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Abstract. We construct mesh-independent and parameter-robust monolithic solvers for the
coupled primal Stokes–Darcy problem. Three different formulations and their discretizations in terms
of conforming and nonconforming finite element methods and finite volume methods are considered.
In each case, robust preconditioners are derived using a unified theoretical framework. In particular,
the suggested preconditioners utilize operators in fractional Sobolev spaces. Numerical experiments
demonstrate the parameter-robustness of the proposed solvers.
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1. Introduction. In this work, we propose efficient solvers for multiphysics sys-
tems where a moving fluid (e.g., channel flow) governed by the Stokes equations in one
subdomain interacts with fluid flow in porous media described by the Darcy equation
in a neighboring subdomain. The main contribution is a framework which allows us
to construct parameter-robust preconditioners for iterative solvers of linear systems
arising from different discretizations of the coupled Stokes–Darcy problem. The the-
ory is confirmed and complemented by extensive numerical experiments building on
modern and open-source numerical software frameworks.

Systems exhibiting free flow coupled with porous medium flow are ubiquitous in
nature, appearing in numerous environmental, industrial (see, e.g., [28] and references
therein), and medical applications [62] . Discretization of the Stokes–Darcy problem is
challenging with many finite element (e.g., [27, 38, 50, 44, 60, 61, 36, 19, 4]) and finite
volume (e.g., [66, 65]) schemes devised with the aim to obtain robust approximation
properties. Moreover, the coupled system presents a difficulty for construction of
numerical solvers as in the applications the problem parameters weighting different
terms of the equations may differ by several orders of magnitude due to, for example,
variations in material parameters or large contrast of length scales (e.g., micro/macro-
circulation modelling [46, 67]).

These challenges have been addressed in a number of works. In general, we
can distinguish between monolithic approaches (where all the problem unknowns are
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ROBUST STOKES–PRIMAL DARCY PRECONDITIONERS B1149

solved for at once) and domain-decomposition (DD) techniques (where the coupled
system is solved using iterations between the subdomain problems). In the context
of the primal Stokes–Darcy problem, which will be studied in this work, DD solvers
have been established, e.g., in [27, 29, 26, 22, 21]. Monolithic solvers have been devel-
oped primarily for the nonsymmetric problem formulation in terms of Krylov solvers
(GMRes) with block-diagonal and triangular preconditioners [20] or constrained in-
definite preconditioners [23]. However, existing solvers are typically robust only in
certain parameter regimes (cf. [20, 23]) or rely on algorithmic parameters that may
be difficult to tune (e.g., Robin parameters in DD [26]).

Monolithic methods are in particular popular in applications with more complex
physics, e.g., [55, 3, 24, 1], for their property that the interface conditions are fulfilled
up to numerical precision independent of tuning parameters, and the practical ob-
servation that monolithic schemes often outperform DD schemes in cases where the
DD solver requires many subdomain iterations. This can also be the case if optimal
DD parameters are unknown for the specific problem and parameters or costly to
determine. For completeness, we mention that there are also works that successfully
apply DD techniques for problems with more complex physics, e.g., [11].

In [14, 42, 52], robust solvers for the Stokes–Darcy problem with Darcy equation
in mixed form (see, e.g., [50, 35]) are constructed. While the mixed form has the
advantage in the finite element context of ensuring local mass conservation, the total
number of degrees of freedom (dofs) is significantly reduced with the Darcy prob-
lem in the primal form. Finite volume schemes feature local mass conservation by
construction in both cases.

In the following, we construct robust monolithic solvers for the primal Stokes–
Darcy system. More precisely, by considering different discretizations of the coupling
conditions, we derive three different symmetric formulations which are amenable to
discretization by finite element methods (FEM) or finite volume methods (FVM).
Well-posedness of the formulations is established within an abstract framework and
consequently block-diagonal preconditioners are constructed by operator precondi-
tioning [53]. A crucial component of the analysis is the formulation in terms of
fractional norms on the interface between the subdomains. In turn, the proposed
preconditioners utilize nonstandard and nonlocal operators. However, as the number
of dofs on the interface is often small relative to the problem size, we demonstrate
that the preconditioners are feasible also in practical applications.

Our work is structured as follows. In section 2, we state the governing equations
and coupling conditions, introduce the three variational formulations considered in
this work, and show in a motivating example that a simple idea based on standard
norms does not lead to a parameter-robust preconditioner. An abstract theory is then
developed in section 3 and applied to the different formulations. Numerical experi-
ments showcasing robustness of the proposed preconditioners and their efficiency are
presented and discussed in section 4.

2. Problem formulation. Let ΩS ,ΩD ⊂ Rd, d ∈ {2, 3}, be two nonoverlapping
Lipschitz domains sharing a common interface Γ = ∂ΩS ∩ ∂ΩD ⊂ Rd−1. Let ΩD

represent a porous medium in which we consider Darcy flow in primal form, i.e.,
formulated solely in terms of pressure pD,

∇·
(
−µ−1K∇pD

)
= fD,(2.1)

with constant fluid viscosity µ > 0, and isotropic and homogeneous intrinsic perme-
ability K = kI. For notational convenience, we further let κ := µ−1k.

D
ow

nl
oa

de
d 

02
/1

3/
23

 to
 1

93
.1

57
.2

11
.9

1 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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In the free-flow domain ΩS , we consider the Stokes problem,

−∇· σ(uS , pS) = fS ,(2.2a)
−∇· uS = 0,(2.2b)

with σ(uS , pS) = 2µϵ(uS)− pSI and ϵ(uS) =
1
2

(
∇uS +∇uS

T
)
.

To couple the Stokes and Darcy systems, let n := nS be the outer normal of the
Stokes domain and let τ := I − (n⊗n) be the projection onto the tangent bundle of
the interface. The following conditions are then assumed to hold on the interface Γ:

τ · σ(uS , pS) · n+ βττ · uS = 0,(2.3a)
n · σ(uS , pS) · n+ pD = 0,(2.3b)

n · uS + n · κ∇pD = 0.(2.3c)

Here, the first of the coupling conditions is the well-established Beavers–Joseph–
Saffman (BJS) condition [9, 63, 54] with βτ := µα√

k
, and constant α ≥ 0. Finally,

conditions (2.3b)–(2.3c) enforce normal stress continuity and mass conservation.
To close the coupled problem (2.1)–(2.3), we prescribe the following (homoge-

neous) boundary conditions:

uS = 0 on Γu
S , nS · σ(uS , pS) = 0 on Γσ

S ̸= ∅,(2.4a)
−nD · κ∇pD = 0 on Γu

D, pD = 0 on Γp
D ̸= ∅.(2.4b)

Here, we assume that Γu
S ∪ Γσ

S ∪ Γ forms a disjoint decomposition of ∂ΩS and,
analogously, Γu

D ∪ Γp
D ∪ Γ is a disjoint partition of ∂ΩD. Since we assume that both

Γσ
S and Γp

D have positive measure, Γ cannot be a closed surface (or curve in two
dimensions). In turn, we make the assumption that its boundary touches the bound-
ary sections on which Stokes stress and Darcy flux boundary conditions are imposed,
i.e., ∂Γ ⊆ ∂Γσ

S∪∂Γu
D. These assumptions are made specifically to simplify the analysis

in section 3 and will be relaxed in the numerical experiments of section 4.

2.1. Three variational formulations. In this work, we focus on three differ-
ent formulations of the coupled problem (2.1)–(2.4). The formulations differ in the
manner in which the flux continuity condition (2.3c) is incorporated. The first uses
the trace of pD on the interface to enforce this condition and we call this formulation
the Trace (Tr) formulation. The second formulation uses the interface pressure as a
Lagrange multiplier to enforce flux continuity and is therefore referred to as the La-
grange multiplier (La) system. Finally, the third system uses a Robin-type of interface
condition and is thus called the Robin (Ro) formulation.

Each system is presented herein as a variational formulation posed in (subspaces
of) spaces of square integrable functions. We assume that the spaces possess sufficient
regularity for the (differential) operators in the systems to be well-defined. However,
we reserve the precise definitions of these function spaces for a later stage since these
require appropriately weighted norms.

The first formulation follows the classic derivation of [27]. Here, it is assumed that
the pressure pD has sufficient regularity for its trace on Γ to be well-defined. The weak
form of (2.1)–(2.4) yields the Trace formulation: Find (uS , pS , pD) ∈ V S ×QS ×QD

such that
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(2µϵ(uS), ϵ(vS))ΩS
+ βτ (τ · uS , τ · vS)Γ

−(pS ,∇ · vS)ΩS
+ (pD,n · vS)Γ = (fS ,vS)ΩS

∀vS ∈ V S ,

−(∇ · uS , qS)ΩS
= 0 ∀qS ∈ QS ,

(n · uS , qD)Γ − (κ∇pD,∇qD)ΩD
= (fD, qD)ΩD

∀qD ∈ QD.

(2.5)

Here, and throughout this work, we use (f, g)Σ :=
∫
Σ
fg. We employ the same

notation for vector and tensor-valued functions defined on a domain Σ.
Problem (2.5) can be naturally discretized by (H1-)conforming finite element

schemes, for example, the lowest-order Taylor–Hood (P 2-P1) pair for Stokes velocity
and pressure and continuous piecewise quadratic Lagrange (P2) elements for the Darcy
pressure (P 2-P1-P2 in the following).

