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Sample weight calibration, also referred to as calibration estimation, is a widely

applied technique in the analysis of survey data. This method borrows strength from

a set of auxiliary variables and can produce weighted estimates with smaller mean

square errors than those estimators that do not use the calibration adjustments.

Poststratification is a well-known calibration method that forces weighted counts

within cells generated by cross-classifying the categorical (or categorized) auxiliary

variables to equal the corresponding population control totals.

Several assumptions are critical to the theory developed to date for weight

calibration. Two assumptions relevant to this research include: (i) the control totals

calculated from the population of interest and known without (sampling) error;

and (ii) the sample units selected for the survey are taken from a sampling frame

that completely covers the population of interest (e.g., no problems with frame

undercoverage).

With a few exceptions, research to date generally is conducted as if these

assumptions hold, or that any violation does not affect estimation. Our research



directly examines the violation of the two assumptions by evaluating the theoretical

and empirical properties of the mean square error for a set of calibration estimators,

newly labeled as estimated-control (EC) calibration estimators. Specifically, this dis-

sertation addresses the use of control totals estimated from a relatively small survey

to calibrate sample weights for an independent survey suffering from undercoverage

and sampling errors. The EC calibration estimators under review in the current

work include estimated totals and ratios of two totals, both across all and within

certain domains. The ultimate goal of this research is to provide survey statisticians

with a sample variance estimator that accounts for the violated assumptions, and

has good theoretical and empirical properties.
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Chapter 1

Statement of Work

Sample weight calibration, also referred to as calibration estimation, is a tech-

nique widely applied throughout the survey research world. This method borrows

strength from a set of auxiliary variables which in general results in weighted es-

timates with smaller mean square errors (MSE = variance + squared bias) than

those which do not use the calibration adjustments. Reduction in MSE is related

to the association between the auxiliary and analysis variables. Poststratification is

a well-known calibration method that forces weighted counts within cells generated

by cross-classifying the categorical (or categorized) auxiliary variables to equal the

corresponding population counts. These counts are also known as control totals or

benchmark controls. If the population cell counts are unavailable, the estimated

and true marginal counts are equalized through iterative proportional fitting (i.e.,

raking) or other regression techniques.

Several assumptions are critical to the theory developed to date for weight

calibration. Some of these assumptions are explicitly stated in the literature, while

others are more implicit and identified based on the theoretical evaluations pre-

sented. The assumptions include, for example: (i) the control totals are calculated

from the population and known without sampling or other errors (e.g., measure-
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ment); (ii) the sample units selected for the survey are taken from a sampling frame

that completely covers the population of interest (e.g., no missing population units

resulting in undercoverage problems); and (iii) the survey requiring calibration does

not suffer from nonsampling errors such as nonresponse (e.g., 100 percent response

rate) or measurement error (i.e., data values are given and recorded accurately).

With a few exceptions, research to date generally is conducted by assuming

that these theoretical requirements hold or that any violation of these assumptions

is minimal and does not impact estimation. Our research examines the effects of

violating several assumptions on the theoretical properties and empirical MSE es-

timates of calibrated estimators. Specifically, we address the use of control totals

estimated from a potentially small survey to calibrate sample weights for a survey

suffering from undercoverage and sampling errors. We label this weighting method-

ology as estimated-control (EC) calibration. Our methods will be extended at a later

date to address the effects of nonresponse and measurement error. Estimated totals

and ratios of two totals, both across all and within certain domains, are of particu-

lar interest to our research. Ultimately our goal is to develop one or more variance

estimators that account for the violated assumptions, thereby translating our theo-

retical findings into practical applications for survey statisticians. The association

between the analysis variables and auxiliary variables is assumed to be adequately

modeled through a linear regression (i.e., linear calibration). Other estimators such

as regression coefficients and non-linear calibration are reserved for future research.

The results obtained from our current research expand the body of knowledge

on weight calibration and are presented in the subsequent chapters. We provide

2



a brief overview of the extensive research conducted to date in Chapter 2 as it

relates to our work. Chapter 3 details the scope of our research including notation,

assumptions for the theoretical evaluation, and data used to generate the empirical

results. We begin in Chapter 4 with the development and evaluation of bias and

variance estimators for (overall) estimated population totals. A similar structure is

used in Chapter 5 to present findings for ratios of two estimated totals. Domain

estimation for both totals and ratios is discussed in Chapter 6. Chapter 6, as

do Chapters 4 and 5, begins with theory and then proceeds to a summary of the

empirical results from a simulation study. We conclude the dissertation in Chapter

7 with a overall summary of our findings and a map for our future endeavors on

weight calibration.
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Chapter 2

Historical Perspective

The discussion of calibration estimation below begins with an overview of the

extensive literature on traditional weight calibration in which control totals are as-

sumed to be fixed population values. We label this methodology as “traditional”

to distinguish it from the weight calibration discussed later in this chapter. Where

appropriate, we point to issues reserved for future research in comparison to areas

covered by our current work. We focus on a specific set of calibration estimators for

population totals and ratios of two totals (Section 2.1), and discuss the theoretical

properties of these point estimators in Section 2.2. As reiterated throughout the

text, literature related to weight calibration using survey-estimated controls, here-

after referred to as estimated-control (EC) calibration, does exist but is sparse. A

discussion of the current techniques for calibration variance estimation follows in

Section 2.3. We conclude this chapter with issues related to domain-specific cali-

bration estimation (Section 2.4).

2.1 Calibration Estimators

Calibration estimators, a label first used by Deville & Särndal (1992), identify

a class of estimators that borrow strength from auxiliary information to improve the

4



efficiency of survey estimates over more traditional weighting methods such as simple

inverse probability weighting. When the G (G ≥ 1) auxiliary variables are strongly

related to a survey outcome (y), the corresponding calibration estimate will be very

efficient. However, we can not expect a high level of association between the auxiliary

variables and every outcome measured in the survey, so that the efficiency will

naturally vary. We briefly compare this efficiency against levels for other estimators

in the next section.

Calibration estimators are used in all types of surveys. These include, for

example, large U.S. government surveys, such as the Consumer Expenditure Survey

(see, e.g., Jayasuriya & Valliant, 1996) and the National Health Interview Survey

(National Center for Health Statistics, 2006); surveys of specialized populations,

such as the U.S. Department of Defense (DoD) Survey of Health Related Behaviors

among Military Personnel (Bray et al., 2003); and a myriad of surveys outside the

U.S. including the Canadian Retail Trade Survey (see, e.g., Hidiroglou & Patak,

2006), the Swedish Labour Force Survey (Sweden, 2005), and the British Household

Panel Survey (Taylor et al., 2007).

Weight calibration is used to correct survey estimates for sampling frame prob-

lems such as undercoverage and to reduce errors associated with sampling and non-

response (see, e.g., Särndal et al., 1992; Kott, 2006). Undercoverage occurs when the

sampling frame fails to contain all units for the population under study (see, e.g.,

Lessler & Kalsbeek, 1992). For example, estimates from the Behavioral Risk Fac-

tor Surveillance System (BRFSS), a nationwide random-digit-dial (RDD) telephone

survey conducted by the U.S. Centers for Disease Control and Prevention (CDC),

5



are calibrated (i.e., benchmarked or poststratified) to population counts that include

households with and without landline telephone service (Centers for Disease Control

and Prevention, 2006). Preliminary results from the 2007 National Health Interview

Survey (NHIS) suggest that approximately 15.8 percent of American homes prefer

wireless communications and no longer have a landline service (Blumberg & Luke,

2008). If population values are different for the covered and not-covered groups and

the proportion not covered is sizeable, then estimates obtained from the BRFSS can

have non-trivial levels of error without the use of corrective methods such as calibra-

tion. Groves (1989, Section 3.2) provides the following formula for undercoverage

error associated with a linear estimator:

θc − θ =
Nnc

N
(θc − θnc) (2.1)

where θ is the true value for a population of size N ; θc and θnc are the popula-

tion values for covered and not-covered subsets of the population, respectively; and

Nnc/N is the proportion of the population not covered by the sampling frame.

The calibrated weight wk is composed of the original design weight π−1
k , the

inverse of the sample inclusion probability for the kth unit of observation, multiplied

by a calibration-adjustment factor ak. Traditional weight calibration assumes that

the analytic survey (i.e., the survey requiring weight calibration) has no nonresponse.

In practice, however, a separate adjustment for nonresponse may also be applied to

the design weights. Calibrated weights are historically calculated by minimizing a

specified function that measures the distance between wk and π−1
k . The distance

6



function, F (wk, π
−1
k ), is minimized subject to a set of calibration constraints (or

calibration equations) defined as:

tx =
∑

k∈sA

wkxk (2.2)

where tx =
∑

l∈U xl = [t1, ..., tG]′ is the vector of population control (benchmark)

totals corresponding to G chosen (auxiliary) survey variables, and x is a vector of

length G containing either analytic survey (k ∈ sA) or benchmark (k ∈ U) values.

The vector x may include a column of ones (x = 1) for constrained estimation of

the overall population size, ones and zeros to indicate the presence or absence of a

characteristic (e.g., age 18-25 or gender), or larger values (e.g., number of children,

or household income). The calibration system (distance function and calibration

constraints) results in calibration weights of the form

wk = π−1
k F−1(xk,λ, ck) (2.3)

where F−1 is the inverse function of ∂F/∂wk, the first derivative of the distance

function taken with respect to the calibrated weight; λ is the G-length vector of

Lagrange multipliers that satisfies the calibration constraints (2.2) given the design

weights π−1
k ; and ck is a value associated with the estimator of choice.

The distance function, F (wk, π
−1
k ), can take multiple forms but is generally

chosen from a class of functions that are monotonic and twice-differentiable (Deville

& Särndal, 1992). Several of these distance functions are discussed in Deville &
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Särndal (1992), Huang & Fuller (1978), and Singh & Mohl (1996). Empirical studies

such as those in Singh & Mohl (1996) and Stukel et al. (1996) show that the specific

choice of the distance function does not greatly affect either the point or variance

estimates, provided that the data are complete (i.e., no missing values). They

suggest that the choice of the particular distance function is often more related to

personal preference for the resulting estimator or to the structure of the control

totals than to an optimality justification.

Deville & Särndal (1992), by contrast, point to potential problems with five

commonly used distance functions. For example, the generalized least squares (GLS)

distance function

∑

k∈sA

(wk − π−1
k )2/2ckπ

−1
k , (2.4)

also known as the average or chi-square distance function, generates a closed-form

solution to the minimization problem but can result in one or more negative weights.

Practitioners consider negative weights to be highly undesirable because they do

not have the intuitive interpretation present for inverse-probability weights, i.e., wk

provides the number of units represented in the population by the results collected

for the kth sample unit.

To remedy the problem of negative weights, Deville & Särndal (1992) proposed

two additional distance functions (Cases 6 and 7 in their article). These distance

functions are constrained to produce calibration-adjustment factors (ak = wk× πk),

referred to as a g-weight in Section 6.5 of Särndal et al. (1992), that fall within a

range of values specified by the researcher (e.g., lower bound greater than zero and

8



upper bound less than some extreme value). Calibration with constrained weight-

adjustment factors is widely applied through existing software such as a quadratic

or optimization programming routine from IMSL used by Isaki et al. (2004); the

generalized exponential modeling (GEM) software developed by Folsom & Singh

(2000) using SASr IML; and the calibrate function in the Rr language survey

library (R Development Core Team, 2005). Even with its popularity, theory to

date has been developed under the assumption that the distance function produces

nicely behaved weights because bounding complicates the theory. We shall follow

this direction with our current research and plan to address constrained ak’s in our

future EC calibration work.

Returning to expression (2.4), the ck’s are positive “weights” unrelated to the

design weights that are chosen to generate specific types of estimators (Estevao &

Särndal, 2000; Lundström & Särndal, 1999; Stukel et al., 1996; Tracy et al., 2003).

This property is related to the popularity of the GLS distance function. For example,

ck = x−1
k for a model that relates the outcome variable y to a single auxiliary variable

x with V arε(yk) = σ2xk, and motivates the ratio estimator of a population total

t̂yRT = tx

(
t̂Ay

t̂Ax

)
=

∑

l∈U

xl

(∑
k∈sA

π−1
k yk∑

k∈sA
π−1

k xk

)
.

Estimates, as opposed to population values, are identified in formulae in this and

subsequent chapters by the “hat” notation. For example, tx is a population total of

x while t̂Ax is the corresponding estimated total from the analytic survey data.

Not all distance functions produce a closed-form solution as with the GLS;
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some functions require iterative procedures to solve the calibration system. For

example, the raking ratio (or iterative proportional fitting) distance function, defined

as F (wk, π
−1
k ) = ckπ

−1
k [wkπk(ln(wkπk) − 1) + 1], requires iteration techniques to

calculate the estimates. This distance function, however, does guarantee positive

calibrated weights. Iterative methods are easily applied in practice but complicate

the theoretical development of new techniques because a closed-form solution is

not available. Therefore, such distance functions have limited use in our current

research.

The GLS distance function (2.4) is also referred to as a linear distance function

because the resulting inverse function (F−1) is linear only in the auxiliary variables

(x). The benefit of such a property is that the resulting calibrated analysis weights

are functions only of the auxiliary variables and not any of the outcome variables. In

other words, one set of final analysis weights is created instead of requiring weights

specific to each variable within a set of key outcome variables. This feature is of

particular interest to organizations that produce analysis files for use either by the

public or by client agencies. For example, minimizing the GLS distance function

subject to the controls in (2.2) with ck = 1 (i.e., V arε(yk) = σ2) generates the well-

known generalized (linear) regression estimator (GREG). The GREG of a population

total is calculated as follows, using the traditional calibration assumptions noted in
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Chapter 1:

t̂yTRGR =
∑

k∈sA

wkyk

=
∑

k∈sA

akπ
−1
k yk

=
∑

k∈sA


1 +

(
tx − t̂Ax

)′
(∑

l∈sA

π−1
l xlx

′
l

)−1

xk


 π−1

k yk (2.5)

where the vector of Horvitz-Thompson (HT) auxiliary variable estimates, t̂Ax =

∑
sA

π−1
k xk =

[
t̂A1, ..., t̂AG

]′
, corresponds to the G-length vector of population con-

trols tx (Horvitz & Thompson, 1952). Here we see that the calibration-adjustment

factor ak = 1+
(
tx − t̂Ax

)′ (∑
l∈sA

π−1
l xlx

′
l

)−1
xk is a function of the population con-

trol total vector (tx), the vector of estimated totals (t̂Ax), the auxiliary variables

(x), and the design weights (π−1
k ), but not the outcome variable y. Hence, this same

set of calibrated weights can be used with any analysis variable.

Generation of estimators by minimizing a distance function is labeled as the

calibration approach, while another method is referred to as “GREG thinking” or

the regression approach (Särndal, 2007). With the regression approach, estimators

are calculated by way of an assisting model that closely represents the relationship

between the outcome variable (y) and the auxiliary variables (x). The assisting

model is also referred to as the calibration model or the working prediction model

by Kott (2006) to distinguish it from other models such as those used to address

response propensity. The model is labeled as “assisting” or “working” because we do

not assume equivalence with the true (unknown) underlying population model. The
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size of the residuals measures the effectiveness of the model; the benefits of small

residuals are highlighted in Section 2.3. Therefore, t̂yTRGR in (2.5) is equivalently

justified as follows using a linear assisting model such that Eε(yk) = x′kB and

V arε(yk) = σ2, where Eε and V arε represent the expectation and variance evaluated

with respect to the specified working model:

t̂yTRGR = t̂Ay + (tx − t̂Ax)
′B̂A. (2.6)

The HT estimator of y is defined as t̂Ay =
∑

k∈sA
π−1

k yk, a function of the outcome

variable and the design weights. The model coefficient vector

B̂A =

[∑

l∈sA

π−1
l xlx

′
l

]−1 ∑

k∈sA

xkπ
−1
k yk (2.7)

is calculated based on the specification of a working model, yk = x′kB + Ek, and is

approximately design unbiased for the corresponding population parameters B =

[∑
l∈U x′lxl

]−1 ∑
k∈U xkyk (see, e.g., Result 5.10.1 in Särndal et al., 1992), under an

assumption of complete response and no sampling frame error. It is also assumed

that the matrix
∑

l∈sA
π−1

l xlx
′
l of dimension G is nonsingular so that the inverse

exists. Finally, ak = 1+(tx−t̂Ax)
′(
∑

l∈sA
π−1

l xlx
′
l)
−1xk is the calibration-adjustment

factor, thus demonstrating the equivalence of (2.5) and (2.6).

Another special case of the traditional GREG estimator, which is well-known

and widely applied, is the poststratified estimator. Using the assisting-model ap-

proach, these estimators are generated under the group-mean (linear) assisting
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model defined by Eε(yk) = Bg and V arε(yk) = σ2
g for units within each of g = 1, ..., G

poststrata. A single auxiliary variable is used in the model which indicates unit

membership in the mutually exclusive poststrata. Thus, Bg = ȳg, the average of

y in poststratum g. The poststratified estimator of a population total, sometimes

referred to as a ratio estimator, is calculated as follows again using the traditional

calibration assumptions:

t̂yTRPS =
G∑

g=1

Ng
t̂Ayg

N̂Ag

=
G∑

g=1

NgN̂
−1
Ag

[∑

k∈sA

δgkπ
−1
k yk

]

=
∑

k∈sA

[
G∑

g=1

NgN̂
−1
Ag δgk

]
π−1

k yk

=
∑

k∈sA

G∑
g=1

akπ
−1
k yk. (2.8)

The number of (true) population units in the gth poststratum is denoted as Ng. The

poststratum sizes estimated from the analytic survey N̂Ag are calculated by summing

the design weights across primary sampling units (PSUs) and design strata for units

within each poststratum, i.e.,
∑

k∈sAg
π−1

k =
∑

k∈sA
δgkπ

−1
k . Though a simplified

notation is used, t̂Ayg represents the HT estimated total of y within poststratum

g calculated under the analytic survey sampling design. The zero/one variable δgk

identifies members of poststratum g (sAg) from within the complete sample (sA).

The ratio t̂Ayg/N̂Ag is widely referred to as a combined ratio estimator when the

components are calculated by summing across the analytic survey design strata,
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i.e., the poststrata cross the design strata. The calibration-adjustment weights for

t̂yTRPS are calculated as ak =
∑G

g=1 δgk(Ng/N̂Ag) = (Ng/N̂Ag).

Other less prominent forms of the GREG are also found in the literature.

The functional form approach discussed in Estevao & Särndal (2000), referred to

as the instrumental vector method in Särndal (2007), generalizes the GREG to

include a vector of instrumental variables zk in addition to the set of auxiliary

variables xk (see also Kott, 2006). This method is strictly applied through the

regression approach by requiring that the calibrated weights have the form wk =

π−1
k F (zk,xk), where F () is any monotonic, twice-differentiable function. Note that

the change from the design to the calibrated weights is not minimized as with

the original approach proposed by Deville & Särndal (1992). The instrumental

variables are incorporated into t̂yTRGR, for example, through the assisting-model

coefficients B̂A =
[∑

l∈sA
π−1

l zlx
′
l

]−1 ∑
k∈sA

zkπ
−1
k yk. Using this method, Estevao

& Särndal (2004, Result 8.1) determined the set of optimal instrumental variables

which minimizes the asymptotic variance of the calibration estimator calculated for

a general sampling design:

zk(opt) = πk

∑

l∈sA

(π−1
k π−1

l − π−1
kl )xl

where πkl is the joint inclusion probability for the kth and lth units in the analytic

survey sample. Though minimal variance is always desirable, we choose to focus on

more traditional calibration weights within our current research.

The association between the outcome variable y and the auxiliary variables x
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may not be best represented through a linear model as with the GREG. Lehtonen &

Veijanen (1998) proposed logistic generalized regression estimators (LGREGs) for

use with binary outcome variables. The LGREG of a population total, as presented

in Duchesne (2003), is calculated as:

t̂yLGREG =
∑

k∈U

µ̂k +
∑

k∈sA

π−1
k (yk − µ̂k) (2.9)

where µ̂k = exp(x′kB̂A)/(1 + exp(x′kB̂A)), the predicted values from the logistic

model of x on y such that 0 < µ̂k < 1 by definition. As alluded to in Särndal

(2007), LGREG weights are outcome variable specific which removes the “GREG

advantage” of a single set of analysis weights. Additionally, the simulation study

results presented by Lehtonen & Veijanen (1998) suggest that the empirical differ-

ences for GREG and LGREG estimators do not differ by appreciable levels. Given

these two points, we will reserve LGREG estimators for future research.

In our discussions so far, we have emphasized the adjective traditional when

discussing weight calibration. This is to distinguish it from calibration to estimated

control totals. In practice, population totals or counts that are unknown are ideally

estimated from independent, high-quality surveys with large sample sizes and neg-

ligible sampling and non-sampling errors. Because the calibration system requires

estimates from more than one survey, we label the benchmark survey as the control

total source, and the analytic survey as the survey requiring calibration. Given the

practical issues with weight calibration, we rephrase the estimated total formulae

presented previously using notation that is relevant to our research. The GREG
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of a population total, using control totals from one or more benchmark surveys, is

defined as:

t̂yGREG = t̂Ay + (tBx − t̂Ax)
′B̂A (2.10)

using components defined in (2.6), e.g., B̂A =
[∑

l∈sA
π−1

l xlx
′
l

]−1 ∑
k∈sA

xkπ
−1
k yk.

The only difference from expression (2.6) is to replace the population control-total

vector tx with a vector produced from the benchmark survey(s), tBx. We do not use

the hat notation for this vector due to the assumption that the control totals are

estimated with negligible sampling variance. In other words, the population covari-

ance matrix for tBx, Cov (tBx) ≡ VB, is presumed to contain values close enough

to zero to support the claim VB ≡ 0, a matrix of zeros. The calibration-adjustment

weights for t̂yGREG are calculated as ak = 1 +
(
tBx − t̂Ax

)′ (∑
l∈sA

π−1
l xlx

′
l

)−1
xk.

These estimators are generated using either the calibration approach by minimizing

the GLS distance function (2.4) subject to the constraints tBx =
∑

k∈sA
wkxk, or

the regression approach through the linear model specified for expression (2.6), i.e.,

Eε(yk) = x′kB and V arε(yk) = σ2.

The corresponding poststratified estimator of a population total, defined by a

slight relaxation of the population control total assumption, is calculated as:

t̂yPSGR =
G∑

g=1

NBg
t̂Ayg

N̂Ag

(2.11)

where NBg is the benchmark survey count within poststratum g. The remaining

terms are defined in expression (2.8). The poststratified estimator can be expressed
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in matrix notation as:

t̂yPSGR = N′
B N̂−1

A t̂Ay

where NB = [NB1, ..., NBG]′, a G-length vector of benchmark survey totals by post-

strata; N̂A is a G × G diagonal matrix with elements equal to the estimated an-

alytic survey poststratum counts N̂Ag =
∑

k∈sA
δgkπ

−1
k with δgk = 1 if unit k is a

member of the gth poststratum (zero otherwise); and, t̂Ay =
[
t̂Ay1, ..., t̂AyG

]′
with

t̂Ayg =
∑

k∈sA
δgkπ

−1
k yk. Poststratified estimators are also generated by minimizing

the GLS distance function (2.4) given the calibration constraints NBg =
∑

k∈sA
wkδgk

for every poststratum g. Using a regression approach, the poststratified estima-

tors are again generated through the group-mean model, i.e., Eε(yk) = Bg and

V arε(yk) = σ2
g .

Functions of GREG-estimated totals are also relevant for the analysis of survey

data. The ratio of two GREG totals, of particular interest to our research, is one

that approximates a population mean and takes the form

ˆ̄yGREG =
t̂yGREG

N̂GREG

(2.12)

for t̂yGREG defined in (2.10). The estimated population size in the denominator of

the ratio is

N̂GREG = N̂A + (tBx − t̂Ax)
′B̂AN (2.13)

where N̂A =
∑

k∈sA
π−1

k , the population size estimated from the analytic survey
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data, and

B̂AN =

(∑

l∈sA

π−1
l xlx

′
l

)−1

t̂Ax, (2.14)

the model coefficient vector for the linear assisting model discussed in (2.10) with

yk = 1 for all sample units. Under the group-mean model associated with t̂yPSGR

(2.11), the ratio becomes

ˆ̄yPSGR =
t̂yPSGR

N̂PSGR

=
t̂yPSGR

NB

(2.15)

because N̂PSGR =
∑G

g=1 NBgN̂
−1
Ag

∑
k∈sAg

π−1
k =

∑G
g=1 NBg = NB. The estimators

ˆ̄yGREG and ˆ̄yPSGR are also known as Hájek estimators (Hájek, 1971; Smith, 1991).

Given that our current research can not address all aspects of weight calibra-

tion, we have chosen to focus specifically on the GLS distance function (2.4) due to

its ability to generate a closed-form solution for various estimators calculated with

weights that are not a function of the outcome variable. Additionally, GREG esti-

mators provide an explicit form to the calibration weights which allows for a direct

examination of the theoretical properties (bias and variance) for these widely used

estimators. Therefore, the remaining discussion and the research results detailed in

the subsequent chapters will deal with GREG estimators of population totals (2.10)

and (2.11), and the ratio of two GREG totals.

2.2 Bias of Calibration Estimators

Särndal et al. (1989, 1992) show that the GREG of a population total has many
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desirable properties such as approximate or asymptotic design-unbiasedness (ADU)

and design consistency. The “approximate” label stems from the approximate unbi-

asedness property of the regression coefficients vector, B̂A in (2.10). They also claim

that the variance estimator of the GREG is approximately model-unbiased under

certain conditions; we save the discussion of variance estimation for Section 2.3. Es-

tevao & Särndal (2002), as well as others, state that the design-unbiased property

is only attained if the calibration weights are approximately equal to one. Deville

& Särndal (1992) develop a set of conditions under which calibration estimators are

asymptotically equivalent to the GREG, and therefore share the desirable properties

above. However, Estevao & Särndal (2000) demonstrate that the GREG and the

family of calibration estimators are always equivalent only if the assisting model is

correctly specified with all relevant auxiliary variable covariates, an unlikely condi-

tion. Those calibration estimators which are not equivalent to the GREG do not

necessarily possess the ADU property (Estevao & Särndal, 2000). The authors, as

do others, restricted their examination to the portion of the calibration family that

is ADU.

The bias of GREG ratio estimators in comparison are generally assumed to

be small such as bias of order O(n−1
A ) for a simple random sampling (SRS) design

of size nA (see, e.g., Section 7.3.1 of Särndal et al., 1992). The bias in general is

a function of the variation in the denominator term plus the association between

the numerator and denominator. For example, the expectation of ˆ̄yTRGR with re-

spect to the analytic survey design (EA) begins with a second-order Taylor series
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approximation centered around (ty, N):

ˆ̄yTRGR =
t̂yTRGR

N̂TRGR

∼= ȳ +
1

N

(
t̂yTRGR − ty

)− ty
N2

(
N̂TRGR −N

)

+
1

2

[
0× (

t̂yTRGR − ty
)2

+ 2
ty
N3

(
N̂TRGR −N

)2

−

− 2
1

N2

(
t̂yTRGR − ty

) (
N̂TRGR −N

)]

with t̂yTRGR defined in (2.5); N̂TRGR calculated by substituting tx for tBx in N̂GREG

(2.13); and ȳ = ty/N , the true population mean. The design-based bias is then

calculated as:

Bias
(
ˆ̄yTRGR

)
= EA

(
ˆ̄yTRGR

)− ȳ

∼= 1

N
(0)− ty

N2
(0) +

ty
N3

V ar
(
N̂TRGR

)
− 1

N2
Cov

(
t̂yTRGR, N̂TRGR

)

=
1

N2

[
ȳV ar

(
N̂TRGR

)
− Cov

(
t̂yTRGR, N̂TRGR

)]
(2.16)

where EA

(
t̂yTRGR

) ∼= ty and EA

(
N̂TRGR

) ∼= N as assumed in Särndal et al. (1992,

Section 6.6). For large finite populations of size N , the terms V ar
(
N̂TRGR

)
/N2 and

Cov
(
t̂yTRGR, N̂TRGR

)
/N2 are negligible, O (n−1), so that the claim of small bias

for traditional calibration appears reasonable. Unfortunately, the absolute value of

the bias can change dramatically with the introduction of estimated controls in the

numerator and denominator (see Chapter 5).

The theoretical development presented above and in the literature relies on

the assumption of negligible errors in the data used to calculate the estimates (e.g.,
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coverage, nonresponse, and measurement). We extend this research by allowing

for undercoverage bias in our estimates. For example, HT estimators, such as t̂Ay

in (2.10), are known to be design unbiased under perfect survey conditions (i.e.,

no nonresponse, no frame errors, etc.) and biased otherwise. To account for the

possibility of frame undercoverage, we assume that the presence of each population

unit on the sampling frame can be modeled as a random event. The expectation of

a HT total estimated from an SRS sample of size nA with 100 percent response but

selected from a frame suffering from undercoverage is evaluated below. Here, EcA

and EA represent the expectations with respect to the frame coverage propensities

and the sample selection given the set of units, cA, covered by the analytic survey

sampling frame, respectively:

E(t̂Ay) = EcA

[
EA

(∑

k∈sA

π−1
k yk | cA

)]

= EcA

[
EA

(∑

k∈U

IAkCAkπ
−1
k yk|cA

)]

=
∑

k∈U

EA(IAk|cA)EcA
(CAk)π

−1
k yk

=
∑

k∈U

φAkyk

≡ tAy (2.17)

where CAk = 1 if the kth unit is listed on the analytic survey sampling frame (zero

otherwise) so that EcA
(CAk) = φAk, the population propensity for inclusion on the

sampling frame; and IAk = 1 if the same unit is selected into the sample (zero

otherwise), so that EA(IAk | cA) = πk, the inclusion probability for unit k. Only
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if φAk = 1 for all units in the population (i.e., no undercoverage in the sampling

frame) can we claim unbiasedness, E(t̂Ay) ≡ ty. This issue is further developed for

EC calibration with complex analytic survey designs in subsequent chapters.

The first assumption listed previously for traditional calibration estimation is

that the control totals are known without error. Most of the real-world examples

presented in this chapter are actually calibration to estimated control totals gen-

erated from other surveys instead of calibration to population values as assumed.

We coin the term “estimated-control calibration” or “EC calibration” to distinguish

from the traditional or fixed-control calibration. The possible exception is with

person surveys administered in Scandinavian countries (Denmark, Finland, Iceland,

Norway, and Sweden). These countries maintain total population registers including

identifying information such as name, address, and personal identity number (e.g.,

Särndal & Lundström, 2005). Scandinavian surveys calibrating to the population

registers may be classified as traditional calibration if one is willing to assume that

there are no errors in the register.

Some researchers acknowledge that the controls are taken from benchmark

surveys. However, many of these same researchers assume that the mean square er-

ror (MSE) associated with the benchmark controls is negligible without completely

understanding if or when these errors can be ignored. For example, estimates from

the Current Population Survey (CPS) and counts from the Decennial Census (Cen-

sus) are regularly cited as sources for calibration controls due to their size, extent

of the data collected, high levels of accuracy, and perceived low levels of error. The

CPS is a source for U.S. labor-force statistics. Data are gathered for the civilian
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non-institutionalized population, 16 years of age and older, each month through

in-person and telephone interviews. Though the CPS design weights are adjusted

for undercoverage, Nadimpalli et al. (2004) relate the “negative side” of using CPS

estimates for calibration controls to the unknown undercoverage errors between and

within households. Weinberg (2006) discusses the biasing impact of undercoverage

related to CPS income estimates. The explicit purpose of the Post-Enumeration

Survey as summarized in Chao & Tsay (1998) is to estimate the undercount in

the U.S. Census by various demographic groups. Stepping away from the coverage

issue, West et al. (2005) relate the age rounding (response) errors reported in the

Census to data collected from less than knowledgeable proxy respondents. Addi-

tionally, both large-scale surveys suffer from nonresponse. Another example focuses

on adjustments for differential nonresponse. Researchers calculate a “nonresponse

multiplier” (i.e., nonresponse adjustment weight) for non-white respondents to the

British Crime Survey by calibrating the design weights to the ethnic group, age, and

gender distributions estimated from the British Labour Force Survey (Bolling et al.,

2006, Section 7.4). However, the variance estimation discussion seems to indicate

that the benchmark controls are treated as population values.

Our last example, potentially with stronger implications, comes from a Web

survey with sample members identified through a volunteer (non-random) panel.

Terhanian et al. (2000) calibrate the weights for the Web responses to the distribu-

tion of characteristics within an RDD telephone survey by assuming the latter to

be “relatively free of bias.” We can only assume that the benchmark RDD survey

discussed here is typical in that it suffers from low levels of response because such
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information was not provided in the white paper.

On the surface, bias (and variance) implications for calibrating the analytic

survey to either the CPS or Census estimates would seem minor in comparison to

the Web/RDD example. Särndal et al. (1992) state in Remark 6.4.3, “If erroneous

totals are used, the estimator is biased.” However, the examination stops there

without the much needed information that quantifies the level of bias and impact

on MSE and variance estimates. Our research will provide this extension for weight

calibration.

2.3 Variance of Calibrated Survey Estimates

An extensive list of references details variance estimation for weight calibration

with population control totals. The variance estimation techniques include Taylor

(series) linearization, jackknife replication, balanced repeated replication (BRR),

bootstrap, and jackknife linearization. We focus specifically on Taylor linearization

and jackknife replication in our current research and in the discussion given below

(Section 2.3.1). BRR variance estimation has been shown to be consistent for all

types of estimators, including non-smooth statistics such as quantiles (Rao & Shao,

1999), and is therefore of particular interest of future work. A few references also

exist for the methodology we label as estimated-control (EC) calibration. These

sources are briefly reviewed in Section 2.3.2.
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2.3.1 Traditional Calibration

Taylor linearization, also known as the delta method, is a well known tech-

nique for approximating the mean and variance of linearizable (i.e., differentiable)

complex statistics. These statistics include those with one or more random vari-

ables such as the regression estimator or the ratio of two estimated totals. Binder

(1995) provides a step-by-step description of the linearization approach for several

estimators including the GREG under single- and two-phase designs. For example,

the poststratified estimator of a population total, t̂yTRPS given in expression (2.8),

can be linearly approximated (i.e., linearized) as follows:

t̂yTRPS =
G∑

g=1

NgN̂
−1
Ag t̂Ayg

∼= ty +
G∑

g=1

[
∂t̂yTRPS

∂t̂Ayg

|tyg

(
t̂Ayg − tyg

)
+

∂t̂yTRPS

∂N̂Ag

|Ng

(
N̂Ag −Ng

)]
(2.18)

where “|tyg” refers to the partial derivatives evaluated at the population parameters.

Under some reasonable conditions, the second- and higher-order terms converge in

probability to zero at faster rates than the remaining terms, thereby justifying the

approximation.

Särndal et al. (1989) developed an approximate linearization population sam-

pling variance (AV ) for t̂yGREG (2.10) as a function of population or “census fit”

residuals determined from an assisting model — see discussion of the model for ex-

pression (2.6). Using notation from Section 6.5 of Särndal et al. (1992), the general
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form of the approximate linearization variance estimator is calculated as follows:

AVTS(t̂yGREG) =
∑

k∈U

∑

l∈U

(πkl − πkπl)

(
Ek

πk

)(
El

πl

)
(2.19)

where Ek = yk − x′kB, the assisting model population residual for unit k deter-

mined by regressing the outcome y on the auxiliary variables x; B =
(∑

l∈U xlx
′
l

)−1

×∑
k∈U xkyk, the vector of regression coefficients; πk is the analytic survey sample

inclusion probability for the kth population unit; and πkl is the joint inclusion prob-

ability for units k and l. This approximate variance incorporates only the first-order

linearization terms and is therefore not an exact estimator. Expression (2.19) is

tailored to various types of GREG estimators by choosing an appropriate assisting

model which generates different Ek’s. For example, an assisting model defined by

Eε(yk) = Bg and V arε(yk) = σ2
g generates residuals associated with the poststrati-

fied estimator t̂yTRPS (2.8).

Särndal et al. (1992) and Stukel et al. (1996), among others, discuss a design-

consistent sample variance estimator for expression (2.19) under a general sampling

design:

varTS(t̂yGREG) =
∑

k∈sA

∑

l∈sA

πkl − πkπl

πkl

(
akek

πk

)(
alel

πl

)
(2.20)

where ek = yk−x′kB̂A, the sample estimated residual from the assisting model; B̂A,

the sample-based vector of regression coefficients defined in (2.10) that is assumed to

be an approximately unbiased estimator of B; and ak is the calibration-adjustment

factor for unit k also defined for expression (2.10). Särndal et al. (1992) also note
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that the confidence interval coverage rates associated with (2.20) are near or exactly

equal to the specified levels (e.g., 95 percent). For the claim of design-consistency of

varTS(t̂yGREG) (2.20) to hold, Särndal et al. (1992) require (i) the assisting model

to be a reasonable representation of the population in that the residuals are small

and the “residual variance is small compared to the total variance” of the estimate;

(ii) a consistent system of calibration equations, i.e.,
∑

k∈sA
akπ

−1
k xk is equal to tx

as specified in (2.2); and (iii)
(∑

l∈sA
π−1

l xlx
′
l

)−1 ∑
k∈U xkx

′
k converges elementwise

in probability to one. The first condition leads to the claim that the general form

of (2.20) is approximately design-unbiased regardless of the difference between the

working and population assisting models because this difference converges to zero in

“model probability” (also see Särndal et al., 1989; Deville & Särndal, 1992). Hedlin

et al. (2001), however, warn that this condition is not always satisfied making the

GREG susceptible to model misspecification and emphasize the importance of model

diagnostics to assess model quality.

The difficulties of applying the sample variance estimator (2.20) increase with

the complexity of the population estimator. For example, the variance of the post-

stratified estimator t̂yPSGR (2.11) uses an approximation similar to t̂yTRPS in (2.18)

and requires the estimation of several variance and covariance estimates. The linear

substitute method eliminates the need for these higher-order estimates (Woodruff,
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1971) as shown for t̂yPSGR below:

t̂yPSGR − ty ∼=
G∑

g=1

[(
t̂Ayg − tAyg

)− tAyg

NAg

(
N̂Ag −NAg

)]

=
G∑

g=1

[
t̂Ayg − tAyg

NAg

N̂Ag

]

=
G∑

g=1

[∑

k∈sA

π−1
k δgkyk − tAyg

NAg

∑

k∈sA

π−1
k δgk

]

=
∑

k∈sA

π−1
k

G∑
g=1

δgk

(
yk − tAyg

NAg

)

=
∑

k∈sA

uk (2.21)

where δgk = 1 if the kth analytic survey sample unit is a member of the gth poststra-

tum (zero otherwise); and, E
(
t̂Ayg

)
= tAyg and E

(
N̂Ag

)
= NAg using the technique

demonstrated in expression (2.17). The linear substitute uk is estimated from the

sample data, and varTS

(
t̂yPSGR

)
is estimated from a design-appropriate variance

estimator of (2.21). A linear-substitute variance estimator of t̂yGREG described in

Stukel et al. (1996) takes the following form for a stratified, multi-stage analytic

survey sampling design:

varLS(t̂yGREG) =
H∑

h=1

mAh

mAh − 1

∑
i∈sAh

( ∑

k∈sAhi

akek

πk

− 1

mAh

∑
i∈sAh

∑

k∈sAhi

akek

πk

)2

(2.22)

where h identifies the sampling strata in the analytic survey design (h = 1, ..., H); a

set sAh of mAh PSUs is selected from MAh within stratum h; and a random sample

of units, denoted as sAhi, is selected within PSU hi. The remaining terms are defined

for expression (2.20). Though not mentioned explicitly in their article, (2.22) is an

28



“ultimate cluster” variance formula because the estimate is determined by calcu-

lating the variance of design-unbiased PSU-level estimates under an assumption of

with-replacement PSU sampling (Kalton, 1979). Stukel et al. (1996), Särndal et al.

(1992), and others note that varLS(t̂yGREG) in (2.22) and varTS(t̂yGREG) in (2.20)

are asymptotically equivalent. Linear-substitute variance estimators, however, are

computationally easier to use and are therefore included in many software packages

(see, e.g., SUDAANr documentation Research Triangle Institute, 2004).

Following the derivation in (2.21), the population linear substitute for the es-

timated mean ˆ̄yTRGR is calculated through a first-order Taylor series approximation

as follows:

ˆ̄yTRGR − ȳ ∼= 1

N

(
t̂yTRGR − ty

)− ȳ

N

(
N̂TRGR −N

)

=
1

N

(
t̂yTRGR − ȳN̂TRGR

)

=
∑

k∈sA

π−1
k ak

1

N
(yk − ȳ)

=
∑

k∈sA

uk (2.23)

for ak defined in (2.5), t̂yTRGR =
∑

k∈sA
π−1

k akyk, and N̂TRGR =
∑

k∈sA
π−1

k ak. As

discussed in Särndal et al. (1992, chapter 6), t̂yTRGR and N̂TRGR may be approxi-

mated as follows using the residuals from the respective assisting models:

t̂yTRGR
∼=

∑

k∈sA

π−1
k (yk − x′kBA) =

∑

k∈sA

π−1
k EAk
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and

N̂TRGR
∼=

∑

k∈sA

π−1
k (1− x′kBAN) =

∑

k∈sA

π−1
k EANk.

These approximations require (t̂Ax − tx) to be of order (in probability) population

(PSU) size divided by the square root of the sample (PSU) size. Therefore, the

linear substitute of ˆ̄yTRGR may be approximated as

uk
∼= 1

N
π−1

k (EAk − ȳEANk)

where EAk = yk−x′kBA and EANk = 1−x′kBAN . The corresponding g-weighted (ak)

sample estimator is used to generate the approximately unbiased linear-substitute

sample variance estimator, i.e.,

ŭk =
1

N̂TRGR

akπ
−1
k

(
eAk − ˆ̄yTRGReANk

)

for the calibration-adjustment factor ak defined in (2.5); eAk = yk − x′kB̂A; and

eANk = 1− x′kB̂AN .

Linearization variance estimation is an option in several software packages

designed to analyze survey data. Data files need to contain relevant information

such as first-stage strata and PSUs to properly account for the sampling design.

For example, the Division of Health Interview Statistics at the National Center

for Health Statistics (NCHS) released public-use data files (National Center for

Health Statistics, 2006) from the NHIS with such information along with code to

produce linearization variance estimates using SUDAANr (Research Triangle Insti-
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tute, 2004). However, some organizations choose to withhold the design information

from public-use files (PUFs) as an additional step to mask the identity of survey

participants (i.e., data confidentiality procedures). For example, the UCLA Cen-

ter for Health Policy Research (2006) states the following in their weighting and

variance estimation document for the California Health Interview Survey (CHIS):

“The CHIS PUFs, however, do not include strata information in order to protect

data confidentiality and respondent privacy.” Therefore, linearization variance es-

timation is not possible from the CHIS and many other publicly available survey

data sets. Instead, replication methods such as jackknife variance estimation are

required.

Jackknife variance estimation is a commonly used replication method. Formu-

lae for the jackknife variance are available for single-stage designs, with and without

stratification, as well as for more complex designs through an ultimate cluster for-

mulation. The stratified formula is applicable to survey designs with two or more

PSUs selected per stratum (mAh ≥ 2), and to a wide array of estimates including

means, totals, and more complex statistics.

The standard “delete-one” or “delete-a-PSU” jackknife is calculated through

the variance of the replicate population estimates, also referred to as the pseu-

dovalues (Wolter, 2007, Chapter 4). The mA replicate estimates are calculated in

the same way as the full sample estimates but require the generation of jackknife

weights. The jackknife weights are created by systematically removing one the mA

PSUs from the sample and inflating the design weights for the remaining PSUs

within the same stratum by mAh/(mAh − 1) to account for the PSU subsampling.
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The complete sets of mA jackknife weights are included on the analysis file and used

to generate variance estimates for various types of statistics.

Once the replicate estimates are calculated, statisticians must choose from

among a set of formulae to calculate the jackknife variance estimate. The formulae

vary based on the centering value. For example, the stratified variance estimator

v4 shown below is centered on the full-sample estimate (θ̂), and is classified as a

conservative estimator as discussed in Wolter (2007, Section 4.5):

v4 ≡ varJK

(
θ̂
)

=
H∑

h=1

mAh − 1

mAh

mAh∑
r=1

(
θ̂(hr) − θ̂

)2

(2.24)

where θ̂(hr) is the replicate estimate calculated after removing the rth PSU from the

hth stratum and adjusting the remaining PSUs in stratum h for the loss. Krewski &

Rao (1981), in addition to Wolter (2007), discuss other jackknife variance estimators

including the less conservative estimator centered on the average of the replicate es-

timates, i.e., (
∑

h

∑
r θ̂(hr))/

∑
h mAh, referred to as v2 in Wolter (2007, Section 4.5).

Rust & Rao (1996) demonstrate the unbiasedness of the v2 variance estimator for a

population total and other types of linear estimators. The estimator is also design

consistent for nonlinear estimators such as the ratio estimator. The consistency

property also holds when the design weights are adjusted for nonresponse and for

poststratification but is lost for non-smooth statistics such as quantiles (Yung &

Rao, 1996, 2000). The estimators v2 and v4 (2.24), however, have been shown to be

asymptotically equivalent so that the choice of estimators is related to the sampling

design or statistical preference (Krewski & Rao, 1981; Wolter, 2007).
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Jackknife variance estimation for single-stage surveys and those with a large

number of PSUs can be problematic in two ways: (i) additional time is required to

produce and check the jackknife weights, and (ii) the analysis file size increases with

the inclusion of a large set of jackknife weights. The “delete-a-group” technique is

the same as described above except for the deletion of a group of PSUs instead of one

PSU for each replicate. Valliant et al. (2008) warn that jackknife variance estimate

for a population total under this method can result in a severely overestimated

variance when the groups do not contain an equal number of PSUs. They suggest,

as does Kott (2001), a revised variance estimator to account for this problem. Due to

the complexity of issue, we postpone for now an examination of the “delete-a-group”

jackknife for EC-calibrated estimators.

Linearization variance estimators involving assisting-model residuals, such as

the estimator in expression (2.22), usually account only for the last (random) ad-

justment applied to the weights, e.g., calibration. This is in contrast to accounting

for all random weight adjustments (e.g., unknown eligibility, nonresponse, etc.).

Replication may remedy this problem by explicitly accounting for all adjustments

applied to the design weights. Valliant (1993), for example, showed that jackknife

variance estimators are consistent for two-stage sampling design only if the post-

stratification adjustments are newly applied for each replicate. However, Rao and

Shao (1992) showed that re-imputing missing data within each replicate does not

give a consistent variance estimate

Variance estimation in the literature also extends to multi-phase sample de-

signs. Techniques used in the development of these variance estimators are useful to
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our research. A multi-phase design is defined as a survey where subsequent-phase

units are subsampled from the same type of units identified in a previous phase.

Hence, the phase-specific samples are not independent. For example, a design that

includes the recontact of a nonrespondent subsample to improve response rates is

known as a “two-phase design with a nonresponse follow-up.” In contrast, a multi-

stage design contains units from differing levels at each stage such as schools within

say the third stage and students within schools at the fourth stage of sampling.

Note that a nonresponse follow-up phase is dependent on the result of the previous

phase(s), which has implications for point and variance estimation. This is not a

problem for EC calibration when the control totals are obtained from an independent

survey.

Fuller (2004) provides a lengthy reference list in the development of variance es-

timation for two-phase designs beginning with Rao (1973). Särndal et al. (1992, Re-

sult 9.7.1), Binder (1995), Axelson (2000), Fuller (2000), Estevao & Särndal (2002)

and others specifically address linearization variance. Replication variance estima-

tion is presented in Fuller (1998) and later expanded by Kim & Sitter (2003). Fuller

(2004) extends his own work for regression estimators by developing a two-phase

variance formula and providing the relevant asymptotic theory to demonstrate con-

sistency. The theory requires a relatively large phase-two sample and replicates

created using the phase-one sample. The basis for the two-phase derivations comes

from results for the unconditional expectation and variance of a general estimator
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(see, e.g., Casella & Berger, 2002, Theorems 4.4.3 and 4.4.7):

E(θ̂) = Eb[Ea(θ̂|b)]

V ar(θ̂) = Eb[V ara(θ̂|b)] + V arb[Ea(θ̂|b)]

where, under a two-phase design, subscript a may denote the second-phase sample

conditioned on the first-phase results (subscript b). A similar procedure is needed

for the development of EC calibration where the benchmark and analytic surveys

are associated with the first- and second-phase notation.

2.3.2 Estimated-Control Calibration

Variance estimation for EC calibration is not a new concept; a few articles

propose methods to account for the estimated controls. For example, Isaki et al.

(2004) applied a delete-one jackknife variance estimator developed by Fuller (1998)

for two-phase designs to account for estimated control totals. An overview of Fuller’s

variance estimator is as follows: take a spectral (eigenvalue) decomposition of the

covariance matrix for the vector of G benchmark controls, develop benchmark ad-

justments as a function of the resulting eigenvalues and eigenvectors, and add the

adjustments to the benchmark controls to create a set of replicate controls. Thus,

either a benchmark analysis file is needed to calculate the covariance matrix, or

the statistician is forced to use only publicly-available benchmark information. A

randomly chosen subset of the mA replicates (mA ≥ G) is then calibrated to G repli-

cate controls where mA =
∑

h mAh, the total number of PSUs in the sample. The
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resulting variance estimator is shown to be an approximately unbiased estimator

of the population sampling variance and to contain components for the variation

within the analytic and benchmark surveys, both as desired. A more extensive sim-

ulation study is needed to empirically demonstrate the theoretical findings. Also,

the methodology does not address coverage error in either of the sampling frames.

Nadimpalli et al. (2004) calibrate weights for the 2003 National Survey of

Parents and Youth (NSPY) to the number of U.S. households with children ages 9–18

estimated from the Current Population Survey (CPS) using a ratio-raking replicate

algorithm (www.census.gov/cps). The U.S. Bureau of Labor Statistics conducts the

CPS to obtain labor force characteristics for the population ages 16 years and older.

