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Animal movements, whether spatially constrained or spread across broad 

spatial scales, are often motivated by a need for resources.  This thesis seeks to 

explore the role spatial and temporal resource dynamics may play in animal 

movements and population distributions.  

The first chapter synthesizes existing research of animal movements and 

builds a conceptual framework that integrates individual-level movement behaviors. 

It distinguishes among (1) non-oriented movements in response to proximate stimuli, 

(2) oriented movements utilizing perceptual cues of distant targets, and (3) memory 

mechanisms that assume prior knowledge of a target’s location. I outline how 

species’ use of these mechanisms should depend on resource dynamics and lead to 

population-level patterns, such as sedentary ranges, migration between disjunct and 

predictable seasonal resource areas, or nomadism when resource distributions are 

unpredictable in both space and time.  



  

The second chapter examines resource dynamics in an empirical setting, 

which, especially in ecosystems where changes may happen rapidly across broad 

spatial scales, is challenging because field measurements may be logistically 

infeasible. I use satellite imagery of vegetation productivity to track habitat dynamics 

for Mongolian gazelles in the eastern steppes of Mongolia. I show that spatiotemporal 

variation of gazelle habitats is extremely high, which may force gazelles to range over 

vast areas in search of food.  This has important conservation implications because 

single protected areas may not provide sufficient gazelle habitats at all times and 

landscape level management plans are needed.  

In the third chapter I develop a theoretical simulation model, that 

implements and combines the three different classes of movement behaviors (non-

oriented, oriented, memory) and explores their efficiency under different scenarios of 

resource dynamics. Adapting techniques from artificial evolution and intelligence, I 

show how individuals evolve to rely heavily on memory if their landscape dynamics 

are predictable. In contrast, non-oriented movement evolves predominately in 

situations where landscape dynamics are unpredictable. Oriented movement proves 

important at smaller scales, when movement targets are distributed within perceptual 

ranges. 

Future studies may transfer this theoretical model into empirical settings and 

use actual dynamic habitat models like that developed in chapter two, to reveal the 

underlying movement behaviors of real animals. 
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Introduction 

Animal movements have long intrigued scientists and laypersons, and active 

animal movements play an important role in many subdisciplines of ecology and 

population biology. For example, studies on disease spread, metapopulation 

dynamics, or reserve design all depend critically on movement behavior of 

individuals (Patterson 2008). Not surprisingly, scientists have used many different 

approaches, ranging from manipulative experiments to mathematical or statistical 

models, to investigate diverse movement phenomena including searching behavior for 

food, homing navigation to a nest site, predator avoidance, defense of a territory, or 

dispersal to find a mate (Turchin 1998, Gagliardo et. al. 1999, Morales et al. 2005, 

Moorcroft et al. 2006). 

The question arises whether it is possible to synthesize these efforts and 

organize movements within a cohesive conceptual framework. Such a synthesis may 

reveal whether fundamentally different types of movements exist, and how species 

rely on those movement types relative to characteristics of movement targets or 

environmental conditions. Chapter one attempts such a synthesis. It focuses chiefly 

on food resources as a driver of movements and provides an overview of the different 

disciplines that have studied animal search and navigation. In a second step, this 

chapter focuses on the level of individuals and classifies all active movement 

behaviors into fundamental behavioral categories. For example, how is movement to 

a known target different compared to a search for an unknown location of food? A 

third part of this chapter adopts a population perspective and examines the different 

outcomes of movement behaviors among individuals. This section asks the question: 
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How do spatial and temporal dynamics of resources cause some species to be 

sedentary range residents, –whereas other species move regularly and predictably to 

and from seasonal ranges thereby exhibiting migratory movements? In partitioning 

these two types of movement patterns, this work also explores under what type of 

resource dynamics we might expect large-scale, long-range movements that are 

fundamentally unpredictable both temporally and spatially, which I define as 

nomadism. In sum, chapter one examines the relation of individual-level movement 

mechanisms, their effectiveness in relation to resource dynamics, and their outcomes 

in terms of population distributions. The chapter concludes with an outlook on how 

these concepts could be applied in future research of animal movements in relation to 

resources. 

One challenge in examining the effect of resource dynamics on animal 

movements and distributions lies in empirically monitoring resource dynamics. This 

is especially true in ecosystems were resource locations change over the short term 

across broad scales making it impossible to monitor such changes in the field. One 

solution to capture such dynamics is the use of satellite imagery with a high temporal 

resolution. In chapter two I investigate resource dynamics for Mongolian gazelles in 

the eastern steppes of Mongolia, a grassland ecosystem that has been described by 

George Schaller as one of the largest remaining intact grazing systems in the world 

(Schaller 1998). The Mongolian steppes contain huge stretches of largely 

unfragmented grasslands, and very few nomadic pastoralists live in the steppes. There 

is almost no private land, and for hundreds of kilometers there are no paved roads, 

fences or other barriers that might hinder animal movement. In these steppes, 
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Mongolian gazelles are the most abundant wild large herbivore, with at least 800,000 

– 900,000 animals in the central part of the steppe. Movements of Mongolian gazelles 

occur year round over large distances. However, unlike better known regular long-

distance migrations of wildebeest or caribou, gazelle movements appear to be 

nomadic, lacking both regularity and predictability over large distances.  

Although most existing habitat models are static (e.g., Hanski 1999; Higgins 

et al. 2000; Wahlberg, Klemetti & Hanski 2002), I seek to develop a technique that 

suits grassland ecosystems where conditions change rapidly across broad scales. I use 

Modis satellite imagery of vegetation productivity that is available at 16-days 

intervals to generate habitat models that predict the location of high quality gazelle 

habitat as a function of time.  I examine how such dynamic habitat models could be 

used to estimate habitat overlap across seasons or years and how the unpredictability 

and spatiotemporal heterogeneity of habitats might be responsible for the far ranging 

movements of gazelles. 

Finally, in a third chapter, I investigate how one could go about combining the 

fundamental different movement behaviors outlined in chapter one into a cohesive 

quantitative model. Modeling of movement has made many advances in recent years, 

fueled by ever increasing amounts of data from rapidly developing relocation devices 

such as GPS receivers (e.g., Fauchald and Tveraa 2003, Jonsen et al. 2005, Morales et 

al. 2005). However, few studies actually try to combine different types of movement 

in single models, even though real animals certainly depend on a multitude of 

different movement behaviors (Bailey et al. 1996). How does one compare such 

seemingly different behaviors like movements based on memory of a previously 



 

 4 
 

visited location versus visual perception of an observable target?  Because these 

different behaviors must ultimately integrate into a single quantitative movement 

response, I adopt techniques from artificial evolution and artificial intelligence to 

build neural networks that are able to process different types of information.  This 

approach allows artificially evolving organisms to integrate information specific to 

certain movement behaviors (such as visual information or memory related 

information) into a single movement response. I train these networks with a genetic 

algorithm to avoid the problematic step of many traditional movement models 

wherein movement rules are defined a priori by the modeler. Using this new 

technique, I examine how individuals can evolve to use different types of information 

to solve search and navigation problems in relation to a variety of underlying 

scenarios of resource distributions. In particular, I investigate how the efficiency of 

different movement behaviors varies depending on whether resource locations are 

predictable or unpredictable. 

Under the auspices of a recently funded NSF grant, I will be pursuing a 

variety of future studies.  One approach may combine the theoretical model 

developed in chapter three with the empirical dynamic resource model of chapter two 

to investigate how real gazelles may rely on different movement behaviors in search 

of food. My colleagues are currently collecting GPS relocations of Mongolian 

gazelles that I intend to use as an optimization target for movement paths of model 

individuals. Analogous to chapter three, model individuals in this future work will be 

trained to search habitat resources; however, the individuals will move on the 

empirical resource landscapes derived from habitat models as in chapter two. 
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Chapter 1: Search and navigation in dynamic environments 

from individual behaviors to population distributions 

 

Published in Oikos 117: 654-664. 

 

Co-authored with: W.F. Fagan 

 

Abstract 

Animal movement receives widespread attention within ecology and behavior.  

However, much research is restricted within isolated sub-disciplines focusing on 

single phenomena such as navigation (e.g., homing behavior), search strategies (e.g., 

Levy flights) or theoretical considerations of optimal population dispersion (e.g., 

ideal free distribution).  To help synthesize existing research, we outline a unifying 

conceptual framework that integrates individual-level behaviors and population-level 

spatial distributions with respect to spatio-temporal resource dynamics. We 

distinguish among (1) non-oriented movements based on diffusion and kinesis in 

response to proximate stimuli, (2) oriented movements utilizing perceptual cues of 

distant targets, and (3) memory mechanisms that assume prior knowledge of a 

target’s location. Species’ use of these mechanisms depends on life-history traits and 

resource dynamics, which together shape population-level patterns. Resources with 

little spatial variability should facilitate sedentary ranges, whereas resources with 



 

 6 
 

predictable seasonal variation in spatial distributions should generate migratory 

patterns.  A third pattern, 'nomadism', should emerge when resource distributions are 

unpredictable in both space and time. We summarize recent advances in analyses of 

animal trajectories and outline three major components on which future studies 

should focus: (1) integration across alternative movement mechanisms involving 

links between state variables and specific mechanisms, (2) consideration of dynamics 

in resource landscapes or environments that include resource gradients in 

predictability, variability, scale, and abundance and finally (3) quantitative methods 

to distinguish among population distributions. We suggest that combining techniques 

such as evolutionary programming and pattern oriented modeling will help to build 

strong links between underlying movement mechanisms and broad-scale population 

distributions. 

Introduction 

Animal movements, such as searching behavior for food, homing navigation to 

a nest site, or dispersal to find a mate, are important contributors to a species’ 

autecology and geographic distribution. Movements are key elements of the ecology 

of diverse species and occur across a wide range of spatial and temporal scales (see 

summaries in Estes 1991, Alerstam et al. 2003). Many studies have investigated 

orientation mechanisms, drivers of movements, and resulting patterns of population 

distributions (c.f. Bell 1991, Turchin 1998, Alerstam 2006). However, ecologists also 

recognize the need to organize these studies into a cohesive framework to better 

understand and model animal movements.  For example, a recent special feature in 

Science suggested ‘movement ecology’ as new subdiscipline within which these 
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efforts can be summarized (Holden 2006); however, the actual organization structure 

for movement ecology was left open. Here we contribute to a synthesis of movement 

ecology by outlining an integrative, conceptual framework encompassing many of the 

various movement types that animals, usually exhibit. 

We suggest that traditional approaches to the study of animal movements can 

be organized in 3 categories:  

a) Studies of how animals search when they lack or have limited information 

about potential targets. These studies usually assume random and 

unpredictable resource environments.  Some examples include theoretical 

models designed to identify optimal search strategies under different 

conditions (e.g., optimized random searches [Bartumeus et al. 2005], optimal 

‘tortuosity’ for central place foraging [Bovet and Benhamou 1991], or ‘foray 

searches’ in fragmented landscapes [Conradt et al. 2003]).  Other studies seek 

to reveal the strategy at work by fitting empirical data to alternative 

hypothesized movement strategies (e.g., fitting ‘Levy flights’ to movements of 

sea birds [Viswanathan et al. 1999], or modeling movement of ungulates as 

mixtures of random walks [Morales et al. 2004]).  

b) Studies investigating animals’ navigational skills relative to known targets. In 

this category, resources are predictable, and animals use pre-existing 

information to locate those resources.  In broad terms, the pre-existing 

information represents memories, with the caveat that those memories may be 

either genetically inherited (e.g., monarch butterflies Danaus plexippus, 

Brower 1996) or previously learned by individuals (e.g., honey bees Apis 
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mellifera, von Frisch 1967). Studies in this category are chiefly empirical and 

focus on revealing the underlying means animals use to navigate to their 

targets. Often the navigational skills are remarkable; examples include the 

waggle dance of bees (von Frisch 1967, Riley et al. 2005), long distance 

orientation of migrating birds (e.g., Alerstam 2006), and homing capabilities 

of pigeons Columba livia (e.g., Gagliardo et al. 1999, Biro et al. 2007) or 

marine turtles (e.g., Bowen et al. 2004).   

c) Studies that consider the optimal spatial distribution of animals in relation to 

conspecifics and resources as a driver of movement behaviors. Unlike the 

above two categories, this body of research adopts population-level 

perspectives that emerge from individual-level decisions. Classic examples 

are the ideal free distribution (IFD, Fretwell and Lucas 1969) and the marginal 

value theorem (Charnov 1976), which predict that animals will leave a patch 

when their fitness drops below the average fitness in all patches, leading to a 

landscape in which  the density of individuals is everywhere proportional to 

resource density.  Also in this category are studies of the scaling relationships 

between body size and optimal home range sizes (e.g., Haskell et al. 2002). 

 

Categories a) and c) often share a common assumption that animal fitness is 

related to efficiency of foraging behavior and that specific measures, such as energy 

intake, can be directly linked to fitness (i.e., optimal foraging, Pyke 1984). 

Consequently, several strong links exist between these two categories.  Examples 

include investigations of how an adaptive search behavior can lead to ideal population 
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distributions and attempts to identify which factors (e.g., different competitive 

abilities, incomplete knowledge, movement costs, conspecific attraction, site fidelity) 

explain observed departures from ideal distributions (Farnsworth and Beecham 1999, 

Gautestat and Mysterud 2005, Hancock and Milner-Gulland 2006).  

On the other hand, a significant disconnect exists between search-related 

(group a) and navigational (group b) studies. To see this, consider that two recent 

syntheses analyzing animal movements and animal navigation have almost no content 

in common (Turchin 1998, Alerstam 2006). For example, Turchin’s (1998) book on 

movement analysis summarizes diffusion based random walks and rule-based 

searching models but does not mention navigational issues described in Alerstam 

(2006) such as how migration routes are affected by orientation mechanisms (e.g.,  

migration trajectories in relation to sunset azimuths). Despite the weakly developed 

links between these fundamental areas of research, it is likely that a variety of 

different search and navigation mechanisms work simultaneously, but at different 

scales, to determine animals’ movements and spatial distributions (see Bailey et 

al.1996 for a review in mammalian herbivores or Fritz et al. 2003 for a seabird 

example). Search and navigation may also be used by animals consecutively for 

different purposes. For example, seabirds may go on foraging trips searching for prey 

such as krill or fish that exhibit great spatial variability but later return to a specific 

nest site, using homing and navigation techniques (e.g. albatrosses, Bonadonna et al. 

