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Abstract
The two weighted graph problems Node Multiway Cut (NMC) and Subset

Feedback Vertex Set (SFVS) both ask for a vertex set of minimum total weight,
that for NMC disconnects a given set of terminals, and for SFVS intersects all cycles
containing a vertex of a given set.We design ameta-algorithm that allows to solve both
problems in time 2O(rw3) ·n4, 2O(q2 log(q)) ·n4, and nO(k2) where rw is the rank-width,
q the Q-rank-width, and k the mim-width of a given decomposition. This answers
in the affirmative an open question raised by Jaffke et al. (Algorithmica 82(1):118–
145, 2020) concerning an XP algorithm for SFVS parameterized by mim-width. By
a unified algorithm, this solves both problems in polynomial-time on the following
graph classes: Interval, Permutation, and Bi- Interval graphs, Circular Arc

and Circular Permutation graphs, Convex graphs, k-Polygon, Dilworth-k
and Co- k-Degenerate graphs for fixed k; and also on Leaf Power graphs if a leaf
root is given as input, on H - Graphs for fixed H if an H -representation is given as
input, and on arbitrary powers of graphs in all the above classes. Prior to our results,
only SFVS was known to be tractable restricted only on Interval and Permutation
graphs, whereas all other results are new.
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1 Introduction

Given a vertex-weighted graph G and a set S of its vertices, the Subset Feedback

Vertex Set (SFVS) problem asks for a vertex set of minimum weight that intersects
all cycles containing a vertex of S. SFVS was introduced by Even et al. [17] who
proposed an 8-approximation algorithm. Cygan et al. [15] and Kawarabayashi and
Kobayashi [30] independently showed that SFVS is fixed-parameter tractable (FPT)
parameterized by the solution size, while Hols and Kratsch [25] provide a randomized
polynomial kernel for the problem. As a generalization of the classical NP-complete
Feedback Vertex Set (FVS) problem, for which S = V (G), there has been a
considerable amount of work to obtain faster algorithms for SFVS, both for general
graphs [10, 18] where the current best is an O∗(1.864n) algorithm due to Fomin et al.
[20], and restricted to special graph classes [2, 23, 37, 38]. Naturally, FVS and SFVS
differ in complexity, as exemplified by split graphs where FVS is polynomial-time
solvable [11] whereas SFVS remains NP-hard [20]. Moreover, note that the vertex-
weighted variation of SFVS behaves differently than the unweighted one, as exposed
on graphs with bounded independent set sizes: weighted SFVS is NP-complete on
graphs with independent set size at most four, whereas unweighted SFVS is in XP
parameterized by the independent set size [38].

Closely related to SFVS is the NP-hard Node Multiway Cut (NMC) problem
in which we are given a vertex-weighted graph G and a set T of (terminal) vertices,
and asked to find a vertex set of minimum weight that disconnects all the terminals
[8, 21]. NMC is a well-studied problem in terms of approximation [21], as well as
parameterized algorithms [8–10, 14, 16, 20]. It is not difficult to see that SFVS for
S = {v} coincides with NMC in which T = N (v). In fact, NMC reduces to SFVS
by adding a single vertex v with a large weight that is adjacent to all terminals and
setting S = {v} [20]. Thus, in order to solve NMC on a given graph one may apply a
knownalgorithm forSFVSonavertex-extendedgraph.Observe, however, that through
such an approach one needs to clarify that the vertex-extended graph still obeys the
necessary properties of the known algorithm for SFVS. This explains why most of the
positive results on SFVS on graph families [23, 37, 38] can not be translated to NMC.

In this paper, we investigate the complexity of SFVS and NMC when parameter-
ized by structural graphwidth parameters.Well-knowngraphwidth parameters include
tree-width [4], clique-width [13], rank-width [33], and maximum induced matching
width (a.k.a.mim-width) [41]. These are of varying strength, with tree-width of mod-
eling power strictly weaker than clique-width, as it is bounded on a proper subset
of the graph classes having bounded clique-width, with rank-width and clique-width
of the same modeling power, and with mim-width much stronger than clique-width.
Belmonte and Vatshelle [1] showed that several graph classes, like interval graphs and
permutation graphs, have bounded mim-width and a decomposition witnessing this
can be found in polynomial time, whereas it is known that the clique-width of such
graphs can be proportional to the square root of the number of vertices [24]. In this
way, an XP algorithm parameterized by mim-width has the feature of unifying several
algorithms on well-known graph classes.

We obtain most of these parameters through the well-known notion of branch-
decomposition introduced in [39]. This is a natural hierarchical clustering of G,
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represented as a subcubic tree T with the vertices of G at its leaves. Any edge of
the tree defines a cut of G given by the leaves of the two subtrees that result from
removing the edge from T . Judiciously choosing a cut-function to measure the com-
plexity of such cuts, or rather of the bipartite subgraphs of G given by the edges
crossing the cuts, this framework then defines a graph width parameter by a minmax
relation, minimum over all trees and maximum over all its cuts. Several graph width
parameters have been defined this way, like carving-width, maximummatching-width,
boolean-width etc. We will in this paper focus on: (i) rank-width [33] whose cut func-
tion is the GF[2]-rank of the adjacency matrix, (ii) Q-rank-width [35] a variant of
rank-width with interesting algorithmic properties which instead uses the rank over
the rational field, and (iii) mim-width [41] whose cut function is the size of amaximum
induced matching of the graph crossing the cut. Concerning their computations, for
rank-width and Q-rank-width, there are 23k · n4 time algorithms that, given a graph G
as input and k ∈ N, either output a decomposition for G of width at most 3k + 1 or
confirms that the width of G is more than k [35, 36]. However, it is not known whether
the mim-width of a graph can be approximated within a constant factor in time n f (k)

for some function f .
Let usmentionwhat is known regarding the complexity of NMCand SFVS parame-

terized by thesewidthmeasures. Since these problems can be expressed inMSO1-logic
it follows that they are FPT parameterized by tree-width, clique-width, rank-width or
Q-rank-width [12, 34], however the runtime will contain a tower of 2’s with more than
4 levels. Recently, Bergougnoux et al. [2] proposed kO(k) ·n3 time algorithms for these
two problems parameterized by treewidth and proved that they cannot be solved in
time ko(k) ·nO(1) unless ETH fails. For mim-width, we know that FVS and thus SFVS
are both W[1]-hard when parameterized by the mim-width of a given decomposition
[29].

Attacking SFVS seems to be a hard task that requires more tools than for FVS. Even
for very small values of mim-width that capture several graph classes, the tractability
of SFVS, prior to our result, was left open besides interval and permutation graphs
[37]. Although FVS was known to be tractable on such graphs for more than a decade
[32], the complexity status of SFVS still remained unknown.

Our Results We design a meta-algorithm that, given a graph and a branch-
decomposition, solves SFVS (or NMC via its reduction to SFVS). The runtime of
this algorithm is upper bounded by 2O(rw3) ·n4, 2O(q2 log(q)) ·n4 and nO(k2) where rw,
q and k are the rank-width, the Q-rank-width and the mim-width of the given branch-
decomposition. For clique-width, our meta-algorithm implies that we can solve SFVS
and NMC in time 2O(k2) · nO(1) where k is the clique-width of a given clique-width
expression. However, we do not prove this as it is not asymptotically optimal, indeed
Jacob et al. [26] show recently that SFVS and NMC is solvable in time 2O(k log k) · n
given a clique-width expression.

We resolve in the affirmative the question raised by Jaffke et al. [29], alsomentioned
in [37, 38], asking whether there is an XP-time algorithm for SFVS parameterized by
themim-width of a given decomposition. For rank-width andQ-rank-widthwe provide
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the first explicit FPT-algorithmswith low exponential dependency that avoid theMSO1
formulation. Our main results are summarized in the following theorem:

Theorem 1 Let G be a graph on n vertices. We can solve Subset Feedback Vertex

Set and Node Multiway Cut in time 2O(rw3) · n4 and 2O(q2 log(q)) · n4, where rw
and q are the rank-width and the Q-rank-width of G, respectively. Moreover, if a
branch-decomposition of mim-width k for G is given as input, we can solve Subset
Feedback Vertex Set and Node Multiway Cut in time nO(k2).

Note it is not known whether the mim-width of a graph can be approximated
within a constant factor in time n f (k) for some function f . However, by the previously
mentioned results of Belmonte and Vatshelle [1] on computing decompositions of
bounded mim-width, combined with a result of [27] showing that for any positive
integer r a decomposition of mim-width k of a graph G is also a decomposition of
mim-width at most 2k of its power Gr , we get the following corollary.

Corollary 2 We can solve Subset Feedback Vertex Set and Node Multiway

Cut in polynomial time on Interval,Permutation, and Bi- Interval graphs,Cir-
cular Arc and Circular Permutation graphs, Convex graphs, k- Polygon,
Dilworth- k and Co- k- Degenerate graphs for fixed k, and on arbitrary powers
of graphs in any of these classes.

Previously, such polynomial-time tractabilitywas knownonly for SFVSandonly on
Interval and Permutation graphs [37]. It is worth noticing that Theorem 1 implies
also that we can solve Subset Feedback Vertex Set and Node Multiway Cut

in polynomial time on Leaf Power if an intersection model is given as input (from
which we can compute a decomposition of mim-width 1) [1, 27] and on H - Graphs

for a fixed H if an H -representation is given as input (from which we can compute a
decomposition of mim-width 2|E(H)|) [19].
Our Approach We give some intuition to our meta-algorithm, that will focus on
Subset Feedback Vertex Set. Since NMC can be solved by adding a vertex v of
large weight adjacent to all terminals and solving SFVS with S = {v}, all within the
same runtime as extending the given branch-decomposition to this newgraph increases
the width at most by one for all considered width measures.

Towards achieving our goal, we use the d-neighbor equivalence, with d = 1 and
d = 2, a notion introduced by Bui-Xuan et al. [7]. Two subsets X and Y of A ⊆ V (G)

are d-neighbor equivalent w.r.t. A, ifmin(d, |X∩N (u)|) = min(d, |Y ∩N (u)|) for all
u ∈ V (G)\A. For a cut (A, A) this equivalence relation on subsets of verticeswas used
by Bui-Xuan et al. [7] to design a meta-algorithm, also giving XP algorithms by mim-
width, for so-called (σ, ρ) generalized domination problems. Recently, Bergougnoux
and Kanté [3] extended the uses of this notion to acyclic and connected variants of
(σ, ρ) generalized domination and similar problems like FVS. An earlier XP algorithm
for FVS parameterized by mim-width had been given by Jaffke et al. [29] but instead
of the d-neighbor equivalences this algorithm was based on the notions of reduced
forests and minimal vertex covers.
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Our meta-algorithm does a bottom-up traversal of a given branch-decomposition of
the input graphG, computing a vertex subset X of maximumweight that induces an S-
forest (i.e., a graph where no cycle contains a vertex of S) and outputs V (G)\X which
is necessarily a solution of SFVS. As usual, our dynamic programming algorithm
relies on a notion of representativity between sets of partial solutions. For each cut
(A, A) induced by the decomposition, our algorithm computes a set of partial solutions
A ⊆ 2A of small size that represents 2A. We say that a set of partial solutionsA ⊆ 2A

represents a set of partial solutionsB ⊆ 2A, if, for each Y ⊆ A, we have best(A,Y ) =
best(B,Y ) where best(C,Y ) is the maximum weight of a set X ∈ C such that X ∪ Y
induces an S-forest. Since the root of the decomposition is associated with the cut
(V (G), ∅), the set of partial solutions computed for this cut represents 2V (G) and thus
contains an S-forest of maximum weight. Our main tool is a subroutine that, given a
set of partial solutions B ⊆ 2A, outputs a subset A ⊆ B of small size that represents
B.