They note, however, that the calibration controls change depending on the month of

CPS data used in the calculation. The focus of their paper (not of particular interest

here) is to evaluate several models for smoothing the monthly estimates to develop a

single set of stable marginal control totals by domain such as region of the U.S. The

authors were unable to estimate the complete covariance matrix (V̂B) for t̂Bx from,

for example, a public-use file, and therefore had to assume independent benchmark

estimates. To account for the random nature of the CPS controls in the NSPY

variance estimates, they assume that the marginal control totals are approximately

normally distributed and incorporate a standard normal random variable, N(0, 1),

into the equation for a replicate control total. Griffiths (2007) also applies a method

similar to Nadimpalli et al. (2004) for calibration of Arbitron data to “stochastic

population controls” which again requires the assumption of independent control

totals. Unlike Fuller (1998), which specifically focuses on the development of an EC-
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calibration procedure, the Nadimpalli et al. (2004) paper provides an application of a

proposed method. Their research requires additional theoretical work to understand

the bias associated with their method.

The American Time Use Survey (ATUS), conducted jointly by the U.S. Cen-

sus Bureau and the U.S. Bureau of Labor Statistics (www.bls.gov/tus), produces

estimates of how people in the U.S. spend their time by various demographic charac-

teristics. Samples are selected from CPS responding households that have completed

the last in a series of interviews related to unemployment. The ATUS design weights

are equivalent to the 161 CPS BRR final weights after adjusting for ATUS subsam-

pling (Tupek 2004). The CPS BRR weights include components for the inclusion

probabilities, nonresponse, poststratification of household-level weights to Census

counts, raking of person-level weights to Census projections, and seasonal variation

(Current Population Survey 2002). Details are lacking in the documentation on

the methods used to account specifically for the Census projections. Additional

factors are applied to the BRR weights based on the results from the ATUS such

as adjustments for nonresponse, day of the week that the interview was conducted,

and calibration to CPS microdata. A replication variance estimate should therefore

account for the variation from both the analytic survey (ATUS) and the bench-

mark surveys (CPS and Census); however, published theory or analytic results to

support this claim has not been located. Unlike the Fuller (2004) and Nadimpalli

et al. (2004) methods, we reserve the ATUS (two-phase) methodology for future

research because we have chosen to focus on studies with independent analytic and

benchmark surveys.
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Renssen & Nieuwenbroek (1997) develop an adjusted general regression estima-

tor (AGREG) that calibrates weights from two independent surveys to population

controls tx and/or to controls estimated from either one or a combination of the

surveys t̂z. The estimated controls, using common variables z from both surveys,

may be calculated with a general composite estimator of the form

t̂z = P̂v t̂z1 +
(
1− P̂v

)
t̂Az2

where t̂z1 is a vector of GREG estimates from the first survey sample calibrated

to the population controls tx; t̂z2 is the corresponding vector of GREG estimates

from the second sample; and P̂v = var
(
t̂z1

) [
var

(
t̂z1

)
+ var

(
t̂z2

)]−1
, a matrix

containing the proportion of the total variance associated with the first survey for

each common variable. The matrix P̂v could also be set to a matrix of zeros or ones if

estimates from one survey in comparison with the other are believed to be unusable.

They suggest that large questionnaires may divided into smaller instruments (see,

e.g., matrix sampling in Gonzalez & Eltinge, 2007) with key common variables,

administered to independent samples to maximize response, and combined through

the use of AGREGs. Their approximate population linearization sampling variance

estimator accounts for the variation in the outcome and auxiliary variable estimates

but not for the estimation of the composite factor P̂v. They compare the variance

for estimates from a Dutch household survey using various sets of values of P̂v but

do not provide further empirical evidence through a simulation study. We intend

to expand on our current work in the future to address studies that involve, for
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example, matrix sampling with multiple independent subsamples but reserve our

current work for only a single survey requiring calibration.

Another example of calibration for two-phase studies, of interest but not con-

sidered in our current research, focuses specifically on surveys with less than desired

response rates. All sample cases are released in the first phase of this design, and

a subsample of nonrespondents is recontacted in the second phase with a data col-

lection mode different than the one used in prior contacts (i.e., nonresponse follow-

up). Singh et al. (2003) expand upon the idea of dual-frame calibration developed

by Singh & Wu (1996, 2003) by applying this estimator to two-phase designs with

a nonresponse follow-up. The methodology requires the creation of two analysis

files with nonresponse-adjusted design weights — one file contains only phase-one

respondents, and the second file includes respondents from both phases. Using an

algorithm that simultaneously satisfies the constraints, the estimates for each file

are calibrated to the population control totals, while the difference between a set of

estimates calculated from each file are calibrated to zero. Estimates from the two

files are combined through a composite estimator in such a way that minimizes the

variation in the calibrated weights (i.e., unequal weighting effects). Some theory is

given in their proceedings paper with mixed results from the analysis of one survey

of U.S. military veterans. Thus, additional work is needed to fully develop this

methodology. Singh et al. (2004) implement this methodology to examine a new

response rate calculation for studies with a nonresponse follow-up using the same

example data.

In our final example, we focus on the regression composite estimator developed
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by Singh (1996) for rotating panel surveys. At each time period, the sample contains

new cases (birth panel) and cases with previously collected data (overlap panel). The

regression equations contain two components: (i) current time-point estimates for

the birth and overlap panels are calibrated to the corresponding set of population

controls; and (ii) estimated controls from the overlap sample are calculated from the

previous round and used to calibrate prior-round estimates using the combined birth

and overlap panel data. Fuller & Rao (2001) expand on this work by incorporating

composite estimation to smooth the combined estimates from the birth and overlap

panels for use in the regression. We have chosen to examine a single survey within

our current research, instead of panel surveys, and therefore reserve this work for

future consideration.

2.4 Domain Estimation

Domain or subpopulation estimation is critical to survey research. Surveys

are generally designed to produce estimates within a set of domains with specified

levels of precision. Two such examples, taken from U.S. surveys, are: (i) poverty

rates can be compared across domains such as U.S. region and race/ethnicity by

analyzing current CPS data; and (ii) estimated rates of illicit drug use for young

adults aged 18 to 24 in the U.S. are produced from National Survey on Drug Use

and Health data (SAMHSA, 2007).

Domains can be classified into two categories — design and analytic. Design

domains are included in the sampling design either explicitly as strata or implicitly
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by constraining the expected number or level of precision. Analytic domains are

identified only during the analysis phase of the study and may result in small domain

sample size. Hidiroglou & Patak (2004) call these primary and secondary domains,

respectively. Domain estimation can reduce the degrees of freedom for statistical

tests and confidence intervals below levels defined for the full sample if domain

members are not contained in all design strata and PSUs. The number of degrees of

freedom is (roughly) the maximum of either the number of PSUs minus the number

of strata (mA −H), or the total number of replicates (mA). Survey inference relies

on large samples (i.e., degrees of freedom) along with the central limit theorem

developed for finite populations (Krewski & Rao, 1981) under which point estimates

will be approximately normally distributed. Korn & Graubard (1999) recommend

reducing the degrees of freedom to the numbers of PSUs and strata which contain

domain members. Therefore, the degrees of freedom can be managed for design

domains but not analytic domains.

Much of the survey theory underlying traditional domain estimation assumes

sufficient sample size regardless of the type of domain (see, e.g., Särndal et al.,

1992; Rao, 1997; Théberge, 1999; Lohr, 1999; Korn & Graubard, 1999; Chambers

& Skinner, 2003). This assumption is important to the development of an EC

calibration theory for domains. Small area estimation techniques (e.g., Rao, 2003;

Lohr & Prasad, 2003) are reserved for small domains, and are therefore excluded

from consideration for our current work.

Overall sample estimators, such as the Horvitz-Thompson or Hájek estimators,

are specialized for domain estimation by including a domain indicator variable. An
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estimate of a domain mean for a stratified design has the following form where δdhk

is a binary variable to indicate membership in domain d:

ˆ̄yAd =
t̂yAd

N̂Ad

=

∑H
h=1

∑mAh

k=1 δdhkπ
−1
hk yhk∑H

h=1

∑mAh

k=1 δdhkπ
−1
hk

. (2.25)

The form of the GREG estimator for domains is not so straight forward. Re-

searchers may assume that a working model defined for each domain, i.e., Eε(yk) =

x′dkBdd, results in more efficient estimators than those generated from an overall

model. This leads to the following GREG estimator of a domain total for a non-

specific sampling design:

t̂yddGREG = t̂Ayd +
(
tBdx − t̂Adx

)′
B̂Add (2.26)

where t̂Ayd =
∑

k∈sA
δdkπ

−1
k yk, the estimated total of y within domain d using the

analytic survey data; t̂Adx =
∑

k∈sA
δdkπ

−1
k xk, the G-length vector of analytic survey

auxiliary values for domain d; tBdx, the corresponding vector of domain-specific

benchmark controls; and

B̂Add =

[∑

l∈sA

δdlπ
−1
l xlx

′
l

]−1 ∑

k∈sA

δdkπ
−1
k xkyk,

the model coefficient vector that is a function of the domain indicator in both the

numerator and denominator. By decomposing (2.26), we see that the calibration-
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adjustment factor,

ak = 1 +
(
tBdx − t̂Adx

)′
[∑

l∈sA

δdlπ
−1
l xlx

′
l

]−1

xk,

is a function of the domain indicator both in the denominator of B̂Add, and in the

auxiliary vectors tBdx and t̂Adx. Even though Hidiroglou & Patak (2004) show the

benefits of using domain-specific auxiliary variables (e.g., t̂Adx), we have chosen to

exclude this estimator from our current research because of our desire to create one

set of analysis weights.

Another GREG estimator of a domain total which does satisfy the “one overall

set of analysis weights” criterion is specified under a domain-specific assisting model

that incorporates information from non-domain units, namely, Eε(yk) = x′kBd and

V arε(yk) = σ2. The resulting estimator is expressed as:

t̂ydGREG = t̂Ayd +
(
tBx − t̂Ax

)′
B̂Ad (2.27)

where t̂Ayd is defined following (2.26), and t̂Ax and tBx are the vector of auxiliary

values used in t̂yGREG (2.10) that are not domain specific. The working model

coefficient vector, B̂Ad, incorporates the domain indicator only in the numerator

term as seen below:

B̂Ad =

[∑

l∈sA

π−1
l xlx

′
l

]−1 ∑

k∈sA

δdkπ
−1
k xkyk. (2.28)

We demonstrate the creation of a single set of generalized analysis weights with the
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following derivation:

t̂ydGREG = t̂Ayd +
(
tBx − t̂Ax

)′
B̂Ad

=
∑

k∈sA


1 +

(
tBx − t̂Ax

)′
(∑

l∈sA

π−1
l xlx

′
l

)−1

xk


 π−1

k δdkyk

=
∑

k∈sA

akπ
−1
k δdkyk

where ak equals the calibration-adjustment factor shown for t̂yGREG (2.10). In addi-

tion to the advantages listed for a single-set of analysis weights, t̂ydGREG (2.27) also

has good theoretical properties. Estevao & Särndal (2004), for example, demon-

strate the theoretical and empirical advantages of t̂ydGREG over t̂yddGREG (2.26), as

well as a GREG domain estimator that “borrows strength” from non-domain cases

through an overall model coefficient vector B̂A (2.10). This later domain estima-

tor is constructed, unintuitively, as t̂Ayd +
(
tBx − t̂Ax

)′
B̂A. With domains that cut

across the calibration groups, such as strata equivalent to the calibration groups but

not the domains, the estimator is calculated as the sum of within-stratum values.

The GREG ratio estimator of a population mean within domain d is defined

as follows:

ˆ̄ydGREG =
t̂ydGREG

N̂dGREG

, (2.29)

a function of t̂ydGREG defined in expression (2.27);

N̂dGREG = N̂Ad +
(
tBx − t̂Ax

)′
B̂ANd (2.30)
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defined in the same way as t̂ydGREG but with yk = 1 (i.e., N̂Ayd =
∑

k∈sA
δdkπ

−1
k );

and

B̂ANd =

[∑

l∈sA

π−1
l xlx

′
l

]−1 ∑

k∈sA

δdkπ
−1
k xk. (2.31)

The GREG estimator for a domain total (2.27) and a domain mean (2.29)

are specialized for poststratification by expressing the assisting-model coefficient

vector in terms of a domain group-mean model: B̂Ad ≡ ˆ̄YAd =
[
ˆ̄yAd1, ..., ˆ̄yAdG

]

with ˆ̄yAdg = t̂Aydg/N̂Ag, t̂Aydg =
∑

k∈sA
δgkδdkπ

−1
k yk, and N̂Ag =

∑
k∈sA

δgkπ
−1
k ; and

B̂ANd = ˆ̄YANd =
[
N̂Ad1/N̂A1, ..., N̂AdG/N̂AG

]
with N̂Adg =

∑
k∈sA

δgkδdkπ
−1
k . Thus,

t̂ydPSGR =
G∑

g=1

NBg

(
t̂Aydg

N̂Ag

)

and

ˆ̄ydPSGR =
t̂ydPSGR

N̂dPSGR

=

∑G
g=1 NBg

(
t̂Aydg/N̂Ag

)

∑G
g=1 NBg

(
N̂Adg/N̂Ag

) .

Some researchers choose to subset the analysis data to the domain of interest

before calculating the population estimates. This technique works for point esti-

mates such as means and totals. However, removal of units outside the domain

of interest may inappropriately reduce the size of the variance estimate leading to

confidence intervals that cover at less than the nominal rate and hypothesis tests

with erroneously inflated Type I errors. Discussions on this point and other issues

related to domain estimation may be found in sources such as Särndal et al. (1992),

Lohr (1999), and Research Triangle Institute (see, e.g., SUDAANr documentation

2004). For example, as shown in Example 10.3.1 of Särndal et al. (1992), the sample
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variance estimator of t̂Ayd given for expression (2.26) is a function of the full sample

size (n) in addition to the domain sample size (nd) under an SRS design:

var
(
t̂Ayd

)
= N2 (1− f)

n

[
(nd − 1)Ŝ2

yd + ndqd ˆ̄y
2
d

N − 1

]

where ˆ̄yd = n−1
d

∑
k∈sA

δdkyk; pd = nd/n; qd = (1 − pd); and Ŝ2
yd = (nd − 1)−1

∑
k∈sA

δdk

(
yk − ˆ̄yd

)2
. Note that this variance is a function of the variation within

the domain (Ŝ2
yd), the average value of y within the domain (ˆ̄yd), as well as the size

of the domain (nd).

Following the “domain indicator” approach, we rephrase the linear substitute

sample variance estimator for t̂yGREG (2.22) for the estimated domain total as fol-

lows:

varLS(t̂ydGREG) =
H∑

h=1

c−2
h

mAh∑
i=1

( ∑

k∈sAhi

ahikedhik

πhik

− 1

mAh

mAh∑
i=1

∑

k∈sAhi

ahikedhik

πhik

)2

(2.32)

where c−2
h = (mAh − 1)/mAh, a function of the total number of analytic survey

PSUs in stratum h (mAh); ahik equals the calibration-adjustment factor ak defined

for t̂yGREG (2.10); and, edhik = δdhik

(
yhik − x′hikB̂Ad

)
. Note that if all units within

stratum h are excluded from domain d (i.e., δdhik = 0 for all i, k ∈ sAh), then these

units do not contribute to the overall variance and can be safely removed from the

analysis file, but not otherwise.

The v4 jackknife variance estimator for a domain estimator is derived using a
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similar technique:

varJK

(
θ̂d

)
=

H∑

h=1

mAh − 1

mAh

mAh∑
r=1

(
θ̂(hdr) − θ̂d

)2

(2.33)

where θ̂(hdr) is the replicate domain estimate calculated after removing the rth PSU

from the sample and adjusting the remaining PSUs in stratum h for the loss, and

θ̂d is the full-sample domain estimate. Note that even if θ̂(hdr) = 0, the replicate

contributes the value θ̂2
d to the overall variance.

The domain-specific variance estimators discussed in this section rely solely

on the traditional calibration assumptions. The limited amount of EC-calibration

research conducted to date (see Section 2.3.2) addresses overall population estimates

and not estimation within a particular domain. The work detailed in Chapter 6 will

combine domain estimation with EC-calibration estimators to fill this research gap.
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Chapter 3

Scope of the Research

Chapter 1 provides an overview of our research while Chapter 2 contains a

discussion of past and current literature on traditional and estimated-control (EC)

calibration. In this chapter, we detail the scope of our research contained within the

dissertation. Some material provided previously is repeated here for completeness.

The assumptions made for the target population and the analytic survey are pro-

vided in Section 3.1. The conditions associated with the benchmark survey, from

which the control totals are estimated, are highlighted in Section 3.2. We discuss

issues related to the particular calibration technique used in our research (Section

3.3), in addition to factors affecting the quality of the analytic and benchmark survey

sampling frames (Section 3.4). Section 3.5 is reserved for the assumptions related

to domain estimation. Because a large number of survey estimators could be ad-

dressed, we identify the particular point and variance estimators examined in this

body of work within Section 3.6. Additional assumptions required specifically for

the theoretical understanding of EC calibration are identified in Section 3.7. The

remaining section (Section 3.8) contains information associated with data used in

our empirical simulation studies.
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3.1 Analytic Survey Assumptions

Consider a large, finite population U of size N . We assume that this population

can be divided into H (H ≥ 2) mutually exclusive groups indexed by h. Within

the hth stratum, the population may be (conceptually) classified into Mh mutually

exclusive clusters, each indexed by i, for a total of M =
∑H

h=1 Mh clusters. The

hith cluster contains a total of Nhi units, where N =
∑H

h=1 Nh =
∑H

h=1

(∑Mh

i=1 Nhi

)
.

The groups and clusters are classified as strata and primary sampling units (PSUs),

respectively, for the sampling designs developed to estimate the relevant population

parameters from U .

Estimates for the finite population U are calculated from survey data collected

under a multi-stage, stratified sampling design. This survey is labeled as the ana-

lytic survey with random sample sA. For the analytic survey design, mAh (mAh ≥ 2)

PSUs, each indexed by i, are selected with replacement (WR) from a total of MAh

PSUs within the hth stratum. Assuming WR sampling of PSUs is a common theo-

retical device to simplify derivations (e.g., see Krewski & Rao, 1981). Although most

samples are selected without replacement, WR results provide a practical guidance

on the performance of different procedures. The analytic survey sampling frame

may have imperfections at each stage of sampling. Sampling frames suffering from

undercoverage, i.e., not all population units are accessible from this source, are of

particular interest to our research. Therefore, we say that MAh ≤ Mh, where the

subscript A denotes the analytic survey and MAh is the number of PSUs available

for sampling on the analytic survey frame. The hith PSU inclusion probability in
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the WR design is πhi = 1− (1− πhi(1))
mAh , where πhi(1) is the single-draw inclusion

probability. However, we assume that πhi can be approximated by mAhπhi(1) by

requiring mAh ≥ 2 and πhi(1) to be sufficiently small (see, e.g., Särndal et al., 1992,

Section 2.9).

Analytic units, units which provide survey response data, are selected in the

last stage of the analytic survey design. Särndal et al. (1992, Section 4.1) call these

ultimate sampling units. Once the sample PSUs are identified, the analytic units

may be selected after more than one subsequent stage of sampling. A sample of

nAhi units (nAhi ≥ 2) is randomly selected from a total of NAhi (NAhi ≤ Nhi) units

within PSU hi. The units, indexed by k, are assumed to be selected with a method

that results in unbiased estimates of a PSU total for various analysis variables.

This assumption, in addition to a WR sample of PSUs, allows the use of “ultimate

cluster” variance formulae (Kalton, 1979) in our research. Thus, our notation may

be simplified to a two-stage design without loss of generality to multi-stage designs.

The unit-level design weight is represented as the inverse of the unconditional

inclusion probability π−1
hik for unit k within the hith PSU. Given our assumption

that πhi, is sufficiently approximated by mAhπhi(1), we say that πhik is sufficiently

approximated by mAhπhi(1)πk|hi, where πk|hi is the kth inclusion probability given

the selection of PSU hi. Note, however, that the point estimators we study will

be formulated as “p-expanded with-replacement” (pwr) estimators (Särndal et al.,

1992, Section 2.9). The pwr estimators are described in Section 3.6 and do not

require that the PSU selection probabilities be approximated as above.

Data for a total of nA units (nA =
∑H

h=1

∑mAh

i=1 nAhi) is obtained for the anal-
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yses. This implies a 100 percent participation rate for the analytic survey. Even

though unrealistic in practice, this assumption will facilitate development of the

EC calibration theory before inclusion of the nonresponse mechanism in later work.

Thus, prior to calibration, the population estimates are calculated using only the de-

sign weights. We additionally assume that data are collected without non-sampling

errors.

3.2 Benchmark Survey Assumptions

We label the survey requiring calibration as the analytic survey and the source

of the control totals under EC calibration as the benchmark survey. In practice, more

than one benchmark survey may be tapped for control total estimates, though covari-

ances among variables collected from different surveys may be difficult to estimate.

However, we will assume only one benchmark survey to simplify the theoretical de-

velopment and assume that the covariance matrix for the control totals (VB) can

be estimated from the benchmark analysis file. We make no explicit specifications

for the benchmark survey design though a stratified, multi-stage design would be a

reasonable assumption. As with the analytic survey, we allow for potential errors

in the benchmark survey sampling frame from which the random sample, sB, of

size nB is selected. Hence, the subscript B is used to identify design elements and

estimated values associated with the benchmark survey.

Control totals and the benchmark covariance matrix for the control totals

are estimated from benchmark survey data using analysis weights, {wl}nB
l=1, and
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formulae that properly account for the sample design. The analysis weights are

functions of the design weights and any additional adjustment factors including

nonresponse and calibration. The precision of the benchmark estimates reflect the

random adjustments in as much as the final analysis weights allow (see the discussion

of replicate weights in Section 2.3.1).

3.3 Calibration Procedure

Using the assisting-model approach of Särndal (2007), weight calibration can

be classified as linear or nonlinear based on the type of model used to explain the as-

sociation of auxiliary variables (x) with an outcome (y). Weights generated through

nonlinear calibration, such as those required for t̂yLGREG (2.9), are a function of the

outcome variable of interest. In other words, nonlinear calibration results in one set

of analysis weights for each variable within a set of key measures. This trait adds to

the unpopularity of calibration estimators such as the logistic generalized regression

estimator (LGREG) proposed by Duchesne (2003). Linear calibration produces one

set of analysis weights used to generate, for example, generalized regression esti-

mators (GREG) and the specialized GREG known as the poststratified estimator.

Both GREG estimators are widely used throughout survey research. Therefore, in

our current research we choose to address linear calibration to generate parameter

estimates that are functions of GREG estimated totals. Raking ratio (iterated) esti-

mators are also excluded from our research because they do not have a closed-form

solution to the calibration equations.
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We additionally assume that calibration is implemented with estimates ob-

tained in the last stage of the analytic survey sampling design. For example, in

an area household survey, we assume calibration is implemented only for person-

level estimates and not simultaneously for person- and household-level estimates

(see, e.g., Estevao & Särndal, 2002; Ash, 2003). Additional work remains for EC

calibration administered for multiple stages (and phases) of a design.

3.4 Sampling Frame Coverage Errors

A few additional comments are needed regarding the sampling frames for the

analytic and benchmark surveys. Sampling frames are rarely considered to be perfect

representations of the population. Frames may fail to contain all of the population

units resulting in an undercoverage error. For example, a source for landline tele-

phone numbers will miss cell-phone only households, as well as those without any

telephone service.

Frames may also contain additional units referred to as overcoverage error.

These sources include units that are not members of the target population (i.e., in-

eligibles) and units that are listed more than once (i.e., multiplicities). For example,

samples selected from RDD telephone lists will likely contain inoperative numbers,

in addition to multiple numbers linked to a single household.

Overcoverage error primarily reduces the number of analysis cases given that

the erroneous units can be identified before the weights are finalized. The sample

size, nA using our notation, can be inflated for this potential loss of sample cases.
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Undercoverage error, by contrast, can bias the estimated parameters, especially in

population totals — see, for example, the discussion related to expression (2.1).

Without access to a more complete sampling frame, researchers must rely on meth-

ods such as calibration to minimize the bias. Therefore, we choose to focus only on

sampling frames that suffer from undercoverage errors.

With this undercoverage error, we say that the analytic and benchmark surveys

estimate parameters from their “covered” populations — UA of size NA and UB

of size NB, respectively. The population sizes, NA and NB, are assumed to be

large which implies that the undercoverage errors are not so severe as to claim, for

example, NA ¿ N (i.e., NA is significantly smaller than the complete population

size N).

A coverage indicator is used to identify population units contained in the

sampling frames: CAhik = 1 if the kth population unit in PSU hi is accessible from

the sampling frame used for the analytic survey (zero otherwise). We assume that

the event cA that determines the inclusion of the unit on the frame (i.e., CAhik = 1)

is random and independent among the population units. This allows the use of

a Bernoulli distribution to say EcA
(CAhik) = φAhik and V arcA

(CAhik) = φAhik(1 −

φAhik), where EcA
and V arcA

are the expectation and variance taken with respect to

the coverage mechanism. The benchmark survey coverage indicator, CBl (l ∈ sB),

and coverage process, cB, are similarly defined.
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3.5 Domain Estimation

Within the large, finite population U discussed in Section 3.1, let Ud represent

the set of population units within domain d of size Nd. The domain members are

identified through a binary variable denoted as δdhik where δdhik = 1 if unit k in

PSU i within stratum h is a member of domain d and δdhik = 0 otherwise. We

assume that δdhik is a fixed value and therefore, does contribute to the variance of

the point estimator. The population domain size is determined by summing the

domain indicators, i.e., Nd =
∑

hik∈U δdhik. The domains may span the H design

strata and need not be represented within each stratum nor within each PSU in a

particular stratum. Thus, we denote the number of population PSUs containing a

least one domain member as Md.

Because we allow for undercoverage error, analytic survey domain estimates

are associated only with the population parameter for those domain members listed

on the sampling frame, i.e., UAd of size NAd. We assume that NAd, as well as

the domain sample size nAd =
∑

hik∈sA
δdhik, are sufficiently large so that small

area estimation techniques are not required. We additionally assume that coverage

mechanism (see the discussion of CAhik in Section 3.4) is independent of the (fixed)

domain indicator. The domain sample units are contained within a total of mAd

sample PSUs.

Calibration weights for domain estimation can take several forms depending

on the level of information available from the benchmark survey (Estevao & Särndal,

2004). For example, benchmark control totals may be published for gender by age

55



group but not by race/ethnicity, a domain of interest. Given that the relevant

benchmark domain control totals exist, researchers could be faced with creating one

set of weights for each key domain possibly in addition to an “overall estimation”

set of weights. Keeping with our desire for one set of weights and the possibility

that domain control totals are not available, we will use the same set of weights

for both the overall and domain-specific population estimates. In other words, the

calibrated weights for the domain estimates are functions of the overall auxiliary

totals from the analytic and benchmark surveys.

3.6 Study Estimators

Through linear calibration, we will construct GREGs and poststratified (GREG)

estimators to address totals and ratios of two totals for all population units and for

a domain within the population. More complex point estimators, such as regression

coefficients and quantiles, are reserved for future research.

Given the specified analytic survey sampling design (see Section 3.1), the esti-

mator used to calculate the estimated population totals is the so-called “p-expanded

with-replacement” (pwr) estimator discussed in Särndal et al. (1992, Section 2.9).

This estimator is also known as the Hansen-Hurwitz estimator (Hansen & Hurwitz,

1943). For example, this pwr estimator for the total of y, using the analytic sur-

vey notation and suppressing the “pwr” subscript from the Särndal et al. (1992)
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notation, is expressed as

t̂Ay =
H∑

h=1

1

mAh

mAh∑
i=1

t̂Ayhi

πhi(1)

=
H∑

h=1

1

mAh

mAh∑
i=1

nAhi∑

k=1

yhik

πhi(1)πk|hi

=
H∑

h=1

mAh∑
i=1

nAhi∑

k=1

yhik

πhik

(3.1)

where t̂Ayhi =
∑nAhi

k=1 π−1
k|hiyhik. As discussed in Result 2.9.1 of Särndal et al. (1992),

this pwr estimator is unbiased for the corresponding population total in WR PSU

sampling. Note that we may simplify the complexity of estimator formulae through-

out the remaining chapters when brevity is appropriate. For example, t̂Ay may also

be expressed as
∑

hik∈sA
π−1

hikyhik.

Taylor linearization and jackknife variance estimation techniques, either newly

developed or extracted from the literature, are included in our development of EC

calibration. Balanced repeated replication (BRR) variance estimation is needed

to address the estimation of population quantiles but will not be covered here.

Additional details related to the chosen variance estimators is provided in Section

2.3.

3.7 Assumptions for Asymptotic Theory

As discussed previously, we focus on stratified, multi-stage analytic survey

sampling designs, where mAh PSUs (mAh ≥ 2) are selected with replacement from

within H design strata. The inclusion probability for PSU hi is assumed to be
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sufficiently approximated by mAhπhi(1). Additional assumptions are required to

facilitate the development of asymptotic theory for our research:

• As mA =
∑

h∈sA
mAh → ∞ and M =

∑
h∈U Mh → ∞, maxh

(
Mh

M

) (
mA

mAh

)
=

O(1). This assumption addresses two cases: (i) a fixed number of strata each

containing a large number of PSUs, and (ii) a large number of strata each

with a limited number of PSUs.

• The mean per population PSU (t̂/M) and the mean per population unit (t̂/N)

are bounded in probability, where t̂ is an unspecified sample total calculated

from either the analytic or benchmark survey data. This allows statements

such as t̂Ay (3.1) is OP (M).

• The size of the analytic and benchmark PSU samples (mA and mB) are suffi-

ciently large to support the claim that E[f(θ̂A, θ̂B)] ∼= f [E(θ̂A), E(θ̂B)], where

θ̂A and θ̂B are the population estimators of interest from the analytic and

benchmark surveys, respectively, and f is a differentiable function.

3.8 Data Source

Theory presented without empirical results to support the development is in-

complete. We include the discussion of simulation studies conducted in Rr (Lumley,

2005; R Development Core Team, 2005), and the corresponding results in the subse-

quent research chapters. The simulation population used in our research is a random

subset of the 2003 National Health Interview Survey (NHIS) public-use file contain-

ing records for 21,664 U.S. residents. These records are contained within H = 25
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design strata; Mh = 6 PSUs are associated with each stratum. Units within the

sampling frame, from which the analytic survey samples are selected, are randomly

chosen from the simulation population with varying degrees of undercoverage by age

group and gender. Benchmark control-total covariance matrices are calculated from

the complete NHIS public-use data file (92,148 records). Additional details on the

simulation study are provided beginning in Section 4.5.1.
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Chapter 4

Estimated Population Totals

4.1 Introduction

Särndal et al. (1992) among others demonstrate the good theoretical properties

of the traditional generalized regression estimator (GREG) including asymptotic un-

biasedness. We add to the literature in this chapter by detailing the theoretical prop-

erties of the GREG of a population total under estimated-control (EC) calibration.

The form of the estimated-control generalized regression estimator (EC-GREG) of

a population total is described in Section 4.2 using notation from Chapters 2 and 3.

The specialized EC-GREG known as the estimated-control poststratified estimator

(EC-PSGR) is also discussed. We examine factors that effect bias of the EC-GREGs

in estimating the population total in Section 4.3. An evaluation of a set of sample

variance estimators is discussed in Section 4.4, thereby allowing a complete picture

of the mean square error properties of these new estimators. Our theoretical findings

are validated with a simulation study in Section 4.5. We conclude the chapter with

a summary of our research findings in Section 4.6.
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4.2 Point Estimators

The EC-GREG of a population total, denoted as t̂yR in our research, is ob-

tained by replacing the vector of (presumed) population totals in the GREG, tBx

in expression (2.10), with values estimated from a benchmark survey, t̂Bx. Even

though the values within the two vectors are the same, the “hat” notation in the

latter vector identifies the set of control total estimates with a non-zero (sampling)

covariance matrix, i.e., var
(
t̂Bx

)
= V̂B versus var (tBx) = 0G, a G-length vector of

zeroes. The use of differing notation becomes apparent in our discussion of variance

estimators in Section 4.4. The formula for t̂yR is explicitly expressed as:

t̂yR = t̂Ay + (t̂Bx − t̂Ax)
′B̂A

=
H∑

h=1

mAh∑
i=1

nAhi∑

k=1


1 + (t̂Bx − t̂Ax)

′
(

H∑

h=1

mAh∑
i=1

nAhi∑

l=1

π−1
hilxhilx

′
hil

)−1

xhik


 π−1

hikyhik

=
H∑

h=1

mAh∑
i=1

nAhi∑

k=1

ahikπ
−1
hikyhik . (4.1)

We repeat the definition of terms in the formula above to facilitate the discussion

in this chapter. The pwr estimator of the outcome variable y is defined as t̂Ay =

∑
hik∈sA

π−1
hikyhik, a function of the outcome variable values and the design weights,

π−1
hik, from the analytic survey sample sA. We assume that πhik for the kth unit

in PSU i within stratum h is reasonably approximated by mAhπhi(1)πk|hi, where

(i) mAh out of MAh PSUs are selected with replacement within stratum h with a

single-draw selection probability πhi1, and (ii) nAhi out of NAhi units are selected

with conditional probabilities πk|hi. Additional details on the assumptions of the
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analytic survey design are provided in Section 3.1. The vector of pwr estimators for

the auxiliary (x) variables is similarly calculated as t̂Ax =
∑

hik∈sA
π−1

hikxhik for the

vector xhik of size G. The corresponding G-length vector of auxiliary variable totals

estimated from the benchmark survey is calculated as t̂Bx =
∑

l∈sB
wlxl, where wl

denotes the benchmark analysis weight (i.e., design weight adjusted for issues such

as nonresponse) for the lth sample unit in the benchmark survey sample sB. We

make no explicit statement about the estimates in t̂Bx because no assumptions have

been made for the benchmark survey sampling design. The model-coefficient vector

B̂A =

[
H∑

h=1

mAh∑
i=1

nAhi∑

l=1

π−1
hilxhilx

′
hil

]−1 H∑

h=1

mAh∑
i=1

nAhi∑

k=1

π−1
hikxhikyhik, (4.2)

also used in the calculation of t̂yGREG in (2.10), is calculated based on the spec-

ification of a working population model, yhik = x′hikB + Ehik. Finally, ahik =

1+
[
t̂Bx − t̂Ax

]′ (∑
hil∈sA

π−1
hilxhilx

′
hil

)−1
xhik is the calibration adjustment factor also

referred to as a g-weight by Särndal et al. (1992) in Section 6.5.

Similarly, the estimated-control poststratified estimator (EC-PSGR) of a pop-

ulation total, t̂yP , is produced by replacing the population counts within the G

poststrata
(
{NBg}G

g=1

)
with estimated benchmark survey counts

({
N̂Bg

}G

g=1

)
in

the formula for t̂yPSGR shown in expression (2.11). The resulting estimator, a special
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case of the estimator in (4.1), has the form

t̂yP = N̂′
BN̂−1

A t̂Ay = N̂B
ˆ̄YA

=
G∑

g=1

N̂Bg N̂−1
Ag t̂Ayg

=
H∑

h=1

mAh∑
i=1

nAhi∑

k=1

[
G∑

g=1

N̂Bg N̂−1
Ag δghik

]
π−1

hikyhik

=
H∑

h=1

mAh∑
i=1

nAhi∑

k=1

ahikπ
−1
hikyhik. (4.3)

The G-length vector of poststratum counts estimated from the benchmark survey is

denoted by N̂B = [N̂B1, ..., N̂BG]′ where N̂Bg =
∑

l∈sB
δglwl, the sum of the bench-

mark analysis weights for the units within poststratum g. The term δgl = 1 if

the lth benchmark unit is a member of the gth poststratum (l ∈ sBg), otherwise

δgl = 0. The poststratum sizes estimated from the analytic survey
(
N̂A1, ..., N̂AG

)

are calculated by summing the design weights π−1
hik across PSUs and design strata

within each poststratum, i.e., N̂Ag =
∑

hik∈sA
δghikπ

−1
hik where δghik = 1 if k ∈ sAg

(zero otherwise). The estimated counts N̂Ag are contained within a G-dimensional

diagonal matrix, N̂A. The term t̂Ayg =
∑

hik∈sA
δghikπ

−1
hikyhik represents the pwr

estimator of the total for y within the gth poststratum and populates the G-

length vector t̂Ay. The vector ˆ̄YA = N̂−1
A t̂Ay =

[(
t̂Ay1/N̂A1

)
, , ...,

(
t̂AyG/N̂AG

)]′

=
(
ˆ̄yA1, ..., ˆ̄yAG

)′
. The calibration-adjustment factor for the kth value in the t̂yP

calculation is ahik =
∑G

g=1(N̂Bg/N̂Ag)δghik = (N̂Bg/N̂Ag) because δghik = 1 for only

one (mutually exclusive) poststratum g.

In practice, the sample point estimates calculated under either the traditional
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or the estimated-control assumption will be numerically equal, though conceptually

different. Numerical differences, however, do occur in the components of the mean

square error (MSE) — namely squared bias and variance.

4.3 Bias of Point Estimators

The bias of an estimator θ̂ is evaluated as Bias(θ̂) = E(θ̂) − ty when only

the randomness associated with the survey design is considered. Following terms

discussed in Särndal et al. (1992), this bias is labeled as the model-assisted random-

ization (or design-based) bias where the “model” is the assisting model chosen to

produce the estimator of interest.

A Taylor linearization is used to approximate the expectation of any nonlinear

estimator, such as the EC-GREG totals studied in this chapter. We assume that

samples in analytic and benchmark surveys are sufficiently large to facilitate the

approximation — see the theoretical assumptions discussed in Section 3.7. In the

case of t̂yR in (4.1) with a first-order linearization approximation, we have

E(t̂yR) = E(t̂Ay) + E[(t̂Bx − t̂Ax)
′B̂A]

= E(t̂Ay) + [E(t̂Bx)− E(t̂Ax)]
′E(B̂A)

+ O (max [M/
√

mA,M/
√

mB])

∼= E(t̂Ay) + [E(t̂Bx)− E(t̂Ax)]
′E(B̂A) (4.4)

where mA is the number of PSUs selected under the analytic survey design and mB is
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the number of PSUs selected under the benchmark survey design. The result above

is obtained by evaluating the expectations with respect to four random mechanisms

using the formula for an unconditional expectation E(t̂) = Eb[Ea(t̂|b)] (see e.g.,

Casella & Berger, 2002, pp. 164, Theorem 4.4.3). The mechanisms include the

analytic survey sample design (EA), the benchmark survey sample design (EB), and

the population coverage propensities for their respective sampling frames (EcA
and

EcB
). The unconditional expectation of the model-coefficient vector B̂A in (4.2) is

defined as follows using a first-order approximation:

E(B̂A) = EcA

[
EA

(
B̂A|cA

)]

∼=
[
EcA

(
EA

(
H∑

h=1

mAh∑
i=1

nAhi∑

l=1

π−1
hilxhilx

′
hil

))]−1

× EcA

(
EA

(
H∑

h=1

mAh∑
i=1

nAhi∑

k=1

π−1
hikxhikyhik

))

∼=
[

H∑

h=1

Mh∑
i=1

Nhi∑

l=1

EcA
(CAhil)xhilx

′
hil

]−1

×
H∑

h=1

Mh∑
i=1

Nhi∑

k=1

EcA
(CAhik)xhikyhik

=

[ ∑

hil∈U

φAhilxhilx
′
hil

]−1 ∑

hik∈U

φAhikxhikyhik ≡ BA (4.5)

where
∑

hik∈U represents the sum over the design strata (h), PSUs (i), and units (k)

within the complete population (U); and CAhik = 1 indicates that the kth population

unit (k ∈ U) is listed on the analytic sampling frame (CAhik = 0 otherwise) such that

EcA
(CAhik) = φAhik. Note that we use the subscript A in E(B̂A) = BA to associate

the population model-coefficient vector with any subset of the population covered
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by the analytic survey sampling frame, i.e., UA ⊆ U . Some researchers implicitly

assume an average coverage rate across the frame (φAhik ≡ φA) so that the claim

of unbiasedness holds, i.e., BA ≡ B. However, it is more common for the coverage

rates to differ across groups of units (U.S. Census Bureau, 2002). For our research,

we will not make these assumptions and instead will allow for a difference between

BA and B (i.e., coverage errors may exist in the benchmark survey).

Following the technique in (4.5) for the remaining terms in (4.4), we say that

E(t̂Ay) ∼= tAy =
∑

hik∈U φAhikyhik, and E(t̂Ax) ∼= tAx =
∑

hik∈U φAhikxhik. The

expectation of the benchmark control total vector is equal to tBx =
∑

hik∈U φBhikxhik

where CBhik = 1 identifies the population units listed on the benchmark survey frame

such that E(CBhik) = φBhik (CBhik = 0 otherwise). Therefore,

E(t̂yR) ∼= tAy + (tBx − tAx)
′BA. (4.6)

The calibration model underlying t̂yR is yhik = x′hikB + Ehik, where we assume

the model errors (E) are distributed with mean zero and common variance σ2.

Continuing with the calculation of the design-based bias, we obtain the following
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expression:

Bias(t̂yR) ∼= tAy + (tBx − tAx)
′BA − ty

= [tAy − t′AxB− ty + t′xB]− (tx − tAx)
′B + (tBx − tAx)

′ (BA −B)

+(tBx − tAx)
′B

=
∑

hik∈U

[φAhik(yhik − x′hikB)− (yhik − x′hikB)]− (tx − tAx)
′B

+(tBx − tAx)
′(BA −B) + (tBx − tAx)

′B

=
∑

hik∈U

(Ehik − Ē)(φAhik − φ̄A) + (tBx − tAx)
′(BA −B)

−NĒ(1− φ̄A) + (tBx − tx)
′B

= NCAEφ + (tBx − tAx)
′(BA −B)−NĒ(1− φ̄A)

+(tBx − tx)
′B (4.7)

where Ehik = yhik − x′hikB, the population-level assisting model residual; φ̄A is

the average coverage rate for the analytic survey sampling frame; and CAEφ =

∑
hik∈U(Ehik − Ē)(φAhik − φ̄A)/N , the covariance between the coverage rates and

the assisting model residuals. The four bias components in (4.7) each can be elim-

inated under the following conditions. (i) If the auxiliary variables are correlated

with the outcome variable y and with the coverage mechanism, and the working

model is sufficiently close to the population model, then the random variation left

unexplained by the model (in theory) should be uncorrelated with the coverage

propensities, i.e., CAEφ
∼= 0. Under this scenario, the first bias component NCAEφ is

approximately zero. Note that CAEφ can also be written as N
[
CAyφ − C ′

AxφB
]

with
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NCAyφ =
∑

hik∈U(yhik−ȳ)(φAhik−φ̄A) and NC ′
AxφB =

∑
hik∈U(xhik−x̄)(φAhik−φ̄A).

As a result, CAEφ will also be zero if the coverage probabilities in the analytic sur-

vey are uncorrelated with both the outcome and the auxiliary variables. (ii) If the

coverage for the analytic and benchmark surveys is the same, then tBx = tAx so

that the second bias component (tBx − tAx)
′(BA −B) disappears. Likewise, if the

slope BA from the universe covered by the analytic survey is the same as that of the

full universe, the second term vanishes. (iii) If the design matrix contains a column

of ones (intercept) so that the overall estimated population size is included as an

auxiliary variable, then by definition Ē = 0 and the third bias component is elimi-

nated. (iv) Finally, if tBx = tx, as with traditional calibration, the last component

is zero. Therefore, the estimator t̂yR will be asymptotically design unbiased only if

all these conditions are satisfied; an unlikely event especially with EC calibration.

Generally, the bias will be order O
(
max

[
M/

√
mA,M/

√
mB

])
.

The last term in (4.7), (tBx−tx), can be further decomposed into NCBxφ−(1−

φ̄B)tx, where CBxφ is the vector of covariance terms between the auxiliary variables

and the coverage propensities for the benchmark survey(s), and φ̄B is the average

benchmark coverage rate. If tBx 6= tx, the bias component could be reduced by

choosing auxiliary variables from the benchmark survey with high coverage rates.

The model-assisted randomization bias for t̂yP , an EC-GREG estimator of a

total under a group-mean assisting model, can be derived from expression (4.7) and
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has the following form:

Bias(t̂yP ) ∼=
G∑

g=1

NBgCAyφg
1

φ̄Ag

+
G∑

g=1

tyg

(
NBg

Ng

− 1

)
(4.8)

where Ng is the population size within poststratum g; CAyφg = N−1
g

∑
k∈Ug

(yhik −

ȳg)(φAhik − φ̄Ag), the population covariance between the outcome variable and the

coverage rates within poststratum g; ȳg = tyg/Ng, the gth poststratum mean of y ;

and φ̄Ag = NAg/Ng, the average coverage rate within the poststratum under the

analytic survey design. If the benchmark survey does not cover the target popula-

tion correctly, so that NBg 6= Ng, then the first bias component, tyg(NBg/Ng − 1),

will be either positive (overestimate) or negative (underestimate) depending on the

magnitude of the bias. This component will be strictly negative if the benchmark

survey suffers undercoverage, and can accumulate across the poststrata to a size-

able negative bias depending on the magnitude of the outcome variable. The second

component, which is dependent on the particular outcome variable under examina-

tion, may also be negative if large y values are more likely to be excluded from a

sampling frame.

Components of Bias(t̂yP ) are zero only under certain conditions. (i) If NBg =

Ng for all g (i.e., no coverage errors in the benchmark survey), then the bias is

dependent only on the association between the outcome variable and the coverage

probabilities, CAyφg. The value of Bias(t̂yP ) then reduces to the formula provided in

equation (2) of Kim et al. (2007) for the traditional poststratified estimator, t̂PS. (ii)

If the coverage probabilities are constant within each poststratum (i.e., φAhik = φ̄Ag,
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k ∈ Ug for all g), then the first bias component is zero. Only if both conditions are

satisfied can we say that the t̂yP is approximately unbiased. Some might argue that

a “perfect” combination of poststrata could be formed such that the positive and

negative bias components cancel; however, we believe this likelihood to be so rare

as to be virtually impossible.

For some estimators, the contribution of the squared bias to the total MSE is

small relative to the variance. Many researchers will claim (approximate) unbiased-

ness based on weight adjustments that reduce bias to negligible levels because the

“true” levels of bias are generally not available. We next focus on what is for many

the primary component of the MSE, i.e., the variance.

4.4 Variance Estimation

Variance estimators have been developed for traditional weight calibration

and are available in software designed to analyze survey data, e.g., Rr (R Develop-

ment Core Team, 2005), SASr (SAS Institute Inc., 2004), Statar (StataCorp, 2005),

SUDAANr (Research Triangle Institute, 2004), and WesVarr (Westat, 2000). How-

ever, limited theoretical work has been completed on variance estimation for EC

calibration, and to our knowledge, the associated software is non-existent.

Five EC variance estimators that account for the variation in the benchmark

control totals are presented in the following sections. They include two linearization

estimators, and three delete-one jackknife variance estimators. With the delete-one

jackknife, replicates are created by sequentially deleting one PSU and adjusting
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the weights for the remaining PSUs within the corresponding design stratum. This

results in a total of mA =
∑H

h=1 mAh replicates calculated by summing the number

of analytic-survey PSUs per stratum (mAh) across the design strata (h=1,...,H ). We

also compare the theoretical properties of the variance estimators.

An effective variance estimator will reproduce the corresponding population

sampling variance in expectation (i.e., asymptotically unbiased estimator). The

population sampling variance of the EC-GREG total of y, t̂yR, is classified as an

approximate (or asymptotic) variance because of the approximate form of the re-

gression estimator used in the derivation. The approximation is derived by first

rewriting the estimator in terms of the corresponding GREG estimator (2.10):

t̂yR = t̂Ay +
(
t̂Bx − t̂Ax

)′
B̂A

=
[
t̂Ay +

(
tBx − t̂Ax

)′
B̂A

]
+

(
t̂Bx − tBx

)′
B̂A

= t̂yGREG +
(
t̂Bx − tBx

)′ (
B̂A −BA

)
+ t̂′BxBA − t′BxBA

= t̂yGREG + OP (M/
√

mB) OP

(
m
−1/2
A

)
+ t̂′BxBA − t′BxBA

∼= t̂yGREG + t̂′BxBA − t′BxBA (4.9)

where BA is the (design) expected value of B̂A, the vector of sample regression co-

efficients defined in (4.1), such that
(
B̂A −BA

)
= OP

(
m
−1/2
A

)
; t̂′BxBA = OP (M),

by the assumptions discussed in Section 3.7, is a function of the vector of estimated

benchmark control totals t̂Bx with M equal to the total number of PSUs in the

population; and t′BxBA is a constant, i.e., O (M). The estimator t̂yGREG = OP (M)
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can be written as a function of the population assisting-model residuals:

t̂yGREG = t̂Ay +
(
tBx − t̂Ax

)′
B̂A

= t̂Ay − t̂′AxBA − t̂′Ax

(
B̂A −BA

)
+ t′Bx

(
B̂A −BA

)
+ t′BxBA

=
H∑

h=1

mAh∑
i=1

nAhi∑

k=1

π−1
hik (yhik − x′hikBA)− (

t̂Ax − tAx

)′ (
B̂A −BA

)

−t′Ax

(
B̂A −BA

)
+ t′Bx

(
B̂A −BA

)
+ t′BxBA

=
H∑

h=1

mAh∑
i=1

nAhi∑

k=1

π−1
hikEAhik + OP (M/

√
mA) + t′BxBA

∼=
H∑

h=1

mAh∑
i=1

nAhi∑

k=1

π−1
hikEAhik + t′BxBA (4.10)

where the analytic survey population residuals are calculated as EAhik = yhik −

x′hikBA such that
∑

hik∈sA
π−1

hikEAhik = OP (M);
(
t̂Ax − tAx

)
= OP

(
M/

√
mA

)
; and

t′BxBA = O (M). Combining the two approximations in (4.9) and (4.10) and noting

that the t′BxBA terms cancel, we express t̂yR as

t̂yR
∼=

H∑

h=1

mAh∑
i=1

nAhi∑

k=1

π−1
hikEAhik + t̂′BxBA. (4.11)

The population sampling variance of t̂yR is generally evaluated with respect to

the analytic (A) and benchmark (B) survey designs as well as the coverage mech-

anisms associated with the respective sampling frames (cA and cB). However, for

our purposes we will assume that the benchmark survey has only coverage bias

(i.e., no detectable variation in coverage). The unconditional population sampling

variance is determined by evaluating the following variance components created by
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recursively administering the unconditional variance formula given in, e.g., Casella

& Berger (2002, Theorem 4.4.7):

V ar(t̂yR) = EB

[
V arcA,A(t̂yR | B)

]
+ V arB

[
EcA,A(t̂yR | B)

]

= EB

[
EcA

{
V arA(t̂yR | cA, B) |B}]

+ EB

[
V arcA

{
EA(t̂yR | cA, B)| B

}]

+ V arB

[
EcA

{
EA(t̂yR | cA, B)| B

}]

≡ V1 + V2 + V3. (4.12)

For the purpose of variance computation, we assume the analytic survey sample is

generated from a complex, multi-stage design with mAh (mAh ≥ 2) PSUs selected

with replacement from within each of H design strata, and a without-replacement

sample of nAhi units selected from PSU hi. A complete discussion of analytic survey

sampling design assumptions is provided in Section 3.1. The pwr estimator of the

residual total in stratum h for this design is

t̂AEh =

mAh∑
i=1

nAhi∑

k=1

EAhik

πhik

=
1

mAh

mAh∑
i=1

nAhi∑

k=1

EAhik

πhi(1)πk|hi

≡ 1

mAh

mAh∑
i=1

t̂AEhi

πhi(1)

where t̂AEhi =
∑nAhi

k=1 EAhik/πk|hi for EAhik defined in (4.10). To evaluate the expec-

tation of t̂yR with respect to the coverage mechanism and the sampling design associ-

ated with the analytic survey, as well as the benchmark survey design, note that each

73



t̂AEhi/πhi(1) is a one-PSU estimate of the stratum total tAEh (=
∑Mh

i=1

∑Nhi

k=1 EAhik).