2005). We believe that progress can be made towards a synthesis of these disparate 

categories of research on animal movements.  This synthesis will require 

systematically identifying the underlying mechanisms of different movement 
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strategies and providing a conceptual framework that integrates those mechanisms 

with landscape dynamics and emergent population patterns.  

To build toward such a synthesis, we organize our paper as follows.  First, we 

identify three individual-level mechanisms that animals may employ to search and 

navigate their resource landscapes.  We next outline three common population-level 

patterns that emerge from individuals’ movements. In a third section, we consider 

alternative resource distributions as critical determinants of the efficiency of 

individuals’ movement mechanisms and population patterns. Also in the third section, 

we specifically investigate the consequences of the temporal predictability and spatial 

heterogeneity of resources within a given landscape. In a final, fourth, section, we 

provide modeling ideas related to our conceptual framework. We focus on bottom up 

approaches assuming that animals’ movement decisions are governed by state 

variables of individuals such as physiological condition or perceptual information. 

Some of these state variables can be linked to specific individual-level movement 

mechanisms, and we outline the potential of evolutionary programming to combine 

these qualitatively different types of information. In presenting this synthetic 

framework, we focus on resource distributions as a main driver for movements. 

However, our concepts are sufficiently flexible to include life-history traits (e.g., diet 

type [Boyle and Conway 2007] or sex [Ruckstuhl and Neuhaus 2002]) and other 

factors such as predator avoidance, conspecific interaction, and mate finding (e.g., 

Fauvergue, Hopper and Antolin 1995, Moorcroft, Lewis and Crabtree 1999, 2006, 

Morrell and Kokko 2005).  

 



 

 11 
 

Individual level movement mechanisms 

We suggest that all active animal movements (versus passive movements such 

as dispersal of many freshwater invertebrates etc., Bilton et al. 2001) can be assigned 

to one of three fundamentally different classes: non-oriented mechanisms, oriented 

mechanisms, and memory-based mechanisms.  We emphasize, however, that no 

single mechanism in isolation is likely to provide a comprehensive framework for the 

complex patterns of animal movements observed in nature and that different 

mechanisms likely act simultaneously at different spatial scales (Bailey et al. 1996). 

 

Class 1: Non-oriented mechanisms 

 Non-oriented mechanisms involve simple movements, such as diffusion and 

kinesis that result in a movement decision with random direction. With non-oriented 

mechanisms, sensory stimuli (e.g., resource availability, habitat type) originating 

from an animal’s current location cause an alteration in an individual’s movement 

parameters, such as speed, the distribution of turning angles, or the frequency of 

movement (Benhamou and Bovet 1989). Non-oriented mechanisms can be 

represented mathematically as correlated random walks (Turchin 1998).  For 

example, habitats that provide an individual with a higher energy intake rate can 

produce lower velocity and more frequent, less correlated turns leading to an 

encamped walking pattern. In contrast, lower quality habitats may result in 

“explorative walks” with higher velocity and correlated turns (Kareiva and Odell 

1987). Non-oriented mechanisms have been studied extensively in insect dispersal 

(Turchin 1998). 
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Class 2: Oriented mechanisms 

Oriented mechanisms rely on perceptual cues, which unlike stimuli in Class 

1, stem from a location beyond the animal’s current position and result in movement 

in a predictable direction. Oriented mechanisms utilize sensory cues (e.g. visual, 

olfactory, acoustic) and various forms of taxis in which movements are defined by the 

organism’s perception of a resource or target location. A few empirical studies have 

explored perceptual ranges of individuals of different taxa, such as insects (e.g., 

Schooley and Wiens 2003), small mammals (e.g., Zollner and Lima 1999), pigs 

(Crony et al. 2003) or birds (Biro et al. 2004). In addition, some models investigate 

scaling relationships between body size and perceptual ranges (Mech and Zollner 

2002) or study the context-dependence of perceptual ranges (Olden et al. 2004). 

Overall, however, relatively little empirical research has sought to quantify 

organisms’ perceptual ranges. Consequently, it often remains unknown whether 

perceptual ranges of individuals operate at spatial and temporal scales comparable to 

the scales over which resource availability changes. For example, in open grassland 

systems, we do not know whether foraging ungulates can identify and move towards 

rain on the horizon. 

 

Class 3: Memory mechanisms 

In this class of mechanisms, previous information about the location of the 

movement target is available.  This previous information may derive from the 

recollection of an individual’s own history (e.g., large herbivores, Bailey et al. 1996), 

communication from conspecifics (e.g., bees, von Frisch 1967), or as a genetic 
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inheritance from its ancestors (e.g., monarch butterflies, Brower 1996). Research 

suggests that individuals using memory-based mechanisms may draw upon two 

fundamentally different techniques, path integration or compass navigation and 

cognitive maps (i.e. pilotage via known landmarks; Gagliardo et al. 1999, Vickerstaff 

and Di Paolo 2005, Biro et al. 2007). These techniques, which may be used 

simultaneously, are best known from studies of birds and insects.  For birds, 

combinations of celestial and olfactory cues, geomagnetic coordinates, magnetic 

compasses and landmarks facilitate global navigation and homing (Alerstam 2006, 

Wiltschko and Wiltschko 2006, Åkesson and Hedenström 2007).  Other examples are 

the waggle dance of bees that allows bees to navigate to food sources via 

communication with conspecifics (e.g., von Frisch 1967).  Other taxa exhibit similar 

memory-based movements, including magnetoreception in turtles and magnetic 

compasses for path integration in moles (see references in Wiltschko and Wiltschko 

2006). For large mammalian herbivores, research has focused on spatial learning of 

resource locations (Bailey et al. 1996). 

To understand why an individual moves the way it does, ecologists need a 

systematic approach that compares and integrates across these three classes of 

mechanisms. Unfortunately, very few studies have attempted to compare alternative 

movement models to one another. Recent modeling efforts seek to integrate memory 

(e.g., Grünbaum 2000), social information on conspecifics (e.g., Hancock and Milner-

Gulland 2006), or predator avoidance (e.g., Morales et al. 2005) in models of 

movement decisions, but to our knowledge no movement models have integrated 

non-oriented, oriented and spatial memory mechanisms within a 2-dimensional 
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context. Certainly none have done so in connection with empirical data collected on 

the movement of a specific organism.  

 

Population level distributions 

Here, we build on the approach that Roshier and Reid (2003) developed for 

birds, which allows for the quantification of spatial patterns by considering the spatial 

distribution of individuals relative to conspecifics. In this framework, three major 

population-level distribution strategies emerge. These are sedentary ranges, 

migration, and nomadism. 

 

Distribution 1: Sedentary ranges 

Sedentary ranges comprise resident strategies such as home ranges or 

territories, and are characterized by distributions in which an individual over its 

lifetime occupies a relatively small area compared to the population range (Roshier 

and Reid 2003). Long-distance movements in sedentary animals are usually limited to 

events of natal dispersal. Depending on the species, single individuals or small groups 

may occupy a sedentary range. A population of range residents exhibits a spatial 

distribution wherein individual ranges (or those of small groups) are dispersed from 

each other (Fig. 1.1A). Resident ranges are usually found when resources are 

sufficiently abundant throughout the year across the entire population range.  

Alternatively, resident ranges emerge if animals are dormant and suspend activity in 

unfavorable seasons (e.g., many bear species). Several studies have explored 
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environmental determinants leading to different types of range residency (from home 

ranges to territorialism, reviewed in Mahler and Lott 2000).  

 

Distribution 2: Migration 

Migration is 

generally defined as a 

regular, long-distance 

pattern of movement, and 

is typically observed in 

systems with regular, 

seasonal fluctuations in 

environmental conditions 

(Sinclair 1983, Dingle 

and Drake 2007). 

Migrations are usually 

periodic in nature: 

movement occurs 

consistently to and from 

spatially disjunct seasonal 

ranges (Fig. 1.1B; 

Roshier and Reid 2003). 

Migration is a common population-level strategy for animals and occurs in diverse 

taxa (reviewed in Alerstam et al. 2003 and Dingle and Drake 2007). Ramenofsky and 
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Figure 1.1. Theoretical point patterns and trajectories 

of population distributions. A: Sedentary ranges, B: 

Migration, C: combination from A and B, D: Nomadism 

type I, E: Nomadism type II. Boundary boxes indicate 

conceptual population ranges. 
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Wingfield (2007) make clear that an important distinction exists between migration in 

iteroparous animals (i.e., species that breed multiple times) and semelparous animals 

(i.e., species that breed once). In iteroparous species, migratory movements usually 

repeat in adult life history stages (with the possible exception of natal dispersal). For 

example, individual whales, birds, or caribou migrate to and from breeding grounds 

multiple times during their lives. In contrast, semelparous animals may migrate 

during ontogeny but do not repeat their movements (e.g., anadromous Pacific Salmon 

Oncorhynchus spp.; see Ramenofsky and Wingfield [2007] for a detailed review of 

migratory mechanisms). Among semelparous animals, insects are unique in that a 

single migration event can involve multiple generations ( e.g., Monarch butterflies 

stretch their annual migration across North America over several generations [Brower 

1996]). 

 

Distribution 3: Nomadism 

Nomadism occurs when animals are neither resident nor migratory, and 

instead move across the landscape in routes that do not repeat across years. Such 

wandering movements occur when resources fluctuate irregularly on a multi-year 

timeframe over large geographic areas, leading to a) spatial patterns that vary widely 

among individuals and b) a lack of predictability in where individuals will be from 

one year to the next.  

The term nomadism unfortunately suffers from a lack of or conflicting 

definitions in the movement literature (e.g., Estes 1991, Fahse et al. 1998, Bennetts 

and Kitchens 2000, Roshier and Reid 2003, Fryxell et al. 2004, Dingle and Drake 



 

 17 
 

2007). Here, we define nomadism as a category of movement patterns on par with 

sedentary ranges and migration.  Nomadism occurs at broad spatial scales, but does 

not follow the prescribed regular temporal and geographic patterns that characterize 

migration.  These movements lack the inter-year predictability that characterizes both 

sedentary ranges and migration.  In contrast, we suggest that nomadism is 

characterized by unpredictable movements that vary among individuals for any given 

year (Type I Nomadism; Fig. 1.1D) or among years for any given individual (Type II 

Nomadism; Fig. 1.1E). Compared to sedentary ranges and migration, nomadism has 

received extraordinarily little research by ecologists, even though elements of 

unpredictability are a common feature of movements by many species.  

We recognize that these three categories are not always mutually exclusive. 

For example, many birds occupy territories between migration events (Fig. 1.1C) and 

employ a combination of movement strategies that yield resident ranges and 

migration at different times of the year. Seabirds, such as albatrosses, constitute 

another exception in that they occupy territories within colonies but show nomadic 

movements while on foraging trips. In addition, some animal populations 

simultaneously express different strategies, such as when only a fraction of the 

population follows regular long distance movements (reviewed in Jahn et al. 2004). 

Certainly there are also other frameworks for studying the spatial distribution 

of populations than just the three part classification we propose. As mentioned above, 

an obvious one involves ideal free distributions (e.g., Sutherland 1983, Hancock and 

Milner- Gulland 2006, Haugen et al. 2006). The IFD framework is frequently used for 

testing hypotheses about underlying mechanisms that influence organisms’ spatial 
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distributions or activity patterns. For example, researchers have used the IFD 

framework to study the effects of interference competition or movement costs in 

studies of oystercatchers and knots (van der Meer and Ens 1997, van Gils et al. 2006). 

Likewise, behavioral studies about social organization and spacing among 

individuals, e.g., grouping behavior due to predation (e.g., Fryxell et al 2007), are 

ultimately studies about population distributions. Such intra- and interspecific factors 

may all be at work within each of the three classes of population distributions 

presented here. For example, variability of density of red knots across intertidal 

patches may be partly explained by IFD (van Gils et al. 2006), and at the same time, 

on a broader scale, the movements of these birds can be classified as migratory. We 

emphasize that the three categories we propose focus on broad scale and long term 

dynamics, i.e. spatially these categories are based on the landscape ranges of entire 

populations and functionally these categories are built on effects due to large-scale 

resource dynamics. Consequently, the three classes we discuss integrate across longer 

time and consider movement between varying resource landscapes.  For example, our 

use of the term migration is restricted to scenarios involving multiple seasons and 

years. Although we don’t have the space here for a more complete development of 

the concept, we suggest that the term “ideal free pathway” may be a good descriptor 

for the conceptual framework that links multiple spatial distributions of individuals 

over time.  
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Resource distributions and synthesis 

A conceptual framework that links different combinations of individual-level 

movement mechanisms with patterns of resource dynamics is a key to understanding 

alternative population-level spatial distributions. Resource environments interact with 

individual behaviors to influence population-level movement and distribution 

patterns.  Typically, theoreticians explore such linkages by implementing movement 

models in alternative neutral landscapes (see review in With and King 1997). In these 

models, change in habitat or resource abundance often only occurs in different 

realizations of a randomly generated landscape or is due to resource depletion by the 

consumers themselves. Such approaches ignore temporal environmental variation as a 

driver of resource abundance and availability.  This is an important limitation because 

the consensus is that large-scale movement patterns such as migration are the result of 

seasonally changing resource abundance (e.g., Fryxell et al. 2004).  Some studies do 

recognize the importance of temporal predictability to species movements. For 

example, Fryxell et al. (2005) demonstrated that for Thomson’s gazelle (Gazella 

thomsoni) in the Serengeti Plains, adaptive movements that cause individuals to 

follow stochastic rainfall events (and thus take advantage of ephemeral food sources) 

are necessary for population viability. Overall, however, a clear need exists for 

systematic investigations that explore the performance of alternative movement 

mechanisms in landscapes with temporal heterogeneity. 

Another gap exists between the neutral resource landscapes favored by many 

theoreticians and the resource distributions evident in empirical landscapes.  Though 

little explored, using empirical landscapes may be advantageous in some modeling 
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studies because model outcomes can be compared with empirical data on organisms’ 

actual distributions via linked GIS and remote sensing databases. This approach 

allows for predictions about animal movements and distributions in real landscapes, 

and thus makes results available for conservation and population management 

(Wiegand et al. 2004, Morales et al. 2005).  

