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Abstract
This paper investigates the asymmetric behavior of oil price volatility using different
types of Asymmetric Power ARCH (APARCH) model. We compare the estimation
and forecasting performance of the models estimated from the maximum likelihood
estimation (MLE)method and support vectormachine (SVM)based regressions.Com-
bining nonparametric SVMmethodwith parametric APARCHmodel not only enables
to keep interpretations of the parametric models but also leads to more precise esti-
mation and forecasting results. Daily or weekly oil price volatility is investigated
from March 8, 1991 to September 13, 2019. This whole sample period is split into
four sub-periods based on the occurrence of certain economic events, and we exam-
ine whether the asymmetric behavior of the volatility exists in each sub-period. Our
results indicate that SVM regression generally outperforms the other method with
lower estimation and forecasting errors, and it is more robust to the choice of different
APARCHmodels than theMLE counterparts are. Besides, the estimation results of the
SVM based regressions in each sub-period show that the ARCH models with asym-
metric power generally perform better than the models with symmetric power when
the data sub-period includes large swings in oil price. The asymmetric behavior of oil
price volatility, however, is not detected when the analysis is done using the whole
sample period. This result underscores the importance of identifying the dynamics of
the dataset in different periods to improve estimation and forecasting performance in
modelling oil price volatility. This paper, therefore, examines volatility behavior of oil
price with both methodological and economic underpinnings.
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1 Introduction

Financial time series estimation and forecasting is of great importance in financial
decision-making. Extensive studies in time series analysis have, thus, developed differ-
ent methods in estimation and forecasting financial returns and volatility. In particular,
effects of oil price volatility is far-reaching in the economy as a whole. Sharp increases
in oil price volatility have shown close links with asset prices over the past decades
(Sadorsky, 1999; El-Sharif et al., 2005; Chiou & Lee, 2009; Fratzscher et al., 2014;
Miller & Ratti, 2009). The impacts of oil price fluctuations on the macroeconomy,
including on economic growth and inflation, are also well-documented in a consid-
erable body of literature (Hamilton, 1996, 2007; Ferderer, 1996; Barsky & Kilian,
2004; Blanchard & Gail, 2008; Kilian, 2008; Chen, 2009). Hence, estimating and
forecasting oil price volatility is very critical. Generalized autoregressive conditional
heteroscedasticity (GARCH)-type model was developed by Bollerslev, and it is a stan-
dard method in volatility modelling, especially for modelling the volatility clustering
in financial data (Kang et al., 2009; Klein & Walther, 2016). Beyond the two stylised
characteristics’ in the financial series, namely, volatility clustering and fat-tail lep-
tokurtosis, there are also asymmetric effects in financial (Black, 1976; Christie, 1982;
French et al., 1987; Bekaert & Wu, 2000)1 and oil markets (Ramos & Weiga, 2013;
Ewing & Malik, 2013). This means that the volatility changes asymmetrically under
different market situations—for example, they become more volatile during financial
crises or unexpected events and less volatile during periods of relative steady eco-
nomic growth. Ding et al. (1993) suggested what is known as the Asymmetric Power
ARCH (APARCH) model, which has been rapidly used widely in empirical studies on
volatility in finance since it can capture asymmetric volatility responding to positive
and negative news. The APARCH types of model include correlation structures in odd
power forms, thus the leverage effect between asset returns and volatility can also be
analysed. Moreover, compared with the assumption on a linear relationship between
return and volatility in GARCH models, the APARCH types of model, which also
include the GARCHmodel as one type, allow a more flexible autoregressive structure
of returns.

There are a few studies that employGARCH-typemodels in the analysis of oil price
volatility (Cheong, 2009; Kang et al., 2009; Lux et al., 2016; Wei et al., 2010), which
mostly compare modelling performance based on maximum likelihood estimation
(MLE). However, the efficiency of MLE depends on the distribution of data and

1 Two existing hypotheses explain the asymmetric volatility-return in the stock market. The first is the
leverage hypothesis (Black, 1976; Christie, 1982), which postulates that the a negative stock return causes
thefinancial leverageof afirm to increase,which subsequently increases the volatility. The secondhypothesis
is the volatility feedback hypothesis (French et al., 1987), which states that an increase in the volatility raises
the required return on equities which leads to an immediate stock price decline (by assuming a constant
dividend). The first hypothesis concerns why an increase in the volatility causes a negative return, while
the latter hypothesis explains why a negative return results in an increase in the volatility (İnkaya and Okur,
2014). Bekaert and Wu (2000) proposed that these two effects may be interacting and suggested the use of
asymmetric GARCH-in-mean models.
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innovations in the dataset. If the distribution of innovations is not consistent with the
prior assumptions, the MLE can be inefficient (Bollerslev &Wooldridge, 1992; Engle
& González-Rivera, 1991). As is described in the following section, studies on oil
price return volatility are based on logarithmic prices, which is taken as a random
walk process with white noise. This implies that the oil price returns are normally
distributed, which lacks clear supporting evidence. Furthermore, the MLE method is
purely parametric, where the parameters vary according to the choice of APARCH
model. If the assumption of distribution or model structure deviates from the real data,
theMLEwill be inefficient. Thus, a distribution-free or data-driven estimation method
is desired.

