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The Differential Spectrum of the Power
Mapping xpn−3

Haode Yan, Yongbo Xia, Chunlei Li, Tor Helleseth, Maosheng Xiong and Jinquan Luo

Abstract

Let n be a positive integer and p a prime. The power mapping xpn−3 over Fpn has desirable differential
properties, and its differential spectra for p = 2, 3 have been determined. In this paper, for any odd prime p, by
investigating certain quadratic character sums and some equations over Fpn , we determine the differential spectrum
of xpn−3 with a unified approach. The obtained result shows that for any given odd prime p, the differential spectrum
can be expressed explicitly in terms of n. Compared with previous results, a special elliptic curve over Fp plays
an important role in our computation for the general case p ≥ 5.
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I. INTRODUCTION

Let Fpn be the finite field with pn elements and F∗
pn = Fpn \{0}, where p is a prime number and n is

a positive integer. Let F(x) be a function from Fpn to itself. The derivative function, denoted by DaF , of
F(x) at an element a in Fpn is given by

DaF(x) = F(x+a)−F(x).

For any a, b ∈ Fpn , let
δF(a,b) = |{x ∈ Fpn| DaF(x) = b}|,

where |S| denotes the cardinality of a set S, and define

δ(F) = max
a∈F∗pn

max
b∈Fpn

δF(a,b).

A function F is said to be differentially δ-uniform iff δ(F) = δ, and δ is called the differential uniformity
of F(x) accordingly [19]. The differential spectrum of F(x) is defined as the multiset

{δF(a,b) : a ∈ F∗
pn, b ∈ Fpn }.
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TABLE I
SOME POWER FUNCTIONS F(x) = xd OVER Fpn WITH KNOWN DIFFERENTIAL SPECTRUM

p d Condition δ(F) Ref.
2 2t +1 gcd(t,n) = s 2s [2]
2 22t −2t +1 gcd(t,n) = s, n/s odd 2s [2]
2 2n −2 n ≥ 2 2 or 4 [2]
2 22k +2k +1 n = 4k 4 [2], [23]
2 2t −1 t = 3,n−2 6 or 8 [3]
2 2t −1 t = n/2,n/2+1, n even 2n/2 −2 or 2n/2 [3]
2 2t −1 t = (n−1)/2,(n+3)/2, n odd 6 or 8 [4]
2 2m +2(m+1)/2 +1 n = 2m, m ≥ 5 odd 8 [24]
2 2m+1 +3 n = 2m, m ≥ 5 odd 8 [24]
2 23k +22k +2k −1 n = 4k 22k [14]
3 2 ·3(n−1)/2 +1 n odd 4 [11]
3 3n −3 n odd, n ≡ 2(mod 4), or n ≡ 0(mod 4) 2,4, or 5 [22]

p odd (pk +1)/2 e = gcd(n,k) (pe −1)/2 or pe +1 [10]
p odd (pn +1)/(pm +1)+(pn −1)/2 p ≡ 3 (mod 4), n odd, m|n (pm +1)/2 [10]
p odd p2k − pk +1 gcd(n,k) = e, n/e odd, pe +1 [25], [17]

When F(x) is a power mapping, i.e., F(x) = xd for a positive integer d, one easily sees that δF(a,b) =
δF(1,b/ad) for all a ∈ F∗

pn and b ∈ Fpn . That is to say, the differential spectrum of F(x) is completely
determined by the values of δF(1,b) as b runs through Fpn . Therefore, the differential spectrum of a
power mapping can be simplified as follows.

Definition 1. Assume that a power function F(x) = xd over Fpn has differential uniformity δ and denote

ωi = |
{

b ∈ Fpn | δF(1,b) = i
}
|, 0 ≤ i ≤ δ.

The differential spectrum of F is simply defined to be an ordered sequence

S= [ω0,ω1, . . . ,ωδ].

Due to the differential cryptanalysis [1], the differential property is one of the most fundamental
parameters of cryptographic primitives in block ciphers. Consequently, it is highly desirable that nonlinear
functions for cryptographic applications have low differential uniformity. For example, the AES (Advanced
Encryption Standard) uses the inverse function x 7→ x−1 over F2n , which has differential uniformity 4 for
even n and 2 for odd n. Besides the differential uniformity, the differential spectrum of a nonlinear
function also reflects its differential property. It is usually taken into consideration when one assesses
the resistance of a function against differential cryptanalysis and its variants [2], [3], [4]. Moreover, the
differential spectrum of a nonlinear function is also related to the nonlinearity of the function, which is
an important parameter of a function with respect to linear cryptanalysis [7], [9], [18].

In addition to its importance in cryptography, the differential spectrum of a nonlinear function also
plays a significant role in sequences, coding theory and combinatorial design. In sequences, the differential
spectrum of a power mapping can be used to determine the cross-correlation between m-sequences and
their decimation sequences [11]; in coding theory, the differential spectrum is highly related to the number
of low weight codewords in some linear codes [2], [6], [8]; and in combinatorial designs, some new 2-
designs can be constructed from differentially two-valued functions [21]. Therefore, it is an interesting
topic to completely determine the differential spectrum of a nonlinear function with low differential
uniformity. This problem is, nevertheless, relatively challenging. So far, only a few infinite families of
power mappings have known differential spectra, which are listed in TABLE I.

The investigation of differential spectra of power mappings over finite fields, to the best of our
knowledge, first appeared in [11], where the authors considered the differential spectrum of xd over
F3n with odd n and d = 2 · 3

n−1
2 + 1 (known as the ternary Welch exponent). The result obtained there
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was then used to resolve the ternary Welch conjecture that the cross-correlation function between an m-
sequence of period 3n−1 and its ternary Welch decimation sequence takes exactly three values. Blondeau,
Canteaut and Charpin later in [2] dedicated their research focus to the differential spectra of several power
mappings in the binary case, including quadratic power mappings, Bracken-Leander power mapping and
Kasami power mapping, and they proposed some conjectures. The differential properties of the power
mappings x2t−1 over F2n were later investigated in [3] and [4], where the differential spectra of x2t−1 for
certain special t’s were determined. Xiong et al. in [24] proved one of the conjectures in [2] about the
differential spectra of the power functions with Niho exponents. Very recently, for the power mapping
x23k+22k+2k−1 over F2n with n = 4k, Li et al. [14] determined its differential spectrum, which gives an
affirmative answer to the conjecture proposed in [5]. In recent years some research progress has also been
made for the nonbinary cases. Choi et. al [10] computed the differential spectra of two power functions

x
pk+1

2 and x
pn+1
pm+1+

pn−1
2 , where the conditions on p,n,k,m are listed in TABLE I. The differential spectra of

the family of p-ary Kasami power permutation xp2k−pk+1 over Fpn with gcd(n,k) = 1 and its generalized
family with gcd(n,k) = e were investigated in [25] and [17], respectively.

Our study in this paper originates from the work of Helleseth, Rong and Sandberg [13], where they
intensively studied the differential properties of a number of power functions and presented several families
of APN functions. In particular, the differential properties of the power function xpn−3 were characterized
as follows.

Theorem 1. [13, Theorem 7] Let d = pn −3 and let F(x) = xd be a mapping over Fpn .
(i) If p = 2, then δ(F) = 2 when n is odd and δ(F) = 4 when n is even.
(ii) If p is an odd prime, then 1 ≤ δ(F)≤ 5.
(iii) If n > 1 is odd and p = 3, then δ(F) = 2.