 We assume that landscape structure is a major driver determining the 

efficiency of different individual-level movement mechanisms and resulting 

population-level distributional patterns. We focus on the general case of gradients in 

resource distributions, which includes but is not limited to a patchy structure divided 

into habitat and matrix (e.g., Bowler and Benton 2005). We suggest that resource 

gradients can principally change across four axes: 1) resource abundance 2) spatial 

configuration of resources (e.g. degree of spatial heterogeneity of resource 

distributions), 3) temporal variability of resource locations, and 4) temporal 

predictability of resources.  It is important to differentiate between temporal 

variability and temporal predictability of resources.  If resources are distributed 

differently in summer and winter, but those distributional changes occur every year, 

the resources would be variable but predictable.  In contrast, if resource availability 

changed over time but the spatial patterns were not consistent, the resources would be 

variable and unpredictable.  

We further suggest that the four gradients follow a hierarchical order. For 

example, spatial configuration (gradient 2) matters only if some resources are present 

(gradient 1). Likewise, temporal variability (gradient 3) depends on resources being 

heterogeneously distributed in space (gradient 2). Lastly, predictability of resources 
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(gradient 4) is only relevant with resource variability (gradient 3) as a pre-requisite. 

Note also, that within a particular landscape, the strengths of the four gradients may 

themselves vary over time. Conceptualizing resource variation in terms of gradients 

in total amount, spatial configuration, and degrees of variability and predictability is 

especially advantageous because such quantification facilitates modeling of resource 

dynamics. 

Different combinations of these gradients should affect the relative efficacy of 

different individual-level mechanisms and should result in alternative population-

level distributions.  

First, for landscapes with little resource variability, memory should generally 

play an important role.  An individual’s previous moves are important sources of 

information for decisions about future movement as the previous moves provide 

information about where resources might be expected. Home ranges cannot be 

understood with simple diffusion or low order Markovian random walk models 

(Turchin 1998) but need to consider the individual history of an organism (e.g., 

Gautestad and Mysterud 2005). However, not only resources alone but also social 

factors may help configure resident ranges (e.g. intra-specific scent marks may 

constrain home ranges: Moorcroft, Lewis and Crabtree 1999, 2006). Discrimination 

between known neighbors and strangers may be an important mechanism for conflict 

avoidance and is believed to favor the establishment of territoriality. For example, in 

some songbird species, individuals can discriminate not just con-specifics but 

individual neighbors (Lovell and Lein 2004). Social factors may also play a role in 

cases where populations are resident even though resources are temporally variable 
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and unpredictable provided the resources are sufficiently abundant and fine-grained to 

ensure long term survival within a consistent range (Fig. 1.2). Movement mechanisms 

at work in this scenario should be twofold: memory to recognize neighbors and 

boundaries of territories plus oriented foraging moves to obtain resources within an 

organism’s perceptual range. Non-oriented movement will be a less beneficial 

strategy under these 

conditions: altering 

turning angles based 

on food intake will 

not increase an 

animal’s chances of 

relocating into good 

habitat when 

resources are rather 

homogenously 

distributed.  

Second, for 

landscapes that vary at increasingly longer temporal and broader spatial scales, 

average (spatiotemporal) distances between high resource areas will increase, and 

animals will be required to travel increasingly larger (spatiotemporal) distances 

between resource patches. Under these conditions, distributional patterns such as 

resident ranges will break up and transform to migration provided there is sufficient 

repetition to the seasonal changes. Landscapes exhibiting regular and predictable 
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Figure 1.2. Effects of gradients in resource distribution 

and predictability on hypothesized most effective 

individual-level movement mechanisms (in italics) and 

the hypothesized emergent population-level movement 

patterns (gray ellipses) for dynamic landscapes that 

exhibit resource variability. 
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temporal dynamics should enhance the relative success of movement strategies 

requiring memory (e.g., it would be beneficial for organisms to remember where and 

when conditions would be favorable for reproduction and wintering). 

Third, if changes between seasons become unpredictable, our framework 

predicts that migration or sedentary ranges would switch to nomadism as individuals 

sought resources whose availability was not dependable. In this case, the efficiency of 

memory would decrease as resources became more unpredictable and the 

environment changed on scales vastly larger than an individual’s perceptual range. 

Under these conditions, non-oriented movements may constitute the most effective 

strategy as they would allow an animal to locate resources beyond its perceptual 

range and successful movements would not depend on the predictability of resources 

(Fig. 1.2). On the population level, we suggest that two different types of nomadic 

patterns can emerge (see Fig. 1.1D and 1.1E). In Type I nomadism, individuals move 

between and within years in ways that cannot be predicted and will differ among 

individuals.  We expect this movement strategy will appear in landscapes featuring 

multiple rich resource areas. In Type II nomadism, we envision the case that, at any 

one time, only very few resource patches exist and that the spatial location of those 

patches is unpredictable in time. If animals search for these patches they will 

eventually aggregate in the same locations/patches even if their search paths towards 

these patches are independent. Consequently, on larger spatial scales individuals’ 

movements may be correlated with each other as in migration but, unlike migration, 

individual paths will not repeat across years. While both migration and sedentary 
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strategies could transform to Nomadism I (and vice versa), it seems plausible that 

Nomadism II is particularly linked to migration. 

 

Modeling concepts 

Recent approaches 

Any attempt to gain a mechanistic understanding of animal movement faces 

the challenge that it is generally not feasible to measure the entire suite of relevant 

low-level parameters (and their interactions) that are hypothesized to determine an 

animal’s movement decisions under field conditions. For some mechanisms, 

experimental manipulations may allow one to alter a ‘normal’ movement behavior to 

demonstrate the relevance of a particular behavior.  For example, experimental 

control of food intake may identify a non-oriented movement mechanism (e.g., 

‘preytaxis’ Kareiva and Odell 1987) and measurements of perceptual ranges in small 

mammals may demonstrate an oriented mechanism (e.g., Zollner and Lima 1999).  

Likewise, clock-shifting experiments that generate internal conflicts between sun-

compass and landmark information may help uncover spatial memory mechanisms, 

such as whether memorized landmarks or compass navigation are at work, (Biro et al. 

2007). While such experiments do elucidate the importance of certain behaviors in 

specific cases, for many organisms such techniques are unlikely to be practical or 

transferable to field settings. This is certainly true when movement decisions may be 

context-specific, may depend on the interaction of several mechanisms, and/or may 

depend on interactions with conspecifics. 
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A more powerful approach to understand empirical movements may entail 

statistical analyses of relocation data, which recently has become an increasingly 

viable option, particularly for large mammals.  For example, coupled GPS-ARGOS 

systems use satellite-linked collars to provide relocation data that can be acquired 

independent of field observers.  Such data are now precise to within a few meters, 

meaning that the movement trajectories of individual animals can be captured in great 

detail. The high spatiotemporal resolution of relocation data emerging from modern 

tracking technologies has facilitated research on movements at multiple scales and 

has spawned a new body of literature concerning quantitative analysis of movement 

paths (e.g., Fauchald and Tveraa 2003, Jonsen et al. 2005, Morales et al. 2004, 2005). 

These approaches identify and parameterize statistics such as estimates of first 

passage time or shape parameters for distributions of velocity or turning angles that 

characterize movements in a context-specific fashion. Among many approaches tried, 

hierarchical state space models based on animal movements have been particularly 

revealing (e.g., Jonsen et al. 2005, Morales et al. 2004). Coupled with field-based 

relocation data, these models can be used to identify alternative movement states 

(e.g., feeding or relocating) or environmental covariates that trigger switches between 

movement states (Morales et al. 2004).  

While these probabilistic models do not necessarily allow one to reveal and 

disentangle the mechanistic underpinnings of movement directly, the statistics they 

provide could serve as assessment criteria for simulation models that do implement 

and combine different movement mechanisms. Multiple assessment criteria can 

provide a framework that allows the parameterization of high dimensional models 
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where not all lower level parameters (e.g., estimates for the spatial extent of 

perceptual ranges or the temporal duration of detailed memory) can be known from 

empirical data (Reynolds and Ford 1999).  The idea is that a bottom–up individual-

based model that reproduces not just one, but multiple characteristic movement 

statistics as emergent patterns, is likely to be a structurally realistic representation of 

the processes underlying a species movement. This is termed ‘pattern oriented 

modeling’ (Wiegand et al. 2003, 2004, Grimm et al. 2005, Grimm and Railsback 

2005) and several studies have parameterized high dimensional individual-based 

models of movement or animal dispersal in this fashion (Morales et al. 2005, Revilla 

et al. 2004, Aumann et al. 2006). However, what is missing to date are individual 

based models that systematically implement the underlying movement mechanisms 

(oriented, non-oriented and spatial memory) with regard to variability in resources 

and population patterns.  

 

Future directions 

Here we provide a final overview of three essential components that will be 

critical to future studies of movement that seek to integrate individual-level 

mechanisms, resource variability, and population-level movement patterns.  We 

synthesize ideas from the recent literature with our own suggestions. First, it will be 

necessary to combine the qualitatively different underlying individual-level 

movement mechanisms (oriented, non-oriented and spatial memory) into a single 

quantitative framework. Second, models are needed that allow for the manipulation 

and study of resource gradients in abundance, spatial heterogeneity, temporal 
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variability, and predictability. Third, we make suggestions how model outcomes as 

well as empirical animal tracking data could be measured at the emergent population 

level (sedentary ranges, migration, nomadism) to take advantage of pattern oriented 

modeling techniques (Fig. 1.3). We now discuss each of these three modeling 

components in turn. 
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Combining movement mechanisms 

A particular challenge in modeling animal movement is that each of the 

mechanisms (oriented, non-oriented and memory) represents a qualitatively different 

method by which an animal can search or navigate, yet the effects of each mechanism 

need to be linked into a single response—namely, a new location for an individual in 

space and time. Here we suggest one way of dealing with this complex issue. Our key 

Movement Mechanisms

Non-oriented

Oriented 

Spatial memory

e.g. individual-based neural 

network genetic algorithm (ING)

Optimization targets

- Realized Mobility Index

- Population Dispersion Index

- Intra-Individual Concordance Index

Sedentary Ranges    Migration           Nomadism
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Figure 1.3. Conceptual overview about a modeling framework linking movement 

mechanism with dynamic landscape structures and emergent population level 

distributions. 
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idea is that each of the three types of individual-level movement mechanisms relies 

on type-specific input parameters. For example, stimuli such as the current movement 

angle and velocity are specific to non-oriented mechanisms. Likewise, specified 

perceptual ranges are unique to oriented movement mechanisms, and memory 

mechanisms require constraints on how much temporal and spatial information an 

individual can ‘remember’.  

 

 

Excellent examples of how movement can be modeled by updating velocity  

and direction based on a suite of dynamic states have been achieved using artificial 

intelligence approaches to navigate autonomous driving robots (Thrun et al. 2006 and 

- Perceptual resource information/taxis
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Figure 1.4. Simplified scheme of an artificial neural network governing 

movement decisions. Certain state variables (Input layer) refer to specific 

movement mechanisms and result in a single behavioral response (i.e. a 

movement decision such as direction or correlation angle). 
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references therein). Meanwhile in ecology, evolutionary programming techniques 

such as genetic algorithms (GA) and artificial neural networks (ANN), have been 

used to model complex animal movements (Morales et al. 2005, Bennet and Tang 

2006, Boone et al. 2006, Hancock and Milner-Gulland 2006).  Combining GAs and 

ANNs in individual-based models yields so-called individual-based neural network 

genetic algorithms (ING models), which were first used in ecology to study one-

dimensional movements in fish (Huse et al. 1999, Strand et al. 2002). The ING 

technique is generally advantageous because it integrates qualitatively different input 

information but is not contingent on ecologists’ abilities to discern or define the rules 

that govern animal behavioral decisions.  This is an especially important 

consideration in that behavioral rules in the real world may not be transparent, simple, 

or context-independent, making them difficult to identify from empirical datasets 

(Morales et al. 2005).  However, these techniques have not yet been used to 

systematically explore alternative movement mechanisms. We suggest that certain 

variables in the input layer of an ANN may be mechanism-specific (Fig. 1.4), and by 

adding or removing mechanism-specific stimuli from an ANN, it might be possible to 

test the effects of those variables (and their interactions) with regard to a fitness 

criterion such as foraging success under different landscape scenarios.  

 

Dynamic Resources 

Modeling variability in resource distributions is just as critical for a synthetic 

understanding of animal movement as is modeling of the movements themselves. For 

theoretical investigations, several established methods exist by which artificial 
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landscapes may be generated (e.g., as spectral representations; Keitt 2000, Csillag and 

Kabos 2002). To produce temporal landscape dynamics, a series of such landscapes 

may be used to simulate seasonal change within years. To represent periodicity across 

years, landscape series may be repeated in sequence, with varying degrees of ‘error’ 

introduced to generate temporal unpredictability.  In this way temporal heterogeneity 

could be introduced within years (simulating seasonal changes in resource 

availability) as well as between years (varying predictability of resource landscapes). 

A more challenging task relates to measuring and modeling of empirical resource 

landscapes that capture, in detail, how the availability of resources changes over 

space and time. With ground methods, such data are almost impossible to acquire at 

high temporal resolutions and across broad spatial scales. Nevertheless, for some 

ecosystems such as grasslands, remote sensing techniques have provided a partial 

solution to this problem via indices of vegetation productivity that capture dynamics 

of landscapes (e.g., Boone et al. 2006, Pettorelli et al. 2005, Mueller et al. 2007). 

These indices of vegetation dynamics constitute an important advance because remote 

sensing techniques have traditionally focused on static, rather than dynamic, habitat 

or habitat suitability maps.   

 

Quantifying Population-level Distributional Patterns  

The third critical component in a comprehensive modeling framework for 

animal movement would be to evaluate and quantify emergent dispersion patterns at 

the population level (e.g., sedentary ranges, migration, nomadism). Several metrics 

are possible that can be applied equally well to empirical distributions and the 
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outcomes of simulation models, and each can be used to gain insight into the 

connections between individual level movements and population level distributions 

(Table 1.1).   