It follows that

E
(
t̂yR

)
= EB

(
EcA

[
EA

(
t̂yR | cA

)])

∼= EcA

[
EA

(
H∑

h=1

t̂AEh | cA

)]
+ EB

[
t̂′BxBA

]

∼=
H∑

h=1

Nh∑
i=1

Mhi∑

k=1

EcA
(CAhik) EAhik + EB

[
t̂′Bx

]
BA

=
H∑

h=1

Nh∑
i=1

Mhi∑

k=1

φAhikEAhik + t′BxBA (4.13)

where CAhik = 1 indicates that the kth unit within PSU hi is listed on (i.e., covered

by) the analytic survey sampling frame (zero otherwise) with EcA
(CAhik) = φAhik.

The term V1 ≡ EB

[
EcA

{
V arA(t̂yR | cA, B) |B}]

in expression (4.12) is evalu-

ated using Result 4.5.1 in Särndal et al. (1992) within each of the H analytic survey

design strata in addition to the work presented in expression (4.13):

V1 ≡ EB

[
EcA

{
V arA(t̂yR | cA, B) |B}]

= EcA

[
V arA(t̂yR | cA, B)

]

∼= EcA

[
H∑

h=1

1

mAh

Mh∑
i=1

πhi(1)

(
tAEhi

πhi(1)

− tAEh

)2

+
H∑

h=1

1

mAh

Mh∑
i=1

VAhi

πhi(1)

]

=
H∑

h=1

1

mAh

Mh∑
i=1

πhi(1)

(
tAEhi

πhi(1)

− tAEh

)2

+
H∑

h=1

1

mAh

Mh∑
i=1

EcA
(VAhi)

πhi(1)

(4.14)

where tAEhi =
∑Nhi

k=1 φAhikEAhik; tAEh =
∑Mh

i=1 tAEhi; and VAhi is the within-PSU

population sampling variance for EAhik. The within-PSU variance, VAhi, is deter-

mined by the design used to select the second-stage units for the analytic survey.

For example, a simple random sample (SRS) of nAhi out of NAhi second-stage units
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within PSU hi results in the following formula:

VAhi = NAhi

(
NAhi

nAhi

− 1

) ∑
i∈UAhi

(
EAhik − ĒAhi

)2

NAhi − 1

where ĒAhi = N−1
Ahi

∑
k∈UAhi

EAhik, the average assisting-model residual in PSU hi

within the analytic frame population UAhi. Taking the expectation with respect to

the analytic frame coverage mechanism (cA), we have

EcA
(VAhi) ∼= EcA

(NAhi)

(
EcA

(NAhi)

nAhi

− 1

) EcA

(∑
k∈UAhi

(
EAhik − ĒAhi

)2
)

(EcA
(NAhi)− 1)

with EcA
(NAhi) = EcA

(∑Nhi

k=1 CAhik

)
=

∑Nhi

k=1 φAhik = N∗
Ahi, the expected PSU size

covered by all analytic survey sampling frames. The remaining variance component

above evaluates to the following expression:

EcA

( ∑

k∈UAhi

(
EAhik − ĒAhi

)2

)
= EcA

( ∑

k∈UAhi

E2
Ahik −NAhiĒ

2
Ahi

)

∼=
Nhi∑

k=1

φAhikE
2
Ahik −

(∑Nhi

k=1 φAhikEAhik

)2

∑Nhi

k=1 φAhik

=

Nhi∑

k=1

φAhik

(
EAhik − ˘̄EAhi

)2

for ˘̄EAhi =
(∑Nhi

k=1 φAhikEAhik

)
/
(∑Nhi

k=1 φAhik

)
. Thus, the V1 variance component is

associated only with the variance of the analytic survey design, that is, traditional

calibration where the benchmark estimates are assumed to be fixed so that V1 ≡

AV
(
t̂yGREG

)
.
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Focusing on the coverage errors in the analytic survey, the second variance

component in (4.12) is evaluated as follows:

V2 ≡ EB

[
V arcA

{
EA(t̂yR | cA, B)| B

}]

= V arcA

[
EA(t̂yR | cA, B)| B

]

∼= V arcA

[
H∑

h=1

Mh∑
i=1

Nhi∑

k=1

CAhikEAhik

]

=
H∑

h=1

Mh∑
i=1

Nhi∑

k=1

φAhik (1− φAhik) E2
Ahik (4.15)

under the assumption that CAhik ∼ Bernoulli(φAhik) as discussed in Section 3.4.

This component is by definition positive and inflates the variance for the analytic

survey frame undercoverage errors.

The last variance component in (4.12) addresses the variability of the bench-

mark control totals and evaluates to the following expression:

V3 ≡ V arB

[
EcA

{
EA(t̂yR | cA, B)| B

}]

∼= V arB

[
t̂′BxBA

]

= B′
AVBBA

where VB = V arB

(
t̂Bx

)
, the population sampling covariance matrix associated with

the vector of estimated control totals. Therefore, after combining the component

approximations, we say that the asymptotic population sampling variance (AV ) of
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t̂yR is:

AV (t̂yR) ≡ V1 + V2 + V3

= AV
(
t̂yGREG

)

+
H∑

h=1

Mh∑
i=1

Nhi∑

k=1

φAhik (1− φAhik) E2
Ahik

+ B′
AVBBA. (4.16)

The relative influence of the three components in (4.16) on the overall variance is

best examined through their convergence rates after dividing AV (t̂yR) by M2 to

ensure the quantity is bounded. The first and third terms in (4.16), under standard

conditions (see Rao & Wu, 1985), are O
(
m−1

A

)
and O

(
m−1

B

)
, respectively. The

term V2 is of a lower order, O (M−1). Thus, the sizes of the PSU samples in the

analytic and benchmark surveys are the prime determinants for the level of the

asymptotic variance. Note that the notation “AV (t̂yR) =” in (4.16) is the same

as “V ar
(
t̂yR

) ∼=” in (4.12) and follows the naming convention adopted by Särndal

et al. (1992). We use the AV notation in the remainder of the document.

The results for the EC poststratified estimator (EC-PSGR), a special case of

the regression estimator discussed above, are derived by first detailing the first-order
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Taylor approximation of t̂yP (4.3):

t̂yP
∼= tyP +

G∑
g=1

{
ȲAg

(
N̂Bg −NBg

)
+ NBgN

−1
Ag

(
t̂Ayg − tAyg

)

−NBgN
−1
Ag ȲAg

(
N̂Ag −NAg

)}

= tyP +
G∑

g=1

{
ȲAg

(
N̂Bg −NBg

)
+ NBgN

−1
Ag

(
t̂Ayg − ȲAgN̂Ag

)}

= tyP +
(
N̂B −NB

)′
ȲA +

(
t̂Ay − N̂AȲA

)′
N−1

A NB, (4.17)

where tyP =
∑G

g=1 NBgN
−1
Ag tAyg; N̂B = [N̂B1, ..., N̂BG]′, the vector of G poststratum

counts estimated from the benchmark survey; NB is the vector of true counts from

the benchmark sampling frame population; ˆ̄YA = N̂−1
A t̂Ay = [ˆ̄yA1, ..., ˆ̄yAG]′, the G-

length vector of model coefficients under the group-mean assisting model for the

analytic survey; ȲA = [tAy1/NA1, ..., tAy1/NAG]′, the population equivalent to ˆ̄YA;

t̂Ay = [t̂Ay1, ..., t̂AyG]′, the vector of total y within each of the G poststrata; and

N̂A is a diagonal matrix of dimension G with elements equal to the analytic survey

poststratum estimates, i.e., N̂A1, ..., N̂AG. Note that the first-order approximation

to ˆ̄YA is given as:

ˆ̄YA
∼= ȲA + N−1

A

(
t̂Ay − tAy

)−
(
N̂A −NA

)
N−1

A ȲA

= ȲA + N−1
A

(
t̂Ay − N̂AȲA

)
.

Next, note that t̂Ay − N̂AȲA = N̂A

(
ˆ̄YA − ȲA

)
and N−1

A N̂A = IG + OP

(
m
−1/2
A

)
,
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where IG is a G-dimensional identity matrix. Using this and (4.17), we have

AV
(
t̂yP

)
= N′

BE

[[
N−1

A

(
t̂Ay − N̂AȲA

)] [(
t̂Ay − N̂AȲA

)′
N−1

A

]]
NB

+ 2Ȳ′
AE

[(
N̂B −NB

) (
ˆ̄YA − ȲA

)′]
E

[
N̂A

]
N−1

A NB

+ Ȳ′
AE

[(
N̂B −NB

)(
N̂B −NB

)′]
ȲA

= N′
BV ar

(
ˆ̄YA

)
NB + 2Ȳ′

ACov
(
N̂B, ˆ̄YA

)
NB + Ȳ′

AV ar
(
N̂B

)
ȲA

= N′
BV ar

(
ˆ̄YA

)
NB + Ȳ′

AV ar
(
N̂B

)
ȲA. (4.18)

where the covariance term, Cov
(
N̂B, ˆ̄YA

)
, is zero because we assume that the

benchmark and analytic surveys are independent.

The asymptotic population sampling variance for the EC poststratified total

follows the expression (4.16). The V1 and V2 variance components are obtained by

evaluating the unconditional variance of N′
BV ar

(
ˆ̄YA

)
NB by averaging over the

coverage mechanism (cA) and design (A) for the analytic survey. Therefore, V1 for

the EC-PSGR estimator is approximately equal to N′
BEcA

(VA)NB = AV
(
t̂yPSGR

)
,

where VA = V arA( ˆ̄YA) ∼= DΣθ̂D
′ with

D =




∂ȳA1

∂ty1

∂ȳA1

∂ty2
· · · ∂ȳA1

∂NG

∂ȳA2

∂ty1

∂ȳA2

∂ty2
· · · ∂ȳA2

∂NG

...
...

. . .
...

∂ȳAG

∂ty1

∂ȳAG

∂ty2
· · · ∂ȳAG

∂NG




=

[
diag

({
1

NAg

}G

g=1

)
, diag

({−ȳAg

NAg

}G

g=1

)]
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and

Σθ̂ =




σ(t̂A1,t̂A1) σ(t̂A1,t̂A2) · · · σ(t̂A1,N̂AG)

σ(t̂A2,t̂A1) σ(t̂A2,t̂A2) · · · σ(t̂A2,N̂AG)

...
...

. . .
...

σ(N̂A(G−1),t̂A1) σ(N̂A(G−1),t̂A2) · · · σ(N̂A(G−1),N̂AG)

σ(N̂AG,t̂A1)
σ(N̂AG,t̂A2) · · · σ(N̂AG,N̂AG)




.

The V2 variance component is defined as in (4.15) with EAhik = yhik− ȳAg for unit k

within poststratum g and ȳAg = tAyg/NAg. The remaining component is defined as

V3
∼= Ȳ′

AVBȲA with VB ≡ V arB

(
N̂B

)
, the population sample covariance matrix

specified under the benchmark design, by noting BA ≡ ȲA under poststratification.

Therefore, the approximate variance accounting for the estimates from the analytic

and benchmark surveys, as well as the analytic survey coverage mechanism, is equal

to

AV (t̂yP ) = AV
(
t̂yPSGR

)

+
G∑

g=1

H∑

h=1

Mh∑
i=1

Nhi∑

k=1

δghikφAhik (1− φAhik) E2
Ahik

+ Ȳ′
AVBȲA (4.19)

with EAhik = yhik − ȳg and ȳg = tyg/Ng discussed for expression (4.8).

Krewski & Rao (1981), Rao & Wu (1985), and others demonstrated the asymp-

totic consistency of the linearization and jackknife variance estimators for nonlinear

functions. However, this examination needs to be extended to the EC calibration —

this very research begins here. We discuss the set of EC sample variance estimators
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for the population sampling variance below identified for our research. The sample

estimators are derived by substituting (approximately) unbiased sample estimates

for the corresponding population parameters. We begin with an evaluation of tradi-

tional calibration variance estimators that do not account for the variability in the

estimated controls.

4.4.1 Linearization Variance Estimation for Traditional Calibration

A variety of variance estimators have been developed for traditional weight

calibration. These include linearization, balanced repeated replication, jackknife

(replication), jackknife linearization, and bootstrap. With all of these methods, the

controls are assumed to be fixed and the coverage error does not exist. Therefore,

the positive variance components in (4.16) associated with the variability in the

benchmark controls and the coverage error are zero because VB is assumed to be

zero and φAhik = 1 for every unit in the population.

The linearization variance estimator for the GREG, as shown in Section 2.3,

is a function of the estimated assisting-model residuals (eAhik = yhik − x′hikB̂A).

This variance estimator is discussed in standard sampling texts such as Särndal

et al. (1992) and Lohr (1999). The linearization sample variance estimator (var) for

t̂yR, under a stratified, multistage analytic survey design with PSUs selected with

replacement and with the näıve assumptions that the estimated benchmark control

totals are known without error and the sampling frame covers the population, is
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calculated as:

varNäıve(t̂yR) = var(t̂yGREG) =
H∑

h=1

mAh

mAh − 1

mAh∑
i=1

(ŭhi+ − ¯̆uh++)2 (4.20)

where ŭhi+ =
∑nAhi

k=1 ahikπ
−1
hikeAhik, the sum of (calibration) weighted model residu-

als within PSU hi ; ¯̆uh++ = m−1
Ah

∑mAh

i=1 ŭhi+, the average weighted residual within

stratum h; and ahik is the calibration weight defined in (4.1).

One variance estimator for t̂yP is obtained by substituting the estimated resid-

uals associated with the group-mean model, eAhik = yhik − ˆ̄yAg, and the EC-PSGR

calibration weights, ahik = N̂Bg/N̂Ag, into (4.20). Another asymptotically equivalent

method-of-moments variance estimator for t̂yP is calculated as follows by substitut-

ing the sample estimators for the population parameters:

varNäıve

(
t̂yP

)
= var

(
t̂yPSGR

)
= N̂′

BV̂AN̂B. (4.21)

Any variance formula developed for traditional calibration will underestimate

the population sampling variance because the benchmark component in (4.16) is

not accounted for in the calculation. However, highly precise benchmark estimates

will likely contribute a negligible EC calibration variance component to the variance

estimator. Thus the difference between the estimates for traditional and EC cali-

bration for these situations also will be negligible assuming that the coverage error

component is relatively small. In the next four sections, we present sample variance

estimators that address a non-negligible EC calibration variance component.
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4.4.2 Estimated-Control Taylor Linearization Variance Method

The EC linearization sample variance estimator for AV (t̂yR) (4.16) is derived

by summing the approximately unbiased estimators for each of the three components

V1, V2, and V3. The first variance component is equivalent to the naive variance

estimator represented in (4.20), i.e., V1 = var(t̂yGREG) ≡ varNäıve(t̂yR).

The second variance component is a function of the unknown unit-specific

coverage propensities, φAhik. Aggregate coverage estimates may be available from

external sources or estimated using a combination of the analytic and benchmark

survey data. For example, an estimated coverage probability is calculated as the

ratio of the estimated population counts from the analytic and benchmark surveys

either overall, i.e., N̂A/N̂B, or within certain key domains. This estimation technique

relies on the assumption that the benchmark survey frame covers the population of

interest. If coverage is associated with, for example, a demographic characteristic,

then estimated coverage probabilities by those mutually exclusive domain categories

may reduce the bias in the variance component. Using stratum-specific estimated

coverage probabilities, ˆ̄φAh, we construct the following sample variance estimator

with residuals eAhik = yhik − x′hikB̂A:

V̂2 =
H∑

h=1

(
1− ˆ̄φAh

) mAh∑
i=1

nAhi∑

k=1

e2
Ahik

πhik

where ˆ̄φAh = N̂Ah/N̂Bh with N̂Ah and N̂Bh defined as the estimated size of the

hth stratum defined by the analytic survey design estimated with the analytic and

benchmark data, respectively. Because we are interested in undercoverage error
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variance, any ˆ̄φAh > 1 is truncated to one so that its contribution to the error

variance is zero. Relying on the assumed sampling design for the analytic survey

and the assumption that E
(

ˆ̄φAh

)
= φ̄Ah, the corresponding population parameter,

the expectation of V̂2 is determined as follows:

E
(
V̂2

)
= EB,cA

[
EA

(
H∑

h=1

(
1− ˆ̄φAh

) mAh∑
i=1

nAhi∑

k=1

e2
Ahik

πhik

| cA, B

)]

∼=
H∑

h=1

(
1− φ̄Ah

) Mh∑
i=1

Nhi∑

k=1

EcA
(CAhik) E2

Ahik

=
H∑

h=1

(
1− φ̄Ah

) Mh∑
i=1

Nhi∑

k=1

φAhikE
2
Ahik.

The design-based bias of this estimator is calculated as

Bias
(
V̂2

)
= E

(
V̂2

)
− V2

∼=
H∑

h=1

Mh∑
i=1

Nhi∑

k=1

φAhikE
2
Ahik

(
φAhik − φ̄Ah

)
. (4.22)

If the coverage probabilities vary only by stratum, i.e., φAhik ≡ φ̄Ah for units within

stratum h, then the bias of V̂2 is approximately zero. However, the bias is inflated

if, for example, larger residuals are associated with coverage probabilities that differ

from the stratum averages.

Combining an approximate method-of-moments estimator for the third vari-

ance component, V̂3 = B̂′
AV̂BB̂A, with the other sample components, we have the
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following sample variance estimator of AV (t̂yR) (4.16):

varECTS(t̂yR) = V̂1 + V̂2 + V̂3

= var(t̂yGREG)

+
H∑

h=1

(
1− ˆ̄φAh

) mAh∑
i=1

nAhi∑

k=1

e2
Ahik

πhik

+ B̂′
AV̂BB̂A (4.23)

The linearization sample variance estimator for the EC-PSGR is similarly de-

rived by substituting the approximately unbiased sample estimators into the formula

(4.19):

varECTS(t̂yP ) = N̂′
BV̂AN̂B

+
G∑

g=1

(
1− ˆ̄φAg

) H∑

h=1

mAh∑
i=1

nAhi∑

k=1

δghike
2
Ahik

πhik

+ ˆ̄Y
′
AV̂B

ˆ̄YA (4.24)

where V̂A
∼= D̂Σ̂θ̂D̂

′, calculated using the analytic survey estimates corresponding

to the terms defined for (4.19); ˆ̄φAg is calculated as N̂Ag/N̂Bg using the components

from t̂yP (4.3); eAhik = yhik− ˆ̄yAg; and δghik, as in (4.3), is an indicator of membership

in poststratum g.

4.4.3 Fuller Two-Phase Jackknife Method

Isaki et al. (2004) applied a two-phase delete-one jackknife variance estimator

developed by Fuller (1998) to account for estimated control totals. The premise be-
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hind Fuller’s methodology (ECF2) is to take a spectral (eigenvalue) decomposition

of the benchmark covariance matrix (V̂B), develop benchmark adjustments that are

a function of the resulting G eigenvalues and eigenvectors and to add the adjust-

ments to the benchmark controls to create a set of replicate controls. A randomly

chosen subset of the mA replicates is calibrated to the G constructed replicate con-

trols where the condition mA ≥ G is required as shown below. Specifically, the

benchmark control total for the rth replicate of t̂yR is defined as

t̂Bx(r) = tBx + chẑB(r)

= tBx + chδ(r)

G∑
g=1

δg|(r)ẑBg (4.25)

where t̂Bx =
∑

l∈sB
wlxl, the vector of control totals estimated from the bench-

mark survey; ch is a constant related to the chosen replication variance method

(ch =
√

mAh/(mAh − 1) for the delete-one jackknife); ẑB(r) = δ(r)

∑G
g=1 δg|(r)ẑBg, the

ECF2 replicate control total adjustment; δ(r) is a zero/one indicator that identi-

fies the G (out of mA) randomly chosen replicates to receive an ECF2 adjustment;

δg|(r) = 1 if the gth component of the benchmark covariance decomposition (out of

G) is randomly chosen for the assignment given that replicate r is selected for an

adjustment; and ẑBg = q̂g

√
λ̂g, a function of an eigenvector q̂g and the associated

eigenvalue λ̂g such that V̂B =
∑G

g=1 ẑBgẑ
′
Bg, by definition. Given that δ(r) = 1 for

a particular replicate, a single indicator δg|(r) (1 ≤ g ≤ G) must also equal one;

however, if δ(r) = 0, then all indicators δg|(r) equal zero.

A delete-one jackknife variance estimator can take multiple forms depending
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on the centering value. We chose to study the somewhat conservative variance

estimator centered about the full-sample estimate for our research (v4 in Wolter,

2007, Section 4.5). The delete-one ECF2 jackknife variance estimator, varECF2(t̂yR),

is calculated as follows for a stratified, multi-stage analytic survey design:

varECF2(t̂yR) =
H∑

h=1

(mAh − 1)

mAh

mAh∑
r=1

(
ẗyR(r) − t̂yGREG

)2

=
H∑

h=1

(mAh − 1)

mAh

mAh∑
r=1

(
t̂Ay(r) +

(
t̂Bx(r) − t̂Ax(r)

)′
B̂A(r) − t̂yGREG

)2

=
H∑

h=1

(mAh − 1)

mAh

mAh∑
r=1

(
t̂Ay(r) +

({
tBx + chẑB(r)

}− t̂Ax(r)

)′
B̂A(r) − t̂yGREG

)2

=
H∑

h=1

(mAh − 1)

mAh

mAh∑
r=1

(
t̂yGREG(r) − t̂yGREG + chẑ

′
B(r)B̂A(r)

)2

. (4.26)

Note that the association of the rth replicate to a particular (analytic survey) design

stratum is defined through the stratum membership of the eliminated PSU. The

replicate estimates in (4.26) are defined as:

• ẗyR(r) = t̂Ay(r) + (t̂Bx(r) − t̂Ax(r))
′B̂A(r), the EC replicate estimator of the pop-

ulation total using the ECF2 method;

• t̂yGREG(r) = t̂Ay(r) + (tBx − t̂Ax(r))
′B̂A(r), the corresponding fixed-control repli-

cate estimator;

• t̂Ay(r) =
∑

hik∈sA
π−1

hi(r)π
−1
hikyhik, the replicate total of the y variable;

• t̂Ax(r) =
∑

hik∈sA
π−1

hi(r)π
−1
hikxhik, the replicate totals for the auxiliary variables

estimated from the analytic survey; and
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• B̂A(r) =
[∑

hik∈sA
π−1

hi(r)π
−1
hikxhikx

′
hik

]−1 ∑
hik∈sA

π−1
hi(r)π

−1
hikxhikyhik, the model co-

efficient vector calculated with analytic survey data for each replicate.

The hith PSU-subsampling weight for the rth replicate, π−1
hi(r), is calculated under

the following specification:

π−1
hi(r) =





0 if PSU r and PSU i are the same (r = i)

1 if h 6= h′ for r ∈ sAh and i ∈ sAh′

mAh/(mAh − 1) if r 6= i but h = h′.

(4.27)

Fuller (1998) approximates the squared term in (4.26) as

t̂yGREG(r) − t̂yGREG + chẑ
′
B(r)B̂A(r)

= t̂yGREG(r) − t̂yGREG + chẑ
′
B(r)

(
BA + OP

(
m
−1/2
A

))

= t̂yGREG(r) − t̂yGREG + chẑ
′
B(r)BA + OP (M/

√
mAmB)

∼= t̂yGREG(r) − t̂yGREG + chẑ
′
B(r)BA (4.28)

by assuming t̂yGREG(r) − t̂yGREG = OP

(
M/

√
mA

)
, B̂A(r) = BA + OP

(
m
−1/2
A

)
for

the population parameter BA = O (1) defined in (4.5), and ẑ′B(r) = OP

(
M/

√
mB

)
.

Using (4.28) in varECF2(t̂yR) (4.26) and squaring the terms results in

varECF2(t̂yR) ∼=
H∑

h=1

(mAh − 1)

mAh

mAh∑
r=1

(
t̂yGREG(r) − t̂yGREG

)2

+
∑

h

√
(mAh − 1)

mAh

mAh∑
r=1

(
t̂yGREG(r) − t̂yGREG

)
ẑ′B(r)BA

+ BAV̂BBA. (4.29)
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We apply M−2 to the variance above for convenience in comparing the orders of

terms for the bounded quantities. The first component is associated with the

variance of t̂yR conditioned on the benchmark controls (i.e., a näıve variance es-

timator) and is OP

(
m−1

A

)
. Under standard conditions (see Rao & Wu, 1985),

max
{
M−1

(
t̂yGREG(r) − t̂yGREG

)}
converges in probability to zero and ẑB(r)/M =

OP

(
m
−1/2
B

)
by assumption, so that the second component (divided by M2) is

OP

(
m
−1/2
B

)
. The third component is OP

(
m−1

B

)
and is related only to the variabil-

ity of the benchmark controls because V̂B =
∑H

h=1

∑mAh

r=1 ẑB(r)ẑ
′
B(r), by definition.

Fuller (1998) and Isaki et al. (2004) show that the first and third components are

asymptotically equivalent to their respective components in AV (t̂yR) (4.16). Fol-

lowing the evaluation of the unconditional expectation given in (4.5),

EA

[(
t̂yGREG(r) − t̂yGREG

)
ẑ′B(r) | B

]

=
[
EA

(
t̂yGREG(r) − t̂yGREG

)]
ẑ′B(r)

= 0× ẑ′B(r) ≡ 0,

thus demonstrating that the second term has expectation zero. However, the ECF2

does not incorporate the additional variation due to coverage error.

We propose the following modification to the ECF2 replicate estimators to

account for the coverage error variance component. Let η(r) be a value randomly

generated from a standard normal distribution for replicate r, i.e., η(r) ∼ N(0, 1).
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For each replicate, we calculate the following values:

chRhη(r)

√(
1− ˆ̄φA(r)

)
t̂Ae2(r) (4.30)

where ch =
√

mAh/(mAh − 1); Rh =
√

1/HmAh;
ˆ̄φA(r) is an estimate of the an-

alytic survey coverage rate (error) using a combination of data from the com-

plete benchmark survey and analytic survey replicate subsample (e.g., N̂A(r)/N̂B);

t̂Ae2(r) =
∑

hik∈sA
π−1

hi(r)π
−1
hike

2
Ahik(r) with B̂A(r) defined for expression (4.26), π−1

hi(r)

defined in expression (4.27), and eAhik(r) = yhik − x′hikB̂A(r). This replicate value

is similar to V̂2 used in varECTS(t̂yR) (4.23) in Section 4.4.2. As discussed in Sec-

tion 4.4.2, if the value for ˆ̄φA(r) exceeds one, then the estimate is truncated to one

to ensure the variance component is non-negative. The modified ECF2 replicate

estimates are then calculated using the following formula:

...
t yR(r) = ẗyR(r) + chRhη(r)

√(
1− ˆ̄φA(r)

)
t̂Ae2(r)

=

[
t̂Ay(r) + chRhη(r)

√(
1− ˆ̄φA(r)

)
t̂Ae2(r)

]
+ (t̂Bx(r) − t̂Ax(r))

′B̂A(r)

= t̂yGREG(r) + chẑ
′
B(r)B̂A(r) + chRhη(r)

√(
1− ˆ̄φA(r)

)
t̂Ae2(r) (4.31)

with terms defined in expressions (4.26) and (4.30). The expectation of
...
t yR(r) =

t̂Ay(r) + chRhη(r)

√(
1− ˆ̄φA(r)

)
t̂Ae2(r) is the same as ẗyR(r) in the original ECF2

method. This is shown by noting that the expectation of the coverage error term

(4.30) is zero because of the inclusion of a standard normal random variable, i.e.,

Eη

(
η(r)

)
= 0 by definition.
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The modified ECF2 estimator, denoted by ECF2m in our research, is con-

structed as in (4.26) with
...
t yR(r) substituted for ẗyR(r). Using the justification given

for expression (4.28),

...
t yR(r) − t̂yGREG

∼= t̂yGREG(r) − t̂yGREG + chẑ
′
B(r)BA

+ chRhη(r)

√(
1− ˆ̄φA(r)

)
t̂Ae2(r)

with
(
1− ˆ̄φA(r)

)
t̂Ae2(r) assumed to be OP (M). The expectation of the ECF2m jack-

knife sample variance estimator is evaluated by examining the six resulting variance

components. Note in the expression below that we abbreviate (mAh − 1)/mAh as

c−2
h :

varECF2m(t̂yR) =
H∑

h=1

c−2
h

mAh∑
r=1

(...
t yR(r) − t̂yGREG

)2

∼=
H∑

h=1

c−2
h

mAh∑
r=1

(t̂yGREG(r) − t̂yGREG)2

+ 2
∑

h

c−1
h

mAh∑
r=1

(
t̂yGREG(r) − t̂yGREG

)
ẑ′B(r)BA

+ B′
AV̂BBA

+ 2
H∑

h=1

c−1
h

mAh∑
r=1

(
t̂yGREG(r) − t̂yGREG

)
Rhη(r)

√(
1− ˆ̄φA(r)

)
t̂Ae2(r)

+ 2
H∑

h=1

mAh∑
r=1

ẑ′B(r)BA

(
Rhη(r)

√(
1− ˆ̄φA(r)

)
t̂Ae2(r)

)

+
H∑

h=1

mAh∑
r=1

R2
hη

2
(r)

(
1− ˆ̄φA(r)

)
t̂Ae2(r)

≡
6∑

j=1

V̂j. (4.32)
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Dividing both sides of the approximation in (4.32) by M2 again facilitates the dis-

cussion of the relative convergence rates. The first three terms are the same as those

discussed for varECF2(t̂yR) (4.26). The last three terms are specific to the estimated

analytic survey coverage error. The fourth component is OP

(
M−3/2

)
and converges

in probability to zero under standard conditions (see Rao & Wu, 1985) by assuming

max
{
M−1

(
t̂yGREG(r) − t̂yGREG

)}
. The fifth component is OP

(
1/
√

MmB

)
and has

expectation zero because of the standard normal random variable η(r). The expec-

tation of the sixth and final variance component in varECF2m(t̂yR), divided by M2,

is OP (M−1) and is approximately equal to the following expression:

E

[
H∑

h=1

mAh∑
r=1

R2
hη

2
(r)

(
1− ˆ̄φA(r)

)
t̂Ae2(r)

]

∼= 1

H

H∑

h=1

1

mAh

mAh∑
r=1

Eη

(
η2

(r)

) [
1− EφA

(
ˆ̄φA(r)

)]
EA

(
t̂Ae2(r)

)

with Eη

(
η2

(r)

)
= 1, the degrees of freedom for a chi-square random variable. Using

the conditions of Rao & Wu (1985), we claim that the expectations of the repli-

cate estimators are equal to their corresponding complete sample estimator, e.g.,

Eφ̄A

(
ˆ̄φA(r)

)
= EφA

(
φ̂A

)
. Therefore, EφA

(
ˆ̄φA(r)

)
= φ̄A and EA

(
t̂Ae2(r)

) ∼= tAe2 by

assumption, with tAe2 =
∑

hik∈U φAhikE
2
Ahik and EAhik = yhik−x′hikBA. In summary,

sample variance components V̂1, V̂3, and V̂6 in (4.32) address variability in estimates

from the analytic survey, the benchmark survey, and coverage error, respectively,

and the remaining components are asymptotically equivalent to zero.

One additional finding from the ECF2 methodology presented in Fuller (1998)
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is important to our research. The author demonstrates that the jackknife variance

of the replicate controls, varECF2(t̂Bx), reproduces the estimated benchmark covari-

ance matrix t̂Bx for every sample. This trait lends stability to the variance estimator

as discussed in Section 4.4.4. We provide the derivation below using the notation

adopted for our research. The definitions of the indicator variables δ(r) and δg|(r)

given for (4.25) are important to the work presented below. In particular, note that

for a replicate r to which a ẑBg is assigned,
∑G

g=1 δg|(r)ẑBg = ẑBg(r) where the Bg(r)

subscript denotes the particular g that is randomly selected.

varECF2(t̂Bx) =
H∑

h=1

(mAh − 1)

mAh

mAh∑
r=1

(t̂Bx(r) − t̂Bx)(t̂Bx(r) − t̂Bx)
′

=
H∑

h=1

(mAh − 1)

mAh

mAh∑
r=1

c2
hδ(r)

(
G∑

g=1

δg|(r)ẑBg

)(
G∑

g=1

δg|(r)ẑ
′
Bg

)

=
R∑

r=1

δ(r)ẑBg(r)ẑ
′
Bg(r)

=
G∑

g=1

ẑBgẑ
′
Bg ≡ V̂B. (4.33)

In deriving (4.33), we use the fact that in summing δ(r)ẑBg(r)ẑ
′
Bg(r) over the mA

replicates only G replicates receive an adjustment of a ẑBg vector and each ẑBg is

assigned to one and only one replicate. Note that if mA < G, the above evaluation

would not hold because
∑R<G

g=1 ẑBgẑ
′
Bg 6= V̂B. The coverage adjustment in (4.30)

was not included in the result above because we consider undercoverage only in the

analytic survey sampling frame.

The modified ECF2 variance formula for estimated totals specializes to EC

poststratification with G poststrata by first adapting the coverage error variance
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component in (4.30):

chRhη(r)

√(
1G − ˆ̄φA(r)

)′
t̂Ae2(r) (4.34)

where
(
1G − ˆ̄φA(r)

)′
=

[(
1− φ̂A1(r)

)
, ...,

(
1− φ̂AG(r)

)]
, a G-length vector of es-

timated coverage rates within poststratum g; and t̂Ae2(r) =
[
t̂Ae21(r), ..., t̂Ae2G(r)

]′

with components t̂Ae2g(r) =
∑

hik∈sA
π−1

hi(r)π
−1
hikδghike

2
Ahik(r) and eAhik(r) = yhik − ˆ̄yAg.

The poststratum-specific coverage rates may be estimated as φ̂Ag(r) = N̂Ag(r)/N̂Bg,

where N̂Ag(r) =
∑

hik∈sA
π−1

hi(r)δghikπ
−1
hik, if the benchmark survey frame is believed

to correctly cover the population of interest. The ECF2m replicate estimates are

functions of the coverage error components (4.34) and are calculated as follows:

...
t yP (r) = N̂′

B(r)N̂
−1
A(r)t̂Ay(r) + chRhη(r)

√(
1G − ˆ̄φA(r)

)′
t̂Ae2(r)

=
[
NB + chẑB(r)

]′ ˆ̄YA(r) + chRhη(r)

√(
1G − ˆ̄φA(r)

)′
t̂Ae2(r)

= N′
B

ˆ̄YA(r) + chẑ
′
B(r)

ˆ̄YA(r) + chRhη(r)

√(
1G − ˆ̄φA(r)

)′
t̂Ae2(r) (4.35)

where ẗyP (r) = N̂′
B(r)N̂

−1
A(r)t̂Ay(r);

ˆ̄YA(r) = N̂−1
A(r)t̂Ay(r); t̂Ay(r) =

[
t̂Ay1(r), ..., t̂AyG(r)

]′

with elements that are functions of a zero/one indicator δghik that signifies member-

ship in the gth poststratum, i.e., t̂Ayg(r) =
∑

hik∈sA
π−1

hi(r)δghikπ
−1
hikyhik; N̂A(r) is a diag-

onal matrix with elements
(
N̂A1(r), ..., N̂AG(r)

)
such that N̂Ag(r) =

∑
hik∈sA

π−1
hi(r)δghik

×π−1
hik; and N̂B(r) = NB + chẑB(r). Substituting (4.34) and (4.35) in the expression
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(4.32), we have

varECF2m(t̂yP ) =
H∑

h=1

c−2
h

mAh∑
r=1

(...
t yP (r) − t̂yPSGR

)2

∼=
H∑

h=1

c−2
h

mAh∑
r=1

(t̂yPSGR(r) − t̂yPSGR)2

+ 2
∑

h

c−1
h

mAh∑
r=1

(
t̂yPSGR(r) − t̂yPSGR

)
ẑ′B(r)ȲA

+ Ȳ′
AV̂BȲA

+ 2
H∑

h=1

c−1
h

mAh∑
r=1

(
t̂yPSGR(r) − t̂yPSGR

)
Rhη(r)

√(
1G − ˆ̄φA(r)

)′
t̂Ae2(r)

+ 2
H∑

h=1

mAh∑
r=1

ẑ′B(r)ȲA

(
Rhη(r)

√(
1G − ˆ̄φA(r)

)′
t̂Ae2(r)

)

+
H∑

h=1

mAh∑
r=1

R2
hη

2
(r)

(
1G − ˆ̄φA(r)

)′
t̂Ae2(r) (4.36)

with the terms ch =
√

mAh/(mAh − 1), t̂yPSGR = N′
BN̂−1

A t̂Ay (2.11), and others

defined previously. The discussion of the asymptotics given for varECF2m(t̂yR) in

(4.32) also applies to varECF2m(t̂yP ).

The seven steps needed to calculate varECF2m(t̂yP ) (4.36) are provided below

where the total number of replicates (and analytic survey PSUs) is denoted as mA.

These steps are used in the simulation programs discussed in Section 4.5.

1. Calculate the full-sample estimate t̂yP (4.3).

2. Determine the G eigenvalues λ̂g and G-length eigenvectors q̂g from the spectral

decomposition of V̂B, and calculate the G replicate adjustments of the form

ẑBg = q̂g

√
λ̂g. Concatenate the G× G matrix of ẑBg’s, where ẑBg represents

the columns of this matrix, with a G× (mA−G) matrix of zeroes. Randomly
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sort the columns. Call this new G×mA matrix Z.

3. Create a G × mA matrix, called C, with column elements all equal to ch =

√
mAh/(mAh − 1). The mA-length vector of jackknife stratum weights is cal-

culated as WmA
= (mAh − 1)/mAh.

4. Calculate the Hadamard (or element-wise) product of Z and C denoted as

Z • C (Searle, 1982, pp. 49). Replicate the vector of poststratum counts

estimated from the benchmark survey (N̂B) into the columns of a G × mA

matrix and add to Z • C. This new G ×mA matrix, called NBmA
, contains

the replicate benchmark controls for all mA replicates. See the definition of

N̂B(r) in expression (4.36).

5. Calculate the replicate estimates ˆ̄YA(r) with elements ˆ̄yAg(r) = t̂Ayg(r)/N̂Ag(r)

by removing in-turn one PSU from the analytic survey sample file, applying

the PSU-subsampling weights (4.27), and summing the weighted values for the

numerator and denominator within poststratum g. Call the resulting G×mA

matrix BmA
.

6. Create the following G×mA matrices for the coverage error variance compo-

nent (4.34): RmA
, with column elements all equal to

√
1/HmAh; ηmA

, with

elements obtained from the standard normal distribution; φmA
, with column

elements equal to (1 − N̂Ag(r)/N̂Bg) for (N̂Ag(r)/N̂Bg) ≤ 1 and zero other-

wise; and emA
with column elements described above for t̂Ae2(r). Calculate the

Hadamard product of these matrices and call it E.
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7. Calculate the mA replicate estimates,
...
t yP (r) in expression (4.35), by first mul-

tiplying the elements NBmA
by BmA

, adding E to the resulting matrix, and

summing down the rows within a column. Next, subtract t̂yPSGR, t̂yP in (4.3),

from each of the mA values and square the terms, multiply by WmA
, and sum

across the mA estimates. The resulting value is the estimated variance using

the ECF2 method, varECF2m(t̂yP ) in expression (4.36).

By excluding the sixth step given above, we are also able to calculate the variance

of t̂yP under the original ECF2 specification which does not inflate for the analytic

survey coverage error. A comparison of the two variance estimators will suggest

the level of underestimation associated with the exclusion of the error variance

component.

4.4.4 Multivariate Normal Jackknife Method

The multivariate normal method (ECMV) involves a random perturbation

of the controls totals for the complete set of replicates instead of adjusting only

a subsample of replicates as with the original ECF2 method (Section 4.4.3). The

ECMV relies on large sample theory so that the control total adjustments may be

modeled as coming from a multivariate normal (MVN) distribution. The replicate

controls for the ECMV have the form

t̂Bx(r) = t̂Bx + chRhε̂B(r) (4.37)
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where ε̂B(r) is a G-length vector of random variables from a multivariate normal

distribution such that ε̂B(r)
iid∼ MVNG(0G, V̂B); 0G is a G-length vector of zeroes;

ch =
√

mAh/(mAh − 1); and Rh =
√

1/HmAh.

The delete-one jackknife variance estimator for the ECMV is calculated with

replicate estimates
...
t yR(r) computed as described for the ECF2m in (4.31) but with

t̂Bx(r) defined in (4.37). Note that we use the same technique as shown in expres-

sion (4.28) for the approximation below because ε̂B(r), like ẑB(r), is assumed to be

OP

(
M/

√
mB

)
:

t̂yGREG(r) − t̂yGREG + chRhε̂
′
B(r)B̂A(r) + chRhη(r)

√(
1− ˆ̄φA(r)

)
t̂Ae2(r)

= t̂yGREG(r) − t̂yGREG + chRhε̂
′
B(r)BA + OP

(
M/

√
(mAmB)

)

+ chRhη(r)

√(
1− ˆ̄φA(r)

)
t̂Ae2(r)

∼= t̂yGREG(r) − t̂yGREG + chRhε̂
′
B(r)BA

+ chRhη(r)

√(
1− ˆ̄φA(r)

)
t̂Ae2(r) (4.38)
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Using this approximation, the ECMV jackknife variance formula is specified as:

varECMV (t̂yR) =
H∑

h=1

c−2
h

mAh∑
r=1

(
...
t yR(r) − t̂yGREG)2

∼=
H∑

h=1

c−2
h

mAh∑
r=1

(
t̂yGREG(r) − t̂yGREG

)2

+ 2
H∑

h=1

c−1
h Rh

mAh∑
r=1

(
t̂yGREG(r) − t̂yGREG

)
ε̂′B(r)BA

+ B′
A

[
H∑

h=1

R2
h

mAh∑
r=1

ε̂B(r)ε̂
′
B(r)

]
BA

+ 2
H∑

h=1

c−1
h

mAh∑
r=1

(
t̂yGREG(r) − t̂yGREG

)
Rhη(r)

√(
1− ˆ̄φA(r)

)
t̂Ae2(r)

+ 2
H∑

h=1

R2
h

mAh∑
r=1

ε̂′B(r)BA η(r)

√(
1− ˆ̄φA(r)

)
t̂Ae2(r)

+
H∑

h=1

mAh∑
r=1

R2
hη

2
(r)

(
1− ˆ̄φA(r)

)
t̂Ae2(r)

≡
6∑

j=1

V̂j. (4.39)

Components V̂1 and V̂6 are the same as shown for varECF2m(t̂yR) (4.32) and equal

OP

(
m−1

A

)
and OP (M−1) after dividing by M2 for convenience. These components

account for the variation associated with the analytic survey estimates and the ana-

lytic survey coverage mechanism, respectively. Note that the expectation and bias of

the sixth component,
∑

h R2
h

∑
r η2

(r)

(
1− ˆ̄φA(r)

)
t̂Ae2(r), is discussed in Section 4.4.3.

The cross-product terms involving
(
t̂yGREG(r) − t̂yGREG

)
are asymptotically equal to

zero by assuming max
{
M−1

(
t̂yGREG(r) − t̂yGREG

)}
converges in probability to zero

under the conditions specified by Rao & Wu (1985). The rates of convergence for

second and fourth variance components are OP

(
m
−1/2
B

)
and OP

(
M−3/2

)
, respec-
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tively. The fifth component is OP

(
M−1/2m

−1/2
B

)
and has unconditional expectation

zero because of the standard normal random variables, e.g., η(r). The term V̂3 ad-

dresses the variation associated with the benchmark control totals and is OP

(
m−1

B

)
.

This variance component is shown to be unbiased as long as the estimated bench-

mark covariance matrix is also unbiased. The unconditional expectation is taken

with respect to the MVN distribution (Eε) as well as the benchmark (EB) survey:

E

[
B′

A

(
H∑

h=1

R2
h

mAh∑
r=1

ε̂B(r)ε̂
′
B(r)

)
BA

]

= B′
A

(
1

H

H∑

h=1

1

mAh

mAh∑
r=1

EB

[
Eε

(
ε̂B(r)ε̂

′
B(r) | B

)]
)

BA

= B′
A

(
1

H

H∑

h=1

1

mAh

mAh∑
r=1

EB

(
V̂B

))
BA

= B′
A VB BA, (4.40)

if EB

(
V̂B

)
= VB. Therefore, we see that the varECMV (t̂yR) is an asymptotically

unbiased estimator of the population sampling variance under the same conditions

as noted for varECF2m.

The ECMV variance estimator under poststratification, varECMV (t̂yP ), is cal-

culated by substituting N̂B(r) = N̂B + chRhε̂B(r) into the formula for varECF2m(t̂yP )
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given in (4.36):

varECMV (t̂yP ) =
H∑

h=1

c−2
h

mAh∑
r=1

(...
t yP (r) − t̂yPSGR

)2

∼=
H∑

h=1

c−2
h

mAh∑
r=1

(
t̂yPSGR(r) − t̂yPSGR + chRhε̂

′
B(r)ȲA

+ chRhη(r)

√(
1G − ˆ̄φA(r)

)′
t̂Ae2(r)

)2

(4.41)

with terms defined in (4.37) and (4.35).

Unlike the Fuller method, however, varECMV (t̂Bx) 6= V̂B as shown below:

varECMV (t̂Bx) =
H∑

h=1

c−2
h

mAh∑
r=1

(t̂Bx(r) − t̂Bx)(t̂Bx(r) − t̂Bx)
′

=
H∑

h=1

c−2
h

mAh∑
r=1

c2
hR

2
hε̂B(r)ε̂

′
B(r)

=
H∑

h=1

R2
h

mAh∑
r=1

ε̂B(r)ε̂
′
B(r) 6= V̂B. (4.42)

The ECMV method instead must rely on the design- and model-based properties

of the estimator. The expectation of this estimator is evaluated with respect to

the MVN distribution conditioned on the benchmark estimates (Eε), and then with

respect to the benchmark survey design (EB) as shown in (4.40):

E[varECMV (t̂Bx)] = EB

[
H∑

h=1

R2
h

mAh∑
r=1

Eε(ε̂B(r)ε̂
′
B(r) | B)

]

=
1

H

H∑

h=1

1

mAh

mAh∑
r=1

EB(V̂B) = EB(V̂B). (4.43)
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Only if V̂B is an unbiased estimator of VB, can we say that in expectation the

population covariance matrix is reproduced with this method. This result naturally

holds for the EC poststratified estimator where we substitute N̂B for t̂Bx in the

expression above.

The stability of the variance estimators is directly related the variability of the

sample estimates. The difference in the ECF2 and ECMV variance estimators is as-

sociated with the difference in the benchmark control total adjustments. The impact

of widely varying replicate adjustments will have a direct effect on the stability of

the variance estimates. Under the ECF2 method, V ar[varECF2(t̂Bx)] = V arB(V̂B).

However, with the ECMV method,

V ar
[
varECMV (t̂Bx)

]

= V arB

[
Eε

(
varECMV (t̂Bx)

)]
+ EB

[
V arε

(
varECMV (t̂Bx)

)]

=
1

H

H∑

h=1

1

mAh

∑
r∈sAh

[
V arB

(
Eε(ε̂B(r)ε̂

′
B(r))

)
+ EB

(
V arε(ε̂B(r)ε̂

′
B(r))

)]

=
1

H

H∑

h=1

1

mAh

mAh∑
r=1

V arB

[
V̂B

]
+

1

H

H∑

h=1

1

mAh

mAh∑
r=1

EB

[
2tr(V̂2

B)
]

= V arB

(
V̂B

)
+ 2tr

[
EB(V̂2

B)
]

(4.44)

where EB(V̂2
B) = V arB

(
V̂B

)
+

[
EB(V̂B)

]2

. The expression above suggests that

varECF2 and varECMV have similar asymptotic properties, i.e., O (M2/mB). In

practice, however, the ECMV is likely to be more variable than the ECF2 because

of the second (positive) term above. We examine the variability in the variance

estimates with our simulation study (Section 4.5).
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4.4.5 Nadimpalli-Judkins-Chu Jackknife Method

Nadimpalli et al. (2004) describe a jackknife variance estimator similar to the

ECMV in a conference proceedings paper. Though the primary focus of their re-

search was an evaluation of regression models for smoothing monthly estimates from

the Current Population Survey, the article contains a data analysis using their pro-

posed EC calibration method (ECNJC). The article does not contain a theoretical

evaluation of the ECNJC; we provide the theory below.