To design this subroutine, we cannot use directly the approaches solving FVS of
any earlier approaches, like [3] or [29]. This is due to the fact that S-forests behave
quite differently than forests; for example, given an S-forest F , the graph induced by
the edges between A∩V (F) and A∩V (F) could be a biclique. Instead, we introduce
a notion of vertex contractions and prove that, for every X ⊆ A and Y ⊆ A, the graph
induced by X ∪ Y is an S-forest if and only if there exists a partition of X\S and of
Y\S, satisfying certain properties, such that contracting the blocks of these partitions
into single vertices transforms the S-forest into a forest.

This equivalence between S-forests in the original graph and forests in the con-
tracted graphs allows us to adapt some ideas from [3, 29]. Most of all, we use the
property that, if the mim-width of the given decomposition is mim, then the con-
tracted graph obtained from the bipartite graph induced by X and Y admits a vertex
cover VC of size at most 4mim. Note however, that in our case the elements of VC
are contracted subsets of vertices. Such a vertex cover allows us to control the cycles
which are crossing the cut.

We associate each possible vertex cover VC with an index i which contains basi-
cally a representative for the 2-neighbor equivalence for each subset of vertices in
VC. Moreover, for each index i , we introduce the notions of partial solutions and
complements solutions associated with i which correspond, respectively, to subsets
of X ⊆ A and subsets Y ⊆ A such that, for some contractions of X and Y , the con-
tracted graph obtained from the bipartite graph induced by X and Y admits a vertex
cover VC associated with i . We define an equivalence relation ∼i between the partial
solutions associated with i such that X ∼i W , if X and W connect in the same way
the representatives of the vertex sets which belongs to the vertex covers described by
i . Given a set of partial solutions B ⊆ 2A, our subroutine outputs a setA that contains,
for each index i and each equivalence class C of ∼i over B, a partial solution in C of
maximum weight. In order to prove that A represents B, we show that:

• for every S-forest F , there exists an index i such that V (F)∩ A is a partial solution
associated with i and V (F) ∩ A is a complement solutions associated with i .

• if X ∼i W , then, for every complement solution Y associated with i , the graph
induced by X ∪ Y is an S-forest if and only if W ∪ Y induces an S-forest.
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The number of indices i is upper bounded by 2O(q2 log(q)), 2O(rw3) and nO(mim2).
This follows from the known upper-bounds on the number of 2-neighbor equivalence
classes and the fact that the vertex covers we consider have size at most 4mim. Since
there are at most (4mim)4mim ways of connecting 4mim vertices and rw, q ≥ mim,
we deduce that the size ofA is upper bounded by 2O(q2 log(q)), 2O(rw3) and nO(mim2).

To the best of our knowledge, this is the first time a dynamic programming algorithm
parameterized by graph width measures uses this notion of vertex contractions. Note
that in contrast to the meta-algorithms in [3, 7], the number of representatives (for
the d-neighbor equivalence) contained in the indices of our meta-algorithm are not
upper bounded by a constant but by 4mim. This explains the differences between the
runtimes in Theorem 1 and those obtained in [3, 7], i.e. nO(mim2) versus nO(mim).
However, for the case S = V (G), thus solving FVS, our meta-algorithm will have
runtime nO(mim), as the algorithms for FVS of [3, 29]. We do not expect that SFVS
can be solved as fast as FVS when parameterized by graph width measures. In fact,
we know that it is not the case for tree-width as FVS can be solved in 2O(k) · n [5] but
SFVS cannot be solved in ko(k) · nO(1) unless ETH fails [2].

2 Preliminaries

The size of a set V is denoted by |V | and its power set is denoted by 2V . We write
A\B for the set difference of A from B. We letmin(∅) = +∞ andmax(∅) = −∞.

Graphs The vertex set of a graph G is denoted by V (G) and its edge set by E(G).
An edge between two vertices x and y is denoted by xy (or yx). Given S ⊆ 2V (G),
we denote by V (S) the set

⋃
S∈S S. For a vertex set U ⊆ V (G), we denote by U the

set V (G)\U . The set of vertices that are adjacent to x is denoted by NG(x), and for
U ⊆ V (G), we let NG(U ) = (∪v∈U NG(v)) \U .

The subgraph of G induced by a subset X of its vertex set is denoted by G[X ].
For two disjoint subsets X and Y of V (G), we denote by G[X ,Y ] the bipartite graph
with vertex set X ∪ Y and edge set {xy ∈ E(G) | x ∈ X and y ∈ Y }. We denote
by MX ,Y the adjacency matrix between X and Y , i.e., the (X ,Y )-matrix such that
MX ,Y [x, y] = 1 if y ∈ N (x) and 0 otherwise. A vertex cover of a graph G is a set of
vertices VC ⊆ V (G) such that, for every edge uv ∈ E(G), we have u ∈ VC or v ∈ VC.
A matching is a set of edges having no common endpoint and an induced matching is
a matching M of edges such that G[V (M)] has no other edges besides M . The size of
an induced matching M refers to the number of edges in M .

For a graph G, we denote by ccG(X) the partition {C ⊆ V (G) | G[C] is a con-
nected component of G[X ]}. We will omit the subscript G of the neighborhood and
components notations whenever there is no ambiguity.

For two graphs G1 and G2, we denote by G1 − G2 the graph (V (G1), E(G1)\
E(G2)).

Given a graph G and S ⊆ V (G), we say that a cycle ofG is an S-cycle if it contains
a vertex in S. Moreover, we say that a subgraph F of G is an S-forest if F does not
contain an S-cycle. Typically, the Subset Feedback Vertex Set problem asks for
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a vertex set of minimum (weight) size such that its removal results in an S-forest. Here
we focus on the following equivalent formulation:

Subset Feedback Vertex Set (SFVS)

Input: A graph G, S ⊆ V (G) and a weight function w : V (G) → Q.
Output: The maximum among the weights of the S-forests of G.

Rooted Layout For the notion of branch-decomposition, we consider its rooted vari-
ant called rooted layout. A rooted binary tree is a binary treewith a distinguished vertex
called the root. Since we manipulate at the same time graphs and trees representing
them, the vertices of trees will be called nodes.

A rooted layout ofG is a pair (T , δ) of a rooted binary tree T and a bijective function
δ between V (G) and the leaves of T . For each node x of T , let Lx be the set of all the
leaves l of T such that the path from the root of T to l contains x . We denote by Vx

the set of vertices that are in bijection with Lx , i.e., Vx := {v ∈ V (G) | δ(v) ∈ Lx }.
All the width measures dealt with in this paper are special cases of the following

one, where the difference in each case is the used set function. Given a set function
f : 2V (G) → N and a rooted layout L = (T , δ), the f-width of a node x of T is f(Vx )

and the f-width of (T , δ), denoted by f(T , δ) (or f(L)), is max{f(Vx ) | x ∈ V (T )}.
Finally, the f-width of G is the minimum f-width over all rooted layouts of G.
(Q)-Rank-Width The rank-width and Q-rank-width are, respectively, the rw-width
and rwQ-width where rw(A) (resp. rwQ(A)) is the rank over GF(2) (resp. Q) of the
matrix MA,A for all A ⊆ V (G).

Mim-Width The mim-width of a graph G is the mim-width of G where mim(A) is
the size of a maximum induced matching of the graph G[A, A] for all A ⊆ V (G).

Observe that all three parameters rw-, rwQ-, and mim-width are symmetric, i.e.,
for the associated set function f and for any A ⊆ V (G), we have f (A) = f (A).
The following lemma provides upper bounds between mim-width and the other two
parameters.

Lemma 3 ([41]) Let G be a graph. For every A ⊆ V (G), we have mim(A) ≤ rw(A)

and mim(A) ≤ rwQ(A).

Proof Let A ⊆ V (G). Let S be the vertex set of a maximum induced matching of the
graphG[A, A]. By definition, we havemim(A) = |S∩ A| = |S∩ A|. Observe that the
restriction of the matrix MA,A to rows in S∩ A and columns in S∩ A is a permutation
matrix: a binary squarematrixwith exactly one entry of 1 in each row and each column.
The rank of this permutation matrix over GF[2] or Q is |S ∩ A| = mim(A). Hence,
mim(A) is upper bounded both by rw(A) and rwQ(A). �

d-Neighbor-Equivalence The following concepts were introduced in [7]. Let G be
a graph. Let A ⊆ V (G) and d ∈ N+. Two subsets X and Y of A are d-neighbor
equivalent w.r.t. A, denoted by X ≡A

d Y , ifmin(d, |X ∩N (u)|) = min(d, |Y ∩N (u)|)
for all u ∈ A. It is not hard to check that ≡A

d is an equivalence relation. See Fig. 1 for
an example of 2-neighbor equivalent sets.
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Fig. 1 We have X ≡A
2 Y , but it

is not the case that X ≡A
3 Y

For all d ∈ N+, we let necd : 2V (G) → N where for all A ⊆ V (G), necd(A) is
the number of equivalence classes of ≡A

d . Notice that nec1 is a symmetric function
[31,Theorem 1.2.3] but necd is not necessarily symmetric for d ≥ 2. To simplify the
running times, wewill use the shorthand s-nec2(A) to denotemax(nec2(A),nec2(A))

(where s stands for symmetric). The following lemma shows how necd(A) is upper
bounded by the other parameters.

Lemma 4 ([1, 35, 41]) Let G be a graph. For every A ⊆ V (G) and d ∈ N+, we have
the following upper bounds on necd(A):

(a) 2drw(A)2 ,
(b) 2rwQ(A) log(drwQ(A)+1),
(c) |A|dmim(A).

In order to manipulate the equivalence classes of ≡A
d , one needs to compute a

representative for each equivalence class in polynomial time. This is achieved with
the following notion of a representative. Let G be a graph with an arbitrary order-
ing of V (G) and let A ⊆ V (G). For each X ⊆ A, let us denote by repA

d (X) the
lexicographically smallest set R ⊆ A such that |R| is minimized and R ≡A

d X . More-
over, we denote by RA

d the set {repA
d (X) | X ⊆ A}. It is worth noticing that the

empty set always belongs to RA
d , for all A ⊆ V (G) and d ∈ N+. Moreover, we have

RV (G)
d = R∅

d = {∅} for all d ∈ N+. In order to compute these representatives, we
use the following lemma.