For example, one might calculate a modified ‘realized mobility index’ 

(Roshier and Reid 2003) as the ratio of an individual’s yearly range to the entire 

population’s yearly range. In addition, we suggest that if telemetry data are available 

for several individuals of a single population, methods of multivariate point pattern 

analysis (reviewed in Fortin and Dale 2005) may be applied to the relocation data to 

quantify the spatial relationships of locations between different individuals or 

between different time periods within the same individuals. More specifically, a 

‘population dispersion index’, could determine independence, clustering or dispersion 

of relocation patterns among individuals.  If inter-individual relocation patterns of a 

population are dispersed, it would indicate sedentary ranges whereas clustering would 

indicate migration or type II nomadism. A third possible metric is an ‘intra-individual 

concordance index’ that could measure independence, clustering or dispersion of 

point patterns within individuals and between years for a given season. If relocations 

from the same season and different years are spatially clustered it would indicate that 

an individual has a high fidelity to the same area every year, whereas a dispersed or 

independent distribution would indicate nomadism. Taken together, these three 

indices should allow one to distinguish among the three emergent population-level 

distributional patterns (Table 1.1). 
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Table 1.1: Indices quantifying and distinguishing population level distributional 

patterns. 

 
  Migration Sedentary 

ranges 

Nomadism I Nomadism II 

Realized Mobility Index  
(RMI, quantifies the ratio 
individual range vs. 
population range) 

Large Small Large Large 

Population Dispersion 

Index   
(PDI, quantifies spatial 
relation among 
individuals) 

Clustered Dispersed Independent Clustered 

Intra-Individual 

Concordance Index  
(ICI, quantifies spatial 
relation of relocations for 
specific individuals 
among years) 

Clustered Clustered Dispersed Dispersed 

 

Conclusions 

We suggest that combinations of individual-level state variables can be used 

to represent specific movement mechanisms, and that those mechanisms can be 

implemented and integrated in individual based models.  Integrating different types of 

movement ranging from search to navigation with dynamic landscapes that vary in 

predictability and heterogeneity may provide a better understanding of emergent, 

population-level spatial patterns such as sedentary ranges, migration, and nomadism.  

That said, we feel that another strength of the approaches we outlined may lie 

in their capability to serve as a tool for ecological forecasting. Population dynamics of 

many species—and specifically long-distance migrants—rely critically on their 

movement behaviors. To understand better how human activities affect animal 

movements in real landscapes, we suggest that structurally realistic movement models 

operating on empirically derived landscapes may provide a valuable tool for resource 
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planning.  Such an approach would allow ecologists to predict how individuals’ 

movements and species’ spatiotemporal population dynamics could respond to 

landscape changes.  
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Chapter 2: In search of forage: Predicting dynamic habitats of 

Mongolian gazelles using satellite based estimates of vegetation 

productivity 

 

Published in Journal of Applied Ecology, 45, 649-658. 

 

Co-authored with: K.A. Olson, T.K. Fuller, G.B. Schaller, M.G. Murray, and P. 

Leimgruber 

 

Summary 

1. Temporal variability in habitat suitability has important conservation and 

ecological implications. In grasslands, changes in resource availability can 

occur at broad spatial scales and enlarge area requirements of ungulate 

populations which increases their vulnerability to habitat loss and 

fragmentation. Understanding and predicting these dynamics, though critical, 

has received little attention so far.   

2. We investigated habitat dynamics for Mongolian gazelles (Procapra 

gutturosa) in the eastern steppes of Mongolia. We quantified the distribution 

of gazelles at four different time periods and tracked primary productivity 

using Normalized Difference Vegetation Index (NDVI) data from satellite 

imagery.  
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3. A second order logistic model showed that NDVI was an efficient predictor of 

gazelle presence. We tested the predictive power of the model with 

independent data of a gazelle telemetry study and 85% of all relocations were 

found within the predicted area. 

4. Gazelles preferred an intermediate range of vegetation productivity 

presumably facing quality quantity trade-offs where areas with low NDVI are 

limited by low ingestion rates, and areas with high NDVI are limited by the 

low digestibility of mature forage.  

5. Spatiotemporal variation of gazelle habitat areas was high. Only 15% of the 

study area was consistently gazelle habitat throughout all survey periods, 

indicating that gazelles need to range over vast areas in search of food. Only 

1% of the gazelle habitats were consistently located inside protected areas. 

6. Synthesis and applications. Habitat variability in grasslands often leads to area 

requirements of ungulates that prevent effective conservation within single 

protected areas. They require landscape level management plans, but dynamic 

habitat predictions to inform such plans are difficult to implement and often 

missing. We showed that satellite estimates of vegetation productivity can be 

used successfully to generate dynamic habitat models in landscapes with 

highly variable resources and demonstrated that intermediate NDVI values 

were critical to predict occurrence of Mongolian gazelles. 
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Introduction 

 

Mongolian gazelles (Procapra gutturosa Pallas) are the dominant wild large 

herbivore in Mongolia’s eastern steppe, one of the largest remaining grasslands in the 

temperate zone (Schaller 1998b; Olson et al. 2005a). While these gregarious animals 

still roam Mongolian grasslands in large numbers (at least 800,000 – 900,000 animals 

in the study region; Olson et al. 2005a), the species has experienced a major reduction 

in range during the past century, and is further threatened by continued habitat loss, 

fragmentation, and excessive hunting (Lhagvasuren & Milner-Gulland 1997; Reading 

et al. 1998). Although individuals or small groups are found across a wider 

geographic range, higher concentrations of this gazelle species are now limited to the 

eastern steppe (Lhagvasuren & Milner-Gulland 1997; Wang et al. 1997; Reading et 

al. 1998; Sneath 1998).  

Movements of Mongolian gazelles occur year round over large distances with 

only short interruptions throughout calving time (Lhagvasuren & Milner-Gulland 

1997; Schaller 1998b; Olson et al. 2005b; Ito et al. 2006). They appear to be nomadic 

and lack regularity (Olson et al. unpublished data), yet their paths and patterns are 

little understood (Ito et al. 2006). Quantifying the spatiotemporal heterogeneity of 

gazelle habitat use will be helpful in better understanding the species’ area needs and 

developing much needed integrative and landscape-level conservation strategies.  

Modeling habitat use in grasslands is particularly challenging as these 

ecosystems are characterized by a continuously varying landscape (Fernandez-

Gimenez & Allen-Diaz 1999; Fryxell et al. 2005). Most existing habitat models are 

static and only recently have habitat modeling studies started to focus on dynamic 
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landscapes (Hanski 1999; Higgins et al. 2000; Wahlberg, Klemetti & Hanski 2002). 

In addition, many of these models either focus on metapopulation theory (Keymer et 

al. 2000; DeWoody, Feng & Swihart 2005; Xu et al. 2006) or on modeling habitats in 

ecosystems that are dynamic over longer time frames (e.g. forests: Akcakaya et al. 

2004; Verheyen et al. 2004; Wintle et al. 2005). Short-term and broad-scale changes 

that are common in grasslands are difficult to model, as data on environmental 

covariates are usually difficult to acquire at similar temporal and spatial scales 

(Fryxell, Wilmshurst & Sinclair 2004). However, satellite-borne sensors allow 

measurement of vegetation productivity, a key variable indicating resource 

availability for grassland ungulates, across broad spatial scales and at relatively high 

temporal intervals (Reed et al. 1994; Huete et al. 2002). Normalized Difference 

Vegetation Index (NDVI) is a satellite-based vegetation estimator that has 

consistently shown close correlations with vegetation productivity in a diverse range 

of ecosystems (reviewed in Pettorelli et al. 2005) and, specifically in grasslands, with 

total biomass  as well (Kawamura et al. 2003, 2005). 

Numerous studies already demonstrate that NDVI is a useful tool to predict 

habitats for ungulates in grasslands. It has been used successfully to test the 

relationship between ungulate diversity and plant productivity across the African 

continent (Baird 2001) and to evaluate ungulate habitat use in the Kalahari (Verlinden 

& Masogo 1997), rangeland stocking rates in Argentina (Oesterheld, DiBella & 

Kerdiles 1998), wildebeest (Connochaetes taurinus) population declines and 

movements in Kenya (Serneels & Lambin 2001; Musiega & Kazadi 2004), 

distribution of impala (Aepyceros melampus) in Botswana (Van Bommel et al. 2006) 
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and also to characterize habitat use of Mongolian gazelles (Leimgruber et al. 2001; 

Ito et al. 2005, 2006). However, none of these studies use detailed and broad scale 

distribution data of a species to identify preferred ranges of NDVI and make 

predictions on habitat occupancy, when availability changes. 

 We used NDVI satellite imagery to predict gazelle occurrence data from four 

extensive surveys across the eastern steppes. Specifically we sought to reveal whether 

gazelles select for a specific range of productivity. Instead of assuming a monotonic 

relationship between NDVI and resource availability we tested predictions with 

regard to forage maturation: While areas with too little vegetation may not provide 

sufficient ingestion rates, most grasses decline considerably in nutritional quality as 

they grow (Van Soest 1994). Mature forage may provide high vegetation productivity 

yet little resources to gazelles as digestion rates are reduced (Fryxell 1991; Murray & 

Illius 1996; Wilmshurst et al. 1999; Wilmshurst, Fryxell & Bergman 2000, Bergman 

et al. 2001). As the landscape in the eastern steppe features almost no trees and few 

shrubs, it is likely that in general high NDVI values are associated with higher, more 

mature and therefore less nutritious grasses, which has been shown elsewhere (Payero 

et al. 2004, Kawamura et al. 2005a ,b). An intermediate range of NDVI allowing for 

sufficient forage quantity as well as quality may provide most resources to gazelles 

and might be a useful tool to delineate habitats and reveal area needs of Mongolian 

gazelles. 
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Methods 

Study area 

Mongolia’s eastern steppe is one of the world’s largest remaining intact 

grasslands and harbours the greatest concentration of wild ungulates in Asia (Schaller 

1998b). Neighbouring grasslands to the south in Inner Mongolia, China are severely 

overgrazed and degraded (Jiang et al. 2003) and have fewer wild ungulates (Wang et 

al. 1997). The eastern steppe is characterized by gently rolling hills, broad flat plains 

(altitude 600-1,100 m a.s.l.) and sparsely scattered small ponds and springs. The 

region’s major river, the Kherlen, bisects the steppe from west to east. The climate is 

continental with long cold winters (January mean = -26oC) and short warm summers 

(July mean = 19oC). Warm season precipitation mainly occurs during July and 

August and overall precipitation is generally between 200-300 mm/year (Gunin et al. 

2000). Onset of green-up during the 1980’s occurred from late May to early June 

(Lee et al. 2002; Yu et al. 2003). Dominant soil types are characterized as sandy 

loamy chestnut soils with localized sites of highly salinized soil (Gunin et al. 2000). 

The steppe is homogeneous in both its topography and vegetation. Vegetation is 

mostly dominated by grasses such as Stipa spp. and Leymus spp. as well as forbs 

Artemesia spp. and Allium spp.; a few shrubs Caragana spp. are present and trees are 

rare, occurring in isolated pockets (Gunin et al. 2000; Tong et al. 2004). A narrow 

band of woody vegetation consisting of mostly willow (Salix spp.) exists along the 

floodplain of the Kherlen. Semi-nomadic pastoralists live throughout the region at 

some of the lowest densities in the country (0.7/km2; Milner-Gulland & Lhagvasuren 

1998). 
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Figure 2.1. Mongolia’s Eastern Steppes with study area in dark grey and 

survey transects shown as straight lines. Hatched areas indicate protected 

areas and wildlife reserves. 

 

 

Gazelle survey and radio tracking 

We used gazelle locations in a 150,000 km2 area during four surveys 

conducted by Olson et al. (2005a), adding data from north of the Kherlen River (Fig. 

2.1). The survey protocol followed guidelines recommended in Buckland et al. 

(2001). Transect locations were spaced at 60 km intervals running north – south and 

driving speeds were kept between 25-35 km/h (Olson et al. 2005a; Fig. 2.1). Transect 

locations remained the same for all surveys and ranged between 50 and 350 km in 

length and 6-7 transects/survey. The total distance covered for these surveys was 

5,169 km (Table 2.1). Gazelle group locations were recorded using Global 
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Positioning Systems (GPS) (Olson et al. 2005a). Spring surveys (2000, 2002) were 

conducted during late May to mid June and autumn surveys (2001, 2002) were 

conducted from late August to early October (Table 2.1). For model validation, we 

used locations obtained from radio-collared calves in 2001 (Olson et al. 2005b). 

Calving aggregations can be detected in late June (Olson et al. 2005b). By walking 

through the calving region we were able to detect newborn hiding calves which were 

captured and fitted with an expanding VHF-radio transmitter (Olson et al. 2005b). 

Movements of marked calves were monitored from the ground by vehicles over the 

course of the year. When a marked gazelle was detected, Olson et al. (2005b) visually 

confirmed the group location and recorded the position with a GPS.  

 

Table 2.1. Dates and distances of gazelle surveys and matching periods for NDVI 

composites. 

 
Year Season Gazelle survey NDVI composite 
 start end start end 
2000 Spring 1286 km 05-15 06-02 05-25 06-09 
2001 Autumn 1252 km 09-27 10-10 09-30 10-15 
2002 Spring 1591 km 05-19 06-08 05-25 06-09 
2002 Autumn 1454 km 08-26 09-06 08-29 09-13 
2001 Summer telemetry 07-15 07-30 07-12 07-27 

 
 

Remote sensing, GIS, and model development 

To develop a habitat model based on vegetation productivity we used NDVI 

data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) 

onboard the TERRA satellite. For each of the survey periods we obtained a 16-day 

NDVI composite in 500 m resolution from NASA’s Earth Observing System 

Gateway (http://edcimswww.cr.usgs.gov/pub/imswelcome/; for details see Huete et 



 

 43 
 

al. 2002) and re-projected the data to Transverse Mercator (UTM Zone 50N; Table 

2.1). We matched gazelle and satellite data by subdividing each transect line into 1 x 

5 km blocks and determined the mean NDVI as well as gazelle presence or absence 

for each block. The 1 km width of these blocks approximated the effective strip width 

for detection of gazelles (Buckland et al. 2001; Olson et al. 2005a) and, given the 

high mobility of gazelles, finer scales than 5 km seemed to be inappropriate. 