There exist certain data-driven nonparametric methods in estimating volatility of
time series such as the “realized volatility” forecasting method (Barndorff & Shep-
hard, 2002; Andersson et al. 2003). In those studies, volatility is estimated based
on the cumulative intraday squared returns and the estimation is constructed directly
from the observed data. This nonparametric realized volatility forecasting method is
utilized in the area of energy market in Chan et al. (2008) and Haugom et al. (2010)
among others. Some other nonparametric based methods including Buhlamann and
McNeil algorithm (Buhlamanna & McNeil, 2000), Chung algorithm (Chung, 2014)
are nonparametric regressions which are combined with GARCH models to estimate
and forecast volatility. Bildirici and Ersin (2009) combines nonparametric Artificial
Neural Network (ANN) with large class of GARCH family models in volatility mod-
eling. Among the above-mentioned methods, the “realized volatility” method is a pure
nonparametric method and it has no clear structure of the volatilitymodels. The Buhla-
mann andMcNeil algorithm, Chung algorithm and the model from Bildirici and Ersin
(2009) can be viewed as semi-parametric methods and they are more interpretable
than pure data driven methods due to their utilization of parametric GARCH mod-
els. However, both Buhlamann and McNeil algorithm and Chung algorithms use the
assumptions that innovations in data are identical and independently distributed, and
that the transformed distribution of innovations is normal (Cassim, 2018). As regards
the ANN + GARCH method in Bildirici and Ersin (2009), the optimization solution
obtained by ANN are sensitive to the places of initial randomization, therefore, a local
solution can be mistakenly achieved instead of a global solution.

Support vector machine (SVM) based regression, called support vector regression
(SVR), is also a data-driven technique. It does not require to have a priori assumption
regarding the distribution of the data at hand (Chen & Karl, 2010; Li, 2014; Ou &
Wang, 2010; Peréz-Cruz et al., 2003). Compared with ANN, however, a unique and
global solution can be found in SVR by solving a quadratic optimizing problem with a
linear constraint (Peréz-Cruz et al. (2003), Ou and Wang (2010)). Furthermore, SVR
aims at minimizing the structure risk, instead of empirical risk, so that the regression
function has a well-performed generalization ability (Vapnik, 1995). Thus, instead of
using solely either MLE method to estimate the parameters in ARARCH model or
other nonparametric methods to estimate the volatility, this paper estimates volatility
by combining APARCH model with SVR, and construct a semi-parametric technique
to estimate and forecast oil price volatility. This semi-parametric technique not only
maintains advantages of the parametric methods, such as being flexible to the data
structure, but also can provide better explanations of the works going on inside the
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black box. As is presented in later sections, the input and output variables used in
SVR are decided by the structure of the APARCHmodel, and the result have the same
interpretability as those of the original APARCHmodel regarding asymmetric effects.
Thus, this semi-parametric method is more precise and more transparent compared
with pure data-driven nonparametric methods. Some previous studies have used an
SVR andGARCHcombination, called the SVR-GARCHmodel, to estimate volatility.
For example, Peréz-Cruz et al. (2003) document a higher predictive ability of the
estimated GARCH models by using the SVR than those found from using MLE for
predicting the conditional volatility of stock market returns. Chen and Karl (2010)
also show that SVM-GARCH models tend to perform better than other competing
models in one-period-ahead volatility forecasting. Ou and Wang (2010) combine the
SVMmethod with the classical GARCH (1,1), EGARCH (1,1) and GJR (1,1) models
to forecast the financial volatility of ASEAN stock markets, and show that the hybrid
models are resistant and robust to the highly volatile situation of the financial market.
Wang et al. (2013) propose SVMbasedMarkov-SwitchingMultifractal (MSM)model
to forecast volatility in financial time series and applied the approach by using two
stock indexes in the Chinese A-share market. Fu et al. (2019) employee SVMmodels
to forecast foreign exchange rates. More recently, Sun and Yu (2020) and Aras (2021)
document that hybrid models that are built in GARCH model, which is combined
with SVR method, outperforms the standard GARCH models volatility forecasting.
Sun and Yu (2020)’s hybrid model contains two-steps process where the first-step
is maximum likelihood estimation for the conditional variance. Thus, their method
still needs parametric assumptions of distribution of innovations. More specifically,
Gaussian and student’s t distribution are the pre-assumption of the distribution in Sun
and Yu (2020).

Nevertheless, the SVR, does not need any prior information on the data distribution
and better approximates the nonlinear characteristics of the data, such as volatility
clustering, leptokurtosis and leverage effects, as well as a prediction improvement
(Bildirici & Ersin, 2009; Ou & Wang, 2010) for data with any distribution. Further-
more, using a specified kernel function such as Gaussian kernel to achieve nonlinear
mapping and using just support vectors in predicting can resolve the problem of the
computational complexity of the large amount of data in the APARCH type of model.
The SVRmodel has been used for crude oil price forecasting in some related previous
literature (as is listed in Table 3 in Zhang et al., 2015). However, most of the previous
literature use the SVR as a pure data-driven nonparametric method and is compara-
ble with some typical machine learning methods such as the artificial neural network
(ANN) or the Ensemble EMD (EEMD) methods. Although Zhang et al. (2015) com-
bine SVR with GARCHmodels to forecast oil price, no studies that combine the SVR
andAPARCHmodels to investigate estimate and evaluate oil price volatility including
the asymmetric behaviors of oil price volatility have previously been conducted.

Based on these aforementioned previous studies, this paper takes account of the
importance of capturing the asymmetric effect in oil price volatility forecasting using
different GARCH type models and combine those models with SVR. Additionally,
we look at the asymmetric behavior of volatility in different time periods that are
split into four sub-periods to examine whether there is a model that suits the best
in those different sub-periods or it varies across those periods. To the best of our
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knowledge, this is the first study that deals with asymmetry using support vector
regressionmodel for oil price volatility estimation in different sub-sample periods. The
contribution of this study is two-fold. First, we estimate different types of APARCH
models containing the GARCH, GJR, TSGARCH and TGARCH models, among
which GJR and TGARCHmodels can capture the asymmetric structures. We evaluate
both estimating and forecasting performance based on the results from the MLE and
the SVRmethods. Second, in the empirical investigation, the sample period is split into
four sub-periods, based on the economic events, in order to examine the asymmetric
behavior of volatility and to evaluate performance of different hybrid models (that
is, APARCH models combined with SVR) in those different sub-periods. Our results
indicate that the SVRmethod outperforms theMLEmethodwith lower estimation and
forecasting errors, and it is more robust to the choice of APARCHmodel than theMLE
counterparts are. The findings of this study, therefore, makes a modest contribution to
the empirical literature since it compares estimation and forecasting performance of
different volatility models with asymmetries using the SVR in different sub-sample
periods associated with economic events.

