure is known as the Bernal structure

[93]. In this case the interlayer tunneling takes place between sites A and B′ and

there is no tunneling from A′ and B. Thus, tunneling takes place between half of

the atoms in each layer. Using Eq. (3.4)and (3.23) we get the effective interlayer

tunneling amplitude

ϑn,n =

∞∫

−∞
dχ

∞∫

−∞
dy eieBxdy/h̄ [ φn(χ)φn−1(χ + s) + φn−1(χ)φn(χ + s)] eikyye−ik′yy

(3.30)
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Integrating the above equation with respect to y gives

ϑn,n = 2π

∞∫

−∞
dχ

[
φn(χ)φn−1(χ+s)+φn−1(χ)φn(χ+s)

]
δ

(
ky − k′y +

eBxd

h̄

)
(3.31)

Conservation of momentum in y-direction gives ky = k′y + edBx/h̄, substituting this

in the previous equation we get

ϑn,n = 2π

∞∫

−∞
dχ

[
φn

(
χ +

Bxd

2Bz

)
φn−1

(
χ− Bxd

2Bz

)
+ φn−1

(
χ +

Bxd

2Bz

)
φn

(
χ− Bxd

2Bz

)]
.

(3.32)

The two integrals are equal and can be evaluated analytically to get

ϑn,n = 4π

√
2

n
we−w2

L1
n−1(2w

2) = 8παe−2nα2

L1
n−1(4nα2), (3.33)

where L1
n(ξ) is the generalized Laguerre polynomial. In this case the effective tun-

neling amplitude contains only one term because there is only one kind of tunneling

(A to B′). Substituting the above into Eq. (3.8) equation get

σzz =
[
αe−2pα2

L1
p−1(4pα

2)
]2

exp

[
−(p− ν)2

Γ

]
+

[
αe−2qα2

L1
q−1(4qα

2)
]2

exp

[
−(ν − q)2

Γ

]

(3.34)

Fig. 3.5 shows the contour plot of σzz as a function of α and 1/ν calculated from

Eq. (3.34), for Γ = 0.18. The oscillation patterns are significantly different from the

hexagonal stacking case. For zero parallel field the conductivity is suppressed be-

cause the wavefunctions at the sites A and B′ are like spinors of the form {φn, φn−1}

and {φn′−1, φn}. These wave functions are orthogonal to each other, and therefore

there cannot be any tunneling between them.
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3.5 Dispersion in parallel field

In this section we discuss the effects of a parallel magnetic field on the low energy

band structure of graphene bilayers. In graphene a bilayer, the interlayer tunneling

amplitude t⊥ ≈ 300meV. Here we consider the case where the intralayer energy

scales are smaller than t⊥. Thus, we cannot treat t⊥ as a perturbation, and an

exact treatment is required. In this section we consider only the Bernal structure,

shown in Fig. 3.3. The interlayer tunneling takes place between the sites A and B′

only. Using the model of graphene bilayer described in Ref. [94], the Hamiltonian

in the vicinity of one of the Dirac points (say K) is

H(p) = vF




∆ peiφ(p) t⊥/vF 0

pe−iφ(p) ∆ 0 0

t⊥/vF 0 −∆ pe−iφ(p)

0 0 peiφ(p) −∆




, (3.35)

where p = (px, py) is the in-plane momentum measured from the K, φ(p) =

tan−1(py/px) and ∆ is a measure of the asymmetry between the layers. Fig. 3.6

shows the plot of the energy bands calculated from Eq. 3.35, for symmetric layers

(∆ = 0). The coupling between the two graphene layers transforms the massless

Dirac fermions, characteristic of single-layer graphene, into a new type of quasiparti-

cles which have an ordinary parabolic spectrum ε(p) = p2/2m. Now, if we introduce

a parallel magnetic field B = (0, By, 0), then with the choice of the vector potential
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A = (−Byz, 0, 0), the Hamiltonian in Eq. 3.35 becomes

H(p) = vF




∆ (px + q/2) + ipy t⊥/vF 0

(px + q/2)− ipy ∆ 0 0

t⊥/vF 0 −∆ (px − q/2)− ipy

0 0 (px − q/2) + ipy −∆




,

(3.36)

where q = ezBy and e is the charge of an electron. Here z is a good quantum

number representing the vertical position of the two layers. We assume that the

two layers are at z = ±d/2, where d ≈ 0.34nm is the experimentally measured

separation between the layers in graphene bilayer. Fig. 3.7(a) shows the plot of

the energy bands as a function of (px, py), calculated from the Hamiltonian in Eq.