Mongolian gazelles move an average of about 9 km per day (Olson et al. unpublished 

data), and even at the coarse 5 km scale an asymmetric sample distribution of 

presence and absence data is most likely caused by many false negatives (Tyre et al. 

2003). To eliminate sample asymmetry (i.e. more absent than present data) and 

balance statistical analysis we randomly sub-sampled the absence blocks to equal the 

number of presence samples in each survey. We equalized phenological differences in 

total vegetation productivity by linearly normalizing the NDVI data for each survey 

using minimum-maximum scaling. 

We used maximum likelihood and the Akaike Information Criterion (AIC) for 

model selection and penalized quasi likelihood (PQL, lme4 library in R; Bates 2005; 

R Development Core Team 2006) to implement second order autologistic generalized 

linear mixed models predicting gazelle presence/absence based on NDVI (Manly et 

al. 2002; Boyce & McDonald 1999; Boyce et al. 2003; Bates 2005). To test 

predictions regarding forage maturation related quantity-quality trade-offs, we used 

the first and second order polynomial of the scaled NDVI variable. The first order 

term tested for low probability of gazelle occurrence at low productivity areas 

(quantity limitation of forage). A significant negative coefficient of the second order 
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polynomial would predict low probability of occurrence at high productivity areas 

(quality limitation of mature forage). However, not just the relative range of NDVI 

may be important but also interactions with absolute resource amount i.e. the 

variation in phenology between surveys. We considered that by including the median 

of the non-scaled NDVI data from each survey into the model and testing for 

interaction effects with the relative (minimum-maximum scaled) NDVI data. 

Between season differences in vegetation quality may occur and we incorporated 

seasons (autumn versus spring) as fixed factor in the analysis. Additionally, we 

explicitly modeled spatial autocorrelation (Augustin, Mugglestone, & Buckland 

1996) by including the number (zero, one, or two) of neighboring blocks (i.e. the next 

5 km block to the north and to the south) where gazelles did occur as an 

autocovariate. Based on AIC, we excluded effects which did not significantly 

improve the model in any factor combination. As observations were grouped in four 

different surveys, those were included as a random effect in the final minimum 

adequate model. As a predictive tool to classify new NDVI scenes in gazelle presence 

and absence areas without prior information about gazelle occurrence in adjacent 

areas, we calculated a reduced model excluding the auto-regressive term.  

While probabilities are generally more informative and were used for model 

testing, we believe thresholds are a helpful tool in conservation management and for 

simple and applied assessments as intended in this study. Comparison of predicted 

values and actual prevalence (Vaughan & Ormerod 2005) suggested 0.5 probability-

thresholds as an appropriate measure to classify NDVI scenes into predicted gazelle 

presence/absence areas and explore omission as well as commission errors. 
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We tested the reduced model with an independent data set from the telemetry 

study. We selected all relocations of gazelle groups (≥ 2 animals) in the second half 

of July 2001 (67 group relocations of 33 radio-tagged animals) and acquired a 

MODIS NDVI 16-day composite for the according time lag (Table 2.1). At this time 

of the year, calves already follow the generally mixed herds and are representative for 

both male and female habitat selection. The NDVI data were processed following the 

same procedures applied during model development. By applying our model to this 

NDVI scene, we calculated a surface predicting the probability of gazelle occurrence 

throughout the eastern steppe. From this surface we calculated the mean of all pixel 

values where actual relocations occurred. To test whether this mean was significantly 

higher than expected by chance we simulated 1000 random toroidal shifts (Fortin & 

Dale 2005) of the relocation pattern within a boundary box (i.e. a minimum rectangle 

of ~18,000 km2 encompassing all relocations). For each shift we extracted the pixel 

values of the prediction surface and calculated their mean. We determined the 

significance of our model by counting how many of the simulated patterns had a 

higher average probability of occurrence than the mean calculated from actual gazelle 

relocations. We also created a minimum convex polygon (excluding areas in China) 

derived from all gazelle telemetry observations obtained during the duration of the 

entire telemetry study from June 2001 to January 2002 (telemetry area, Fig. 2.4). We 

used 0.5 probability thresholds to classify the surface into predicted gazelle presence 

versus absence areas. We qualitatively compared the proportion of available habitats 

to selected habitats. However, we did not test these findings due to clumping and non-

independence of the relocation data. 
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Results 

Vegetation productivity approximated by NDVI was an important factor 

shaping gazelle habitat use. The auto-logistic model relating gazelle presence/absence 

with NDVI showed that gazelles preferred an intermediate range of vegetation 

productivity; despite a strong positive spatial autocorrelation of gazelle locations at a 

5 km scale, NDVI was relevant to discriminate between gazelle presence and absence 

areas (Table 2.2).  

 
Table 2.2. Logistic mixed models predicting gazelle occurrence with NDVI across 

four field surveys. Null deviance: 884.46 on 637df; significance code: '***' 0.001. A. 

full model including spatial autocovariance (AutoCov); residual deviance: 666.14, 

AIC: 674, estimated scale: 1.02. B. reduced model; residual deviance: 849.77, AIC: 

858, estimated scale: 1.00. 

 
Random effect Coefficient Variance Std. Dev. 
 Survey 5e-10 2.24e-05 
 
Fixed effects Coefficient Estimate Std. Error Z value
 Deviance 
A (Intercept) -2.55 0.42 -6.11*** 1.59 
 NDVI 6.64 1.88 3.53*** 7.44 
 NDVI2 -6.58 2.00 -3.29*** 25.65 
 AutoCov 1.71 0.15 11.60*** 183.63 
 
B (Intercept) -1.91 0.36 -5.27*** 1.59 
 NDVI 8.77 1.66 5.29*** 7.44 
 NDVI2 -8.33 1.75 -4.76*** 25.65 
 

The coefficients for both NDVI predictors, the first and second order polynomial, 

were highly significant (the first being positive and the second negative, Table 2.2). 

Variation in biomass between surveys (median of absolute NDVI at each survey), 

season (spring versus autumn surveys) and interactions terms did not significantly 

improve the model and were removed based on AIC. The model that included 
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Figure 2.2. Probability of gazelle presence predicted 

based on relative vegetation productivity. Solid line: 

logistic model; dashed vertical lines: 0.5 probability 

thresholds for gazelle presence; jittered dots: sample 

values; black numbers: correctly classified samples 

based on thresholds; grey numbers: 

misclassifications. 

vegetation productivity and spatial autocorrelation as predictors explained 25% of the 

overall deviance (Table 2.2A). This model also classified 76% of both presence and 

absence blocks correctly assuming 0.5 probability thresholds. 

We employed a model using solely NDVI as a predictor excluding the 

autoregressive term to predict gazelle habitats independent of any ancillary 

knowledge on gazelle occurrences (Table 2.2B). While the overall fit of the model 

decreased, both estimates of coefficients of the NDVI predictors remained significant 

(Table 2.2B). The reduced model was still very efficient in classifying the gazelle 

presence data and the omission error did not increase; 77% of gazelle presence blocks 

were correctly classified 

(246 of 319), 4% (13) of 

the presence blocks had 

according to the model a 

too high productivity, and 

19% (60) too low 

productivity (Fig. 2.2). 

However, the 

commission error 

increased and, with 48% 

accuracy (152 of 319), 

the model was not 

effective in classifying 

gazelle absence. 
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Thresholds indicating a probability of gazelle occurrence ≥0.5 for this model were at 

0.31 and 0.74 of the range of the minimum-maximum scaled NDVI values (Fig. 2.2). 

We used these thresholds to delineate gazelle habitats in the four NDVI data 

sets of the survey periods. While the average NDVI between surveys varied 

considerably with lowest biomass in autumn 2001 and most productivity in autumn 

2002, in each survey about 50-65% of the study area was delineated as gazelle habitat 

(Fig. 2.3). Consistently across seasons most areas were predicted to be unoccupied by 

gazelle because vegetation productivity was too low rather than too high (Fig. 2.3). 

We found a pronounced spatiotemporal heterogeneity of NDVI, as well as of 

observed gazelle habitats between surveys. Only 7% of the study area was never 

classified as gazelle habitat, and only 15% had a probability of gazelle occurrence 

above 0.5 across all four seasons (compared to 11% overlap to be expected at a total 

random distribution and 49% with maximum overlap). Merely 1% of the study area 

was located within protected areas and gazelle habitat throughout all four surveys. 

The average overlap of habitats between seasons (46%) was similar to the average 

overlap within seasons (43%). 
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We further tested the predictive power of the model using gazelle telemetry 

locations and NDVI data from a 16-day period in July 2001. Random shifts of these 

locations across a prediction surface calculated from the NDVI had in only 5 out of 

1000 (p = 0.005) permutations a higher average than the average of the actual gazelle 

locations. The area these gazelles used throughout the entire year comprised a 

minimum convex polygon of about 45,000 km2 (Fig. 2.4; telemetry area). For the 

second half of July 2001 the model predicted that 56% (~26,000 km2) of the 

Figure 2.3. Distribution of vegetation productivity and gazelle habitat in the study 

area at four survey seasons. Note the high degree of spatiotemporal habitat 

heterogeneity specifically in the central part of the eastern steppes. 
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telemetry area was preferred gazelle habitat and 85% of all groups were found within 

the predicted area (Fig. 2.4). The remaining 10 gazelle groups were located in low 

productivity areas but always in close proximity to predicted habitat (maximum 

distance = 7 km; Fig. 2.4). 

 

 

Discussion 

Gazelle habitat selection and NDVI 

We assessed habitat selection of Mongolian gazelle with regard to vegetation 

productivity and found a significant relationship between NDVI and gazelle 

 
Figure 2.4. Gazelle groups relocated in the second half of July 2001 in 

relation to a prediction surface and habitat thresholds generated from the 

NDVI based logistic model. The telemetry area indicates the minimum convex 

polygon of relocations over the entire telemetry study. 
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occurrence. Omission errors for both models (with and without spatial 

autocorrelation) were generally low and only few gazelle presence locations (24% 

and 23% respectively) occurred outside the predicted areas. Consistently, 85% of 

gazelle relocations from the telemetry study were found within the predicted range. 

Gazelles preferred an intermediate range of NDVI values independent of variation in 

total biomass between surveys or survey season.  

While areas with low vegetation productivity may simply not offer sufficient 

forage quantity, resources in high productivity areas are expected to be limited by 

altered plant stoichiometry (i.e. changes in C:N:P ratios) and an overall decrease in 

forage quality (Moe et al. 2005). As grasses mature they accumulate structural tissues 

and their fiber content increases, reducing their digestibility (McNaughton 1984, 

1985). Previous studies have related vegetation nutritional content, vegetation 

quantity and growth state with the foraging ecology of different herbivores (Murray 

& Brown 1993; Murray & Illius 2000; Wilmshurst et al. 1999). Additionally satellite-

based biomass estimates may not only capture quantity but also indirectly measure 

vegetation quality. Kawamura et al. (2005a) established a negative relationship 

between relative protein content and the Enhanced Vegetation Index (EVI) for Inner 

Mongolia, an area close to our study site. Previous studies relating gazelle presence 

with NDVI were based on less extensive data on gazelle distributions and focused 

solely on forage quantity in explaining gazelle occurrence (Leimgruber et al. 2001; 

Ito et al. 2005, 2006). The present study demonstrates that consideration of forage 

quality-quantity trade offs may be important for broad-scale satellite-based habitat 

models for wild ungulates in temperate grasslands, and suggests that future 
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investigations how satellite estimates of vegetation may be related to plant 

stoichiometry might be worthwhile. Specifically interesting in that respect would be 

to compare our method to the approach of Boone, Thirgood & Hopcraft (2006). They 

calculated the difference of two NDVI scenes and focused on new vegetation growth 

as one habitat-quality measure for wildebeest in the Serengeti. 

NDVI alone, however, was not useful in discriminating gazelle absence. 

Many areas that were classified as suitable for gazelles had none, a result of 

excluding spatial autocorrelation in the model. For a constantly moving species it 

may simply be that not all suitable habitat is used at any one moment. False negatives 

are a critical problem in predicting mobile species habitats (Tyre et al. 2003). Longer 

term or repeated observations may be necessary to gain higher confidence about 

gazelle absence, but they would be logistically difficult to conduct. Additionally, not 

only elimination of false negatives but other covariates than vegetation productivity 

may be instrumental to refine the current model. Three additional factors which 

potentially influence gazelle habitat selection seem to be particular worth considering. 

First, variation in plant species composition may go along with differences in 

nutritional quality (Hooper & Vitousek 1998; Reich et al. 2001) while productivity 

rates are similar. Information about species composition and their spatiotemporal 

dynamics may thus aid efforts to predict gazelle presence. Second, anthropogenic 

influences, despite the area’s sparse human population, may be important, and spatial 

variation in density of herders may be an informative covariate. Finally, insect 

harassment has been shown to significantly affect caribou (Rangifer tarandus; Walsh 

et al. 1992; Toupin, Huot & Manseau 1996; Weladji, Holand, & Almøy 2003). 
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Mosquitoes and biting flies are temporarily abundant at high densities in parts of the 

eastern steppes. Detailed data on any of these covariates were not available to apply 

to the gazelle survey data used in this study and would require additional extensive 

and repeated field surveys. Obtaining these data would be particularly important to 

disentangle which of these covariates may be confounded with NDVI, i.e., the degree 

to which species composition, insect density and/or human density are interrelated 

with NDVI. We also know little about habitat selection throughout winter; nutritional 

quality of forage in winter generally decreases and the physiology of the rumen in 

Mongolian gazelles adapts by shifting towards a grazer oriented digestive strategy 

(Jiang et al. 2002a, b, 2003). Consequently, gazelle habitat selection potentially could 

switch towards a preference of higher biomass areas in winter. 

Habitat variability 

Throughout the four surveys we observed a high degree of spatiotemporal 

heterogeneity of gazelle habitat. While in each season 50-65% of the area was 

classified as gazelle habitat, the total overlap was only 15%. This is very close to 

what would be expected if habitats had no temporal or spatial autocorrelation and 

would be randomly distributed (11%) and relatively far from the minimum variation 

at total overlap (49%). Heterogeneity seems to be specifically prominent in the 

central part of our study area (Fig. 2.3). These shifts in resource availability not only 

demonstrate the species area needs, which are dynamic and may shift between years; 

it also may illustrate why movement of gazelles appear so irregular and nomadic. 