The ECNJC, like the ECMV, requires a random perturbation of the replicate

control totals to account for the variability in the benchmark estimates. However,

unlike either the ECF2 or the ECMV, this method accounts only for the bench-

mark variances instead of the complete benchmark covariance matrix, i.e., only the

diagonal elements of V̂B. The ECNJC replicate controls for t̂yR are defined as

t̂Bx(r) = tBx + chRhŜBη(r) (4.45)

where ŜB is a diagonal matrix of estimated standard errors for the benchmark con-

trols, i.e., ŜB = diag(
√

V̂B); η(r) is a G-length vector of values randomly generated

independently for each replicate from the standard normal distribution, N(0, 1); and,

as with the other replication methods, ch =
√

mAh/(mAh − 1) and Rh =
√

1/HmAh.

The replicate controls (N̂B(r)) for the t̂yP are defined by substituting the benchmark

poststratum counts (N̂B) for the auxiliary variable totals (t̂Bx) in (4.45) as noted

for the other replicate methods.

The development of the formula for the ECNJC delete-one jackknife (sample)
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variance estimator of a population total begins with the definition of a replicate esti-

mated total. Note that we approximate the following expression using BA the vector

of assisting-model coefficients specified by the analytic survey frame population:

ẗyR(r) = t̂Ay(r) +
(
t̂Bx(r) − t̂Ax(r)

)′
B̂A(r)

= t̂Ay(r) +
({

tBx + chRhŜBη(r)

}
− t̂Ax(r)

)′
B̂A(r)

= t̂yGREG(r) + chRhη
′
(r)ŜBB̂A(r)

= t̂yGREG(r) + chRhη
′
(r)ŜBŜBBA

+ chRhη
′
(r)ŜBŜBOP

(
m
−1/2
A

)

∼= t̂yGREG(r) + chRhη
′
(r)ŜBBA (4.46)

where t̂Bx(r) is defined in (4.45); ẗyR(r) = t̂Ay(r)+
(
t̂Bx(r) − t̂Ax(r)

)′
B̂A(r);

(
t̂yGREG(r)−

t̂yGREG

)
= OP (M) as noted in the approximation for the other jackknife replicate

estimates; and ŜB = OP

(
M/

√
mB

)
, by assumption. Using the replicate estimate

(4.46), the exact and approximate forms of the ECNJC jackknife variance estimator

are:

varECNJC(t̂yR) =
H∑

h=1

c−2
h

mAh∑
r=1

(
ẗyR(r) − t̂yGREG

)2

∼=
H∑

h=1

c−2
h

mAh∑
r=1

(
t̂yGREG(r) − t̂yGREG

)2

+ 2
H∑

h=1

Rhc
−1
h

mAh∑
r=1

(
t̂yGREG(r) − t̂yGREG

)
η′(r)ŜBBA

+ B′
A

(
H∑

h=1

R2
h

mAh∑
r=1

ŜBη(r)η
′
(r)ŜB

)
BA. (4.47)
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The first variance component accounts for the variation in the analytic survey and

is OP

(
m−1

A

)
by dividing varECNJC(t̂yR) by M2. Note that this term is the same as

shown for the other EC jackknife variance methods studied here. The second com-

ponent is OP

(
m−1

B

)
and has expectation zero, as with the other methods, because

EA

(
t̂yGREG(r) − t̂yGREG

)
is assumed to be zero. Upon further examination, the third

variance component is shown to address the variation within the benchmark control

totals with order in probability m−1
B . The expectation of this term is taken first

with respect to standard normal distribution (Eη), and then the benchmark survey

design (EB):

B′
A

(
H∑

h=1

R2
h

mAh∑
r=1

E
[
ŜBη(r)η

′
(r)ŜB

])
BA

= B′
A

(
1

H

H∑

h=1

1

mAh

mAh∑
r=1

EB

[
ŜB Eη

(
η(r)η

′
(r) | B

)
ŜB

])
BA

= B′
A

(
1

H

H∑

h=1

1

mAh

mAh∑
r=1

EB

(
ŜBŜB

))
BA

= B′
AEB

(
Ŝ2

B

)
BA. (4.48)

The term η(r)η̂
′
(r) evaluates to a diagonal matrix of dimension G because the com-

ponents of η(r) vector are independent standard normal variables. The expectation

of each diagonal element is that of a chi-squared random variable with one degree of

freedom (χ2
(1)) where E

(
χ2

(1)

)
= 1. Therefore, Eη

(
η(r)η

′
(r) | B

)
in the calculation

above. Note that the matrix Ŝ2
B is the square of the diagonal matrix ŜB (4.45) and

is not necessarily equal to the benchmark covariance matrix V̂B used with the other

methods. Therefore, the third variance component given in (4.47) will incorporate
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the variance in the benchmark estimates in expectation only if the population co-

variance terms are zero. However, if VB is not diagonal, then varECNJC fails this

test.

As with the original ECF2 discussed in Fuller (1998) and Isaki et al. (2004),

we propose to modify the ECNJC replicate estimates to additionally account for the

analytic survey coverage error variance by adding expression first given in (4.30):

...
t yR(r) = ẗyR(r) + chRhη(r)

√(
1− ˆ̄φA(r)

)
t̂Ae2(r), (4.49)

with ẗyR(r) specified under the original ECNJC method (4.46). Using the modi-

fied replicate estimators
...
t yR(r) and the approximation discussed for varECF2m(t̂yR)

(4.32) and varECMV (t̂yR) (4.39), the modified ECNJC (ECNJCm) jackknife variance

estimator is specified as:

varECNJCm(t̂yR) =
H∑

h=1

c−2
h

mAh∑
r=1

(...
t yR(r) − t̂yGREG

)2

∼=
H∑

h=1

c−2
h

mAh∑
r=1

(
t̂yGREG(r) − t̂yGREG + chRhη

′
(r)ŜBBA

+ chRhη(r)

√(
1− ˆ̄φA(r)

)
t̂Ae2(r)

)2

.
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Continuing,

varECNJCm(t̂yR) ∼=
H∑

h=1

c−2
h

mAh∑
r=1

(
t̂yGREG(r) − t̂yGREG

)2

+ 2
H∑

h=1

c−1
h Rh

mAh∑
r=1

(
t̂yGREG(r) − t̂yGREG

)
η′(r)ŜBBA

+ B′
A

[
H∑

h=1

R2
h

mAh∑
r=1

ŜBη(r)η
′
(r)ŜB

]
BA

+ 2
H∑

h=1

c−1
h

mAh∑
r=1

(
t̂yGREG(r) − t̂yGREG

)
Rhη(r)

√(
1− ˆ̄φA(r)

)
t̂Ae2(r)

+ 2
H∑

h=1

R2
h

mAh∑
r=1

η′(r)ŜBBA η(r)

√(
1− ˆ̄φA(r)

)
t̂Ae2(r)

+
H∑

h=1

mAh∑
r=1

R2
hη

2
(r)

(
1− ˆ̄φA(r)

)
t̂Ae2(r) (4.50)

The evaluation of the additional variance components follows the discussion given for

E
[
varECF2m(t̂yR)

]
(4.32). Even though an additional positive variance component

is added to the original ECNJC variance formulation, this term is of lower order

than required to inflate for underestimation associated with the use of ŜB.

The ECNJCm replicate estimator under EC poststratification is derived by

specializing expression (4.49):

...
t yP (r) = N̂′

B(r)N̂
−1
A(r)t̂Ay(r) + chRhη(r)

√(
1G − ˆ̄φA(r)

)′
t̂Ae2(r)

=
[
NB + chRhŜBη(r)

]′ ˆ̄YA(r) + chRhη(r)

√(
1G − ˆ̄φA(r)

)′
t̂Ae2(r)

= N′
B

ˆ̄YA(r) + chRhŜBη′(r)
ˆ̄YA(r) + chRhη(r)

√(
1G − ˆ̄φA(r)

)′
t̂Ae2(r), (4.51)

with terms defined for the ECF2m method in (4.35). The corresponding EC-PSGR
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jackknife variance estimator defined for the ECNJCm method is:

varECNJCm(t̂yP ) =
H∑

h=1

c−2
h

mAh∑
r=1

(...
t yP (r) − t̂yPSGR

)2

∼=
H∑

h=1

c−2
h

mAh∑
r=1

(
t̂yPSGR(r) − t̂yPSGR

)2

+ 2
H∑

h=1

c−1
h Rh

mAh∑
r=1

(
t̂yPSGR(r) − t̂yPSGR

)
η′(r)ŜBBA

+ B′
A

[
H∑

h=1

R2
h

mAh∑
r=1

ŜBη(r)η
′
(r)ŜB

]
BA

+ 2
H∑

h=1

c−1
h

mAh∑
r=1

(
t̂yPSGR(r) − t̂yPSGR

)
Rhη(r)

√(
1G − ˆ̄φA(r)

)′
t̂Ae2(r)

+ 2
H∑

h=1

R2
h

mAh∑
r=1

η′(r)ŜBBA η(r)

√(
1G − ˆ̄φA(r)

)′
t̂Ae2(r)

+
H∑

h=1

mAh∑
r=1

R2
hη

2
(r)

(
1G − ˆ̄φA(r)

)′
t̂Ae2(r) (4.52)

Use of the ECNJC would be plausible in two cases: (i) the complete bench-

mark covariance matrix for the controls is unavailable (e.g., estimates taken from a

previous report), or (ii) the covariance terms are negative so that the replicate val-

ues defined in (4.45) would lead to a conservative variance estimate. The diagonal

matrix ŜB would be correct if the auxiliary variables (or, in the case of poststratifi-

cation, the estimated poststratum counts) were actually uncorrelated. However, this

is unlikely especially for the EC poststratified estimator because of the multinomial

structure of N̂B. Given the setup for the ECNJC, the expectation of the variance

estimator will not approximate (4.16); the bias is related to the difference between

VB and the expectation of ŜB squared, i.e., EB(Ŝ2
B).
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4.5 Simulation Study

We complement the theoretical evaluation of the variance estimators presented

in the previous sections with an analysis of simulation results for the EC poststrat-

ified estimator of a total t̂yP given in expression (4.3). The variance estimators

include:

1. Näıve, the traditional calibration estimator defined in expression (4.21);

2. ECTS, the EC linearization estimator defined in (4.24);

3. ECF2m, the modified Fuller two-phase jackknife estimator (4.36) that includes

an adjustment for analytic frame undercoverage (4.30);

4. ECMV, the Multivariate normal jackknife estimator (4.41); and,

5. ECNJCm, the modified Nadimpalli-Judkins-Chu jackknife estimator defined

in (4.52).

We additionally compare the modified Fuller method (ECF2m) against ECF2, the

original Fuller two-phase jackknife estimator (4.26) defined under EC poststratifi-

cation, as well as the modified Nadimpalli-Judkins-Chu (ECNJCm) method against

ECNJC, the original Nadimpalli-Judkins-Chu jackknife estimator defined in expres-

sion (4.47) for t̂yP . The former comparisons will suggest the use of one or more

variance estimators for EC calibration, while the latter comparison will suggest the

effectiveness of the undercoverage error variance component in properly inflating the

overall variance estimates.
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4.5.1 Simulation Parameters

The simulation population is a random subset of the 2003 National Health

Interview Survey (NHIS) public-use file containing records for 21,664 U.S. residents.

These records are categorized within 25 design strata, each containing six PSUs

(MAh = 6). Samples for the analytic survey are selected from this “population”

using a two-stage design. Two PSUs (mAh = 2) are selected with replacement using

probabilities proportional to the total number of persons (PPS) within the PSU.

From within each PSU, we selected a simple random sample (nAhi) of 20 and 40

persons without replacement resulting in a total sample size (nA =
∑

h

∑mAh

i=1 nAhi)

of 1,000 and 2,000, respectively. Two within-PSU sample sizes were considered for

this study to evaluate the effects of smaller analytic survey variance components,

calculated by increasing the level of nA, on the variance of t̂yP . For each combination

of PSU and size of the person-level samples (i.e., 50 PSUs and either 1,000 or

2,000 persons), we selected 4,000 simulation samples. We calculate the estimated

population totals and associated variances for two binary NHIS variables in separate

runs of the simulation program: NOTCOV=1 indicates that an adult did not have

health insurance coverage in the 12 months prior to the NHIS interview (ty = 3, 653,

approximately 17.1 percent of the population); and PDMED12M=1 indicates that

an adult delayed medical care because of cost in the 12 months prior to the interview

(ty = 1, 522, approximately 7.1 percent of the population). We exclude nonresponse

from consideration in our current simulation study to minimize factors that could

cloud our comparisons.
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Table 4.1: Coverage Rates within the 16 Poststratification Cells by Outcome Vari-
able.

Not Covered by Health Delayed Medical Care

Insurance (NOTCOV) (PDMED12M)

Age Male Female Male Female

< 5 0.9 0.9 0.9 0.9

5-17 0.8 0.8 0.8 0.8

18-24 0.5 0.5 0.6 0.5

25-44 0.5 0.5 0.6 0.5

45-64 0.8 0.8 0.6 0.5

65-69 0.9 0.9 0.9 0.5

70-74 0.9 0.9 0.9 0.7

75 + 0.9 0.9 0.9 0.8

Poststratification may reduce variances slightly. However, in household sur-

veys, this technique is mainly used to correct for sampling frame undercoverage, as

well as other problems inherent with surveys. Each of the 4,000 simulation samples

is randomly selected from a sampling frame that suffers from differential undercov-

erage, such as those used for many telephone surveys. The 16 poststratification

cells are defined by an eight-level age variable crossed with gender. The coverage

rates for the 16 cells by outcome variable are provided in Table 4.1. These coverage

rates were created based on the population means for each age by gender group. A

coverage rate equal to 1.0 would indicate full coverage. Before each analytic survey

sample is selected, a stratified random subsample is drawn from the full population

using the coverage rates in Table 4.1 to create the analytic survey sampling frame.

For example, 90 percent of the male population less than five years of age (age < 5,

male) is randomly selected to be in the analytic survey sampling frame. This process
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Table 4.2: Benchmark Control Total Correlations for Males by Age Groups Ranging
from 18 to 69.

18-24 25-44 45-64 65-69

18-24 1.00 0.37 0.29 0.01

25-44 0.37 1.00 0.31 0.10

45-64 0.29 0.31 1.00 0.19

65-69 0.01 0.10 0.19 1.00

of subsetting the population to the frame was independently implemented for each

sample and for each outcome variable.

We suspect that the decision for researchers to use either a traditional or an

EC calibration variance estimator will depend on the precision of the control totals.

We calculated the population benchmark poststratum counts (NB) and covariance

matrix (VB) from the complete NHIS public-use data file (92,148 records) and

ratio adjusted the values to reflect a sample size comparable with our simulation

population (N=21,664). A few example correlations for the covariance matrix VB

are provided in Table 4.2; the off-diagonal values range from -0.05 to 0.75 with a

mean value of 0.22. From this matrix VB we calculated four covariance matrices for

the simulation
({VBl}4

l=1

)
by dividing the original matrix by the adjustment factors

1.0, 3.6, 18, and 72. The adjustments reflect benchmark surveys with approximate

effective sample sizes of 21,700, 6,000 (∼= 21, 700/3.6), 1,200, and less than 500,

respectively. The {VBl}4
l=1 are used directly in the calculation of the sample variance

estimates in place of V̂B. For example, the VBl’s were (spectrally) decomposed for

the 4,000 simulation samples to generate the ECF2 replicate control totals. From

each of the four VBl’s, we generated 4,000 estimated benchmark control total vectors
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(N̂B) of length 16 using a multivariate normal (MVN) distribution such that N̂B ∼

MV N16 (NB,VBl). These control total vectors were used to calculate the replicate

controls N̂B(r) for all the jackknife methods. We chose not to randomly generate a

V̂B for each N̂B using, for example, a Wishart distribution in order to simplify the

simulation study. In short, the N̂B’s varied from one simulated sample to another

but the V̂B’s did not.

In summary, the sources of variation accounted for in our simulation study

can be classified into two groups — external and internal. External conditions vary

across the set of simulation samples but do not vary within each set of 4,000 sim-

ulation samples. These include variation in the outcome variable (y=NOTCOV or

PDMED12M), the size of the analytic survey sample (nA = 1, 000 or 2, 000), and

the benchmark covariance matrix
({VBl}4

l=1

)
. Internal conditions vary within the

set of simulations samples and include: creation of the analytic survey sampling

frame, selection of the analytic survey sample units, generation of the benchmark

control totals (N̂B), selection of the G replicates to receive an ECF2 (spectral de-

composition) adjustment factor, and generation of the multivariate and standard

normal random variables for the ECMV and ECNJC methods.

The simulation was conducted in Rr (Lumley, 2005; R Development Core

Team, 2005) because of its extensive capabilities for analyzing survey data and

efficiency in conducting simulation studies. We developed program code to calculate

the linearization and replicate variance estimates for t̂yP because the relevant code

does not currently exist. The programs developed for the simulation studies are

provided in Appendix A.
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4.5.2 Evaluation Criteria

The empirical results for the variance estimators listed at the beginning of

this section (Section 4.5) are compared using several measures across the j (j =

1, ..., 4000) simulation samples and two outcome variables (NOTCOV, PDMED12M).

The measures include:

1. 100 ×
[(

(1/4000)
∑

j var(t̂yPj
)−MSE

)
/MSE

]
, the estimated percent bias

of the variance estimator relative to the empirical MSE = (1/4000)
∑

j(t̂yPj
−

ty)
2;

2. 100 ×
[(

(1/4000)
∑

j var(t̂yPj
)− V AR

)
/V AR

]
, the estimated percent bias

of the variance estimator relative to the empirical variance where V AR =

(1/4000)
∑

j(t̂yPj
− (1/4000)

∑
j t̂yPj

)2;

3. (1/4000)
∑

j I
(|ẑj| ≤ z1−α/2

)
, the 95 percent confidence interval coverage rate

where α = 0.05, ẑj = (t̂yPj
− ty)/se(t̂yPj

), and se(t̂yPj
) =

√
var(t̂yPj

);

4.

√
1

(4000−1)

∑
j

[
se(t̂yPj

)− (1/4000)
∑

j se(t̂yPj
)
]2

, the standard deviation of the

estimated standard errors (se); and,

5. 100 ×
[(

(1/4000)
∑

j se∗
(
t̂yPj

) − (1/4000)
∑

j seECTS

(
t̂yPj

))
/ (1/4000)

∑
j seECTS

(
t̂yPj

)]
, the percent increase in the variation of the estimated stan-

dard errors for all studied estimators (se∗) relative to the ECTS variance es-

timator (seECTS).

Prior to comparing the variance estimators, we evaluate the relative bias of the

estimated totals, (1/4000)
∑

j

(
t̂yPj

− ty
)
/ty discussed in the next section.
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4.5.3 Results for Point Estimators

To justify the need for calibration, we initially evaluated the pwr estimated

totals (t̂Ay =
∑

hik∈sA
π−1

hikyhik) for the two outcome variables. This estimator is

known to be design-unbiased under pristine conditions (see Result 2.91 Särndal

et al., 1992). The percent relative bias indicates that the point estimator is nega-

tively biased, underestimating the population total by 38 percent for NOTCOV and

41 percent for PDMED12M. Also, the 95 percent confidence intervals for the empir-

ical bias of NOTCOV and PDMED12M are (-1,852.2, -898.8) and (-854.2, -391.1),

respectively, and do not cover a bias of zero. These large negative values show that

some correction is needed to adjust for the non-negligible levels of undercoverage

bias.

The percent relative bias for the poststratified estimator t̂yP was much lower

— the t̂yP is positively biased by no more than 2 percent for both outcome variables.

The EC 95 percent confidence intervals for the bias of NOTCOV and PDMED12M

do contain zero as desired and are calculated as (-664.4, 819.2) and (-380.8, 422.3),

respectively. Even though population values were not used for the calibration, the

EC calibration using benchmark survey estimates greatly improved the MSE of our

estimated totals. Estimated poststratum counts from the benchmark survey (N̂B)

were larger (at most 10 percent) than the corresponding values in the population

(N) for five out of the 16 poststrata. This is likely associated with the small positive

percent relative bias seen for the EC poststratified estimator.
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4.5.4 Comparison of Variance Estimators

Adding to the theoretical evaluation in Section 4.4, the empirical results for

an effective variance estimator should possess a percent bias relative to the empiri-

cal MSE either near zero (unbiased) or somewhat positive (conservative measure).

Figure 4.1 shows the general pattern of our results through the percent relative

bias of five variance estimators (Näıve, ECTS, ECF2m, ECMV, and ECNJCm) by

the increasing size (left to right on the x axis) of the benchmark survey relative to

the 1,000 persons selected for the analytic survey (nB/nA) for NOTCOV (a) and

PDMED12M (b). Note that in our study the increase in the benchmark survey size

is directly related to an increase in the precision of the estimated control totals. The

horizontal line represents zero bias, while the vertical line represents the effect for

equal-sized analytic and benchmark surveys. Estimates for the Näıve and ECNJC

estimators are represented by squares and triangles, respectively. The “Other EC”

estimates (ECTS, ECF2m, and ECMV) are similar in value and are shown as circles.

The traditional poststratified estimator (Näıve) is most negatively biased among

those compared as expected for both outcome variables. When the benchmark sur-

vey is smaller than the analytic survey (and therefore produces estimates less precise

than the analytic survey), the Näıve estimator is negatively biased by as much as 50

percent for NOTCOV and 35 percent for PDMED12M. The level of bias improves

as the relative size of the benchmark survey increases; however, the Näıve estimator

still results in, at best, a 4 percent underestimate for the variables considered. The

ECNJCm estimator fares slightly better than the Näıve estimator though the bias
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(a) Total Number Not Covered by Health Insurance in Last
12 Months (NOTCOV)
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(b) Total Number Delayed Medical Care Due to Cost in Last
12 Months (PDMED12M)

Figure 4.1: Percent Bias Relative to Empirical MSE of Five Variance Estimators by
Relative Size of the Benchmark Survey to the Analytic Survey for 1,000 Analytic
Survey Units.
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is still larger than the other EC variance estimators — biases range from -8 to -37

percent for NOTCOV and from -3 to -25 percent for PDMED12M. The percent

relative biases for the remaining estimators fall between -2 and -8 percent.

For a small benchmark survey relative to the size of the analytic survey (left

of the vertical line), the levels of (absolute) bias dramatically increase for the

Näıve and ECNJC estimators. either a negligible effect (NOTCOV) or an oppo-

site (PDMED12M) effect is seen for the other EC variance estimators. The variance

component associated with the benchmark survey, e.g., ˆ̄Y
′
AV̂B

ˆ̄YA in (4.24), becomes

the dominate term within the EC variance estimators to the left of the (vertical)

line of equality. Thus the benchmark variance component somewhat corrects for the

negative bias associated with the analytic variance component. Additional research

is needed to determine if a threshold exists for when such a counterbalance of bias

can occur.

The percent biases relative to the empirical MSE generated from our simula-

tion study are provided in Table 4.3. The 20 NOTCOV and PDMED12M estimates

for nA = 1, 000 were used to generate Figure 4.1. Bias estimates for the Näıve and

ECNJC estimators are larger than the other EC estimates for all our simulations.

Differences are negligible for the remaining variance estimators under all conditions

studied. Note that the relative sizes of 21.7 and 10.8 both imply benchmark survey

sample sizes of about 21,700. Thus the variance components associated with the

benchmark survey estimates are more prominent for the estimates in Table 4.3 based

on nA = 2, 000. This leads to larger relative biases in these estimates, relative to

those produced under nA = 1, 000, even though the analytic survey sample size is
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Table 4.3: Percent Bias Estimates Relative to Empirical MSE for Five Variance

Estimators by Outcome Variable and Relative Size of the Benchmark Survey to the

Analytic Survey.

Relative Size Relative Size

Outcome Variance nB/(nA = 1, 000) nB/(nA = 2, 000)

Variable Estimator 0.3 1.2 6.0 21.7 0.2 0.6 3.0 10.8

NOTCOV Näıve -50.3 -23.0 -10.7 -9.2 -56.0 -31.0 -14.2 -12.2

ECTS -4.5 -4.5 -6.1 -7.7 -0.2 -8.4 -8.2 -10.1

ECF2m -4.7 -4.6 -5.8 -7.5 0.1 -8.2 -8.3 -10.1

ECMV -4.3 -4.1 -6.0 -7.5 -0.2 -8.1 -8.1 -10.0

ECNJCm -36.7 -17.1 -8.9 -8.2 -40.0 -24.2 -11.9 -11.1

PDMED12M Näıve -34.4 -14.5 -5.7 -3.9 -48.1 -23.4 -10.0 -10.1

ECTS -3.3 -3.7 -2.7 -2.6 -4.7 -6.4 -5.1 -7.8

ECF2m -3.5 -3.5 -2.4 -2.3 -4.6 -6.8 -5.2 -7.8

ECMV -3.0 -3.3 -2.4 -2.2 -4.3 -6.3 -5.0 -7.7

ECNJCm -24.5 -10.5 -4.0 -2.7 -35.1 -17.6 -7.6 -8.4

Table 4.4: Percent Bias Estimates Relative to Empirical Variance for Five Variance

Estimators by Outcome Variable and Relative Size of the Benchmark Survey to the

Analytic Survey.

Relative Size Relative Size

Outcome Variance nB/(nA = 1, 000) nB/(nA = 2, 000)

Variable Estimator 0.3 1.2 6.0 21.7 0.2 0.6 3.0 10.8

NOTCOV Näıve -49.5 -20.6 -6.9 -5.5 -54.9 -28.4 -8.8 -5.8

ECTS -3.1 -1.5 -2.1 -3.9 2.3 -5.0 -2.4 -3.6

ECF2m -3.3 -1.7 -1.8 -3.6 2.6 -4.8 -2.5 -3.5

ECMV -2.9 -1.1 -2.0 -3.6 2.3 -4.7 -2.3 -3.4

ECNJCm -35.8 -14.6 -5.1 -4.4 -38.5 -21.4 -6.4 -4.6

PDMED12M Näıve -33.9 -13.6 -4.7 -2.9 -47.3 -22.0 -8.2 -7.9

ECTS -2.4 -2.7 -1.7 -1.6 -3.2 -4.6 -3.1 -5.6

ECF2m -2.6 -2.5 -1.3 -1.3 -3.1 -5.0 -3.2 -5.5

ECMV -2.1 -2.3 -1.4 -1.2 -2.8 -4.6 -3.0 -5.4

ECNJCm -23.9 -9.6 -3.0 -1.7 -34.1 -16.1 -5.7 -6.1
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larger.

The overall negative bias of our estimates is similar to the bias of linearization

variance estimators shown for the combined ratio estimator (t̂Ayg/N̂Ag) in Section

4 of Rao & Wu (1985) and in Wu (1985). As noted in Section 4.5.3, the estimated

totals are slightly larger than the corresponding population total. Therefore, we

additionally examine the percent bias relative to the empirical variance to determine

if the empirical bias is affecting our results. Table 4.4 shows a noticeable decrease

in the negative biases in comparison to the values presented in Table 4.3.

The patterns exhibited for the percent relative bias are reflected in the coverage

rates for the 95 percent confidence interval for the estimated totals (Table 4.5). The

Näıve and ECNJC estimators are more likely to experience confidence intervals

coverage rates below 95 percent. These rates approach the appropriate level as

the precision of the benchmark survey estimates improves. However, the remaining

EC variance estimators had coverage rates near acceptable levels regardless of the

relative size of the surveys and therefore are more robust.

The discussion so far suggests that there are minimal theoretical, as well as

empirical, differences between the ECTS, ECF2m, and ECMV methods. We look

to the standard deviation of the estimated standard errors (SEs) in an attempt to

distinguish the estimators. An examination of this variability can provide insight

on the (empirical) stability of the variance estimators because an unstable variance

estimator could generate a poor variance estimate based on the nuances of the

particular sample selected. Table 4.6 contains the percent increase in the instability

(i.e., variability) for all variance estimators against the ECTS. Minor differences
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Table 4.5: Empirical 95 Percent Coverage Rates for Five Variance Estimators by

Outcome Variable and Relative Size of the Benchmark Survey to the Analytic Sur-

vey.

Relative Size Relative Size

Outcome Variance nB/(nA = 1, 000) nB/(nA = 2, 000)

Variable Estimator 0.3 1.2 6.0 21.7 0.2 0.6 3.0 10.8

NOTCOV Näıve 83.5 91.7 93.7 93.6 81.2 89.5 92.8 93.4

ECTS 95.6 94.4 94.2 94.0 95.7 94.3 93.7 93.7

ECF2m 95.1 94.1 94.2 93.9 95.5 94.2 93.5 93.8

ECMV 95.1 94.5 94.4 94.0 95.5 94.0 93.6 93.8

ECNJCm 88.6 92.7 94.0 93.9 87.8 91.0 93.1 93.6

PDMED12M Näıve 88.8 93.1 94.4 94.4 84.8 91.8 94.2 93.8

ECTS 94.8 94.8 94.7 94.5 95.4 94.7 94.8 94.1

ECF2m 94.8 94.8 94.8 94.5 95.2 94.7 94.7 94.1

ECMV 95.0 94.8 94.7 94.4 94.7 94.8 94.8 94.0

ECNJCm 91.1 93.7 94.5 94.4 89.0 92.8 94.4 93.9

in the stability of the estimates are seen for relatively large benchmark surveys.

However, as the benchmark estimates themselves become less stable, the variation

in the estimates also become less stable in comparison to the variation in the ECTS

estimates for all simulation conditions studied. The largest increase is noted for

the multivariate method (ECMV) and is attributed to the use of values from the

multivariate normal distribution with the complete benchmark covariance matrix as

discussed in Section 4.4.4.

We conclude this section with an examination of the effects of the undercov-

erage error variance component introduced into the original formulae for the Fuller

and Nadimpalli-Judkins-Chu jackknife variance estimators. Table 4.7 shows the per-

centage point reduction in the bias of the variance estimates relative to the empirical
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Table 4.6: Percent Increase in Instability of Variance Estimates Relative to EC Lin-

earization Estimator (ECTS) by Outcome Variable and Relative Size of the Bench-

mark Survey.

Relative Size Relative Size

Outcome Variance nB/(nA = 1, 000) nB/(nA = 2, 000)

Variable Estimator 0.3 1.2 6.0 21.7 0.2 0.6 3.0 10.8

NOTCOV Näıve 17.3 7.5 2.1 0.7 23.5 11.2 3.0 1.0

ECF2m 12.0 5.5 2.3 0.2 15.1 8.4 2.1 0.6

ECMV 21.2 7.4 1.8 0.3 30.8 8.5 2.4 0.7

ECNJCm 14.5 7.0 1.9 0.5 19.2 9.9 2.8 1.1

PDMED12M Näıve 4.9 2.4 0.7 0.4 12.3 6.1 1.9 1.0

ECF2m 7.7 3.8 1.1 0.4 12.0 6.3 2.1 0.7

ECMV 11.5 4.0 0.9 0.5 22.6 7.6 2.2 1.1

ECNJCm 5.3 2.6 0.7 0.3 13.4 6.2 2.2 0.9

Table 4.7: Percentage Point Reduction in Bias Relative to Empirical MSE At-

tributed to Coverage Error Variance by EC Variance Estimator, Outcome, and

Relative Size of Benchmark Survey to the Analytic Survey.

Relative Size Relative Size

Outcome Variance nB/(nA = 1, 000) nB/(nA = 2, 000)

Variable Estimator 0.3 1.2 6.0 21.7 0.2 0.6 3.0 10.8

NOTCOV ECF2 -0.2 -0.3 -0.4 -0.4 -0.2 -0.5 -0.5 -0.6

ECJNC -0.2 -0.3 -0.4 -0.4 -0.2 -0.5 -0.5 -0.6

PDMED12M ECF2 -0.5 -0.7 -0.7 -0.7 -0.8 -1.0 -1.2 -1.3

ECJNC -0.5 -0.7 -0.7 -0.7 -0.7 -1.0 -1.2 -1.3
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variance in using the modified variance estimators. Overall, the relative bias is re-

duced between 0.2 and 1.3 percentage points, with larger reductions occurring for

the larger benchmark surveys. This is consistent with the coverage error variance

component in (4.16) having order O (M), i.e., not dependent on the sample size

from either the analytic or benchmark surveys. The differences in the 95 percent

coverage rates are not appreciable and are therefore not shown. This suggests that

an undercoverage error adjustment is useful for the variance estimator; however,

further research is needed to produce a more effective adjustment factor.

4.6 Summary of Research Findings

The theoretical and analytical work discussed in this chapter support the need

for a new methodology to address calibration using estimated control totals, i.e.,

estimated-control (EC) calibration. Traditional variance estimators can severely

underestimate the population sampling variance in estimated totals resulting in,

for example, incorrect decisions for hypothesis tests and sub-optimal sample allo-

cations when the design is optimized in the future. This is especially noticeable

with relatively small benchmark surveys and has implications for studies such as

the Web/RDD calibration example discussed at the end of Section 2.2.

The EC linearization variance estimators varECTS(t̂yR) (4.23) shows the most

promise for EC calibration given the evaluation criteria used for our study. This

estimator is effective at reducing the percent relative bias experienced with the

Näıve variance estimator (4.20) when the benchmark survey is small relative to
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the analytic survey. The replication variance estimator varECF2m (4.32), the Fuller

two-phase jackknife variance estimator augmented with an undercoverage error vari-

ance component, also reduces the relative bias and is recommended specifically for

studies requiring replicate weights. These include, for example, public-use analysis

files that are to be released without sampling design information to further protect

data confidentiality and respondent privacy. The ECMV method is asymptotically

equivalent to the recommended variance estimators; however, the instability of the

estimates may make this variance estimator less attractive.

Implementation of the two recommended variance estimators requires spe-

cialized computer programs because the capabilities are currently not available in

standard software. The linearization estimator may be more approachable because

it involves a modification to available variance estimates (see Section 4.4.2 for fur-

ther discussion). We provide a step-by-step guide to the procedures required for the

varECF2m (Section 4.4.3) to facilitate the creation of the replicate weight program.
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Chapter 5

Ratio of Two Estimated Population Totals

5.1 Introduction

The ratio estimator of a population mean, also known as a Hájek estimator

(Hájek, 1971), is calculated as the estimated total for an outcome variable divided

by the estimated population size (N̂). The estimated population size is generally

obtained by summing the final analysis weights for all sample cases. This estimator

has for many sampling designs a smaller variance than the corresponding Horvitz-

Thompson estimator (Horvitz & Thompson, 1952) or the pwr estimator (Särndal

et al., 1992) divided by the known population size (N). We examine the ratio es-

timator for a population mean under estimated-control calibration (EC ratio-mean

estimator) in the general regression setting, as well as under poststratification. For-

mulae for the EC general-regression (EC-GREG) and poststratified (EC-PSGR)

ratio-mean estimators are provided in Section 5.2. We evaluate the bias in these

estimators in Section 5.3, and compare the levels against those discussed for the

estimator of the population total used in the numerator of the ratio (Section 4.3).

The variance estimators included in the Chapter 4 evaluation are compared for the

ratio-mean estimators in Section 5.4. We confirm our theoretical findings through a
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simulation study (Section 5.5) and summarize our theoretical and empirical results

in the final section of the chapter (Section 5.6). The work in this chapter builds on

the research presented in Chapter 4. Some of the Chapter 4 equations are repeated

in Chapter 5 to complete the discussion, while others are merely referenced for the

sake of brevity.

5.2 Point Estimators

The EC-GREG ratio-mean estimator is defined as

ˆ̄yR =
t̂yR

N̂R

(5.1)

where t̂yR = t̂Ay + (t̂Bx− t̂Ax)
′B̂A as shown in expression (4.1). The denominator is

an EC-GREG estimator of the population size and is calculated as

N̂R =
H∑

h=1

mAh∑
i=1

nAhi∑

k=1

ahikπ
−1
hik

=
H∑

h=1

mAh∑
i=1

nAhi∑

k=1


1 + (t̂Bx − t̂Ax)

′
(∑

sA

π−1
hilxhilx

′
hil

)−1

xhik


 π−1

hik

= N̂A + (t̂Bx − t̂Ax)
′B̂AN (5.2)

where π−1
hik (= 1/mAhπhi(1)πk|hi) is the analytic survey design weight for the kth

sample unit in PSU i selected with-replacement within stratum h; ahik is the EC

calibration adjustment factor for the kth unit; N̂A =
∑

hik∈sA
π−1

hik, the estimated
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population size using only the analytic survey data (sA); and

B̂AN =

( ∑

hil∈sA

π−1
lik xlikx

′
hil

)−1

t̂Ax, (5.3)

the model coefficient vector used in the numerator with yhik = 1 for all sample units

with t̂Ax =
∑

hik∈sA
π−1

hikxhik. Note that ahik specified for N̂R is the same as defined

for t̂yR in (4.1). Särndal et al. (1992, Section 7.13) refer to ˆ̄yR in (5.1) as a specific

type of “ratio of population totals” estimator of the form t̂yR/t̂zR, where zhik = 1 for

our estimator. Therefore, our discussions of ˆ̄yR (and the poststratified ratio-mean

estimator) can be extended to a ratio of any two population totals.

The EC-PSGR ratio-mean estimator is similarly defined as

ˆ̄yP =
t̂yP

N̂P

(5.4)

where t̂yP =
∑G

g=1 N̂BgN̂
−1
Ag t̂Ayg, the EC poststratified estimator of a total defined

in expression (4.3) with estimates summed over the G poststrata. The population

size, estimated through EC poststratification, simplifies to

N̂P =
G∑

g=1

H∑

h=1

mAh∑
i=1

nAhi∑

k=1

(
N̂Bg

N̂Ag

δghik

)
π−1

hik

=
G∑

g=1

(
N̂Bg

N̂Ag

)
N̂Ag ≡ N̂B, (5.5)

the population size estimated from the benchmark survey where δghik = 1 if the kth

unit is a member of the poststratum g (δghik = 0 otherwise); N̂Ag =
∑

hik∈sA
δghikπ

−1
hik;
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and N̂Bg =
∑

l∈sB
δglwl (δgl = 1 if l ∈ sBg, zero otherwise). Note that N̂B may be

written in matrix notation as N̂B = N̂′
B1G, where N̂′

B =
[
N̂B1, ..., N̂BG

]
, the G-

length vector of estimated benchmark poststratum counts, and 1G is a G-length

vector of ones. Because a poststratified estimator of a total can be expressed as

N̂′
B

ˆ̄YA for the appropriately chosen y, as discussed in (4.3), B̂AN = ˆ̄YAN ≡ 1G for

an EC-PSGR estimator where yhik = 1 for all analytic sample units.

Note that estimates calculated with the formulae defined for ˆ̄yR in (5.1) and ˆ̄yP

in (5.4) are the same as those calculated for ˆ̄yGREG in (2.12) and ˆ̄yPSGR in (2.15).

We use different notation primarily for variance estimation to identify situations

when the benchmark controls are considered fixed, as with traditional calibration,

in comparison to the EC calibration under study.

Using the formula of the ratio-mean estimators presented in this section, we

evaluate the properties of the mean square error (MSE) by examining the bias

and variance components separately. We begin in the next section by developing

expressions for the bias under EC-GREG calibration and more specifically for the

EC-PSGR ratio-mean estimator.

5.3 Bias of Point Estimators

Ratio estimators are asymptotically (but not exactly) unbiased because of the

estimation required for the random denominator. Särndal et al. (1992, Section 7.3.1)

and others, however, note that generally the bias of a ratio estimator is small. For

example, the bias is stated as being OP (n−1
A ) for a simple random sampling (SRS)
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design of size nA. The bias of an EC ratio estimator differs slightly. The first-order

bias approximation of ˆ̄yR (5.1) is

Bias(ˆ̄yR) ∼= E(t̂yR)

E(N̂R)
− ȳ

=
1

E(N̂R)

[
Bias(t̂yR) + ty − ȳ Bias(N̂R)− ȳN

]

=
1

E(N̂R)

[
Bias(t̂yR)− ȳ Bias(N̂R)

]
(5.6)

where ȳ =
∑

k∈U yk/N , the population mean of interest. As with the approximation

E(t̂yR) ∼= tAy + (tBx − tAx)
′BA given in (4.6), technical conditions, e.g., uniform

integrability of certain terms, can be used to formally justify the approximation

above (see Serfling, 1980, Thm. C, pg. 15). The unconditional expectation of N̂R

is approximated as

E(N̂R) = E
[
N̂A + (t̂Bx − t̂Ax)

′B̂AN

]

∼= EcA

[
EA

(
N̂A | cA

)]
+

(
EcB

[
EB

(
t̂Bx | cB

)]

−EcA

[
EA

(
t̂Ax | cA

)])′
EcA

[
EA

(
B̂AN | cA

)]

∼= NA + (tBx − tAx)
′BAN ≡ NR (5.7)

where EA and EB are the expectations taken with respect to the (independent)

analytic and benchmark surveys, and EcA
and EcB

are the expectation under the

coverage mechanisms for the respective sampling frames. As discussed in Section

4.3, E(t̂Bx) ∼=
∑

l∈U φBlxl ≡ tBx, and E(t̂Ax) ∼=
∑

hik∈U φAhikxhik ≡ tAx. Because

N̂A in (5.7) is a pwr estimator of a population total given the assumed analytic
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survey design, the expectation takes the following form:

E(N̂A) = EcA

[
EA

(
H∑

h=1

mAh∑
i=1

nAhi∑

k=1

π−1
hik | cA

)]

∼= EcA

(
H∑

h=1

Mh∑
i=1

Nhi∑

k=1

CAhik

)

=
H∑

h=1

Mh∑
i=1

Nhi∑

k=1

φAhik ≡ NA (5.8)

where CAhik is a binary variable to indicate that the kth unit is listed on the analytic

survey frame such that EcA
(CAhik) = φAhik, the mean of a Bernoulli distribution as

detailed in Section 3.4. The expectation of the remaining term, B̂AN , is similarly

approximated as

E(B̂AN) = EcA

[
EA

(
B̂AN | cA

)]

∼=
[

H∑

h=1

Mh∑
i=1

Nhi∑

l=1

φAhilxhilx
′
hil

]−1 H∑

h=1

Mh∑
i=1

Nhi∑

k=1

φAhikxhik

≡ BAN . (5.9)

The Bias(ȳR) in (5.6) is approximately zero only if the estimators in the numerator

and denominator are approximately unbiased, i.e., E(N̂R) ∼= N and E(t̂yR) ∼= ty.

The conditions under which the Bias(t̂yR) ∼= 0 are discussed in Section 4.3. These

conditions also hold for Bias(N̂R). The bias of the denominator is similarly defined
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as with Bias(t̂yR) in (4.7) and is specified as:

Bias(N̂R) ∼= NCANEφ + (tBx − tAx)
′(BAN −BN)−NĒN(1− φ̄A)

+(tBx − tx)
′BN

where ENhik = 1 − x′hikBN , the residual calculated for the denominator under the

population assisting model, with ĒN =
∑

hik∈U ENhik/N ; CANEφ =
∑

hik∈U (ENhik−

ĒN

) (
φAhik − φ̄A

)
/N , the population covariance between the coverage rates and the

denominator residuals; and BN =
[∑

hil∈U xhilx
′
hil

]−1
tx.

The bias of the EC ratio-mean estimator under poststratification evaluates to

a form similar to Bias(t̂yP ) given in (4.8):

Bias(ˆ̄yP ) ∼= E(t̂yP )

E(N̂P )
− ty

N

=
G∑

g=1

NBg

NB

[
tAyg − tyg

NAg

N

NB

NBg

]
1

NAg

=
G∑

g=1

NBg

NB


 ∑

hik∈Ug

φAhikyhik −Ngφ̄Agȳg + Ngφ̄Agȳg − tyg
NAg

N

NB

NBg


 1

NAg

=
G∑

g=1

NBg

NB


 ∑

hik∈Ug

(
φAhik − φ̄Ag

)
(yhik − ȳg) /Ng


 Ng

NAg

+
G∑

g=1

NBg

NB

[
Ngφ̄Agȳg − tyg

NAg

N

NB

NBg

]
1

NAg

.

=
G∑

g=1

NBg

NB

CAyφg
1

φ̄Ag

+
G∑

g=1

NBg

NB

[
NAg

tyg

Ng

− tyg
NAg

N

NB

NBg

]
1

NAg

.

=
G∑

g=1

NBg

NB

CAyφg
1

φ̄Ag

+
1

N

[
G∑

g=1

tyg

{
NBg

NB

N

Ng

− 1

}]
.
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Therefore,

Bias(ˆ̄yP ) ∼=
G∑

g=1

WBgCAyφg
1

φ̄Ag

+
1

N

[
G∑

g=1

tyg

{
WBg

Wg

− 1

}]
(5.10)

where Ug is the complete set of population units in the gth poststratum; CAyφg =

∑
hik∈Ug

(yhik − ȳg)
(
φAhik − φ̄Ag

)
/Ng; φ̄Ag = N−1

g

∑
hik∈U δghikφAhik, the average an-

alytic survey coverage rate within poststratum g; ȳg = N−1
g

∑
hik∈U δghikyhik =

tyg/Ng, the mean of y within poststratum g for the complete population; WBg =

NBg/NB with NB =
∑

g NBg; and Wg = Ng/N with N =
∑

g Ng. The first bias

component is zero if CAyφg, the covariance of y and the coverage propensities φA in

poststratum g, is (approximately) zero. This can occur, for example, when poststra-

tum variables are chosen so that the coverage probabilities are constant within each

of the G cells (i.e., φAhik = φg for k ∈ Ug). If the benchmark proportions within

the poststratum cells are the same as in the population (i.e., WBg = Wg), then the

second bias component is zero. Only if both conditions are met will we have an

approximately unbiased estimator.

The zero-bias criteria for the ratio-mean estimators discussed above appear to

be more easily satisfied than those listed for the EC estimators of a total following

expression (4.8). To examine this more fully, we rewrite the relative bias of ˆ̄yR,
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RelBias
(
ˆ̄yR

)
, as a function of t̂yR (4.1):

RelBias
(
ˆ̄yR

)
=

Bias(ˆ̄yR)

ȳ

∼= 1

ȳ

[
E(t̂yR)

E(N̂R)
− ȳ

]

=
N

ty

[
E(t̂yR)− ty

NR

+
ty
NR

− ty
N

]

=
N

NR

[
RelBias(t̂yR) + 1− NR

N

]
, (5.11)

where E(N̂R) ≡ NR as shown in (5.7). Figure 5.1 displays the level of RelBias(ˆ̄yR)

for RelBias(t̂yR) = 0.1, 0.2, and 0.3, and the coverage ratios NR/N ranging from

0.4 to 1.6. The vertical line represents a coverage ratio of 1.0, i.e., NR = N ,

where RelBias(ˆ̄yR) ∼= RelBias(t̂yR). Coverage ratios to the left of this line de-

note RelBias(ˆ̄yR) for a negatively biased N̂R. For example, NR/N = 0.6 indicates

that the EC-GREG estimates undercover the population size by 40 percent, i.e.,

100 × (1−NR/N). At this level, RelBias(ˆ̄yR) ∼= 0.83 is more than eight times

larger than the corresponding RelBias(t̂yR) = 0.1. By contrast, an NR that is

too large (NR/N > 1) results in RelBias(t̂yR) > RelBias(ˆ̄yR). For example, with

RelBias(t̂yR) = 0.3, RelBias(ˆ̄yR) ∼= 0 for a 30 percent overestimate (NR/N = 1.3),

and increases to RelBias(ˆ̄yR) ∼= 0.2 for a 60 percent overestimate. By noting the

slope of the line, we see that the difference between RelBias(ˆ̄yR) and RelBias(t̂yR)

is larger when the population size is underestimated (left of the vertical line) by

the calibration system in comparison with an overestimate. Therefore, the figure

suggests that the zero-bias criterion for ˆ̄yR is not necessarily easier to satisfy than
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Figure 5.1: Relative Bias of Mean by Coverage Ratio (N̂R/N) of Population Size

for Relative Bias of Total equal to 0.1, 0.2, and 0.3.

t̂yR because we have conditions where one but not both are unbiased. The major

influence is related to the denominator of the ratio-mean estimator.

5.4 Variance Estimation

Having addressed the bias of ˆ̄yR and ˆ̄yP , we move on to an evaluation of the

variance estimators presented in Chapter 4. We begin this section by examining

the approximate population sampling variance — the parameter that the sample

variance estimators should equal in expectation — and then turn our attention to

the sample variance estimators of interest for our research.

The population sampling variance (AV) for the EC-GREG ratio-mean estima-

tor ˆ̄yR (5.1) is approximated through a first-order Taylor series expansion about the
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expected values θ = (tyR, NR) with ȳR = tyR/NR:

AV (ˆ̄yR) =

(
1

NR

)2 [
AV (t̂yR) + ȳ2

R AV (N̂R)− 2ȳR ACov(t̂yR, N̂R)
]
. (5.12)

The approximate population sampling variance for the EC-GREG estimated total

of y is defined in expression (4.16) as:

AV (t̂yR) = AV (t̂yGREG)

+
H∑

h=1

Mh∑
i=1

Nhi∑

k=1

φAhik (1− φAhik) E2
Ahik

+ B′
AVBBA.