Lemma 5 ([7]) Let G be an n-vertex graph. For every A ⊆ V (G) and d ∈ N+, one
can compute in time O(necd(A) ·n2 · log(necd(A))), the setsRA

d and a data structure
that, given a set X ⊆ A, computes repA

d (X) in time O(|A| · n · log(necd(A))).

Vertex Contractions In order to deal with SFVS, we will use the ideas of the algo-
rithms for Feedback Vertex Set from [3, 28]. To this end, we will contract subsets
of S in order to transform S-forests into forests.

In order to compare two partial solutions associated with A ⊆ V (G), we define
an auxiliary graph in which we replace contracted vertices by their representative sets
in RA

2 . Since the sets in RA
2 are not necessarily pairwise disjoint, we will use the

following notions of graphs “induced” by collections of subsets of vertices. We will
also use these notions to define the contractions we make on partial solutions.

Let G be a graph. Given A ⊆ 2V (G), we define G[A] as the graph with vertex set
A where A, B ∈ A are adjacent if and only if N (A) ∩ B �= ∅. Observe that if the
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Fig. 2 An S-forest induced by a set X ⊆ V (G), the vertices of S are white. The gray circles represent the
blocks of X↓cc(X\S). The graph G[X ]↓cc(X\S) is obtained by contracting each gray circle

sets inA are pairwise disjoint, then G[A] is obtained from an induced subgraph of G
by vertex contractions (i.e., by replacing two vertices u and v with a new vertex with
neighborhood N ({u, v})) and, for this reason, we refer to G[A] as a contracted graph.
Notice that we will never use the neighborhood notation and connected component
notations on contracted graphs. Given A,B ⊆ 2V (G), we denote by G[A,B] the
bipartite graph with vertex set A ∪ B and where A, B ∈ A ∪ B are adjacent if and
only if A ∈ A, B ∈ B, and N (A) ∩ B �= ∅. Moreover, we denote by G[A | B] the
graph with vertex setA∪B and with edge set E(G[A]) ∪ E(G[A,B]). Observe that
both graphs G[A,B] and G[A | B] are subgraphs of the contracted graph G[A ∪ B].
To avoid confusion with the original graph, we refer to the vertices of the contracted
graphs as blocks. It is worth noticing that in the contracted graphs used in this paper,
whenever two blocks are adjacent, they are disjoint.

The following observation states that we can contract from a partition without
increasing the size of a maximum induced matching of a graph. It follows directly
from the definition of contractions.

Observation 6 Let H be a graph. For any partition P of a subset of V (H), the size
of a maximum induced matching of H [P] is at most the size of a maximum induced
matching of H.

Let (G, S) be an instance of SFVS. The vertex contractions that we use on a partial
solution X are defined from a given partition of X\S. A partition of the vertices of
X\S is called an S-contraction of X . We will use the following notations to handle
these contractions.

Given Y ⊆ V (G), we denote by
(Y
1

)
the partition of Y which contains only single-

tons, i.e.,
(Y
1

) = {{v} | v ∈ Y }. Moreover, for an S-contraction P of X , we denote

by X↓P the partition of X where X↓P = P ∪ (X∩S
1

)
. Given a subgraph H of G

and an S-contraction P of V (H), we denote by H↓P the graph H [V (H)↓P ]. For
example, given two S-contractions PX ,PY of two disjoint subsets X ,Y of V (G), we
denote the graph G[X↓PX ,Y↓PY ] by G[X ,Y ]↓PX∪PY and the graph G[X↓PX |Y↓PY ]
by G[X |Y ]↓PX∪PY . It is worth noticing that in our contracted graphs, all the blocks
of S-vertices are singletons and we denote them by {v}.

Given a set X ⊆ V (G), we will intensively use the graph G[X ]↓cc(X\S) which cor-
responds to the graph obtained from G[X ] by contracting the connected components
of G[X\S], see Fig. 2.

Observe that, for every subset X ⊆ V (G), ifG[X ] is an S-forest, thenG[X ]↓cc(X\S)

is a forest. The converse is not true as we may delete S-cycles with contractions: take
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a triangle with one vertex v in S and contract the neighbors of v. However, we can
prove the following equivalence.

Fact 7 Let G be a graph and S ⊆ V (G). For every X ⊆ V (G), G[X ] is an S-forest if
and only if there exists an S-contractionP of X satisfying the following two properties:

• G[X ]↓P is a forest, and
• for every B ∈ P and v ∈ X ∩ S, we have |N (v) ∩ B| ≤ 1.

Moreover, if G[X ] is an S-forest, then the S-contraction cc(X\S) satisfies these two
properties.

Proof (⇒) Suppose first that G[X ] is an S-forest. We claim that the S-contraction
cc(X\S) satisfies the two properties. Assume towards a contradiction that there is a
cycleC inG[X ]↓cc(X\S). By definition ofG[X ]↓cc(X\S), the blocks of this graph are the
connected components cc(X\S) and the singletons in

(X∩S
1

)
. The blocks in cc(X\S)

are pairwise non-adjacent, thus C contains a block {s} with s ∈ X ∩ S. Observe
that for every pair of consecutive blocks B1, B2 of C , there exists a vertex v1 ∈ B1
and v2 ∈ B2 such that v1v2 ∈ E(G[X ]). As every block of G[X ]↓cc(X\S) induces a
connected component in G, we can construct an S-cycle in G[X ] by replacing every
block of C by a path in G[X ], yielding a contradiction. Hence, G[X ]↓cc(X\S) is a
forest, i.e. the first property is satisfied. Observe that if there exists C ∈ cc(X\S) and
v ∈ X ∩ S such that v has two neighbors in C , then there exists an S-cycle in G[X ]
since C is a connected component. Hence, cc(X\S) satisfies the second property.

(⇐) LetP be a S contraction of a subset X ⊆ V (G) that satisfies the two properties.
Assume for contradiction that there is an S-cycle C in G[X ]. Let v be a vertex of C
that belongs to S and let u and w be the neighbors of v in C .

Let Bu and Bw be the blocks in (X ∪ Y )↓P that contain u and w respectively. As
v is in S, it belongs to the block {v} of G[X ∪ Y ]↓P and thus it is not contained in Bu

nor Bw. The second property implies that |N (v) ∩ B| ≤ 1 for each B ∈ P . Thus, Bu

and Bw are two distinct blocks both connected to the block {v}. Since there exists a
path between u and w in C that does not go through v, we deduce that there is a path
between Bu and Bw inG[X ]↓P that does not go through {v}. Indeed, this follows from
the fact that if there is an edge between two vertices a and b in G[X ], then either a
and b belong to the same block of G[X ]↓P or there exists an edge between the blocks
in G[X ]↓P which contain a and b. We conclude that there exists a cycle in G[X ]↓P ,
a contradiction with the first property. �


3 AMeta-algorithm for Subset Feedback Vertex Set

In the following, we present a meta-algorithm that, given a rooted layout (T , δ) of
G, solves SFVS. We will show that this meta-algorithm will imply that SFVS can be
solved in time 2O(rwQ(G)2 log(rwQ(G))) · n4, 2O(rw(G)3) · n4 and nO(mim(T ,δ)2). The main
idea of this algorithm is to use S-contractions in order to employ similar properties
of the algorithm for Maximum Induced Tree of [3] and the nO(mim(T ,δ)) time
algorithm for Feedback Vertex Set of [28]. In particular, we use the following
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lemma which is proved implicitly in [3]. To simplify the following statements, we fix
a graph G, a rooted layout (T , δ) of G and a node x ∈ V (T ).

Lemma 8 Let X and Y be two disjoint subsets of V (G). If G[X ∪ Y ] is a forest, then
the number of vertices of X that have at least two neighbors in Y is bounded by 2w
where w is the size of a maximum induced matching in the bipartite graph G[X ,Y ].
Proof Let X2+ be the set of vertices in X having at least 2 neighbors in Y . In the
following,we prove that F = G[X2+,Y ] admits a good bipartition, that is a bipartition
{X0, X1} of X2+ such that, for each i ∈ {0, 1} and, for each v ∈ Xi , there exists yv ∈ Y
such that NF (yv) ∩ Xi = {v}. Observe that this is enough to prove the lemma since
if F admits a good bipartition {X0, X1}, then |X0| ≤ w and |X1| ≤ w. Indeed, if
F admits a good bipartition {X0, X1}, then, for each i ∈ {0, 1}, the set of edges
Mi = {vyv | v ∈ Xi } is an induced matching of G[X ,Y ]. In order to prove that F
admits a good bipartition it is sufficient to prove that each connected component of F
admits a good bipartition.

Let C be a connected component of F and x0 ∈ C ∩ X2+. As G[X ∪Y ] is a forest,
we deduce that F[C] is a tree. Observe that the distance in F[C] between each vertex
v ∈ C ∩ X2+ and x0 is even because F[C] is bipartite w.r.t. (C ∩ X2+,C ∩Y ). Let X0
(resp. X1) be the set of all vertices v ∈ C ∩ X2+ at distance 2� from x0 with � even
(resp. odd). We claim that {X0, X1} is a good bipartition of F[C].

Let i ∈ {0, 1}, v ∈ Xi and � ∈ N such that the distance between v and x0 in F[C] is
2�. Let P be the set of vertices inC\{v} that share a common neighbor with v in F[C].
We want to prove that v has a neighbor y in F that is not adjacent to P ∩ Xi . Observe
that, for every v′ ∈ P , the distance between v′ and x0 in F[C] is either 2� − 2, 2� or
2�+2 because F[C] is a tree and the distance between v and x0 is 2�. By construction
of {X0, X1}, every vertex at distance 2� − 2 or 2� + 2 from x0 belongs to X1−i . Thus,
every vertex in P ∩ Xi is at distance 2� from x0. If � = 0, then we are done because
v = x0 and P ∩ Xi = ∅. Assume that � �= 0. As F[C] is a tree, v has only one
neighbor w at distance 2� − 1 from x0 in F[C]. Because F[C] is a tree, w is the only
vertex adjacent to v and the vertices in P ∩ Xi . By definition of X2+, v has at least two
neighbors in Y , so v admits a neighbor that is not w and this neighbor is not adjacent
to the vertices in P ∩ Xi . Hence, we deduce that {X0, X1} is a good bipartition of
F[C].

We deduce that every connected component of F admits a good bipartition and,
thus, F admits a good bipartition. This proves that |X2+| ≤ 2w. �


The following lemma generalizes Fact 7 and presents the equivalence between
S-forests and forests that we will use in our algorithm.