The second formulation is motivated by cell-centered discretization methods in-
cluding FVM and nonconforming FEM of lowest order. In that case, the trace of
pD is not (directly) available since there is no interfacial dof and it is common to
use a discrete gradient reconstruction scheme to retrieve the interface pressure. To
illustrate this, let us assume that the Darcy pressure space QD consists of piecewise
constant functions. Introducing pΓ as the unknown interface pressure, a two-point
approximation (TPFA) of the flux on a facet F ⊂ Γ reads

−n · κ∇pD := −κ
pD|K − pΓ

hK
on F,(2.6)

where pD|K denotes the pressure in the center of the element K ⊆ ΩD with F ⊆ ∂K
and hK is the distance between the centroids of K and F . We recall that n denotes
the unit normal outward to ΩS . Applying (2.6) in (2.3c) yields a discrete interface
condition

n · uS + β−1
n (pD|K − pΓ) = 0 on F(2.7)

with βn := κ−1hK > 0. Despite its motivation originating from the discrete case, we
shall now consider βn as a model parameter, allowing for a continuous formulation.
In particular, we use (2.7) to model the flux continuity condition (2.3c) and arrive at
the Lagrange multiplier formulation: Find (uS , pS , pD, pΓ) ∈ V S ×QS ×QD×Λ such
that

(2µϵ(uS), ϵ(vS))ΩS
+ βτ (τ · uS , τ · vS)Γ

−(pS ,∇ · vS)ΩS
+ (pΓ,n · vS)Γ = (fS ,vS)ΩS

∀vS ∈ V S ,

−(∇ · uS , qS)ΩS
= 0 ∀qS ∈ QS ,

− (κ∇pD,∇qD)ΩD
−
(
β−1
n (pD − pΓ) , qD

)
Γ
= (fD, qD)ΩD

∀qD ∈ QD,

(n · uS , qΓ)Γ +
(
β−1
n (pD − pΓ) , qΓ

)
Γ
= 0 ∀qΓ ∈ Λ.

(2.8)

By construction, this formulation is tailored for discretization methods that use cell-
centered pressure variables. The precise discretization of the second-order terms
(2µϵ(uS), ϵ(vS))ΩS

and (κ∇pD,∇qD)ΩD
is presented in section SM1. Furthermore,

we emphasize that only the specific choice of βn = κ−1hK leads to a discretization
scheme that is consistent with (2.1)–(2.4).

Our third and final formulation is obtained by eliminating the Lagrange mul-
tiplier. For that, we once again consider a facet F with an adjacent cell K ⊆ ΩD.
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The combination of the momentum balance (2.3b) with condition (2.7) yields a Robin-
type interface condition

−n · σ(uS , pS) · n = pD|K + βnuS · n on F.(2.9)

By using (2.9) to model flux continuity, we arrive at the Robin formulation: Find
(uS , pS , pD) ∈ V S ×QS ×QD such that

(2µϵ(uS), ϵ(vS))ΩS
+ βτ (τ · uS , τ · vS)Γ

+βn(n · uS ,n · vS)Γ

−(pS ,∇ · vS)ΩS
+ (pD,n · vS)Γ = (fS ,vS)ΩS

∀vS ∈ V S ,

−(∇ · uS , qS)ΩS
= 0 ∀qS ∈ QS ,

(n · uS , qD)Γ − (κ∇pD,∇qD)ΩD
= (fD, qD)ΩD

∀qD ∈ QD.

(2.10)

Similar to (3.3), this formulation is amenable to cell-centered finite volume or noncon-
forming finite element methods. We emphasize that although variational formulations
are more common for finite element practitioners, these final two systems can be in-
terpreted term by term using finite volume discretization techniques.

2.2. Motivating example. Having defined the variational problems, our aim
is to construct parameter-robust solvers for all three formulations. By robustness, we
mean that the preconditioned system has a bounded eigenvalue spectrum independent
of modeling and discretization parameters, in particular µ, κ, βτ , the discretization
length h, and the Robin coefficient βn. We base our approach on operator precondi-
tioning using nonstandard, weighted Sobolev spaces.

To illustrate the necessity of these techniques, let us first illustrate that a naïve but
seemingly sensible approach in standard norms does not yield parameter-robustness.
More precisely, in Example 2.1 we show that natural norms of the solution spaces of
the coupled Stokes–Darcy problem do not translate to robust preconditioners.

Example 2.1 (standard norm preconditioner). We consider the Trace formulation
(2.5) on ΩS = [0, 1]×[1, 2] and ΩD = [0, 1]×[0, 1] with the source terms fS , fD defined
in (A.2) and artificially balanced (nonzero right-hand side) coupling conditions (A.3)
(see Appendix A for details). We let Γu

S be the top edge of ΩS while the bottom
edge of ΩD is Γp

D. On the remaining parts of the boundaries, Neumann boundary
conditions are assumed, i.e., traction for the Stokes and normal flux for the Darcy
problem. The boundary conditions are nonhomogeneous with the data based on the
manufactured exact solution (A.1).

Since (2.5) with the above boundary conditions is well-posed in V S = H1
0,Γu

S
(ΩD),

QS = L2(ΩD), and QD = H1
0,Γp

D
(ΩD) (see [27]), we may want to consider as precon-

ditioner the block-diagonal operator

B :=

−∇ · (2µϵ) + βτT
′
τTτ

(2µ)−1I
−κ∆

−1

,(2.11)

where Tτ : V S → V ′
S is the tangential trace operator. We remark that (2.11) is the

Riesz map with respect to the parameter-weighted inner products of V S ×QS ×QD,
which for µ = 1, k = 1, βτ = 0 reduce to standard inner products of the spaces. In
particular, for the first block of (2.11), we recall that the first Korn inequality holds
as |Γu

S | > 0.
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Table 1
Performance of block-diagonal preconditioner (2.11) for the Trace formulation of Stokes–Darcy

problem (2.5) discretized by P 2-P1-P2 elements. Setup of Example 2.1 and µ = 1. Discretization
length scale is denoted by h. This naïve preconditioner is sensitive to variations in permeability k.

α = 1 α = 0

k
h

2−4 2−5 2−6 2−7 2−4 2−5 2−6 2−7

1 34 33 32 32 34 33 32 32
10−1 39 39 39 37 39 41 39 39
10−2 52 52 50 49 55 56 54 53
10−3 84 84 82 82 95 90 89 88
10−4 165 186 184 187 181 202 205 200

Using discrete spaces V S,h ⊆ V S , QS,h ⊆ QS , QD,h ⊆ QD constructed respec-
tively with P 2, P1, and P2 elements we investigate robustness of (2.11) by considering
boundedness of preconditioned MinRes iterations with mesh refinement and param-
eter variations. The iterative solver is started from an initial vector representing a
random function in V S,h ×QS,h ×QD,h (implying that the dofs associated with the
Dirichlet boundary conditions are set to 0, while the remaining dofs are drawn ran-
domly from [0, 1)) and terminates once the preconditioned residual norm is reduced
by factor 108. The preconditioner is computed by LU decomposition.

In Table 1, we report the number of MinRes iterations required to satisfy the
convergence criteria. We observe that the iterations are stable in mesh size. However,
there is a clear dependence on permeability and the iterations grow with decreasing
k. The BJS parameter (or βτ ) seems to have little effect on the solver convergence.

We conclude that even though the blocks of (2.11) define parameter-robust pre-
conditioners for the individual Stokes and Darcy subproblems this property is not
sufficient for parameter-robustness in the coupled Stokes–Darcy problem.

Following this introductory example in which full parameter-robustness could
not be achieved, parameter-robust preconditioners for all presented formulations of
the Stokes–Darcy problem will be constructed using a unified framework introduced
next.

3. Abstract setting. We observe that each of the three formulations (2.5),
(2.8), and (2.10) presented in section 2.1 possesses a symmetric structure. Further-
more, the three systems can be identified as perturbed saddle point problems and we
detail this observation in this section. To fully exploit this identification, we present
an abstract theory of well-posedness for such problems. After introducing the used
notation conventions, the main abstract result is shown and the three systems are
each presented and analyzed in this functional framework.

3.1. Notation and preliminaries. We start with an exposition of notation
conventions. For a bounded domain Ω ⊂ Rd, we let L2(Ω) denote the space of square
integrable functions and let Hk(Ω), k ≥ 1, be the usual Sobolev space of functions
with integer derivatives up to order k in L2(Ω). Homogeneous boundary conditions on
Γ ⊆ ∂Ω are indicated using a subscript 0, i.e., H1

0,Γ(Ω) := {f ∈ H1(Ω) | f = 0 on Γ}.
Vector-valued functions and their corresponding spaces are denoted by bold font.