Under a regular and seasonal migration regime we would have expected that the 

habitat overlap within season and between years would be greater than the habitat 
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overlap between seasons. This was not the case as the average between season 

overlap was slightly higher (46%) compared to the within season overlap (43%). 

Habitat heterogeneity may be the critical factor explaining far ranging and irregular 

movement behavior enlarging Mongolian gazelles’ area needs as has been 

demonstrated previously for Thompson gazelles (Gazella thomsoni, Fryxell et al. 

2005). 

Yet, little is known about the mechanisms that drive the spatiotemporal 

variability in plant communities and/or quantity we detected based on NDVI - 

satellite imagery. There is, however, evidence for pronounced variation in plant 

phenology and reversible, non-equilibrium dynamics of plant communities (Briske, 

Fuhlendorf, & Smeins 2003, 2005) when measured on a temporal scale. Comparison 

of climatic patterns with date of onset of green-up suggests that climatic variation 

may be a major factor driving changes and interannual variation in plant phenology 

(Lee et al. 2002, Inner Mongolia). Fernandez-Gimenez & Allen-Diaz (1999) 

demonstrated for a steppe area in central Mongolia that variation in biomass, species 

cover and functional group cover (forb versus grass) were all dependent on both 

grazing intensity and climatic variability. Identifying to what degree grazing 

intensities of Mongolian gazelles are sufficient to allow them to shape their own 

habitat (Hobbs & Swift 1988), as do livestock in Mongolia (Fernandez-Gimenez & 

Allen-Diaz 1999; Kawamura et al. 2005a) or wild ungulates in other grasslands (e.g. 

Serengeti, McNaughton 1984, 1985, Murray & Illius 2000), is critical to 

understanding the grazing ecology of the eastern steppes. 
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Conservation implications and future applications 

Long-distance movement behavior of grassland ungulates, such as Mongolian 

gazelles, increases their vulnerability to habitat loss and fragmentation (Murray & 

Illius 1996; Berger 2004). Ungulates often need to move across large areas to follow 

shifts in resource availability (Sinclair 1983; McNaughton 1985; Fryxell, Greever & 

Sinclair 1988; Murray 1995). Existing protected areas systems usually cover only a 

fraction of these areas (e.g. wildebeest, McNaughton 1985; Sinclair & Arcese 1995; 

Thirgood et al. 2004; pronghorn Antilocapra americana, Berger 2004; caribou, 

Nellemann & Cameron 1998; saiga Saiga tatarica, Bekenov, Grackhev & Milner-

Gulland 1998; and chiru Pantholops hodgsoni, Schaller 1998a), leaving these species 

exposed to increasing threats of development and poaching.  

Mongolian gazelles and their habitat are under increasing threats from intense 

hunting, transportation infrastructure development, and oil extraction activities 

(Pentilla 1994; Reading et al. 1998; Asian Development Bank 2002). In 1995, 

Mongolia’s Ministry of Nature and Environment established a series of protected 

areas and nature reserves to conserve Mongolian gazelles, covering approximately 

18,800 km2, but this represents less than 5% of the gazelle’s estimated 475,000 km2 

range (Finch 1996). In this study we show that throughout four surveys, only 1% of 

the study area was consistently classified as gazelle habitat and located within 

protected areas. The ranges of Mongolian gazelle are simply too large and variable to 

be completely included within a single protected area and excluding humans from 

these ranges would negatively affect traditional pastoralist societies and is unrealistic. 

The long-term conservation of Mongolian gazelles requires the development of 
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landscape-level conservation strategies for the region (Leimgruber et al. 2001; Jiang 

et al. 2003; Zahler et al. 2004). Landscape level approaches which facilitate 

traditional rangeland use retain intact grasslands and simultaneously promote 

protection of migrating wild ungulates are required (Coppolillo 2000). The impacts of 

deviating from policies promoting open rangelands can be observed in many places. 

Examples are the changing land use patterns in the Kenyan side of the Serengeti-

Mara ecosystem resulting in declines of wildlife populations (Serneels & Lambin 

2001), the construction of irrigation canals and intensive sedentary livestock grazing 

in Kazakhstan and Kalmykia resulting in disruption of saiga migrations (Milner-

Gulland 1994), and the fencing in Inner Mongolia, China leading to severe land 

degradation (Williams 1996). 

Our approach using satellite based estimates of vegetation productivity to 

predict wildlife habitat requirements can directly inform such landscape level 

strategies. Wherever an integrative and large scale conservation framework for 

grassland ungulates is needed, dynamic models based on high temporal resolution 

satellite data can predict habitat patterns for critical periods in their life history (e.g. 

for Mongolian gazelles calving in late June).  Interannual variability of these habitats 

can also be assessed. Predicted habitat use may then be combined with human land 

use needs to create a dynamic management framework that defines conservation 

actions. It would contain measures that are specific in time and space (e.g. hunting 

restrictions, limits on vehicle access or other disturbance, livestock grazing 

restrictions, fence removal) and mitigate between conflicting interests of rangeland 

use and wildlife needs. 
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Future research applications and needs include ground truthing to empirically 

corroborate the relationship between NDVI and forage quantity and digestibility, 

delineating and estimating inter-annual variability of calving grounds, and the 

assessment of long-term spatial and temporal patterns in grassland productivity and 

gazelle habitats in the eastern steppes. 

 



 

 58 
 

Chapter 3: Integrating individual search and navigation 

behaviors in mechanistic movement models 

 

 

Co-authored with: W.F. Fagan and V. Grimm 

 

Abstract 

To understand complex movement behaviors, researchers have tried many 

approaches ranging from manipulative experiments investigating navigation behavior 

to statistical decomposition of movement paths. Although the importance of different 

movement behaviors has been widely recognized, systematic modeling frameworks to 

integrate these behaviors in one single model remain elusive. 

Toward such a unification, we differentiate among three fundamentally 

different classes of mechanistic movement behaviors and distinguish (1) non-oriented 

movements based on random movement in response to proximate stimuli, (2) oriented 

movements utilizing perceptual cues from distant targets, and (3) memory 

mechanisms that assume prior knowledge of a target’s location. We propose that each 

of these movement behaviors is linked to certain cognitive abilities and sensory 

stimuli which in turn can be represented by state variables in models. Adapting 

techniques from studies on artificial evolution and intelligence, we built a theoretical 

simulation model wherein individuals, using information provided by state variables, 
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evolve movement behaviors adaptively in response to the landscapes on which they 

search and navigate.  

To develop this model, we implemented an individual-based neural network 

genetic algorithm (ING) in which information that forms the input to individual’s 

movement decisions are specific to each of the three classes of movement behaviors. 

In this system, state variables with perceptual information represent oriented 

movements, state variables with information about turn angles and resource uptake 

represent non-oriented movements, and state variables providing information on an 

animal’s spatiotemporal position are linked to memory. By altering these state 

variables for the model input, we tested their contributions to movement under 

different landscape scenarios. In particular, we contrasted movement behaviors that 

emerge in landscapes where movement targets (i.e. resources) were predictably 

distributed at the same location versus scenarios where resources were unpredictable. 

We demonstrated that individuals evolved to rely more heavily on state variables 

related to memory if their landscape dynamics were predictable. In contrast, non-

oriented movement evolved predominately in situations where landscape dynamics 

were unpredictable. Oriented movement proved important at smaller scales, when 

movement targets where distributed within perceptual ranges. 

Although this study introduces a theoretical framework, we suggest that the 

ideas discussed here may be readily adapted to fit simulations to empirical movement 

paths. Reproducing empirical movement paths using state variables related to specific 

movement behaviors may help reveal how real animals employ underlying behavioral 

mechanisms in particular empirical settings.  
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Introduction 

Animal movements are central to population ecology because many spatial 

processes (e.g., disease spread, metapopulation dynamics) and applications (e.g., 

reserve design) critically depend on the movement behavior of individuals (Patterson 

et al. 2008). The importance of movement ecology has recently received much 

recognition (e.g., Holden 2006) and advancements have been made in several areas.  

For example, progress has been made in manipulative experiments, in which 

researchers expose individual animals to artificially changed environments to test for 

the existence of specific hypothesized navigation mechanisms. In one key study, a 

clock-shifting experiment with pigeons generated internal conflicts between sun-

compass and landmark information and revealed how both memorized landmarks and 

compass navigation inform homing navigation of pigeons (Biro et al. 2007). Progress 

has also been made in statistical models that discern movement states from properties 

of movement paths. For example, state space models of movement paths of elk can 

distinguish among alternative movement states such as encamped foraging walks 

versus exploratory walks and identify environmental covariates that trigger changes 

between states (Morales et al. 2005).  

Despite these advances, a key challenge remains: How can qualitatively 

different mechanistic movement behaviors be integrated into individual models? For 

example, how can a single model integrate search behaviors, such as would be 

necessary to locate an unknown food source, with homing behavior necessary to 

relocate a nest site? Many animals exhibit such combinations of behaviors, including 

species that practice central place foraging or home range maintenance (Bovet and 



 

 61 
 

Benhamou 1991, Gautestad and Mysterud 2005, Fagan et al. 2007, Wang and Grimm 

2007, Boerger et al. 2008).  Albatrosses, which routinely search for previously 

unknown locations of prey and also must exhibit homing behavior to a breeding 

colony, constitute a particularly clear case where a single species exhibits strongly 

contrasting movement behaviors. While search behaviors may be driven by a 

combination of optimality of search moves and sensing ranges (Bell 1991, 

Viswanathan et al. 1999, Edwards et al. 2007), homing behaviors may be based on 

memory and depend on environmental idiosyncrasies and the individual itself 

(Bonadonna et al. 2005.).  

Mueller and Fagan (2008) classify active animal movements into three major 

categories. The first class contains non-oriented mechanisms that involve movements 

with random directions. Here, the animal reacts to a sensory stimulus that originates 

from an animal’s current location by altering its velocity or turning angle (Kareiva 

and Odell 1987, Benhamou and Bovet 1989). One such local stimulus could be 

resource uptake: high resource uptake can produce lower velocity and more frequent, 

less correlated turns leading to an encamped walking pattern (“area restricted 

search”). In contrast, lower quality habitats may result in ‘‘explorative walks’’ with 

higher velocity and correlated turns (Kareiva and Odell 1987, Morales et al. 2004). 

Mathematically, non-oriented movements have been frequently described as 

correlated random walks (Turchin 1998). 

 The second class of animal movements involves oriented mechanisms. These 

mechanisms rely on perceptual cues that, unlike stimuli for non-oriented mechanisms, 

originate from distant locations and result in movements in predictable directions 
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(i.e., towards or away from the direction of a stimulus). Oriented mechanisms are 

usually limited by the perceptional ranges of their sensory cues (e.g. visual, olfactory, 

acoustic; Zollner and Lima 1999b, Croney et al. 2003, Schooley and Wiens 2003).  

The third class describes memory mechanisms, where previous information 

about the location of the movement target is important. In general this information 

may derive from different sources: the recollection of an individual’s own history, 

communication from conspecifics, or as a genetic inheritance from its ancestors 

(Benhamou 1994, Bowen et al. 2004, Winter and Stich 2005, Mueller and Fagan 

2008 and references therein). These three classes of movement mechanisms likely act 

simultaneously at different spatial scales (Bailey et al. 1996). To understand why an 

individual moves the way it does, ecologists need a systematic approach that 

integrates across them. 

Recent approaches have tried to combine such qualitatively different 

processes into models. For example, models about home range behavior, wherein 

animals restrict their movements to smaller areas than would be expected from 

observed levels of mobility (Boerger et al. 2008), have combined non-oriented and 

memory movements via self-attracting random walk models (Tan et al. 2001). Other 

models have combined non-oriented movement with perceptual ranges (e.g., Nams et 

al. 2006) to detected oriented behavior. However, so far no systematic synthesis of all 

three movement types has been proposed. To make progress toward such a 

unification, we adopted a Lagrangian (individual-based) approach and assumed 

resource availability as a major driver of movement decisions. We built on a recently 

proposed technique in evolutionary programming and artificial intelligence called 
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individual-based neural network genetic algorithms (INGs, Huse et al. 1999, Strand et 

al. 2002) to demonstrate,  in a theoretical context, how qualitatively different 

movement behaviors can be combined into individual models.  Importantly, we also 

demonstrate one way to assess and quantify the relative importance of these 

alternative movement behaviors within a given scenario of resource dynamics (e.g., 

landscapes with predictably available versus unpredictable resources).  

Modeling background 

In ING models for movement, an individual employs at each movement step 

an artificial neural network (ANN, Hopfield 1982) for a behavioral decision. The 

ANN uses context-specific state variables as an input layer and converts them into a 

single movement response. To do this, individuals carry specific weights (i.e., their 

‘genetic code’ in the model) that are used to transform the state variables and the 

interconnections in the network. A genetic algorithm (GA, Goldberg 1989) 

evolutionarily trains those weights by differentially selecting, reproducing, and 

modifying those individuals in a population which, at the end of their lifecycle, made 

the better moves with regard to a fitness measure such as resource uptake. In this 

way, state variables are transformed to produce near-optimal movement decisions (for 

model details see methods section below). This method is advantageous because it is 

not contingent on predetermined behavioral rules. Finding or defining such rules for 

optimal movement behavior is often difficult, especially when many factors are 

important to movement decisions, when those factors are interconnected and context-

specific, or when those factors are time-dependent (Morales et al. 2005). In ING 

models, movement decisions are an emergent behavior limited by the input 
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information of the state variables and optimized relative to its fitness measure. In 

ecology this technique has been used to model one dimensional fish behavior (Huse 

et al. 1999, Strand et al. 2002), and more recently, to model two dimensional elk 

movements (Morales et al. 2005). However these models were intended to reproduce 

an empirical pattern, rather than to investigate different types of movement behavior, 

which is the goal of this paper.  

Here we present a new approach as we built an ING model where the input 

information for the ANN was characteristic as it represented cognitive information 

and sensory stimuli that were specific for single movement mechanisms.  For 

example, information about previous movement angles represented non-oriented 

mechanisms. Similarly, spatial information on movement targets within perceptual 

ranges represented oriented mechanisms and spatiotemporal information of an 

animal’s position were unique to spatial memory mechanisms. By adding or 

removing these mechanism-specific state variables from an ANN that governs 

movement, we tested the effects of those variables (i.e., mechanisms) with regard to a 

fitness criterion such as foraging success under different landscape scenarios.  