Given Theorem 1, a natural question arises: what is the differential spectrum of the power mapping xpn−3

over Fpn? There are some partial answers to this question. By setting 1
0 = 0, the above power mapping

can be rewritten as F(x) = x−2. When p = 2, it is equivalent to the inverse function x−1 over F2n , of
which the differential spectrum has been determined in [2]. Recently, for p = 3 the differential spectrum
of F(x) = xpn−3 was completely determined in [22], where the authors characterized the conditions on b
such that the derivative equation D1F(x) = F(x+1)−F(x) = b has two and four roots in F3n , respectively.
The method used in [22] relies heavily on the characteristic p = 3, and it is not clear how it may work
for the general prime p.

In this paper, for any odd prime p, we present a unified approach to studying the differential spectrum of
xpn−3, which is different from that used in [22]. In our approach, we investigate several related equations in
details, and establish a connection between the differential spectrum of xpn−3 and two quadratic character
sums that are associated with two quartic polynomials. For the case p = 3, the two quartic polynomials
are essentially quadratic ones and hence the two quadratic character sums can be evaluated directly; when
p ≥ 5, both of the quadratic character sums are related to a single elliptic curve over Fp, and they can
be computed by the theory of elliptic curves. As a result, for any given odd prime p, the differential
spectrum of xpn−3 can be derived and expressed explicitly in terms of n. Therefore, our work completely
settles the unsolved problem about the differential spectrum of xpn−3 in Theorem 7 of [13].

The rest of this paper is organized as follows. Section II introduces some quadratic character sums and
the related theory of elliptic curves over Fpn . In Section III, we will determine the number of solutions
to an equation system, which is dependent on a quadratic character sum presented in Section II. With the
preparations in Sections II and III, the differential spectrum of xpn−3 is computed in Section IV. Section
V concludes this paper.

II. SOME QUADRATIC SUMS AND THE THEORY OF ELLIPTIC CURVES

From now on, we always assume that p is an odd prime and η is the quadratic multiplicative character
of F∗

pn . It is convenient to extend the definition of η to Fpn by setting η(0) = 0. For an element β ∈ Fpn , if



4

η(β) = 1, then it has exactly two square roots in Fpn , which are denoted by ±
√

β throughout this paper.
In the sequel, for convenience we also frequently adopt the convention that 1

0 := 0.
Let Fpn[x] denote the polynomial ring over Fpn . We shall consider the sums involving the quadratic

character and having polynomial arguments of the form

∑
x∈Fpn

η( f (x))

with f (x) ∈ Fpn[x]. It is clear that the case of linear f (x) is trivial. When f (x) is quadratic, the explicit
formula was given in [15].

Lemma 2. [15, Theorem 5.48] Let f (x) = a2x2 + a1x+ a0 ∈ Fpn[x] with p odd and a2 ̸= 0. Put d =
a2

1 −4a0a2 and let η be the quadratic character of Fpn . Then

∑
x∈Fpn

η( f (x)) =

{
−η(a2), if d ̸= 0,
(pn −1)η(a2), if d = 0.

As it will be seen in Sections III and IV, the computation of the differential spectrum of the power
mapping xpn−3 over Fpn boils down to evaluating two specific character sums

λ1,pn := ∑
x∈Fpn

η
(
(x2 −4)(−3x2 −4)

)
, (1)

and

λ2,pn := ∑
x∈Fpn

η
(
(x2 +1)(x2 +4x+1)

)
. (2)

Note that in the case of p = 3 the above character sums can be easily computed. To be more concrete,
one has −3x2 −4 = −4 and x2 +4x+1 = (x+2)2, then the polynomials involved in λ1,3n and λ2,3n are
essentially quadratic ones. Hence Lemma 2 can be applied directly and we have

λ1,3n =−η(−1) and λ2,3n =−1−η(2). (3)

When p≥ 5, the situation is quite different. The polynomials involved in λ1,pn and λ2,pn are of degree 4,
these character sums correspond to the elliptic curves y2 =(x2−4)(−3x2−4) and y2 =(x2+1)(x2+4x+1)
over Fp respectively. Generally speaking, by the theory of elliptic curves in [20], there is no explicit formula
for the evaluation of such character sums in general, except for some very special kinds of elliptic curves
that are very rare. The following theorem provides an efficient method to evaluate λ1,pn and λ2,pn for
p ≥ 5 based on the theory of elliptic curves.

Theorem 3. Let p ≥ 5. Denote by Np the number of (x,y) ∈ F2
p satisfying the equation

E : y2 = x(x−1)(x+3). (4)

Define a = Np − p and let r1 and r2 be the two roots of the quadratic polynomial T 2 + aT + p in the
complex number field. Define

Γp,n := ∑
x∈Fpn

η(x(x−1)(x+3)). (5)

Then  Γp,n = −rn
1 − rn

2,
λ1,pn = Γp,n −η(−3),
λ2,pn = Γp,n −1.

(6)
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Proof. The equation (4) defines an elliptic curve E over Fp. The quadratic character sum Γp,n defined in
(5) is closely related to the number of Fpn-rational points (with the extra point at infinity) on E, which is
actually equal to pn +1+Γp,n. By the theory of elliptic curves (see [20, Theorem 2.3.1, Chap. V]), we
have

Γp,n =−rn
1 − rn

2.

The Weil bound for Γp,n is that |Γp,n| ≤ 2
√

pn (see [20, Corollary 1.4, Chap. V]). Note that a = Γp,1,
which is an integer. Thus, we have a2 < 4p and r1 ̸= r2.

Now using Γp,n we can evaluate λ1,pn as follows:

∑
x∈Fpn

η
(
(x2 −4)(−3x2 −4)

)
= 1+2 ∑

η(u)=1
η((u−4)(−3u−4))

= 1+2 ∑
η(u)=1

η
(
(1− 4

u)(−3− 4
u)
)

= 1+2 ∑
η(u)=1

η((1−u)(−3−u))

= 1+ ∑
u∈Fpn

(1+η(u))η((u−1)(u+3))

−η(−3)
= ∑

u∈Fpn
η((u−1)(u+3))+Γp,n +1−η(−3).

The first term ∑
u∈Fpn

η((u−1)(u+3)) =−1 according to Lemma 2. Thus we have the desired result for

λ1,pn .
As for λ2,pn , let x2+4x+1

x2+1 = u. Then, u and x satisfy

(u−1)x2 −4x+(u−1) = 0. (7)

It is easy to see that x = 0 if and only if u = 1. When u ̸= 1, (7) is a quadratic equation in the variable
x, and it has solutions in Fpn if and only if η(∆) = η((u+1)(−u+3)) = 1 or 0. If u =−1 (resp. u = 3),
then x = −1 (resp. x = 1) is the unique solution of (7). If u ̸= 1 and η((u+ 1)(−u+ 3)) = 1, there are
two distinct x’s satisfying (7). Thus we have

∑
x∈Fpn

η

(
x2+4x+1

x2+1

)
= η(1)+η(−1)

+η(3)+2 ∑
u∈U

η(u),
(8)

where
U = {u ∈ Fpn | u ̸= 1,η((u+1)(−u+3)) = 1},
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and we may adopt the convention that 1
0 := 0. Furthermore,

2 ∑
u∈U

η(u)

= ∑
u̸=1

(1+η((u+1)(−u+3)))η(u)

−η(−1)−η(3)
= ∑

u∈Fpn
(1+η((u+1)(−u+3)))η(u)

−2η(1)−η(−1)−η(3)
= ∑

u∈Fpn
η(u)+ ∑

u∈Fpn
η(u(u+1)(−u+3))

−2η(1)−η(−1)−η(3)
= ∑

u∈Fpn
η((−u)(−u+1)(u+3))

−2η(1)−η(−1)−η(3)
= Γp,n −2η(1)−η(−1)−η(3),

where the fourth equality holds since ∑
u∈Fpn

η(u) = 0. This together with (8) yields

∑
x∈Fpn

η

(
x2 +4x+1

x2 +1

)
= Γp,n −1.