The structure of the paper is as follows. In Sect. 2, we present a brief introduction
to APARCHmodel, SVRmethod and motivations for using an hybrid APARCH-SVR
model to estimate oil price volatility. Section 3, which comprises five sub-sections,
is a comprehensive study on estimation and forecasting of oil price volatility based
on empirical data from early 1991. This section shows the workflow that was done in
steps to perform the empirical study and interpretations at those different stages. The
final section, Sect. 4, contains conclusions and scopes for further study.

2 APARCHModel, SVR andMotivations of APARCH-SVR Estimation

Let pt denote the oil price at time t and define continuously compounded returns as
rt � 100 ∗ (ln(pt ) − ln(pt−1)), and then centered return is ut � rt − Et−1rt where
Et−1rt is the expectation of rt in the time periods based on the information at time t-1,
and we use the average in empirical data as an approximation for this expectation. Let
It−1 denote the available information at time t−1, and E(ut |It−1) � 0. The following
APARCH structure can be used to model volatility:

ut � ηt
√
ht ; ηt ∼ i .i .d.D(0, 1)

hδ/2
t � w + α(

∣∣ut−1

∣∣ − γ ut−1)
δ + βhδ/2

t−1,
(1)

where δ > 0, −1 < γ < 1, w > 0, α > 0, β > 0, and the conventional stationary
condition isα(1+γ 2)+ β < 1. Let ht denotes the conditional variance ofut , conditional
on It−1, then ut |It−1 ∼ D(0, ht ), where D is the assumed distribution ut . In Eq. (1),
the power coefficient δ allows different power orders in the data transformation, and
the leverage coefficient γ can capture the asymmetric impact on volatility in response
to positive and negative returns if γ �� 0. The APARCH type of model, therefore,
covers different types of models such as: (I) the GARCH model with δ � 2 and γ

� 0; (II) the TS-GARCH model of Taylor (1986) and Schwert (1989) with δ � 1
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and γ � 0; (III) the GJR model by Glosten et al. (1993) with δ � 2 and 4; (IV) the
TARCH model of Zakoian (1994) with δ � 1. For GJR and TARCH models, the sign
of ut−1 will affect the value of ht and, therefore, these two models can capture an
asymmetric relation between returns and changes in variance. This paper includes all
four of the above-mentioned types. To estimate the parameters θ � (w, α, β, δ, γ )
in the APARCH model under the assumption of normal distribution, the maximum
likelihood estimation (MLE) method can be used. Let θ̂ � (ŵ, α̂, β̂, δ̂, γ̂ ) denote
estimation of θ , then for given ut−1 and current estimated ĥt−1, we can generate

predictions of ĥt based on the Eq. (1).
On the other hand, for a given dataset {(x1, y1), ..., (xN , yN )} ⊂�d×�with xi ∈�d

being the input vector and yi ∈� being the output scalar, i � 1, 2, ..., N ; the ε-
insensitive SVR intends to find a function, f (xt ), that has a deviation from the observed
yi less than size ε and achieves optimal smoothness, simultaneously. To attain this aim,
nonlinearmaps aremade from the input space into a higher dimension feature space�k ,
where k > d. Define f (x) � wTϕ(x) + b, where ε is the nonlinear mapping function.
Then, a smaller Euclidean norm of the regression coefficients ‖w‖2 indicate a flatter
f (x) and corresponds to a better generalization ability (Smola and Scholkopf, 1998a;
1998b). Under the optimization operation, the structure risk function is controlled
under the ε-insensitive band constrain condition, which is as follows:

Minimize
1

2
‖w‖2+C

N

N∑

i�1

L( f (xi ), yi );

where L( f (xi ), yi ) �
{

|yi − f (xi )| − ε for |yi − f (xi )| > ε

0 otherwise
.

(2)

Function L( f (xi ), yi ) is the ε-insensitive loss function defined by Vapnik (1995)
in which training data with an empirical error lower than ε is not penalised and they
do not provide information for decisions. Both C and ε are hyperparameters which
are predetermined empirically by cross-validation (Vapnik, 1995; Vapnik & Chervo-
nenkis, 1974; Vapnik & Lerner, 1963). As a hard boundary of ε-band is not flexible
to outliers and it can result in over-fitting, slack variables ξi , ξ∗

i , are introduced to
allow certain errors outside the ε- band. After further introducing Lagrange multipli-
ers αi , α

∗
i , ηi , η

∗
i , Eq. (2) is transformed into the following dual optimisation:

L � 1

2
‖w‖2 + C

l∑

i�1

(ξi + ξ∗
i ) −

l∑

i�1

(ηi ξi + η∗
i ξ

∗
i ) −

l∑

i�1

αi (ε + ξi − yi + 〈w, ϕ(xi )〉 + b)

−
l∑

i�1

α∗
i (ε + ξ∗

i + yi − 〈w, ϕ(xi )〉 − b) subjects to αi , α
∗
i , ηi , η

∗
i > 0

(3)

Furthermore, the Karush–Kuhn–Tucker (KKT) conditions (Kuhn & Tucker, 1951)
must be satisfied, and it leads to that for | f (xi ) − yi | < ε, αi and α∗

i should be zero.
Thus, only a L < N sample points associated with non-zero Lagrange multipliers are
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kept and referred to as support vectors used in further prediction. Denote the estimated
non-zero Lagrange multipliers as {(α̂i , α̂

∗
i )}Li�1. For given input vector xi ∈�d , the

prediction of output y can then be calculated as ŷ �
L∑

i�1
(α̂i − α̂∗

i )K (xi , x) + b̂, with

kernel function K (x, y) � 〈ϕ(x), ϕ(y)〉 satisfying Mercer’s theorem (Mercer, 1909).
The current paper applies Gaussian kernel, which is the most commonly used kernel
when we have no special prior information of the data structure (Peréz-Cruz et al.
(2003), Chen and Karl (2010), Ou and Wang (2010)).