The trace space of H1(Ω) on Γ corresponds to H
1
2 (Γ), the interpolation space

between L2(Γ) and H1(Γ). Its dual is denoted by H− 1
2 (Γ). More generally, we let X ′

be the dual of a Hilbert space X and let angled brackets ⟨·, ·⟩X′,X denote the duality
pairing. The subscript on this pairing may be omitted when no confusion arises.
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∥·∥k,Ω denotes the norm on Hk(Ω) and ∥·∥Ω := ∥·∥0,Ω. A weighted space αX
with α > 0 is endowed with the norm ∥f∥αX := ∥αf∥X and its dual is given by
(αX)′ = α−1X ′. Moreover, given two Hilbert spaces X,Y , the intersection (X ∩ Y )
and sum (X + Y ) form Hilbert spaces endowed with the norms

∥f∥2X∩Y := ∥f∥2X + ∥f∥2Y , ∥f∥2X+Y := inf
g∈Y

(
∥f − g∥2X + ∥g∥2Y

)
,

respectively. Moreover, we recall the following relations [10]:

(X ∩ Y )′ = X ′ + Y ′, X ∩ (Y1 + Y2) = (X ∩ Y1) + (X ∩ Y2).

Finally, the relation x ≲ y implies that a positive constant c ∈ R exists, indepen-
dent of model parameters, such that x ≤ cy.

3.2. Well-posedness theory of perturbed saddle point problems. Let V
and Q be Hilbert spaces to be specified below. Let A : V ×Q → (V ×Q)′ be a linear
operator of the form

A :=

[
A B′

B −C

]
,(3.1)

in which the operators A, B, and C are subject to the following assumptions:
• Let A : V → V ′ be such that ⟨Au, v⟩ forms an inner product on V . We denote

the induced norm by

∥v∥2A := ⟨Av, v⟩ ∀v ∈ V.(3.2a)

• Let B : V → Q′ be a linear operator and let | · |B be a seminorm on Q such
that B is continuous in the following sense:

⟨Bv, p⟩ ≲ ∥v∥A|p|B ∀(v, p) ∈ V ×Q.(3.2b)

Moreover, we assume that a constant ζ0 > 0 exists such that for each p ∈ Q,
a vp ∈ V exists that satisfies

⟨Bvp, p⟩ = |p|2B , ζ0∥vp∥A ≤ |p|2B .(3.2c)

We refer to ζ0 as the inf-sup constant.
• Let C : Q → Q′ be such that ⟨Cp, q⟩ forms a semi-inner product on Q. The

induced seminorm is denoted as

|q|2C := ⟨Cq, q⟩ ∀q ∈ Q.(3.2d)

• Finally, we assume that

|||(u, p)|||2 := ∥u∥2A + |p|2B + |p|2C(3.2e)

is a proper norm and we let V × Q be the space of (pairs of) measurable
functions that are bounded in this norm.

The model problem of interest then reads, Given (f, g) ∈ (V ×Q)′, find (u, p) ∈
V ×Q such that

A(u, p) = (f, g).(3.3)

Problem (3.3) is well-posed in V ×Q, as was shown in [16, Thm. 2]. Nevertheless,
to have a self-contained presentation, we continue by demonstrating a simplified proof
of this result in which we exploit the coercivity. We remark that in the above norms,
the only constant that appears in the lower-bound is the inf-sup constant.
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Theorem 3.1. If conditions (3.2) are fulfilled, then the saddle point problem (3.3)
is well-posed in V ×Q, endowed with the norm (3.2e).

Proof. We first show that A is continuous. By the Cauchy–Schwarz inequality,
we have

⟨Au, v⟩ ≤ ∥u∥A∥v∥A ∀u, v ∈ V,

⟨Cp, q⟩ ≤ |p|C |q|C ∀p, q ∈ Q.

Finally, condition (3.2b) ensures that B is continuous in the norm (3.2e). The com-
bination of these three inequalities provides the continuity of A. Since the operator
A is linear and symmetric, it now suffices to show that ξ exists such that

inf
(u,p)

sup
(v,q)

⟨A(u, p), (v, q)⟩
|||(u, p)||||||(v, q)||| ≥ ξ > 0.(3.4)

Let (u, p) ∈ V × Q be given and let us proceed by constructing a suitable test
function (v, q) ∈ V ×Q. First, the condition (3.2c) allows us to construct vp ∈ V such
that

⟨Bvp, p⟩ = |p|2B , ζ0∥vp∥A ≤ |p|B .(3.5)

Now let (v, q) := (u + ζ20v
p,−p) with ζ0 from (3.2c). Substituting these definitions,

we obtain

⟨A(u, p), (v, q)⟩ = ⟨Au, v⟩+ ⟨Bv, p⟩+ ⟨Bu, q⟩ − ⟨Cp, q⟩
= ∥u∥2A + ⟨Au, ζ20v

p⟩+ ⟨Bζ20v
p, p⟩+ |p|2C

= ∥u∥2A + ζ20 ⟨Au, vp⟩+ ζ20 |p|2B + |p|2C .(3.6)

Next, we need to bound the second term in the right-hand side from below. Using
the Cauchy–Schwarz inequality, the inequality 2ab ≤ a2 + b2, and (3.5), we derive

ζ20 ⟨Au, vp⟩ ≥ −ζ20∥u∥A∥vp∥A
≥ −1

2
∥u∥2A − 1

2
ζ40∥vp∥2A

≥ −1

2
∥u∥2A − 1

2
ζ20 |p|2B .(3.7)

In turn, (3.6) and (3.7) imply

⟨A(u, p), (v, q)⟩ ≥ 1

2
∥u∥2A +

1

2
ζ20 |p|2B + |p|2C ≥ min{1, ζ20}

2
|||(u, p)|||2.(3.8)

Next, we show that (v, q) is bounded in the norm (3.2e) by (u, p):

|||(v, q)|||2 = ∥u+ ζ20v
p∥2A + |p|2B + |p|2C

≤ 2∥u∥2A + 2∥ζ20vp∥2A + |p|2B + |p|2C
≤ 2∥u∥2A + (1 + 2ζ20 )|p|2B + |p|2C
≤ max{2, 1 + 2ζ20}|||(u, p)|||2.(3.9)

Combining (3.8) and (3.9), we have

⟨A(u, p), (v, q)⟩
|||(u, p)||||||(v, q)||| ≥

min{1, ζ20}
2
√
max{2, 1 + 2ζ20}

> 0.

The Banach–Nečas–Babuška theorem [31, Thm. 2.6] then provides the result.
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Remark 3.1. Systems similar to (3.3) were recently considered in [43, 15], in which
A is assumed to be coercive on the kernel of B. Since we herein make the stronger
assumption of coercivity on the entire space V , Theorem 3.1 is corollary to [43, Thm.
5] and [15, Thm. 2.1].

At this point, we are ready to analyze the individual Stokes–Darcy formulations
within the introduced abstract framework.

3.3. The Trace formulation. Observe that the left-hand side of (2.5) defines
an operator ATr on V S × (QS ×QD),

ATr :=

−∇ · (2µϵ) + βτT
′
τTτ ∇ T ′

n

−∇·
Tn κ∆

 ,(3.10)

where Tτ : V S → V ′
S is the tangential trace operator, and Tn : V S → Q′

D is the
normal trace operator. The system thus fits template (3.1) of a perturbed saddle
point problem with

⟨AuS ,vS⟩ := (2µϵ(uS), ϵ(vS))ΩS
+ βτ (τ · uS , τ · vS)Γ,

⟨BuS , (qS , qD)⟩ := −(∇ · uS , qS)ΩS
+ (n · uS , qD)Γ,

⟨C(pS , pD), (qS , qD)⟩ := (κ∇pD,∇qD)ΩD
.

Based on these operators, we define the following (semi-)norms:

∥uS∥2A := 2µ∥ϵ(uS)∥2ΩS
+ βτ∥τ · uS∥2Γ,(3.11a)

|(pS , pD)|2B := (2µ)−1∥pS∥2ΩS
+ (2µ)−1∥pD∥2− 1

2 ,Γ
,(3.11b)

|(pS , pD)|2C := κ∥∇pD∥2ΩD
.(3.11c)

Finally, in the context of Theorem 3.1, we consider the following norm:

|||(uS , pS , pD)|||2 := 2µ∥ϵ(uS)∥2ΩS
+ βτ∥τ · uS∥2Γ

+ (2µ)−1∥pS∥2ΩS
+ (2µ)−1∥pD∥2− 1

2 ,Γ
+ κ∥∇pD∥2ΩD

.
(3.12)

Theorem 3.2. Problem (2.5) is well-posed in V × Q endowed with the norm
(3.12).