Since
λ2,pn = ∑

x∈Fpn
η

(
x2+4x+1

x2+1

)
η
(
(x2 +1)2)

= ∑
x∈Fpn

η

(
x2+4x+1

x2+1

)
,

the desired evaluation of λ2,pn follows.

Remark 1. We emphasize that a unified explicit formula of the character sum Γp,n for all primes p ≥ 5
and positive integers n may not exist at all; and we have the same situation for λ1,pn and λ2,pn . However,
Theorem 3 enables us to give a practical and efficient algorithm for evaluating these character sums,
which can be described as follows:

• Step 1: For each given p ≥ 5, compute the quantity Np, which can be easily computed for most
practical values of p by Magma . Then, we get a = Np − p.

• Step 2: Determine the two roots r1 and r2 of the polynomial x2 + aT + p in the complex number
field, which are

r1,=
−a+

√
a2 −4p

2
, r2 =

−a−
√

a2 −4p
2

.

• Step 3: Compute Γp,n, λ1,pn and λ2,pn according to (6).
Note that a = Γp,1 and thus in Step 1 we can compute the value of a directly according to (5).

Utilizing the above algorithm, one knows that for any given prime p ≥ 5, the character sums Γp,n, λ1,pn

and λ2,pn can be computed and expressed explicitly in terms of n. The procedure of the above algorithm
is illustrated in the following example.

Example 1. For p = 5, by using Magma we can obtain N5 = 7, hence a = 2. So we have r1,r2 =
−1±2

√
−1, hence

Γ5,n =−
(
−1+2

√
−1

)n
−
(
−1−2

√
−1

)n
.
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TABLE II
THE VALUES OF Γp,1 FOR p ≤ 1000

p 5 7 11 13 17 19 23 29 31 37 41 43 47 53
Γp,1 2 0 −4 2 −2 4 8 −6 −8 −6 6 −4 0 2

p 59 61 67 71 73 79 83 89 97 101 103 107 109 113
Γp,1 −4 2 4 −8 −10 8 4 6 −2 18 −16 12 2 −18

p 127 131 137 139 149 151 157 163 167 173 179 181 191 193
Γp,1 8 4 6 12 −14 16 2 −12 −24 −6 −12 −6 0 −2

p 197 199 211 223 227 229 233 239 241 251 257 263 269 271
Γp,1 18 −16 20 8 −12 −22 −10 16 −18 −20 −2 8 10 −8

p 277 281 283 293 307 311 313 317 331 337 347 349 353 359
Γp,1 26 −26 28 18 −12 24 6 −6 −20 −18 12 −30 −2 24

p 367 373 379 383 389 397 401 409 419 421 431 433 439 443
Γp,1 8 10 −20 0 2 −14 30 6 −12 10 −32 14 0 −20

p 449 457 461 463 467 479 487 491 499 503 509 521 523 541
Γp,1 14 22 26 −8 36 16 32 12 −12 −24 −6 −26 −4 18

p 547 557 563 569 571 577 587 593 599 601 607 613 617 619
Γp,1 −44 26 −28 −10 −36 −2 44 14 −24 38 40 −38 −42 44

p 631 641 643 647 653 659 661 673 677 683 691 701 709 719
Γp,1 −16 14 −12 −8 −6 −12 10 −34 2 −4 4 −6 10 32

p 727 733 739 743 751 757 761 769 773 787 797 809 811 821
Γp,1 −48 −14 4 8 −24 −38 22 −2 18 −28 −22 −26 −4 −30

p 823 827 829 839 853 857 859 863 877 881 883 887 907 911
Γp,1 16 28 50 24 10 −42 12 32 18 −50 4 −8 −4 −16

p 919 929 937 941 947 953 967 971 977 983 991 997
Γp,1 −16 −50 −42 −6 −12 54 16 −36 30 24 −40 26

For p = 7, by using Magma we can obtain a = 0 by (5). So we have r1,r2 =±
√
−7. Then, we get

Γ7,n =−(1+(−1)n)
√
−7

n
.

The values of Γp,n for other p can be obtained similarly. Once the value of Γp,n is obtained, so are the
values of λ1,pn and λ2,pn .

Remark 2. If a = 0, then r1,r2 =±
√
−p, and we have a simple expression of Γp,n as

Γp,n =

{
0, if n is odd,
−2

√
−1n pn/2, if n is even.

It was known that a = 0 if and only if the elliptic curve E defined over Fp in (4) is supersingular,
and there is an explicit and efficient formula to determine whether or not E is supersingular (see [20,
Theorem 4.1, Chap. V]). In particular, for p ≤ 1000, the elliptic curve E defined over Fp is supersingular
if p = 7,47,191,383 and 439, thus in these cases the values Γp,n, λ1,pn and λ2,pn can be presented in a
more compact form.

Remark 3. In Table II, for all primes p ≤ 1000 we list the values of Γp,1, which are computed with
Magma. Let

Dn(x,1) =
⌊n/2⌋

∑
i=0

n
n− i

(
n− i

i

)
(−1)ixn−2i

be the Dickson polynomial of degree n [16]. Then, we have

Dn(y+
1
y
,1) = yn +

1
yn .
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With this identity and Theorem 3, we have

Γp,n =−pn/2Dn

(
−

Γp,1√
p
,1
)
.

III. THE NUMBER OF SOLUTIONS TO AN EQUATION SYSTEM

Let d = pn −3 with p being an odd prime. Denote by M the set of solutions (x1,x2,x3,x4) ∈ (Fpn)4

of the equation system {
x1 − x2 + x3 − x4 = 0,
xd

1 − xd
2 + xd

3 − xd
4 = 0, (9)

and M = |M |. In this section we shall compute the value of M, which plays an important role in determining
the differential spectrum of the power mapping xpn−3 over Fpn .

To this end, we need to make some preparations. Define

Mi =
{
(x1,x2,x3,x4) ∈ M | xi = 0

}
, i = 1,2,3,4,

and
M ◦ =

{
(x1,x2,x3,x4) ∈ M | x1x2x3x4 ̸= 0

}
.

For any 1 ≤ i < j < k ≤ 4, it is trivial to see that

|Mi ∩M j|=


1, if (i, j) ∈ {(1,3),

(2,4)},
pn, otherwise,

(10)

|Mi ∩M j ∩Mk|= 1 and
∣∣∩4

i=1Mi
∣∣= 1. (11)

Next we compute |Mi| (1 ≤ i ≤ 4) and |M ◦|.
The following result about a quartic equation over Fpn is useful for computing |Mi| (1 ≤ i ≤ 4). Before

we give the result, we recall from Section II that for any β ∈ Fpn with η(β) = 1, the two square roots of
β are denoted by

√
β and −

√
β.