When applying the SVR to estimate different types of APARCHmodel, identifying
the output and input variables based on themodel type and the expansion formula of the
APARCH structure in Eq. (1) is of great importance. ThisAPARCH-SVR combination
can be viewed as a semi-parametric method, as it combines the nonparametric data-
driven SVR method with the parametric APARCHmodel structure. At the same time,
the APARCH-SVR method is more flexible compared with using MLE to estimate
the APARCH model because the calculation of Lagrange multipliers does not need
any prior assumptions of the data distribution. The objective of the current paper is to
estimate and forecast conditional volatility, thus, the output variable in the APARCH-
SVR model is naturally chosen to be ht for GARCH and GJR, while it is h1/2t for TS-
GARCH and T-ARCH. The input vectors xt also differ according to the model types:
xt � [u2t−1, ht−1] for the GARCHmodel, xt � [u2t−1, |ut−1|ut−1, ht−1] for the GJR

model, xt � [
∣∣ut−1

∣∣, h1/2t−1] for the TS-GARCH model and xt � [
∣∣ut−1

∣∣, ut−1, h
1/2
t−1]

for the T-ARCHmodel. After the APARCH-SVRmodel is trained by the training data,
we only need to import the input vectors xt and get an estimation for the conditional
variance ĥt by using equation:

ŷ �
L∑

i�1

(α̂i − α̂∗
i )K (xi , x) + b̂ (4)

where ĥt corresponds to the estimated output. No specified parameters, such as
γ , w, α, β, are estimated and no information on data distribution is required. As
for actual dataset, the conditional volatility ht is unobservable and thus cannot be
used directly. Perez-Gruz et al. (2003) suggest a practicable resolution by setting

h
′
t � 1

5

4∑

k�0
u2t−k as the measurement of ht . Li (2014) shows that h

′
t � 1

5

4∑

k�0
u2t−k will

lead to an over-smoothing of the volatility and suggests using h
′
t � 1

3

3∑

k�0
u2t−k as an

approximation for ht . This paper, therefore, uses h
′
t � 1

3

3∑

k�0
u2t−k as an approximation

for ht .
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Fig. 1 Crude oil weekly price ($/barrel) and oil price centered return

3 Estimation and Forecasting of the Volatility for the Oil Price

3.1 Overview of Previous Studies and Data for the Empirical Analysis

This paper uses mainly weekly oil (FOB) spot prices (pt ) of West Texas Intermediate
($/barrel) from March 8, 1991 to September 13, 2019. The data retrieval was done
from the official website of the US Energy Information Administration (EIA).2 Then,
the centered oil price returns, which are defined as ut in the beginning of Sect. 2, were
calculated, following the analysis in most previous literature (Peréz-Cruz et al., 2003;
Chen & Karl, 2010; Qu & Wang, 2010; Mohammadi & Su, 2010; Lux et al., 2016).
Figure 1 shows the weekly oil price pt and the centered return ut .

The crude oil price per barrel in dollars in Fig. 1 shows that crude oil prices were
influenced by economic and geopolitical events that influenced the global economy.
For example, the price falls in 1997–8were due to theAsian financial crisis.Weakening
global demand for oil following US recessions and increased uncertainties associated
with the 9/11 attack led to decreases in prices in 2001. The general trend in oil prices
since 1999 (after the first dashed vertical line), however, shows a steady increase, with
growing demand for oil from emerging markets. One of the most noticeable price falls
is observable between 2008 and 2009 (between the second and third dashed vertical

2 Retrieved from https://www.eia.gov/dnav/pet/hist/rwtcW.htm (Accessed September 13, 2019).
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lines). This abrupt fall is due to the effects of the global financial crisis, which caused
a severe collapse in demand from middle 2008 to the end of 2008, uncertainties in the
global economy and liquidity constraints. The most recent price falls were between
June 2014 and January 2015, which was the second-largest price drop after the price
collapse in 2008. A growing supply glut was a main driver of this huge drop in oil
prices. High prices, prior to this oil price collapse, led oil operators to start for the
drilling of new wells, yet demand for oil decreased in major oil-importing markets
with their economic contraction.

After checking the price and volatility patterns over the whole sample period, we
split the sample period into four different sub-periods. It is based on the one of the pre-
viously mentioned studies, Ou and Wang (2010), which report differing performance
of a (series of) model in different financial market situations. The sub-period split is,
therefore, based on major economic events that were behind the movements, which
caused the oil market situation to change. The four sub-periods are as below.

Period 1: Weekly data from March 8, 1991 to February 19, 1999. This period
includes declines in prices due to the Asian financial crisis in 1997–8.

Period 2: Weekly data from February 26, 1999 to July 4, 2008. This period shows
a long and generally increasing trend in prices, due to the strong growth of emerging
markets. A price decline, however, is observed in late 2000.

Period 3: Daily data3 from July 04, 2008 to December 26, 2008. This sub-period
includes a sharp decline in oil prices in connection to the financial crisis in 2008.

Period 4: Weekly data from December 26, 2008 to September 13, 2019. This
sub-period includes the oil price recovery after the 2008 crash and subsequent price
reactions from the world’s producers.

We do not merge the dataset in period 3 with other sub-periods due to that the data
structure in period 3 is quite distinct with a sharp decrease in price in a very short
span of time. Moreover, the precision of parameter estimations in MLE and Lagrange
multipliers {(αi , α

∗
i )}Ni�1 in SVR increase with the number of dataset, yet it is not

dependent on data frequency. Thus, we use daily data in period 3 instead of using
weekly data, which has a problem of few observations in the period. Figure 2 shows
the oil price ($/barrel) in the four different sub-periods and Fig. 3 illustrates oil price
centered return of the sub-periods.