Proof. We follow the assumptions of Theorem 3.1. First, the properties (3.2a)
and (3.2d) are immediately fulfilled. Next, the continuity of B (3.2b) is shown by the
following calculation, utilizing the Cauchy–Schwarz inequality and a trace inequality:

⟨BuS , (pS , pD)⟩ = −(∇ · uS , pS)ΩS
+ (n · uS , pD)Γ

≤ ∥∇ · uS∥ΩS
∥pS∥ΩS

+ ∥n · uS∥ 1
2 ,Γ

∥pD∥− 1
2 ,Γ

≲ ∥ϵ(uS)∥ΩS

(
∥pS∥ΩS

+ ∥pD∥− 1
2 ,Γ

)
≲ (2µ)

1
2 ∥ϵ(uS)∥ΩS

(2µ)−
1
2

(
∥pS∥2ΩS

+ ∥pD∥2− 1
2 ,Γ

) 1
2

= ∥uS∥A|(pS , pD)|B .
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Condition (3.2c) on B is considered next. Let (pS , pD) be given. Let vpS ∈
H1(ΩS) be constructed, using the Stokes inf-sup condition, such that

vpS |Γ = 0, ∇ · vpS = −pS ,(3.13a)
∥ϵ(vpS )∥ΩS

≲ ∥pS∥ΩS
.(3.13b)

On the other hand, let ϕ ∈ H
1
2 (Γ) be the Riesz representative of pD|Γ ∈ H− 1

2 (Γ). We
then define vpD ∈ H1(ΩS) as the bounded extension that satisfies

vpD |Γ = ϕn, ∇ · vpD = 0,(3.14a)
∥ϵ(vpD )∥ΩS

≲ ∥ϕ∥ 1
2 ,Γ

= ∥pD∥− 1
2 ,Γ

.(3.14b)

We are now ready to set the test function vS := (2µ)−1(vpS + vpD ). Noting that
τ · vS = 0 on Γ, this function satisfies

⟨BvS , (pS , pD)⟩ = −(2µ)−1(∇ · vpS , pS)ΩD
+ (2µ)−1(n · vpD , pD)Γ

= (2µ)−1∥pS∥2ΩS
+ (2µ)−1∥pD∥2− 1

2 ,Γ

= |(pS , pD)|2B ,(3.15a)

∥vS∥A = (2µ)
1
2 ∥ϵ((2µ)−1(vpS + vpD ))∥ΩS

≤ (2µ)−
1
2 (∥ϵ(vpS )∥ΩS

+ ∥ϵ(vpD )∥ΩS
)

≲ (2µ)−
1
2

(
∥pS∥ΩS

+ ∥pD∥− 1
2 ,Γ

)
≲ |(pS , pD)|B .(3.15b)

Hence, condition (3.2c) is fulfilled.
Finally, it is straightforward to verify that (3.2e) is a norm on Q and thus the

assumptions of Theorem 3.1 are fulfilled.

Following operator preconditioning [53], and using the well-posedness result of
Theorem 3.2, a preconditioner for the Stokes–Darcy in the Trace formulation (2.5) is
the Riesz map with respect to the inner product inducing the norms (3.12), that is,
the block diagonal operator

BTr :=

−∇ · (2µϵ) + βτT
′
τTτ

(2µ)−1I

−κ∆+ (2µ)−1 (−∆Γ)
−1/2

−1

.(3.16)

Here, the subscript Γ signifies that the fractional operator acts on the interface. We
demonstrate, numerically, robustness of the preconditioner (3.16) using both H1-
conforming and nonconforming Stokes–Darcy-stable elements in section 4. Here, we
continue with the remaining two formulations concerning cell-centered finite volume
schemes and lowest-order nonconforming finite element schemes.

3.4. The Lagrange multiplier formulation. Variational problem (2.8) de-
fines an operator ALa on V S × (QS ×QD × Λ),

ALa :=


−∇ · (2µϵ) + βτT

′
τTτ ∇ T ′

n

−∇·
κ∆− β−1

n T ′T β−1
n T ′

Tn β−1
n T −β−1

n I

 ,(3.17)D
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where T : QD → Λ′ is a trace/restriction operator for the Darcy pressure space. We
observe that the lower 2× 2 block forms a discretization of the Laplacian in terms of
the interior Darcy pressure and the interface pressure. In this sense, (3.17) is similar
to (3.10).

We note that the operator (3.17) also fits template (3.1) with the operators given
by

⟨AuS ,vS⟩ := (2µϵ(uS), ϵ(vS))ΩS
+ βτ (τ · uS , τ · vS)Γ,

⟨BuS , (qS , qD, qΓ)⟩ := −(∇ · uS , qS)ΩS
+ (n · uS , qΓ)Γ,

⟨C(pS , pD, pΓ), (qS , qD, qΓ)⟩ := (κ∇pD,∇qD)ΩD
+ (β−1

n (pD − pΓ), (qD − qΓ))Γ.

These operators lead us to the following norms:

∥uS∥2A := 2µ∥ϵ(uS)∥2ΩS
+ βτ∥τ · uS∥2Γ,(3.18a)

|(pS , pD, pΓ)|2B := (2µ)−1∥pS∥2ΩS
+ (2µ)−1∥pΓ∥2− 1

2 ,Γ
,(3.18b)

|(pS , pD, pΓ)|2C := κ∥∇pD∥2ΩD
+ β−1

n ∥pD − pΓ∥2Γ.(3.18c)

Theorem 3.3. Problem (3.17) is well-posed in V × Q endowed with the energy
norm (3.2e) formed by (3.18).

Proof. Assumptions (3.2a) and (3.2d) are again immediate. Assumptions (3.2b)
and (3.2c) were proven in Theorem 3.2 (with pD|Γ substituted for pΓ). Then, Theo-
rem 3.1 provides the result.

Following Theorem 3.3, a preconditioner for problem (2.8) reads

BLa :=


−∇·(2µϵ)+βτT

′
τTτ

(2µ)−1I

−κ∆+β−1
n T ′T −β−1

n T ′

−β−1
n T β−1

n IΓ+(2µ)−1(−∆Γ)
−1/2


−1

.(3.19)

Finally, we consider the third variational form established by eliminating the
Lagrange multiplier on the coupling interface.

3.5. The Robin formulation. We observe that problem (2.10) is given in terms
of the operator ARo on V S × (QS ×QD)

ARo :=

−∇· (2µϵ) + βτT
′
τTτ + βnT

′
nTn ∇ T ′

n

−∇·
Tn κ∆

 .(3.20)

Note again that (3.20) has the structure (3.1) with the operators given by

⟨AuS ,vS⟩ := (2µϵ(uS), ϵ(vS))ΩS

+ βτ (τ · uS , τ · vS)Γ + βn(n · uS ,n · vS)Γ,

⟨BuS , (qS , qD)⟩ := −(∇ · uS , qS)ΩS
+ (n · uS , qD)Γ,

⟨C(pS , pD), (qS , qD)⟩ := (κ∇pD,∇qD)ΩD
.

In the framework of Theorem 3.1, we identify the following norms:

∥uS∥2A := 2µ∥ϵ(uS)∥2ΩS
+ βτ∥τ · uS∥2Γ + βn∥n · uS∥2Γ,(3.21a)

|(pS , pD)|2B := (2µ)−1∥pS∥2ΩS
+ ∥pD∥2

(2µ)−
1
2 H− 1

2 (Γ)+β
− 1

2
n L2(Γ)

,(3.21b)

|(pS , pD)|2C := κ∥∇pD∥2ΩD
.(3.21c)
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We remark that the control on the pressure variable is weakened in comparison
with (3.18). This is a direct result from the fact that uS is now in a smaller space
(with a stronger norm).

Theorem 3.4. Problem (3.20) is well-posed in V × Q endowed with the energy
norm formed by (3.21).

Proof. Assumptions (3.2a) and (3.2d) follow immediately. We continue with the
bounds on B, starting with continuity (3.2b):

⟨BuS , (qS , qD)⟩ = −(∇ · uS , qS)ΩS
+ (n · uS , qD)Γ

≤ ∥ϵ(uS)∥
(2µ)

1
2 L2(ΩS)

∥qS∥
(2µ)−

1
2 L2(ΩS)

+ ∥n · uS∥
(2µ)

1
2 H

1
2 (Γ)∩β

1
2
n L2(Γ)

∥qD∥
(2µ)−

1
2 H− 1

2 (Γ)+β
− 1

2
n L2(Γ)

≲ ∥uS∥A + |(qS , qD)|B ,
in which we used that (cX)′ = c−1X ′ for c > 0 and (X ∩Y )′ = X+Y ; cf. section 3.1.

Second, we prove condition (3.2c) for which we follow the same approach as in
Theorem 3.2. Let (pS , pD) be given with bounded B-seminorm and let vpS satisfy
(3.13). For notational convenience, we define

Λ := (2µ)
1
2H

1
2 (Γ) ∩ β

1
2
nL

2(Γ), Λ′ := (2µ)−
1
2H− 1

2 (Γ) + β
− 1

2
n L2(Γ).(3.22)

Now, let ϕ ∈ Λ be the Riesz representative of pD|Γ ∈ Λ′. Since Λ ⊆ H
1
2 (Γ), we

can define vpD ∈ H1(ΩS) according to (3.14). This function satisfies the bound
∥ϵ(vpD )∥ΩS

≲ ∥ϕ∥ 1
2 ,Γ

and we obtain

∥(2µ) 1
2 ϵ(vpD )∥2ΩS

+ ∥β
1
2
nn · vpD∥2Γ ≲ ∥(2µ) 1

2ϕ∥21
2 ,Γ

+ ∥β
1
2
n ϕ∥2Γ

= ∥ϕ∥2Λ = ∥pD∥2Λ′ .