(3.36). The qualitative features of the band structure can be understood in terms of

the band structure of graphene. As the electrons tunnel from one layer to another,

due to the magnetic field in the y direction, they feel an impulse in the x direction

(due to Lorentz force). The impulse causes a momentum shift between the energy

bands of the two layers, and the two Dirac cones are shifted relative to each other by

momentum q. Due to the momentum shift the Dirac points do not overlap. As the

two cones hybridize due to interlayer coupling, the two Dirac points are preserved

and reappear at px = ±q/2. The analytical form of the energy bands are

λ1(px) =
vF

2

√
q2 + 2γ2 + 4p2

x − 2
√

q2γ2 + γ4 + 4q2p2
x + 4p2

xγ
2, λ2(px) = −λ1(px).

(3.37)
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where γ = t⊥/vF . Fig. 3.7(b) shows the plot of these two bands as a function of px.

Expanding the function λ1(px) around px = q/2 we obtain

λ1(px) =
qvF√
q2 + γ2

(px − q/2) (3.38)

As expected, close to px = ±q/2, energy depends linearly on momentum. This

implies that the Dirac-like spectrum, which was lost in graphene bilayers due to the

interlayer coupling, can be recovered by applying a parallel magnetic field between

the layers. As mentioned earlier the Quantum Hall effect in graphene-bilayer and

graphene are different. With a parallel magnetic field, at low energies, we can tune

between a graphene bilayer dispersion and a graphene-like dispersion (two Dirac-like

cones in Fig. 3.7). This opens up an interesting question: can there be a continuous

Quantum Hall effect ?

Generically the two layers in a graphene bilayer would always be asymmetric

(∆ = 0 is an ideal case); therefore in general ∆ 6= 0. Fig. 3.8 shows the energy bands

calculated from Eq. 3.35 for ∆ 6= 0. Notice that a gap opens up between the valance

and the conduction band. This gap can be tuned by changing ∆ by doping the layers

or by applying a gate bias. This gap has great importance as it makes graphene

bilayer the only known semiconductor with a tunable energy gap and opens up the

possibility of developing tunable photo detectors and lasers. If a parallel magnetic

field is applied, then the low energy bands get further modified. Fig. (3.9) shows

the two low energy bands calculated for different values of q/∆. Thus along with

∆, the parallel magnetic fields become a second parameter by which the low energy

bands of graphene bilayer can be modified.
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For all plot we chose the parameters q, ∆ and t⊥ to have comparable values.

For large magnetic field, like By = 50T , vF q = vF edBy =17mev. This means that

vF q/t⊥ ∼ 1/15. This is much smaller than the values that we used in our plots.

Thus, the effects that we mentioned above might be a little too small to measure in

an experiment.
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Figure 3.3: Top view of the arrangement of the carbon atoms in graphene layers in

(a) Hexagonal stacking (b) Bernal stacking

54



1
/ν

=
2
eB

z
/h̄

k
2 F

edBx/2h̄kF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.4: Contour plot of σzz in graphene bilayer, calculated from Eq. 3.29. The

layers are stacked according to hexagonal stacking
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Figure 3.5: Contour plot of σzz in graphene bilayer, calculated from Eq. 3.34. The

layers are stacked according to Bernal stacking
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Figure 3.6: Plot shows the band structure of graphene bilayer for ∆ = 0. (a) Shows

the band structure as a function of (px, py), (b) shows the vertical section of the plot

in (a) for py = 0.
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Figure 3.7: (a) Plot of the low energy bands of graphene bilayer in a parallel magnetic

field, (b) Vertical section of the plot in (a). In a parallel magnetic field Dirac like

cones reappear.
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Figure 3.8: Plot of the energy bands of graphene bilayer for asymmetric layers

(∆ 6= 0). Energy gap of the order of ∆ open up between the two low energy bands
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Figure 3.9: Plot of the low energy band in graphene bilayer. The q/∆ = 1 curve

shows that the bands can be modified by applying a parallel magnetic field
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Chapter 4

A study of the personal income distribution in Australia

Distribution of income x is characterized by the probability density function (PDF)

P (x), defined so that the probability to find income in the interval from x to x+dx is

equal to P (x) dx. The PDFs for the distributions discussed above have the following

functional forms:

P (x) =





1
T

exp(−x/T ) exponential,

1
xs
√

2π
exp

[− log2(x/m)
2s2

]
log-normal,

(β)−(1+α)

Γ(1+α,0)
xα exp(−x/β) gamma.