Lemma 4. Let p ≥ 3 be an odd prime, and g1(x) = x4 + 2x3 + x2 + 2x+ 1 ∈ Fpn[x]. Denote by T1 the
number of roots of g1(x) in Fpn . Then, we have

T1 =



0, if η(2) =−1, or η(2) = η(−7) = 1
but η(−1+2

√
2) =−1,

1, if p = 7 and n is odd,
2, if η(2) = 1 and η(−7) =−1,
3, if p = 7 and n is even,
4, if η(2) = η(−7) = η(−1+2

√
2) = 1.

Proof. Let x ∈ Fpn be a solution of g1(x), then we have(
x+

1
x

)2

+2
(

x+
1
x

)
−1 = 0, (12)

which can be regarded as a quadratic equation in variable z= x+ 1
x with discriminant ∆= 22−4 ·(−1) = 8.

If η(∆) =−1, that is, η(2) =−1, then T1 = 0. Now suppose η(∆) = η(2) = 1. Solving (12), we have

x+
1
x
=−1∓

√
2,



9

which implies that

x2 +(1±
√

2)x+1 = 0. (13)

To solve (13) over Fpn , we compute the corresponding discriminants which are ∆1 = −1+ 2
√

2, ∆2 =
−1−2

√
2. Noting that ∆1 ·∆2 =−7, there are two cases to consider:

Case 1: assume ∆1 ·∆2 = 0. This occurs if and only if p = 7. In this case, 32 = 2 hence we may take√
2 = 3, then we have (∆1,∆2) = (5,0). For ∆2 = 0, the corresponding equation (13) is always solvable

with a unique solution. As for ∆1 = 5, note that 5 is a nonsquare in F7. Therefore, if n is odd, then
η(5) =−1 and the equation (13) corresponding to ∆1 is not solvable in Fpn , that is, T1 = 1. On the other
hand, if n is even, then η(5) = 1 and the equation (13) corresponding to ∆1 has two distinct solutions in
Fpn , so in this case we have T1 = 3.

Case 2: assume ∆1 ·∆2 ̸= 0. Then p ̸= 7. If η(∆1) = η(∆2) = 1, then the equations (13) corresponding to
both ∆1 and ∆2 are solvable with two distinct solutions, so T1 = 4. If η(∆1)=η(∆2)=−1, then the equation
(13) is not solvable for either ∆1 or ∆2, hence T1 = 0. On the other hand, if η(∆1) ·η(∆2) = η(−7) =−1,
then the corresponding equation (13) is solvable with two distinct solutions in Fpn for exactly one of ∆1
and ∆2, that is, T1 = 2.

Summarizing all the above cases we obtain the desired formula for T1. This completes the proof of
Lemma 4.

Remark 4. For any given odd prime p and positive integer n, in order to get the exact value of T1,
one first needs to compute η(2) and η(−7) in Fpn , which is straightforward according to the Legendre
symbols

(
2
p

)
,
(
−7
p

)
and the parity of n. If η(2) = η(−7) = 1, then one further needs to check the value

of η(−1+2
√

2). This can be handled efficiently by the following way:

• when
(

2
p

)
= 1, then −1+ 2

√
2 is an element in Fp, and it is always a square in Fp2 . Thus, the

element −1+2
√

2 is a square of Fpn iff −1+2
√

2 is a square of Fp or n is even;
• when

(
2
p

)
= −1, then −1+ 2

√
2 is an element in Fp2 \Fp, and since η(2) = 1, n must be even.

Thus, η(−1+2
√

2) = 1 iff −1+2
√

2 is a square in Fp2 , or n is a multiple of 4.

An alternative approach to computing η(−1+ 2
√

2) is based on investigating the polynomial (x2 +
1)2 − 8, that is, x4 + 2x2 − 7. We have η(−1+ 2

√
2) = 1 if and only if x4 + 2x2 − 7 has a root in Fpn .

In order to determine whether the polynomial x4 +2x2 −7 ∈ Fp[x] has a root in Fpn , it suffices to verify
whether it has roots in Fp and Fp2 . Then, combined with the parity of n or n/2, we can obtain the desired
result. The details are omitted here.

Lemma 5. With the notation introduced above, for any 1 ≤ i ≤ 4, we have |Mi|= pn +(1+T1)(pn −1),
where T1 is given in Lemma 4.

Proof. It is easy to see that |Mi| = |M4| for any 1 ≤ i ≤ 4. So we only consider M4, that is, x4 = 0 in
(9). If x3 = 0, then x1 = x2 and (9) has pn solutions. Now suppose x3 ̸= 0, let y1 =

x1
x3

and y2 =
x2
x3

, then
y1 and y2 satisfy {

y1 − y2 +1 = 0,
ypn−3

1 − ypn−3
2 +1 = 0.

(14)

Denote by L0 the number of solutions (y1,y2) ∈ (Fpn)2 of (14). Thus we have |M4|= pn +(pn −1)L0.
Note that (14) is equivalent to

(y1 +1)pn−3 − ypn−3
1 = 1. (15)

It is obvious that y1 = 0 is a solution of (15). If y1 ̸= 0, then (15) is equivalent to g1(x) = 0, which has
been investigated in Lemma 4. Thus, L0 = 1+T1 and |M4|= pn +(1+T1)(pn −1). This proves Lemma
5.
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Lemma 6. With the notation introduced above, we have∣∣M ◦∣∣= (pn −1)(3pn −8−2η(−1)
−η(−3)(2+η(−3))+λ2,pn),

(16)

where λ2,pn is defined as in (2).

Proof. Since x4 ̸= 0, putting yi =
xi
x4

for i = 1,2 and 3, we have{
y1 − y2 + y3 −1 = 0,
ypn−3

1 − ypn−3
2 + ypn−3

3 −1 = 0.
(17)

Denote by M0 the number of solutions (y1,y2,y3) ∈
(
F∗

pn

)3
of the equation system (17). Then we have∣∣M ◦∣∣= M0(pn −1). (18)

Now we compute M0.
Since yi ̸= 0 for all i ∈ {1,2,3}, using y1y3 = z, then (17) becomes

y1 + y3 = 1+ y2,
y1y3 = z, z ∈ F∗

pn,

y−2
1 + y−2

3 = 1+ y−2
2 .

(19)

From the second and the third equations in (19) we get

y−2
2 +1 =

y2
1 + y2

3

y2
1y2

3
=

(y2 +1)2 −2z
z2 ,

which is equivalent to
(y−2

2 +1)z2 +2z− (y2 +1)2 = 0.

Then, we can conclude that M0 is equal to the number of solutions (y,y2,z) ∈
(
F∗

pn

)3
of the equation

system {
y2 − (1+ y2)y+ z = 0,
(y−2

2 +1)z2 +2z− (y2 +1)2 = 0.
(20)

For determining M0, now our strategy is to count the number of pairs (y,z) ∈
(
F∗

pn

)2
satisfying (20) for

each fixed y2 ∈ F∗
pn . We distinguish two cases as follows.

Case 1: y−2
2 + 1 = 0. This case occurs only when η(−1) = 1. Then y2 = ±

√
−1 and it follows that

z = y2 from the second equation in (20). Then the first equation in (20) leads to y = 1 or y = y2. Thus,
for each such y2 it contributes 2 solutions to M0.