Finally, we define the test function v = (2µ)−1vpS + vpD and deduce

⟨BvS , (pS , pD)⟩ = −(2µ)−1(∇ · vpS , pS)ΩD
+ (n · vpD , pD)Γ

= (2µ)−1∥pS∥2ΩS
+ ∥pD∥2Λ′

= |(pS , pD)|2B ,(3.23a)

∥vS∥2A = (2µ)∥ϵ((2µ)−1vpS + vpD )∥2ΩS
+ βn∥n · vpD∥2Γ

≲ (2µ)−1∥ϵ(vpS )∥2ΩS
+ ∥(2µ) 1

2 ϵ(vpD )∥2ΩS
+ ∥β

1
2
nn · vpD∥2Γ

≲ (2µ)−
1
2 ∥pS∥2ΩS

+ ∥pD∥2Λ′

= |(pS , pD)|2B .(3.23b)

Now, (3.23) implies that assumption (3.2c) is fulfilled and the result follows by
Theorem 3.1.

Theorem 3.4 leads us to the preconditioner for the third formulation:

BRo =


(
−∇·(2µϵ)+βτT

′
τTτ

+βnT
′
nTn

)−1 (
(2µ)−1I

)−1 (
(−κ∆+β−1

n IΓ)
−1

+
(
−κ∆+(2µ)−1(−∆Γ)

− 1
2

)−1

)
 .

(3.24)
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Note that the (1 × 1) Darcy pressure block of the preconditioner contains a sum of
two inverse operators. This construction is typical in preconditioning sums of spaces,
as discussed in [6].

4. Numerical experiments. For finite element and finite volume discretiza-
tions, we let Ωi,h, i = D,S (h being the characteristic discretization length) denote
the meshes of ΩD, ΩS that conform to Γ in the sense that every facet F on the inter-
face Γ satisfies F = ∂KD ∩∂KS for some unique cell pair KD ∈ ΩD,h and KS ∈ ΩS,h.
The mesh of the interface (consisting of facets F ) is denoted by Γh.

Unless stated otherwise, the geometry setup and boundary data of Example 2.1
are used, i.e., ΩS = [0, 1] × [1, 2], ΩD = [0, 1] × [0, 1] with the source terms defined
in (A.2) and the top edge of ΩS and the bottom edge of ΩD designated as Dirichlet
boundaries Γu

S , Γp
D, respectively. On the remaining boundaries, Neumann conditions

are given. The nonhomogeneous boundary data matches (A.1). In all examples, the
Krylov solver terminates when the preconditioned residual norm is reduced by a factor
108.

All numerical tests are implemented using the scientific software frameworks
FEniCSii [48] (FEM) and DuMux/DUNE [47, 8] (FVM), where we use PETSc [7],
SLEPc [40] (FEM), and Eigen [39], and Spectra [59] (FVM) for solving exact and
approximate generalized eigenvalue problems (discrete fractional Laplacian, condi-
tion numbers). The preconditioners are implemented within the abstract linear solver
frameworks of PETSc (FEM) and dune-istl [13] (FVM).

Since the discretization of the preconditioners is not straightforward due to the
interfacial contributions, we first provide some details regarding their construction
in section 4.1. To demonstrate robustness of the proposed preconditioners, we con-
duct numerical experiments with large parameter ranges motivated by the practical
applications and dimensional analysis discussed in section 4.2. Numerical results are
finally presented in section 4.3.

4.1. Discrete preconditioners. The (only) nonstandard component common
to all our Stokes–Darcy preconditioners is the fractional operator µ−1(−∆Γ)

−1/2.
Following [49], we consider here the approximation based on the spectral definition
which requires solution of the following generalized eigenvalue problem in a discrete
space Vh = Vh(Γh), n = dim(Vh): For 1 ≤ i ≤ n find (ui, λi) ∈ Vh × R such that

(ui, v)
µ− 1

2 H1(Γ)
= λi(ui, v)

µ− 1
2 L2(Γ)

∀v ∈ Vh(4.1)

with the orthogonality condition (ui, uj)
µ− 1

2 L2(Γ)
= δij . Then, we let

⟨µ−1(−∆Γ)
−1/2u, v⟩ :=

∑
i

λ
−1/2
i (ui, u)

µ− 1
2 L2(Γ)

(ui, v)
µ− 1

2 L2(Γ)
, u, v ∈ Vh.(4.2)

We note that (4.1) is related to the weak formulation of µ−1(−∆Γ+ IΓ)u = µ−1λu in
Γ with Neumann boundary conditions1 on the boundary ∂Γ.

Introducing matrices Ah (discrete µ−1(−∆Γ+IΓ) operator), Mh (discrete µ−1IΓ
operator), the matrix representation of (4.2) (with respect to the basis of Vh) reads

MhUhE
−1/2
h UT

hM
T
h , where AhUh = MhUhEh and UT

hMhUh = Ih.

That is, Eh,Uh ∈ Rn×n are the solutions of the eigenvalue problem (4.1) with the
eigenvalues forming the entries of the diagonal matrix Eh and columns of Uh being

1The actual boundary data is irrelevant as it does not enter the operator.
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the Mh-orthonormal eigenvectors. We remark that for cell-centered finite volume and
P0 finite element discretizations Mh is a diagonal matrix.

While the eigenvalue problem makes the construction inefficient for large scale
applications, it is suitable for our robustness investigations where, in particular, we are
interested in exact preconditioners. For large scale applications, scalable realizations
of the Darcy pressure preconditioners in (3.16), (3.19), and (3.24) are, to the best
of the authors’ knowledge, yet to be established. However, efficient solvers for the
interfacial component alone, i.e., µ−1(−∆Γ)

−1/2, are known, e.g., [57, 34, 17, 5, 69].
Concerning the discretization of (4.1), we note that we use the full H1-inner

product, since in Example 2.1 and as assumed in section 2, the interface Γ intersects
Neumann boundaries (see [35, 42] for discussion of multiplier spaces in relation to
the spaces/boundary conditions on the adjacent subproblems). For the case of Γ
intersecting boundaries with Dirichlet conditions, we refer to section SM2.

Finally, let us note that while in the multiplier formulation (3.19) the trace space
Vh for (4.1) is explicit, i.e., Vh = Λh, this is not the case for the preconditioners for
the Trace and Robin formulations, (3.16) and (3.24). More precisely, to compute the
approximation of (

−κ∆+ (2µ)−1 (−∆Γ)
−1/2

)−1

a mapping ΠΓ : QD,h → Vh is required. In the following, ΠΓ is defined as an L2

projection to Vh. That is, given qh ∈ QD,h, we let ΠΓqh = argminvh∈Vh
∥vh−qh∥2L2(Γ).

For P 2-P1-P2 discretization Vh is then constructed with P2 elements. When using
the Crouzeix–Raviart element in a CR1-P0-P0 discretization or the cell-centered finite
volume discretization, the space Vh is constructed using P0 elements.

Results of the numerical experiments presented in the subsequent sections shall
demonstrate that the above spaces lead to stable discretizations. We remark that
for this property the trace space cannot be chosen arbitrarily. For example, with the
Taylor–Hood element the choice of P0 for Vh violates the discrete inf-sup condition
and in turn results in parameter sensitivity of the Trace formulation (2.5) with the
preconditioner (3.16).

4.2. Relevant parameter ranges. Having specified the discretizations of pre-
conditioners we identify next the parameter regimes for which robustness is investi-
gated in numerical experiments. We chose the parameter ranges based on a scaling
analysis and several real-life applications.

Let U0 be the characteristic Stokes velocity magnitude, ∆P0 the characteris-
tic pressure difference in the Stokes domain, and L0 the characteristic length scale.
Introducing the dimensionless quantities uS = U0ũS , pi = ∆P0p̃i, i = S,D, and
∇(·) = L−1

0 ∇̃(·) we arrive at the rescaled Stokes–Darcy system

∇̃ ·
(
Re−1Eu−1ϵ̃(ũS) + p̃SI

)
= 0 in Ω̃S ,

∇̃ · (ũS) = 0 in Ω̃S ,

∇̃ · (−ReEuDa∇̃p̃D) = 0 in Ω̃D,

(4.3)

with the coupling conditions on Γ,

τ · ϵ̃(ũS) · n+ αDa−1/2τ · ũS = 0,

n ·
(
Re−1Eu−1ϵ̃(ũS) + p̃SI

)
· n+ p̃D = 0,

ũS · n+ ReEuDa∇̃p̃D · n = 0.

(4.4)D
ow

nl
oa

de
d 

02
/1

3/
23

 to
 1

93
.1

57
.2

11
.9

1 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B1162 W. M. BOON, T. KOCH, M. KUCHTA, AND K.-A. MARDAL

Here we introduced the dimensionless velocity gradient ϵ̃(ũS) = ∇̃ũS + ∇̃T ũS , the
dimensionless numbers Re := ρU0L0µ

−1, Eu := ∆P0ρ
−1
0 U−2

0 , Da := kL−2
0 , and

ρ0 denotes a characteristic fluid density. We recognize that our equation system
is effectively characterized by a characteristic free-flow number S = Re−1Eu−1 =
U0µL

−1
0 ∆P−1

0 , the Darcy number, Da, and the Beavers–Joseph slip coefficient, α.
Moreover, by comparing (4.3)–(4.4) with (2.1)–(2.4) we observe that for unit scaling
parameters U0, ∆P0, ρ0, and L0 (as is the case in the manufactured problem (A.1))
we can interpret S, respectively, Da, as µ and k. To estimate the relevant ranges, we
consider three examples.