(4.1)

The exponential distribution has one parameter T , and its P (x) is maximal at x = 0.

The log-normal and gamma distributions have two parameters each: (m, s) and

(β, α). They have maxima (called modes in mathematical statistics) at x = m exp−s2

and x = αβ, and their P (x) vanish at x = 0. Many researchers impose the condition

P (0) = 0 a priori, “because people cannot live on zero income”. However, this

assumption must be checked against the real data.

In this chapter, we analyze statistical data on personal income distribution in

Australia for 1989–2000 and compare them with the three functions in Eq. (4.1).

The data were collected by the Australian Bureau of Statistics (ABS) using surveys

of population. The anonymous data sets give annual incomes of about 14,000 rep-

resentative individuals, and each individual is assigned a weight. The weights add

up to 1.3 × 107 to 1.5 × 107 in the considered period, which is comparable to the
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current population of Australia of about 20 million people. In the data analysis,

we exclude individuals with negative and zero income, whose total weight is about

7%. These ABS data were studied in the previous paper [48], but without weights

and with the emphasis on the Pareto tail at high income. Here we re-analyze the

data in the middle and low income range covering about 99% of the population, but

excluding the Pareto tail. The number of data points in the Pareto tail is relatively

small in surveys of population, which complicates accurate analysis of the tail.

4.1 Cumulative Distribution Function

In this Section, we study the cumulative distribution function (CDF) C(x) =

∫∞
x P (x′) dx′. We sort incomes xn of N individuals in decreasing order, so that

n = 1 corresponds to the highest income, n = 2 to the second highest, etc. When

the individuals are assigned the weights wn, the cumulative probability for a given

xn is C =
∑n

k=1 wk/
∑N

k=1 wk, i.e. C(x) is equal to the normalized sum of the weights

of the individuals with incomes above x. We fit the empirically constructed C(x)

to the theoretical CDFs corresponding to Eq. (4.1)

C(x) =





exp(−x/T ) exponential,

1
2

[
1− Erf

(
log(x/m)

s
√

2

)]
log-normal,

Γ(1 + α, x/β)/Γ(1 + α, 0) gamma,

(4.2)

where Erf(x) = 2√
π

∫ x
0 e−z2

dz is the error function, and Γ(α, x) =
∫∞
x zα−1e−z dz.

To visualize C(x), different scales can be used. Fig. 4.1(a) uses the log-linear

scale, i.e. shows the plot of ln C vs. x. The main panel in Fig. 4.1(b) uses the linear-
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linear scale, and the inset the log-log scale, i.e. ln C vs. ln x. We observe that the

log-linear scale is the most informative, because the data points approximately fall

on a straight line for two orders of magnitudes, which suggests the exponential distri-

bution. To obtain the best fit in the log-linear scale, we minimize the relative mean

square deviation σ2 = 1
M

∑M
i=1

(
Ce(xi)−Ct(xi)

Ce(xi)

)2 ≈ 1
M

∑M
i=1{ln[Ce(xi)] − ln[Ct(xi)]}2

between the empirical Ce(x) and theoretical Ct(x) CDFs. For this sum, we select

M = 200 income values xi uniformly spaced between x = 0 and the income at which

CDF is equal to 1%, i.e. we fit the distribution for 99% of the population. The min-

imization procedure was implemented numerically in Matlab using the standard

routines.

For the exponential distribution, the fitting parameter T determines the slope

of ln C vs. x and has the dimensionality of Australian dollars per year, denoted as

AUD or simply $ (notice that 1 k$ = 103 $). T is also equal to the average income

〈x〉 for the exponential distribution. The parameters m and β for the log-normal

and gamma distributions also have the dimensionality of AUD, and the average

incomes 〈x〉 for these two distributions are mes2/2 and βΓ(α+2, 0)/Γ(α+1, 0). The

parameters s and α are dimensionless and characterize the shape of the distributions.