The corresponding variance components for the estimated population size, N̂R, is

calculated using the following expansion:

AV (N̂R) = EB

[
AVcA,A(N̂R | B)

]
+ AVB

[
EcA,A(N̂R | B)

]

= EB

[
EcA

{
AVA(N̂R | cA, B) |B

}]

+ EB

[
AVcA

{
EA(N̂R | cA, B)| B

}]

+ AVB

[
EcA

{
EA(N̂R | cA, B)| B

}]

≡ V1 + V2 + V3. (5.13)

Note that we assume complete coverage for the benchmark survey in determining the

approximate population sampling variance. The asymptotic variance relies on the

approximation N̂R
∼=

{∑
hik∈sA

π−1
hikEANk

}
+ t̂′BxBAN where EANhik = 1− x′hikBAN ,
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the assisting model residuals, and BAN
∼= E(B̂AN) from (5.9). The population

sampling variance of the estimated population size under traditional calibration,

V1 ≡ AV (N̂GREG), is calculated as shown for AV (t̂yGREG) in expression (4.14) by

substituting EANhik in place of EAhik = yhik − x′hikBA. Therefore, the first variance

component in (5.13) is

V1
∼=

H∑

h=1

1

mAh

Mh∑
i=1

πhi(1)

(
tANEhi

πhi(1)

− tANEh

)2

+
H∑

h=1

1

mAh

Mh∑
i=1

EcA
(VANhi)

πhi(1)

where tANEhi =
∑Nhi

k=1 φAhikEANhik; tANEh =
∑Mh

i=1 tANEhi; and VANhi is the within-

PSU population sampling variance associated with the estimated population size.

The second component in (5.13) addresses the variation due to the analytic survey

sampling frame coverage error,

V2
∼=

H∑

h=1

Mh∑
i=1

Nhi∑

k=1

φAhik (1− φAhik) E2
ANhik

and, again, is similar to the V2 defined in expression (4.15) for the estimator in the

numerator of ˆ̄yR. The V3 variance component in (5.13) is approximated by

V3 ≡ B′
ANVBBAN

where VB = V arB

(
t̂Bx

)
, the population sampling covariance matrix associated

with the vector of estimated control totals, and BAN (5.9) is the G-length vector

of assisting model coefficients specified for the analytic survey frame population.

By combining the variance component approximations, the asymptotic population
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sampling variance of N̂R is:

AV (N̂R) = AV (N̂GREG)

+
H∑

h=1

Mh∑
i=1

Nhi∑

k=1

φAhik (1− φAhik) E2
ANhik

+ B′
ANVBBAN . (5.14)

The relative influences of the variance components for M−2AV (N̂R) are the same

as specified for M−2AV (t̂yR): V1 = O
(
m−1

A

)
, V2 = O (M−1), and V3 = O

(
m−1

B

)

where mA and mB are the number of PSUs selected for the analytic and benchmark

surveys, and M is the total number of PSUs in the population.

The covariance term in (5.12), ACov(t̂yR, N̂R), is defined as follows using the

residual approximations to t̂yR and N̂R discussed previously:

ACov
(
t̂yR, N̂R

)

= ACov

( ∑

hik∈sA

π−1
hikEAhik + t̂′BxBA,

∑

hik∈sA

π−1
hikEANhik + t̂′BxBAN

)

= ACov

( ∑

hik∈sA

π−1
hikEAhik,

∑

hik∈sA

π−1
hikEANhik

)

+ ACov
(
t̂′BxBA, t̂′BxBAN

)
, (5.15)

because the analytic and benchmark surveys are assumed to be independent, i.e.,

ACov
(∑

hik∈sA
π−1

hikEAhik, t̂′BxBAN

) ≡ 0. To evaluate the covariance of the weighted

residuals in (5.15), we use the unconditional variance formula given in, e.g., Casella
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& Berger (2002, Theorem 4.4.7):

ACov

( ∑

hik∈sA

π−1
hikEAhik,

∑

hik∈sA

π−1
hikEANhik

)

= ACovcA

[
EA

( ∑

hik∈sA

π−1
hikEAhik | cA

)
, EA

( ∑

hik∈sA

π−1
hikEANhik | cA

)]

+ EcA

[
ACovA

( ∑

hik∈sA

π−1
hikEAhik,

∑

hik∈sA

π−1
hikEANhik | cA

)]
. (5.16)

The first term in (5.16) equals

ACovcA

[
EA

( ∑

hik∈sA

π−1
hikEAhik | cA

)
, EA

( ∑

hik∈sA

π−1
hikEANhik | cA

)]

∼= ACovcA

[ ∑

hik∈U

CAhikEAhik,
∑

hik∈U

CAhikEANhik

]

=
∑

hik∈U

ACovcA
(CAhikEAhik, CAhikEANhik)

+
∑

hik 6=(hik)′∈U

ACovcA

(
CAhikEAhik, CA(hik)′EAN(hik)′

)

=
∑

hik∈U

ACovcA
(CAhikEAhik, CAhikEANhik)

=
∑

hik∈U

AV arcA
(CAhik) EAhikEANhik

=
∑

hik∈U

φAhik (1− φAhik) EAhikEANhik

because Bernoulli random variables are independent by definition with a convergence

rate of O (M−1). The second term in (5.16) equals ACov
(
t̂yGREG, N̂GREG

)
and

converges at a rate of m−1
A . The remaining term in ACov

(
t̂yR, N̂R

)
, ACov

(
t̂′BxBA,
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t̂′BxBAN

)
given in expression (5.15), evaluates to B′

AVBBAN . Therefore,

ACov
(
t̂yR, N̂R

)
= ACov

(
t̂yGREG, N̂GREG

)

+
H∑

h=1

Mh∑
i=1

Nhi∑

k=1

φAhik (1− φAhik) EAhikEANhik

+ B′
AVBBAN . (5.17)

As shown for AV (t̂yR) in (4.16), AV (ˆ̄yR) can be expressed as a function of terms

associated with traditional calibration plus terms related to coverage and EC cali-

bration by rearranging the components within (4.16), (5.14), and (5.17):

AV
(
ˆ̄yR

)
=

(
1

NR

)2 [
AV (t̂yR) + ȳ2

R AV (N̂R)− 2ȳR ACov(t̂yR, N̂R)
]

=

(
1

NR

)2 [
AV

(
t̂yGREG

)
+ ȳ2

RAV (N̂GREG)− 2ȳRACov
(
t̂yGREG, N̂GREG

)]

+

(
1

NR

)2 ∑

hik∈U

φAhik (1− φAhik)
[
E2

Ahik + ȳ2
RE2

ANhik − 2ȳREAhikEANhik

]

+

(
1

NR

)2 [
B′

AVBBA + ȳ2
RB′

ANVBBAN − 2ȳRB′
AVBBAN

]

= AV
(
ˆ̄yGREG

)

+

(
1

NR

)2 ∑

hik∈U

φAhik (1− φAhik) (EAhik − ȳREANhik)
2

+

(
1

NR

)2

(BA − ȳRBAN)′VB (BA − ȳRBAN) (5.18)

The asymptotic population sampling variance for the EC poststratified ratio-
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mean estimator ˆ̄yP is defined as follows through a specialization of expression (5.18):

AV
(
ˆ̄yP

)
=

(
1

NP

)2 [
AV (t̂yP ) + ȳ2

P AV (N̂P )− 2ȳP ACov(t̂yP , N̂P )
]

=

(
1

NB

)2

AV
(
t̂yPSGR

)

+

(
1

NB

)2 G∑
g=1

H∑

h=1

Mh∑
i=1

Nhi∑

k=1

δghikφAhik (1− φAhik) E2
Ahik

+

(
1

NB

)2 (
ȲA − ȳP1G

)′
VB

(
ȲA − ȳP1G

)
(5.19)

where AV (t̂yP ) is defined in (4.19); AV
(
t̂yPSGR

)
= N′

B EcA
(VA) NB; BA ≡ ȲA,

BAN ≡ 1G, and N̂PSGR ≡ NB under EC poststratification; and ACov
(
t̂yPSGR, NB

)

≡ 0 because NB is a population parameter. Note also that EANhik = 1 − x′hikBAN

evaluates to zero under poststratification because xhik is a G-length vector with one

in the gth position to indicate poststratum membership and zeros elsewhere, and

BAN is a G-length vector of ones, i.e., 1G. Finally, φAhik is the probability that unit

hik is listed on the analytic survey sampling frame.

The approximate population sampling variance for ˆ̄yR is a function of the

approximate population sampling variance for its numerator, AV (t̂yR), as shown in

(5.18). To better understand the relative effects of EC calibration on t̂R and ˆ̄yR, we

examine the difference between EC variance components in AV (t̂yR) and AV (ˆ̄yR).

We multiply AV (t̂yR) by N−2
R to reduce its size to a level comparable with AV (ˆ̄yR)

140



in the following expression:

(
1

NR

)2 [
AV

(
t̂yR

)− AV
(
t̂yGREG

)]− [
AV

(
ˆ̄yR

)− AV
(
ˆ̄yGREG

)]

=

(
1

NR

)2
(

B′
AVBBA +

∑

hik∈U

φAhik (1− φAhik) E2
Ahik

)

−
(

1

NR

)2 (
B′

AVBBA + ȳ2
RB′

ANVBBAN − 2ȳRB′
AVBBAN

+
∑

hik∈U

φAhik (1− φAhik) (EAhik − ȳREANhik)
2

)

∼= ȳR

(
1

NR

)2

[2B′
AVBBAN − ȳRB′

ANVBBAN ] , (5.20)

by dropping the lower-order O(M) coverage error terms. We assume y to be

strictly non-negative, as in our simulation study, so that we can claim ȳR ≥ 0.

If B′
AVBBAN > 1

2
ȳRB′

ANVBBAN , i.e., the covariance between the numerator and

denominator variables in ˆ̄yR is larger than 1
2
ȳR times the denominator variance,

then the difference is positive. This implies that the variance inflation due to EC

calibration will be less noticeable in the ratio of two estimated totals in comparison

with the estimator of a single total. Conversely, if B′
ANVBBAN > 2B′

AVBBAN/ȳR,

then the difference is negative and the variance inflation in ˆ̄yR estimates will exceed

levels for t̂R.

5.4.1 Linearization Variance Estimation for Traditional Calibration

A linearization variance estimator developed for ˆ̄yR (5.1) under traditional

calibration accounts only for the variation within the analytic survey sample. This

variance estimator, which excludes positive variance components for the analytic
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survey coverage error and benchmark estimates, will underestimate the population

sampling variance, AV (ˆ̄yR), given in expression (5.18). The formula for this näıve

variance estimator given below is derived by substituting the sample estimates for

the appropriate population parameters:

varNäıve(ˆ̄yR) ≡ var(ˆ̄yGREG)

=

(
1

N̂GREG

)2 [
var

(
t̂yGREG

)
+ ˆ̄y

2
Rvar

(
N̂GREG

)

− 2ˆ̄yR cov
(
t̂yGREG, N̂GREG

)]

=

(
1

N̂GREG

)2 H∑

h=1

mAh

mAh − 1

mAh∑
i=1

(ŭhi+ − ¯̆uh++)2 (5.21)

for ˆ̄yGREG defined in expression (2.12). Särndal et al. (1992) refer to var(ˆ̄yGREG) as a

g-weighted (sample) variance estimator developed for traditional weight calibration.

The values

ŭhi+ =
∑

k∈sAhi

ahikπ
−1
hik

(
eAhik − ˆ̄yReANhik

)

are linear substitutes derived from the first-order linear approximation to ˆ̄yGREG.

The linear substitutes are functions of the GREG model residuals for the numerator,

eAhik = yhik−x′hikB̂A with estimated model coefficient vector B̂A defined in expres-

sion (4.2), as well as the denominator, eANhik = 1 − x′hikB̂AN with B̂AN defined in

(5.3). The sample variance is centered around the stratum-specific means of the

linear substitute estimates, ¯̆uh++ = m−1
Ah

∑
i∈sAh

ŭhi+. We can reduce the underesti-
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mation in (5.21) by including a sample estimate of the undercoverage error:

varNäıve,cA
(ˆ̄yR) = varNäıve(ˆ̄yGREG)

+

(
1

N̂GREG

)2 H∑

h=1

(
1− ˆ̄φAh

) mAh∑
i=1

nAhi∑

k=1

e2
Ahik

πhik

. (5.22)

Even with this addition, however, (5.22) will still underestimate its population pa-

rameter. The magnitude, as discussed before, is related to the precision of the

benchmark survey estimates, i.e., the size of V̂B.

The corresponding näıve sample variance estimator for the EC poststratified

ratio mean, ˆ̄yP given in (5.4), takes a similar form and also underestimates the true

population sampling variance:

varNäıve(ˆ̄yP ) ≡ var(ˆ̄yPSGR)

=

(
1

NB

)2 [
var

(
t̂yPSGR

)− 2ˆ̄yP cov
(
t̂yPSGR, N̂B

)]

=

(
1

NB

)2

var
(
t̂yPSGR

)

=

(
1

NB

)2

N̂′
BV̂AN̂B (5.23)

where V̂A is the sample covariance matrix for ˆ̄YA =
[
ˆ̄yA1, ..., ˆ̄yAG

]′
discussed in

(4.24). Note that cov
(
t̂yPSGR, N̂B

)
in (5.23) is zero because we assume indepen-

dence between the analytic and benchmark surveys. The coverage error-adjusted
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sample variance estimator takes the same form as above:

varNäıve,cA
(ˆ̄yP ) = varNäıve(ˆ̄yP )

+

(
1

NB

)2 G∑
g=1

(
1− ˆ̄φAg

) H∑

h=1

mAh∑
i=1

nAhi∑

k=1

δghike
2
Ahik

πhik

(5.24)

where eAhik = yhik − ˆ̄yAg and ˆ̄yAg =
∑

hik∈sA
π−1

hikδghikyhik/
∑

hik∈sA
π−1

hikδghik, a func-

tion of the gth poststratum membership indicator δghik. This sample variance esti-

mator will also underestimate AV (ˆ̄yP ) (5.19) due to the missing benchmark variance

component. The next section contains a discussion of sample variance estimators

that address all three sources of variation in the EC calibration system.

5.4.2 Estimated-Control Taylor Linearization Variance Method

Linearization variance estimators for ratios are widely used in survey research

with traditional weight calibration. However, as discussed throughout Chapter 4, the

application of these variance estimators to data calibrated to survey estimates can

result in non-negligible levels of bias and erroneous conclusions for hypothesis tests.

The same holds for EC ratio-mean estimators discussed in this chapter. Sample

variance formulae for the EC calibrated estimators can take multiple forms; we

present the linearization variance estimators in this section followed by the Jackknife

methods first discussed in Chapter 4.

The EC Taylor series linearization sample variance of an EC-GREG ratio

estimator of a population mean can be decomposed into components associated

with traditional calibration, coverage error in the analytic survey sampling frame,
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and variation in the benchmark controls as shown below:

varECTS(ˆ̄yR) =

(
1

N̂R

)2 [
varECTS(t̂yR) + ˆ̄y

2
R varECTS(N̂R)− 2 ˆ̄yR cov(t̂yR, N̂R)

]

=

(
1

N̂R

)2 H∑

h=1

mAh

mAh − 1

mAh∑
i=1

(ŭhi+ − ¯̆uh++)2

+

(
1

N̂R

)2 H∑

h=1

(
1− ˆ̄φAh

) mAh∑
i=1

nAhi∑

k=1

π−1
hik

(
eAhik − ˆ̄yReANhik

)2

+

(
1

N̂R

)2 (
B̂A − ˆ̄yRB̂AN

)′
V̂B

(
B̂A − ˆ̄yRB̂AN

)
(5.25)

where the first term equals the näıve sample variance estimator, var(ˆ̄yGREG) given

in expression (5.21), under the assumed stratified, multistage design for the analytic

survey with PSUs selected with replacement and is OP

(
m−1

A

)
. The second term is a

function of the average coverage propensity within stratum h, ˆ̄φAh, and the assisting

model residuals for the numerator and denominator of ˆ̄yR and is OP (M−1). The

third set of variance components in (5.25) is OP

(
m−1

B

)
and increases the sample

variance to account for the precision of the estimated control totals. This is captured

in V̂B, the benchmark control total covariance matrix. Therefore, varECTS(ˆ̄yR) =

max
[
OP

(
m−1

A

)
, OP

(
m−1

B

)]
.

The EC linearization sample variance of an EC poststratified ratio estimator
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is similarly defined as follows:

varECTS(ˆ̄yP ) =

(
1

N̂P

)2 [
varECTS(t̂yP ) + ˆ̄y

2
P varECTS(N̂B)

− 2 ˆ̄yP cov(t̂yP , N̂B)
]

=

(
1

N̂B

)2 H∑

h=1

mAh

mAh − 1

mAh∑
i=1

(ŭhi+ − ¯̆uh++)2

+

(
1

N̂B

)2 G∑
g=1

(
1− ˆ̄φAg

) H∑

h=1

mAh∑
i=1

nAhi∑

k=1

δghike
2
Ahik

πhik

+

(
1

N̂B

)2 (
ˆ̄YA − ˆ̄yP1G

)′
V̂B

(
ˆ̄YA − ˆ̄yP1G

)
, (5.26)

where the first term in the final expression is equal to varNäıve(ˆ̄yP ) with ŭhi+ =

∑nAhi

k=1 (N̂Bg/N̂Ag)π
−1
hik

(
yhik − ˆ̄yAg

)
and ¯̆uh++ = m−1

Ah

∑
i∈sAh

ŭhi+. Note that N̂P ≡

N̂B under EC poststratification as shown in (5.5). The sample coverage error es-

timator multiplied by N2
B is the same as specified for varECTS(t̂yP ) in expression

(4.24) because the residuals under the model specified by the denominator (i.e.,

N̂B) are zero. The term varECTS(N̂B) is a scalar variance estimate of the estimated

population size N̂B calculated from the benchmark survey data.

As discussed in Chapter 4, the sample variance estimators are asymptotically

unbiased only if the components are calculated using consistent estimators of their

corresponding population parameter components. Having addressed linearization

variance estimation for the EC ratio-mean estimator, we next examine the set of

jackknife replication estimators identified for our research.
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5.4.3 Fuller Two-Phase Jackknife Method

Isaki et al. (2004) describe the Fuller (1998) two-phase jackknife method in

general terms for any type of smooth estimator applied to weighted sample data.

This excludes, for example, quantile estimation because jackknife variance estima-

tors are consistent only for smooth functions (Rao & Shao, 1999). In the following

section, we briefly describe the Fuller two-phase jackknife method for EC calibration

(ECF2) as it relates to a ratio estimator of a population mean. A more complete

discussion of the method is left to Section 4.4.3 because much of the mechanics used

to implement the ECF2 is the same for EC estimated totals and ratios of estimated

totals. Some material is repeated here for completeness of the discussion.

The delete-one ECF2 jackknife variance estimator for the EC-GREG ratio-

mean estimator is expressed as

varECF2(ˆ̄yR) =
H∑

h=1

(mAh − 1)

mAh

mAh∑
r=1

(¨̄yR(r) − ˆ̄yGREG)2 (5.27)

where mAh is the number of analytic survey PSUs, and ˆ̄yGREG (2.12) is the EC-

GREG ratio-mean estimator. The rth ECF2 replicate estimator of the population

mean, ¨̄yR(r), is calculated using the following formula:

¨̄yR(r) =
ẗyR(r)

N̈R(r)

=
t̂Ay(r) + (t̂Bx(r) − t̂Ax(r))

′B̂A(r)

N̂A(r) + (t̂Bx(r) − t̂Ax(r))′B̂AN(r)

. (5.28)

The EC replicate estimator of the population total using the ECF2 method, ẗyR(r),
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is detailed in expression (4.26). The replicate components within the estimator

for the population size, N̈R(r), are defined as follows: N̂A(r) =
∑

hik∈sA
π−1

hi(r)π
−1
hik,

the population size estimated from the replicate-adjusted analytic survey weights;

B̂AN(r) =
[∑

hik∈sA
π−1

hi(r)π
−1
hikxhikx

′
hik

]−1 ∑
hik∈sA

π−1
hi(r)π

−1
hikxhik, the assisting model

coefficient vector with yhik = 1; and π−1
hi(r), the PSU-subsampling weight defined in

expression (4.27). The replicate-specific vector of estimated benchmark controls,

t̂Bx(r), is defined in (4.25) as

t̂Bx(r) = t̂Bx + chẑB(r)

= t̂Bx + chδ(r)

G∑
g=1

δg|(r)ẑBg (5.29)

for ch =
√

mAh/(mAh − 1); ẑBg, a component of the spectral decomposition of V̂B

such that V̂B =
∑G

g=1 ẑBgẑ
′
Bg; and the indicator functions δ(r) and δg|(r) to identify

the G replicates chosen from a total of mA (
∑

h mAh) for an adjustment, and the

ẑBg used in the adjustment, respectively. Therefore, the replicate estimates may be

specified as follows by substituting (5.29) into (5.28):

¨̄yR(r) =
t̂yGREG(r) + chẑ

′
B(r)B̂A(r)

N̂GREG(r) + chẑ′B(r)B̂AN(r)

. (5.30)

The ECF2 variance estimator for the EC poststratified ratio-mean estimator

is defined by specializing the EC-GREG terms in (5.27) to the EC-PSGR setting:

varECF2(ˆ̄yP ) =
H∑

h=1

(mAh − 1)

mAh

mAh∑
r=1

(¨̄yP (r) − ˆ̄yP )2 (5.31)
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for ˆ̄yP expressed in (5.4). The ECF2 poststratified replicate estimator is defined as

¨̄yP (r) =
ẗyP (r)

N̈P (r)

(5.32)

The numerator term is defined in matrix form as:

ẗyP (r) = N̂′
B(r)N̂

−1
A(r)t̂Ay(r)

= N′
BN̂−1

A(r)t̂Ay(r) + chẑ
′
B(r)N̂

−1
A(r)t̂Ay(r)

= t̂yPSGR(r) + chẑ
′
B(r)

ˆ̄YA(r) (5.33)

where N̂B(r) = NB + chẑ
′
B(r); N̂A(r) is a diagonal matrix of dimension G with com-

ponents N̂Ag(r) =
∑

hik∈sA
δghikπ

−1
hi(r)π

−1
hik; t̂Ay(r) =

[
t̂Ay1(r), ..., t̂AyG(r)

]′
with compo-

nents t̂Ayg(r) =
∑

hik∈sA
δghikπ

−1
hi(r)π

−1
hikyhik; and ˆ̄YA(r) = N̂−1

A(r)t̂Ay(r). The denomina-

tor is similarly expressed as

N̈P (r) = N̂′
B(r)1G

= N′
B1G + chẑ

′
B(r)1G

= NB + chẑ
′
B(r)1G. (5.34)

where B̂AN(r) is specified for ¨̄yR(r) (5.30), the general form under the EC-GREG, is

equivalent to 1G with EC-PSGR as discussed for N̂P (5.5).

The components in the ECF2 variance estimator (5.27) reproduces in expecta-

tion the corresponding population sampling variance components listed in AV (ˆ̄yR)
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(5.18) using the rationale discussed for t̂yR in Section 4.4.3. The sample variance

estimator in its current form fails to capture the undercoverage error variance. The

amount of negative bias is related to the residuals from the assisting model and the

coverage rates are close to one. As in Section 4.4.3, we suggest the following modifi-

cation to the original ECF2 method to account for this missing variance component.

Define the modified ECF2 (ECF2m) replicate estimates as follows:

...
ȳ R(r) =

...
t yP (r)
...
NP (r)

=
ẗyP (r) + chRhη(r)

√
(1− φ̂A(r))t̂Ae2(r)

N̈P (r) + chRhη(r)

√
(1− φ̂A(r))t̂ANe2(r)

=

N̂−1
GREG(r)

(
t̂yGREG(r) + chẑ

′
B(r)B̂A(r) + chRhη(r)

√
(1− φ̂A(r))t̂Ae2(r)

)

1 + N̂−1
GREG(r)

(
chẑ′B(r)B̂AN(r) + chRhη(r)

√
(1− φ̂A(r))t̂ANe2(r)

) (5.35)

where ch =
√

mAh/(mAh − 1); Rh =
√

1/HmAh; φ̂A(r) is an estimate of the analytic

survey coverage rate (error) using a combination of data from the complete bench-

mark survey and analytic survey replicate subsample; t̂Ae2(r) =
∑

hik∈sA
π−1

hi(r)π
−1
hik

× e2
Ahik(r) with B̂A(r) defined in expression (4.26) and eAhik(r) = yhik − x′hikB̂A(r);

t̂ANe2(r) =
∑

hik∈sA
π−1

hi(r)π
−1
hike

2
ANhik(r) with eANhik(r) = 1 − x′hikB̂AN(r); and B̂AN(r)

defined for ¨̄yR(r) (5.28). Note that
...
t yP (r) is also used in the ECF2 modification for

t̂yR (4.31). The modified delete-one ECF2 jackknife sample variance estimator is

then specified as

varECF2m(ˆ̄yR) =
H∑

h=1

(mAh − 1)

mAh

mAh∑
r=1

(
...
ȳ R(r) − ˆ̄yGREG)2. (5.36)
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The expectation of (5.36) is evaluated by first approximating the denominator of

...
ȳ R(r) (5.35) with a geometric series:

[
1 + N̂−1

GREG(r)ch

(
ẑ′B(r)B̂AN(r) + Rhη(r)

√
(1− φ̂A(r))t̂ANe2(r)

)]−1

= 1− N̂−1
GREG(r)ch

(
ẑ′B(r)B̂AN(r) + Rhη(r)

√
(1− φ̂A(r))t̂ANe2(r)

)

+

[
N̂−1

GREG(r)ch

(
ẑ′B(r)B̂AN(r) + Rhη(r)

√
(1− φ̂A(r))t̂ANe2(r)

)]2

+ ...

∼= 1− N̂−1
GREG(r)ch

(
ẑ′B(r)B̂AN(r) + Rhη(r)

√
(1− φ̂A(r))t̂ANe2(r)

)
(5.37)

where the term N̂−1
GREG(r)ch

(
ẑ′B(r)B̂AN(r) + Rhη(r)

√
(1− φ̂A(r))t̂ANe2(r)

)
has order

in probability m
−1/2
B . The approximation is justified by Lehmann (1999, Thm

2.1.3) for convergence of a function of two random variables; N̂−1
GREG(r) is small

given our assumption that the estimated population size is large so that the claim

N̂−1
GREG(r)ch

(
ẑ′B(r)B̂AN(r) + Rhη(r)

√
(1− φ̂A(r))t̂ANe2(r)

)
→ 0 as M → ∞ is reason-

able; and by using the conditions of Rao & Wu (1985) for convergence of replicate

estimates to the population parameter. Therefore, we approximate the modified

ECF2 replicate estimates minus the full-sample estimate as follows:

...
ȳ R(r) − ˆ̄yGREG

∼=
(

ˆ̄yGREG(r) +
1

N̂GREG(r)

ch

{
ẑ′B(r)B̂A(r) + Rhη(r)

√
(1− φ̂A(r))t̂Ae2(r)

})

×
(

1− 1

N̂GREG(r)

ch

{
ẑ′B(r)B̂AN(r) + Rhη(r)

√
(1− φ̂A(r))t̂ANe2(r)

})
.

− ˆ̄yGREG.
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Continuing, we have

...
ȳ R(r) − ˆ̄yGREG

∼= ˆ̄yGREG(r) − ˆ̄yGREG

+
1

N̂GREG(r)

chẑ
′
B(r)B̂A(r) +

1

N̂GREG(r)

chRhη(r)

√
(1− φ̂A(r))t̂Ae2(r)

−
ˆ̄yGREG(r)

N̂GREG(r)

ch

[
ẑ′B(r)B̂AN(r) + Rhη(r)

√
(1− φ̂A(r))t̂ANe2(r)

]

∼= ˆ̄yGREG(r) − ˆ̄yGREG

+
1

NR

chẑ
′
B(r) (BA − ȳRBAN)

+
1

NR

chRhη(r)

[√
(1− φ̂A(r))

(√
t̂Ae2(r) − ȳR

√
t̂ANe2(r)

)]
(5.38)

where (5.37) is used in the first approximation; by assuming ˆ̄yGREG(r) − ˆ̄yGREG =

OP

(
m
−1/2
A

)
, N̂GREG(r) − N̂GREG = OP

(
M/

√
mA

)
,

(
t̂Ae2(r), t̂ANe2(r)

)
= OP (M),

and ẑB(r) = OP

(
M/

√
mB

)
for the second approximation; and finally, by assuming

(
ˆ̄yGREG(r), B̂A(r), B̂AN(r)

)
= (ȳR,BA,BAN) + OP

(
m
−1/2
A

)
and N̂GREG(r) = NR +

OP

(
M/

√
mA

)
to allow the substitution of the population parameters in the third

approximation as shown for the estimated total in expression (4.28). Using the
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approximation (5.38), the ECF2m jackknife variance estimator is calculated as

varECF2m(ˆ̄yR) =
H∑

h=1

c−2
h

mAh∑
r=1

(...
ȳ R(r) − ˆ̄yGREG

)2

∼=
H∑

h=1

c−2
h

mAh∑
r=1

(
ˆ̄yGREG(r) − ˆ̄yGREG

)2

+

(
1

NR

)2 H∑

h=1

mAh∑
r=1

R2
hη

2
(r)

(
1− φ̂A(r)

) (√
t̂Ae2(r) − ȳR

√
t̂ANe2(r)

)2

+

(
1

NR

)2

(BA − ȳRBAN)′ V̂B (BA − ȳRBAN)

+ 2
H∑

h=1

c−2
h

mAh∑
r=1

(
ˆ̄yGREG(r) − ˆ̄yGREG

) (
other components in

...
ȳ R(r)

)

+ 2
1

N2
R

H∑

h=1

mAh∑
r=1

Rhη(r)ẑ
′
B(r)BA

√
1− φ̂A(r)

(√
t̂Ae2(r) − ȳR

√
t̂ANe2(r)

)

− 2
ȳR

N2
R

H∑

h=1

mAh∑
r=1

Rhη(r)ẑ
′
B(r)BAN

√
1− φ̂A(r)

×
(√

t̂Ae2(r) − ȳR

√
t̂ANe2(r)

)
. (5.39)

The first term is the traditional calibration variance components with order in prob-

ability m−1
A , while the second term addresses the variation associated with the cov-

erage error in the analytic survey sampling frame and is OP (M−1). The third

component, a function of V̂B, accounts for the variation in the benchmark controls

totals and is OP

(
m−1

B

)
. The fourth set of terms has expectation zero under the

conditions of Rao & Wu (1985) to say that max
(
ˆ̄yGREG(r) − ˆ̄yGREG

)
converges in

probability to zero. The remaining components are OP

(
M−1/2m

−1/2
B

)
under the

assumption that M−1ẑB(r) = OP

(
m
−1/2
B

)
and M−1 times the residuals sums (e.g.,

t̂Ae2(r)) is OP

(
M−1/2

)
. The terms all have expectation zero because of the inclusion
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of the standard normal random variables η(r). The first three terms approximate

their associated population sampling variance components only if the sample esti-

mates are at least approximately unbiased — see, for example, the discussion of the

coverage error bias for expression (4.22).

By substituting the EC poststratified terms into the expression (5.39), we have

varECF2m(ˆ̄yP ) =
H∑

h=1

c−2
h

mAh∑
r=1

(...
ȳ P (r) − ˆ̄yPSGR

)2
(5.40)

where c−2
h = (mAh − 1)/mAh, and ˆ̄yPSGR = t̂yPSGR/NB defined in (2.15) with

t̂yPSGR =
∑G

g=1 NBg

(
t̂Ayg/N̂Ag

)
. The modified ECF2 poststratified replicate es-

timates are defined as follows:

...
ȳ P (r) =

...
t̄ yP (r)
...
N̄P (r)

=
t̂yPSGR(r) + chẑ

′
B(r)

ˆ̄YA(r) + chRhη(r)

√(
1G − ˆ̄φA(r)

)′
t̂Ae2(r)

NB + chẑ′B(r)1G

(5.41)

where ˆ̄YA(r) = N̂−1
A(r)t̂Ay(r); t̂Ay(r) =

[
t̂Ay1(r), ..., t̂AyG(r)

]′
with elements that are a

function of a zero/one indicator δghik that signifies membership in the gth post-

stratum, i.e., t̂Ayg(r) =
∑

hik∈sA
π−1

hi(r)δghikπ
−1
hikyhik; N̂A(r) is a diagonal matrix with

elements
(
N̂A1(r), ..., N̂AG(r)

)
such that N̂Ag(r) =

∑
hik∈sA

π−1
hi(r)δghikπ

−1
hik; 1G is a G-

length vector of ones and is equivalent to the assisting model coefficient vector

for yhik = 1 in the denominator; t̂Ae2(r) =
[
t̂A1e2(r), ..., t̂AGe2(r)

]′
where t̂Age2(r) =

∑
hik∈sA

π−1
hi(r)δghikπ

−1
hike

2
Ahik(r) with eAhik(r) = yhik−ȳAg(r), and ȳAg(r) = t̂Ayg(r)/N̂Ag(r);

154



and
(
1G − ˆ̄φA(r)

)′
=

[(
1− ˆ̄φA1(r)

)
, ...,

(
1− ˆ̄φAG(r)

)]
, a G-length vector of esti-

mated coverage rate by poststratum for replicate r also shown in expression (4.34).

Note that under EC poststratification, the assisting model residual defined by the

denominator variable eANhik(r) = yhik − x′hikB̂AN = 0 because yhik = 1 for all units

in the sample, B̂AN = 1G as shown in (5.5), and x′hik is a G-length vector of ones

and zeroes to indicate membership in a particular poststratum. This is an intuitive

finding given that we have shown N̂PSGR reduces to NB (2.15), a value independent

of the analytic survey. The asymptotic property of varECF2m(ˆ̄yP ) is the same as

discussed for varECF2m(ˆ̄yR) (5.39) and is not repeated.

The eight steps used to calculate varECF2m(ˆ̄yP ) in our simulation study de-

tailed in Section 5.5 are provided below. The total number of replicates generated

for a simulation sample is equal to the number of sample PSUs, i.e., mA =
∑

h mAh.

1. Calculate the full-sample estimate ˆ̄yP using expression (5.4).

2. Determine the G eigenvalues λ̂g and G-length eigenvectors q̂g from the spectral

decomposition of V̂B, and calculate the G replicate adjustments of the form

ẑBg = q̂g

√
λ̂g. Concatenate the G× G matrix of ẑBg’s, where ẑBg represents

the columns of this matrix, with a G× (mA −G) matrix of zeros. Randomly

sort the columns. Call this new G×mA matrix Z.

3. Create a G × mA matrix, called C, with column elements all equal to ch =

√
mAh/(mAh − 1). The mA-length vector of jackknife stratum weights is cal-

culated as WmA
= (mAh − 1)/mAh.
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4. Calculate the Hadamard (or element-wise) product of Z and C denoted as Z•C

(Searle, 1982, pp. 49). Replicate the vector of poststratum counts estimated

from the benchmark survey (N̂B) into the columns of a G ×mA matrix and

add to Z •C. This new G×mA matrix, called NBmA
, contains the replicate

benchmark controls for all mA replicates — see the definition of N̂B(r) defined

for expression (5.33).

5. Calculate the replicate estimates ˆ̄YA(r) with elements ˆ̄yAg(r) = t̂Ayg(r)/N̂Ag(r)

by removing in-turn one PSU from the analytic survey sample file, applying

the PSU-subsampling weights (4.27), and summing the weighted values for the

numerator and denominator within poststratum g. Call the resulting G×mA

matrix BmA
.

6. Create the following G×mA matrices for the coverage error variance compo-

nent: RmA
, with column elements all equal to

√
1/HmAh; ηmA

, with elements

obtained from the standard normal distribution; φmA
, with column elements

equal to (1− N̂Ag(r)/N̂Bg) for (N̂Ag(r)/N̂Bg) ≤ 1 and zero otherwise; and emA

with column elements described above for t̂Ae2(r). Calculate the Hadamard

product of these matrices and call it E.

7. Calculate the mA replicate estimates,
...
t̄ yP (r) (5.41), by first multiplying the

elements NBmA
by BmA

, adding E to the resulting matrix, and summing within

the columns of the resulting matrix. Calculate the corresponding denominator

estimates,
...
N̄P (r) (5.41), by summing within the columns of the G×mA matrix

NBmA
. Divide the mA numerator estimates by the mA denominator estimates
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to create the replicate estimates
...
ȳ P (r) (5.41).

8. Finally, subtract ˆ̄yP from
...
ȳ P (r) and square the mA terms, multiply by WmA

,

and sum across the mA estimates. The resulting value is the estimated variance

using the ECF2 method, varECF2m(ˆ̄yP ) given in expression (5.40).

By excluding the sixth step given above, we are also able to calculate the variance

under the original ECF2 specification which does not inflate for the analytic survey

coverage error. A comparison of the two variance estimators will suggest the level

of underestimation associated with the exclusion of the error variance component.

5.4.4 Multivariate Normal Jackknife Method

The multivariate normal approach (ECMV) to EC calibration perturbs all of

the mA (=
∑

h mAh) replicate estimates using an adjustment to the benchmark

controls detailed initially in expression (4.37):

t̂Bx(r) = t̂Bx + chRhε̂B(r) (5.42)

where ε̂B(r) is a G-length vector of random variables from a multivariate normal

distribution such that ε̂B(r)
iid∼ MVNG(0G, V̂B); ch =

√
mAh/(mAh − 1), as with

the ECF2; and Rh =
√

1/HmAh, a function of the number of analytic survey strata

(H) and the number of samples PSUs within stratum h (mAh). We additionally

incorporate an adjustment to the replicate estimates to account for the analytic

survey frame coverage error. This adjustment is the same as specified for the EC-
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GREG of a population total in expression (4.30). Following the convention used

for the modified ECF2 method (Section 5.4.3), the adjustments are applied to the

numerator and denominator of the ratio-mean replicate estimator:

...
ȳ R(r) =

t̂yGREG(r) + chRhε̂
′
B(r)B̂A(r) + chRhη(r)

√
(1− φ̂A(r))t̂Ae2(r)

N̂GREG(r) + chRhε̂
′
B(r)B̂AN(r) + chRhη(r)

√
(1− φ̂A(r))t̂ANe2(r)

. (5.43)

The ECMV replicate estimates (5.43) are used in the jackknife sample variance

estimator given in expression (5.27). To evaluate the expectation of this variance

estimator, we first approximate the replicate ratio-mean estimator using a geometric

series as shown in detail for the modified ECF2 (5.38):

...
ȳ R(r) − ˆ̄yGREG

∼=
(

ˆ̄yGREG(r) +
1

N̂GREG(r)

chRh

{
ε̂′B(r)B̂A(r) + Rhη(r)

√
(1− φ̂A(r))t̂Ae2(r)

})

×
(

1− 1

N̂GREG(r)

chRh

{
ε̂′B(r)B̂AN(r) + Rhη(r)

√
(1− φ̂A(r))t̂ANe2(r)

})

− ˆ̄yGREG

∼= ˆ̄yGREG(r) − ˆ̄yGREG

+
1

NR

chRhε̂
′
B(r)BA +

1

NR

chR
2
hη(r)

√
(1− φ̂A(r))t̂Ae2(r)

− ȳR

NR

chRhε̂
′
B(r)BAN − ȳR

NR

chR
2
hη(r)

√
(1− φ̂A(r))t̂ANe2(r). (5.44)

Note that the rate of convergence is the same as with the ECF2 method because

the ẑB(r) and ε̂B(r) adjustments have the same orders in probability by construction.

The lower-order terms involving N̂−2
R(r) are again eliminated from the approximation.
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The approximation for the EC poststratified ratio-mean estimator again follows the

pattern established in Section 5.4.3:

...
ȳ P (r) =

t̂yPSGR(r) + chRhε̂
′
B(r)

ˆ̄YA(r) + chRhη(r)

√(
1G − ˆ̄φA(r)

)′
t̂Ae2(r)

NB + chRhε̂
′
B(r)1G

∼=


ˆ̄yPSGR(r) +

chRhε̂
′
B(r)

ˆ̄YA(r)

NB

+
chRhη(r)

√(
1G − ˆ̄φA(r)

)′
t̂Ae2(r)

NB




×
(

1− chRhε̂
′
B(r)1G

NB

)
. (5.45)

As discussed in Section 4.4.4, the ECMV jackknife variance estimator has the

same asymptotic properties as the ECF2 for estimated totals. This asymptotic

equivalence holds for the ratio of two calibrated totals discussed in this chapter.

The expectation of varECMV

(
ˆ̄yR

)
is evaluated with respect to the analytic and

benchmark survey sample designs, the sampling frame coverage mechanisms, and
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the multivariate normal random variable resulting in

varECMV (ˆ̄yR) =
H∑

h=1

c−2
h

mAh∑
r=1

(...
ȳ R(r) − ˆ̄yGREG

)2

∼=
H∑

h=1

c−2
h

mAh∑
r=1

(
ˆ̄yGREG(r) − ˆ̄yGREG

)2

+

(
1

NR

)2 H∑

h=1

mAh∑
r=1

R2
hη

2
(r)

(
1− φ̂A(r)

) (√
t̂Ae2(r) − ȳR

√
t̂ANe2(r)

)2

+

(
1

NR

)2

(BA − ȳRBAN)′
[

H∑

h=1

R2
h

mAh∑
r=1

ε̂B(r)ε̂
′
B(r)

]
(BA − ȳRBAN)

+ 2
H∑

h=1

c−2
h

mAh∑
r=1

(
ˆ̄yGREG(r) − ˆ̄yGREG

) (
other components in

...
ȳ R(r)

)

+ 2
1

N2
R

H∑

h=1

mAh∑
r=1

R2
hη(r)ε̂

′
B(r)BA

√
1− φ̂A(r)

(√
t̂Ae2(r) − ȳR

√
t̂ANe2(r)

)

− 2
ȳR

N2
R

H∑

h=1

mAh∑
r=1

R2
hη(r)ε̂

′
B(r)BAN

√
1− φ̂A(r)

×
(√

t̂Ae2(r) − ȳR

√
t̂ANe2(r)

)
. (5.46)

The first and second terms address the variation within the analytic survey sam-

ple and coverage error for the associated sampling frame, and are OP

(
m−1

A

)
and

OP (M−1), respectively. As shown in expression (4.40), the expectation of the third

component is taken with respect to the specified MVN distribution, MVNG(0, V̂B),

and evaluates to
(

1
NR

)2

(BA − ȳRBAN)′VB (BA − ȳRBAN) with OP

(
m−1

B

)
provided

that E
(
V̂B

)
= VB. The fourth term has expectation zero under the conditions

of Rao & Wu (1985) to say that max
(
ˆ̄yGREG(r) − ˆ̄yGREG

)
converges in probability

to zero with order (Mm)
−1/2
B . The last two components are OP

(
m
−1/2
B

)
under the

assumption that M−1ε̂B(r) = OP

(
m
−1/2
B

)
and M−1 times the residuals sums (e.g.,
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t̂Ae2(r)) is OP (1). The terms all have expectation zero because of the inclusion of the

standard normal random variables η(r). Therefore, the ECMV variance estimator

is asymptotically equivalent to the modified ECF2 variance estimator for a ratio-

mean estimator, as well as with the estimated totals as discussed in Section 4.4.4.

However, the use of the MVN distribution should again produce variance estimates

with more variability than those calculated for the ECF2m. This is examined in the

simulation study (Section 5.5).

5.4.5 Nadimpalli-Judkins-Chu Jackknife Method

The approach discussed in Nadimpalli et al. (2004) assumes that only the

diagonal of the complete benchmark covariance matrix is available (or necessary)

for EC calibration unlike the other jackknife methods discussed previously. As with

the other jackknife methods, the ECNJC method also adjusts the replicate ratio

estimates for variation in the benchmark estimates. The following is the ECNJC

adjustment repeated from Section 4.4.5 and is used for all smooth point estimators

examined in our research:

t̂Bx(r) = t̂Bx + chRhŜBη(r)

where ŜB = diag(
√

V̂B), the diagonal matrix of estimated benchmark control stan-

dard errors; and η(r) ∼ N(0, 1), a G-length vector of values generated from the

standard normal distribution. The remaining terms are the same as defined for t̂Bx

under the ECMV method in expression (5.42). The original ECNJC method does
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not account for the coverage error variance in the analytic sampling frame. We

augment their formulation with a term that accounts for the additional variance

component and include a modified ECNJC (ECNJCm) replicate ratio-mean estima-

tor in the jackknife variance formula — see (4.30) for an EC-GREG estimator and

(4.34) for an EC-PSGR estimator. The following are the EC-GREG and EC-PSGR

replicate estimators, respectively, for the modified ECNJC jackknife:

...
ȳ R(r) =

t̂yGREG(r) + chRhη
′
(r)ŜBB̂A(r) + chRhη(r)

√
(1− φ̂A(r))t̂Ae2(r)

N̂GREG(r) + chRhη′(r)ŜBB̂AN(r) + chRhη(r)

√
(1− φ̂A(r))t̂ANe2(r)

(5.47)

and

...
ȳ P (r) =

t̂yPSGR(r) + chRhη
′
(r)ŜB

ˆ̄YA(r) + chRhη(r)

√(
1G − ˆ̄φA(r)

)′
t̂Ae2(r)

NB + chRhη′(r)ŜB1G

. (5.48)

The expectation of the jackknife variance estimator for the ECNJCm ratio-

mean estimator is evaluated as with the other methods after making a geometric

(series) approximation to the denominator of
...
ȳ R(r). The approximation is calculated

by substituting η′(r)ŜB for ε̂′B(r) in expression (5.45) and is used in the following
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expansion of the sample variance estimator:

varECNJCm(ˆ̄yR) =
H∑

h=1

c−2
h

mAh∑
r=1

(...
ȳ R(r) − ˆ̄yGREG

)2

∼=
H∑

h=1

c−2
h

mAh∑
r=1

(
ˆ̄yGREG(r) − ˆ̄yGREG

)2

+

(
1

NR

)2 H∑

h=1

mAh∑
r=1

R2
hη

2
(r)

(
1− φ̂A(r)

) (√
t̂Ae2(r) − ȳR

√
t̂ANe2(r)

)2

+

(
1

NR

)2

(BA − ȳRBAN)′
[

H∑

h=1

R2
h

mAh∑
r=1

ŜBη(r)η
′
(r)ŜB

]
(BA − ȳRBAN)

+ 2
H∑

h=1

c−2
h

mAh∑
r=1

(
ˆ̄yGREG(r) − ˆ̄yGREG

) (
other components in

...
ȳ R(r)

)

+ 2
1

N2
R

H∑

h=1

mAh∑
r=1

R2
hη(r)η

′
(r)ŜBBA

√
1− φ̂A(r)

(√
t̂Ae2(r) − ȳR

√
t̂ANe2(r)

)

− 2
ȳR

N2
R

H∑

h=1

mAh∑
r=1

R2
hη(r)η

′
(r)ŜBBAN

√
1− φ̂A(r)

×
(√

t̂Ae2(r) − ȳR

√
t̂ANe2(r)

)
. (5.49)

All of the variance components in (5.49), except for the third term, follow the same

arguments given for varECF2m(ˆ̄yR) in (5.39) and varECMV (ˆ̄yR) in (5.46). Using the

work shown in expression (4.48), the expectation of the third variance component

equals
(

1
NR

)2

(BA − ȳRBAN)′ EB

(
Ŝ2

B

)
(BA − ȳRBAN). If the true population co-

variance matrix for the benchmark control totals, VB, is not diagonal, then this com-

ponent is not asymptotically equivalent to
(

1
NR

)2

(BA − ȳRBAN)′VB (BA − ȳRBAN).

The magnitude of the under or overestimation is related to the sign of the off-

diagonal values in VB.
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5.5 Simulation Study

We use the simulation study described in detail in Section 4.5 to compare the

empirical properties of the variance estimators for the ratio of two EC-PSGR totals

ˆ̄yP given in expression (5.4). The following abbreviations are used as labels for the

variance estimators:

• Näıve, the traditional calibration estimator defined in (5.23);

• ECTS, the EC linearization estimator defined in (5.26);

• ECF2, the traditional Fuller two-phase jackknife estimator defined in (5.31);

• ECF2m, the modified Fuller two-phase jackknife estimator (5.40) that includes

an adjustment for analytic frame undercoverage;

• ECMV, the Multivariate normal jackknife estimator defined in by substituting

...
ȳ P (r) defined in expression (5.45) in the jackknife variance formula (5.40);

• ECNJC, the traditional Nadimpalli-Judkins-Chu jackknife estimator which

uses the replicate estimator
...
ȳ P (r) (5.48) without a coverage error term; and,

• ECNJCm, the modified Nadimpalli-Judkins-Chu jackknife estimator defined

in (5.48).

We additionally compare these results with those presented for the estimated total

in the previous chapter.
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5.5.1 Simulation Parameters

We summarize the necessary aspects of the simulation study here for clarity

and leave the details to Section 4.5. Samples are selected from the 2003 National

Health Interview Survey (NHIS), the analytic survey sampling frame, in two stages:

(i) mAh = 2 PSUs are selected with replacement from each of 25 design strata with

probabilities proportional to the number of U.S. residents within each PSU; and (ii)

either 20 or 40 residents are randomly selected without replacement (SRS) from each

sampled PSU resulting in a total analytic survey sample size (nA) of 1,000 and 2,000,

respectively. We again select 4,000 simulation samples from a randomly generated

frame after introducing the undercoverage rates shown in Table 4.1. We calculate

the estimated population means and associated variances for two binary NHIS vari-

ables in separate runs of the simulation program: NOTCOV=1 indicates that an

adult did not have health insurance coverage in the 12 months prior to the NHIS

interview (ȳ ∼= 0.17); and PDMED12M=1 indicates that an adult delayed medical

care because of cost in the 12 months prior to the interview (ȳ ∼= 0.07). Inclusion

of nonresponse in the simulation study is reserved for future work. Four bench-

mark covariance matrices are used to produce separate EC calibration estimates

to reflect varying levels of precision in the control totals. The estimated matrices

reflect benchmark surveys with approximate effective sample sizes of 21,700, 6,000,

1,200, and less than 500, respectively. Key Rr (Lumley, 2005; R Development Core

Team, 2005) programs developed specifically for this simulation study are provided

in Appendix A.