Figure 2 shows that period 1 and 4 have more variation in the original price, which
includes both increasing and decreasing trends, while periods 2 and 3 have either
an increasing or a decreasing trend (rather than including both trends). Figure 3 of
the centered return does not show any clear pattern across the different sub-periods;
however, it seems that, albeit with some obscurity, the volatility for the dataset in
periods 2 and 3 are relatively more similar than those of periods 1 and 4. Period
1 and 4 include dramatic episodes during the 1998–9 (the Asian financial crisis)
and 2014–6 (OPEC cuts production targets), respectively. Compared with those two
periods (period 1 and 4), period 2 shows a general price increase, although there were
price falls shortly after the 9/11 attacks. In comparison to the other sub-periods, period
3 is distinct in terms of the magnitudes and speed of the price falls. This nose-dive in
oil price was, however, relatively short-lived and did not stretch over a longer period.

3 We use daily data in this sub-period since it is a relatively short (only half year). Weekly data is too sparse.
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Fig. 2 Crude oil price ($/barrel) in each sub-period

In terms of the magnitudes of fluctuations, the two different periods, period 2 (with
a general price increase) and period 3 (with a general price decrease), do not seem
to show distinct differences. As Figs. 2 and 3 cannot visually reflect the difference
of homogeneity clearly, rigorous statistical tests as well as modelling are needed to
reveal the underlying data behavior.

3.2 Pre-Processing Prior to Model Comparison: Statistical Test and Evaluation
Criteria

As preliminaries, we check characteristics related to the centered return series ut . The
data length of each sub-period is denoted as N . The Shapiro–Wilk test (Shapiro &
Wilk, 1965) is used to test for normality of the centered return, ut , in each period,
with the null hypothesis that the dataset is normally distributed. We also perform a
standard Box-Ljung test (Ljung & Box, 1978) to test the correlations of u2t with lag 1
for all the sub-periods, lag 4 for weekly data and lag 7 for daily data, corresponding
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Fig. 3 Oil price centered return in each sub-period

separate correlations in one month for periods 1, 2 and 4 and one week for period 3.
The p-values of the tests for four periods are in Table 1.

Results in Table 1 shows that at the 5% significance level, the null hypothesis of a
normal distribution of the centered return is rejected for periods 1, 2 and 4, indicating
that the MLE with the prior normal assumption is not a suitable estimation method
for those datasets. In addition, the Box-Ljung test results of correlations of u2t show
that there are significant and persistent correlations for periods 1, 3 and 4, while no
correlation is found for period 2. We continue with tests for ARCH effects in the
sub-series by applying the Lagrange Multiplier (LM) test and the Rank-based test
for conditional heteroscedasticity with the null hypothesis of no ARCH effects. Lag
length of 4 for monthly data (periods 1, 2 and 4) and 7 for daily data (period 3) were
chosen for the tests. The results are presented in Table 2.

Based on the results from Table 2, at a significant level of 5%, we reject the null
hypothesis of no ARCH effects in the series for periods 1, 3 and 4. Both the correlation
test of u2t and the conditional heteroscedasticity test indicate that an ARCH type
of model can be used for data in those periods while it is not suitable for period
2. (G)ARCH models often work as a remedy for two elements of financial data:
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Table 1 !P-values for Normality test for ut and Box-Ljung test for u2t

Period

1 2 3 4

N 416 489 121 560

Shapiro – Wilk test 1.100e-07*** 3.20e-08*** 0.149 1.11e-10***

Box-Ljung test With lag 1 1.780e-05*** 0.235 0.004** 0.008**
!!With lag 4 or
7

6.08e-09*** 0.683 0.026* 1.110e-16***

!!Lag 4 applies for period 1, 2 and 4 in which weekly data is used. Lag 7 applies for period 3 in which daily
data is used
!Signif. codes: 0 “***” 0.001; “**” 0.01; “*” 0.05; “.” 0.1; “” 1

Table 2 Conditional heteroscedasticity Test statistics and p-values

Test statistics !P-values

Period Period

1 2 3 4 1 2 3 4

LM
test

44.112 2.290 15.887 80.236 6.080e-09*** 0.682 0.026* 1.110e-16***

Rank
test

22.803 3.110 28.156 34.550 0.0001*** 0.539 0.0002*** 5.746e-07***

!Signif. codes: 0 “***” 0.001; “**” 0.01; “*” 0.05; “.” 0.1; “” 1

leptokurtosis and volatility clustering. Although it is not particularly clear from Fig. 2,
period 2 does not seem to have volatility clustering or pooling. Period 2 shows a general
price increase, and the tendency for large returns (of either sign) that are expected to
follow large returns, and small returns (of either sign) to follow small returns are not
very clearly observed.

Table 1 and 2 show that it is necessary to use not onlyMLE, but also SVRmethod to
estimate the four types ofAPARCHmodel for the four sub-periods. To evaluate the per-
formance of both estimated and forecasted conditional variance ĥt from bothmethods,

the mean square error (MSE) MSE � 1
n

n∑

t�1
(ĥt−h

′
t )
2 and the mean absolute devia-

tion (MAD) MAD � 1
n

n∑

t�1

∣∣∣ĥt − h
′
t

∣∣∣ are utilized as criteria, where h
′
t � 1

3

4∑

k�0
u2t−k

is an approximation for ht . The MSE and MAD are calculated on both in-sample and
out-of-sample data.4 The output and input of in-sample data, also called the train-
ing data, are used to estimate the Lagrange multipliers in the SVR and parameters

4 MSE is a scaled version of the criterion R2 in Peréz-Cruz et al. (2003). MAD is also calculated as it is
less sensitive to large errors, compared with MSE.
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θ � (w, α, β, δ, γ ) in APARCH models. The out-of-sample data, also called the test
data, is not used to train the value of Lagrange multipliers {(αi , α

∗
i )}Ni�1 or to estimate

the APARCH parameters. After having trained {(α̂i , α̂
∗
i )}Li�1 for the support vectors

and estimated θ̂ � ( ŵ, α̂, β̂, δ̂, γ̂ ) from MLE, we can calculate ĥt based on the input
vectors. If the input vectors xt come from the in-sample data, ĥt is called the estimated
value for ht . If input vectors xt come from the out-of-sample data, the predicted ĥt will
be called forecasting of ht . The MSE and MAD calculated from the out-of-sample
can be used to evaluate the forecasting performance. Compared with the in-sample
performance, the out-of-sample forecasting performance is less sensitive to outliers
and datamining, and it also can better reflect the available information to the forecaster
in ‘real-time’ (Stock & Watson, 2007a, 2007b).