Lemma 9 Let X ⊆ Vx and Y ⊆ Vx . If the graph G[X ∪ Y ] is an S-forest, then there
exists an S-contraction PY of Y that satisfies the following conditions:

(1) G[X ∪ Y ]↓cc(X\S)∪PY is a forest,
(2) for all block P ∈ cc(X\S) ∪ PY and v ∈ (X ∪ Y ) ∩ S, we have |N (v) ∩ P| ≤ 1,
(3) the graph G[X ,Y ]↓cc(X\S)∪PY admits a vertex cover VC of size at most 4mim(Vx )

such that the neighborhoods of the blocks in VC are pairwise distinct in
G[X ,Y ]↓cc(X\S)∪PY .
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Proof Assume that G[X ∪ Y ] is an S-forest. Let us explain how we construct PY that
satisfies Conditions (1)–(3). First, we initialize PY = cc(Y\S). Observe that there
is no cycle in G[X ∪ Y ]↓cc(X\S)∪PY that contains a block in

(S
1

)
because G[X ∪ Y ]

is an S-forest. Moreover, cc(X\S) and PY form two independent sets in G[X ∪
Y ]↓cc(X\S)∪PY . Consequently, for all the cycles C in G[X ∪ Y ]↓cc(X\S)∪PY we have
C = (X1,Y1, X2,Y2, . . . , Xt ,Yt ) where X1, . . . , Xt ∈ cc(X\S) and Y1, . . . ,Yt ∈
PY . We do the following operation, until the graph G[X ∪ Y ]↓cc(X\S)∪PY is a forest:
take a cycleC = (X1,Y1, X2,Y2, . . . , Xt ,Yt ) inG[X∪Y ]↓cc(X\S)∪PY and replace the
blocks Y1, . . . ,Yt in PY by the block Y1 ∪ · · · ∪Yt . See Figs. 5 and 6 in “Appendix A”
for an example of S-contraction PY .

For each B ∈ cc(X\S) ∪ cc(Y\S), the vertices of B are pairwise connected in
G[(X ∪ Y )\S]. We deduce by induction that whenever we apply the operation on a
cycle C = (X1,Y1, X2,Y2, . . . , Xt ,Yt ), it holds that the vertices of the new block
Y1 ∪ · · · ∪ Yt are pairwise connected in G[(X ∪ Y )\S]. Thus, for every block B of
cc(X\S) ∪ PY , the vertices of B are pairwise connected in G[(X ∪ Y )\S]. It follows
that for every v ∈ (X ∪Y )∩ S and B ∈ cc(X\S)∪PY , since G[X ∪Y ] is an S-forest,
we have |N (v) ∩ B| ≤ 1. Thus, Condition (2) is satisfied.

It remains to proveCondition (3). LetVC be the set of blocks ofG[X ,Y ]↓cc(X\S)∪PY

containing:

• the blocks that have at least 2 neighbors in G[X ,Y ]↓cc(X\S)∪PY , and• one block in every isolated edge of G[X ,Y ]↓cc(X\S)∪PY .

By construction, it is clear that VC is indeed a vertex cover of G[X ,Y ]↓cc(X\S)∪PY as
every edge is either isolated or incident to a block of degree at least 2. We claim that
|VC| ≤ 4mim(Vx ). By Observation 6, we know that the size of a maximum induced
matching in G[X ,Y ]↓cc(X\S)∪PY is at mostmim(Vx ). Let t be the number of isolated
edges in G[X ,Y ]↓cc(X\S)∪PY . Observe that the size of a maximum induced matching
in the graph obtained from G[X ,Y ]↓cc(X\S)∪PY by removing isolated edges is at most
mim(Vx )− t . By Lemma 8, we know that there are at most 4(mim(Vx )− t) blocks that
have at least 2 neighbors inG[X ,Y ]↓cc(X\S)∪PY . We conclude that |VC| ≤ 4mim(Vx ).

Since G[X ,Y ]↓cc(X\S)∪PY is a forest, the neighborhoods of the blocks that have
at least 2 neighbors must be pairwise distinct. We conclude from the construction of
VC that the neighborhoods of the blocks of VC in G[X ,Y ]↓cc(X\S)∪PY are pairwise
distinct. Hence, Condition (3) is satisfied. �


In the following, we will use Lemma 9 to design some sort of equivalence relation
between partial solutions. To this purpose, we use the following set of tuples. We
call each such tuple an index because it corresponds to an index into a table in a DP
(dynamic programming) approach. We do this even though the presentation of our
algorithm is not given by a standard DP description.

Definition 10 (Ix ) We define the set Ix of indices as the set of tuples

(XS
vc,X

S
vc,Xvc,Y

S
vc,Y

S
vc) ∈ 2R

Vx
2 × 2R

Vx
1 × RVx

1 × 2R
Vx
2 × 2R

Vx
1

such that |XS
vc| + |XS

vc| + |YS
vc| + |YS

vc| ≤ 4mim(Vx ).
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These sets of indices play a major role in our meta-algorithm, in particular, the
sizes of these sets of indices appear in the runtime of our meta-algorithm. In fact, to
prove the algorithmic consequences of our meta-algorithm for rank-width, Q-rank-
width and mim-width, we show (Lemma 23) that the size of Ix is upper bounded by
2O(rw(Vx )3), 2O(rwQ(Vx )2 log(rwQ(Vx ))) and nO(mim(Vx )2).

In the following, we will define partial solutions associated with an index i ∈ Ix (a
partial solutionmay be associatedwithmany indices). In order to prove the correctness
of our algorithm (the algorithm itself will not use this concept), we will also define
complement solutions (the sets Y ⊆ Vx and their S-contractions PY ) associated with
an index i . We will prove that, for every partial solution X and complement solution
(Y ,PY ) associated with i , if the graphG[X∪Y ]↓cc(X\S)∪PY is a forest, thenG[X∪Y ]
is an S-forest.

Let us give some intuition on these indices by explaining how one index is asso-
ciated with a solution, figures explaining this association and the purposes of the sets
XS
vc,X

S
vc,Xvc,Y

S
vc,Y

S
vc can be found in “Appendix A”. Let X ⊆ Vx and Y ⊆ Vx such

that G[X ∪ Y ] is an S-forest. Let PY be the S-contraction of Y and VC be a vertex
cover of G[X ,Y ]↓cc(X\S)∪PY given by Lemma 9. Then, X and Y are associated with

i = (XS
vc,X

S
vc,Xvc,Y

S
vc,Y

S
vc) ∈ Ix such that:

• XS
vc (resp. YS

vc) contains the representatives of the blocks {v} in VC such that
v ∈ X ∩ S (resp. v ∈ Y ∩ S) w.r.t. the 1-neighbor equivalence over Vx (resp. Vx ).
We will only use the indices where XS

vc contains representatives of singletons, in
other words, XS

vc is included in {repVx1 ({v}) | v ∈ Vx } which can be much smaller

thanRVx
1 . The same observation holds for YS

vc. In Definition 10, we state that X
S
vc

and YS
vc are, respectively, subsets of 2

RVx
1 and 2R

Vx
1 , for the sake of simplicity.

• XS
vc (resp. Y

S
vc) contains the representatives of the blocks in cc(X\S) ∩ VC (resp.

PY ∩ VC) w.r.t. the 2-neighbor equivalence relation over Vx (resp. Vx ).
• Xvc is the representative of X\V (VC) (the set of vertices which do not belong to
the vertex cover) w.r.t. the 1-neighbor equivalence over Vx .

Because the neighborhoods of the blocks in VC are pairwise distinct in
G[X ,Y ]↓cc(X\S)∪PY (Property (3) of Lemma 9), there is a one to one correspondence

between the representatives in XS
vc ∪ XS

vc ∪ YS
vc ∪ YS

vc and the blocks in VC.

WhileXS
vc,X

S
vc,Y

S
vc,Y

S
vc describeVC, the representative setXvc describes the neigh-

borhood of the blocks of X↓cc(X\S) which are not in VC. The purpose ofXvc is to make
sure that, for every partial solution X and complement solution (Y ,PY ) associatedwith
i , the set VC described by XS

vc,X
S
vc,Y

S
vc,Y

S
vc is a vertex cover of G[X ,Y ]↓cc(X\S)∪PY .

For doing so, it is sufficient to require that Y\V (VC) has no neighbor in Xvc for every
complement solution (Y ,PY ) associated with i .

Observe that the sets XS
vc and Y

S
vc contain representatives for the 2-neighbor equiv-

alence. We need the 2-neighbor equivalence to control the S-cycles which might
disappear after vertex contractions. To prevent this situation, we require, for example,
that every vertex in X ∩ S has at most one neighbor in R for each R ∈ YS

vc. Thanks to

the 2-neighbor equivalence, a vertex v in X ∩ S has at most one neighbor in R ∈ YS
vc
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Fig. 3 An example of a set X ⊆ Vx and its auxiliary graph associated with the index i =
(XS

vc,X
S
vc,Xvc,Y

S
vc,Y

S
vc). Here,X

S
vc = {R2}with R2 = repVx2 (X2),XS

vc = {R1}with R1 = repVx1 ({v1}),
Xvc is the representative of the union of the circular blocks, YSvc = {U1,U2}, and YSvc = {U3,U4}. The
singletons in X ∩ S and YSvc are white filled, whereas the square blocks are {v1}, X2 and the blocks in

YSvc ∪ YSvc

if and only if v has at most one neighbor in the block of PY associated with R. This
property of the 2-neighbor equivalence is captured by the following fact.

Fact 11 For every A ⊆ V (G) and B, P ⊆ A, if B ≡A
2 P, then, for all v ∈ A, we have

|N (v) ∩ B| ≤ 1 if and only if |N (v) ∩ P| ≤ 1.

In order to define partial solutions associated with i , we need the following notion
of auxiliary graph. Given X ⊆ Vx and i = (XS

vc,X
S
vc,Xvc,Y

S
vc,Y

S
vc) ∈ Ix , we write

aux(X , i) to denote the graph

G[X↓cc(X\S) | YS
vc ∪ YS

vc].

Observe that aux(X , i) is obtained from the graph induced by X↓cc(X\S)∪YS
vc∪YS

vc by

removing the edges between the blocks from YS
vc∪YS

vc. Figure 3 illustrates an example
of the graph aux(X , i) and the related notions. The figures in “Appendix A” explain
the relations between an S-forest and these auxiliary graphs.

We will ensure that, given a complement solution (Y ,PY ) associated with i , the
graph aux(X , i) is isomorphic to G[X↓cc(X\S) | Y↓PY ∩ VC]. We are now ready to
define the notion of partial solution associated with an index i .

Definition 12 (Partial solutions) Let i = (XS
vc,X

S
vc,Xvc,Y

S
vc,Y

S
vc) ∈ Ix . We say that

X ⊆ Vx is a partial solution associated with i if the following conditions are satisfied:

(a) for every R ∈ XS
vc, there exists a unique v ∈ X ∩ S such that R ≡Vx

1 {v},
(b) for every R ∈ XS

vc, there exists a unique C ∈ cc(X\S) such that R ≡Vx
2 C ,

(c) aux(X , i) is a forest,
(d) for every C ∈ cc(X\S) and {v} ∈ YS

vc, we have |N (v) ∩ C | ≤ 1,

(e) for every v ∈ X ∩ S and U ∈ YS
vc ∪ cc(X\S), we have |N (v) ∩U | ≤ 1,
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(f) Xvc ≡Vx
1 X\V (VCX ) , where VCX contains the blocks {v} ∈ (X∩S

1

)
such that

repVx1 ({v}) ∈ XS
vc and the components C of G[X\S] such that repVx2 (C) ∈ XS

vc.