Example 4.1 (channel flow over a regular porous medium in a micromodel). In
[70], water flow in a micromodel with a free-flow channel of height 200 µm adjacent to a
regular porous medium is examined at low Reynolds numbers, U0 ≈ 0.2−0.4 mm s−1,
µ = 10−3 Pa s. The slip coefficient α is determined as 2.26. The permeability can be
estimated by Poiseuille flow in a bundle of tubes due to the regular geometry and is
in the order of k ≈ 10−12 − 10−8 m2. Hence, S ≈ 1, Da ∈ [4 · 10−4, 4 · 100], α = 2.26.

Example 4.2 (air channel flow over porous medium box in a wind tunnel). Such
a scenario may be modeled by the Stokes–Darcy system if the Reynolds number
is sufficiently small (Re < 1). Assuming a channel width of 0.1 m, air viscosity
µ = 10−5 Pa s, and Re = 1 yields U0 = 10−4 m s−1. Such a velocity would only
require ∆P0 ≈ 10−9 Pa (estimated assuming Poiseuille flow in a tube). Using a
laboratory sand with k ≈ 10−12 m2 yields S ≈ 10, Da ≈ 10−10, α ∈ [1, 10].

Example 4.3 (cerebrospinal fluid flow in subarachnoid space and brain cortex).
The brain cortex can be considered a porous medium with k ≈ 10−18−10−16 m2 [41].
The brain is surrounded by the subarachnoid space (SAS), a shallow void layer (L0 ≈
2 mm) filled with a water-like fluid (µ = 10−3 Pa s). Typical Stokes velocities in SAS
range between 10−3 and 1 cm s−1, and typical pressure gradients are on the order of
1 Pa, which gives S ∈ [5 · 10−4, 5 · 10−1], Da ∈ [2.5 · 10−13, 2.5 · 10−11], α ∈ [1, 10].

4.3. Robustness study. Examples 4.1 to 4.3 reveal that S ∈ [10−5, 101], Da ∈
[10−14, 100], α ∈ [0, 102] cover a wide range of relevant applications. Following the
problem and solver setup described in Example 2.1, we report iterations of the precon-
ditioned MinRes solver using the three Stokes–Darcy formulations (2.5), (2.8), and
(2.10) with the numerically exact (LU-inverted) preconditioners (3.16), (3.19), and
(3.24). Discretization in terms of both FEM and FVM is considered. We recall that
due to the experimental setup, in particular, the unit sized scaling parameters (cf.
(A.1)), the ranges identified in section 4.2 are effectively the ranges for µ, k, and α.

4.3.1. Preconditioning ATr. Using discretization by FEM, we investigate for-
mulation (2.5) with preconditioner (3.16). Both conforming P 2-P1-P2 and non-
conforming CR1-P0-P0 elements are used. For the latter, we employ a facet stabi-
lization [18] (see also (SM1.1)). We refer to Appendix A for approximation properties
of these schemes for the Stokes–Darcy problem.

Starting with the conforming P 2-P1-P2 elements, Figure 1 summarizes perfor-
mance of (3.16) for the Trace formulation. Specifically, in each subplot corresponding
to a fixed value of µ (varies in row), we plot the iteration count for different refinement
levels, six different values of k indicated by color, and four different values of the slip
coefficient α. It can be seen that the iterations are bounded in mesh size as well
as the material parameters. Specifically, between 24 and 53 iterations are required
for convergence in all cases. Furthermore, the (bounded) condition numbers of the
preconditioned systems are reported in section SM2.
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Fig. 1. Performance of preconditioner (3.16) for the trace formulation (2.5) and the model
problem from Example 2.1 with parameter ranges identified in section 4.2. Discretization by P 2-P1-
P2 elements (top) and CR1-P0-P0 elements (bottom) using stabilization [18] (see also (SM1.1)).

For nonconforming CR1-P0-P0 elements, the results are given in the bottom panel
of Figure 1. We observe that the iterations appear bounded, varying between 25 and
51. However, there is a modest increase2 with h for k = 10−14 and µ ≥ 1. We
attribute this growth to round-off errors when inverting the preconditioner since the
pressure block is then scaled with 10−16-10−14.

4.3.2. Preconditioning ALa and ARo. We discuss robustness of (3.19) and
(3.24) for the multiplier formulation (2.8) and the Robin formulation (2.10). Linear
solver (MinRes) iterations over a large range of parameters are shown in Figure 2 and
confirm parameter-robustness in both cases, with iteration counts between 10 and
39 for (3.19)-preconditioned ALa and iteration counts between 1 and 48 for (3.24)–
preconditioned ARo. We note that in particular when the ratio κ = µ−1k is small,
the reported iteration counts are very small (even one in the most extreme case) but
stable for varying system sizes. We can attribute this to the specific configuration
of the test case. With κ ≪ 1 the contribution βnT

′
nTn in operator (3.20) dominates

the Stokes block. We recall that βn := κ−1hK . However, the right-hand side of the
linear system only scales with µ for our particular case and both normal velocity and
normal velocity gradient are zero in the exact solution (A.1)–(A.2). In this setting, the
linear solver manages to reduce the very large initial defect (due to the combination
of random initial guess in the range [0, 1), large operator norm, and small right-hand
side) by the requested factor of 108 in only one iteration. We remark that in this case
the approximation of the solution is rather poor and a stricter convergence criterion
would be required to obtain an accurate solution. However, this does not diminish the
observation that the iterations are bounded. In consistency with all other results, we
therefore report the results for the specified reduction of 108. This particularity does
not affect the multiplier formulation since the term βnT

′
nTn is not present in operator

(3.17). To fully convince the reader, we additionally report condition numbers of the
discrete preconditioned operators in section SM3. The results show that the condition
number stays between 5 and 17 for all reported parameter combinations. We note

2Between the smallest and the largest system considered the iterations grow by 10 while the
system size increases by 3 orders of magnitude.
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Fig. 2. Iteration counts for the (3.19)-preconditioned multiplier formulation (2.8) (top) and
(3.24)-preconditioned Robin formulation (2.10) (bottom). Discretization with FVM as described in
section SM1.

104 105 106

30

40

50

104 105 106 104 105 106 104 105 106 104 105 106
−14
−11
−8
−5
−2
1

log10 kµ = 10−6 µ = 10−4 µ = 10−2 µ = 1 µ = 102

M
in
R
es

it
er
at
io
n
s

◦α = 102 �α = 101 4α = 1 �α = 0

104 105 106

20

30

40

50

104 105 106 104 105 106 104 105 106 104 105 106
−14

−11

−8

−5

−2

1
log10 kµ = 10−6 µ = 10−4 µ = 10−2 µ = 1 µ = 102

System size

M
in
R
es

it
er
at
io
n
s

Fig. 3. Iteration counts for the (3.19)-preconditioned Lagrange multiplier formulation (2.8)
(top) and Robin formulation (2.10) with preconditioner (3.24) (bottom). Discretization by CR1-
P0-P0(-P0) elements.

that the condition number estimates involving BRo are reported over a smaller range
of mesh sizes than in Figure 2 since the computations require an expensive assembly
of an inverse of sum of two inverted matrices.

Preconditioners BLa and BRo were also investigated using nonconforming
CR1-P0-P0(-P0) elements. Results collected in Figure 3 confirm robustness of both
preconditioners. The number of iterations remained between 24 and 50 for (3.19)-
preconditioned ALa and between 16 and 50 for ARo with preconditioner (3.24).

4.4. Three-dimensional examples. The robustness study of section 4.3 con-
cerned a two-dimensional setup leading to a relatively small interface with only a
few hundred cells in Γh. Moreover, the preconditioners BTr, BLa, and BRo were
always computed exactly. To address the efficiency of the preconditioners in more
practical scenarios, we next apply the proposed Stokes–Darcy solvers to two three-
dimensional model problems. In particular, we investigate the effect of approximating
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the action of the preconditioner blocks in terms of off-the-shelf multilevel methods.
In addition, the problems are chosen such that we go beyond the assumptions on the
interface (not a closed surface) and the boundary conditions (interface intersects with
Neumann boundary) introduced at the end of section 2 to simplify the theoretical
analysis.

In the following two examples, we investigate solvers for two of the proposed
Stokes–Darcy formulations: (A) the Trace formulation (2.5) with preconditioner (3.16)
and FEM discretization and (B) the Lagrange multiplier formulation (2.8) with pre-
conditioner (3.19) discretized by FVM. We remind the reader that the FEM and
FVM implementations differ in the software stack. In particular, all FEM results us-
ing direct solvers are obtained with MUMPS [2], while FVM results use UMFPACK
[25]. The FEM results rely on Hypre’s BoomerAMG [32], while for FVM the alge-
braic multigrid of dune-istl [12] is used. Moreover, the results are computed with
different hardware setups: (A) Ubuntu workstation with AMD Ryzen Threadripper
3970X 32-Core processor and 128GB of memory, (B) openSUSE workstation with
AMD Ryzen Threadripper 3990X 64-Core processor and 270GB of memory. How-
ever, in both cases the computations are run in serial restricted to one CPU.3 Finally
(and going more beyond the presented theory), the Stokes block in the FVM opera-
tors (3.17) and (3.19) is not symmetric due to a nonsymmetric stencil in the current
implementation of boundary condition (2.3a) for the case of reentrant corners in the
Stokes domain. However, the asymmetry is localized to the few dofs associated with
the interface. As symmetry is a strict requirement for MinRes, we present GMRes
iterations instead.