3.3 Evaluation of the Estimation Performance for the 4 Sub-Periods

In this sub-section, we first present the results of using bothMLE and SVR to estimate
the conditional variance for all the four sub-periods that were split from the whole
sample period as shown in Sect. 3.1. A comprehensive comparison of the performance
of the two methods for the four types of APARCH models will follow. As regards
SVR, it should be noted that the hyperparameters C and ε-, as well as the bandwidth
hyperparameter in Gaussian kernel are tuned by fivefold cross-validation error.5

We first use all the dataset in each sub-period as “training data” to estimate volatility
of different types of APARCH model based on both MLE and SVR methods. The
estimation graphs by using MLE and SVR for the four sub-periods and four types
of APARCH models are presented in Figs. 4, 5, 6, and 7. The solid black lines in

Figs. 4, 5, 6, and 7 are conditional variance h
′
t � 1

3

3∑

k�0
u2t−k calculated from the

centered returns u2t . The green dashed lines represent the SVR estimation results for
conditional variance ĥt and the red dashed lines show MLE estimation results for ĥt ,
respectively. Thus, by comparing the black lines, the green and red dashes, we can see
the differences between h

′
t and ĥt from SVR and MLE:

Figures 4, 5, 6, and 7 show that the MLE-based estimation generally fails to catch
the peak-points of the volatility, while SVR based estimation can capture all the peaks.
Moreover, when it comes to the TARCH and TSGARCH models, the MLE method
gives extreme initial estimations, especially for period 2 and 3, while the SVRmethod
does not suffer from this problem. In general, it shows that the SVR can capture
volatility clustering better in the data in all four types of models than theMLEmethod.
Figure 5 also shows that theMLE estimation fails to estimate the conditional volatility
in period 2, which was not unexpected since Table 1 and 2 already indicate that the
ARCHmodel is not suitable for the dataset in period 2. Besides, all theMLE estimated
parameters are around zero and not significant, which results in a constant ĥt . However,

5 K-fold cross-validation means that dataset is split into K folds (subsets). Models are trained using k −
1 folds as training data and validated on the remaining one fold. The remaining fold can be viewed as test
set, and it is used compute a performance measure such as MSE. The tuned hyper-parameter value is the
one, which produces lowest average of test error, for example, MSE obtained from test folds computed in
the loop.
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Fig. 4 MLE and SVR modelling results using the four types of models for sub-period 1

Fig. 5 MLE and SVR modelling results using the four types of models for period 2

the SVR estimate ĥt from a pure data-driven method, by setting input vectors in to the
kernel function K (xi , x) in Eq. (4), we can calculate the corresponding ĥt .

To evaluate the estimation performance of the different models in each sub-period,
MSE and MAD of those models were compared. As shown in Table 3 and 4, the
SVR-based estimation gives much lower MSE and MAD compared with those of the
MLE method.

More specifically, Table 3 shows that the MLE method gives very high MSE for
TARCH and TSGARCH models, due to the large deviation between ĥt and h

′
t among

the initial points. SVR method, however, is more flexible to the model types and it
does not give extreme MSE values for TSGARCH and TARCH models. The MSE
and MAD values of the SVR method further show that the GJR model, which takes
the asymmetric effects into the model, performs the best in periods 1 and 4. Looking
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Fig. 6 MLE and SVR modelling results using the four types of models for period 3

Fig. 7 MLE and SVR modelling results using the four types of models for period 4

at the results of the SVR estimation, in these two periods 1 and 4, GJR model gives
significantly lower MSE values, compared with other types of APARCH model. In
period 3, the symmetric GARCHmodel performs the best based on both the MSE and
MADvalues, while it differs for period 2: GARCHmodel fits the best in period 2 based
on theMSE values and TARCHmodel fits the best based onMADvalues, respectively.
This result was expected from Fig. 1 that shows that the original data generally show
a general upward or a downward trajectory in period 2 and 3, which leads to relatively
more homogenously centered returns, compared with those in period 1 and 4. In short,
in period 2 and 3, the symmetric GARCH and TSGARCHmodels perform better than
the other two asymmetric models while in period 1 and 4, the asymmetric GJR model
performs the best.

Although the return series in Figs. 4, 5, 6, and 7 cannot reflect the difference of
homogeneity clearly, the estimation results based on the SVR method suggest that
the GARCH and TSGARCH are suitable for data with a monotonic trend, while the
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Table 4 MAD for each sub-period

MLE-based estimation SVR-based estimation

Period Period

1 2 3 4 1 2 3 4

GARCH 7.250 9.956 12.073 8.976 3.712 6.238 5.258 4.720

TSGARCH 9.066 15.006 23.839 10.015 4.835 6.190 7.021 4.706

GJR 7.364 9.946 12.044 8.187 3.278 6.213 5.303 3.425

TARCH 9.220 72.674 24.143 8.530 4.723 5.624 10.836 4.548

Table 5 Significance of γ for GJR and TARCH models

Periods Tests Estimate Std. Error t value !P-value

1 GJR 0.274 0.137 2.010 0.044*

TARCH 0.350 0.167 2.096 0.036*

2 GJR 1.037e-01 3.610e + 00 0.029 0.977

TARCH 1.154e-01 8.606e-01 0.134 0.893

3 GJR − 0.020 0.154 − 0.130 0.896

TARCH − 0.041 0.220 − 0.188 0.851

4 GJR 0.344 0.095 3.607 0.000***

TARCH 0.485 0.123 3.960 7.500e-05***

!Signif. codes: 0 “***” 0.001; “**” 0.01; “*” 0.05; “.” 0.1; “” 1

asymmetric GJR and TARCHmodels are suitable for the data with larger price swings.
More specifically, in period 4, the GJR and TARCH models, respectively, show the
lowest and second to the lowest MSE and MAD values among the four models using
the SVR method. To confirm that the asymmetric GJR and TARCH models are more
suitable for periods 1 and 4 than the other models, we examine the significance of γ

in Eq. (1), based on the dataset of centered returns in each sub-period. The estimation
results from MLE are included in Table 5.