Similarly to Definition 12, we define the notion of complement solutions associated
with an index i ∈ Ix .Weuse this concept only to prove the correctness of our algorithm.

Definition 13 (Complement solutions) Let i = (XS
vc,X

S
vc,Xvc,Y

S
vc,Y

S
vc) ∈ Ix .We call

complement solutions associated with i all the pairs (Y ,PY ) such that Y ⊆ Vx , PY is
an S-contraction of Y and the following conditions are satisfied:

(a) for every U ∈ YS
vc, there exists a unique v ∈ Y ∩ S such that U ≡Vx

1 {v},
(b) for every U ∈ YS

vc, there exists a unique P ∈ PY such that U ≡Vx
2 P ,

(c) G[Y ]↓PY is a forest,
(d) for every P ∈ PY and {v} ∈ XS

vc, we have |N (v) ∩ P| ≤ 1,

(e) for every y ∈ Y ∩ S and R ∈ XS
vc ∪ PY , we have |N (y) ∩ R| ≤ 1,

(f) N (Xvc) ∩ V (Yvc) = ∅, where Yvc contains the blocks {v} ∈ (Y∩S
1

)
such that

repVx1 ({v}) /∈ YS
vc and the blocks P ∈ PY such that repVx2 (P) /∈ YS

vc.

Let us give some explanations on the conditions of Definitions 12 and 13. Let X be a
partial solution associated with an index i ∈ Ix and (Y ,PY ) be a complement solution
associatedwith i . Conditions (a) and (b) of both definitions guarantee that there exists a
subset VC of X↓cc(X\S)∪Y↓PY such that there is a one-to-one correspondence between

the blocks of VC and the representatives in XS
vc ∪ XS

vc ∪ YS
vc ∪ YS

vc.
Condition (c) of Definition 12 guarantees that the connections between X↓cc(X\S)

and VC are acyclic. As explained earlier, Conditions (d) and (e) of both definitions are
here to control the S-cycles which might disappear with the vertex contractions. In
particular, by Fact 7, Conditions (c), (d) and (e) together imply that G[X ] and G[Y ]
are S-forests.

Finally, as explained earlier, the last conditions of both definitions ensure thatVC the
set described byXS

vc,X
S
vc,Y

S
vc andY

S
vc is a vertex cover ofG[X ,Y ]↓cc(X\S)∪PY . Notice

that X\V (VCX ) and V (Yvc) correspond the set of vertices in X and Y , respectively,
that do not belong to a block in the vertex cover VC. Such observations are used to
prove the following two results.

Lemma 14 Let X ⊆ Vx and Y ⊆ Vx such that G[X ∪ Y ] is an S-forest. There exist
i ∈ Ix and an S-contraction PY of Y such that (1) G[X ∪ Y ]↓cc(X\S)∪PY is a forest,
(2) X is a partial solution associated with i and (3) (Y ,PY ) is a complement solution
associated with i .

Proof By Lemma 9, there exists an S-contraction PY of Y such that the following
properties are satisfied:

(A) G[X ∪ Y ]↓cc(X\S)∪PY is a forest,
(B) for all P ∈ cc(X\S) ∪ PY and all v ∈ (X ∪ Y ) ∩ S, we have |N (v) ∩ P| ≤ 1,
(C) the graph G[X ,Y ]↓cc(X\S)∪PY admits a vertex cover VC of size at most 4mim(Vx )

such that the neighborhoods of the blocks in VC are pairwise distinct in
G[X ,Y ]↓cc(X\S)∪PY .
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We construct i = (XS
vc,X

S
vc,Xvc,Y

S
vc,Y

S
vc) ∈ Ix from VC as follows:

• XS
vc = {repVx1 ({v}) | {v} ∈ (X∩S

1

) ∩ VC},
• XS

vc = {repVx2 (P) | P ∈ cc(X\S) ∩ VC},
• Xvc = repVx1 (X\V (VC)),

• YS
vc = {repVx2 (P) | P ∈ PY ∩ VC},

• YS
vc = {repVx1 ({v}) | {v} ∈ (Y∩S

1

) ∩ VC}.
Since |VC| ≤ 4mim(Vx ), we have |XS

vc|+ |XS
vc|+ |YS

vc|+ |YS
vc| ≤ 4mim(Vx ) and thus

we have i ∈ Ix .
We claim that X is a partial solution associated with i . By construction of i ,

Conditions (a), (b) and (f) of Definition 12 are satisfied. In particular, Condition (a)
and (b) follow from Property (C), i.e. the neighborhoods of the blocks in VC are
pairwise distinct inG[X ,Y ]↓cc(X\S)∪PY . So, the blocks in X↓cc(X\S)∩VC are pairwise
non-equivalent for the d-neighbor equivalence over Vx for any d ∈ N+ including 1
and 2. Consequently, there is a one to one correspondence between the blocks of
X↓cc(X\S) ∩ VC and the representatives in XS

vc ∪ XS
vc.

It remains to prove Conditions (c), (d) and (e). We claim that Condition (c) is
satisfied: aux(X , i) is a forest. Observe that, by construction, aux(X , i) is isomorphic
to the graph G[X↓cc(X\S) | Y↓PY ∩ VC]. Indeed, for every P ∈ Y↓PY ∩ VC, by

construction, there exists a unique U ∈ YS
vc ∪ YS

vc such that U ≡Vx
1 P or U ≡Vx

2 P .
In both case, we have N (U ) ∩ Vx = N (P) ∩ Vx and thus, the neighborhood of P in
G[X↓cc(X\S) | Y↓PY ∩ VC] is the same as the neighborhood of U in aux(X , i). Since
G[X↓cc(X\S) | Y↓PY ∩VC] is a subgraph of G[X ∪Y ]↓cc(X\S)∪PY and this latter graph
is a forest, we deduce that aux(X , i) is also a forest.

We deduce that Conditions (d) and (e) are satisfied from property (B) and Fact 11.
Consequently, X is a partial solution associated with i .

Let us now prove that (Y ,PY ) is a complement solution associated with i . From the
construction of i and with the same argument used earlier, we deduce that that Condi-
tions (a) and (b) of Definition 13 are satisfied. By Property (A) G[X ∪ Y ]↓cc(X\S)∪PY

is a forest, as a subgraph, G[Y ]↓PY is also a forest and thus Condition (c) is satisfied.
Conditions (d) and (e) are satisfied from Property (B) and Fact 11.

It remains to prove Condition (f): N (Xvc) ∩ Yvc = ∅ where Yvc contains the

blocks {v} ∈ (Y∩S
1

)
such that repVx1 ({v}) /∈ YS

vc and the blocks P ∈ PY such that

repVx2 (P) /∈ YS
vc. By construction, Yvc = Y\V (VC). Since, VC is a vertex cover of the

graphG[X ,Y ]↓cc(X\S)∪PY , there are no edges between X↓cc(X\S)\VC and Y↓PY \VC in

G[X ,Y ]↓cc(X\S)∪PY . We deduce that N (X\V (VC)) ∩Yvc = ∅. Since X\V (VC) ≡Vx
1

Xvc, we conclude that N (Xvc) ∩ Yvc = ∅. This proves that (Y ,PY ) is a complement
solution associated with i . �

Lemma 15 Let i = (XS

vc,X
S
vc,Xvc,Y

S
vc,Y

S
vc) ∈ Ix , X be a partial solution associated

with i and (Y ,PY ) be a complement solution associated with i . If the graph G[X ∪
Y ]↓cc(X\S)∪PY is a forest, then G[X ∪ Y ] is an S-forest.
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Proof Assume that G[X ∪ Y ]↓cc(X\S)∪PY is a forest. By Fact 7, in order to prove that
G[X ∪ Y ] is an S-forest, it is enough to prove that for all v ∈ (X ∪ Y ) ∩ S and all
P ∈ cc(X\S) ∪PY , we have |N (v) ∩ P| ≤ 1. Let us prove this statement for a vertex
v ∈ X ∩ S the proof is symmetric for v ∈ Y ∩ S. Let P ∈ (X ∪ Y )↓cc(X\S)∪PY . If

P /∈ (cc(X\S)∪PY ), then P is a singleton in
(X∪Y

1

)
and we are done. If P ∈ cc(X\S),

then Condition (e) of Definition 12 guarantees that we have |N (v) ∩ P| ≤ 1.

Assume now that P ∈ PY . Suppose first that rep
Vx
2 (P) /∈ YS

vc. From Condition (f)

of Definition 13, we have N (P) ∩ Xvc = ∅. Let r = repVx1 ({v}). From the definition
ofXvc in Definition 12, we deduce that if r /∈ XS

vc, then N (v)∩Vx ⊆ N (Xvc) and thus
N (v) ∩ P = ∅. On the other hand, if r ∈ XS

vc, then Condition (d) of Definition 13

ensures that |N (r)∩ P| ≤ 1 and thus |N (v)∩ P| ≤ 1. Now, suppose that repVx2 (P) ∈
YS
vc. By Condition (e) of Definition 12, we know that |N (v) ∩ repVx2 (P)| ≤ 1. From

Fact 11, we conclude that |N (v) ∩ P| ≤ 1. This concludes the proof of Lemma 15. �

For each index i ∈ Ix , we will design an equivalence relation ∼i between the

partial solutions associated with i . We will prove that, for any partial solutions X and
W associated with i , if X ∼i W , then, for any complement solution Y ⊆ Vx associated
with i , the graph G[X ∪Y ] is an S-forest if and only if G[W ∪Y ] is an S-forest. Then,
given a set of partial solutions A whose size needs to be reduced, it is sufficient to
keep, for each i ∈ Ix and each equivalence class C of ∼i , one partial solution in C
of maximal weight. The resulting set of partial solutions has size bounded by |Ix | ·
(4mim(Vx ))

4mim(Vx ) because ∼i generates at most (4mim(Vx ))
4mim(Vx ) equivalence

classes.
Intuitively, given two partial solutions X and W associated with i = (XS

vc,

XS
vc,Xvc,Y

S
vc,Y

S
vc), we have X ∼i W if the blocks of VC (i.e., the vertex cover

described by i) are equivalently connected in G[X↓cc(X\S) | YS
vc ∪ YS

vc] and

G[W↓cc(W\S) | YS
vc ∪ YS

vc]. In order to compare these connections, we use the fol-
lowing notion.

Definition 16 (cc(X , i)) Let i = (XS
vc,X

S
vc,Xvc,Y

S
vc,Y

S
vc) ∈ Ix and X ⊆ Vx be a

partial solution associated with i . For each connected component C of aux(X , i), we
define the set Cvc as follows:

• for every U ∈ C such that U ∈ YS
vc ∪ YS

vc, we have U ∈ Cvc,
• for every {v} ∈ (X∩S

1

) ∩ C such that {v} ≡Vx
1 R for some R ∈ XS

vc, we have
R ∈ Cvc,

• for every U ∈ cc(X\S) such that U ≡Vx
2 R for some R ∈ XS

vc, we have R ∈ Cvc.

We define cc(X , i) as the collection {Cvc | C is a connected component of aux(X , i)}.