Case 2: y−2
2 +1 ̸= 0. Then, the second equation in (20) is a quadratic equation in variable z, and it has

two solutions z = y2 and z =−y2(y2+1)2

y2
2+1

. There are two subcases that need to be considered.
Subcase 2.1: z = y2. Then the first equation in (20) still has two solutions y = 1 or y = y2 if y2 ̸= 1;

however, it leads to one solution if y2 = 1.
Subcase 2.2: z =−y2(y2+1)2

y2
2+1

. Then the first equation of (20) becomes

y2 − (y2 +1)y− y2(y2 +1)2

y2
2 +1

= 0. (21)

This is a quadratic equation in variable y with discriminant given by ∆ =
(y2+1)2(y2

2+4y2+1)
y2

2+1
. Note that

y2 =−1 will leads to a zero solution y = 0 of (21) and z = 0, which should be discarded since y, z ∈ F∗
pn .
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Therefore, y2 ̸=−1. When y2 ∈ Fpn \{0,−1}, (21) has two solutions in F∗
pn if η(∆) = 1, a unique solution

in F∗
pn if η(∆) = 0, and no solution if η(∆) =−1. So this subcase contributes

(
1+η

(
y2

2+4y2+1
y2

2+1

))
solutions

for y2 ∈ Fpn \{0,−1}.
Note that when y2 =−y2(y2+1)2

y2
2+1

, the solutions in Subcases 2.1 and 2.2 will overlap, and they need to be

excluded in the counting. Since y2 ̸= 0, y2 =−y2(y2+1)2

y2
2+1

is equivalent to that y2
2+y2+1 = 0. This holds if

and only if when η(−3) = 1 or η(−3) = 0, and for such y2 the above two subcases are the same. More
precisely, when η(−3) = 1, we can solve y2 =

−1±
√
−3

2 ∈ F∗
pn and each y2 contributes 2 solutions to M0;

if η(−3) = 0, i.e., p = 3, then y2 = 1 and it contributes only one solution to M0; if η(−3) =−1, then no
such y2 exists in Fpn . Therefore, there are ∑y2

2+y2+1=0 (1+η(−3)) solutions that have been counted twice
in Subcases 2.1 and 2.2.

Summarizing the above discussions, we can write the total number of solutions M0 of the equation
system (20) as

∑
y−2

2 +1=0

2+ ∑
y−2

2 +1̸=0
y2 ̸=1,0

2+ ∑
y−2

2 +1̸=0
y2=1

1

+ ∑
y−2

2 +1 ̸=0
y2 ̸=0,−1

(
1+η

(
y2

2 +4y2 +1
y2

2 +1

))

− ∑
y2

2+y2+1=0

(1+η(−3)) .

Noting that
∑

y−2
2 +1=0

2 = 2(1+η(−1)),

∑
y2

2+y2+1=0

(1+η(−3)) = (1+η(−3))2 ,

and

∑
y−2

2 +1=0

η

(
y2

2 +4y2 +1
y2

2 +1

)
= 0,

we can obtain
M0 = 3pn −8−2η(−1)−η(−3)(2+η(−3))

+ ∑
y2∈Fpn

η

(
y2

2 +4y2 +1
y2

2 +1

)
.

(22)

Then the desired value of |M ◦| follows immediately from the fact that λ2,pn = ∑y2∈Fpn η

(
y2

2+4y2+1
y2

2+1

)
and

the relation (18).

With the above preparations, we can now obtain the value of M easily.

Theorem 7. Let p ≥ 3 be an odd prime, T1 be given in Lemma 4, and λ2,pn be defined as in (2). Then
the number of solutions to the equation system (9), denoted by M, is given by

M = 1+(pn −1)(3pn +λ2,pn +4T1 −4
−2η(−1)−η(−3)(2+η(−3))).
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Proof. By the inclusion-exclusion principle we have

M = |M ◦|+
4

∑
i=1

∣∣Mi
∣∣− ∑

1≤i< j≤4

∣∣Mi ∩M j
∣∣

+ ∑
1≤i< j<k≤4

∣∣Mi ∩M j ∩Mk
∣∣− ∣∣∩4

i=1Mi
∣∣ .

Then using Lemmas 5 and 6 and noting (10) and (11), we obtain the desired result.

IV. THE DIFFERENTIAL SPECTRUM OF xpn−3

For the power function F(x) = xpn−3 with p being an odd prime in Theorem 1, it is already known
that the differential uniformity δ(F) of F(x) satisfies 1 ≤ δ(F)≤ 5 [13]. Recalling Definition 1, we can
assume the differential spectrum of F(x) = xpn−3 as

S= [ω0,ω1,ω2,ω3,ω4,ω5].

For p = 3, the differential spectrum S has been completely determined in [22]. However, the method used
in [22] heavily depends on the characteristic p = 3 and doesn’t seem to work for the general case p ≥ 5.
In this section, for any odd prime p ≥ 3, we will compute S by a unified approach.

A. Some basic properties about the differential spectrum
Before beginning our computations, we mention some basic properties about the differential spectrum

of a power mapping xd over finite fields. Let xd be a power mapping over Fpn with differential uniformity
δ, then using the notation in Definition 1 we have

δ

∑
i=0

ωi =
δ

∑
i=0

iωi = pn. (23)

The identities in (23) are well-known [2], [25], [22], and are useful in computing the differential spectrum.
Moreover, the following identity also plays an important role in the computation, which was established
in [13].

Lemma 8. [13, Theorem 10] With the notation introduced in Definition 1, let M denote the number of
solutions (x1,x2,x3,x4) ∈ (Fpn)4 of the equation system

{
x1 − x2 + x3 − x4 = 0,
xd

1 − xd
2 + xd

3 − xd
4 = 0. (24)

Then, we have
δ

∑
i=0

i2ωi =
M− p2n

pn −1
. (25)

With the equalities in (23) and (25), our strategy for computing the differential spectrum S of xpn−3

can be sketched as follows: first we will compute ω5, ω3 and ω2; then we establish a system of linear
equations in three variables ω0, ω1 and ω4 by (23) and (25), which enables us to express ω0, ω1 and
ω4 in terms of the known ω5, ω3 and ω2. Next we begin with the general setup for investigating the
differential spectrum.
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B. The general setup
For any b ∈ Fpn , the derivative equation D1F(x) = b is

(x+1)pn−3 − xpn−3 = b. (26)

Let N(b) denote the number of its solutions in Fpn . The elements ωi’s for i∈ {0,1, · · · ,5} in the differential
spectrum S are actually the number of b ∈ Fpn such that N(b) = i.

It can be easily observed that the derivative equation (26) has a solution x if and only if the derivative
equation (x+1)pn−3 −xpn−3 =−b has a solution −x−1. Thus, N(b) = N(−b) for any b. When b = 0, it
is easy to verify that x =−1

2 is the unique solution of (26). That is ta say, N(0) = 1. Moreover, note that
in (26) if b is equal to 1 (resp. −1), then x = 0 (resp. x =−1) is a solution to the corresponding equation
(26). Since N(0) is already determined, in the following we only need to consider N(b) for b ̸= 0.

For b ∈ F∗
pn , define

gb(x) = x4 +2x3 + x2 +2b−1x+b−1, (27)

and denote the number of its roots in Fpn by Tb. Note that for b = 1, Tb has already been determined in
Lemma 4. This polynomial is closely connected with the derivative equation (26). As a matter of fact,
when x ̸= 0,−1, (26) can be written as (x+1)−2 − x−2 = b, which is equivalent to

gb(x) = x4 +2x3 + x2 +2b−1x+b−1 = 0.

Hence we can arrive at the following result:

N(b) =

{
Tb, if b ∈ F∗

pn \{±1},
Tb +1, if b =±1.