The values of these parameters, obtained by fits for each year, are given in Table

4.1. Using the values of T , we plot C vs. x/T in Fig. 4.1. In these coordinates,

the CDFs for different years (shown by different symbols) collapse on a single curve

for the lower 98% of the population. The collapse implies that the shape of income

distribution is very stable in time, and only the scale parameter T changes in nominal

dollars. The three lines in Fig. 4.1 show the plots of the theoretical CDFs given
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by Eq. (4.2). In these coordinates, the exponential CDF is simply a straight line

with the slope −1. For the plots of the log-normal and gamma CDFs, we used

the parameters s = 0.72, m/T = 0.88, α = 0.38, and β/T = 0.77 obtained by

averaging of the parameters in Table 4.1 over the years. We observe that all three

theoretical functions give reasonably good, albeit not perfect, fits of the data with

about the same quality, as confirmed by the values of σ in Table 4.1. Although

the log-normal and gamma distributions have the extra parameters s and α, the

fitting procedure selects their values in such a way that these distributions mimic

the exponential shape. Actually, we constructed the gamma fit only for 98% of the

population, because the fit for 99% gives α = 0, i.e. the exponential. We conclude

that the exponential distribution gives a reasonable fit of the empirical CDFs with

only one fitting parameter, whereas the log-normal and gamma distributions with

more fitting parameters do not improve the fit significantly and simply mimic the

exponential shape.

However, by construction, C(x) is always a monotonous function, so one may

argue that different CDFs look visually similar and hard to distinguish. Thus, it is

instructive to consider PDF as well, which we do in the next Section.

4.2 Probability Density Function

In order to construct P (x), we divide the income axis into bins of the width ∆x,

calculate the sum of the weights wn of the individuals with incomes from x to x+∆x,

and plot the obtained histogram. However, there is subjectiveness in the choice of
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the width ∆x of the bins. If the bins are too wide, the number of individuals in

each bin is big, so the statistics is good, but fine details of the PDF are lost. If the

bins are too narrow, the number of individuals in each bin is small, thus relative

fluctuations are big, so the histogram of PDF becomes noisy. Effectively, P (x) is a

derivative of the empirical C(x). However, numerical differentiation increases noise

and magnifies minor irregularities of C(x), which are not necessarily important when

we are interested in the universal features of income distribution. To illustrate these

problems, we show PDFs obtained with two different bin widths in Fig. 4.2.

Fig. 4.2(a) shows the coarse-grained histogram of P (x) for all years with a

wide bin width ∆x/T ≈ 0.43. The horizontal axis represents income x rescaled

with the values of T from Table 4.1. The lines show the exponential, log-normal,

and gamma fits with the same parameters as in Fig. 4.1. With this choice of the

bin width, the empirical P (x) is a monotonous function of x with the maximum at

x = 0, and the exponential function gives a reasonable overall fit. The log-normal

and gamma fits have maxima at x/T ≈ 0.56 and x/T ≈ 0.29. These values are close

to the bin width, so we cannot resolve whether P (x) has a maximum at x = 0 or at

a non-zero x within the first bin.

Fig. 4.2(b) shows the PDF for the year 1994-95 with a narrow bin width ∆x = 1

k$, which corresponds to ∆x/T ≈ 0.05. This PDF cannot be fitted by any of the

three distributions, because it has a very sharp and narrow peak at the low income

7.3 k$, which is way below the average income of 19.6 k$ for this year. This peak is

present for all years, and its position is reported in the last column of Table 4.1. The

peak is so sharp and narrow that it cannot be attributed to the broad maxima of the
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log-normal or gamma PDFs. We speculate that this peak occurs at the threshold

income of some sort of government policy, such as social welfare, minimal wage, or

tax exemption. Comparing the empirical PDF with the exponential curve, shown

by the solid line, we infer that the probability density above and below the peak is

transferred to the peak, thus creating anomalously high population at the special

income.

We also studied how often different income values occur in the data sets. The

most frequently reported incomes for different years are always round numbers, such

as 15 k$, 20 k$, 25 k$, etc. This effect can be seen in the periodically spaced spikes in

Fig. 4.2(b). It reflects either the design of the survey questionnaires, or the habit of

people for rounding their incomes in reporting. In addition to the round numbers,

we also find the income corresponding to the peak position among the five most

frequently reported incomes. This income, shown in the last column in Table 4.1, is

not round and changes from year to year, but sometimes stays the same. This again

suggests that the sharp peak in Fig. 4.2(b) is the result of a government-imposed

policy and cannot be explained by statistical physics arguments.

By definition, P (x) is the slope of C(x) with the opposite sign. Fig. 4.1

clearly shows that the slope of C(x) at x = 0 is not zero, so P (x = 0) 6= 0. Fig.

4.2(b) also shows that the probability density at zero income is not zero. In fact,

P (x = 0) is higher than P (x) for all other x, except in the narrow peak. The

non-vanishing P (x = 0) is a strong evidence against the log-normal, gamma, and

similar distributions, but is qualitatively consistent with the exponential function.