For a connected component C of aux(X , i), the set Cvc contains C ∩ (YS
vc ∪ YS

vc)

and the representatives of the blocks in C ∩ X↓cc(X\S) ∩ VC with VC the vertex cover
described by i . Consequently, for every X ⊆ Vx and i ∈ Ix , the collection cc(X , i) is
partition ofXS

vc∪XS
vc∪YS

vc∪YS
vc. For the example given in Fig. 3, observe that cc(X , i)

is the partition that contains {R1,U1,U2}, {R2,U3} and {U4} (see also Fig. 13)
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Now we are ready to give the notion of equivalence between partial solutions.
We say that two partial solutions X ,W associated with i are i-equivalent, denoted
by X ∼i W , if cc(X , i) = cc(W , i). Our next result is the most crucial step. As
already explained, our task is to show equivalence between partial solutions under
any complement solution with respect to S-forests. Figure 14 gives an example of two
i-equivalent partial solutions.

Lemma 17 Let i = (XS
vc,X

S
vc,Xvc,Y

S
vc,Y

S
vc) ∈ Ix . For every partial solutions X ,W

associated with i such that X ∼i W and for every complement solution (Y ,PY )

associated with i , the graph G[X ∪ Y ]↓cc(X\S)∪PY is a forest if and only if the graph
G[W ∪ Y ]↓cc(W\S)∪PY is a forest.

Proof Let X ,W be two partial solutions associated with i such that X ∼i W and let
(Y ,PY ) be a complement solution associated with i . To prove this lemma, we show
that if G[W ∪ Y ]↓cc(W\S)∪PY contains a cycle, then G[X ∪ Y ]↓cc(X\S)∪PY contains
a cycle too. See Fig. 16 for some intuitions on this proof. We will use the following
notation in this proof.

For Z ∈ {X ,W }, we denote by VCZ the set that contains:

• all {v} ∈ (Z∩S
1

)
such that repVx1 ({v}) ∈ XS

vc,

• all P ∈ cc(Z\S) such that repVx2 (P) ∈ XS
vc.

We define also VCY as the set that contains:

• all {v} ∈ (Y∩S
1

)
such that repVx1 ({v}) ∈ YS

vc,

• all P ∈ PY such that repVx2 (P) ∈ YS
vc.

The sets VCX ,VCW and VCY contain the blocks in X↓cc(X\S),W↓cc(W\S) and Y↓PY ,
respectively, which belong to the vertex cover described by i . Finally, for each Z ∈
{X ,W }, we define the following two edge-disjoint subgraphs ofG[Z∪Y ]↓cc(Z\S)∪PY :

• GZ = G[Z↓cc(Z\S) | VCY ],
• GZ = G[Z ∪ Y ]↓cc(Z\S)∪PY − GZ .

As explained in the proof of Lemma 14, for any Z ∈ {X ,W }, the graph aux(Z , i) is
isomorphic to the graphGZ . Informally,GZ contains the edges ofG[Z∪Y ]↓cc(Z\S)∪PY

which are induced by Z↓cc(Z\S) and those between Z↓cc(Z\S) and VCY . The following
fact implies that GZ contains the edges of G[Z ∪ Y ]↓cc(Z\S)∪PY that are induced by
Y↓PY and those between Y↓PY \VCY and VCZ .

Fact 18 Forany Z ∈ {X ,W }, the setVCZ∪VCY is a vertex cover ofG[Z ,Y ]↓cc(Z\S)∪PY .

Proof First observe that N (Y\V (VCY )) ∩ Xvc = ∅ thanks to Condition (f) of Def-
inition 13. Moreover, we have Xvc ≡Vx

1 Z\V (VCZ ) by Condition (f) of Definition
12. We conclude that there are no edges between Y↓PY \VCY and Z↓cc(Z\S)\VCZ in
G[Z ,Y ]↓cc(Z\S)∪PY . Hence, VCZ ∪ VCY is a vertex cover of G[Z ,Y ]↓cc(Z\S)∪PY . �


Assume that G[W ∪ Y ]↓cc(W\S)∪PY contains a cycle C . Our task is to show that
G[X ∪ Y ]↓cc(X\S)∪PY contains a cycle as well. We first explore properties of C with
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Fig. 4 How cycles in G[W ∪ Y ]↓cc(W\S)∪PY
may interact with the graphs GW and GW . The solid edges

belong to GW and the dashed edges belong to GW

respect to GW and GW . Since the graph aux(W , i) is a forest and it is isomorphic to
GW , we know that C must contain at least one edge from GW . Moreover, C must go
though a block ofW↓cc(W\S) becauseG[Y ]↓PY is a forest. Consequently, (and because
from Fact 18 VCW ∪ VCY is a vertex cover of G[W ∪ Y ]↓cc(W\S)∪PY ), we deduce that
C is the concatenation of edge-disjoint paths P1 . . . Pt such that for each � ∈ [t] we
have:

• P� is a non-empty path with endpoints in VCW ∪ VCY and internal blocks not in
VCW ∪ VCY and P� is either a path of GW or GW .

At least one of these paths is in GW and, potentially, C may be entirely contained in
GW . Figure 4 presents two possible interactions between C and the graphs GW and
GW .

Given an endpoint U ∈ VCW ∪ VCY of one of the paths P1, . . . , P�, we define UX

and Ui as the analogs of U in VCX ∪ VCY and XS
vc ∪XS

vc ∪ YS
vc ∪ YS

vc, respectively, as
follows:

• if U ∈ cc(W\S), then UX and Ui are the unique elements of cc(X\S) and XS
vc,

respectively, such that U ≡Vx
2 UX ≡Vx

2 Ui ,
• if U = {v} ∈ (W∩S

1

)
, then UX and Ui are the unique elements in

(X∩S
1

)
and XS

vc,

respectively, such that U ≡Vx
1 UX ≡Vx

1 Ui ,

• ifU ∈ PY , thenUX = U andUi is the unique element of YS
vc such thatU ≡Vx

2 Ui ;
• otherwise, ifU = {v} ∈ (Y∩S

1

)
, thenUX = U andUi is the unique element of YS

vc

such that U ≡Vx
1 Ui .

Observe that UX and Ui exist by Conditions (a) and (b) of Definitions 12 and 13.
For each � ∈ [t], we construct a non-empty path P ′

� whose endpoints are the analogs
in VCX ∪ VCY of the endpoints of P� and such that if P� is a path in GW (resp. GW ),
then P ′

� is a path inGX (resp.GX ). This is sufficient to prove the claim because thanks
to this, we can construct a closed walk in G[X ∪ Y ]↓cc(X\S)∪PY by concatenating the
paths P ′

1, . . . , P
′
t . Since GX and GX are edge-disjoint and the paths P ′

1, . . . , P
′
t are

non-empty paths, this closed walk must contain a cycle.
Let � ∈ [t] and U , T be the endpoints of P�. We denote by UX , TX ,Ui and Ti the

analogs of U and T in VCX ∪ VCY and XS
vc ∪ XS

vc ∪ YS
vc ∪ YS

vc, respectively.
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First, assume that P� is path of GW . Observe that Ui and Ti belong to the same
partition class of cc(W , i). This follows from the definitions ofUi , Ti and the fact that
GW is isomorphic to aux(W , i). As W ∼i X , we deduce that Ui and Ti belong to the
same partition class of cc(X , i). By construction,Ui and Ti are the analogs ofUX and
TX in XS

vc ∪ XS
vc ∪ YS

vc ∪ YS
vc. We conclude that UX and TX are connected in GX via

a path P ′
�. We claim that P ′

� is not empty because we have UX �= TX . As P� is a non
empty path of GW and because GW is acyclic, we know that U and T are distinct.
Hence, by the construction of UX and TX , we deduce that UX �= TX .

Now, assume that P� is a non-empty path of GW . Since VCW ∪ VCY is a vertex
cover of G[W ,Y ]↓cc(W\S)∪PY , the blocks in W↓cc(W\S) that do not belong to VCW

are isolated in GW . As P� is not empty, the blocks of P� which belong to W↓cc(W\S)

are in VCW . Because the internal blocks of the paths P1, . . . , Pt are not in VCW ∪VCY ,
we deduce that the internal blocks of P� belong to Y↓PY . We distinguish the following
cases:

• If both endpoints of P� belong to VCY , thenUX = U , TX = T and all the blocks of
P� belong to Y↓PY . It follows that P� is a non-empty path ofGX because G[Y ]↓PY

is a subgraph of GX . In this case, we take P ′
� = P�.

• Assume now that one or two endpoints of P� belong to VCW . Suppose w.l.o.g.
that U belongs to VCW . Since P� is non-empty and the internal blocks of P� are
in Y↓PY , U has a neighbor Q ∈ Y↓PY in P�. We claim that Q is adjacent to UX in

GX . By definition ofUX , we haveU ≡Vx
d UX for some d ∈ {1, 2} and in particular

N (U ) ∩ Vx = N (UX ) ∩ Vx . As U and Q are adjacent in GW , we deduce that
N (U )∩ Q �= ∅. It follows that N (UX )∩ Q �= ∅ and thus Q andUX are adjacent
in GX . Symmetrically, we can prove that if T ∈ VCW , then the neighbor of T in
P� is adjacent to TX in GX .
Hence, the neighbors of U and T in P� are adjacent to UX and TX respectively in
GX . We obtain P ′

� from P� by replacingU and T byUX and TX . Since the internal
blocks of P� belong to Y↓PY and G[Y ]↓PY is a subgraph of GX , we deduce that
P ′

� is a path of GX . The path P ′
� is not-empty because it containsUX and Q which

are distinct blocks of GX as UX ∈ VCX (since U ∈ VCW by assumption) and
Q ∈ Y↓PY .

�

The following theorem proves that, for every set of partial solutions A ⊆ 2Vx , we

can compute a small subset B ⊆ A such that B represents A, i.e., for every Y ⊆ Vx ,
the best solutions we obtain from the union of Y with a set in A are as good as the
ones we obtain from B. Firstly, we formalize this notion of representativity.

Definition 19 (Representativity) For every A ⊆ 2Vx and Y ⊆ Vx , we define

best(A,Y ) = max{w(X) | X ∈ A and G[X ∪ Y ] is an S-forest}.

Given A,B ⊆ 2Vx , we say that B represents A if, for every Y ⊆ Vx , we have
best(A,Y ) = best(B,Y ).

We recall that s-nec2(A) = max(nec2(A),nec2(A)).
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Lemma 20 There exists an algorithm reduce that, given a set A ⊆ 2Vx , outputs in
time O(|A| · |Ix | · (4mim(Vx ))

4mim(Vx ) · log(s-nec2(Vx )) · n3) a subset B ⊆ A such
that B represents A and |B| ≤ |Ix | · (4mim(Vx ))

4mim(Vx ).

Proof Given A ⊆ 2Vx and i ∈ Ix , we define reduce(A, i) as the operation which
returns a set containing one partial solution X ∈ A associated with i of each equiv-
alence class of ∼i such that w(X) is maximum. Moreover, we define reduce(A) =⋃

i∈Ix
reduce(A, i).