(28)

Moreover, since N(b) = N(−b) for any b, it follows that

Tb = T−b for any b ∈ F∗
pn. (29)

C. The values of ω5

Note that (27) has at most four roots in Fpn . By (28), it is easy to see that δ(F) = 5 if and only if
N(1) = N(−1) = 5. Then, we have ω5 ∈ {0,2}, and ω5 = 2 if and only if T1 = 4. The condition for T1 = 4
has already been shown in Lemma 4. Thus, we can determine ω5 in the differential spectrum S as follows.

Theorem 9. With the notation introduced above, we have

ω5 =

{
2, if η(2) = η(−7) = η(−1+2

√
2) = 1,

0, otherwise.

D. The values of ω3

Next we investigate the value of ω3. When N(b) = 3, we distinguish the following two cases.
Case 1: b=±1. N(1) =N(−1) = 3 if and only if T1 = 2. By Lemma 4, this occurs only when η(2) = 1

and η(−7) =−1.
Case 2: b ̸=±1. By (28), N(b) = 3 if and only if Tb = 3. Thus, we need to characterize when Tb = 3

for b ∈ Fpn \{0,±1}. Such results are given below.

Lemma 10. Let b ∈ Fpn \ {0,±1}, and gb(x) be the polynomial defined as in (27). Then gb(x) = 0 has
a multiple root x0 ∈ Fpn if and only if p ̸= 7 and η(−3) = 1. In this case, the multiple roots x0’s are
−1

2 ±
1
6

√
−3, and the corresponding b’s are ∓3

√
−3.
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Proof. If x0 is a multiple root of gb(x) = 0, then g′b(x0) = 2(2x3
0 + 3x2

0 + x0 + b−1) = 0, and we have
x0 ̸= 0,−1. Hence b−1 =−(2x3

0 +3x2
0 + x0). Substituting it into the original equation, we get

x0(x0 +1)(3x2
0 +3x0 +1) = 0.

This together with x0 ̸= 0,−1 leads to 3x2
0 +3x0 +1 = 0. Such x0 exists if and only if η(−3) = 1. Then

we have x0 =−1
2 ±

1
6

√
−3 and the corresponding b’s are ∓3

√
−3.

Moreover, if p = 7, then we may take
√
−3 = 2 since 22 = −3, and thus b = ∓3

√
−3 = ±1, a

contradiction. Therefore, we need the condition p ̸= 7 holds.

Lemma 11. Let b ∈ Fpn \{0,±1}. Then Tb = 3 if and only if p ̸= 7, η(−3) = η(−2) = 1 and b =±3
√
−3.

Proof. If Tb = 3, then gb(x) = 0 must have a multiple root x0 in Fpn . By Lemma 10, we have p ̸= 7,
η(−3) = 1 and (x0,b) = (−1

2 +
1
6

√
−3,−3

√
−3) or (x0,b) = (−1

2 −
1
6

√
−3,3

√
−3). For the former case,

the equation gb(x) = 0 can be written as

(x− x0)
2(x2 +(1+

1
3

√
−3)x

+(−1
2
+

1
6

√
−3)) = 0,

(30)

which has three solutions in Fpn if and only if η((1+ 1
3

√
−3)2 − 4(−1

2 +
1
6

√
−3)) = η(8

3) = 1, that is,
η(6) = 1. Since η(−3) = 1, this is equivalent to that η(−2) = 1. It can be checked that in this case
the other two solutions of (30) are −1

2 −
1
6

√
−3± 1

3

√
6, which are different from x0. For the latter case

(x0,b) = (−1
2 −

1
6

√
−3,3

√
−3), the arguments are almost the same. So we omit the details.

Based on the above results, we can now obtain the value of ω3 below.

Theorem 12. Let C1 denote the condition that η(2) = −η(−7) = 1 and C2 denote the condition that
η(−3) = η(6) = 1 and p ̸= 7. Then, we have

ω3 =


4, both C1 and C2 hold,
2, only one of C1 and C2 holds,
0, otherwise.

(31)

Alternatively, the value ω3 may be expressed as

ω3 =
η(7)2η(3)2

2

((
1+η(2)

)
·
(
1−η(−7)

)
+
(
1+η(−2)

)
·
(
1+η(−3)

))
.

(32)

Proof. In order to find the value of ω3, we need to find the frequency of b ∈ Fpn such that N(b) = 3.
There are two cases to consider.

Case 1: b = ±1. N(1) = N(−1) = 3 if and only if T1 = 2. By Lemma 4, this occurs if and only if
η(2) = 1 and η(−7) =−1, which is Condition C1.

Case 2: b ̸= ±1. By Lemma 11, N(b) = Tb = 3 if and only if p ̸= 7, η(−3) = η(−2) = 1 and the
corresponding b′s are ±3

√
−3. Here we get Condition C2.

Combining these two cases yield the expression of ω3 in (31). As for the expression of ω3 in (32),
denote

f1 := η(7)2
η(3)2 ·

(
1+η(2)

)
·
(
1−η(−7)

)
,

f2 := η(7)2
η(3)2 ·

(
1+η(−2)

)
·
(
1+η(−3)

)
.
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Then (32) follows easily from the observation that

f1 =

{
4, if C1 holds,
0, if C1 does not hold,

f2 =

{
4, if C2 holds,
0, if C2 does not hold,

This finishes the proof of Theorem 12.

E. The value of ω2

This subsection is devoted to the computation of ω2. Recall the basic facts in (28) and (29). First, we
prove the following useful result.

Lemma 13. Let p ≥ 3 and let Tb be the number of roots of the polynomial gb(x) ∈ Fpn[x] defined as in
(27). Define two sets

A = {a ∈ Fpn | η(a2 −4) = 1 and
η(−3a2 −4) =−1}, (33)

and
B = {b ∈ F∗

pn | Tb = 2}. (34)

Then, there is a one-to-one correspondence between the elements b∈B and the elements a∈A . Moreover,
if η(2) = 1 and η(−7) =−1, then ±1 ∈ B and the corresponding a’s belong to {±2

√
2}.

Proof. For b ∈ B , the proofs of Lemmas 10 and 11 imply that gb(x) = 0 can not have multiple roots, so
it has exactly two distinct simple roots in Fpn . Putting y = 2x+1 in (27), gb(x) = 0 becomes

y4 −2y2 +16b−1y+1 = 0, (35)

which also has exactly two distinct simple roots in Fpn for each b ∈ B . Thus, we can factor (35) into the
form

(y2 +ay+ c)(y2 −ay+ c−1) = 0, (36)

where the pair (a,c) satisfies the following conditions
1) a ∈ F∗

pn , c ∈ F∗
pn;