To evaluate efficiency of the proposed preconditioners, we compare their numer-
ically exact realization to approximations in terms of multilevel methods. For (A)
and BoomerAMG, the different approximations correspond to computing the action
of each block by increasing numbers (same for each block for simplicity) of V(2, 2)
AMG cycles per application of the preconditioner. We used default settings except
for the aggregation threshold which is set to 0.7, the recommended value for 3d prob-
lems. For (B) and Dune::AMG, the number of smoother iterations n on each level of
a V(n, n)-cycle was varied.

In addition, we compare the solvers, with the analogues of the naïve precondi-
tioner presented in Example 2.1, that is, BTr, respectively, BLa, with the fractional
operator omitted. (Moreover, in this case the pressure block of the preconditioner
reads −κ(∆ + I) to avoid the singularity due to the Neumann boundary conditions
on ∂ΩD \ Γ.)

4.4.1. Channel flow over porous hill. As the first model problem, we consider
viscous flow over a porous medium with a curved interface; see Figure 4. Let α = 1,
µ = 10−3, and k ∈ {10−2, 10−5}. The fluid motion is driven by a pressure difference
between the inlet and outlet where the (nonstandard) boundary conditions pS = p̃S
(inlet, pS = 0 on the outlet) and τ · uS = 0 (see, e.g., [37]) are prescribed.

On the rest of the fluid domain, we enforce uS = 0, while the boundary of the
porous domain is impermeable (homogeneous Neumann boundary conditions). There-
fore, newly, the interface intersects (mixed boundaries) Γu

S and Γu
D. The fact that Γ

is incident to the Dirichlet boundary on the Stokes side translates to a modification of
the preconditioner such that the fractional operator is now constructed with Dirichlet
boundary conditions; see section SM2 for further details.

3Single threaded execution of all solver components is enforced by setting OPM_NUM_THREADS=1.
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Fig. 4. Setup for channel flow example in section 4.4. All boundaries are no-flow boundaries
except for the right and left sides of the channel where we prescribe pressure and zero tangential
velocities with p̃S = 10−8 . The dimensions are given by L = 0.5, H = 0.3 and the interface Γ is
chosen as a section of a cylinder with radius R = H/2 + L2/(2H). Arrows visualize the resulting
velocity field for µ = 10−3, k = 10−2, α = 1, where longer, lighter arrows correspond to higher
velocities.

Table 2
Exact and approximate preconditioners for Stokes–Darcy problem in Figure 4 using the Trace

formulation (2.5) and preconditioner (3.16). Discretization by P 2-P1-P2. MinRes iterations until
convergence (reducing preconditioned residual norm by factor 108) with the preconditioner computed
exactly (bLU) and by jV(2, 2) cycles of AMG are shown. The numbers in parentheses represent
aggregate solver setup and solver runtime rounded to full seconds. (Top) k = 10−2. (Bottom)
k = 10−5. In addition timings for solving ATr using a direct solver and preconditioned MinRes
solver with the exact naïve-preconditioner of Example 2.1 are listed.

dofs |Vh| bLU 1V(2,2) 2V(2,2) 4V(2,2) Directa Naïve
3562 107 84 (1) 92 (1) 85 (1) 84 (1) - (1) 98 (1)

13452 293 89 (2) 103 (2) 91 (3) 89 (5) - (1) 106 (2)
69554 1023 88 (11) 112 (20) 92 (30) 88 (54) - (4) 106 (9)

468646 3671 88 (173) 129 (265) 101 (388) 89 (646) - (98) 108 (138)
3562 107 88 (1) 108 (1) 98 (1) 95 (1) - (1) 1065 (2)

13452 293 92 (2) 123 (2) 106 (4) 101 (6) - (1) 1538 (14)
69554 1023 93 (11) 143 (23) 110 (33) 98 (55) - (4) 1659 (110)

468646 3671 97 (180) 164 (314) 122 (439) 105 (716) - (98) 1661 (1293)
a MUMPS

Performance of the BTr-preconditioned formulation (2.5) discretized with the P 2-
P1-P2 FEM is summarized in Table 2. It can be seen that exact preconditioners lead to
iterations bounded in refinement with little sensitivity to the change in permeability.
In addition, the LU-based preconditioners are noticeably faster4 than the AMG-based
approximation. We remark that with LU at most 30% of the reported time was spent
in the setup phase which was dominated by factorization of the blocks. To give an
example of the cost of the eigensolver, for the finest interface mesh reported in Table 4,
|Vh| = 13976, assembly of the fractional block takes 256 s. However, the presence of
the resulting (large) dense block in the matrix of the pressure preconditioner also
affects factorization time and the cost per Krylov iteration.

For preconditioners realized by AMG cycles robustness in h requires at least four
V cycles if k = 10−2 while eight cycles are needed for k = 10−5. This result sup-
ports our observation (not reported here) that black-box algebraic multigrid is not a
parameter-robust preconditioner for the pressure block in (3.16). Specifically, AMG

4Due to the used (mostly default) settings the timings of AMG should be considered a pessimistic
bound for the performance.
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Table 3
Exact and approximate preconditioners for Stokes–Darcy problem in Figure 4 using formulation

(2.8) and preconditioner BLa (3.19). Discretization with FVM (Staggered-TPFA). GMRes iterations
(reducing preconditioned residual norm by factor 108) are shown. In parentheses, we provide wall
clock times (aggregate solver setup and runtime) rounded to full seconds. Table shows results for
k = 10−2 (top), k = 10−5 (middle), k = 10−12 (bottom). In addition timings for solving ALa using
a direct solver and preconditioned GMRes solver with the exact naïve-preconditioner constructed by
omission of the fractional component in BLa are included.

dofs |Vh| bLU 1V(1,1) 1V(2,2) 1V(4,4) Directa Naïve
8640 208 60 (1) 83 (1) 71 (1) 64 (1) - (1) 89 (1)

66342 832 64 (11) 109 (7) 92 (7) 81 (7) - (6) 86 (13)
517552 3264 66 (337) 156 (132) 128 (134) 109 (146) - (468) 84 (374)

8640 208 69 (1) 111 (1) 96 (1) 89 (1) - (1) 330 (3)
66342 832 82 (13) 145 (8) 127 (8) 112 (9) - (6) 403 (53)

517552 3264 91 (411) 201 (161) 169 (163) 147 (180) - (485) 449 (1431)
8640 208 69 (1) 113 (1) 97 (1) 89 (1) - (1) 4411 (158)

66342 832 83 (14) 147 (11) 130 (11) 116 (13) - (6) n/cb

517552 3264 99 (437) 203 (235) 180 (256) 161 (312) - (533) n/cb
a UMFPACK b not converged in under 10, 000 iterations

struggles when the interface term dominates the Laplacian in ΩD. Finally, in agree-
ment with Example 2.1 for k = 10−5, the naïve preconditioner leads to considerably
more iterations (and slower runtime) than BTr. However, none of the iterative ap-
proaches outperform the direct solver for the reported system sizes.

Performance of the BLa-preconditioned formulation (2.8) discretized with the
Staggered-TPFA FVM is summarized in Table 3. In comparison with the FEM re-
sults but in consistency with observations in 2d examples in section 4.3, the solvers
based on FVM and exact preconditioner initially show a slight increase of the num-
ber of iterations with refinement (in particular for small k). However, we point
out that the difference in the number of iterations between consecutive grid re-
finements gets smaller and smaller (similar to what can be seen for the condition
numbers in section SM3). While the solver with exact BLa appears parameter-
robust, it is evident that the naïve preconditioner (missing the fractional compo-
nent) is not robust in k. When approximating all blocks with AMG, the fastest
execution times could be achieved. In comparison with BoomerAMG, Dune::AMG
uses a faster but less accurate interpolation strategy, which leads to considerably
faster execution time per iteration. Increasing the number of smoother iterations
reduces iteration counts but due to the increased cost per iteration does not result
in a better performance. Moreover, the Dune::AMG-based solver does not show ro-
bustness with grid refinement, even for a large number of smoother iterations (we
tested up to 64). However, the Dune::AMG-based solver appears robust in the model
parameters.

4.4.2. Embedded porous blocks. In the second and final example, we con-
sider viscous channel flow past and through two porous inclusions with different
permeabilities; see Figure 5. From the point of view of assumptions of section 2,
the novel feature is the fact that the interface is now formed by two closed sur-
faces.

Iterations counts and runtime estimates for various solvers are shown in Table 4
(FEM) and Table 5 (FVM). In general, the conclusions from section 4.4.1 apply to
the new example as well. In particular, exact preconditioners BTr, BTr yield iteration
counts that are stable in mesh size.
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Fig. 5. Setup for porous blocks example in section 4.4. All boundaries are no-flow boundaries
except for the right and left sides of the channel where we prescribe pressure and zero tangential
velocities with p̃S = 10−8. The channel dimension are given by L = 0.5 and the blocks are Ωk1

D =

[L/2, 3L/2] × [2L/8, 7L/8] × [3L/4, 7L/4] and Ωk2
D = [5L/2, 7L/2] × [L/8, 6L/8] × [1L/4, 5L/4] and

are assigned different permeabilities k1 = 10−1, k2 = 10−3. Moreover, µ = 10−3, α = 1. The
coarsest FVM discretization is a structured (anisotropic) rectangular cuboid mesh with 16× 16× 16
cells. FEM results are computed with unstructured tetrahedral meshes.