We prove first that reduce(A) represents A, that is best(A,

Y ) = best(reduce(A),Y ) for all Y ⊆ Vx . Let Y ⊆ Vx . Since reduce(A) ⊆ A, we
already have best(reduce(A),Y ) ≤ best(A,Y ). Consequently, if there is no X ∈ A
such that G[X ∪ Y ] is an S-forest, we have best(reduce(A),Y ) = best(A,Y ) =
max(∅) = −∞.

Assume that there exists X ∈ A such that G[X ∪Y ] is an S-forest. Let X ∈ A such
that G[X ∪ Y ] is an S-forest and w(X) = best(A,Y ). By Lemma 14, there exists
i ∈ Ix and an S-contraction PY of Y such that (1) G[X ∪ Y ]↓cc(X\S)∪PY is a forest,
(2) X is a partial solution associated with i and (3) (Y ,PY ) is a complement solution
associated with i .

From the construction of reduce(A, i), there exists W ∈ reduce(A) such that W
is a partial solution associated with i , X ∼i W , and w(W ) ≥ w(X). By Lemma 17
and since G[X ∪ Y ]↓cc(X\S)∪PY is a forest, we deduce that G[W ∪ Y ]↓cc(W\S)∪PY

is a forest too. Thanks to Lemma 15, we deduce that G[W ∪ Y ] is an S-forest. As
w(W ) ≥ w(X) = best(A,Y ), we conclude that best(A,Y ) = best(reduce(A),Y ).
Hence, reduce(A) represents A.

We claim that |reduce(A)| ≤ |Ix | · (4mim(Vx ))
4mim(Vx ). For every i =

(XS
vc,X

S
vc,Xvc,Y

S
vc,Y

S
vc) ∈ Ix and partial solution X associated with i , cc(X , i) is a

partition ofXS
vc∪XS

vc∪Xvc∪YS
vc∪YS

vc. Since |XS
vc|+|XS

vc|+|YS
vc|+|YS

vc| ≤ 4mim(Vx ),
there are at most (4mim(Vx ))

4mim(Vx ) possible values for cc(X , i). We deduce that,
for every i ∈ Ix , the relation ∼i generates at most (4mim(Vx ))

4mim(Vx ) equivalence
classes, so |reduce(A, i)| ≤ (4mim(Vx ))

4mim(Vx ) for every i ∈ Ix . By construction,
we conclude that |reduce(A)| ≤ |Ix | · (4mim(Vx ))

4mim(Vx ).
It remains to prove the runtime. As nec1(Vx ) ≤ nec2(Vx ), by Lemma 5 we can

compute in time O(s-nec2(Vx )·log(s-nec2(Vx ))·n2) the setsRVx
1 ,RVx

2 ,RVx
2 and data

structures which compute repVx1 , repVx2 and repVx2 in time O(log(s-nec2(Vx )) · n2).
Given RVx

1 ,RVx
2 , RVx

2 , we can compute Ix in time O(|Ix | · n2). Since, s-nec2(Vx ) ≤
|Ix |, the time required to compute these sets and data structures is less than O(|A| ·
|Ix | · (4mim(Vx ))

4mim(Vx ) · log(s-nec2(Vx )) · n3).
For each i ∈ Ix and X ∈ A, we can decide whether X is a partial solution associated

with i and compute aux(X , i), cc(X , i) in time O(log(s-nec2(Vx )) ·n3). For doing so,
we simply start by computing repVx2 (C) and repVx1 ({v}) for each C ∈ cc(X\S) and
{v} ∈ (X∩S

1

)
, this is doable in O(log(s-nec2(Vx )) · n3) since |cc(X\S)| + |X ∩ S| ≤

n. Then with standard algorithmic techniques, we check whether X satisfies all the
conditions of Definition 12 and compute aux(X , i) and cc(X , i).

Given two partial solutions X ,W associated with i , cc(X , i) and cc(W , i), we
can decide whether X ∼i W in time O(mim(Vx )) ≤ O(n). We deduce that, for
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each i ∈ Ix , we can compute reduce(A, i) in time O(|A| · (4mim(Vx ))
4mim(Vx ) ·

log(s-nec2(Vx )) · n3). We deduce the running time to compute reduce(A) by multi-
plying the running time needed for reduce(A, i) by |Ix |. �


We are now ready to prove the main theorem of this paper. For two subsetsA and B
of 2V (G), we define themerging ofA and B, denoted byA⊗B, asA⊗B := {X ∪Y |
X ∈ A and Y ∈ B}. Observe that A ⊗ B = ∅ whenever A = ∅ or B = ∅.

Theorem 21 There exists an algorithm that, given an n-vertex graph G and a rooted
layout (T , δ) of G, solves Subset Feedback Vertex Set in time

O

⎛

⎝
∑

x∈V (T )

|Ix |3 · (4mim(Vx ))
12mim(Vx ) · log(s-nec2(Vx )) · n3

⎞

⎠ .

Proof The algorithm is a usual bottom-up dynamic programming algorithm. For every
node x of T , the algorithm computes a set of partial solutions Ax ⊆ 2Vx such that
Ax represents 2Vx and |Ax | ≤ |Ix | · (4mim(Vx ))

4mim(Vx ). For the leaves x of T such
that Vx = {v}, we simply take Ax = 2Vx = {∅, {v}}. In order to compute Ax for x
an internal node of T with a and b as children, our algorithm will simply compute
Ax = reduce(Aa ⊗ Ab). Once the the set Ar is computed with r the root of T , our
algorithm outputs a set X ∈ Ar of maximum weight.

By Lemma 20, we have |Ax | ≤ |Ix | · (4mim(Vx ))
4mim(Vx ), for every node x of T .

The following claim helps us to prove that Ax represents 2Vx for the internal nodes x
of T .

Claim 22 Let x be an internal of T with a and b as children. If Aa and Ab represent,
respectively, 2Va and 2Vb , then reduce(Aa ⊗ Ab) represents 2Vx .

Proof Assume that Aa and Ab represent, respectively, 2Va and 2Vb . First, we prove
that Aa ⊗ Ab represents 2Vx . We have to prove that, for every Y ⊆ Vx , we have
best(Aa ⊗ Ab,Y ) = best(2Vx ,Y ). Let Y ⊆ Vx . By definition of best, we have the
following

best(Aa ⊗ Ab,Y ) = max{w(X) + w(W ) | X ∈ Aa ∧ W

∈ Ab ∧ G[X ∪ W ∪ Y ] is an S-forest}
= max{best(Aa,W ∪ Y ) + w(W ) | W ∈ Ab}.

AsAa represents 2Va , we have best(Aa,W ∪Y ) = best(2Va ,W ∪Y ) and we deduce
that best(Aa ⊗ Ab,Y ) = best(2Va ⊗ Ab,Y ). Symmetrically, as Ab represents 2Vb ,
we infer that best(2Va ⊗ Ab,Y ) = best(2Va ⊗ 2Vb ,Y ). Since 2Va ⊗ 2Vb = 2Vx ,
we conclude that best(Aa ⊗ Ab,Y ) equals best(2Vx ,Y ). As this holds for every Y ,
it proves that Aa ⊗ Ab represents 2Vx . By Lemma 20, we know that reduce(Aa ⊗
Ab) represents Aa ⊗ Ab. As the relation “represents” is transitive, we conclude that
reduce(Aa ⊗ Ab) represents 2Vx . �
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For the leaves x of T , we obviously have that Ax represents 2Vx , since Ax = 2Vx .
From Claim 22 and by induction, we deduce that Ax represents 2Vx for every node
x of T . In particular, Ar represents 2V (G) with r the root of T . By Definition 19,
Ar contains a set X of maximum size such that G[X ] is an S-forest. This proves the
correctness of our algorithm.

It remains to prove the running time. Observe that, for every internal node x of T
with a and b as children, the size of Aa ⊗ Ab is at most |Ix |2 · (4mim(Vx ))

8mim(Vx )

and it can be computed in time O(|Ix |2 · (4mim(Vx ))
8mim(Vx ) ·n2). By Lemma 20, the

set Ax = reduce(Aa ⊗ Ab) is computable in time O(|Ix |3 · (4mim(Vx ))
12mim(Vx ) ·

log(s-nec2(Vx )) · n3). This proves the running time. �


3.1 Algorithmic Consequences

In order to obtain the algorithmic consequences of our meta-algorithm given in The-
orem 21, we need the following lemma which bounds the size of each set of indices
with respect to the considered parameters.

Lemma 23 For every x ∈ V (T ), the size of Ix is upper bounded by:

• 2O(rw(Vx )3),
• 2O(rwQ(Vx )2 log(rwQ(Vx ))),
• nO(mim(Vx )2).

Proof For A ⊆ V (G), let mw(A) be the number of different rows in the matrix
MA,A. Observe that, for every A ⊆ V (G), we have mw(A) = {repA

1 ({v}) | v ∈
A}. Remember that the XS

vc’s and YS
vc’s are subsets of {repVx1 ({v}) | v ∈ Vx } and

{repVx1 ({v}) | v ∈ Vx } respectively. From Definition 10, we have |XS
vc| + |XS

vc| +
|YS

vc| + |YS
vc| ≤ 4mim(Vx ), for every (XS

vc,X
S
vc,Xvc,Y

S
vc,Y

S
vc) ∈ Ix . Thus, the size of

Ix is at most

nec1(Vx ) · (
nec2(Vx ) + mw(Vx ) + nec2(Vx ) + mw(Vx )

)4mim(Vx ).

Rank-Width By Lemma 4, we have nec1(Vx ) ≤ 2rw(Vx )2 and nec2(Vx ),nec2(Vx ) ≤
22rw(Vx )2 . Moreover, there is at most 2rw(Vx ) different rows in the matrices MVx ,Vx
and MVx ,Vx

, so mw(Vx ) and mw(Vx ) are upper bounded by 2rw(Vx ). By Lemma
3, we have 4mim(Vx ) ≤ 4rw(Vx ). We deduce from these inequalities that |Ix | ≤
2rw(Vx )2 · (22rw(Vx )2+1 + 2rw(Vx )+1)4rw(Vx ) ∈ 2O(rw(Vx )3).
Q-Rank-Width By Lemma 4, we have nec1(Vx ),nec2(Vx ),nec2(Vx ) ∈
2O(rwQ(Vx ) log(rwQ(Vx ))). Moreover, there is at most 2rwQ(Vx ) different rows in the matri-
ces MVx ,Vx

and MVx ,Vx
, so mw(Vx ) and mw(Vx ) are upper bounded by 2rwQ(Vx ). By

Lemma 3, we have 4mim(Vx ) ≤ 4rwQ(Vx ). We deduce from these inequalities that

|Ix | ≤ 2O(rwQ(Vx ) log(rwQ(Vx ))) ·
(
2O(rwQ(Vx ) log(rwQ(Vx ))) + 2rwQ(Vx )+1

)4rwQ(Vx )
.