2) y2 +ay+ c is irreducible over Fpn , that is, η(a2 −4c) =−1;
3) y2 −ay+ c−1 has two distinct roots in Fpn , that is, η(a2 −4c−1) = 1;
4) {

c+ c−1 = a2 −2,
a(c− c−1) =−16b−1,

(37)

which is obtained by comparing (35) with (36). This gives the correspondence from b∈B to the pairs (a,c)
satisfying the above conditions. Once b∈B is given, the two solutions of (35) are uniquely determined and
so are the pair (a,c) and the element a. This shows that for each b ∈ B , there exists a unique a satisfying
the conditions in 1)−4). Now we verify that this a ∈ A . For this a, (37) implies that c+c−1 = a2−2 has
two distinct roots c ̸= c−1 ∈ Fpn , so we have η((a2 −2)2 −4) = η(a2(a2 −4)) = 1, that is, η(a2 −4) = 1
and a ∈ F∗

pn . On the other hand, from

−1 = η((a2 −4c)(a2 −4c−1))
= η(a4 −4a2(c+ c−1)+16)
= η((a2 −4)(−3a2 −4)),

(38)
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we derive that η(−3a2 −4) =−1. This shows that a indeed belongs to A .
Now suppose that a ∈ A . We show that c and b are all uniquely determined by this a according to (36),

and b ∈ B .
First, since η(a2 − 4) = 1, the first equation of (37) has two distinct solutions c1,c2 ∈ Fpn , and we

have η((a2−4c1)(a2−4c2)) =−1 due to (38). We may assume η(a2−4c1) =−1. Then we take c = c1.
This is the desired c in (36) such that y2 +ay+ c is irreducible over Fpn and y2 −ay+ c−1 is reducible
with two distinct roots in Fpn . Choosing b according to the second equation of (37), we can obtain
y4 −2y2 +16b−1y+1 = (y2 +ay+c)(y2 −ay+c−1) = 0, which has exactly two roots in Fpn . This shows
that b ∈ F∗

pn is uniquely determined by a and it satisfies Tb = 2. This finishes the proof of the first part of
Lemma 13.

As for the second part, when η(2) = 1 and η(−7) =−1, by Lemma 4 and (29), we have T1 = T−1 = 2
and thus ±1 ∈ B . Then from (37) we obtain

162 = (−16b−1)2 = a2(c− c−1)2 = a2((a2 −2)2 −4),

that is,
(a2 −8)(a4 +4a2 +32) = 0,

which implies that a4+4a2+32= 0 or a2 = 8. If a4+4a2+32= 0, then we have η(42−4 ·32) = η(−7) =
1, a contradiction. Hence we have a2 = 8 and it can be easily verified that the corresponding two a’s
indeed belong to A . This proves the second part of Lemma 13.

Now we can obtain the value of ω2 in the following theorem.

Theorem 14. For p ≥ 3, we have

ω2 =



0, if p = 3 and n is even,
3n−3

2 , if p = 3 and n is odd,
A+2, if p = 7 and n is odd,
A−2, if η(2) = 1 and η(−7) =−1,
A, otherwise.

where A = 1
4

(
pn −5−λ1,pn −η(−3)+2η(−1)

)
with λ1,pn being defined as in (1).

Proof. If N(1) = N(−1) = 2, then T1 = T−1 = 1. By Lemma 4, this occurs only when p = 7 and n is
odd. Now we need to consider the number of b ∈ Fpn \ {0,±1} such that Tb = 2, by Lemma 13 which
is related to the cardinality of the set A defined in (33) or B in (34). We distinguish the following two
cases.

Case 1: p = 3. Then, we have T±1 ̸= 1, ±1 /∈ B and the set A defined in (33) becomes

A = {a ∈ F3n | η(a2 −1) = 1 and η(−1) =−1}.

Therefore, in this case we have
ω2 = |B|= |A |.

If n is even, then η(−1) = 1 and thus |A |= 0. Otherwise, we have

A = {a ∈ F∗
3n | η(a2 −1) = 1},

and by the cyclotomic numbers used in [22], we have

|A |= 3n −3
2

.

Thus, in this case, we have

ω2 =

{
0, if n is even,
3n−3

2 , if n is odd.
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Case 2: p ≥ 5. Then, by Lemma 13 we find that∣∣{b ∈ Fpn \{0,±1} | Tb = 2}
∣∣={

|A |−2, if η(2) = 1 and η(−7) =−1,
|A |, otherwise.

This shows that when p ≥ 5

ω2 =


|A |−2, if η(2) = 1 and

η(−7) =−1,
|A |+2, if p = 7 and n is odd,
|A |, otherwise.

(39)

Now it suffices to determine the cardinality of A . Actually, since p ≥ 5,

|A |
= 1

4 ∑

a2 ̸=4,− 4
3

(
1+η(a2 −4)

)(
1−η(−3a2 −4)

)
= 1

4 ∑
a∈Fpn

(
1+η(a2 −4)

)(
1−η(−3a2 −4)

)
−1+ 1

2η(−1)− 1
2η(−3)

= 1
4

[
∑

a∈Fpn
η(a2 −4)− ∑

a∈Fpn
η(−3a2 −4)

− ∑
a∈Fpn

η((a2 −4)(−3a2 −4))+ ∑
a∈Fpn

1
]

−1+ 1
2η(−1)− 1

2η(−3).

By using the facts that ∑
a∈Fpn

η(a2−4)=−1 and ∑
a∈Fpn

η(−3a2−4)=−η(−3), and noting that ∑a∈Fpn η
(
(a2 −4)(−3a2 −4)

)
is exactly the character sum λ1,pn evaluated in Theorem 3, we obtain |A | = A. Then the desired result
follows from (39). This completes the proof of Theorem 14.

Based on the previous results and the identities in (23) and (25), we can obtain the following main
result about the differential spectrum of xpn−3.

Theorem 15. Let S= [ω0,ω1, . . . ,ω5] be the differential spectrum of F(x) = xpn−3. Then we have
ω0 = M−2p2n+pn

4(pn−1) + 1
2ω2 +

1
2ω3 −ω5,

ω1 = −M+5p2n−4pn

3(pn−1) − 4
3ω2 −ω3 +

5
3ω5,

ω4 = M−2p2n+pn

12(pn−1) − 1
6ω2 − 1

2ω3 − 5
3ω5,

(40)

where ω5, ω3 and ω2 are given in Theorems 9, 12 and 14, respectively, and M is given in Theorem 7.

Remark 5. Applying Theorem 15, the differential spectrum S of xpn−3 for any odd prime p ≥ 3 can be
completely determined. To be more concrete, for each given prime p ≥ 3, one first compute the exact
values of ω5, ω3, ω2 and M:

• the values of ω5 and ω3 can be derived from Theorems 9 and 14 respectively after calculating the
quadratic character of some specified elements;

• the value of ω2 is given in Theorem 14. For p = 3, it is already given explicitly. For any p ≥ 5, ω2
is expressed in terms of the quadratic character sum λ1,pn , which has been evaluated in Theorem 3.

• the value of M shown in Theorem 7 is related to the quadratic character sum λ2,pn . For any prime
p ≥ 3, one can explicitly express the parameter M in terms of n by utilizing (3), Theorem 3, Lemma
4 and Theorem 7.
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Then, the differential spectrum S can be computed via (40), and one can express it explicitly in terms of
n.

We provide the following results to illustrate Theorem 15. The first one is about the case p = 3, which
has been investigated in [22] with a different method.

Corollary 16. Let p = 3 and let S = [ω0,ω1, . . . ,ω5] be the differential spectrum of the power mapping
xpn−3 over F3n . Then, (i) when n is odd,

S= [ω0 =
3n −3

2
, ω1 = 3, ω2 =

3n −3
2

,

ω3 = 0, ω4 = 0, ω5 = 0];

(ii) when n ≡ 2 (mod 4),

S= [ω0 =
3n −9

4
, ω1 = 2 ·3n−1 +3, ω2 = 0,

ω3 = 0, ω4 =
3n−1 −3

4
, ω5 = 0];

(iii) when n ≡ 0 (mod 4),

S= [ω0 =
3n −1

4
, ω1 = 2 ·3n−1 +1, ω2 = 0,

ω3 = 0, ω4 =
3n−1 −11

4
, ω5 = 2].