165



5.5.2 Evaluation Criteria

The empirical results for the variance estimators listed at the beginning of this

section (Section 5.5) are compared using five measures across the j (j = 1, ..., 4000)

simulation samples and two outcome variables (NOTCOV and PDMED12M ). The

measures include:

1. 100×
[(

1
4000

∑
j var(ˆ̄yPj

)−MSE
)

/MSE
]
, the estimated percent bias of the

variance estimator relative to the empirical MSE = 1
4000

∑
j(ˆ̄yPj

− ȳ)2;

2. 100 ×
[(

1
4000

∑
j var(ˆ̄yPj

)− V AR
)

/V AR
]
, the estimated percent bias of the

variance estimator relative to the empirical variance where V AR = 1
4000

∑
j

(
ˆ̄yPj

− 1
4000

∑
j
ˆ̄yPj

)2

;

3. 1
4000

∑
j I

(|ẑj| ≤ z1−α/2

)
, the 95 percent confidence interval coverage rate where

α = 0.05, ẑj = (ˆ̄yPj
− ȳ)/se(ˆ̄yPj

), and se(ˆ̄yPj
) =

√
var(ˆ̄yPj

);

4.

√
1

(4000−1)

∑
j

[
se(ˆ̄yPj

)− 1
4000

∑
j se(ˆ̄yPj

)
]2

, the standard deviation of the esti-

mated standard errors (se); and,

5. 100×
[(

1
4000

∑
j se∗

(
ˆ̄yPj

)
− 1

4000

∑
j seECTS

(
ˆ̄yPj

))
/ 1

4000

∑
j seECTS

(
ˆ̄yPj

)]
,

the percent increase in the variation of the estimated standard errors for all

studied estimators (se∗) relative to the ECTS variance estimator (seECTS).

These criteria are also used to compare the results for estimated totals and ratio

means. Prior to comparing the variance estimators, we evaluate the relative bias of

the estimated totals, 1
4000

∑
j

(
ˆ̄yPj

− ȳ
)

/ȳ discussed in the next section.
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Table 5.1: Percent Relative Bias Averaged Across Samples and Benchmark Covari-
ance Matrices for Percents and Totals of Outcome Variables by Point Estimator

Not Covered by Health Delayed Medical Care

Insurance (NOTCOV) (PDMED12M)

Estimator nAhi = 20 nAhi = 40 nAhi = 20 nAhi = 40

ˆ̄yHJ -11.7 -11.6 -9.2 -9.1

ˆ̄yP 0.7 0.8 0.9 1.1

t̂yPWR -37.7 -37.6 -40.8 -40.7

t̂yP 2.0 2.2 1.5 1.6

HJ = Hájek estimator; PWR = p-expanded with-replacement estimator.

5.5.3 Results for Point Estimators

Calibration inflates the variance of point estimates when the variability in the

analysis weights is increased. Without a greater decrease in the squared bias, the

MSE of the estimates increases — an undesirable occurrence. We begin in Table 5.1

with an examination of the MSE by comparing the relative bias (RelBias) of the

mean estimates using only the design weights, i.e., Hájek estimators, against those

estimators that incorporate an EC-PSGR adjustment. Negative values in Table 5.1

indicate underestimation, while positive values suggest estimates in excess of the

true values. Relative biases of zero are ideal; however, values near zero are also

acceptable and more realistic with simulation studies. The relative bias for the

Hájek estimator of the population mean (ˆ̄yHJ) calculated from the 4,000 simulation

samples identifies underestimates in excess of nine percent. The outcome variable

NOTCOV has higher levels of underestimation in comparison with PDMED12M

even though the latter condition is rarer in the population (17 versus 7 percent). EC
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poststratification corrects for undercoverage resulting in a slight overestimate of the

population mean by approximately one percent, thereby providing a justification for

the weight adjustment procedure. The same conclusion is obtained for the estimated

totals originally discussed in Chapter 4 and reproduced in the last two rows of Table

5.1.

Comparing the relative biases for the two EC poststratified estimators, we see

that RelBias(ˆ̄yP ) < RelBias(t̂yP ) for both within-PSU samples sizes and outcome

variables. The difference is less pronounced for PDMED12M in comparison with

NOTCOV. The benchmark controls for the simulation N̂B(r) are generated under a

multivariate normal distribution such that N̂B(r) ∼ MV N(N̂B, V̂B) as detailed in

Section 4.5.1. The average of the poststratum benchmark totals was verified to be

very close (though not exact) to the values in N̂B. However, the average of
∑

g N̂Bg(r)

exceeded N for our study. Therefore, by our discussion of Figure 5.1, we expect and

see in Table 5.1 that RelBias(ˆ̄yP ) < RelBias(t̂yP ) due to the overestimation of N

by N̂B.

5.5.4 Comparison of Variance Estimators

Having addressed the relative bias of the point estimators, we next compare

the relative biases for our variance estimators. The percent biases relative to the em-

pirical MSE for the variance of the estimated means range between -8 percent and

just over 3 percent across the simulation parameters with most values falling below

the desired zero percent level. This range is much smaller than the range calculated

168



for the estimated totals, i.e., -56 percent to roughly zero percent, and is associated

with the contribution of the benchmark controls to the estimated variances. As

discussed for expression (5.20), a large, positive covariance between the numerator

and denominator of the estimated mean (i.e., Ȳ′
AVB1G) relative to a function of

the numerator variance (i.e., ȳP1′GVB1G/2) will reduce the influence of the bench-

mark covariance matrix on the overall variance. In our simulation population, the

covariance is 1.10 and 1.00 times as large as the variance term for NOTCOV and

PDMED12M, respectively. Averaged across the simulation samples, the relative

increase in size of the covariance is 1.08 for NOTCOV and 0.98 for PDMED12M.

The pattern of bias across the sizes of the benchmark and analytic surveys

for the estimated means also differs from the total estimates shown in, for example,

Figure 4.1. Figure 5.2 displays the estimated percent relative bias of the five variance

estimators (y axis) in estimating the MSE of our two outcome variables (NOTCOV

and PDMED12M) by the relative size (nB/nA) of the benchmark survey to the

analytic survey of size nA = 1, 000 (x axis). The horizontal line represents zero

bias. The vertical line represents studies for which the analytic and benchmark

surveys are equal in size as well as a relatively equal-sized contribution to the overall

variance. The relative biases for the ECTS, ECF2m, and ECMV variance estimators

for estimated totals were similar — see Figure (4.1). In this chapter, however, there

is a slight visual distinction between their values due to the smaller scale of the y

axis.

For both outcome variables, the traditional poststratified variance estimator

(Näıve) is most negatively biased as noted in our theoretical examination. This
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(a) Average Number Not Covered by Health Insurance in
Last 12 Months (NOTCOV)
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(b) Average Number Delayed Medical Care Due to Cost in
Last 12 Months (PDMED12M)

Figure 5.2: Percent Bias Relative to Empirical MSE of Five Variance Estimators by
Relative Size of the Benchmark Survey to the Analytic Survey for 1,000 Analytic
Survey Units
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holds for the four relative survey sizes included in our study. The relative bias

for NOTCOV shown in Figure 5.2(a) is smallest when the benchmark survey is

approximately six times larger than the analytic survey. As the relative benchmark

size decreases, the negative bias falls below 6 percent. This is a stark contrast

to the EC variance estimators presented here, as well as, the relative bias of -50

percent calculated for the estimated total. A similar interpretation can be used for

PDMED12M in Figure 5.2(b).

A comparison of the biases for the EC variance estimators shows similar pat-

terns within the relative sizes of the surveys for both outcome variables. When the

relative size of the benchmark survey is greater than the analytic survey (right of

the vertical line), the empirical EC variance estimates are all too small but only by

levels as much as 5 percent for NOTCOV and 3 percent for PDMED12M. Once the

benchmark size drops below 1,000, the EC variance estimators become conserva-

tive and overestimate the NOTCOV population parameter by less than 2.5 percent.

Underestimation by as much as 2 percent is seen with the PDMED12M variance

estimates (Figure 5.2(b)). We believe that these levels of negative bias would likely

disappear with a larger analytic survey sample size. The dramatic change in the bi-

ases from nB/nA = 1.2 to nB/nA = 0.3 suggests that additional research is needed

to determine a threshold for when a benchmark adjustment will result in overly

conservative variance estimates. We also note that the relative biases for the ECTS

are slightly lower than the other EC variance estimators. This is attributed to

linearization variance estimators producing, in general, more stable estimates than

replication variance estimators (Krewski & Rao, 1981).
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Table 5.2: Percent Bias Estimates Relative to Empirical MSE for Five Variance
Estimators by Mean Outcome Variable and Relative Size of the Benchmark Survey
to the Analytic Survey

Relative Size Relative Size

Outcome Variance nB/(nA = 1, 000) nB/(nA = 2, 000)

Variable Estimator 0.3 1.2 6.0 21.7 0.2 0.6 3.0 10.8

NOTCOV Näıve -6.1 -4.4 -3.9 -5.3 -7.9 -5.1 -4.5 -5.6

ECTS 1.8 -2.1 -3.1 -4.8 2.3 -2.1 -3.4 -4.9

ECF2m 2.4 -1.8 -2.8 -4.5 3.1 -1.9 -3.3 -4.7

ECMV 2.2 -1.7 -2.9 -4.5 2.5 -2.0 -3.4 -4.7

ECNJCm 1.0 -2.2 -2.9 -4.5 0.3 -2.4 -3.5 -4.8

PDMED12M Näıve -5.0 -3.8 -3.2 -2.8 -7.6 -7.1 -6.0 -7.8

ECTS -1.9 -2.5 -2.3 -2.0 -3.4 -5.1 -4.5 -6.5

ECF2m -1.4 -2.1 -2.0 -1.6 -3.0 -5.0 -4.4 -6.3

ECMV -1.7 -2.1 -2.0 -1.7 -3.1 -5.1 -4.4 -6.3

ECNJCm -0.5 -1.8 -1.9 -1.7 -1.9 -4.6 -4.4 -6.3

The summary measures used to produce Figure 5.2 are contained in the first

set of four columns of Table 5.2, i.e., columns associated with nA = 1, 000. The

second set of columns within this table contains the percent relative biases of the

outcome variables for an analytic survey of size nA = 2, 000. Many of the same

conclusions derived for the nA = 1, 000 estimates can be repeated for the estimates

derived under nA = 2, 000.

Overall we can see that there are no striking differences in the EC relative

biases for all conditions unlike the comparisons made for the estimated totals in

Chapter 4. The contrast between the percent relative bias for estimated totals and

means within each method is most noticeable with the ECNJCm. The ECNJCm

values follow closely with the Näıve estimator in Figure 4.1, though levels of bias
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are much less. The ECNJCm values in Figure 5.2 and Table 5.2, however, are closer

in value to the other EC variance estimators. This suggests that when a complete

benchmark covariance matrix is not available, estimated (ratio) means may be less

biased than the corresponding totals used in the numerator of the ratio. Additional

theory is needed, however, to generalize this finding.

We additionally examine the percent bias relative to the empirical variance to

determine if the empirical bias is affecting our results. Overall, the percent relative

biases were improved by no more than 1.4 percentage points. We have chosen to

suppress this tabular information because of the similarities with estimates provided

in Table 5.2.

The next criterion used to compare the variance estimators is the empirical

coverage rates for the 95 percent confidence interval (CI) associated with the two

outcome variables. Coverage rates for the estimated means under all simulation

conditions were fairly stable and near the desired level of 95 percent. We additionally

do not detect a linear trend with the increasing size of the benchmark survey. Hence,

we show only the minimum, maximum, and range of the coverage rates in Table 5.3

by outcome variable, variance estimator, and relative size of the benchmark and

analytic surveys. The minimum coverage rate across the values in the table rests

with the Näıve variance estimator though the differences are not excessive.

Because of the visual uniformity of the results in Table 5.3, we ran a linear

regression to determine the correlates of CI coverage rates. The covariates included

simulation results
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Table 5.3: Minimum, Maximum, and Range of Empirical 95 Percent Coverage Rates
for Five Variance Estimators Across Relative Size of the Benchmark Survey to the
Analytic Survey by Mean Outcome Variable

nA = 1, 000 nA = 2, 000

Outcome Variance 95 Pct Coverage 95 Pct Coverage

Variable Estimator Min Max Range Min Max Range

NOTCOV Näıve 93.6 94.2 0.6 92.8 94.0 1.2

ECTS 93.8 95.0 1.2 93.8 94.3 0.6

ECF2m 93.8 94.9 1.1 93.7 94.2 0.5

ECMV 93.8 94.8 0.9 93.7 94.2 0.5

ECNJCm 93.9 94.9 1.0 93.5 94.0 0.5

PDMED12M Näıve 94.0 94.3 0.3 93.8 94.8 1.1

ECTS 94.3 94.6 0.2 94.2 95.0 0.8

ECF2m 94.4 94.9 0.5 94.2 95.0 0.7

ECMV 94.3 94.7 0.3 94.3 94.8 0.5

ECNJCm 94.3 94.8 0.5 94.2 94.8 0.6

• the relative bias of the point estimates (Table 5.1),

• the relative bias of the variance estimators (Table 5.2), and

• the calculated bias ratio,

and simulation conditions

• outcome variable (NOTCOV and PDMED12M),

• size of the analytic survey (1,000 and 2,000),

• the relative size of the benchmark survey (four sizes), and

• variance estimator (Näıve, ECTS, ECF2m, ECMV, and ECNJCm).

Särndal et al. (1992, Section 5.2) define the bias ratio of an estimator θ̂, BR(θ̂), as

the bias, E(θ̂) − θ), divided by the root population sampling variance,

√
V ar(θ̂).
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Table 5.4: Minimum, Maximum, and Range of Empirical 95 Percent Coverage Rates
for Five Variance Estimators Across Relative Size of the Benchmark Survey to the
Analytic Survey by Total of Outcome Variable

nA = 1, 000 nA = 2, 000

Outcome Variance 95 Pct Coverage 95 Pct Coverage

Variable Estimator Min Max Range Min Max Range

NOTCOV Näıve 83.5 93.7 10.1 81.2 93.4 12.2

ECTS 94.0 95.6 1.6 93.7 95.7 2.0

ECF2m 93.9 95.1 1.2 93.5 95.5 2.0

ECMV 94.0 95.1 1.1 93.6 95.5 2.0

ECNJCm 88.6 94.0 5.4 87.8 93.6 5.8

PDMED12M Näıve 88.8 94.4 5.5 84.8 94.2 9.4

ECTS 94.5 94.8 0.3 94.1 95.4 1.2

ECF2m 94.5 94.8 0.4 94.1 95.2 1.2

ECMV 94.4 95.0 0.6 94.0 94.8 0.9

ECNJCm 91.1 94.5 3.5 89.0 94.4 5.4

This bias ratio affects the desired CI coverage rates through the formula P (|Z +

BR(θ̂)| ≤ z1−α/2) for Z = [θ̂ − E(θ̂)]/

√
V ar(θ̂). Bias ratios larger than one can

either reduce or increase the coverage rates, depending on the positive or negative

bias term, while small bias ratios have minimal effects on the rates. Among the

model covariates included in the linear model (R2 = 0.78), only the relative size of

the benchmark survey and the variance estimator were not significantly associated

with the confidence interval coverage rates. The remaining covariates were highly

significant at levels less than 0.001.

In comparison to these fairly stable rates, the range of the 95 percent confidence

coverage rates is wider in general for the estimated totals (Table 5.4). The increased

range in the coverage rates is especially noticeable for the Näıve and ECNJCm
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Table 5.5: Percent Increase in Instability of Variance Estimates Relative to EC Lin-
earization Estimator (ECTS) by Outcome Variable and Relative Size of the Bench-
mark Survey

Relative Size Relative Size

Outcome Variance nB/(nA = 1, 000) nB/(nA = 2, 000)

Variable Estimator 0.3 1.2 6.0 21.7 0.2 0.6 3.0 10.8

NOTCOV Näıve 3.9 1.0 0.4 0.3 4.6 1.5 0.5 0.4

ECF2m 2.9 0.9 0.5 0.0 3.8 1.3 0.2 0.2

ECMV 3.5 1.2 0.6 0.0 3.6 0.9 0.3 0.4

ECNJCm 3.2 0.7 0.4 0.1 3.2 1.1 0.3 0.3

PDMED12M Näıve 0.8 0.5 0.3 0.3 1.6 0.9 0.7 0.6

ECF2m 1.5 0.7 0.3 0.2 1.7 0.6 0.6 0.5

ECMV 1.4 0.5 0.2 0.2 1.7 0.6 0.6 0.5

ECNJCm 1.3 0.5 0.4 0.2 1.9 0.7 0.6 0.5

variance estimators. We ran the same linear regression specified above to determine

the correlates of the coverage rates for estimated total. For this linear model (R2 =

0.96), size of the analytic survey, outcome variable, and type of variance estimator

was not significantly associated with the coverage rates. It is interesting to note

that unlike the regression model for the estimated ratio-means, the relative size of

the benchmark survey was highly significant.

The discussion so far suggests that there are minimal theoretical, as well as

empirical, differences between the ECTS, ECF2m, and ECMV methods. A com-

parison of the variation in the variance estimates suggests that the ECTS variance

estimator is most stable among those examined though the relative increase for the

other estimators was less than five percent (Table 5.5). This corresponds with the

theoretical discussion given in Krewski & Rao (1981). The difference in the stability

of the ECF2 and ECMV methods is less noticeable with estimated means than with
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Table 5.6: Percentage Point Reduction in Bias Relative to Empirical MSE At-
tributed to Coverage Error Variance Averaged over ECF2 and ECNJC Variance
Estimators and Size of Benchmark Survey, by Type of Point Estimator and Size of
the Analytic Survey

Point Outcome Analytic Survey Size

Estimator Variable nA = 1,000 nA = 2,000

ˆ̄yP NOTCOV -0.41 -0.55

PDMED12M -0.73 -1.28

t̂yP NOTCOV -0.34 -0.45

PDMED12M -0.64 -1.08

the estimated totals displayed in Table 4.6.

Our final analysis involves an examination of the undercoverage error variance

component introduced into the original formulae for the Fuller and Nadimpalli-

Judkins-Chu jackknife variance estimators. Table 5.6 shows the percentage point

reduction in the bias of the variance estimates relative to the empirical variance by

including an undercoverage error component. The values are averaged across bench-

mark survey size and EC variance estimator due to the similarities in the results. On

average, the relative percent bias is reduced between 0.4 and 1.3 percentage points

with the larger reductions occurring as the analytic survey sample size increases.

This pattern is also seen for the estimated totals (t̂yP ) shown in the second half of

Table 5.6; however, the percentage point decrease in bias is slightly higher for the

ratio mean (ˆ̄yP ). Additionally, the increase in the 95 percent coverage rates associ-

ated with the coverage error component is less then 0.4 percentage points for both

methods. This suggests that an undercoverage error adjustment is useful for the
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variance estimator. However, as discussed in Chapter 4, further research is needed

in an attempt to develop a more effective coverage error variance component.

5.6 Summary of Research Findings

Many of the same conclusions noted for EC-calibrated totals in Section 4.6 are

echoed for the ratio of two EC-calibrated totals. The traditional GREG variance

estimators can underestimate the population sampling variance though our empirical

results suggest that the severity is less with ratio-mean estimators. The level of

underestimation is related to the precision of the benchmark control totals. The

original and modified ECNJC methods can also produce estimates that are too

small if the missing population covariance values are negative. Our simulation study

suggests that the bias in the ECNJCm variance estimates is less pronounced with

the ratio means than with totals though additional theory is needed to support this

claim.

Our recommendation therefore points to the remaining EC calibration variance

estimators; a specific recommendation is less clear cut in this chapter in contrast

with Chapter 4. Theoretically, the newly developed linearization variance estimator

(ECTS), the modified Fuller two-phase jackknife estimator (ECF2m), and the mul-

tivariate normal jackknife estimator (ECMV) are asymptotically equivalent. The

empirical results suggest that the differences among the three methods in prac-

tice are negligible. Choosing between the ECTS and one of the jackknife replication

methods must be based on the type of analysis or public-use file desired for the study.
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Relevant steps and computer code are provided for the ECF2m and ECMV meth-

ods to facilitate their implementation. As mentioned previously, additional work

is required to improve the variance component associated with any (non-random)

undercoverage in the analytic survey sampling frame.
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Chapter 6

Domain Estimation

6.1 Introduction

Domain (or subpopulation) estimation is an integral part of the design and

analysis phases of the survey. As discussed in Chapter 2, calibration domain point

and variance estimators have been studied but the literature currently does not ex-

tend to estimated-control (EC) calibration. Research on EC calibration for domain

totals and ratio-means begins with our work presented in this chapter. Here we

assume that the domain of interest is large enough to allow direct estimation in-

stead of additionally addressing situations when small area estimation techniques

are required.

The research presented in the next sections relies heavily on the theoretical

work presented in Chapters 4 and 5. We reference certain formulae from these

chapters and discuss the modifications required for domain estimation, instead of

presenting similar results. When appropriate, we detail issues with EC calibration

that are specific to domain estimation. However, explicit formulae for domain point

estimators are described to maximize clarity.

Our research on EC calibration for totals and ratio-means within sizeable do-
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mains is presented in the next sections. We detail the formulae and design bias for

the new generalized regression (EC-GREG) and poststratified (EC-PSGR) estima-

tors of totals within a domain in Section 6.2. The ratio of two EC-GREG totals and

of two EC-PSGR totals within a domain (domain ratio-mean estimators) is similarly

defined and evaluated in Section 6.3. This section additionally contains a compar-

ison of bias levels for overall and domain-specific total and ratio-mean estimators.

As in Chapter 5, the mean of an outcome within a domain is the ratio of partic-

ular interest. Our findings, however, generalize to the ratio of any two calibrated

domain-specific totals. We evaluate the set of variance estimators identified for our

research in two sections — variance estimation for domain totals in Section 6.4, and

for ratio-means in Section 6.5. Comparisons are made between the variance estima-

tors for domain and overall units to suggest under what conditions EC calibration

may have a stronger influence. We present empirical domain-estimator results from

a simulation study in Section 6.6. The findings, both theoretical and empirical, are

summarized in the final section (Section 6.7).

6.2 Estimation of Domain Totals

The general label estimators for domain totals includes the population do-

main size, as well as the total number of population units within a domain with

a characteristic (outcome) of interest. The formulae for the EC-GREG and EC-

PSGR estimators are expressed in terms of an outcome variable in Section 6.2.1.

The design-based bias of these estimators follows in Section 6.2.2.
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6.2.1 Calibration Estimators

The EC-GREG estimated population total for domain d is calculated as fol-

lows:

t̂ydR = t̂Ayd +
(
t̂Bx − t̂Ax

)′
B̂Ad

=
H∑

h=1

mAh∑
i=1

nAhi∑

k=1


1 +

(
t̂Bx − t̂Ax

)′
(

H∑

h=1

mAh∑
i=1

nAhi∑

l=1

π−1
hilxhilx

′
hil

)−1

xhik


 π−1

hikydhik

=
H∑

h=1

mAh∑
i=1

nAhi∑

k=1

ahikπ
−1
hikδdhikyhik (6.1)

where t̂Ayd =
∑

hik∈sA
π−1

hikydhik, the pwr total estimator of y for domain d using the

analytic survey design with ydhik = δdhikyhik; ahik = 1 +
(
t̂Bx − t̂Ax

)′ (∑
hil∈sA

π−1
hil×

xhilx
′
hil)

−1 xhik, the calibration adjustment factor also used in the overall estimated

total t̂yR (4.1); and, δdhik = 1 if unit k in PSU i within stratum h is a member of do-

main d (δdhik = 0 otherwise). Under the regression model approach, this calibration

estimator is generated through an assisting model specified by Eε(ydhik) = x′kBd and

V arε(yk) = σ2, where Eε and V arε represent the expectation and variance evaluated

with respect to the model; and

Bd =

[ ∑

hil∈U

xhilx
′
hil

]−1 ∑

hik∈U

xhikδdhikyhik. (6.2)

Särndal et al. (1992, Section 10.6) refer to this assisting model as a separate ratio

model because the slope coefficients are defined within and not across the domains.

The vector of sample coefficients for the working domain-specific model in (6.1) is
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defined as:

B̂Ad =

[
H∑

h=1

mAh∑
i=1

nAhi∑

l=1

π−1
hilxhilx

′
hil

]−1 H∑

h=1

mAh∑
i=1

nAhi∑

k=1

π−1
hikxhikδdhikyhik. (6.3)

The G-length vectors t̂Bx =
∑

l∈sB
wlxl and t̂Ax =

∑
hik∈sA

π−1
hikxhik in (6.1) contain

estimates of the auxiliary variable totals from the complete benchmark and analytic

samples, respectively. These estimators are also used in the EC-GREG estimator of

the overall population total of y, t̂yR defined in expression (4.1). We could have used

t̂Bxd =
∑

l∈sB
wlδdlxl and t̂Axd =

∑
hik∈sA

π−1
hikδdhikxhik to form a domain-specific

calibration adjustment factor. However, this would violate our requirement of one

set of analysis weights because such an adjustment would need to be produced for

each analysis domain — see Section 2.4 for a more detailed discussion. Note that

the only difference between t̂yR (4.1) and t̂ydR (6.1) is that δdhikyhik is used in place

of yhik for domain estimation. This modification to previously presented formulae

is seen throughout this chapter.

The estimated domain total under EC poststratification, a specialized EC-

GREG estimator, is a function of two indicator variables: δghik = 1 if the (hik)th

unit is in poststratum g (zero otherwise), and δdhik described for t̂ydR (6.1). The
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estimated total is calculated as follows:

t̂ydP = N̂′
BN̂−1

A t̂Ayd = N̂B
ˆ̄YAd

=
G∑

g=1

N̂BgN̂
−1
Ag t̂Aydg

=
H∑

h=1

mAh∑
i=1

nAhi∑

k=1

[
G∑

g=1

N̂BgN̂
−1
Ag δghik

]
π−1

hikδdhikyhik

=
H∑

h=1

mAh∑
i=1

nAhi∑

k=1

G∑
g=1

ahikπ
−1
hikδdhikyhik (6.4)

where N̂′
B =

[
N̂B1, ..., N̂BG

]
, the vector of EC-PSGR benchmark controls with

N̂Bg =
∑

l∈sB
wlδgl and δgl, the poststratum-indicator variable for the benchmark

survey; N̂A is a diagonal matrix of G poststratum counts estimated from the analytic

survey data with elements N̂Ag =
∑

hik∈sA
π−1

hikδghik; t̂Ayd =
[
t̂Ayd1, ..., t̂AydG

]′
, the

vector of analytic survey estimated population totals for variable y within domain

d and poststratum g such that t̂Aydg =
∑

hik∈sA
π−1

hikδghikδdhikyhik;
ˆ̄YAd = N̂−1

A t̂Ayd =

[
ˆ̄yAd1, ..., ˆ̄yAdG

]′
, the vector of estimated coefficients under the group-mean assisting

model specified by Eε(ydhik) = ȳAdg and V arε(yk) = σ2 with ˆ̄yAdg = t̂Aydg/N̂Ag;

ȳAdg = tAydg/NAg with tAydg =
∑

hik∈U δghikδdhikyhik and NAg =
∑

hik∈U δghik; and

ahik =
∑G

g=1 N̂BgN̂
−1
Ag δghik = N̂BgN̂

−1
Ag , the calibration adjustment factor. Note that

ahik specified in (6.4) is the same as defined for the overall EC-PSGR estimator of a

total, t̂yP given in expression (4.3), and is neither a function of the outcome variable

y nor the domain indicator δdhik.
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6.2.2 Bias of the Estimators

The design-based bias is a function of the expected value of an estimator and

the population parameter being estimated. The population domain total is denoted

as

tyd =
∑

k∈U

δdkyk.

Because t̂ydR (6.1) is a nonlinear function of sample estimators, we evaluate the

expectation of the linearized expression through a first-order Taylor series approxi-

mation:

t̂ydR = t̂Ayd + (t̂Bx − t̂Ax)
′B̂Ad

∼= tydR +
(
t̂Ayd − tAyd

)
+ B′

Ad

(
t̂Bx − tBx

)

− B′
Ad

(
t̂Ax − tAx

)
+ (tBx − tAx)

′
(
B̂Ad −BAd

)

= tydR + max {OP (M/
√

mAd) , OP (M/
√

mB)} . (6.5)

where mAd denotes the number of analytic survey PSUs containing at least one

element of the domain from a total of MAd domain PSUs on the analytic survey

sampling frame. The complete population contains Md domain PSUs where MAd ≤

Md by definition. For this first-order approximation, we assume the population

parameters tydR = tAyd + (tBx − tAx)
′BAd, tBx, and tAx are all O (M) where M is

the total number of PSUs in the complete population; BAd = O (1);
(
t̂Ayd − tAyd

)
=

OP

(
Md/

√
mAd

)
;
(
t̂Bx − tBx

)
= OP

(
M/

√
mB

)
;
(
t̂Ax − tAx

)
= OP

(
M/

√
mA

)
; and

(
B̂Ad −BAd

)
= OP

(
m
−1/2
Ad

)
. Note that the OP

(
M/

√
mAd

)
term dominates both
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the OP

(
M/

√
mA

)
and OP

(
Md/

√
mAd

)
terms in (6.5) because we assume that the

domain is a subset of the analytic survey sample and complete population, i.e.,

mA ≥ mAd and M ≥ Md. Therefore,

E
(
t̂ydR

)
= tydR + max {O (M/

√
mAd) , O (M/

√
mB)}

∼= tydR. (6.6)

Following the approach used for E
(
B̂A

)
in (4.5), the expectation of the model

coefficient vector evaluates to

E(B̂Ad) = EcA

[
EA

(
B̂Ad|cA

)]

∼=
[

H∑

h=1

Mh∑
i=1

Nhi∑

l=1

EcA
(CAhil)xhilx

′
hil

]−1

×
∑

h

Mh∑
i=1

Nhi∑

k=1

EcA
(CAhik)xhikδdhikyhik

=

[ ∑

hil∈U

φAhilxhilx
′
hil

]−1 ∑

hik∈U

φAhikxhikδdhikyhik ≡ BAd (6.7)

where CAhik = 1 indicates that the kth population unit (k ∈ U) is listed on the

analytic sampling frame (zero otherwise) with EcA
(CAhik) = φAhik. Note that the

subscript Ad above identifies the population model-coefficient vector associated with

the domain-specific subset of the population covered by the analytic survey sampling

frame, i.e., UAd. As discussed in Section 3.5, UAd and mAd are assumed to be of suffi-

cient size for direct estimation. This implies that the coverage mechanism is not sys-

tematic and therefore, does not exclude all units within the domain of interest. Using
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the method shown in (6.7), E
(
t̂Ayd

)
= EcA

[
EA

(
t̂Ayd|cA

)]∼= ∑
hik∈U φAhikyhik ≡ tAyd

and E(t̂Ax) = EcA

[
EA

(
t̂Ax|cA

)] ∼= ∑
hik∈U φAhikxhik ≡ tAx. The expectation of the

benchmark control total vector equates to tBx =
∑

l∈U φBlxl where CBl = 1 identifies

the population units listed on the benchmark survey frame such that E(CBl) = φBl

(zero otherwise).

Using E
(
t̂ydR

)
in expression (6.6) and following the steps shown for Bias(t̂yR)

in (4.7), the design-based bias for t̂ydR is defined as follows:

Bias
(
t̂ydR

) ∼= NCAEφd −N(1− φ̄A)Ēd + (tBx − tAx)
′ (BAd −Bd)

+ (tBx − tx)
′Bd (6.8)

where Edhik = δdhikyhik − x′hikBd, the population-level assisting model residual for

domain d; φ̄A is the coverage rate for the analytic survey sampling frame; and

CAEφd =
∑

hik∈U

(
Edhik − Ēd

) (
φAhik − φ̄A

)
/N , the covariance between the coverage

rates and the domain assisting-model residuals.

The four bias components in (6.8) each can be eliminated under the following

conditions. (i) If the auxiliary variables (xhik) are correlated with y in domain

d and with the coverage mechanism, and the working model is sufficiently close

to the domain-specific population assisting model, then the random variation left

unexplained by the model (in theory) should be uncorrelated with the coverage

propensities, i.e., CAEφd
∼= 0. Under this scenario, the first bias component NCAEφd

is approximately zero. (ii) If the design matrix contains a column of ones (intercept)

so that the overall estimated population size is included as an auxiliary variable,
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then by definition Ēd = 0 and the second bias component is eliminated. (iii) If

the coverage mechanism is such that it does not negatively affect the population

model-coefficient vector within the domain, then BAd
∼= Bd and the third term is at

least approximately zero. (iv) Finally, if tBx = tx, as with traditional calibration,

the last component is zero. Therefore, the estimator t̂ydR will be asymptotically

design unbiased only if all these conditions are satisfied. This occurrence is unlikely

especially when examining multiple domains.

The bias for the corresponding EC-PSGR estimator of a domain total, t̂ydP

defined in (6.4), follows the development of Bias
(
t̂yP

)
discussed in (4.8) and is

specified as follows:

Bias
(
t̂ydP

) ∼=
G∑

g=1

{
tydg

(
NBg

Ng

− 1

)
+ NBgCAyφdg

1

φ̄Ag

}
(6.9)

where Ng is the complete population size within poststratum g; NAg and NBg are

the poststratum sizes for the populations defined by the analytic and benchmark

sampling frames; CAyφdg = N−1
g

∑
hik∈Ug

(δdhikyhik − ȳdg)
(
φAhik − φ̄Ag

)
, the popu-

lation covariance between the outcome variable within domain d and the coverage

rates within poststratum g; ȳdg = tydg/Ng, the gth poststratum mean of y in domain

d; and φ̄Ag = NAg/Ng, the average coverage rate within the poststratum under the

analytic survey design. If the benchmark survey does not cover the target popula-

tion correctly, so that NBg 6= Ng, then the first bias component, tydg(NBg/Ng − 1),

will be either positive (overestimate) or negative (underestimate) depending on the

magnitude of the bias. This component will be strictly negative if the benchmark
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survey suffers undercoverage, and can accumulate across the poststrata to a sizeable

negative bias depending on the magnitude of the outcome variable. Otherwise, this

component is zero because the benchmark survey covers the population of interest.

The second component may be negative if large y values within the domain are more

likely to be excluded from a sampling frame. If, however, the coverage rates are the

same within poststratum (i.e., φAhik = φ̄Ag for all units in poststratum g), then the

second bias component is zero. As discussed for Bias
(
t̂yP

)
in (4.8), the conditions

under which both components are zero are unlikely to occur.

6.3 Estimation of Domain Means

Functions of domain totals are also important to survey data analysis. In this

section, we provide an equation to estimate the ratio of two EC-GREG domain

totals, focusing specifically on the mean of an outcome variable within a domain of

interest (Section 6.3.1). This general formula is also expressed in terms of EC post-

stratification. The design-based bias, as with the formulae for the point estimators,

is a function of the domain total biases and is shown in Section 6.3.2.

6.3.1 Calibration Estimators

The estimated totals presented earlier in the chapter are used in this section

to generate estimates for the population mean of y within domain d. We again

focus on the Hájek estimator of the population mean within the domain instead of

assuming that the population domain size, needed for the denominator, is known.
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The Hájek EC-GREG ratio-mean of y in domain d is calculated as follows:

ˆ̄ydR =
t̂ydR

N̂dR

(6.10)

for t̂ydR defined in expression (6.1), and

N̂dR =
H∑

h=1

mAh∑
i=1

nAhi∑

k=1

ahikπ
−1
hikδdhik

= N̂Ad +
(
t̂Bx − t̂Ax

)′
B̂ANd (6.11)

with N̂Ad =
∑

hik∈sA
π−1

hikδdhik, the pwr domain population size estimated from the

analytic survey; and ahik is defined for t̂ydR. The vector of model coefficients, defined

for the denominator estimator of the population domain size, is specified as

B̂ANd =

[
H∑

h=1

mAh∑
i=1

nAhi∑

l=1

π−1
hilxhilx

′
hil

]−1

t̂Axd (6.12)

with t̂Axd =
∑

hik∈sA
π−1

hikxhikδdhik. Note that the formula associated with N̂dR is

based on the expression specified for t̂ydR with yhik = 1.

The Hájek EC-PSGR estimated population mean is expressed as

ˆ̄ydP =
t̂ydP

N̂dP

(6.13)

where the formula for t̂ydP = N̂BN̂−1
A ŷAyd ≡ N̂B

ˆ̄YAd derived in (6.4). We note

in expression (5.5) that the estimated population count used in the denominator

of ˆ̄yP reduces to the sum of the estimated benchmark control totals, i.e., N̂P ≡
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N̂B. However, the simplification does not occur with domain estimation. The

denominator in (6.13) is defined as

N̂dP =
G∑

g=1

H∑

h=1

mAh∑
i=1

nAhi∑

k=1

(
N̂Bg

N̂Ag

)
δghikπ

−1
hikδdhik

=
G∑

g=1

(
N̂Bg

N̂Ag

)
N̂Adg

≡ N̂BN̂−1
A N̂Ad

≡ N̂B
ˆ̄YANd (6.14)

where N̂Ad =
[
N̂Ad1, ..., N̂AdG

]′
, a G-length vector of domain population totals by

poststratum estimated from the analytic survey such that N̂Adg =
∑

hik∈sA
δghikπ

−1
hik×

δdhik; and ˆ̄YANd = N̂−1
A N̂Ad, the estimated proportion of domain units within each

of the poststrata. The remaining terms are defined following the expression for t̂ydP

(6.4).

6.3.2 Bias of the Estimators

Ratio estimators are approximately unbiased only if all components are ap-

proximately unbiased. We note in Section 5.3 that the bias of the overall ratio

estimator is small in general. The same holds true for a domain ratio estimator

with a sufficient number of domain PSUs (i.e., the PSU contains at least one mem-

ber of the domain). However, convergence to the population domain parameter is

slower because the number of degrees of freedom is reduced. The domain population

ratio-mean, the parameter of interest for the Hájek estimators given in the previous
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section, is defined as:

ȳd =
tyd

Nd

=

∑
k∈U δdkyk∑

k∈U δdk

.

The bias of the non-linear EC-GREG domain ratio-mean ˆ̄ydR (6.10) is approximated

using a first-order Taylor linearization:

Bias (ȳdR) = E (ȳdR)− ȳd

∼= E

[
1

Nd

(
t̂ydR − tyd

)− ȳd

Nd

(
N̂dR −Nd

)]

=
1

Nd

[
Bias

(
t̂ydR

)− ȳdBias
(
N̂dR

)]
. (6.15)

The estimator ȳdR is approximately unbiased only if both bias components are ap-

proximately zero. The numerator bias, Bias
(
t̂ydR

)
, is specified in expression (6.8)

followed by the conditions under which this bias is negligible. The denominator

bias, Bias
(
N̂dR

)
, is expressed in the same form as

Bias
(
N̂dR

) ∼= NCANEφd −N(1− φ̄A)ĒNd + (tBx − tAx)
′ (BANd −BNd)

+ (tBx − tx)
′BNd (6.16)

where ENdhik = δdhik−x′hikBNd, the population residual for domain d under the as-

sisting model specified for the domain estimator with BNd =
[∑

hil∈U xhilx
′
hil

]−1×
∑

hik∈U xhikδdhik; φ̄A is the coverage rate for the analytic survey sampling frame;

CAENφd =
∑

hik∈U

(
ENdhik − ĒNd

) (
φAhik − φ̄A

)
/N , the covariance between the cov-

erage rates and the assisting model residuals for the domain estimator in the denom-

192



inator of ȳdR; BANd =
[∑

hil∈U φAhilxhilx
′
hil

]−1 ∑
hik∈U φAhikxhikδdhik

∼= E
(
B̂ANd

)
;

and E
(
N̂dR

) ∼= NdR + max
{
OP

(
M/

√
mAd

)
, OP

(
M/

√
mB

)}
with NdR = NAd +

(
t̂Bx − t̂Ax

)′
BANd. Similar conditions noted for Bias

(
t̂ydR

)
will result in low lev-

els of Bias
(
N̂dR

)
, such as no association between the auxiliary variables and the

coverage probabilities within domain d.

The bias for the EC poststratified domain ratio-mean, ˆ̄ydP (6.13), follows this

same pattern:

Bias (ȳdP ) ∼= 1

Nd

[
Bias

(
t̂ydP

)− ȳdBias
(
N̂dP

)]
(6.17)

where Bias
(
t̂ydP

)
is given in expression (6.9). This formula is also used for N̂dP

with yhik = 1 resulting in

Bias
(
N̂dP

) ∼=
G∑

g=1

{
Ndg

(
NBg

Ng

− 1

)
+ NBgCAφdg

1

φ̄Ag

}
(6.18)

where CAφdg =
∑

hik∈Ug

(
δdhik − d̄g

) (
φAhik − φ̄Ag

)
/Ng, the covariance between the

domain indicators and the coverage propensities in poststratum g, and d̄g = Ndg/Ng,

the proportion of population domain members in poststratum g. The remaining

terms are the same as specified for Bias
(
t̂ydP

)
. Substituting the formulae for

Bias
(
t̂ydP

)
and Bias

(
N̂dP

)
into (6.17) gives the complete expression for the bias
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of ȳdP :

Bias (ȳdP ) ∼= 1

Nd

G∑
g=1

[
Ndg (ȳdg − ȳd)

(
NBg

Ng

− 1

)]

+
1

Nd

G∑
g=1


NBg

∑

hik∈Ug


δdhik (yhik − ȳd)− 1

Ng

∑

hik∈Ug

δdhik (yhik − ȳd)




× (
φAhik − φ̄Ag

)
/Ng

1

φ̄Ag

]
(6.19)

where ȳdg = tydg/Ndg with tydg =
∑

hik∈U δghikδdhikyhik and Ndg =
∑

hik∈U δghikδdhik.

The first bias component is zero if the benchmark survey sampling frame covers

the population within poststratum g and the poststratum total is calculated using

an unbiased estimator, i.e., NBg ≡ Ng. If the benchmark frame does not cover the

poststratum population, then the bias component is positive or negative depending

on the deviation between the poststratum and overall domain means. The second

bias component is zero if the poststrata are formed so that the coverage propensities

are the same for the domain members, i.e., φAhikδdhik = φ̄Ag. This is a stronger

condition than specified for the bias of the overall ratio-mean in (5.10).

6.4 Variance Estimation for Domain Totals

Having addressed bias in the EC-GREG estimators of a population domain

total in Section 6.2, we next examine the properties of the associated variance esti-

mators. We begin by specifying the approximate population sampling variance and

compare this expression against the expectation of the sample variance estimators

identified for our research.
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6.4.1 Population Sampling Variance

The unconditional population sampling variance for the EC-GREG estimator

of a population total within domain d is evaluated with respect to the analytic

and benchmark survey designs (A and B subscripts) and the analytic survey frame

coverage mechanism (subscript cA) through the following derivation:

AV
(
t̂ydR

)
= EB

[
EcA

{
AVA

(
t̂ydR|cA, B

) |B}]

+ EB

[
AVcA

{
EA

(
t̂ydR|cA, B

) |B}]

+ AVB

[
EcA

{
EA

(
t̂ydR|cA, B

) |B}]

≡ AV
(
t̂ydGREG

)

+
H∑

h=1

Mh∑
i=1

Nhi∑

k=1

φAhik (1− φAhik) E2
Adhik

+ B′
Ad VB BAd. (6.20)

This expression is obtained by applying the methods used for AV
(
t̂yR

)
in Section

4.4 and substituting yhik with δdhikyhik, BA with BAd specified in (6.7), and EAhik

with EAdhik = δdhikyhik−x′hikBAd. The first component in (6.20) is the approximate

population sampling variance for the domain total under the traditional calibration

assumptions with order O(M2/mAd); the explicit formula is derived by substituting

EAdhik for EAhik in (4.14). The second component addresses the coverage error in

the analytic survey specific to the set of domain population units and is O(M). The

final component inflates AV (t̂ydR) for the estimated benchmark control totals and

is O(M2/mB). The orders of magnitude differ from those presented in Chapter 4 in
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that the analytic survey variance component is now associated with the number of

sample domain PSUs (mAd) instead of the total number of sample PSUs (mA). Note

that all of the variance components in (6.20) are by definition positive contributors

to the overall variance.

By expressing the model-coefficient vector and residuals from (6.20) in terms

of the group-mean model for domain d, the population sampling variance for the

EC-PSGR domain estimator is specified as

AV
(
t̂ydP

) ≡ AV
(
t̂ydPSGR

)

+
G∑

g=1

H∑

h=1

Mh∑
i=1

Nhi∑

k=1

δghikφAghik (1− φAghik) E2
Adhik

+ Ȳ′
Ad VB ȲAd (6.21)

where ȲAd = N−1
A tAyd = [ȳAd1, ..., ȳAdG]′, the vector of population assisting-model

coefficients with ȳAdg = tAydg/NAg; and EAdhik = δdhikyhik − ȳAdg. Following the

development of AV
(
t̂yPSGR

)
given below (4.18),

AV
(
t̂ydPSGR

) ≡ N′
BEcA

(VAd)NB (6.22)

where NB = [NB1, ..., NBG]′, the vector of totals for the G poststrata within the

population associated with the benchmark sampling frame; and VAd = V arA( ˆ̄YAd)

∼= DdΣθ̂dD
′
d with

Dd =

[
diag

({
1

NAg

}G

g=1

)
, diag

({−ȳAdg

NAg

}G

g=1

)]
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and

Σθ̂ =




σ(t̂Ayd1,t̂Ayd1) · · · σ(t̂Ayd1,N̂AG)

...
. . .

...

σ(N̂AG,t̂Ayd1) · · · σ(N̂AG,N̂AG)




.

6.4.2 Traditional Calibration Variance

Variance estimation for traditional calibration only recognizes the variation

within the analytic survey. As discussed in, for example, Särndal et al. (1992,

Section 10.6), the traditional linearization sample variance estimator for a GREG

domain total is a function of the estimated residuals for the chosen assisting model.

In the case of a stratified, multistage analytic survey design with PSUs selected

with replacement and the separate ratio model, the linearization sample variance

estimator for t̂ydR is calculated as:

varNäıve(t̂ydR) = var(t̂ydGREG) =
H∑

h=1

mAh

mAh − 1

mAh∑
i=1

(ŭdhi+ − ¯̆udh++)2 (6.23)

where ŭdhi+ =
∑nAhi

k=1 ahikπ
−1
hikeAdhik, the sum of (calibration) weighted model residu-

als for units within domain d within PSU hi ; eAdhik = δdhikyhik−x′hikB̂Ad; ahik is the

calibration weight defined for t̂ydR in (6.1); and ¯̆udh++ = m−1
Ah

∑mAh

i=1 ŭdhi+, the aver-

age weighted residual within stratum h. Note that this sample variance estimator is

a function of residuals calculated from all sample PSUs (mAh) and does not exclude
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PSUs without at least one domain member. Because domain membership within

a PSU is a random event (by assumption), the non-domain PSUs could contain

domain members given a different sample. Therefore, the zero estimate is included

as a contribution to the overall variance estimate.

The Näıve sample variance estimator for the EC-PSGR domain total generated

through poststratification is defined either as a method-of-moments estimator,

varNäıve

(
t̂ydP

)
= var

(
t̂ydPSGR

)
= N̂′

BV̂AdN̂B (6.24)

where V̂Ad
∼= D̂dΣ̂θ̂dD̂

′
d, calculated using the analytic survey estimates corre-

sponding to the terms defined for (6.22), and N̂B defined for t̂ydP in (6.4); or

by substituting eAdhik = δdhikyhik − ˆ̄yAdg in the formula for varNäıve(t̂ydR) (6.23)

where ˆ̄yAdg = t̂Aydg/N̂Ag =
∑

hik∈sA
π−1

hikδghikδdhikyhik/
∑

hik∈sA
π−1

hikδghik. The term

t̂ydPSGR =
∑

g NBg

(
t̂Aydg/NAg

)
is the traditional poststratified domain total dis-

cussed in Section 2.4.

As discussed in Section 6.4.1, the population sampling variance is the sum of

three positive variance components. Consequently, a variance estimate for an EC-

calibrated total calculated with a traditional variance estimator will be too small.

Hence, the use of the Näıve variance estimator label. The magnitude of the under-

estimation is suggested in the next section where we discuss linearization variance

estimators that account for the three components.
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6.4.3 Estimated-Control Linearization Variance

The formula for the EC linearization sample variance estimator of t̂ydR (6.1),

denoted as ECTS, is obtained by substituting sample estimators for the components

in AV
(
t̂ydR

)
(6.20), thereby accounting for all sources of variation. The ECTS

sample variance estimator is expressed as:

varECTS

(
t̂ydR

)
= var

(
t̂ydGREG

)

+
H∑

h=1

(
1− ˆ̄φAh

) mAh∑
i=1

nAhi∑

k=1

e2
Adhik

πhik

+ B̂′
AdV̂BB̂Ad. (6.25)

The first sample variance component, var
(
t̂ydGREG

)
, is the traditional calibration

variance estimator given in expression (6.23) and accounts for the variation within

the analytic survey. The second component estimates the coverage error variance in

the analytic survey sampling frame with eAdhik = δdhikyhik − x′hikB̂Ad and ˆ̄φAh is an

estimate of the sampling frame coverage rate in stratum h. The estimates may be

calculated as N̂Ah/N̂Bh, the ratio of the stratum sizes estimated from the analytic

and benchmark survey data, if the benchmark survey is believed to adequately

cover the complete population of interest. Using the formula for the bias shown in

expression (4.22),

Bias

[
H∑

h=1

(
1− ˆ̄φAh

) mAh∑
i=1

nAhi∑

k=1

e2
Adhik

πhik

]

∼=
H∑

h=1

Mh∑
i=1

Nhi∑

k=1

φAhikE
2
Adhik

(
φAhik − φ̄Ah

)
. (6.26)
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If the coverage probabilities vary only by stratum, i.e., φAhik ≡ φ̄Ah for units within

stratum h, then the associated bias is approximately zero. However, the bias is

inflated if larger residuals are associated with coverage probabilities that differ from

the stratum averages. The third component in (6.25) estimates the variation in the

benchmark control totals where B̂Ad is the estimated coefficient vector specified for

t̂ydR (6.1), and V̂B = var
(
t̂Bx

)
, the estimated covariance matrix for the benchmark

controls.