However, there is also substantial population with zero and negative income, which
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is not described by any of these theories.

4.3 Discussion and Conclusions

All three functions in Eq. (4.1) are the limiting cases of the generalized beta distri-

bution of the second kind (GB2), which is also discussed in econometric literature

on income distribution [95]. GB2 has four fitting parameters, and distributions with

even more fitting parameters are considered in literature [95]. Generally, functions

with more parameters are expected fit the data better. However, we do not think

that increasing the number of free parameters gives a better insight into the prob-

lem. We think that a useful description of the data is the one that has the minimal

number of parameters, yet reasonably (but not necessarily perfectly) agrees with the

data. From this point of view, the exponential function has the advantage of having

only one parameter T over the log-normal, gamma, and other distributions with

more parameters. Fig. 4.1(a) shows that log C vs. x is approximately a straight line

for about 98% of population, although small systematic deviations do exist. The

log-normal and gamma distributions do not improve the fit significantly, despite

having more parameters, and actually mimic the exponential function. Thus we

conclude that the exponential function is the best choice.

The analysis of PDF shows that the probability density at zero income is

clearly not zero, which contradicts the log-normal and gamma distributions, but is

consistent with the exponential one, although the value of P (x = 0) is somewhat

lower than expected. The coarse-grained P (x) is monotonic and consistent with the
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exponential distribution. The high resolution PDF shows a very sharp and narrow

peak at low incomes, which, we believe, results from redistribution of probability

density near the income threshold of a government policy. Technically, none of

the three function in Eq. (4.1) can fit the complicated, three-peak PDF shown in

Fig. 4.2. However, statistical physics approaches are intended to capture only the

baseline of the distribution, not its fine features. Moreover, the deviation of the

actual PDF from the theoretical exponential curve can be taken as a measure of the

impact of government policies on income redistribution.
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Figure 4.1: The cumulative distribution function (CDF) of income, shown in the

log-linear (a), linear-linear (b), and log-log (inset) scales. The income values for

different years are normalized to the parameter T of the exponential distribution,

given in Table 4.1. The lines show fits to different theoretical distributions in Eq.

(4.2).
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Table 4.1: Parameters of the distributions (4.1) and (4.2) obtained by minimization

of the relative mean square deviation σ2 between the empirical and theoretical CDFs.

The last column gives position of the sharp peak in Fig. 4.2(b).

Year T m s β α σ Peak

k$ k$ k$ Exp L-N Gamma $

1989-90 17.8 15.1 0.74 13.4 0.39 13% 11% 6.8% 6196

1993-94 18.5 18.8 0.63 13.1 0.59 18% 9.6% 5.7% 7020

1994-95 19.6 17.7 0.71 14.9 0.40 15% 9.4% 5.5% 7280

1995-96 20.5 18.2 0.72 15.7 0.39 14% 8.6% 6.5% 7280

1996-97 21.2 18.9 0.72 16.5 0.37 14% 8.4% 7.7% 7540

1998-99 23.7 19.0 0.79 19.6 0.25 10% 11% 7.1% 7800

1999-00 24.2 19.6 0.78 19.3 0.30 11% 11% 7.2% 7800
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Figure 4.2: The probability density function (PDF) of income distribution shown

with coarse-grained (a) and high (b) resolutions. The lines show fits to different

theoretical functions in Eq. (4.1).
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Chapter 5

Individual Income Distribution: Modeling and Empirical Study

In Ref. [55] Silva and Yakovenko studied the temporal evolution of income distribu-

tion in the USA for the years 1983-2001. They found that the personal income distri-

bution has a well-defined two-class structure. The majority of population (97−99%)

belongs to the lower class characterized by the exponential Boltzmann-Gibbs dis-

tribution, whereas the upper class (1 − 3% of the population) has a Pareto power

law distribution. In section 5.1 we extend that study to subsequent years 2002-2006

(presently the latest year available).

Modeling of individual income distribution has a long history. A reasonable

approach which is quite popular in economic literature [46, 47, 96], is to model

income dynamics as a stochastic process and study its corresponding stationary

solution. In section 5.2 we describe a model in which the income dynamics is treated

as a sum of additive and multiplicative stochastic processes. The model captures

the two-class structure of individual income distribution found in Ref. [55].