Table 5 shows that in period 1 and 4, the asymmetric coefficients are statistically
significant in both GJR and TARCHmodels, which yet again indicates that the ARCH
models with asymmetric effects are more suitable for modelling volatility for period
1 and 4. Besides, the value of γ is positive in period 1 and 4, which means that a
leverage effect is associated in such a way that negative shocks reinforce the volatility
by more than positive shocks6 in those periods. However, the asymmetric effects in
the dataset in periods 2 and 3 are not significant. As pointed out in Wu (2001), this
asymmetric behavior can be explained by traders’ expectation of volatility in a market.

6 Hasan et al. (2013), however, report that asymmetry in energy return volatility is observed to the opposite
direction of the typical asymmetry of a leverage effect of return volatility.
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In a circumstance that increases traders’ expectation of volatility in the market, the
anticipation augments volatility to a larger degree. In those two periods (period 1
and 4), an economic event caused disruptions in the market, which were showing an
increasing trend in price prior to the event, that raises expectation of an increase in
volatility among traders. This anticipation of volatility increase leads to an immediate
price fall. The downside of the situation continues with a further increase in volatility
that can be explained by leverage effect hypothesis (Wu, 2001). For this reason, in both
period 1 and 4, this asymmetry in oil price volatility is present, while this mechanism
does not work in other periods, such as period 2, with a general upward trend in oil
price. Period 3 includes a general downward trend in price, and asymmetry is not
observed even though the oil price nudged up in a very short while within that period.

3.4 Evaluation of the Forecasting Performance for the Four Sub-Periods

After detecting the asymmetric behavior of oil price volatility in period 1 and 4, we
move to evaluate the forecasting performance of the different models using MLE and
SVRmethods in those two periods.7 In doing so, we divide the dataset in period 1 and
4 into in-sample training data and out-of-sample test data. The last 104 dataset in those
two periods, which corresponds to a two-year time horizon, is kept as a test dataset.
For the in-sample training dataset, the estimation result is quite consistent with the
results presented in Figs. 4, 5, 6, and 7, Table 3 and 4: the SVRmethod combined with
GJR, which gives the best estimation in both period 1 and 4. The corresponding figures
and tables are not presented here to save the space,8 yet, we present the forecasting
results based on the out-of sample test data for period 1 and 4 in Figs. 8 and 9.

Both Figs. 8 and 9 show that the SVR-based method outperforms the MLE-based
method when it comes to forecasting of the oil price return volatility. These figures
also shows that the SVR captures the bumps better than the MLE method. However,
the test MSE are quite similar among various types of models when using the SVR
method in both period 1 and 4, and there is no single type of APARCHmodel that has
significantly lower or larger test MSE value than the others.9 Thus, when it comes to
the out-of-sample forecasting, the result is not very sensitive to the type of the volatility
models when the SVR method is used.

3.5 Evaluation of the Estimation Performance forWhole Sample Period
and Discussions

Finally, we perform an empirical investigation on oil price volatility by using weekly
data of the whole sample period, and examine if the asymmetric behavior is also

7 It should also be noted here that Fig. 3 shows already that MLE performs not very well for dataset in
period 2. In addition, the sample size in period 3 is too small for further split.
8 The figure and table of the estimation estimation results of the in-sample training dataset are available
from the authors upon request.
9 We do not present the corresponding table with MSE here to save the space, but it is available from the
authors upon request.
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Fig. 8 MLE and SVR forecasting results of the four models for period 1

detected in the whole sample period. The estimation results of the oil price for period
from March 8, 1991 to September 13, 2019 are shown in Fig. 10 and Table 6.

Table 6 shows that all the four types of models perform to a quite similar degree to
each other when the same estimation method is used. Yet, the SVR method still gives
generally better results than the MLE counterparts do, while the differences are not
significant. This estimation result of the whole sample is different to those results of
each sub-sample presented in Table 3 and 4. In Tables 3 and 4, the GJR asymmetric
model performs the best in period 1 and 4. The differing result of Table 6 (to those
in Table 3 and 4) can be explained by the fact that when dataset is large and contains
different sub-periods with various dynamics in prices and volatility, those dynamics
cancel each other out to some extent when being treated all together in one whole sam-
ple period. Therefore, we cannot distinguish different volatility patterns even though
we compare different models or estimation methods. As was also mentioned along
with the results of testing asymmetry in different sub-samples (in Tables 3 and 4),
price patterns vary to a large degree in different sub-samples which are associated
with different economic events behind the price and volatility mechanisms. Thus, it is
of great importance to uncover the different data properties of different sub-periods,
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Fig. 9 MLE and SVR forecasting results of the four models for period 4

Fig. 10 MLE and SVR modelling results of the four models for the whole sample period
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Table 6 MSE and MAD using the whole sample period

MLE estimation SVR estimation

MSE MAD MSE MAD

GARCH 385.035 10.108 142.554 5.164

TSGARCH 592.011 11.464 115.780 5.540

GJR 361.123 9.876 141.608 5.050

TARCH 573.430 11.265 127.415 5.471

which can be masked in the whole sample period. A similar situation is encountered
when analyzing the dataset containing structural breaks. Then, we need to split the
data into sub-samples and run separate regressions. If we build a regression model
based on the whole dataset without splitting the dataset according to locations of the
structural breaks, the coefficient estimates suffer from having a high bias.