We varied landscape scenarios in that resource patches could be either 

predictably distributed at always the same location, or the location of resource 

patches was unpredictable. We expected animals to evolve movement behaviors 

according to these differences in resource landscapes: For predictable resource 

landscapes we hypothesized that state variables related to spatial memory would have 

much greater importance whereas non-oriented behavior should be more important 

and used more often in landscapes with unpredictable resource patches. Finally we 
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expected oriented movement to be the key mechanism of exploiting resources within 

patches at scales where they did occur within perceptual ranges.  

Methods 

Model 

The following model description follows the ODD (Overview, Design 

concepts, and Details) protocol of Grimm et al. (2006), that was developed to 

standardize model descriptions for individual-based models in ecology. 

Purpose:  The purpose of our model was to evolutionarily train model 

organisms to use and combine different types of information representing different 

movement behaviors (i.e., memory, oriented, and non-oriented movements). The 

model allowed testing the efficiency of these behaviors and their combinations in 

different resource landscapes. 

State variables and scales:  The model consisted of individuals and 

landscapes. Landscapes were 64 * 64 cell grids with reflective boundaries. Each grid 

cell of a landscape either held a resource (i.e. its value was one) or was empty (i.e. its 

value was 0). Resources were distributed in two quadratic 8*8 patches. Landscapes 

principally varied in one key way: The resource patches were either distributed in a 

predictable fashion and their location did not change over the course of a simulation 

or they were unpredictable and their location was random (for further details see 

initialization below). 

Individuals were characterized by their location, seven variables with 

cognitive information or sensory stimuli related to movement mechanisms, a string of 
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variables that held the individual’s genetic code, and a variable counting the 

individual’s resource uptake.  

An individual’s location was specified by the landscape cell it occupied. 

Among the mechanism-related variables, three variables pertained to memory-related 

movements. They held information about the current x and y coordinates of the 

individual, as well as a time/step counter.  Information for non-oriented movement 

was represented by three variables that described the tortuosity of the previous eight 

movement steps (see section submodels for further detail), resource uptake within the 

last eight steps, and resource uptake of only the very last movement step. Information 

relevant for oriented moves was described by one variable that held information about 

whether a cell that contained resources was within the perceptual range. The 

perceptual range of an individual was limited to the eight neighboring cells of an 

individual’s current location. 

The individual’s genetic code consisted of weights that were used within its 

ANN to transform the values of the information provided by the movement 

mechanism related state variables into a movement decision. The ANN was a fully 

connected feed forward network that had eight nodes (seven for the mechanism-

related variables described above and one bias unit) in the input layer, three nodes in 

a single hidden layer, and three nodes in the output layer (boxes with solid outline in 

Fig. 3.1). Consequently each individual held 33 [(7 nodes of input layer + 1 bias) * 3 

nodes in hidden layer + 3 nodes in hidden layer * 3 nodes of output layer] variables 

that were weights for the connections in the ANN (solid lines in Fig. 3.1) in its 

genetic code. The nodes in the output layer defined the movement decision as follows 
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(Fig. 3.1): 

 

First, one of the three output nodes (node A in Fig. 3.1) determined the 

general movement type: Based on the value of this first node, individuals either 

performed a non-oriented, an oriented, or a memory-based movement step and the 

final outcome was delegated to one of 3 choices (dotted arrows in Fig. 3.1).  

(1) Non-oriented movement: in this case the decision was delegated to a 

second node in the output-layer (upper node B in Fig. 3.1), which made a decision 

about 3 possible final outcomes: (a) keep the direction and move straight (b) move 

with correlated turning angle, i.e. randomly choose the cell straight ahead or one of its 

neighboring cells, (c) move uncorrelated, i.e. randomly choose one of the eight 

surrounding cells (see Fig. 3.2). 

 
Figure 3.1. Scheme of Artificial Neural Network (ANN) governing movement 

behavior of individuals. State variable in the input layer as well as possible 

outcomes are specific to a particular movement mechanism (highlighted in 

gray). The first output node (A) delegates to either one of the other two output 

nodes (B), which in turn decide about correlation angle or specific movement 

direction, or it delegated to oriented movement (C, which was directly 

implemented as a move to a resource within the perceptual range). 
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(2) Movement based on memory: here the decision was delegated to a third 

node in the output layer (lower node B in Fig. 3.1), which made a specific decision to 

move to one particular cell in its neighborhood.  

(3) Oriented movement: 

in this case the individual moved 

to the cell where a resource was 

within the perceptual range 

(outcome C in Fig. 3.1). If no 

resources were within the 

perceptual range individuals 

moved randomly to one of the 

eight neighboring cells. If 

multiple resources were detected, 

one of them was randomly 

chosen as new location. 

Finally an individual 

featured a counter that kept track of all resources an individual encountered 

throughout its lifetime. The value of this counter at the end of an individual’s life 

cycle provided a fitness measure. Each simulation ran 5,000 generations. 

Process overview and scheduling:   Within each generation 200 individuals 

consecutively moved 150 steps across landscapes. After all individuals of one 

generation had finished their moves they reproduced and died.   

Design concepts: 

 
Figure 3.2: Possible movement decisions for 

non-oriented movement. (x) current location 

of individual, (o) previous location of 

individual. The output nodes that determines 

non-oriented moves can make 3 decisions: 

(1) Move randomly to one of the eight 

neighboring cells (all gray shades), (2) 

move randomly to one of the dark gray or 

black cells (i.e. move in a correlated 

fashion), or (3) move to the black cell (i.e. 

keep movement direction constant).  
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Emergence: In contrast to most IBMs, our model included emergence at the 

level of the individuals: movement decisions and, in turn, movement patterns were 

emergent and not imposed. In particular, which of the possible output nodes that 

relate to a specific mechanism were used at a particular movement step and how, i.e. 

where to move (in case of memory based movements) or what correlation angle to 

choose (in case non-oriented movement was chosen), were dependent on each 

individual’s weights for the ANN. These weights were not imposed, but evolved. 

Individuals started with random weights which were reproduced relative to their 

success in governing movement decision to find resources. If, for example, in 

memory related movements, weights of a particular individual had values that used 

the information of its spatiotemporal location to navigate to a certain area, chances for 

it to reproduce and increase the frequency of those weights where higher if that 

particular area contained resources. Thus, individuals could learn how to navigate to 

certain resource locations by evolving weights that allowed them to use information 

on their current position into movement steps towards locations that had proven 

advantageous in previous generations (e.g., locations that contained resources).  

Adaptation and Fitness: Individuals made adaptive movement decision based 

on the weights in their ANNs which, in turn, were the result of genetic algorithms. 

The fitness measure used for the genetic algorithms was total resource uptake at the 

end of a generation.    

Sensing: All mechanism-specific state variables represented sensing and 

provided critical information each individual used for its movement decisions.  
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Interaction: The model did not include interaction among individuals, neither 

direct interactions nor indirect interactions via resource use.  

 Stochasticity: Stochasticity entered the model in three ways. (1) The starting 

position of each individual was random. (2) If the individual chose to move non-

oriented the movement decision was a random walk, likewise if it decided to move 

oriented and sensed multiple resource cells in its neighborhood one of these resource 

locations were chosen randomly and (3) Resource landscapes: If adjusted to be 

unpredictable, locations of recourses were randomly chosen anew for each 

generation. If adjusted to be predictable resource locations were static within the 

simulation (i.e., across generations); however at the beginning of each simulation they 

were also randomly chosen.  

 Observation: We recorded the average resource gain for the population in 

each simulation (n = 100) for each generation to trace how the overall fitness 

increased across generations. For the last ten generations, when individuals where 

adapted to their respective resource landscapes, we also recorded (for a sample of 10 

individuals in each of the 100 populations (total n = 1000) at each step) which output 

node of the ANN was used to make a movement decision and traced individual 

movement paths. 

Initialization 

Individuals: In the first generation the ANN weights of each individual were 

randomly initialized with values from 5 to -5. At each generation before an individual 

started to walk, the starting position was randomly chosen. Also, at the beginning of 
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each walk the values for perception, tortuosity, and current resource gain were set to 

zero. 

 Landscapes: For predictable landscapes the location of resource patches were 

randomly chosen at the start of each simulation and did not change across 

generations. Between generations and between runs of different individuals resources 

got replenished, so that before each run resource landscapes were identical. In 

unpredictable landscapes the location of resource patches was randomly chosen 

between each generation. Within a generation though the location of resources 

patches did not vary and again all resources were replenished between runs of 

different individuals. 

Submodels 

 Individual movements: At each step an individual could move to one of its 

eight neighboring grid cells in the binary resource landscape. If its location was at the 

boundary or corner of the landscape, only five or three neighboring grid cells, 

respectively, were available. If it encountered a resource the respective landscape cell 

was set to be empty (i.e., 0) and the resource counter of the individual increased by 

one (there was no re-growth of resources). The decision to which of the eight possible 

directions to move was made by the ANN. At each step the individual decided based 

on the information-providing variables and the individual specific weights (i.e., 

genetic code), first which mechanism to use and second how to move based on the 

chosen mechanism. A movement decision was represented by either a specific 

neighborhood to move to (i.e. if oriented or memory output nodes were chosen) or a 

correlation angle (if the non-oriented mechanism was chosen). After each movement 
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step the information-providing state variables were updated. Once an individual had 

completed all its steps the landscape got reinitialized with resources and the next 

individual performed its moves.   

 Reproduction: Once all individuals in a generation had completed their 

movements, they reproduced. Individuals that had collected more resources were 

more likely to reproduce than individuals that moved less successfully: We chose to 

use tournament selection to determine which individuals would be transferred into the 

next generation (Goldberg and Deb 1991): Always six individuals in a population 

were compared to each other and the individual that had collected the most resources 

was selected and copied six times into the new generation. The other five individuals 

did not reproduce and their genetic code was lost for future generations. The total 

number of individuals was constant throughout the entire simulation.  

As a final step within each generation, after reproduction, the genetic code 

(i.e., the weight-variables) of each individual of the new generation was modified via 

crossing-over and mutation. The chance to have a crossover event in an individual 

was 20 percent and the chance of having a mutation event was set to two percent per 

locus. For crossing-over events the string of weights for the ANN of a randomly 

chosen individual was cut-off at a random location and the cut part was exchanged 

with the respective code of another (randomly chosen) individual. Mutations occurred 

at a random individual at a random location of the string and resulted in a new 

random initialization of that particular weight (with values from -5 to 5, see 

initialization). Crossing over and mutations did not occur in the final 20 generations 
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to eliminate noise and allow measuring the adaptive fitness of a population at the end 

of its training/evolution. 

 Artificial Neural Network: At each movement step the ANN combined values 

of the mechanism-related state variables with their specific weights of the genetic 

code to calculate values for the hidden nodes and after that the output nodes which 

determined the movement decision. To calculate values for each of the three nodes in 

the hidden layer of the network all values of the input layer were multiplied with their 

respective weights, summed, and transformed with a sigmoidal function to values 

between 0 and 1 (Eq. 1). 
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Analogously, the values for the three output nodes were calculated by multiplying the 

values of the hidden layer with their specific weights, summing them and 

transforming them with a sigmoidal function to values between 0 and 1 (Eq. 1).  

A decision of an output node was determined by dividing the range of output 

values (i.e. values between 0 and 1) in sections, that each represented one of the 

choices an output node could make. For example, the first output node that decided 

upon the three subsequent movement mechanisms were determined by dividing the 

range in three sections, each of which codes for a specific decision: 0 - 0.33 (oriented 

movement), >.33 - .66 (non-oriented movement), and >.66 – 1 (memory). Similar the 

decisions for non-oriented movements were achieved by dividing the range from 0-1 

in three section that code for straight, correlated or uncorrelated movement. Likewise 

the output node for memory was divided in eight subsections (0 - 0.125, >0.125-.25, 
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and so forth) each of which coded for one of the eight possible directions an 

individual could move. 

Tortuosity: We considered tortuosity of a walk as a measure for the search 

effort an individual was making in its immediate neighborhood (i.e., area restricted 

search). For a movement step that was oriented or a memory move the value for 

tortuosity was 0 since we assumed that the individual navigated to a known target 

rather than search. Likewise, for a non-oriented movement step that was straight we 

considered the search effort to be minimal and the value for tortuosity for that 

particular movement step was 0. However, if movement was correlated, the search 

effort was considered to be medium and the value for tortuosity for that particular 

step was given the value 1. If the individual was completely random the search effort 

was considered to be at its maximum and the value was set to 9. Tortuosity values for 

the past eight movement steps were summed up to provide an individual with 

information about recent search moves in the input layer of the ANN (Fig. 3.1). In 

combination with recent resource uptake, tortuosity should be valuable information in 

patchy landscapes such as those chosen for this study to efficiently search using 

random walks. 

 

Simulation experiments 

We replicated each simulation 100 times to account for idiosyncrasies in the 

evolutionary training of individuals as well as in particular landscape set-ups. For 

example, in predictable landscapes, resource location did not change over the course 

of a simulation, but even so, overall population fitness could vary depending on 



 

 75 
 

whether the two resource patches were distributed far apart from or near to each 

other. 

We ran simulations in predictable as well as unpredictable landscapes. In 

addition to experiments of individuals that had all input information available, we 

performed experiments that featured individuals where we removed one of the 

movement mechanisms to test its importance in particular landscape set ups 

(predictable or unpredictable resources). The network was reduced by the relevant 

state variables in the input layer as well as by the relevant output nodes. 

 

Results 

Individuals usually adapted within a few hundred generations, by which time 

the overall population fitness in finding resources did not improve any further after an 

initial steep increase (Fig. 3.3).  

An exception included individuals in predictable landscapes that had memory-

related state variables available: these populations also exhibited an initial steep 

increase in fitness but then continued to slowly increase their fitness and adapt to their 

resource landscapes (Fig. 3.3B). The last 20 generations populations were not 

exposed to any mutation and crossing-over events which removed any noise. That led 

to a final jump in fitness for all populations (Fig. 3.3). Generally the proportion of 

encountered resource cells was much higher compared to unpredictable resource 
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landscapes (Fig. 3.3). 