We conclude that |Ix | ∈ 2O(rwQ(Vx )2 log(rwQ(Vx ))).
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Mim-Width By Lemma 4, we know that nec1(Vx ) ≤ |Vx |mim(Vx ), nec2(Vx ) ≤
|Vx |2mim(Vx ), and nec2(Vx ) ≤ |Vx |2mim(Vx ). We can assume that n > 2 (otherwise
the problem is trivial), so nec2(Vx ) + nec2(Vx ) ≤ |Vx |2mim(Vx ) + |Vx |2mim(Vx ) ≤
n2mim(Vx ). Moreover, notice that, for every A ⊆ V (G), we have {repA

1 ({v}) | v ∈
A} ≤ |A|.

We deduce that |Ix | ≤ nmim(Vx ) ·(n+n2mim(Vx ))4mim(Vx ). As we assume that n > 2,
we have |Ix | ≤ n8mim(Vx )2+5mim(Vx ) ∈ nO(mim(Vx )2).

�

Nowwe are ready to state our algorithms with respect to the parameters rank-width

rw(G) and Q-rank-width rwQ(G). In particular, with our next result we show that
Subset Feedback Vertex Set is in FPT parameterized by rwQ(G) or rw(G).

Theorem 24 There exist algorithms that solve Subset Feedback Vertex Set in
time 2O(rw(G)3) · n4 and 2O(rwQ(G)2 log(rwQ(G)))) · n4.
Proof We first compute a rooted layoutL = (T , δ) ofG such that rw(L) ∈ O(rw(G))

or rwQ(L) ∈ O(rwQ(G)). This is achieved through a (3k + 1)-approximation algo-
rithm that runs in FPT time O(8k · n4) parameterized by k ∈ {rw(G), rwQ(G)} [34].
Then, we apply the algorithm given in Theorem 21. Observe that for every node
x ∈ V (T ), by Lemma 23, |Ix |3 lies in 2O(rw(Vx )3) and 2O(rwQ(Vx )2 log(rwQ(Vx ))) and
by Lemma 4, s-nec2(Vx ) lies in 2O(rw(Vx )2) and 2O(rwQ(Vx ) log(rwQ(Vx ))). Moreover,
Lemma 3 implies that mim(Vx )

mim(Vx ) is upper bounded by 2rw(G) log(rw(G)) and
2rwQ(G) log(rwQ(G)). Therefore, we get the claimed runtimes for SFVS since T con-
tains 2n − 1 nodes. �


Regarding mim-width, our algorithm given below shows that Subset Feedback

Vertex Set is in XP parameterized by the mim-width of a given rooted layout. Note
that we cannot solve SFVS in FPT time parameterized by the mim-width of a given
rooted layout unless FPT = W[1], since Subset Feedback Vertex Set is known to
beW[1]-hard for this parameter even for the special case of S = V (G) [29].Moreover,
contrary to the algorithms given in Theorem 24, here we need to assume that the input
graph is givenwith a rooted layout. However, our next result actually provides a unified
polynomial-time algorithm for Subset Feedback Vertex Set on well-known
graph classes having bounded mim-width and for which a layout of bounded mim-
width can be computed in polynomial time [1] (e.g., Interval graphs, Permutation
graphs, Circular Arc graphs, Convex graphs, k- Polygon, Dilworth- k and
Co- k- Degenerate graphs for fixed k).

Theorem 25 There exists an algorithm that, given an n-vertex graph G and a rooted
layout L of G, solves Subset Feedback Vertex Set in time nO(mim(L)2).

Proof We apply the algorithm given in Theorem 21. By Lemma 4, we have
s-nec2(Vx ) ≤ nO(mim) and from Lemma 23 we have |Ix |3 ∈ nO(mim(Vx )2). The
claimed runtime for SFVS follows by the fact that the rooted tree T of L contains
2n − 1 nodes. �
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Let us relate our results for Subset Feedback Vertex Set to the Node Mul-

tiway Cut. It is known that Node Multiway Cut reduces to Subset Feedback

Vertex Set [20]. In fact, we can solve Node Multiway Cut by adding a new
vertex v with a large weight that is adjacent to all terminals and, then, run our algo-
rithms for Subset Feedback Vertex Set with S = {v} on the resulting graph.
Now observe that any extension of a rooted layout L of the original graph to the
resulting graph has mim-width mim(L) + 1. Therefore, all of our algorithms given
in Theorems 24 and 25 have the same running times for the Node Multiway Cut

problem.

4 Conclusion

This paper highlights the importance of the d-neighbor-equivalence relation to obtain
meta-algorithm for severalwidthmeasures at once.We extend the range of applications
of this relation [3, 7, 22, 35] by proving that it is useful for the atypical acyclicity
constraint of the Subset Feedback Vertex Set problem. It would be interesting
to see whether this relation can be helpful with other kinds of constraints such as
2-connectivity and other generalizations of Feedback Vertex Set such as the ones
studied in [6]. In particular, one could consider the following generalization of Odd
Cycle Transversal:

Subset Odd Cycle Transveral (SOCT)

Input: A graph G and S ⊆ V (G).
Output: A set X ⊆ V (G) of minimum weight such that G[X ] does not contain
an odd cycle that intersects S.

Similar to SFVS, we can solve SOCT in time kO(k) ·nO(1) parameterized by treewidth
and this is optimal under ETH [2]. We do not know whether SOCT is in XP parameter-
ized by mim-width, though it is in FPT parameterized by clique-width or rank-width,
since we can express it in MSO1 (with the characterization used in [2]).

For many well-known graph classes a decomposition of bounded mim-width can
be found in polynomial time. However, for general graphs it is known that computing
mim-width is W[1]-hard and not in APX unless NP = ZPP [40], while Yamazaki [42]
shows that under the small set expansion hypothesis it is not in APX unless P = NP. For
dynamic programming algorithms as in this paper, to circumvent the assumption that
we are given a decomposition, we want functions f , g and an algorithm that given
a graph of mim-width OPT computes an f (OPT )-approximation to mim-width in
time ng(OPT ), i.e. XP by the natural parameter. This is the main open problem in the
field. The first task could be to decide if there is a constant c and a polynomial-time
algorithm that given a graph G either decides that its mim-width is larger than 1 or
else returns a decomposition of mim-width c.

Funding Open access funding provided by University of Bergen (incl Haukeland University Hospital).
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appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Explanations with Several Figures

The following figures explain the relation between solutions (S-forests) and an index
i (Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16).

Fig. 5 Illustration of the S-contraction PY constructed in Lemma 9. The graph represented is an S-forest
induced by the union of a set X ⊆ Vx and a set Y ⊆ Vx . The white filled disks represent the vertices in S.
We transform this S-forest into a forest (see the next figure) by contracting the circled subsets of vertices.
The S-contraction used on X is cc(X\S). Observe that Y1 is the only block ofPY which is not a connected
component of G[Y\S]. We need Y1 to kill the orange cycle which is not an S-cycle (Color figure online)

Fig. 6 The contracted graph G[X ∪Y ]↓cc(X\S)∪PY
. The vertices of this graph are the blocks of cc(X\S)∪

PY and the singletons {v} for every vertex v in (X ∪ Y ) ∩ S, these singletons are represented by the white
filled disks
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Fig. 7 The bipartite graph G[X , Y ]↓cc(X\S)∪PY
. The squares represent the blocks in a vertex cover VC of

G[X , Y ]↓cc(X\S)∪PY
that satisfies the properties of Lemma 9

Fig. 8 The graph G[X ∪Y ]↓cc(X\S)∪PY
. As done in Lemma 14, we construct from the vertex cover VC an

index i = (XS
vc,X

S
vc,Xvc,Y

S
vc,Y

S
vc) ∈ Ix such that X is a partial solution associated with i and (Y ,PY ) is

a complement solution associated with i . The set XS
vc contains the representatives of the blocks in cc(X\S)

that are in the vertex cover VC. In this example, we have XS
vc = {R2} where R2 = repVx2 (X2)

Fig. 9 The set XS
vc contains the representatives of the singletons {x} ∈ VC with x ∈ S. In this example, we

have XS
vc = {R1} where R1 = repVx1 ({x1})
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Fig. 10 The set Xvc = repVx1 (X\V (VC)). It is the representative set of the union of the blocks in
X↓cc(X\S)\VC

Fig. 11 The set YSvc contains the representatives of the blocks in PY ∩ VC. In this example, we have

YSvc = {R1, R2} where R� = repVx2 (Y�) for � = 1, 2

Fig. 12 The set YSvc contains the representatives of the singletons {y} ∈ VC with y ∈ S. In this example, we

have YSvc = {R3, R4} where R� = repVx1 ({y�}) for � = 3, 4
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Fig. 13 The auxiliary graph auxx (X , i). It can be obtained from G[X ∪ Y ]↓cc(X\S)∪PY
by (1) removing

the edges between blocks of Y↓PY
, (2) removing the blocks of Y↓PY

that do not belong to VC and (3)
replacing each remaining blocks of Y↓PY

by its representatives. The blocks of the partition cc(X , i) are

{R1, R1, R2}, {R2, R3} and {R4} where R1 and R2 are the representatives of {x1} and X2 respectively

Fig. 14 The auxiliary graphs auxx (X , i) and auxx (W , i) with W a partial solution associated with i . We

have R1 = repVx1 ({w1}) = repVx1 ({x1}) and R2 = repVx2 (W2) = repVx2 (X2). Observe that cc(X , i) =
cc(W , i) = {{R1, R1, R2}, {R2, R3}, {R4}}. Consequently, X and W are i-equivalent
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Fig. 15 The graphs G[X ∪ Y ]↓cc(X\S)∪PY
and G[W ∪ Y ]↓cc(W\S)∪PY

. As X and W are i-equivalent
and G[X ∪ Y ]↓cc(X\S)∪PY

is a forest, by Lemma 17, G[W ∪ Y ]↓cc(W\S)∪PY
is also a forest. Thus, by

Lemma 15, G[W ∪ Y ] is an S-forest. In fact, these two lemmas implies that for every complement solution
(Y ′,P ′

Y ) associated with i , G[X ∪ Y ′] is an S-forest if and only if G[W ∪ Y ′] is an S-forest
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Fig. 16 New examples for the graphs G[X ∪ Y ]↓cc(X\S)∪PY
and G[W ∪ Y ]↓cc(W\S)∪PY

. To prove
Lemma 17, we prove that if G[W ∪Y ]↓cc(W\S)∪PY

contains a cycle, thenG[X ∪Y ]↓cc(X\S)∪PY
contains

a cycle. We use the following arguments. The orange paths exist in both graphs because these paths only
use blocks in Y↓PY

. Since cc(X , i) = cc(W , i), the purple path in G[W ∪ Y ]↓cc(W\S)∪PY
implies the

existence of the purple path inG[X∪Y ]↓cc(X\S)∪PY
. Finally, as X2 ≡Vx

2 W2, the blocks in Y↓PY
adjacent

to W2 are also adjacent to X2. Thus, the green path in in G[W ∪ Y ]↓cc(W\S)∪PY
implies the existence of

the green path in G[X ∪ Y ]↓cc(X\S)∪PY
(Color figure online)
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