The empirical example in Sect. 3 can be summarized with the three main findings
as below:

1) When estimating the APARCHmodel, the SVR algorithm, in general, gives better
estimation and forecasting results with lowerMSE andMADcomparedwith those
from MLE.

2) The asymmetric effect are observed only in sub-periods 1 and 4 where GJR and
TARCH models give lower MSE and MAD by SVR estimation. This finding is
also supported by the significant γ parameter in GJR and TARCHmodels in Table
5 for sub-periods 1 and 4.

3) When thewhole period is investigated, various dynamics in each sub-period cancel
each other out thereby leading to a failure in distinguishing different volatility pat-
terns of different time periods. This finding reinforces the importance of analyzing
volatility behaviors which are steered by different economic events in different
periods. Putting the different time periods together in one long sample period may
mask those varying volatility behaviors.

When it comes to the second finding, the most closely related study using the
APARCH model where γ �� 0 in oil price forecasting is Mohammadi and Su (2010).
By using GARCH, EGARCH and APARCH and FIGARCH, they conduct a forecast-
ing of the conditional mean and volatility of crude oil spot prices from 11 international
markets with weekly dataset from 1/2/1997 to 10/3/2009, and show that, in most cases,
the APARCH model with asymmetric power outperforms the others. Thus, our find-
ings share both similarities and differences with some previous empirical works on
oil volatility. As was also documented by Narayan and Narayan (2007), the evidence
of asymmetric behavior of volatility in oil price is inconsistent in the current paper.
That is, our results show that asymmetric effects are not present in all sub-sample
periods. To be more specific, asymmetric effects are not present in those periods when
the original data generally show a general upward or a downward trend in price.10

10 It is also noticeable that inconsistent asymmetric volatility were not only documented in the oil market
but also in equity markets (Bekert and Wu, 2000).
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This finding of mixed evidence on the presence of asymmetric volatility is closely
associated with the question of choosing a better model for forecasting.

For future research works, other types of hybrid models which combine nonpara-
metric data-drivenmethodswith various parametric volatilitymodels, canbe compared
with our SVR- APARCH model. These hybrid models can also further be applied to
investigate volatility behavior of other commodity prices to model volatility behavior
with asymmetry. One further possible research scope is to perform an empirical anal-
ysis for volatility estimation using the SVR-APARCH model, while utilizing several
different types of kernels, including Gaussian kernel, wavelet kernel and polynomial
kernel, in the SVR algorithm. This comparison would provide comprehensive results
by examining whether the results are sensitive to different kernels or not.

4 Conclusion

This paper primarily compares MLE and SVR methods to estimate and forecast the
volatility of weekly or daily oil price returns based on the APARCH type of mod-
els. The SVR—APARCH model applied in our paper can be viewed as a hybrid or
semi-parametric model which can keep the advantages of both nonparametric SVR
estimation algorithm and the interpretability of the parametric APARCH model. In
this SVR-APARCH model, the input variables of the nonparametric SVR algorithm
are decided by the structure of the parametric APARCH model.

As different types of APARCH model vary in capturing asymmetric behaviors, we
can identify whether asymmetric behaviours of volatility exist or not in those sub-
periods of sharp price falls during when negative shocks may reinforce the volatility
by more than positive shocks.

Prior to the model comparison, pre-processing procedures are carried out to inves-
tigate the characteristics of the data in different sub-sample periods which are split
based on the occurrence of economic events. The results show that in both period 1
and 4, asymmetry in oil price volatility is present, while this mechanism is not present
in other periods, such as period 2, with a general upward trend in oil price. Period
3 includes a general downward trend in price, and asymmetry is not observed even
though the oil price nudged up in a very short while within that period. This incon-
sistent behavior of asymmetric in oil price is inconsistent was also documented in a
previous study by Narayan and Narayan (2007).

Estimation results of using SVR-APARCH method, overall, suggest that the SVR
method can capture volatility clustering better in all the four types of APARCHmodel
than the MLE method. This outperformance of SVR than using MLE method is in
line with the previous studies such as Perez-Cruz et al. (2003) and Sun and Yu (2020).
SVM regression generally outperforms the other method with lower estimation and
forecasting errors, and it is also more robust to the choice of different APARCH
models than the MLE counterparts. More precisely, our results show that the MLE
method produces extreme initial estimations of conditional variance for TSGARCH
and TARCH models in certain cases, while SVR does not seem to be affected by
this problem. It should also be noted that, based on the estimation results of the SVR
method, the GARCH and TSGARCH models are, in general, more suitable for data
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with a general monotonic trend, while the asymmetric GJR and TARCH models are
more suitable for data with larger swings in price. Unlike previous studies which
focus on GARCH models in combination of SVR for a sample period, this paper
includes a broader APARCH model and show that performance of different models
vary in different sub-sample periods. The estimation results of the paper using SVM
based regressions in each sub-period show that the ARCH models with asymmetric
power generally perform better than the models with symmetric power when the data
sub-period includes large swings in oil price. The asymmetric behavior of oil price
volatility, however, is not detected when the analysis is done using the whole sample
period.

In sum, our test results do not allow us to conclude that there is a single model that
shows better performance in forecasting across all sub-sample periods. Our findings
suggest that even though the SVR appears to fit the crude oil data well, different
models within the SVR should be carefully chosen based on the characteristics of the
data. This result, therefore, underscores the importance of identifying the dynamics of
the dataset in different periods to improve estimation and forecasting performance in
modelling oil price volatility. The machine learning techniques, in general, start to be
increasingly used not only in financial sectors but also in government sectors in policy
evaluations and forecasting. However, applying data-driven method itself does not
mean that the importance of identifying dynamics of the dataset in different periods
for modelling oil price volatility is mitigated. Our study reinforces the importance
that employing more effective machine learning technique for volatility forecasting
still requires uncovering the different data properties of different periods, duringwhich
volatility is influenced by different economic factors. Besides, it is of great importance
to examine the different data properties of different sub-periods, which can be masked
in the whole sample period.
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