In section 5.3 we analyze data from an unusual source, University of Mary-

land’s (UMD) campus newspaper “The Diamondback”. Maryland state law re-

quires the salaries of state employees be made public and thus each year “The Dia-

mondback” publishes an extensive, annual database of salaries of university employ-

ees [97]. The employees contain professors, administrators, coaches, housekeepers,
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health center employees and dining hall workers. The data contains annual income

of a large number of employees over a fairly broad range of income. We investigate

the question that whether this data is a good representation of the overall trend of

income distribution in the USA.

5.1 Internal Revenue Service data

We follow the notation used in chapter 4, P (r) dr is the probability to find income

in the interval from r to r + dr and the cumulative distribution function C(r) =

∫∞
r P (r′) dr′. The publicly available data from IRS is preprocessed into income bins.

This effectively gives the cumulative distribution function C(r) for certain values of

r. First we made plots of C(r) vs. r for each year, in log-linear scale. We found

the plots are straight lines for the lower 94-97% of the population. Straight lines

in log-linear scale suggests that this part of the population follows the exponential

distribution. By fitting C(r) with the function exp(−r/T ), we found the average

income T for each year. Fig. 5.1 shows the plot of C(r) vs. r/T in log-linear scale.

The columns of numbers list the values of the average income T for the corresponding

year. In these coordinates the data points for different years collapse onto a straight

line, which shows that this part of the distribution is very stable in time and does

not change at all over the years.

Fig. 5.2 shows the plot of C(r) vs. r/T in log-log scale for a wider range

of income r. The data points at low income are the same as the ones shown in

Fig. 5.1. As expected, the data points for different years collapse onto a single
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exponential curve for the lower part of the distribution. However above a certain

income r∗ ≈ 3.5T , the distribution function changes to a power law, as illustrated

by the straight lines in log-log scale of Fig. 5.2. The upper part of the distribution

does not collapse on a single line and changes from year to year. This shows that

this part of the distribution is not stable in time.

Even though the fraction of population in the Pareto tail is small, their fraction

f of the total income is significant, thus f can be thought of as a measure of income

inequality. This fraction f is quite dynamic and sometimes changes significantly

from year to year. One way to calculate f , is by constructing the so-called Lorenz

curve [98]. It is defined parametrically in terms of the two coordinates x(r) and

y(r) depending on the parameter r, which changes from 0 to ∞. The horizontal

coordinate x(r) =
∫ r
0 dr′P (r′) is the fraction of population with income below r.

The vertical coordinate y(r) =
∫ r
0 dr′r′P (r′)/

∫∞
0 dr′r′P (r′) is the total income of

this population, as a fraction of the total income in the system. An approximate

formula for the Lorenz curve is [54]

y = (1− f)[x + (1− x) ln(1− x)] + fΘ(x− 1), (5.1)

where f is the fraction of the total income contained in the Pareto tail, and Θ(x−1)

is the step function equal to 0 for x < 1 and 1 for x ≥ 1. The Lorenz curve (5.1)

experiences a vertical jump of the height f at x = 1, which reflects the fact that a

small fraction of total population has a significant fraction of the total income. We

made Lorenz curves for each year and found their best fits using Eq. 5.1. Fig. 5.3

shows typical Lorenz curves and their fits for two years. From the fits we obtained
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the values f . Fig. 5.4 shows the evolution of f over the last 24 years (f values for

years 1983-2001 were obtained from Ref. [55]). Income inequality peaks during the

speculative bubbles in the financial market. The peak in the year 2001 was due to

the “dot-com bubble” and the peak in 2006 was due to the speculative bubble in

the housing market.

In this section we extended the study of temporal evolution of income distribu-

tion in the USA [55] to the years 2002-2006. All our observations are in agreement

with the results of Ref. [55], mentioned in the beginning. In addition we found that

due to the speculative bubble in the housing market the income inequality peaked

in the year 2006. We expect that the data for the subsequent years (when available)

will show a decrease in income inequality, after the crash of that bubble in year

2007.

5.2 Modeling income distribution as a sum of additive and multi-

plicative stochastic processes

In section 5.1 we saw that income distribution follows a two-class structure. In this

section we discuss a model which captures that feature. Consider a large number of

agents among which there are pairwise transactions in which income is transferred

from one agent to another. In the real world, money is regularly transferred from

one agent to another in pairwise transactions, and it is not typical for agents to

trade portions of their income. Nevertheless, indirect transfer of income may occur

when one employee is promoted and another demoted while the total annual budget

75



is fixed, or when one company gets a contract whereas another one loses it, etc. Let

P (r, t) be the the probability that at time t, an arbitrary agent may have income

between r and r + dr. The time evolution of P (r, t) is given by the master equation