The order of convergence for the first domain variance component in (6.25) is

OP (M2/mAd) and is of lower order than the corresponding component for an overall

total, OP (M2/mA). The coverage error and benchmark variance components for

t̂ydR and t̂yR are the same and equal OP (M) and OP (M2/mB), respectively. This

suggests that the benchmark controls will have less influence on the variance of the

domain estimators than with the overall estimators if mA
∼= mB.

An expression for the ECTS sample variance estimator of an EC-PSGR domain

total is defined as:

varECTS(t̂yP ) = var
(
t̂ydPSGR

)

+
G∑

g=1

(
1− ˆ̄φAg

) H∑

h=1

mAh∑
i=1

nAhi∑

k=1

δghike
2
Adhik

πhik

+ ˆ̄Y
′
AdV̂B

ˆ̄YAd (6.27)

where var
(
t̂ydPSGR

)
is defined in expression (6.24); ˆ̄φAg = N̂Ag/N̂Bg, for example;

and eAdhik = δdhikyhik − ˆ̄yAdg with ˆ̄yAdg = t̂Aydg/N̂Ag. The remaining terms are

defined for t̂ydP in expression (6.4).
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6.4.4 Fuller Two-Phase Jackknife Method

Isaki et al. (2004) apply the Fuller jackknife variance estimator (Fuller, 1998),

labeled here as the ECF2 method, to account for variations in the benchmark con-

trols. We demonstrate that the modified ECF2 (ECF2m) in Chapter 4, augmented

to additionally account for the coverage error variance in the analytic survey sam-

pling frame, has a lower relative bias than the original ECF2. In this section,

we translate the ECF2m formulae for estimation of domain totals. As discussed

previously, our domain estimators are functions of overall and not domain-specific

analytic survey auxiliary variables and benchmark controls. Because the change to

the ECF2m and the other jackknife methods only affects the analytic survey com-

ponents, references to Chapter 4 text allow us to abbreviate this discussion without

loss of clarity.

The delete-one ECF2m jackknife variance estimator for the EC-GREG domain

total t̂ydR defined in (6.1) requires the calculation of replicate estimates using the

following formula:

...
t ydR(r) = t̂ydGREG(r) + chẑ

′
B(r)B̂Ad(r)

+ chRhη(r)

√(
1− ˆ̄φA(r)

)
t̂Aed2(r) (6.28)

where ch =
√

mAh/(mAh − 1); Rh =
√

1/HmAh;

• t̂ydGREG(r) = t̂Ady(r) + (tBx − t̂Ax(r))
′B̂Ad(r);

• t̂Ady(r) =
∑

hik∈sA
π−1

hi(r)π
−1
hikδdhikyhik, the replicate total of the y in domain d;
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• t̂Ax(r) =
∑

hik∈sA
π−1

hi(r)π
−1
hikxhik, the replicate totals for the auxiliary variables

estimated from the analytic survey;

• ẑB(r) = δ(r)

∑G
g=1 δg|(r)ẑBg, the ECF2 replicate control-total adjustment such

that V̂B =
∑G

g=1 ẑBgẑ
′
Bg;

• B̂Ad(r) =
[∑

hil∈sA
π−1

hi(r)π
−1
hilxhilx

′
hil

]−1 ∑
hik∈sA

π−1
hi(r)π

−1
hik xhikδdhikyhik, the model

coefficient vector for domain d calculated for each analytic survey replicate;

• η(r) is the randomly generated value from a standard normal distribution for

replicate r;

• t̂Aed2(r) =
∑

hik∈sA
π−1

hi(r)π
−1
hike

2
Adhik(r) with eAdhik(r) = δdhikyhik−x′hikB̂Ad(r); and,

• π−1
hi(r) is the PSU-subsampling weight for the rth replicate defined in (4.27).

As shown in (4.28) for the ECF2, the second term in (6.28) can be approximated as

chẑ
′
B(r)BAd (6.29)

by assuming tBx = O(M) resulting in t̂yGREG(r) = OP (M), B̂Ad(r) = BAd +

OP

(
m
−1/2
Ad

)
for the population domain parameter BAd = O (1) defined in (6.7),

and ẑ′B(r) = OP

(
M/

√
mB

)
. Using the replicate estimator defined in (6.28) and

the approximation in (6.29), the delete-one ECF2m jackknife variance estimator is
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expressed as:

varECF2m(t̂ydR) =
H∑

h=1

c−2
h

mAh∑
r=1

(...
t ydR(r) − t̂ydGREG

)2

∼=
H∑

h=1

c−2
h

mAh∑
r=1

(t̂ydGREG(r) − t̂ydGREG)2

+ 2
∑

h

c−1
h

mAh∑
r=1

(
t̂ydGREG(r) − t̂ydGREG

)
ẑ′B(r)BAd

+ B′
AdV̂BBAd

+ 2
H∑

h=1

c−1
h

mAh∑
r=1

(
t̂ydGREG(r) − t̂ydGREG

)
Rhη(r)

√(
1− ˆ̄φA(r)

)
t̂Aed2(r)

+ 2
H∑

h=1

mAh∑
r=1

ẑ′B(r)BAd

(
Rhη(r)

√(
1− ˆ̄φA(r)

)
t̂Aed2(r)

)

+
H∑

h=1

mAh∑
r=1

R2
hη

2
(r)

(
1− ˆ̄φA(r)

)
t̂Aed2(r). (6.30)

To facilitate the evaluation of E[varECF2m(t̂ydR)], we divide (6.30) by M2 and dis-

cuss each component in turn. The first variance component estimates the variation

associated only with the analytic survey design and is OP (m−1
Ad). The second com-

ponent is OP (m
−1/2
B ) under the assumption that max

{
M−1

(
t̂yGREG(r) − t̂ydGREG

)}

converges in probability to zero (Rao & Wu, 1985, see standard conditions in).

The third component estimates the variation within the benchmark control totals

and is OP (m−1
B ) by assumption. The fourth component divided by M2, as with

the second component, converges in probability to zero and is OP (1/
√

MmA) with

(
1− ˆ̄φA(r)

)
t̂Aed2(r) = OP (M). The fifth component is OP (1/

√
MmB) and has ex-

pectation zero by the inclusion of the standard normal random variable, η(r). The

sixth and final term is OP (M−1) and estimates the coverage error variance compo-
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nent associated with the analytic survey sampling frame by noting E
(
η2

(r)

)
= 1.

Thus, varECF2m

(
t̂ydR

)
is an approximately unbiased estimator of AV

(
t̂ydR

)
pro-

vided that the sample estimators used in the replicate estimates are unbiased and

the data are without (non-random) error. Note that by removing the coverage error

term from
...
t ydR(r) (6.28) that we are able to produce a sample variance estimator

for domain totals under the original specification for the Fuller method denoted as

ECF2 in our research.

The delete-one ECF2m jackknife variance estimate for EC-PSGR domain to-

tals, a specific type of EC-GREG estimate, is calculated as

varECF2m(t̂ydP ) =
H∑

h=1

c−2
h

mAh∑
r=1

(...
t ydP (r) − t̂ydPSGR

)2
(6.31)

where

...
t ydP (r) = t̂ydPSGR(r) + chẑ

′
B(r)

ˆ̄YAd(r) + chRhη(r)

√(
1G − ˆ̄φA(r)

)′
t̂Aed2(r)

∼= t̂ydPSGR(r) + chẑ
′
B(r)ȲAd + chRhη(r)

√(
1G − ˆ̄φA(r)

)′
t̂Aed2(r). (6.32)

The approximation is justified by using the same assumptions as given for (6.29) with

t̂ydPSGR(r) =
∑G

g=1 NBgN̂
−1
Ag(r)t̂Aydg(r); N′

B defined for expression (6.22); N̂Ag(r) =

∑
hik∈sA

π−1
hi(r)δghikπ

−1
hik; and t̂Aydg(r) =

∑
hik∈sA

π−1
hi(r)δghikπ

−1
hikδdhikyhik. The last com-

ponent in (6.32),

chRhη(r)

√(
1G − ˆ̄φA(r)

)′
t̂Aed2(r), (6.33)

produces replicate estimates of the analytic survey frame coverage error by poststra-
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tum where
(
1G − ˆ̄φA(r)

)′
=

[(
1− φ̂A1(r)

)
, ...,

(
1− φ̂AG(r)

)]
, a G-length vector of

estimated coverage rates within poststratum g; and t̂Aed2(r) =
[
t̂Aed21(r), ..., t̂Aed2G(r)

]′

with components t̂Aed2g(r) =
∑

hik∈sA
π−1

hi(r)π
−1
hikδghike

2
Adhik(r) and eAdhik(r) = (δdhikyhik

−ˆ̄yAdg(r)

)
with ˆ̄yAdg = t̂Aydg(r)/N̂Ag(r). Provided that the benchmark survey cov-

ers the population under study, the coverage rates φ̂Ag(r) can be estimated as

φ̂Ag(r) = N̂Ag(r)/N̂Bg. The remaining terms are defined for
...
t ydR(r) below expres-

sion (6.28). The evaluation of the variance components follows the discussion given

for varECF2m(t̂ydR) in (6.30).

The seven-step process used to calculate varECF2m(t̂yP ) given in expression

(4.36) is given at the end of Section 4.4.3. By replacing the outcome variable yhik

with a domain-specific outcome variable ydhik = δdhikyhik, we are able to use these

same steps to create estimates for varECF2m(t̂ydP ) in (6.31).

6.4.5 Multivariate Normal Jackknife Method

The ECMV method (ECMV) incorporates the random value from a multi-

variate normal distribution with mean equal to a G-length vector of zeroes (0G)

and covariance equal to the estimated covariance matrix for the benchmark control

totals (V̂B). The ECMV jackknife sample variance estimator for domain totals is
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derived in a similar manner as shown for the ECF2m in (6.30):

varECMV (t̂ydR) =
H∑

h=1

c−2
h

mAh∑
r=1

(
...
t ydR(r) − t̂ydGREG)2

∼=
H∑

h=1

c−2
h

mAh∑
r=1

(
t̂ydGREG(r) − t̂ydGREG

)2

+ 2
H∑

h=1

c−1
h Rh

mAh∑
r=1

(
t̂ydGREG(r) − t̂ydGREG

)
ε̂′B(r)BAd

+ B′
Ad

[
H∑

h=1

R2
h

mAh∑
r=1

ε̂B(r)ε̂
′
B(r)

]
BAd

+ 2
H∑

h=1

c−1
h

mAh∑
r=1

(
t̂ydGREG(r) − t̂ydGREG

)
Rhη(r)

√(
1− ˆ̄φA(r)

)
t̂Aed2(r)

+ 2
H∑

h=1

R2
h

mAh∑
r=1

ε̂′B(r)BAd η(r)

√(
1− ˆ̄φA(r)

)
t̂Aed2(r)

+
H∑

h=1

mAh∑
r=1

R2
hη

2
(r)

(
1− ˆ̄φA(r)

)
t̂Aed2(r) (6.34)

where ε̂B(r) is a G-length vector of random variables from the specified multivariate

normal distribution, i.e., ε̂B(r)
iid∼ MVNG(0G, V̂B); and

...
t ydR(r) = t̂ydGREG(r) + chRhε̂

′
B(r)B̂Ad(r)

+ chRhη(r)

√(
1G − ˆ̄φA(r)

)′
t̂Aed2(r), (6.35)

the ECMV replicate estimator. The approximations to the replicate estimator used

in (6.34) are obtained as with the ECF2m in (6.29), by assuming B̂Ad(r) = BAd +

OP

(
m
−1/2
Ad

)
and eliminating the lower-order term. The expectation of varECMV (t̂ydR)

mirrors the discussion given for varECF2m(t̂ydR) following expression (6.30). Note

that the third variance component has expectation B′
AdVBBAd using the work
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demonstrated in expression (4.40). Thus, in expectation, varECMV

(
t̂ydR

) ∼= AV
(
t̂ydR

)

given that the component estimators are approximately unbiased. Additionally, as

with the overall estimated total, the ECF2m and ECMV methods are asymptotically

equivalent.

The replicate estimator in (6.35) is specialized for EC poststratification to pro-

vide details for our simulation study presented in Section 6.6. The ECMV replicates

estimates for an EC-PSGR domain total are calculated with the following formula:

...
t ydP (r) = t̂ydPSGR(r) + chRhε̂

′
B(r)

ˆ̄YAd(r)

+ chRhη(r)

√(
1G − ˆ̄φA(r)

)′
t̂Aed2(r) (6.36)

with ε̂B(r) defined for varECMV (t̂ydR) in expression (6.34) and the remaining terms

are the same as defined for the ECF2m replicate estimates in (6.33). The
...
t ydP (r) es-

timates are substituted in the jackknife variance formula given in (6.31) to calculate

varECMV (t̂ydP ).

6.4.6 Nadimpalli-Judkins-Chu Jackknife Method

The jackknife variance estimator developed by Nadimpalli et al. (2004) is sim-

ilar to the ECMV method developed for our research. However, their method as-

sumes that only the variance estimates for the benchmark controls are available,

i.e., diag
(
V̂B

)
. As discussed in Section 4.5.4, the lack of information on the bench-

mark controls can result in variance estimates that are too small. The same holds

for domain estimation as well.
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The replicate estimates for the modified ECNJC (ECNJCm) method account

for the undercoverage error in the analytic survey and are defined as

...
t ydR(r) = t̂ydGREG(r) + chRhη

′
(r)ŜBB̂Ad(r)

+ chRhη(r)

√(
1− ˆ̄φA(r)

)
t̂Aed2(r) (6.37)

for an EC-GREG estimator of a domain total, and as

...
t ydP (r) = t̂ydPSGR(r) + chRhη

′
(r)ŜB

ˆ̄YAd(r)

+ chRhη(r)

√(
1G − ˆ̄φA(r)

)′
t̂Aed2(r) (6.38)

for the corresponding EC-PSGR estimator. The term ŜB = diag
(√

V̂B

)
, and η(r)

is a G-length vector of standard normal random values independently generated for

each replicate.

The expression for varECNJCm(t̂ydR) is obtained by substituting the replicate

estimates (6.37) into the EC-GREG jackknife variance formula shown for the ECMV

in expression (6.34). The expectation of the components of the ECNJCm variance

estimator follow the discussion given for the overall total subsequent to expression

(4.48). Namely, the component associated with the variability only in the bench-

mark estimates, B′
Ad

(∑H
h=1 R2

h

∑mAh

r=1 E
[
ŜBη(r)η

′
(r)ŜB

])
BAd, is not in general an

unbiased estimator of B′
AdVBBAd. This estimator is either negatively or positively

biased depending on the sign of the covariance terms within VB, the population

sampling covariance matrix for the benchmark estimates.
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6.5 Variance Estimation for Domain Means

The bias of the EC-GREG ratio-mean within a domain is a function of the

bias in both the numerator and denominator. The same holds true for the other

component within the MSE, i.e., the variance. We begin this section by defining the

approximate population sampling variance for the domain ratio-mean. A theoretical

evaluation of the five sample variance estimator under study is provided in the

subsequent sections.

6.5.1 Population Sampling Variance

We approximate the population sampling variance of ˆ̄ydR = t̂ydR/N̂dR (6.10),

the ratio-mean estimator within domain d, through a first-order Taylor linearization

about the components of ȳdR = tydR/NdR. The population parameter tydR is defined

for t̂ydR in (6.5), and NdR is defined for Bias
(
N̂dR

)
in (6.16). The approximate

population sampling variance is expressed as

AV (ˆ̄ydR) =

(
1

NdR

)2 [
AV (t̂ydR) + ȳ2

dRAV (N̂dR)− 2ȳdRACov(t̂ydR, N̂dR)
]

(6.39)
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with AV (t̂ydR) specified in expression (6.20). The approximate population sampling

variance for the denominator of ˆ̄ydR is similarly defined as:

AV (N̂dR) = AV (N̂dGREG)

+
H∑

h=1

Mh∑
i=1

Nhi∑

k=1

φAhik (1− φAhik) E2
ANdhik

+ B′
ANdVBBANd (6.40)

where BANd is given for (6.16) and EANdhik = δdhik − x′hikBANd. The first variance

component AV (N̂dGREG), a traditional calibration variance estimator, is calculated

as shown for AV (t̂yGREG) in expression (4.14) by substituting EAhik with EANdhik.

The remaining term in (6.39) follows the development of ACov(t̂yR, N̂R) given in

expression (5.17) and equals

ACov
(
t̂ydR, N̂dR

)
= ACov

(
t̂ydGREG, N̂dGREG

)

+
H∑

h=1

Mh∑
i=1

Nhi∑

k=1

φAhik (1− φAhik) EAdhikEANdhik

+ B′
AdVBBANd. (6.41)
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Substituting the expressions into (6.39), we have

AV
(
ˆ̄ydR

)
=

(
1

NdR

)2 (
AV (t̂ydGREG) + ȳ2

dRAV (N̂dGREG)

− 2ȳdRACov(t̂ydGREG, N̂dGREG)
)

+

(
1

NdR

)2 ∑

hik∈U

φAhik (1− φAhik) (EAdhik − ȳdREANdhik)
2

+

(
1

NdR

)2

(BAd − ȳdRBANd)
′VB (BAd − ȳdRBANd) (6.42)

where the first term is equivalent to AV
(
ˆ̄ydGREG

)
.

The approximate population sampling variance of ˆ̄ydP is defined as follows by

substituting the appropriate values within expression (6.42):

AV
(
ˆ̄ydP

)
=

(
1

NdP

)2 (
AV

(
t̂ydPSGR

)
+ ȳ2

dP AV (N̂dPSGR)

− 2ȳdP ACov(t̂ydPSGR, N̂dPSGR)
)

+

(
1

NdP

)2 ∑

hik∈U

φAhik (1− φAhik) (EAdhik − ȳdP EANdhik)
2

+

(
1

NdP

)2 (
ȲAd − ȳdP ȲANd

)′
VB

(
ȲAd − ȳdP ȲANd

)
(6.43)

where EAdhik = δdhik − x′hikBANd and EANdhik = δdhik − d̄Ag with d̄Ag = NAdg/NAg,

the proportion of domain members in poststratum g within the population defined

by the analytic survey sampling frame. The first term in (6.43) equals AV
(
ˆ̄ydPSGR

)

with the following components: (i) AV
(
t̂ydPSGR

)
given in expression (6.22); (ii)

AV
(
N̂dPSGR

)
≡ N′

BEcA
(VANd)NB (6.44)
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where VANd = V arA( ˆ̄YANd) ∼= DdΣθ̂dD
′
d with

Dd =


diag

({
1

NAg

}G

g=1

)
, diag




{
−NAdg

N2
Ag

}G

g=1







and

Σθ̂ =




σ(N̂Ad1,N̂Ad1) · · · σ(N̂Ad1,N̂AG)

...
. . .

...

σ(N̂AG,N̂Ad1) · · · σ(N̂AG,N̂AG)




;

and, (iii) ACov
(
t̂ydPSGR, N̂dPSGR

)
= N′

BACov
(
ȲAd, ȲANd

)
N′

B
∼= N′

BDdΣθ̂dD
′
dNB

where

Dd =


diag

({
1

NAg

}G

g=1

)
, diag




{
−tAydg

N2
Ag

}G

g=1


 ,

diag

({
1

NAg

}G

g=1

)
, diag




{
−NAdg

N2
Ag

}G

g=1





 ,

a G×4G matrix of first-order derivatives, and Σθ̂d is a 4G×4G matrix of population

sampling covariances for each pair of matrices within
(
ȲAd, ȲANd

)
, i.e., t̂Ayd, N̂Ad,

and N̂A.

6.5.2 Traditional Calibration Variance

The linearization sample variance estimator for ˆ̄ydR (6.10) is developed under

the assumption that the benchmark controls are fixed population values. This näıve

variance estimator is also assumed in expectation to be a reasonable approximation
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to AV
(
ˆ̄ydR

)
and is calculated as:

varNäıve(ˆ̄ydR) ≡ var(ˆ̄ydGREG)

=

(
1

N̂dR

)2 H∑

h=1

mAh

mAh − 1

mAh∑
i=1

(ŭdhi+ − ¯̆udh++)2 (6.45)

for ˆ̄ydGREG defined in expression (2.29); ŭdhi+ =
∑

k∈sAhi
ahikπ

−1
hik

(
eAdhik − ˆ̄ydReANdhik

)

with eAdhik = δdhikyhik − x′hikB̂Ad and eANdhik = δdhik − x′hikB̂ANd; and ¯̆udh++ =

m−1
Ah

∑
i∈sAh

ŭdhi+. The EC-PSGR version of (6.45) is defined as

varNäıve(ˆ̄ydP ) ≡ var(ˆ̄ydPSGR)

=

(
1

N̂dP

)2 H∑

h=1

mAh

mAh − 1

mAh∑
i=1

(ŭdhi+ − ¯̆udh++)2 (6.46)

where ŭdhi+ =
∑

k∈sAhi
ahikπ

−1
hik

(
eAdhik − ˆ̄ydP eANdhik

)
with eAdhik = δdhikyhik − ˆ̄yAdg

and eANdhik = δdhik − ˆ̄dAg with ˆ̄dAg = N̂Adg/N̂Ag. The discussion given in previ-

ous sections about the traditional variance estimator also applies here. Namely,

this estimator is negatively biased for AV
(
ˆ̄ydR

)
due to the missing benchmark and

analytic survey frame coverage error components.

6.5.3 Estimated-Control Linearization Variance

The EC sample linearization variance estimator is developed by adding com-

ponents to the näıve estimator, var(ˆ̄ydGREG), given in expression (6.45). The sample

variance estimator for the EC-GREG estimator of a ratio mean within domain d is
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expressed as:

varECTS(ˆ̄ydR) = var(ˆ̄ydGREG)

+

(
1

N̂dR

)2 H∑

h=1

(
1− ˆ̄φAh

) mAh∑
i=1

nAhi∑

k=1

π−1
hik

(
eAdhik − ˆ̄ydReANdhik

)2

+

(
1

N̂dR

)2 (
B̂Ad − ˆ̄ydRB̂ANd

)′
V̂B

(
B̂Ad − ˆ̄ydRB̂ANd

)
(6.47)

where the terms are defined for ˆ̄ydR (6.10) and following (6.45). The corresponding

EC-PSGR sample variance estimator, used in the simulation study (Section 6.6), is

defined as:

varECTS(ˆ̄ydP ) = var(ˆ̄ydPSGR)

+

(
1

N̂dP

)2 H∑

h=1

(
1− ˆ̄φAh

) mAh∑
i=1

nAhi∑

k=1

π−1
hik

(
eAdhik − ˆ̄ydP eANdhik

)2

+

(
1

N̂dP

)2 (
ˆ̄YAd − ˆ̄ydP

ˆ̄YANd

)′
V̂B

(
ˆ̄YAd − ˆ̄ydP

ˆ̄YANd

)
(6.48)

with residuals defined for expression (6.46).

6.5.4 Fuller Two-Phase Jackknife Method

The modified delete-one Fuller (ECF2m) jackknife variance estimator, as well

as the other jackknife methods discussed in the subsequent sections, use the following

general formula to calculate the sample estimates for an EC-GREG domain ratio-
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mean estimator:

var(ˆ̄ydR) =
H∑

h=1

(mAh − 1)

mAh

mAh∑
r=1

(¨̄ydR(r) − ˆ̄ydGREG)2. (6.49)

The EC-PSGR version is similarly defined as

var(ˆ̄ydP ) =
H∑

h=1

(mAh − 1)

mAh

mAh∑
r=1

(¨̄ydP (r) − ˆ̄ydPSGR)2. (6.50)

Each method requires the calculation of replicate estimates using a different ap-

proach. The ECF2m replicate estimates for the EC-GREG domain ratio-mean are

calculated as

...
ȳ dR(r) =

...
t ydR(r)
...
NdR(r)

=
t̂ydGREG(r) + chẑ

′
B(r)B̂Ad(r) + chRhη(r)

√
(1− φ̂A(r))t̂Aed2(r)

N̂dGREG(r) +

(
chẑ′B(r)B̂ANd(r) + chRhη(r)

√
(1− φ̂A(r))t̂ANed2(r)

) (6.51)

where B̂ANd(r) =
[∑

hil∈sA
π−1

hi(r)π
−1
hil xhilx

′
hil

]−1 ∑
hik∈sA

π−1
hi(r)π

−1
hik xhik δdhik, and

t̂ANed2(r) =
∑

hik∈sA
π−1

hi(r)π
−1
hike

2
ANdhik(r) with eANdhik(r) = δdhik − x′hikB̂ANd(r). The

remaining terms are defined for expression (6.28). By substituting (6.51) into (6.49),

we obtain an explicit expression for varECF2m(ˆ̄ydR). The approximation techniques

shown for varECF2m(ˆ̄yR), beginning with a geometric approximation of the ratio-

mean in expression (5.37), and is used here to demonstrate that varECF2m(ˆ̄ydR) is

asymptotically equivalent to AV
(
ˆ̄ydR

)
given in (6.42) provided that the sample esti-

mates used in (6.51) are (approximately) unbiased. The rates of convergence for the
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variance components in varECF2m(ˆ̄ydR) mirror the discussion given for varECF2m(ˆ̄yR)

following (4.32) after replacing the number of sample PSUs (mA) with the number

of domain sample PSUs (mAd).

By substituting the following ECF2m replicate estimates into the EC-PSGR

jackknife sample variance estimator in (6.50), we are able to calculate varECF2m(ˆ̄ydP ):

...
ȳ dP (r) =

...
t ydP (r)
...
NdP (r)

(6.52)

=
t̂ydPSGR(r) + chẑ

′
B(r)

ˆ̄YAd(r) + chRhη(r)

√(
1G − ˆ̄φA(r)

)′
t̂Aed2(r)

N̂dPSGR(r) +

(
chẑ′B(r)

ˆ̄YANd(r) + chRhη(r)

√(
1G − ˆ̄φA(r)

)′
t̂ANed2(r)

) .

6.5.5 Multivariate Normal Jackknife Method

The multivariate normal method (ECMV) introduces a multivariate normal

random variable into the numerator and denominator of ˆ̄ydR generated for each jack-

knife replicate. The ECMV replicate estimates for an EC-GREG and EC-PSGR do-

main ratio-mean estimator are calculated using the following formulae, respectively:

...
ȳ dR(r) =

...
t ydR(r)
...
NdR(r)

(6.53)

=
t̂ydGREG(r) + chRhε̂B(r)B̂Ad(r) + chRhη(r)

√
(1− φ̂A(r))t̂Aed2(r)

N̂dGREG(r) +

(
chRhε̂B(r)B̂ANd(r) + chRhη(r)

√
(1− φ̂A(r))t̂ANed2(r)

) ,

216



and

...
ȳ dP (r) =

...
t ydP (r)
...
NdP (r)

(6.54)

=
t̂ydPSGR(r) + chRhε̂B(r)

ˆ̄YAd(r) + chRhη(r)

√(
1G − ˆ̄φA(r)

)′
t̂Aed2(r)

N̂dPSGR(r) +

(
chRhε̂B(r)

ˆ̄YANd(r) + chRhη(r)

√(
1G − ˆ̄φA(r)

)′
t̂ANed2(r)

) .

The replicate estimates are substituted into (6.49) and (6.50), respectively, to derive

varECMV (ˆ̄ydR) and varECMV (ˆ̄ydP ). The asymptotic evaluation of varECMV (ˆ̄ydR)

provided in Section 5.4.4 also holds for domain estimation after substituting mAd

with mA and is not repeated here. Therefore, the ECF2m and ECMV jackknife

variance estimators for the ratio-mean estimators are asymptotically equivalent and

both are approximately unbiased for AV (ˆ̄ydR).

6.5.6 Nadimpalli-Judkins-Chu Jackknife Method

Based on the results from Section 5.4.5, we know that the ECNJCm method, a

simplification of the ECMV, can underestimate the variance of estimated totals and,

to a lesser degree, the variance of estimated ratio-means. A theoretical evaluation

for the domain ratio-mean also suggest a biased variance estimator. The ECNJCm

replicate estimates for an EC-GREG and EC-PSGR domain ratio-mean estimator
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are calculated using the following formulae, respectively:

...
ȳ dR(r) =

...
t ydR(r)
...
NdR(r)

(6.55)

=
t̂ydGREG(r) + chRhε̂B(r)B̂Ad(r) + chRhη(r)

√
(1− φ̂A(r))t̂Aed2(r)

N̂dGREG(r) +

(
chRhη′(r)ŜBB̂ANd(r) + chRhη(r)

√
(1− φ̂A(r))t̂ANed2(r)

) ,

and

...
ȳ dP (r) =

...
t ydP (r)
...
NdP (r)

(6.56)

=
t̂ydPSGR(r) + chRhε̂B(r)

ˆ̄YAd(r) + chRhη(r)

√(
1G − ˆ̄φA(r)

)′
t̂Aed2(r)

N̂dPSGR(r) +

(
chRhη′(r)ŜB

ˆ̄YANd(r) + chRhη(r)

√(
1G − ˆ̄φA(r)

)′
t̂ANed2(r)

) .

The replicate estimates are substituted into (6.49) and (6.50), respectively, to derive

varECNJCm(ˆ̄ydR) and varECNJCm(ˆ̄ydP ). The asymptotic evaluation provided in Sec-

tion 5.4.5 also holds for domain estimation indicating that this variance estimator

will have higher levels of relative bias than the other jackknife methods studied in

our research. Whether the ECNJCm variance estimator over- or underestimates the

true population sampling variance depends on the sign of the off-diagonal terms in

VB.

6.6 Simulation Study

The simulation study described in detail in Section 4.5 is used to confirm the

theoretical evaluation presented in the previous sections. We compare the empirical
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properties of five variance estimators for (i) an EC-PSGR estimator of a total within

a domain, t̂ydP (6.4), and (ii) the ratio of two EC-PSGR totals within a domain ˆ̄ydP

(6.13). The following abbreviations are used as labels for the variance estimators:

• Näıve, the traditional calibration estimator defined in (6.24) for totals, and in

(6.46) for ratio-means;

• ECTS, the EC linearization estimator defined in (6.27) for totals, and in (6.48)

for ratio-means;

• ECF2m, the modified Fuller two-phase jackknife estimator defined in (6.31)

for totals, and in (6.50) with replicate estimates (6.52) for ratio-means;

• ECMV, the Multivariate normal jackknife estimator defined for totals with

replicate estimates (6.36) substituted in the variance formula (6.31), and for

ratio-means with the replicate estimates (6.54) substituted in (6.50);

• ECNJCm, the modified Nadimpalli-Judkins-Chu jackknife estimator defined

in (6.31) with replicate estimates (6.38) for totals, and for ECF2m in (6.50)

with replicate estimates (6.56) for ratio-means.

We additionally compare these results with those presented in Sections 4.5 and 5.5.

Based on the positive results for the modified ECF2 and ECNJC methods from

the previous chapters, we forgo a discussion of the original methods for domain

estimation.
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6.6.1 Simulation Parameters

Results from a simulation study are used to examine the empirical properties

for the domain estimators discussed in this chapter. We select 4,000 (analytic survey)

simulation samples using a stratified, multi-stage design from an incomplete frame

generated from the 2003 NHIS. The analytic survey sample size and the effective size

of the benchmark survey are varied to examine the affects of differential influences

on the overall variance. Additional details on the basic set-up of the simulation

study are provided in Section 4.5.1 and are not repeated here.

We calculate the estimated population totals and means within a domain, as

well as the variance estimates, for two NHIS binary variables: NOTCOV=1 indicates

that an adult did not have health insurance coverage in the 12 months prior to the

NHIS interview (ȳ ∼= 0.17); and PDMED12M=1 indicates that an adult delayed

medical care because of cost in the 12 prior to the interview (ȳ ∼= 0.07). Total

and mean estimates are calculated for records with NHIS variable HISCODI2=1

to create a Hispanic ethnicity domain for this study. Approximately 23 percent

of the U.S. residents in our target population (records on the NHIS data file) are

self-classified as Hispanic. Within this domain, 35.4 percent did not have health

insurance (NOTCOV=1) and 7.0 percent delayed medical care (PDMED12M=1) in

the 12 months prior to the interview. Simulation programs were developed and run

in Rr (Lumley, 2005; R Development Core Team, 2005) for this empirical study.

The primary programs are included as Appendix A.
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6.6.2 Evaluation Criteria

The empirical results for the variance estimators listed in Section 6.6 are com-

pared using four measures across the 4,000 simulation samples and two outcome

variables (NOTCOV and PDMED12M ) within the Hispanic (d) domain. In the

following list of empirical measures, θ̂dP =
(
t̂dP , ˆ̄ydP

)
generate expressions for the

estimated totals and ratio-means, respectively. The corresponding population pa-

rameters are denoted as θd = (td, ȳd) and are calculated from the 2003 NHIS popu-

lation of size N = 21, 664. The measures include:

1. 100 ×
[(

1
4000

∑
j var(θ̂dPj

)−MSEd

)
/MSEd

]
, the estimated percent bias of

the variance estimator relative to the empirical MSEd = 1
4000

∑
j(θ̂dPj

− θd)
2;

2. 1
4000

∑
j I

(|ẑj| ≤ z1−α/2

)
, the 95 percent confidence interval coverage rate where

α = 0.05, ẑj = (θ̂dPj
− θd)/se(θ̂dPj

), and se(θ̂dPj
) =

√
var(θ̂dPj

);

3.

√
1

(4000−1)

∑
j

[
se(θ̂dPj

)− 1
4000

∑
j se(θ̂dPj

)
]2

, the standard deviation of the es-

timated standard errors (se); and,

4. 100×
[(

1
4000

∑
j se∗

(
θ̂dPj

)
− 1

4000

∑
j seECTS

(
θ̂dPj

))
/ 1

4000

∑
j seECTS

(
θ̂dPj

)]
,

the percent increase in the variation of the estimated standard errors for all

studied estimators (se∗) relative to the ECTS variance estimator (seECTS).

We initially evaluate the relative bias of the point estimators, 1
4000

∑
j

(
θ̂dPj

− θd

)
/θd,

to justify the use of estimated-control weight calibration. These criteria are also used

to compare the results for the overall estimates given in Sections 4.5.4, 5.5.3, and

5.5.4.
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Table 6.1: Percent Relative Bias Averaged Across Samples and Benchmark Covari-
ance Matrices for Totals and Percents of Total Outcome within the Hispanic Domain
by Point Estimator

Not Covered by Health Delayed Medical Care

Insurance (NOTCOV) (PDMED12M)

Estimator nAhi = 20 nAhi = 40 nAhi = 20 nAhi = 40

t̂ydPWR -37.5 -37.5 -38.7 -38.4

t̂ydP 1.1 1.2 -0.2 0.3

ˆ̄ydHJ -9.1 -9.2 -7.7 -7.3

ˆ̄ydP 1.3 1.3 1.1 1.6

PWR = p-expanded with-replacement estimator, HJ = Hájek estimator.

Note that the estimated percent bias of the variance estimators relative to

the empirical variance (see measure 2 in Section 4.5.2) were also examined. How-

ever, these results are not presented in this chapter due to the similarities with the

discussions given previously.

6.6.3 Results for Point Estimators

Data from a particular sample survey may have errors that negatively af-

fect the estimates using an otherwise unbiased estimator. The estimators included

in Table 6.1 are all (approximately) unbiased and should produce percent rela-

tive biases for the domain estimates near zero. Because we introduce undercover-

age error in the analytic survey sampling frame, the uncalibrated point estimators

t̂ydPWR =
∑

hik∈sA
π−1

hikδdhikyhik and ˆ̄ydHJ = t̂ydPWR/
∑

hik∈sA
π−1

hikδdhik are all neg-

atively biased. The NOTCOV and PDMED12M estimates within the Hispanic
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domain show negative biases in excess of 37 percent. The corresponding biases

for the domain ratio-means are much lower but still underestimate the population

means by as much as 7 percent. Calibrating the design weights to the set of es-

timated benchmark control totals improves the negative biases dramatically. The

percent relative biases for the estimated totals within our domain, t̂ydP , are either

close to zero or no more than a 1.2 percent overestimate. The levels for the domain

ratio-mean, ˆ̄ydP , are comparable and exceed the population means by less than 2

percent. Therefore, with the levels of undercoverage introduced in our simulation

study, the EC calibration procedure was a benefit. Note that the percent relative

biases presented here correspond with the overall estimates given in Table 5.1.

6.6.4 Comparison of Variance Estimators for Estimated Totals

Empirical analyses of values from unbiased variance estimators should result

in percent biases relative to the empirical MSE at or near zero. However, as seen

in the previous chapters with overall point estimators, the levels of bias can vary

with the relative size of the benchmark survey as well as the choice of variance es-

timator. Figure 6.1 contains the pattern of bias for the five variance estimators by

the increasing size (left to right on the x axis) of the benchmark survey relative to

the 1,000 persons selected for the analytic survey (nB/nA) for NOTCOV (a) and

PDMED12M (b). The horizontal line represents zero bias, while the vertical line

represents the effect for equal-sized analytic and benchmark surveys. Estimates for

the Näıve and ECNJC estimators are represented by squares and triangles, respec-
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tively. The “Other EC” estimates (ECTS, ECF2m, and ECMV) are close in value

and are shown as circles. This pattern is similar for analytic survey samples of size

2,000.

Simulation study results for the relative biases are least favorable for the tra-

ditional poststratified (Näıve) variance estimator as expected from our theoretical

evaluation. The Näıve variance estimator underestimates the empirical MSE by as

much as 22 percent for NOTCOV and 14 percent for PDMED12M. This naturally

occurs when the benchmark variance component is the largest and not accounted

for with this estimator. The slight improvement in the bias noted for nB/nA=6.0

is related only to a decrease in the empirical MSE. We suspect that additional sim-

ulation results will remove this anomaly by producing a more stable set of MSE

values.

The EC jackknife variance estimators all contain a component associated with

traditional poststratification. Therefore, the relative biases should mimic the bias

levels exhibited for the Näıve variance estimator until the relative influence of the

benchmark variance component becomes sizeable, i.e., the relative size of the bench-

mark is small. This pattern is seen in Figure 6.1 with a benchmark survey at least

six times larger than the analytic survey. The bias is improved for the EC variance

estimators because of the variance increase due to the coverage error and benchmark

components. However, when the size of the benchmark survey is equal to or smaller

than the analytic survey, changes occur in the picture. The biases in the figure

for the ECNJCm variance estimator are smaller than the Näıve variance estimator

but still fall below levels for the other estimators especially for small benchmark
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(a) Total Number of Hispanics Not Covered by Health In-
surance in Last 12 Months (NOTCOV)
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(b) Total Number of Hispanics Who Delayed Medical Care
Due to Cost in Last 12 Months (PDMED12M)

Figure 6.1: Percent Bias Relative to Empirical MSE of Five Variance Estimators by
Relative Size of the Benchmark Survey to the Analytic Survey for 1,000 Analytic
Survey Units
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Table 6.2: Percent Bias Estimates Relative to Empirical MSE for Five Variance

Estimators by Total Outcome within the Hispanic Domain and Relative Size of the

Benchmark Survey to the Analytic Survey

Relative Size Relative Size

Outcome Variance nB/(nA = 1, 000) nB/(nA = 2, 000)

Variable Estimator 0.3 1.2 6.0 21.7 0.2 0.6 3.0 10.8

NOTCOV Näıve -22.1 -10.1 -1.7 -3.5 -26.2 -13.5 -0.1 -3.3

ECTS 2.3 -2.8 0.1 -2.8 1.5 -5.0 2.1 -2.4

ECF2m 2.3 -2.8 0.3 -2.6 1.6 -5.0 2.1 -2.4

ECMV 2.7 -2.5 0.4 -2.6 1.6 -5.1 2.2 -2.3

ECNJCm -14.2 -7.5 -0.7 -2.9 -18.0 -10.8 0.9 -2.7

PDMED12M Näıve -13.6 -5.6 -4.5 -2.7 -20.1 -6.7 -5.4 2.4

ECTS -2.8 -2.3 -3.3 -1.9 -3.9 -1.1 -3.4 3.8

ECF2m -2.6 -2.2 -3.0 -1.5 -4.0 -1.3 -3.3 3.7

ECMV -2.6 -1.9 -2.9 -1.5 -3.8 -1.0 -3.4 3.8

ECNJCm -8.8 -3.6 -3.3 -1.6 -14.1 -3.9 -3.9 3.6

surveys. The negative bias of the ECNJCm variance estimator decreases to levels

of 14 percent for NOTCOV and 9 percent for PDMED12M because of the missing

off-diagonal terms in the benchmark covariance matrix. By contrast, the benchmark

components in the “other” EC jackknife variance estimators (ECTS, ECF2m, and

ECMV) assist in reducing the negative bias associated with the Näıve variance es-

timator. A positive relative bias of no more than 3 percent for NOTCOV suggests

that this set of EC variance estimators can be slightly conservative when benchmark

control totals are taken from relatively small benchmark surveys (nB/nA=0.3). In-

stability in the empirical MSEs, as discussed for the Näıve variance estimator above,

also explains the slight increase in the negative bias for PDMED12M.

The relative biases used to produce Figure 6.1 are displayed in the nB/(nA =
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Table 6.3: Empirical 95 Percent Coverage Rates for Five Variance Estimators by

Total Outcome within the Hispanic Domain and Relative Size of the Benchmark

Survey to the Analytic Survey

Relative Size Relative Size

Outcome Variance nB/(nA = 1, 000) nB/(nA = 2, 000)

Variable Estimator 0.3 1.2 6.0 21.7 0.2 0.6 3.0 10.8

NOTCOV Näıve 89.5 91.8 92.6 92.8 88.5 91.1 92.4 92.1

ECTS 93.8 93.0 92.9 92.8 94.0 92.7 92.8 92.3

ECF2m 93.8 93.0 92.9 92.8 93.7 92.5 92.8 92.3

ECMV 93.7 92.7 92.9 92.9 94.0 92.5 92.8 92.2

ECNJCm 90.9 92.2 92.8 92.8 90.3 91.5 92.5 92.2

PDMED12M Näıve 88.9 90.2 90.8 90.7 88.5 91.4 91.6 92.1

ECTS 91.0 90.6 90.9 90.9 92.0 92.5 91.9 92.3

ECF2m 91.0 90.6 90.8 91.0 92.0 92.5 92.0 92.2

ECMV 90.8 90.7 90.9 91.0 91.6 92.4 91.8 92.2

ECNJCm 90.0 90.5 90.9 91.0 90.1 91.9 91.8 92.3

1, 000) column of Table 6.2. The second column contains results for larger analytic

survey sample sizes (nA = 2, 000). An interpretation similar to the one given for the

figure also holds for this set of results.

The second comparative measure is the empirical coverage rates for the 95

percent confidence intervals. The values from our simulation study are provided in

Table 6.3. Overall, we see a general pattern of stability in the coverage rates for the

ECTS, ECF2m, and ECMV variance estimators across the eight relative sizes within

each outcome variable. Differences in the rates across this set of variance estimators

are minimal, and all have higher rates than either the Näıve or the ECNJCm variance

estimators. Coverage rates for the Näıve estimator are largest when the benchmark

variance components are inconsequential and fall well below 95 percent as the size
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Table 6.4: Percent Increase in Instability of Variance Estimates Relative to EC

Linearization Estimator (ECTS) by Total Outcome within the Hispanic Domain

and Relative Size of the Benchmark Survey

Relative Size Relative Size

Outcome Variance nB/(nA = 1, 000) nB/(nA = 2, 000)

Variable Estimator 0.3 1.2 6.0 21.7 0.2 0.6 3.0 10.8

NOTCOV Näıve 5.2 2.0 0.5 0.2 8.5 2.9 0.8 0.4

ECF2m 3.2 1.3 0.5 0.3 3.7 1.4 0.7 0.2

ECMV 5.1 2.0 0.4 0.2 6.7 1.3 0.5 0.2

ECNJCm 4.3 1.9 0.6 0.3 7.1 2.6 0.7 0.3

PDMED12M Näıve -0.1 0.1 0.1 0.1 2.2 1.1 0.5 0.4

ECF2m 1.5 0.6 0.3 0.4 1.7 0.5 0.5 0.1

ECMV 1.1 0.7 0.4 0.3 3.1 1.1 0.5 0.1

ECNJCm 0.5 0.4 0.3 0.3 2.1 1.2 0.5 0.2

of this variance component increases — the same pattern as shown for the relative

biases. A similar interpretation is given for the ECNJCm coverage rates with rates

slightly higher than those for the Näıve estimator. Coverage rates for the estimated

total number of Hispanics who delayed medical care (PDMED12M) are lower than

those rates exhibited for NOTCOV. This also holds for the overall estimates given

in Table 4.5 and is associated with the prevalence of the outcome variables in the

population.

As with estimated totals examined in Chapter 4, our research suggests that

there are minimal theoretical and empirical differences between the ECTS, ECF2m,

and ECMV methods for domain estimation. The variation in the estimated standard

errors for the methods, an indication of stability of the estimator, is presented in

Table 6.4. We primarily see that the stability of the ECF2m and ECMV estimates
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are similar; however, the ECF2m is slightly more stable than the ECMV when the

relative size of the benchmark survey is small. Both methods are more variable than

the ECTS as expected (Krewski & Rao, 1981).

6.6.5 Comparison of Variance Estimators for Estimated Means

Differences in the set of EC variance estimators were less noticeable for ratio-

means than totals as noted in Chapter 5. The same statement applies to estimation

for domain ratio-means discussed in this section.

The percent biases relative to the empirical MSE for the variance of the es-

timated domain means range between -9 and 1 percent across the simulation pa-

rameters with almost all values falling below the desired zero percent level. Note

that a slight positive bias suggests a conservative estimator; this trait is desired

over negative biases. This range of values is comparable with the range for overall

ratio-means (-8 to 3 percent shown in Table 5.2) and less than the range for the

domain totals (-27 to 3 percent shown in Table 6.2).

Figure 6.2 contains a visual display of the estimated percent relative biases

(y axis) in estimating the MSE of our two outcome variables within the Hispanic

population, by the relative size (nB/nA) of the benchmark survey to the analytic

survey of size nA = 1, 000 (x axis). The horizontal line represents zero bias. The

vertical line effectively represents equal-sized analytic and benchmark surveys.

As with Figure 6.1, we note the similarities in the patterns for the relative

biases for the variance estimators until the line of equality. The Näıve variance esti-
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Figure 6.2: Percent Bias Relative to Empirical MSE of Five Variance Estimators by
Relative Size of the Benchmark Survey to the Analytic Survey for 1,000 Analytic
Survey Units
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mator, as with the other analyses presented in this body of work, is most negatively

biased among those estimators examined for all simulation conditions included in

our study. As expected, the least amount of bias can be seen when the benchmark

survey is more than 21 times as large as the analytic survey. The ECTS variance esti-

mator improves upon the bias of the Näıve, and actually produces comparable levels

between -1 and -2 percent at the two ends of the relative size scale (nB/nA = 0.3

and nB/nA = 21.7). Hence, it appears that the reduction in the analytic survey

variance component is counterbalanced by the increase in the benchmark variance

components. The point at which the counterbalance occurs is a potential research

topic. The biases for the remaining EC jackknife variance estimators are numerically

close to the linearization estimators; however, the ECNJCm is positively biased for

nB/nA
∼= 0.3.

Values used to generate Figure 6.2 are provided in Table 6.5 for analytic survey

sample sizes of nA = 1, 000. The pattern in the relative biases for the domain ratio-

mean with nA = 1, 000 is closer to the pattern given for the domain totals shown

in Figure 6.1. This suggests that domain ratio-means may be more sensitive to

the variability in the EC benchmark controls in comparison with the other point

estimators studied here, and also sensitive to the number of simulation samples.

The empirical coverage rates for the 95 percent confidence intervals shown

in Table 6.6 range from 90.6 to 94.0 percent with many values (especially for

PDMED12M) falling below 93 percent. Minor fluctuations occur across the rel-

ative sizes of the benchmark survey for the domain ratio-means, the same trait

noted for the overall ratio-means. However, the coverage rates presented here, and
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Table 6.5: Percent Bias Estimates Relative to Empirical MSE for Five Variance

Estimators by Mean Outcome within the Hispanic Domain and Relative Size of the

Benchmark Survey to the Analytic Survey

Relative Size Relative Size

Outcome Variance nB/(nA = 1, 000) nB/(nA = 2, 000)

Variable Estimator 0.3 1.2 6.0 21.7 0.2 0.6 3.0 10.8

NOTCOV Näıve -5.1 -4.7 -6.8 -1.8 -8.4 -9.0 -3.8 -8.1

ECTS -0.6 -2.6 -5.3 -0.3 -2.6 -6.1 -1.5 -6.1

ECF2m -0.6 -2.6 -5.4 -0.4 -3.6 -7.1 -2.6 -7.1

ECMV -0.6 -2.7 -5.4 -0.5 -3.5 -7.1 -2.6 -7.1

ECNJCm 0.1 -2.5 -5.4 -0.5 -2.9 -7.0 -2.6 -7.1

PDMED12M Näıve -2.9 -6.8 -4.6 -1.7 -7.2 -4.3 -6.4 -2.4

ECTS -0.4 -5.6 -3.7 -0.9 -4.1 -2.4 -4.8 -0.9

ECF2m 0.5 -4.9 -2.9 0.0 -3.7 -2.1 -4.6 -0.7

ECMV 0.3 -4.9 -2.8 0.0 -4.0 -2.2 -4.7 -0.7

ECNJCm 1.1 -4.7 -2.8 0.0 -3.2 -2.0 -4.6 -0.7

Table 6.6: Empirical 95 Percent Coverage Rates for Five Variance Estimators by

Mean Outcome within the Hispanic Domain and Relative Size of the Benchmark

Survey to the Analytic Survey

Relative Size Relative Size

Outcome Variance nB/(nA = 1, 000) nB/(nA = 2, 000)

Variable Estimator 0.3 1.2 6.0 21.7 0.2 0.6 3.0 10.8

NOTCOV Näıve 93.2 92.9 92.5 93.0 92.6 91.8 93.2 92.7

ECTS 94.0 93.2 92.7 93.4 93.8 92.5 93.6 93.0

ECF2m 94.0 93.0 92.6 93.2 93.2 92.3 93.5 92.8

ECMV 93.7 93.0 92.6 93.3 93.5 92.2 93.4 92.7

ECNJCm 94.0 93.1 92.6 93.3 93.6 92.4 93.4 92.8

PDMED12M Näıve 91.6 90.6 91.4 91.1 90.9 92.3 92.0 91.7

ECTS 92.1 90.8 91.6 91.2 91.7 92.7 92.1 92.1

ECF2m 92.1 90.8 91.7 91.2 91.7 92.5 92.1 92.0

ECMV 92.1 90.8 91.7 91.2 91.5 92.5 92.1 91.9

ECNJCm 92.3 90.8 91.6 91.1 91.9 92.5 92.1 92.0
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Table 6.7: Percent Increase in Instability of Variance Estimates Relative to EC

Linearization Estimator (ECTS) by Mean Outcome within the Hispanic Domain

and Relative Size of the Benchmark Survey

Relative Size Relative Size

Outcome Variance nB/(nA = 1, 000) nB/(nA = 2, 000)

Variable Estimator 0.3 1.2 6.0 21.7 0.2 0.6 3.0 10.8

NOTCOV Näıve 2.1 0.9 0.6 0.5 2.8 1.3 0.9 0.8

ECF2m 1.7 1.8 1.5 1.5 2.2 1.5 1.5 1.4

ECMV 1.8 1.7 1.5 1.5 2.2 1.6 1.4 1.4

ECNJCm 2.2 1.5 1.6 1.5 2.4 1.5 1.4 1.4

PDMED12M Näıve 0.3 0.2 0.1 0.1 0.9 0.5 0.4 0.4

ECF2m 1.3 0.9 0.8 0.8 1.0 1.0 0.7 0.7

ECMV 1.0 0.8 0.9 0.7 0.8 1.0 0.7 0.7

ECNJCm 1.1 0.8 0.8 0.7 0.6 1.0 0.6 0.7

also in Table 6.3, are lower than the desired level of 95 percent. Further research is

needed in an attempt to improve the coverage rates for the EC domain estimators.