Proof. For p = 3, by Theorem 9, we have ω5 = 0 if n is odd or n ≡ 2 (mod 4), and ω5 = 2 if n ≡
0 (mod 4) since in this case

(
x2 +1

)2 −8 = x4 +2x2 +2 is irreducible over F3. By (32) in Theorem 12,
we have ω3 = 0. By Theorem 14, we have ω2 = 0 if n is even, and ω2 =

3n−3
2 if n is odd. By Theorem

7, we get M = 1+ (3n − 1)(3n+1 − 2) if n is odd, M = 1+ (3n − 1)(3n+1 − 8) if n ≡ 2 (mod 4), and
M = 1+(3n−1)(3n+1+8) if n ≡ 0 (mod 4). Then, we should distinguish three cases and substituting the
corresponding values into (40), the differential spectrum S is derived.

Remark 6. For the case p = 3, based on the characteristic property, the work of [22] calculated ω4
directly instead of investigating the parameter M. However, their method in [22] doesn’t seem to work
for general case p ≥ 5. The approach in the present paper works for all odd primes.

Corollary 17. Let p = 5 and Γ5,n =−
(
−1+2

√
−1

)n −
(
−1−2

√
−1

)n obtained from Example 1. Then,
the differential spectrum S of xpn−3 is shown as follows:
(i) when n is odd, S is given by

[ω0 =
3 ·5n +Γ5,n −17

8
, ω1 =

5n +10
3

,

ω2 =
5n −Γ5,n −3

4
, ω3 = 0,

ω4 =
5n +3 ·Γ5,n −11

24
, ω5 = 0];

(ii) when n ≡ 2 (mod 4), S is given by

[ω0 =
3 ·5n +Γ5,n −17

8
, ω1 =

5n +8
3

,

ω2 =
5n −Γ5,n −3

4
, ω3 = 2,

ω4 =
5n +3 ·Γ5,n −43

24
, ω5 = 0];
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(iii) when n ≡ 0 (mod 4), S is given by

[ω0 =
3 ·5n +Γ5,n −1

8
, ω1 =

5n +2
3

,

ω2 =
5n −Γ5,n −3

4
, ω3 = 2,

ω4 =
5n +3 ·Γ5,n −91

24
, ω5 = 2].

Proof. If p = 5, then a = Γ5,1 = 2 and the explicit formula for Γ5,n follows from Theorem 3. Next we
consider the following two cases:

Case 1: n is odd. Then, the element 2 is a nonsquare in F5n since it is a nonsquare in F5. Thus, we
have ω5 = 0, ω3 = 0 and ω2 =

5n−Γ5,n−3
4 according to Theorems 9, 12 and 14, respectively. Furthermore,

we have T1 = 0 by Lemma 4 and M = 5n +(5n −1)(3 ·5n +Γ5,n −7) by Theorems 7 and 3. Substituting
ω5, ω3, ω2 and M into Theorem 15, we obtain the desired result.

Case 2: n is even. Then, the elements ±2 are squares in F5n . One needs to decide whether −1±2
√

2 are
squares in F5n or not. Note that −1+2

√
2 (resp. −1−2

√
2 ) is a square in F5n if and only if (x2+1)2 = 8

has a solution in F5n , while the associated polynomial (x2+1)2−8 is an irreducible polynomial over F5.
Thus, −1+2

√
2 (resp. −1−2

√
2 ) is a square in F5n if and only if n ≡ 0 (mod 4). As we have done in

Case 1, the desired results then follows from Theorem 15.

Similarly, for p= 7, the differential spectrum of the function x7n−3 over F7n can be presented as follows.

Corollary 18. The power mapping x7n−3 over F7n is differentially 4-uniform and its differential spectrum
S is given as follows:
(i)

S= [ω0 =
3 ·7n −5

8
, ω1 =

7n +2
3

, ω2 =
7n +1

4
,

ω3 = 0, ω4 =
7n −7

24
]

if n is odd;
(ii)

S= [ω0 =
3 ·7n −2(−7)n/2 −1

8
, ω1 =

7n +2
3

,

ω2 =
7n +2(−7)n/2 −3

4
, ω3 = 0,

ω4 =
7n −6(−7)n/2 +5

24
]

if n is even.

For other given primes p, one can also obtain similar results as Corollaries 16, 17 and 18 by Theorem
15. Next we provide some numerical experiments to verify our results in previous theorems.

Example 2. Let p = 5, n = 4, d = pn −3 = 622 and η be the quadratic character of F54 . Then, one has
η(2)=η(−1±2

√
2)= 1, and η(−3)=η(6)= 1. Thus, by Theorems 9 and 12, we have ω5 = 2 and ω3 = 2.

By Theorem 3, we get Γ5,4 = 14 and λ1,54 = 13. Then, by Theorem 14, we obtain ω2 = 152. By Lemma
4 we have T1 = 4 and by Theorem 7 one gets M = 1182481. By Theorem 15, we get ω0 = 236, ω1 =
209 and ω4 = 24.
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The result of the above computation can also be obtained directly by Corollary 17, and it is in
accordance with the differential spectrum of the mapping x622 over F54 calculated directly by Magma,
which is

[ω0 = 236, ω1 = 209, ω2 = 152,
ω3 = 2, ω4 = 24, ω5 = 2].

Example 3. Let p = 5, n = 5, d = pn−3 = 3122 and η be the quadratic character of F55 . Then, one has
η(2) = η(−3) = −1. Thus, by Theorems 9 and 12, we have ω5 = 0 and ω3 = 0. We get Γ5,5 = 82 and
λ1,55 = 83 by Theorem 3. Then, by Theorem 14, we obtain ω2 = 760. By Lemma 4 we have T1 = 0 and
by Theorem 7 one gets M = 29524925. By Theorem 15, we get ω0 = 1180, ω1 = 1045 and ω4 = 140.

From Corollary 17, we can get the same result directly. The above result is also in accordance with
the numerical result obtained from computer experiments, which is

[ω0 = 1180, ω1 = 1045, ω2 = 760,
ω3 = 0, ω4 = 140].

Example 4. Let p = 7, n = 4, d = pn − 3 = 2398. By Theorems 9 and 12, we have ω5 = 0 and ω3 = 0.
By Theorem 3 and Remark 2, we get λ1,74 =−99. Then, by Theorem 14, we obtain ω2 = 624. By Lemma
4 we have T1 = 3 and by Theorem 7 one gets M = 17056801. By Theorem 15, we get ω0 = 888, ω1 =
801 and ω4 = 88.

The above result can also be obtained directly by Corollary 18, and it coincides with the numerical
result computed by Magma, which is

[ω0 = 888, ω1 = 801, ω2 = 624, ω3 = 0, ω4 = 88].

V. CONCLUDING REMARKS

In this paper, we determine the differential spectrum of power function xpn−3 over Fpn for all primes
p≥ 3 with a unified approach. It is interesting that the differential spectrum of xpn−3 has a close connection
with the quadratic character sums λ1,pn defined as in (1) and λ2,pn in (2). When p ≥ 5, these two quadratic
character sums are all related to the quadratic character sum Γp,n, which can be evaluated by the theory
of elliptic curves over finite fields. As a result, the differential spectrum of xpn−3 over Fpn is completely
determined in the sense that for any given odd prime p, all its coordinates can be expressed explicitly in
terms of n. Our result resolves a problem that is left open for twenty years, and includes a recent result
in [22] as a special case.
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