∂P (r, t)

∂t
=

∞∫

−∞
[−W (r, r′)P (r, t) + W (r′, r)P (r′, t)] dr′, (5.2)

where W (r, r′) dr′∆t denotes the probability that in a short interval of time ∆t an

agent with income r makes a transition to an income between r′ and r′ + dr′. The

first term in the integral in Eq. 5.2 corresponds to all those transitions that move

agents with income r at time t to some other income r′ and, hence, represent a

loss to the function P (r, t); similarly the second term in the integral corresponds

to all those transitions that bring agents with income r′ at time t to income r

and, hence, represent a net gain to the function P (r, t). We assume that only the

transitions between nearby incomes have an appreciable probability of occurring;

i.e, the transition probability W (r, r′) is sharply peaked around the value r′ = r and

falls rapidly to zero away from r. Denoting the interval ∆r = r′ − r by ξ we can

write

W (r, r′) → W (r; ξ), W (r′, r) = W (r′,−ξ),

where W (r; ξ) and W (r′;−ξ) have sharp peaks around the value ξ = 0 and fall

rapidly to zero elsewhere. Expanding right hand side of Eq. 5.2 in a Taylor series

around ξ = 0 and retaining terms up to second order only we get

∂P (r, t)

∂t
=

∂

∂r
[A(r)P (r, t)] +

∂2

∂r2
[B(r)P (r, t)] , (5.3)
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where the coefficients A(r) and B(r) are the drift and the diffusion terms and are

determined by the first and second moments of income changes per unit time

A(r) =

∞∫

−∞
ξW (r, ξ) dξ = −〈∆r〉

∆t
, (5.4)

B(r) =

∞∫

−∞
ξ2W (r, ξ) dξ =

〈(∆r)2〉
2∆t

. (5.5)

The stationary solution ∂tP = 0 of Eq. (5.3) obeys

∂(BP )

∂r
= −AP, (5.6)

which has the general solution

P (r) =
C

B(r)
exp

(
−

∫ r A(r′)
B(r′)

dr′
)

. (5.7)

Here C is a normalization function, such that
∫∞
0 P (r) dr = 1. Generally, the

income of the people in the lower-class comes through wages, and salaries and it is

reasonable to assume that their change in income is independent of income itself;

i.e. ∆r is independent of r, This process is called the additive diffusion [55]. In this

case, the coefficients in Eq. (5.3) are constants A0 and B0. Then Eq. (5.7) gives the

solution

P (r) =
1

T
exp(−r/Tr), Tr = B0/A0. (5.8)

On the other hand, the income of the upper class comes from bonuses, investments,

and capital gains [101], which are calculated in percentages. Therefore, for the upper

class, it is reasonable to expect that ∆r ∝ r, i.e. income changes are proportional

to income itself. This is known as the proportionality principle of Gibrat [?], and

the process is called the multiplicative diffusion [55] (multiplicative hypothesis for
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the upper class was quantitatively verified in Refs. [99, 100] for Japan, where tax

identification data is published for the top taxpayers). In this case, A = ar and B =

br2, and Eq. (5.7) gives the power-law distribution P (r) ∝ 1/rα+1 with α = 1+a/b.

However, the additive and multiplicative processes may coexist. An employee

may receive a cost-of-living raise calculated in percentages (the multiplicative pro-

cess) and a merit raise calculated in dollars (the additive process). In this case, we

have A = A0 + ar and B = B0 + br2 = b(r2
0 + r2), where r2

0 = B0/b. Substituting

these expressions into Eq. (5.7), we find

P (r) = C
e−(r0/Tr) tan−1(r/r0)

[1 + (r/r0)2]1+a/2b
, (5.9)

The distribution (5.9) interpolates between the exponential law for low r and the

power law for high r, because either the additive or the multiplicative process domi-

nates in the corresponding limit. The crossover between the two regimes takes place

at r ∼ r0, where the additive and multiplicative contributions to B are equal. The

distribution (5.9) has three parameters: the “income temperature” Tr = A0/B0, the

Pareto exponent α = 1 + a/b, and the crossover income r0. It is a minimal model

that captures the salient features of the empirical income distribution shown in Fig.

5.2.