Table 4
Exact and approximate preconditioners for Stokes–Darcy problem in Figure 5 using the Trace

formulation (2.5) and preconditioner (3.16). Discretization by P 2-P1-P2. Legend as in Table 2.

dofs |Vh| bLU 1V(2,2) 2V(2,2) 4V(2,2) Direct Naïve
7256 484 123 (1) 143 (2) 129 (3) 125 (4) - (1) 240 (2)

25260 1212 125 (4) 152 (8) 131 (13) 127 (21) - (1) 257 (6)
124732 3768 125 (37) 162 (84) 133 (127) 126 (221) - (12) 264 (46)
836293 13976 126 (932) 189 (1426) 144 (1909) 129 (3049) - (370) 275 (721)

Table 5
Exact and approximate preconditioners for Stokes–Darcy problem in Figure 5 using the La-

grange multiplier formulation (2.8) and preconditioner (3.19). Discretization by FVM. Legend as
in Table 3.

dofs |Vh| bLU 1V(1,1) 1V(4,4) Direct Naïve
16144 608 107 (4) 151 (3) 118 (3) - (1) 257 (6)

122432 2432 109 (85) 192 (62) 147 (70) - (64) 258 (138)
952576 9728 109 (3861) 281 (3458) 195 (3310) - (5617) 187 (4806.8)

4.5. Nondiagonal preconditioners. Stemming from the operator precondi-
tioning framework, the Stokes–Darcy preconditioners BTr, BLa, BRo investigated in
the preceding sections are block-diagonal operators, which from the linear algebra
point of view form the Schur complement/natural norm preconditioners [56, 58]. How-
ever, once the Schur complement approximation is available, more involved precon-
ditioners can be formulated, which are known to lead to reduced number of Krylov
iterations, e.g., nonsymmetric upper/lower diagonal preconditioners [45] (for the GM-
Res solver). To allow for a direct comparison with the previously used MinRes solver,
we illustrate next the reduction in iterations with a symmetric positive-definite block-
LDU preconditioner based on the full Schur complement factorization. Taking the
trace formulation ATr as an example, the proposed preconditioner reads

BTr
F := BTr

U BTr(BTr
U )′,
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Table 6
Number of MinRes iterations with block-LDU preconditioners. (Left) FEM and trace (P 2-P1-

P2) formulation. (Right) FV and Lagrange multiplier formulation. MinRes iteration counts with
diagonal preconditioners are shown in the brackets. In all cases numerically exact operators are
considered. Setup of Example 2.1 is used with BJS constant set to 1.

BTr
F (FEM) BLa

F (FV)

#dofs
(µ, k) (1, 1) (10−4, 10−6) #dofs

(µ, k) (1, 1) (10−6, 10−5)

1780 19(41) 27(51) 1072 13(29) 11(22)
6884 19(41) 27(52) 4192 13(27) 11(22)
27076 19(40) 28(54) 16576 13(26) 10(21)
107396 18(40) 28(54) 65920 12(22) 10(21)

where

BTr
U :=

I −A−1∇ −A−1T ′
n

I
I

−1

,

and A = −∇· (2µϵ)+βτT
′
τTτ being the leading block of ATr. Preconditioners for the

remaining formulations are defined analogously.
Using the setup of Example 2.1, a random initial vector, and the tolerance of

10−10 for the relative preconditioned residual norm, it can be seen in Table 6 that
convergence of the MinRes solver with the block-LDU preconditioners is achieved
in approximately half the number of iterations as when their diagonal counterparts
are used. The factor 2 is consistent with observations/analysis in literature; see, e.g.,
[68, 33]. We remark that fewer iterations do not necessarily imply a better performing
solver in terms of total runtime, although we did achieve a speed-up for the FV solver
using BLa

F after exploiting some code optimization potential.

5. Conclusions and outlook. Our work concerned monolithic preconditioning
of symmetric formulations of the coupled Stokes-primal Darcy problem which were
motivated by differences in handling the interface coupling that are natural to finite
element and finite volume methods. Parameter robust preconditioners for each of
the three formulations were constructed based on the well-posedness of the problems
established within a unifying functional framework. The proposed preconditioners
are based on norms in fractional Sobolev spaces. Using discretization in terms of
both FEM and FVM our numerical results demonstrated the parameter-robustness
in several examples partly going beyond the presented theory in terms of boundary
conditions and interface configuration. However, efficiency of the proposed solvers is
currently suboptimal due to the realization of the pressure preconditioner, in particu-
lar, the reliance on the spectral form of the fractional interface operators. To improve
efficiency of the proposed preconditioners scalable techniques for the parameter-robust
approximation of the components, in particular, the pressure block, will be addressed
in future work.

Appendix A. Numerical tests and manufactured solution. For the
numerical grid convergence tests and parameter-robustness tests, we work with the
manufactured solution given in [66] for unit parameters µ = 1, k = 1, α = 1 as
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uS =

[
− 1

π exp(x2) sin(πx1)
(exp(x2)− exp(1)) cos(πx1)

]
in ΩS ,(A.1a)

pS = 2 exp(x2) cos(πx1), in ΩS ,(A.1b)

pD = (exp(x2)− x2 exp(1)) cos(πx1) in ΩD,(A.1c)

where ΩD = [0, 1] × [0, 1], ΩF = [0, 1] × [1, 2]. Moreover, for the formulation with
Lagrange multiplier,

λ = pD(x1, x2 = 1) = 0 on Γ,(A.1d)

where Γ = [0, 1]×{1}. To obtain the same solution over the whole range of parameters,
we use the source terms

fS :=

[
1
π exp(x2) sin(πx1)(µ− µπ2 − 2π2)

cos(πx1)(µ
(
(π2 + 1) exp(x2)− π2 exp(1))

)
+ 2(1− µ) exp(x2))

]
,(A.2a)

fD :=
k

µ
cos(πx1)

(
(π2 + 1) exp(x2)− π2x2 exp(1)

)
,(A.2b)

and modified coupling conditions

τ · σ(uS , pS) · n+ βττ · uS = hΓ
τ , hΓ

τ := (βτ − µ)
1

π
exp(x2) sin(πx1),(A.3a)

n · σ(uS , pS) · n+ pD = hΓ
n, hΓ

n := 2(µ− 1) exp(1) cos(πx1),(A.3b)

uS · n+ κ∇pD · n = gΓ, gΓ := 0.(A.3c)

The functions hΓ
τ , hΓ

n, and gΓ ensure that the conditions are satisfied independent
of the choice of parameters. Note that the choice of data in (A.3) only modifies the
right-hand side while the problem operators remain unchanged.

This setting enables code verification in terms of grid convergence tests in all pa-
rameter settings. For grid convergence tests, the errors for the finite element schemes
are reported in L2 and H1 norms. Using P 2-P1-P2 elements for (2.5) quadratic con-
vergence in all the variables in their respective norms is expected. Discretization by
CR1-P0-P0(-P0) in all the formulations yields a first-order scheme.

The errors for the finite volume scheme are computed in the following discrete L2

norm:

∥u∥FV :=

( ∑
K∈Ωh

|K|u2
K

) 1
2

.(A.4)

It is well known that with the typical flux reconstruction schemes, based on a TPFA on
structured Cartesian grids, second order superconvergence at cell centers (pressures)
and face centers (Stokes velocity components) is obtained [51, 30, 64].

We report error convergence of the FEM schemes for all the formulations in
Figure 6. Expected (or faster) convergence is observed in all cases. We remark that
the observed quadratic convergence of the interfacial pressure p|Γ in (2.8) is likely
due to the zero exact solution in the manufactured setup. Error convergence for the
FVM schemes is reported for formulations (2.8) and (2.10) in Figure 7. Quadratic
convergence in the discrete norm (A.4) is observed for all the variables.
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Figure 6. Approximation properties of FEM discretizations for the manufactured problem
(A.1) with unit parameters using the Trace formulation (2.5), multiplier formulation (2.8) and
Robin formulation (2.10). Only (2.5) is considered with P 2-P1-P2 while CR1-P0-P0(-P0) is used
for all formulations. L2(Γ)-error of interface pressure in (2.8) is plotted in cyan color.
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Figure 7. Approximation properties of FVM (Staggered-TPFA) discretization for the man-
ufactured problem (A.1) with unit parameters using the Lagrange multiplier formulation (2.8) and
the Robin formulation (2.10). uS,x and uS,y denote the components of uS (the degrees of freedom
for the respective components have different locations and control volumes in the staggered FVM).
For (2.8) the error of interface pressure error measured in L2-norm (A.4) on Γ is plotted in cyan.
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Fig. 7. Approximation properties of FVM (Staggered-TPFA) discretization for the manufac-
tured problem (A.1) with unit parameters using the Lagrange multiplier formulation (2.8) and the
Robin formulation (2.10). uS,x and uS,y denote the components of uS (the dofs for the respective
components have different locations and control volumes in the staggered FVM). For (2.8) the error
of interface pressure error measured in L2-norm (A.4) on Γ is plotted in cyan.
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