 

In unpredictable resource landscapes, adapted individuals that had all 

movement mechanisms available usually used non-oriented movements to search for 

a resource patch (Table 3.1, Fig. 3.4A).  

Upon encountering a resource patch individuals utilized oriented moves and 

returned to non-oriented moves after leaving a patch. A few populations adapted 

differently and used memory mechanisms to systematically search the landscape in a 

circular fashion (Table 3.1, Fig. 3.5C). However, upon encountering a resource patch, 

 

A B 

 
Figure 3.3: Evolution of movement behavior measured as average population 

fitness (average resource encountered per movements step) in terms of search 

efficiency for individuals with all movement mechanisms as well as reduced set of 

mechanisms in unpredictable (A) and predictable (B) resource landscapes. Gray 

line represents mean of 100 populations and black line is a LOESS smoothing of 

the mean. 
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they too used oriented movements. 

 

If oriented information was removed from the ANN, most populations 

adapted to use solely non-oriented movements with correlated walks while searching 

for patches and uncorrelated “area restricted search” after encountering a patch (Table 

 

movement based on: 

memory
oriented
non-oriented

A 

B 

Figure 3.4. Example of movement behavior of adapted individuals in landscapes 

with two 64-cell resource patches (gray) and random starting positions (triangle). 

Different movement behaviors emerge from identical starting conditions in 

predictable (panel A) versus unpredictable (panel B) resource landscapes. (A) In 

unpredictable landscapes, individuals used non-oriented moves to search for 

patches. (B) In predictable landscapes, individuals used memory-based moves to 

navigate to patches. In both cases individuals behaved identically once they entered 

a resource patch and chose oriented moves to exploit the patch (exploited resources 

in light gray). 
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3.1, Fig. 3.5A). 

 

Table 3.1: Proportion of usage of different movement mechanisms (i.e. output nodes 

of the ANN) in individuals trained with a genetic algorithm.  Each row sums to 1.0, 

reflecting differential reliance on alternative movement mechanisms in the different 

resource landscapes (predictable resources versus unpredictable resources). 

 
 Movement mechanism utilized 
Unpredictable resources memory oriented non-oriented 
Available mechanisms: 

All mechanisms 
0.199 0.224 0.578 

No memory - 0.175 0.825 
No non-oriented 0.630 0.370 - 
No oriented 0.266 - 0.734 
 

Predictable resource  
   

Available mechanisms: 

All mechanisms 
0.468 0.492 0.040 

No memory - 0.185 0.815 
No non-oriented 0.407 0.593 - 
No oriented 0.904 - 0.096 

 
In those populations lacking oriented moves, the drop in fitness in 

unpredictable landscapes was substantial from an average of 0.383 (SD: 0.056) 

encountered resource cells per movement step to 0.159 (SD: 0.037; Figs. 3.3A and 

 

movement based on: 

memory
oriented
non-oriented

A B C 

 
Figure 3.5: Examples of movement governed by reduced ANNs where certain 

movement mechanisms were removed from the network a) an unpredictable 

landscape without oriented information; b) a predictable landscape without oriented 

information; and c) an unpredictable landscape without non-oriented information 

(this pattern also occurred in some populations of individuals that had all movement 

mechanisms available). 
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3.6A). In contrast there was no drop in fitness for unpredictable landscapes when 

memory was removed (mean: 0.384; SD: 0.044); memory-less individuals behaved as 

in the full model, except that no systematic searches occurred as was the case in 

occasionally in the full model.  If non-oriented moves were removed, the average 

decrease in fitness was minimal (mean: 0.357); however, the standard deviation 

increased (0.086, Fig. 3.6A). In this case, organisms adapted to perform a circular and 

systematic search of the resource landscape (Fig. 3.5C), as described above. 

 In predictable resource landscapes, adapted individuals that had all 

movement mechanisms available used memory movements most of the time to 

navigate to a resource patch (Table 3.1, Fig. 3.4B). Regardless of the starting 

location, individuals typically navigated to the same resource patch first, and from 

there, approached the second patch (provided the starting position was favorable and 

the two patches were sufficiently close to allow such movement within the 150 step 

limit) (Fig. 3.4B). This movement behavior was most efficient and allowed the 

animals to exploit the majority of resource cells (average encountered resource cells 

per movement step was 0.597; SD: 0.096; Figs. 3.4B and 3.6B). The same efficiency 

was achieved when non-oriented movements were removed from the ANN (mean: 

0.580, SD: 0.082), because non-oriented movements were rarely used in predictable 

landscapes when all mechanisms were available (Table 3.1). If oriented movement 

was removed from the ANN, a steep decline in movement efficiency occurred that 

was similar to that observed in unpredictable landscapes (mean: 0.350, SD: 0.055). In 

this case, memory was used for inter-patch movements, and once a patch was 

encountered, either memory or non-oriented movement was used to exploit resources 
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(Fig. 3.5B). If memory was removed, fitness was identical to the most efficient 

movement in unpredictable landscapes (mean: 0.390, SD: 0.041). Non-oriented 

moves were used for broad scale inter-patch searches whereas oriented moves were 

used to exploit a patch. 

 

Discussion 

Here we have demonstrated how qualitatively different movement behaviors 

can be integrated and compared in models when these behaviors are represented as 

cognitive information and sensory stimuli, which in turn are implemented as state 

variables.  We used artificial evolution and intelligence techniques to transform these 

variables into movement decisions. Altering the type of information we provided for 

the model lead to different behavioral decisions which in turn allowed us to evaluate 

the value of that information with regard to movement in specific resource 

landscapes.  
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Figure 3.6: Performance (measured as fitness via average resources encountered 

per step) of movement mechanisms with full and reduced ANNs in (A) unpredictable 

and (B) predictable landscapes. 



 

 81 
 

In our approach, individuals’ movement behaviors were emergent properties: 

Whether and how individuals used specific information was not pre-defined but 

instead evolved relative to the available information and the optimization target (i.e., 

resource uptake).  We provided our model organisms with qualitatively different 

information and output options, but gave the genetic algorithm freedom to combine 

that information and those options into a single quantitative response. That is a 

fundamentally different approach to many other models of animal movements in 

which rules are often predefined (Zollner and Lima 1999a). 

In rule-based models, rules are typically defined a priori and are thus 

contingent on the modelers’ ability to conceive how and when a particular movement 

mechanism is used and how it might interact with other mechanisms. The more 

mechanisms that are considered and the more complex the fitness problem that is 

defined, the more difficult it is to discern optimal movement rules. This might be a 

reason, why, despite the fact that the importance of these different movement 

behaviors is widely recognized, no studies had, to our knowledge, previously 

combined all three movement behaviors into models (but see Tan et al. 2001, 

Gautestad and Mysterud 2005, or Moorcroft et al. 2006 for cases where two 

mechanisms are included). 

We presented a simple test scenario involving predictable versus 

unpredictable landscapes to demonstrate how the genetic algorithm (GA) used 

specific input information to find near-optimal solutions with regard to a particular 

movement problem. Individuals used the available information in sensible ways 

allowing us to evaluate hypotheses about which mechanisms should be most efficient 
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under specific conditions. As predicted, we found that memory-related variables were 

most important to individuals attempting to locate resource patches in predictable 

landscapes.  In this case the weights in the GA evolved in a way that guided 

individuals to employ the memory output node which, in turn, was transformed by 

weights of the GA to use the information about individuals’ spatiotemporal location 

to direct movement towards a resource patch.  On the other hand, information on turn 

angles and resource uptake was advantageous in unpredictable landscapes, and 

weights from the GA determined that movement angles tended to be highly correlated 

to maximize chances of exploring the entire landscape. In both predictable and 

unpredictable landscapes, oriented movements were used to exploit resources within 

patches where resources were distributed within perceptual ranges, confirming 

another prediction.  

Although we expected memory-related movement to be unsuitable for 

unpredictable landscapes, we found that memory related movements appeared to be 

almost as efficient as non-oriented movements in unpredictable landscapes (Table 

3.1).  For example, when we removed non-oriented movement from the ANN, 

average efficiency did not decrease considerable. Furthermore, in some replicates of 

our simulation studies with the full ANN, memory-related movement evolved when 

we predicted that non-oriented should have dominated. In these cases individuals 

evolved systematic circular searches that allowed them to exploit the entire foraging 

domain. We had not thought of this solution before, but it yielded similar average 

fitness compared to a non-oriented random walk. However, these systematic searches 

suffered a disadvantage compared to random walks in that variability in fitness 
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among different generations and populations was increased in the systematic 

searchers.  Systematic searches with little variability in movement paths among 

individuals in the same population led to either success or failure of the majority of 

individuals. Variability in success among generations and populations was much 

lower if non-oriented movement was performed because each individual within 

generations moved along entirely different paths and at least some individuals in each 

generation were always successful to obtain some resources. Populations may have 

gone extinct if the majority of individuals in one generation would have failed to 

allocate any resources and non-oriented movement might have been much more 

advantageous if population sizes were flexible and the fitness target would have been 

required to maintain minimum energy reserves. However, in our model, population 

size was kept stable and extinction of populations was not possible.  This suggests 

that the phenomenon of systematic searches would be unlikely to occur in more 

realistic modeling setups.  

While solutions of the GA generally agree with our original predictions, they 

were not perfect.  For example, in predictable landscapes animals navigated to one 

specific resource patch first independent of the animals’ starting positions. Seemingly 

it would have been more sensible to evolve flexibility and always visit the closest 

resource patch first. This deviation from our predictions may have arisen from the 

movement constraints that we placed on model organisms. For example, in our 

simulation experiments, we assigned a fixed number of movement steps (150) to all 

individuals. That is, as long as resources were obtained within these steps it did not 

matter how many of them were actually used (i.e. a solution that exploited a certain 
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quantity of resources with 150 steps was considered equally good to a solution that 

exploited the same amount with fewer steps). Other deviations from our predictions 

may have occurred because our ANN was relatively simple.  With a more complex 

ANN (or with larger population sizes), solutions that would have provided a more 

flexible solution might have emerged to replace the nearly optimal solutions that we 

found. Another obvious artifact of our model is that memory-related movements 

tended to prefer diagonal moves rather than vertical or horizontal (Fig. 3.4b). Since 

movement decisions were grid-based, larger distances could be covered using 

diagonal moves leading to greater success in finding a patch.  

With our modeling efforts, we sought to demonstrate the general feasibility of 

implementing mechanistic movement models via INGs when mechanisms are 

represented as state variables in the input layer of the ANN. Unlike other recent 

studies that employ evolutionary algorithms and artificial intelligence techniques (e.g. 

Boone et al. 2006, Morales et al. 2005, Bennett and Tang 2006), we did not attempt to 

fit empirical movement paths with our model. However these other models did not 

attempt to investigate the effects of different mechanisms, meaning that we avoided 

adding more complicated submodels for resource landscapes, individuals, and 

movements. Future work should seek to add such complexity, however, because more 

detailed models might be important for capturing the idiosyncrasies of particular 

empirical settings. For example, in some types of resource landscapes, such as 

landscapes characterizing forage availability for herbivores, resources may be better 

represented by continuous rather than binary variables and resources may also 

replenish after they have been harvested (Farnsworth and Beecham 1999). For these 
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cases, a detailed resource re-growth model that captures quantity and quality of 

resources might be more appropriate (Farnsworth and Beecham 1999).  

Likewise for individuals and their movements, increased complexity and 

additional submodels may be necessary to fit an empirical setting for several reasons. 

First, we limited movements in our model to a certain number of steps, whereas 

issues of stasis or variability in velocity might be important in other contexts. In 

addition, our optimization target was relatively simple, and different or more complex 

targets may be necessary to mimic empirical situations. Alternative optimization 

targets might include the maintenance of a certain minimum level of resources 

throughout the entire walk or maximizing the quantity of resources gained before a 

critical time of year, such as the reproductive season or winter. Finally, future models 

may want to include predator avoidance (e.g., elk try to avoid wolf packs, Morales et 

al. 2005) or distance to conspecifics (e.g., social foragers such as pigs, Hancock and 

Milner-Gulland 2006) as additional important optimization targets to gain model 

realism and introduce non-resource based motivations for movements.  

Considering the movement mechanisms themselves, future modeling may 

want to go beyond the relatively simple assumptions that we employed. For example, 

we implemented memory as simple spatiotemporal information of an animal’s 

location, and learning took place only via adaptations of the GA’s weights between 

generations. Such an implementation might be appropriate to fit certain movement 

types, such as long distance migration behavior in which resources vary predictably 

across broad scales between few distinct temporal ranges (Boone et al. 2006). 

However, other environments involve cases where resources vary over shorter time 
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frames or present more complex spatial problems. Examples include cases where 

animals visit and feed on inflorescences, such as hummingbirds or flower bats. In 

those cases, individuals must learn multiple locations of flowers (or artificial feeders) 

in just a short time (Winter and Stich 2005).  Learning in those cases takes place 

within individuals, rather than across generations, and the memory problem is more 

complex because knowledge of multiple locations is critical. In this case the current 

spatiotemporal location of individuals alone would probably not suffice as 

information to guide memory-related movements. Other representations, such as 

digital cognitive maps, that would allow implementation of short term episodic 

memory plus long term reference memory, might be better suited to simulate 

memory-related movements under these conditions (Bennett and Tang 2006).  

Future studies may try to use the concept presented here, representing 

different movement mechanisms as information-providing state variables in the input 

layers of ANNs, to fit empirical movement paths.  A good fit model may actually 

reveal the underlying mechanisms of a particular animal or population in an empirical 

setting. Such models may serve as an important tool for ecological forecasting and 

might be able to predict how individuals’ movements and species’ spatiotemporal 

population dynamics could respond to landscape changes. However, challenges to 

achieving such an empirical fit lay not only in an adequate modeling of the 

underlying resource landscapes (Mueller and Fagan 2008), but more importantly in 

the uncertainty of parameters related to movement. For most animals, we do not 

know what the perceptual ranges are or how long and precisely they can remember 

what type of landscape features. Such challenges could possibly be overcome using 
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pattern-oriented modeling, a technique that uses inverse modeling to identify 

plausible parameter values by filtering parameterizations that fit multiple patterns 

derived from field data simultaneously (Grimm et al. 2005, Kramer-Schadt et al. 

2007). 
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