We used Eq. (5.9) to fit the IRS data on personal income for the years 1996-

2005. The cumulative distribution function C(r) =
∫∞
r P (r′) dr′ does not have an

analytical form and has to be obtained by integrating P (r) numerically, for a given

set of parameters Tr, r0, and α. Searching for the parameter values for which the

numerically obtained C(r) fits the empirical CDF best, becomes a computationally
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challenging task. We simplified this task in the following way. We chose the Tr

values to be the same as the T values given in Fig. 5.2, and then obtained the other

two parameters r0 and α by minimizing the mean square error between the empirical

and the theoretical CDF, in log-log scale. Fig. 5.5 shows the plots of the CDF and

their best fits as function of r/Tr, in log-log scale. In these coordinates the data

points and their fits collapse on each other in the low to middle income regime. For

clarity’s sake the data points and their fits are shifted vertically for successive years.

Clearly, the theoretical curves agree very well with the empirical data. The values

of the fitting parameters are listed in table 5.1.

To conclude, in this section we discussed a theoretical model which captures

the two-class structure of income distribution in the USA. We obtained an analyt-

ical stationary solution of the Fokker-Planck equation for a stochastic process that

is a sum of the additive and multiplicative processes. The stationary probability

distribution function smoothly interpolates between an exponential distribution at

the low end and a power law at the high end. It may have different applications in

physics. Here we applied it to income distribution in a society by modeling income

as a stochastic process. We analyzed the personal income distribution data in USA

from the Internal Revenue Service. Using just three fitting parameters (the average

income in the exponential part, the power-law exponent, and the crossover point

between the exponential and the power laws), we obtained good fits of the IRS data

for a range of years.
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5.3 Distribution of annual income of UMD employees

In this section we analyze the annual salaries of University of Maryland employees,

published in “The Diamondback” for the years 2007 & 2008. For these two years,

the data sets contain the annual salaries of 6343 and 9119 employees respectively.

Fig. 5.3 shows the plots of CDF for years 2007 & 2008 in log-linear scale. To show

the data points clearly, the CDF for the year 2007 is shifted down by a factor of

10. In this scale most of the data points (except the ones at very low income) fall

on a straight line for almost three orders of magnitude. This again suggests that

the distribution of salaries is very well described by the exponential function. Also,

notice that on the high income side there are only a few points which do not lie

on the straight line. This implies that in this data set there is no power law tail,

like the one present in the IRS data, see Fig. 5.2. These observations are in good

agreement with the results of Ref. [55], that the lower-class people are the salary

earners and they follow the exponential distribution (like the UMD employees), the

upper-class people follow a power law and earn through investments and capital

gains (not present among the UMD employees). Fig. 5.3 also shows the exponential

fit to the relevant part of the CDF. The slope values obtained from the fits are

slightly smaller than expected (compare them with the slopes for the IRS data), we

do not have a good explanation for that.

At very low income the slope of C(r) is smaller than what is predicted by the

exponential distribution. In terms of P (r) it means that at very low income, the

value of the probability density is smaller than what is predicted by the exponential
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distribution. The PDF for the year 2008, shown in Fig 5.3, illustrates this fact. One

simple reason for this discrepancy could be that in a data set like this, people with

very low income get under sampled. On a larger data set, like the one from IRS, its

clear that the probability density is maximum at very low income.

In conclusion, we found that the annual salary of UMD employees follows the

exponential distribution and the employees are a good representation of the middle

income range salary earners in the USA.
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Figure 5.1: Figure shows the plot of cumulative probability C(r) vs r/T in log-linear

scale. The column of number gives the values of T for the corresponding year. The

IRS data points are for the years 2002-2006.

82



10
−1

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

Annual Income / T

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

 

 

2002, 41.29 k$
2003, 42.30 k$
2004, 43.20 k$
2005, 45.00 k$
2006, 46.10 k$

Figure 5.2: Figure shows the log-log plot of cumulative probability C(r) vs r/T for

a wider range of income.
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Figure 5.3: The figure shows the Lorenz curves for the years 1996 & 2005, and their

fits obtained from Eq 5.1.
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Table 5.1: Parameters values of the fits of IRS data, shown in Fig. 5.5. Tr values

were obtained by fitting the lower part of the CDF with an exponential function.

Values of r0 and α we obtained by minimizing the mean square deviation between

the empirical and theoretical CDFs, in log-log scale.

Year Tr(k$) r0(k$) α

1995 31.71 95 1.39

1996 32.99 100 1.41

1997 34.63 104 1.44

1998 36.33 111 1.45

1999 38.00 114 1.32

2000 39.76 119 1.26

2001 40.17 119 1.36

2002 41.29 126 1.41

2003 42.30 127 1.39

2004 43.20 131 1.31

2005 45.00 135 1.26
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