A comparison of the stability in the estimates (Table 6.7) again shows that the

ECTS variance estimator produces more stable estimates than any of the variance

estimators studied. Note that the decrease in stability for the EC variance estimators

is more consistent across the relative survey sizes in comparison with our other

analyses — see, for example, Table 5.5.

6.7 Summary of Research Findings

To summarize, the empirical results for estimated domain totals and ratio-

means mirror comments given for the corresponding overall estimates. The empirical

results for the EC calibration estimators are not as strong as in Chapters 4 and 5 but

233



the comparative differences still exist. We recommend against the use of traditional

calibration variance estimators for domain estimation. A theoretical and empirical

evaluation suggests that the underestimation can be sizeable. Use of the ECNJCm

method, when a complete benchmark covariance matrix is not accessible, is more

applicable to ratio-means than with estimated domain totals. The choice between

the EC linearization method (ECTS) and one of the EC jackknife methods (ECF2m

and ECMV) may be more related to preference of the analysis file structure. If design

variables are to be suppressed for disclosure avoidance, then either the ECF2m or

the ECMV will suffice.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Traditional methods are generally applied to calibration estimators even when

the assumptions, such as population benchmark totals and perfect sampling frames,

are violated. Our research presented in this dissertation examines the use of calibra-

tion control totals estimated from an independent (benchmark) survey on a different

(analytic) survey with units selected from an incomplete sampling frame. We label

this methodology as estimated-control (EC) calibration. As shown in the three re-

search chapters (Chapters 4, 5, and 6), traditional calibration variance estimators

under certain conditions fail to capture all of the variation associated with the sur-

vey estimates. Underestimation is most dramatic when the benchmark survey is

smaller than the analytic survey as demonstrated for estimated totals within and

across domains. Underestimation is also present for controls estimated from rela-

tively large benchmark surveys, though the level of bias is less pronounced than with

small benchmark surveys. Ratios of two estimated totals by domain and overall are

less affected by the size of the benchmark survey than population total estimators,

but some negative bias is still present. In addition to variance estimation, we define

235



a formula for the bias of the point estimators as a function of the benchmark con-

trol bias and the element-wise probabilities of being included on the analytic survey

sampling frame.

Taylor linearization and jackknife variance estimators are developed to address

the benchmark-control estimation and the sampling frame undercoverage error, as

well as the variation within the analytic survey data. The analytic sample is ob-

tained from a general design with primary sampling units selected with replacement

from within first-stage strata. Both types of EC calibration variance estimators are

adapted from prior research and are shown, both theoretically and empirically, to

be superior to formulae developed under the traditional weight calibration assump-

tions discussed in Chapter 2. Based on a comparison of the EC calibration variance

estimators, we recommend either the EC Taylor linearization variance estimator

(ECTS) or the modified Fuller jackknife variance estimator (ECF2m) for use with

EC calibration total and ratio-of-totals estimators when the complete control total

covariance matrix is available. The choice between the linearization and the repli-

cation variance estimators is related to the type of analysis data file to be produced.

When only the diagonal elements of the covariance matrix are available, the modi-

fied Nadimpalli-Judkins-Chu variance estimator (ECNJCm), a simplification of the

multivariate normal variance estimator (ECMV), may be used. However, unlike

levels seen for the ratio of two totals in our simulation studies, negative biases can

be substantial with the ECNJCm for the variance of estimated totals. The accom-

panying computer code written in Rr translates our research into practical tools for

the survey statistician.

236



Weight calibration continues to be an important instrument for survey re-

searchers, especially given the increased use of data collection modes not accessible

by all members of a population (e.g., Web surveys). EC calibration is a mecha-

nism that allows benchmarking to specialized control totals that are not available

in the large-scale surveys. The attempt to reduce bias through weight calibration

must be counterbalanced with the increase in variance properly captured with our

methodology.

7.2 Future Work

A basic framework for EC calibration is presented in the pages of this disser-

tation. However, EC calibration remains a rich source of research. The following is

a list of important questions generated by our current work:

1. What modification to the current coverage error component will make this

adjustment more robust?

2. Is there a threshold that exists to suggest when traditional variance estimators

are acceptable with EC calibrated estimators?

3. Is there a measure that will determine when a benchmark estimate is too

imprecise for use in EC calibration?

Extensions to our current work may address the following questions:

1. What are the degrees of freedom associated with statistical tests that use the

EC calibrated estimates?

237



2. What are the effects of nonresponse in one or both surveys on EC calibration?

3. How might non-sampling errors in both surveys change the properties of EC

calibrated estimators?

4. How might EC calibration for cross-sectional surveys and independent bench-

mark surveys be adapted for two-phase designs which may include dependent

benchmark controls and panel surveys?

5. Are the properties of balanced repeated replication (BRR) variance estimators

more favorable than the jackknife for EC calibration estimators?

6. What are the effects of EC calibration on point estimators other than totals

and ratios of two totals?

7. What are the theoretical and empirical properties of non-linear EC calibration

such as the logistic GREG (LGREG) estimators discussed in Duchesne (2003)?

8. What are the theoretical and empirical properties of constrained EC calibra-

tion?
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Chapter A

Simulation Programs

The simulation study programs are provided in the following sections. With

the exception of the SAS-callable SUDAANr program (Research Triangle Institute,

2004) included in the first section, the programs were written in Rr.

A.1 Calculate Benchmark Estimates

/********************************************************************/
/* Program: NHIS Covar.sas */
/* Name: J.Dever */
/* Date: 06/07/07 */
/* Purpose: Produce covariance matrix from NHIS data. */
/********************************************************************/
options nocenter pageno=1 errors=1 orientation=portrait nofmterr;

LIBNAME in "...\NHIS\Data2003\";
LIBNAME out "...\Dissertation\Programs\Data\";
LIBNAME outxp xport "...\Dissertation\Programs\Data\COVMATRX.xpt";

TITLE1 "Dissertation/JSM07 - NHIS Covariance Matrix";

*********************************************************************;
** Process NHIS Data Using SUDAAN. **;
*********************************************************************;
PROC CONTENTS DATA=in.PERSONSX; RUN cancel;

PROC SORT DATA=in.PERSONSX OUT=PERSONSX; BY STRATUM PSU; RUN;

PROC CROSSTAB DATA=PERSONSX DESIGN=WR DEFT2;
SETENV COLWIDTH=30 DECWIDTH=10;
WEIGHT WTFA;
NEST STRATUM PSU;
SUBGROUP R_AGE1 SEX;
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LEVELS 8 2;
TABLES SEX * R_AGE1;
PRINT /*NSUM WSUM COVWGT*/ / STYLE=NCHS;
OUTPUT / WGTCOV=ALL FILENAME=out.COVMATRX REPLACE;
RUN;

PROC PRINT DATA=out.COVMAT01; RUN;

*********************************************************************;
** Process Covariance Matrix. **;
*********************************************************************;
PROC CONTENTS DATA=out.COVMAT01; RUN cancel;

PROC PRINT DATA=out.COVMAT01 UNIFORM NOOBS;
VAR B011-B018 B020-B027 EST_ID IDNUM NCELL PROCNUM ROWNUM TABLENO;

RUN cancel;

DATA outxp.COVMATRX(KEEP=B011-B018 B020-B027);
SET out.COVMAT01;

** Subset to covar matrix, exclude "total" rows **;
IF IDNUM=2 &

ROWNUM in (11, 12, 13, 14, 15, 16, 17, 18,
20, 21, 22, 23, 24, 25, 26, 27);

RUN;

A.2 Generate Benchmark Covariance Matrices

#--------------------------------------------------------------------
# Program: Estimated Controls.R
# Name: J.Dever
# Date: 09/26/07
# Project: Dissertation / JSM07
# Purpose: Create object containing estimated controls from full
# 2003 NHIS public-use file randomly generated based on
# specified (adjusted) covariance matrix under a
# multivariate normal assumption. Original program
# entitled Random Controls2.R from NCHS project with
# R.Valliant, J.Kim updated for SURV699G - Weighting
# and Imputation final. Additionally revised to add
# variance of estimated overall total.
#--------------------------------------------------------------------

#Set working directory
rm(list=ls(all=TRUE))
setwd(".../Dissertation/Programs/Data/")
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#Load R libraries
require(MASS)
require(foreign)

#Random seed for MVnormal function
set.seed(82841)

#Maximum number of simulations
n.sims <- 5000

#--------------------------------------------------------------------
# Load SAS XPORT File Containing Covariance Matrix and Relabel
#--------------------------------------------------------------------

NHIS03.cov <- read.xport(".../Programs/Data/COVMATRX.xpt")
dim(NHIS03.cov)
NHIS03.cov

names(NHIS03.cov) <- c("R_AGE11.SEX1","R_AGE12.SEX1","R_AGE13.SEX1",
"R_AGE14.SEX1","R_AGE15.SEX1","R_AGE16.SEX1",
"R_AGE17.SEX1","R_AGE18.SEX1","R_AGE11.SEX2",
"R_AGE12.SEX2","R_AGE13.SEX2","R_AGE14.SEX2",
"R_AGE15.SEX2","R_AGE16.SEX2","R_AGE17.SEX2",
"R_AGE18.SEX2")

rownames(NHIS03.cov) <- c("R_AGE11.SEX1","R_AGE12.SEX1",
"R_AGE13.SEX1","R_AGE14.SEX1","R_AGE15.SEX1",
"R_AGE16.SEX1","R_AGE17.SEX1","R_AGE18.SEX1",
"R_AGE11.SEX2","R_AGE12.SEX2","R_AGE13.SEX2",
"R_AGE14.SEX2","R_AGE15.SEX2","R_AGE16.SEX2",
"R_AGE17.SEX2","R_AGE18.SEX2")

#--------------------------------------------------------------------
# Control Variables
#--------------------------------------------------------------------

control.vars <- as.data.frame(cbind(R_AGE1 = sort(rep(1:8,2)),
SEX = rep(1:2,8)))

control.vars <- control.vars[order(control.vars$SEX),]
control.vars

rownames(control.vars) <- c("R_AGE11.SEX1","R_AGE12.SEX1",
"R_AGE13.SEX1","R_AGE14.SEX1","R_AGE15.SEX1",
"R_AGE16.SEX1","R_AGE17.SEX1","R_AGE18.SEX1",
"R_AGE11.SEX2","R_AGE12.SEX2","R_AGE13.SEX2",
"R_AGE14.SEX2","R_AGE15.SEX2","R_AGE16.SEX2",
"R_AGE17.SEX2","R_AGE18.SEX2")

control.vars
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#--------------------------------------------------------------------
# Vector of Pop Totals from Edited NHIS Frame used in Simulations
#--------------------------------------------------------------------

NHIS03.popcts <- c(10148500, 27153554, 13901790, 40810498, 33082381,
4575653, 3714185, 6211982,
9707257, 25961781, 13867450, 41956867, 35164332,
5184382, 4701061, 9868567)

names(NHIS03.popcts) <- c("R_AGE11.SEX1","R_AGE12.SEX1",
"R_AGE13.SEX1","R_AGE14.SEX1","R_AGE15.SEX1",
"R_AGE16.SEX1","R_AGE17.SEX1","R_AGE18.SEX1",
"R_AGE11.SEX2","R_AGE12.SEX2","R_AGE13.SEX2",
"R_AGE14.SEX2","R_AGE15.SEX2","R_AGE16.SEX2",
"R_AGE17.SEX2","R_AGE18.SEX2")

NHIS03.popcts

#--------------------------------------------------------------------
# Overall Estimated Population Count and Variance
#--------------------------------------------------------------------

NHIS03.pop <- sum(NHIS03.popcts)
NHIS03.pop

NHIS03.popVar <- (2919389.5935)**2
NHIS03.popVar

#--------------------------------------------------------------------
# Adjustment Factor to Reduce Size of Random Control
#--------------------------------------------------------------------

rc.adj <- (21664 / sum(NHIS03.popcts))

NHIS03.adj.popcts <- round(NHIS03.popcts * rc.adj)
NHIS03.adj.cov <- as.matrix(NHIS03.cov) * (rc.adj**2)
NHIS03.adj.popVar <- NHIS03.popVar * (rc.adj**2)

NHIS03.pop.adj0 <- as.data.frame(rbind(NHIS03.adj.popcts,
t(control.vars)))

NHIS03.pop.adj0
sum(NHIS03.pop.adj0[1,])

cbind(NHIS03.adj.popcts, sqrt(diag(NHIS03.adj.cov)),
sqrt(NHIS03.adj.popVar))

#--------------------------------------------------------------------
# Generate Random Control Totals (Covariance Adjustment = 1.0)
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#--------------------------------------------------------------------

cm.adj1 <- 92000 / 92000
cm.adj1

NHIS03.cov.adj1 <- as.matrix(NHIS03.adj.cov) * cm.adj1
NHIS03.cov.adj1

MV.Norm <- round(mvrnorm(n=n.sims, mu=NHIS03.adj.popcts,
Sigma=NHIS03.cov.adj1))

NHIS03.pop.adj1 <- as.data.frame(rbind(as.data.frame(MV.Norm),
t(control.vars)))

NHIS03.pop.adj1[c(1:5, n.sims:nrow(NHIS03.pop.adj1)),]
rbind(NHIS03.adj.popcts, mean=apply(NHIS03.pop.adj1,2,mean),

min=apply(NHIS03.pop.adj1,2,min),
max=apply(NHIS03.pop.adj1,2,max),
se =sqrt(apply(NHIS03.pop.adj1,2,var)))

NHIS03.popVar.adj1 <- NHIS03.adj.popVar * cm.adj1
NHIS03.popVar.adj1

#--------------------------------------------------------------------
# Generate Random Control Totals (Covariance Adjustment = 3.6)
#--------------------------------------------------------------------

cm.adj2 <- 92000 / 25000
cm.adj2

NHIS03.cov.adj2 <- as.matrix(NHIS03.adj.cov) * cm.adj2
NHIS03.cov.adj2

MV.Norm <- round(mvrnorm(n=n.sims, mu=NHIS03.adj.popcts,
Sigma=NHIS03.cov.adj2))

NHIS03.pop.adj2 <- as.data.frame(rbind(as.data.frame(MV.Norm),
t(control.vars)))

NHIS03.pop.adj2[c(1:5,n.sims:nrow(NHIS03.pop.adj2)),]
rbind(NHIS03.adj.popcts, mean=apply(NHIS03.pop.adj2,2,mean),

min=apply(NHIS03.pop.adj2,2,min),
max=apply(NHIS03.pop.adj2,2,max),
se =sqrt(apply(NHIS03.pop.adj2,2,var)))

NHIS03.popVar.adj2 <- NHIS03.adj.popVar * cm.adj2
NHIS03.popVar.adj2

#--------------------------------------------------------------------
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# Generate Random Control Totals (Covariance Adjustment = 18)
#--------------------------------------------------------------------

cm.adj3 <- 92000 / 5000
cm.adj3

NHIS03.cov.adj3 <- as.matrix(NHIS03.adj.cov) * cm.adj3
NHIS03.cov.adj3

MV.Norm <- round(mvrnorm(n=n.sims, mu=NHIS03.adj.popcts,
Sigma=NHIS03.cov.adj3))

NHIS03.pop.adj3 <- as.data.frame(rbind(as.data.frame(MV.Norm),
t(control.vars)))

NHIS03.pop.adj3[c(1:5,n.sims:nrow(NHIS03.pop.adj3)),]
rbind(NHIS03.adj.popcts, mean=apply(NHIS03.pop.adj3,2,mean),

min=apply(NHIS03.pop.adj3,2,min),
max=apply(NHIS03.pop.adj3,2,max),
se =sqrt(apply(NHIS03.pop.adj3,2,var)))

NHIS03.popVar.adj3 <- NHIS03.adj.popVar * cm.adj3
NHIS03.popVar.adj3

#--------------------------------------------------------------------
# Generate Random Control Totals (Covariance Adjustment = 72)
#--------------------------------------------------------------------

cm.adj4 <- 92000 / 1250
cm.adj4

NHIS03.cov.adj4 <- as.matrix(NHIS03.adj.cov) * cm.adj4
NHIS03.cov.adj4

MV.Norm <- round(mvrnorm(n=n.sims, mu=NHIS03.adj.popcts,
Sigma=NHIS03.cov.adj4))

NHIS03.pop.adj4 <- as.data.frame(rbind(as.data.frame(MV.Norm),
t(control.vars)))

NHIS03.pop.adj4[c(1:5,n.sims:nrow(NHIS03.pop.adj4)),]
rbind(NHIS03.adj.popcts, mean=apply(NHIS03.pop.adj4,2,mean),

min=apply(NHIS03.pop.adj4,2,min),
max=apply(NHIS03.pop.adj4,2,max),
se =sqrt(apply(NHIS03.pop.adj4,2,var)))

NHIS03.popVar.adj4 <- NHIS03.adj.popVar * cm.adj4
NHIS03.popVar.adj4
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save.image(".../Programs/Data/Estimated Controls.RData")

A.3 Simulation Call Program

#--------------------------------------------------------------------
# Program: NOTCOV Hsp cadj1 n20.R
# Name: J.Dever
# Project: Dissertation / Sim Domains / Appendix Code
# Date: 11/03/08
# Purpose: Reduce code for dissertation appendix and text.
# Use random controls with variable=NOTCOV, covariance
# adjustment=1.0, and n_hi=20 for 2,000 simulation runs.
# Domain = Hispanic Race (HISCODI2=1)
#--------------------------------------------------------------------

#Set working directory
rm(list=ls(all=TRUE))
setwd(".../Dissertation/Programs/")

require(MASS) #Load R libraries
require(survey)
require(nlme)
memory.size() #Increase memory size
round(memory.limit()/1048576.0, 2)
memory.limit(size=2000)

#Sampling Frame, External Controls
source("nhis25.new.dmp")
attach("Estimated Controls.RData")

#Sim functions
source("Sim.ECPS.fcn")
source("Rep.VarEst.fcn")
source("chk.PS.fcn")
source("clus.sam.fcn")
source("cov.rate.fcn")

#--------------------------------------------------------------------
# Simulation program
#--------------------------------------------------------------------

NOTCOV.hsp.cadj1.n20 <- Sim.ECPS(pop =nhis25.new,
y.col ="NOTCOV",
y.val =1,
d.col ="HISCODI2",
d.val =1,
unit.id ="ID",

245



str.col ="new.str",
clus.id ="new.psu",
PS.col =c("R_AGE1", "SEX"),
nh =rep(2,25),
nh.sub =20,
substrat ="substrat",
sub.vals =1,
sel.meth ="ppswr",
no.sams =2000,
cov.prob =c(0.9,0.8,0.5,0.5,

0.8,0.9,0.9,0.9,
0.9,0.8,0.5,0.5,
0.8,0.9,0.9,0.9),

seed =81311,
m.cell =2,
ex.cntrls =T,
ex.cntrls.pop =NHIS03.pop.adj1,
ex.cntrls.cov =NHIS03.cov.adj1,
ex.cntrls.var =NHIS03.popVar.adj1,
cert.PSUs =T,
sam.prt =100)

rm("nhis25.new") #Eliminate pop file to save space
save.image("NOTCOV Hsp cadj1 n20.RData")

A.4 Primary Simulation Program

Sim.ECPS <- function(pop, y.col, y.val=1., d.col="ones", d.val=1.,
str.col, PS.col, clus.id, unit.id, nh, nh.sub,
substrat, sub.vals, sel.meth, no.sams, cov.prob,
seed, m.cell, ex.cntrls, ex.cntrls.pop,
ex.cntrls.start=0., ex.cntrls.cov, ex.cntrls.var,
PS.chk=F, cert.PSUs, sam.prt) {

# Simulation for poststratified estimates using estimated
# controls (ECPS). Original code taken from NCHS PS-cell collapse
# project with R.Valliant.
#
# pop = population
# y.col = variable for estimating total
# y.val = variable value for estimating total (convert
# to 0/1 variable)
# d.col = variable for conducting domain analysis
# d.val = variable value used in domain analyses
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# str.col = stratum column name or no.
# PS.col = poststratification column names or nos. PS
# can be defined as cross of several variables
# clus.id = cluster ID column name or no.
# unit.id = unique ID for unit of observation (person)
# nh = num of clusters sampled within each stratum
# (vector) If no substrata are used for
# sampling within clusters, nh.sub is single
# value, substrata var (sub.vals) should
# have same value for every unit
# nh.sub = sample size for each substratum (vector)
# substrat = substrata, column name or no.
# sub.vals = values taken by substrat variable
# sel.meth = method fo selecting clusters (ppswr or srs)
# no.sams = no. of samples
# cov.prob = response probability vector
# seed = seed for random no. generator
# m.cell = minimum cell size for no. of covered units
# ex.cntrls = T/F external controls used for wt adju
# ex.cntrls.pop = data file name with external control counts
# ex.cntrls.start = (start + sim no) = line in ex.cntrls.pop list
# used as controls,allows diff controls per prg
# ex.cntrls.cov = name of data file containing external control
# var-covar matrix
# ex.cntrls.var = var(Nhat.B) from benchmark survey
# PS.chk = T/F to run check on replicate algorithsm
# cert.PSUs = T/F if size>nh.sub, select all units w/in PSU
# sam.prt = how often to print current sample no,
# e.g., every 10, 25, 100, etc.
#
# Last Update: 11/03/2008 Old code removed from prog for appendix

set.seed(seed)
cat("begin ", date(), "\n")

#__________Initialization section____________________________________

# Variable containing all ones (default domain)
pop$ones <- rep(1, nrow(pop))

# Domain indicator
pop$delta.d <- as.numeric(pop[,d.col] == d.val)

# Analysis variable by domain indicator
pop$yd.col <- pop[,y.col] * pop$delta.d

# select units with nonmissing y
# Note: this will result in ID’s being nonconsecutive
# in the reduced pop after missing y’s eliminated
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pop <- pop[!is.na(pop[, "yd.col"]), ]
pop <- pop[, -1] # Put the ID’s back in order
ID <- 1:nrow(pop)
pop <- cbind(ID, pop)

N.PS <- prod(dim(table(pop[, PS.col]))) # No. poststrata

str.id <- unique(pop[, str.col]) # Stratum IDs

H <- length(str.id) # No. of design strata

# Error check on input specs
if (length(cov.prob) != N.PS) {

stop("length(cov.prob) != no. of PS\n")}
if (length(nh) != H) stop("length(nh) != H\n")
if (any(nh != 2)) stop("nh not 2 for all strata {

(chk.psu.dups only works for nh = 2)\n")}
if (any( table(pop[, str.col], pop[, clus.id]) < min(nh.sub)))

cat("At least one psu has fewer than nh.sub units\n")

G <- nrow(ex.cntrls.cov)
R <- sum(nh)
if(R < G) stop("Insufficient number of replicates\n")
if(N.PS != G) stop("Poststrata in survey and external controls are

not compatible\n")

# Analyses objects (totals)
out.tot <- matrix(0., nrow = no.sams, ncol = 12)
dimnames(out.tot) <- list(NULL, c(

"T.pop", #(Pseudo-)Pop total
"ECPS.tot", #PS estimated total
"PWR.tot", #Unadjusted estimated total
"Naive.tot", #SE - Traditional PS
"ECTSr.tot", #SE - Linear w/o trace
"ECF2.tot", #SE - Fuller method
"ECMV.tot", #SE - MV method
"ECNJC.tot", #SE - NJC method
"ECTSr.totcov", #SE (cov adj) - Linear
"ECF2.totcov", #SE (cov adj) - Fuller method
"ECMV.totcov", #SE (cov adj) - MV method
"ECNJC.totcov" #SE (cov adj) - NJC method

))
# Analyses objects (ratio means)

out.mu <- matrix(0., nrow = no.sams, ncol = 12)
dimnames(out.mu) <- list(NULL, c(

"P.pop", #(Pseudo-)Pop mual
"ECPS.mu", #PS estimated mual
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"Hajek.mu", #Unadjusted estimated mual
"Naive.mu", #SE - Traditional PS
"ECTSr.mu", #SE - Linear w/o trace
"ECF2.mu", #SE - Fuller method
"ECMV.mu", #SE - MV method
"ECNJC.mu", #SE - NJC method
"ECTSr.mucov", #SE (cov adj) - Linear
"ECF2.mucov", #SE (cov adj) - Fuller method
"ECMV.mucov", #SE (cov adj) - MV method
"ECNJC.mucov" #SE (cov adj) - NJC method

))

num.skip.sam <- 0.
n.clus <- sum(nh.sub) # units sampled w/ cluster
nh.cl = rep(n.clus, sum(nh)) # vector of units
n.tot <- sum(nh * nh.sub) # total sample size

sam.id <- vector("numeric", length = n.tot)
base.wts <- vector("numeric", length = n.tot)
y <- vector("numeric", length = n.tot)
no.PS <- vector("numeric", length = no.sams)

A <- c(0,cumsum(nh*sum(n.clus)))

#__________Pop tabs__________________________________________________

# Total y (level) by domain (level)
T.pop <- sum(pop[(pop[, y.col] == y.val) & (pop[, d.col] == d.val),

"ones"])

# Prop of Total y (level) within domain (level)
P.pop <- T.pop / sum(pop[(pop[, d.col] == d.val),"ones"])

# String of poststratum variable names
ps.for <- NULL
for (i in 1:length(PS.col)){
ps.for <- paste(ps.for, "+", PS.col[i])

}
# Code for ECF2 test

if(!ex.cntrls) {
PS.pop <- xtabs(as.formula(paste("~", ps.for)), data = pop)
PS.index <- array(1:length(PS.pop), dim = dim(PS.pop),

dimnames = dimnames(PS.pop) )
}

#____Frame needed to feed into postStratify function____
# 1st column is PS index, 2nd is pop counts in each PS
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if(!ex.cntrls) {
PS.pop.frm <- data.frame(PS.new1 = as.vector(PS.index),

Tot = as.vector(PS.pop) )
}

#____PS.new1 calc only works for 2-dimensional poststrata____

# Max level for 1st of 2 poststratum vars
maxI <- max(unique(pop[, PS.col[1] ]))

# Calculate poststratum IDs for pop file
PS.new1 <- maxI * (pop[, PS.col[2]]-1) + pop[, PS.col[1]]
pop <- cbind(pop, PS.new1)

# Sorted list of poststratum IDs
PS.all <- sort(unique(pop[, "PS.new1"]))
cov.mat <- matrix(0., nrow = no.sams, ncol = length(PS.all) )

#__________Simulation loop___________________________________________

for(i in 1.:no.sams) {

if((i %% sam.prt) == 0.) {
cat("i =", i, date(), "\n")

}
# Set switches for whether units are covered by frame

c.sw <- cov.rate(pop=pop, c.prob=cov.prob, cells="PS.new1")
keep.sw <- skip.sw <- empty.PS.sw <- FALSE

#__________Pop tabs for random controls______________________

if(ex.cntrls) {
# Identify external controls from generated list

pop.ext <- as.data.frame(t(ex.cntrls.pop[c((i + ex.cntrls.start),
(nrow(ex.cntrls.pop) - 1), nrow(ex.cntrls.pop)),]))

names(pop.ext)[1] <- "Tot"

PS.pop <- xtabs(as.formula(paste("~", ps.for)), data = pop.ext)
PS.pop <- PS.pop *

matrix(pop.ext[order(pop.ext[,PS.col[2]]),"Tot"],
nrow=nrow(PS.pop), ncol=ncol(PS.pop))

PS.index <- array(1:length(PS.pop), dim = dim(PS.pop),
dimnames = dimnames(PS.pop) )

# Process external controls
PS.pop.mrg <- as.data.frame(PS.pop)[,-3]
PS.pop.mrg$PS.new1 <- as.vector(PS.index)
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external.CTot <- pop.ext
external.CTot <- merge(PS.pop.mrg, external.CTot,

by.x=c(PS.col), by.y=c(PS.col))
if(nrow(external.CTot) == 0) {
stop("Frame / External Controls are not compatible.\n")}

# File of ext controls and associated poststratum IDs
PS.pop.frm <- external.CTot[order(external.CTot$PS.new1),]
PS.pop.frm <- PS.pop.frm[, c(3,4)]

}

#__________Draw simulation sample____________________________

while(!keep.sw) {
drop.sw <- NULL
for (h in str.id){

# Select sample from "covered" units only
poph <- pop[pop[,str.col]==h & c.sw,]
h.id<-(1:length(str.id))[str.id==h]
clus.dat.h <- clus.sam(pop =poph, clus.id =clus.id,

unit.id ="ID", n.cl =nh[h.id],
sel.meth =sel.meth, substrat=substrat,
n.substrat=nh.sub, sub.vals=sub.vals,
cert.PSUs =cert.PSUs)

sam.id[(A[h.id]+1):A[h.id+1]] <- clus.dat.h[[1]][,1]
base.wts[(A[h.id]+1):A[h.id+1]] <- clus.dat.h[[1]][,2]
drop.sw <- c(drop.sw, clus.dat.h[[3]])
drop.sw <- any(drop.sw)

if (any(drop.sw == TRUE)) {
cat("bad sample", "h=",h, "\n")

}
} #for h loop

#___Check for missing poststrata, cells with all missing
# units, or cells where nonmissing count is < nh.sub___

t1 <- pop[sam.id, ]
skip.sw <- chk.PS(sdat=t1, cl.all=PS.all, cl.col="PS.new1",

r.sw=c.sw[sam.id], min.size = m.cell)

if (skip.sw | drop.sw){
num.skip.sam <- num.skip.sam + 1

}

if(!(skip.sw | drop.sw)) {
# Create sample file
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sam.dat <- cbind(pop[sam.id, c(unit.id, str.col, PS.col,
"PS.new1", clus.id, y.col, "ones", "delta.d")])

# Binary version of categorical y with domain
sam.dat$bin.yvar <- as.numeric((sam.dat[,y.col] == y.val) *

sam.dat$delta.d)

# Assign cluster ID for 2 PSUs per stratum design
sam.dat[, clus.id] <- rep(c(rep(1,nh.sub), rep(2,nh.sub)), H)

# Max categories for analysis variable
y.level <- max(unique(sam.dat[,y.col]))

#__________Point estimates___________________________________

##### PWR/Hajek estimates #####

# NOTE: Will get warning message if zero occurrences of
# characteristic of interest with poststratum

sam.dsgn <- svydesign(id = as.formula(paste("~", clus.id)),
strata = as.formula(paste("~", str.col)),

weights = base.wts,
data = sam.dat, nest = TRUE)

PWR.tot <- svyby(as.formula(paste("~interaction(",y.col,")")),
as.formula(paste("~interaction(","delta.d",")")),
sam.dsgn, svytotal)

PWR.tot <- as.numeric(PWR.tot[PWR.tot[, 1] == 1, -1][y.val])

Hajek.mu <- svyby(as.formula(paste("~interaction(",y.col,")")),
as.formula(paste("~interaction(","delta.d",")")),
sam.dsgn, svymean)

Hajek.mu <- as.numeric(Hajek.mu[Hajek.mu[,1] == 1, -1][y.val])

##### Poststratified estimates - mean and total #####

PS.dsgn <- postStratify(sam.dsgn, strata = ~PS.new1,
population = PS.pop.frm, partial = T)

if(PS.chk == T) {
ECPS.tot.est <- as.matrix(PS.pop.frm$Tot)
ECPS.tot.SE <- 0.
ECPS.mu.est <- 0.
ECPS.mu.SE <- 0.

}
else {
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ECPS.tot <- svyby(as.formula(paste("~interaction(",y.col,")")),
as.formula(paste("~interaction(","delta.d",")")),
PS.dsgn, svytotal)

ECPS.tot.est <- as.numeric(ECPS.tot[ECPS.tot[,1]==1,
-1][y.val])

ECPS.tot.SE <- as.numeric(ECPS.tot[ECPS.tot[,1]==1,
-1][(y.val + y.level)])

ECPS.mu <- svyby(as.formula(paste("~interaction(",y.col,")")),
as.formula(paste("~interaction(","delta.d",")")),
PS.dsgn, svymean)

ECPS.mu.est <- as.numeric(ECPS.mu[ECPS.mu[,1] == 1,-1][y.val])
ECPS.mu.SE <- as.numeric(ECPS.mu[ECPS.mu[,1] == 1,-1][(y.val

+ y.level)])
}

PS.That <- svytable(as.formula(paste("~",PS.col[1],"+",
PS.col[2])), design = sam.dsgn)

PS.cnt <- xtabs(as.formula(paste("~",PS.col[1],"+",PS.col[2])),
data = sam.dat)

cov.mat[i, ] <- as.vector(PS.That/PS.pop)

# Extract g-weights
g.wts <- (1/PS.dsgn$prob) / base.wts

#__________Estimated Variance________________________________

##### Estimated-control Taylor Series variance #####

if(ex.cntrls) {
if(PS.chk == F) {

# Total est’d y within domain by poststratum
t.Aydg <- as.data.frame(svytable(as.formula(paste("~",

y.col, "+", "PS.new1", "+", "delta.d")),
sam.dsgn))

t.Aydg <- as.matrix(t.Aydg[(t.Aydg[,y.col] == y.val &
t.Aydg$delta.d == 1),"Freq"])

# Total est’d domain total by poststratum
t.ANdg <- as.data.frame(svytable(as.formula(paste("~",

"ones", "+", "PS.new1", "+", "delta.d")),
sam.dsgn))

t.ANdg <- as.matrix(t.ANdg[(t.ANdg$delta.d == 1),"Freq"])

# Est’d number in pop by poststratum
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N.Ag <- as.matrix(svyby(~ones, ~PS.new1, sam.dsgn,
svytotal)[,2])

# Control totals by poststratum
N.Bg <- as.matrix(pop.ext[,1])

# Est.s under traditional calibration
N.dgPSGR <- N.Bg * (1/N.Ag) * t.ANdg

# PS model coefficients
B.hat.A <- t.Aydg / N.Ag
B.hat.AN <- t.ANdg / N.Ag

##### Estimated-control TS variance w/coverage error #####

# Merge model coeff vectors onto sample file
betas <- as.data.frame(cbind(1:16, B.hat.A, B.hat.AN))
names(betas) <- c("PS.new1","B.hat.A","B.hat.AN")

resids <- merge(sam.dat[,c("PS.new1","bin.yvar",
"delta.d","ones")],

betas, by.x="PS.new1", by.y="PS.new1")

#_____ Sum squared residuals by poststratum (wt=base.wt) ____

# Numerator component
resids$sqrd.resid.num <- base.wts * (resids$bin.yvar -

resids$B.hat.A)^2
tot.resids.g.num <- as.matrix(by(resids$sqrd.resid.num,

resids$PS.new1, sum))

# Denominator component
resids$sqrd.resid.den <- base.wts * (resids$ones -

resids$B.hat.AN)^2
tot.resids.g.den <- as.matrix(by(resids$sqrd.resid.den,

resids$PS.new1, sum))

# Covariance component
resids$sqrd.resid.cov <- base.wts * (resids$bin.yvar -

resids$B.hat.A) *
(resids$ones - resids$B.hat.AN)

tot.resids.g.cov <- as.matrix(by(resids$sqrd.resid.cov,
resids$PS.new1, sum))

#____ Var component for coverage error ____

one.minus.phi <- (1 - N.Ag/N.Bg)
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one.minus.phi[one.minus.phi < 0] <- 0.

coverr.adj1.tot <- t(one.minus.phi) %*% tot.resids.g.num
coverr.adj1.mu <- t(one.minus.phi) %*%

(tot.resids.g.num + ECPS.mu.est^2 *
tot.resids.g.den - 2 * ECPS.mu.est *
tot.resids.g.cov)

##### Residualized ECTS variance #####

ECTSr.tot <- sqrt(ECPS.tot.SE**2 +
(t(B.hat.A) %*% ex.cntrls.cov %*% B.hat.A))

ECTSr.mu <- sqrt(ECPS.mu.SE**2 + (1/sum(N.dgPSGR))**2 *
((t(B.hat.A - ECPS.mu.est * B.hat.AN) %*%
ex.cntrls.cov %*% (B.hat.A - ECPS.mu.est *
B.hat.AN))))

#_____ Linear SEs for EC estimates with coverage component _____

ECTSr.totcov <- sqrt(ECTSr.tot**2 + coverr.adj1.tot)
ECTSr.mucov <- sqrt(ECTSr.mu**2 + (1/sum(N.dgPSGR))**2 *

coverr.adj1.mu)
}

##### Fuller (1998) Jackknife Method (Not Balanced) #####

#_____Eigenvalue decomposition_____

spec.decmp <- eigen(ex.cntrls.cov, symmetric=T)

#Calculate random components for calibration
#(columns of the z.matrix corresponds to z(r) in notes)

lambda <- matrix(spec.decmp$values, byrow=T,
nrow=nrow(spec.decmp$vectors),
ncol=ncol(spec.decmp$vectors))

z.matrix <- sqrt(lambda) * spec.decmp$vectors

#_____JK Adjustments_____

for(k in 1.:length(nh)) {
if(k == 1) { PSUs.rep <- c(rep(nh[k],nh[k])) }
else { PSUs.rep <- c(PSUs.rep, rep(nh[k],nh[k])) }

}
c.h <- sqrt(PSUs.rep / (PSUs.rep - 1))
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c.h <- matrix(rep(c.h, G), nrow=G, byrow=T)

R.h <- 1 / sqrt(H * PSUs.rep)
R.h <- matrix(rep(R.h, G), nrow=G, byrow=T)

#_____Replicate PS controls_____

col.order <- sample(1:R, R)

zero.matrix <- matrix(rep(as.matrix(rep(0,G)), R - G),
nrow=G)

z.adj <- cbind(zero.matrix, z.matrix)
z.adj <- z.adj[, col.order]

N.hats.B.FUL <- matrix(rep(PS.pop.frm$Tot, R), nrow=G) +
(z.adj * c.h)

#_____Matrix of PS group indicators_____

PS.matrix <- PSd.matrix <-
matrix(0., nrow=nrow(sam.dat), ncol=G)

for(k in 1.:G) {
PS.matrix[,k] <- as.numeric(sam.dat$PS.new1 == k)
PSd.matrix[, k] <- as.numeric((sam.dat$PS.new1 == k) &

(sam.dat$delta.d == 1))
}

#_____Matrix of PS group indicators x analysis var_____

if(PS.chk == T) { PS.yvar.mat <- PS.matrix }
else { PS.yvar.mat <- matrix(rep(sam.dat$bin.yvar, G), ncol=G)

* PS.matrix }

#_____Replicate weight adjustments_____

rep.dsgn <- as.svrepdesign(sam.dsgn, type="JKn")
JKn.adj.wts <- weights(rep.dsgn)

base.wts.R <- matrix(rep(base.wts, R), byrow=F, ncol=R)
g.wts.R <- matrix(rep(g.wts, R), byrow=F, ncol=R)

# Design wt * PSU subsmp wt
rep.wts <- base.wts.R * JKn.adj.wts

# (Design wt * g wt) * PSU subsmp wt
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rep.calib.wts <- (base.wts.R * g.wts.R) * JKn.adj.wts

#_____PS Slope estimates_____

for(k in 1.:R) {
# Numerator of beta.hat, per PS group

t.Aydg.rep <- t(PS.yvar.mat) %*% as.matrix(rep.wts[,k])

# Denominator of beta.hat, per PS group
N.Ag.rep <- t(PS.matrix) %*% as.matrix(rep.wts[,k])

# Denominator beta for ratio mean, per PS group
t.ANdg.rep <- t(PSd.matrix) %*% as.matrix(rep.wts[,k])

# Estimated domain totals per PS group
N.hat_Adg <- t(PSd.matrix) %*% as.matrix(rep.wts[,k])

if(k == 1) {
B.hat.Arep <- as.matrix(t.Aydg.rep / N.Ag.rep)
B.hat.ANrep <- as.matrix(t.ANdg.rep / N.Ag.rep)
N.hats.A <- as.matrix(N.Ag.rep)

}
else {
B.hat.Arep <- cbind(B.hat.Arep,

as.matrix(t.Aydg.rep / N.Ag.rep))
B.hat.ANrep <- cbind(B.hat.ANrep,

as.matrix(t.ANdg.rep / N.Ag.rep))
N.hats.A <- cbind(N.hats.A, as.matrix(N.Ag.rep))

}
}

#_____Coverage error variance component_____

#merge Hajek avg.s per poststratum onto sample file
betas <- as.data.frame(cbind(B.hat.Arep, B.hat.ANrep,

PS.new1 = 1:G))
resids <- merge(sam.dat[,c("PS.new1","bin.yvar","ones",

"delta.d")], betas, by.x="PS.new1",
by.y="PS.new1")

#sum of squared base-wtd residuals by PS (num, den, cov)
wtd.resids.R.num <- as.data.frame(cbind(PS.new1 =

resids$PS.new1, rep.wts * (resids$bin.yvar -
resids[,c(5:(4 + R))])^2))

tot.resids.gR.num <- gsummary(wtd.resids.R.num, sum,
groups=wtd.resids.R.num$PS.new1)

wtd.resids.R.den <- as.data.frame(cbind(PS.new1 =
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resids$PS.new1, rep.wts * (resids$ones -
resids[,c((5 + R):ncol(resids))])^2))

tot.resids.gR.den <- gsummary(wtd.resids.R.den, sum,
groups=wtd.resids.R.den$PS.new1)

wtd.resids.R.cov <- as.data.frame(cbind(PS.new1 =
resids$PS.new1, rep.wts * (resids$bin.yvar -
resids[,c(5:(4 + R))]) * (resids$ones -
resids[,c((5 + R):ncol(resids))])))

tot.resids.gR.cov <- gsummary(wtd.resids.R.cov, sum,
groups=wtd.resids.R.cov$PS.new1)

#sum of squared g-wtd residuals by PS (num, den, cov)
g.wtd.resids.R.num <- as.data.frame(cbind(PS.new1 =

resids$PS.new1, rep.calib.wts *
(resids$bin.yvar - resids[,c(5:(4 + R))])^2))

tot.resids.gR.g.num <- gsummary(g.wtd.resids.R.num, sum,
groups=g.wtd.resids.R.num$PS.new1)

g.wtd.resids.R.den <- as.data.frame(cbind(PS.new1 =
resids$PS.new1, rep.calib.wts * (resids$ones -
resids[,c((5 + R):ncol(resids))])^2))

tot.resids.gR.g.den <- gsummary(g.wtd.resids.R.den, sum,
groups=g.wtd.resids.R.den$PS.new1)

g.wtd.resids.R.cov <- as.data.frame(cbind(PS.new1 =
resids$PS.new1, rep.calib.wts *
(resids$bin.yvar - resids[,c(5:(4 + R))]) *
(resids$ones - resids[,c((5 + R):ncol(resids))])))

tot.resids.gR.g.cov <- gsummary(g.wtd.resids.R.cov, sum,
groups=g.wtd.resids.R.cov$PS.new1)

#varcomp for coverage error - fixed (per sample) N.hats.B
one.minus.phi.R <- (1 - N.hats.A /

matrix(rep(PS.pop.frm$Tot, R), nrow=G))
one.minus.phi.R[one.minus.phi.R < 0] <- 0.

#_____JK variance estimates_____

stdnorm.gR <- matrix(rnorm(G * R), nrow=G)

ECF2.method <- Rep.VarEst(
PS.chk = PS.chk,
N.hats.B = N.hats.B.FUL,
B.hat.Arep = B.hat.Arep,
B.hat.ANrep = B.hat.ANrep,
PSUs.rep = PSUs.rep,
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one.minus.phi.R = one.minus.phi.R,
tot.resids.gR.num = tot.resids.gR.num,
tot.resids.gR.den = tot.resids.gR.den,
tot.resids.gR.cov = tot.resids.gR.cov,
tot.resids.gR.g.num = tot.resids.gR.g.num,
tot.resids.gR.g.den = tot.resids.gR.g.den,
tot.resids.gR.g.cov = tot.resids.gR.g.cov,
c.h = c.h,
R.h = R.h,
stdnorm.gR = stdnorm.gR,
ECPS.tot = ECPS.tot.est,
ECPS.mu = ECPS.mu.est)

ECF2.tot <- ECF2.method$Rep.VarEst.tot
ECF2.totcov <- ECF2.method$Rep.VarEst.totcov
ECF2.mu <- ECF2.method$Rep.VarEst.mu
ECF2.mucov <- ECF2.method$Rep.VarEst.mucov
Vhat.B.ECF2 <- ECF2.method$Vhat.B.est

##### MV Normal Jackknife Method #####

MV.Norm <- t(mvrnorm(n=R, mu=rep(0, nrow(ex.cntrls.cov)),
Sigma=ex.cntrls.cov))

N.hats.B.MVN <- matrix(rep(PS.pop.frm$Tot, R), nrow=G, byrow=F)
+ c.h * R.h * MV.Norm

ECMV.method <- Rep.VarEst(
PS.chk = PS.chk,
N.hats.B = N.hats.B.MVN,
B.hat.Arep = B.hat.Arep,
B.hat.ANrep = B.hat.ANrep,
PSUs.rep = PSUs.rep,
one.minus.phi.R = one.minus.phi.R,
tot.resids.gR.num = tot.resids.gR.num,
tot.resids.gR.den = tot.resids.gR.den,
tot.resids.gR.cov = tot.resids.gR.cov,
tot.resids.gR.g.num = tot.resids.gR.g.num,
tot.resids.gR.g.den = tot.resids.gR.g.den,
tot.resids.gR.g.cov = tot.resids.gR.g.cov,
c.h = c.h,
R.h = R.h,
stdnorm.gR = stdnorm.gR,
ECPS.tot = ECPS.tot.est,
ECPS.mu = ECPS.mu.est)
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ECMV.tot <- ECMV.method$Rep.VarEst.tot
ECMV.totcov <- ECMV.method$Rep.VarEst.totcov
ECMV.mu <- ECMV.method$Rep.VarEst.mu
ECMV.mucov <- ECMV.method$Rep.VarEst.mucov
Vhat.B.ECMV <- ECMV.method$Vhat.B.est

##### Nadimpalli-Judkins-Chu (2004) Jackknife Method #####

SN <- matrix(rnorm(G * R), nrow=G)

N.hats.B.NJC <- matrix(rep(PS.pop.frm$Tot, R), nrow=G,
byrow=F) + c.h * R.h * SN *
matrix(rep(sqrt(diag(ex.cntrls.cov)), R),
nrow=G, byrow=F)

ECNJC.method <- Rep.VarEst(
PS.chk = PS.chk,
N.hats.B = N.hats.B.NJC,
B.hat.Arep = B.hat.Arep,
B.hat.ANrep = B.hat.ANrep,
PSUs.rep = PSUs.rep,
one.minus.phi.R = one.minus.phi.R,
tot.resids.gR.num = tot.resids.gR.num,
tot.resids.gR.den = tot.resids.gR.den,
tot.resids.gR.cov = tot.resids.gR.cov,
tot.resids.gR.g.num = tot.resids.gR.g.num,
tot.resids.gR.g.den = tot.resids.gR.g.den,
tot.resids.gR.g.cov = tot.resids.gR.g.cov,
c.h = c.h,
R.h = R.h,
stdnorm.gR = stdnorm.gR,
ECPS.tot = ECPS.tot.est,
ECPS.mu = ECPS.mu.est)

ECNJC.tot <- ECNJC.method$Rep.VarEst.tot
ECNJC.totcov <- ECNJC.method$Rep.VarEst.totcov
ECNJC.mu <- ECNJC.method$Rep.VarEst.mu
ECNJC.mucov <- ECNJC.method$Rep.VarEst.mucov
Vhat.B.ECNJC <- ECNJC.method$Vhat.B.est

}

#__________Save Results___________________________________

if(PS.chk == T) {
out.tot[i, ] <- c(as.vector(T.pop)[1], sum(ECPS.tot),

PWR.tot[1], rep(0,15))
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out.mu[i, ] <- c(as.vector(P.pop)[1], sum(ECPS.mu),
Hajek.mu[1], rep(0,15))

}
else {

out.tot[i, ] <- c(as.vector(T.pop)[1],
ECPS.tot.est, PWR.tot[1],
ECPS.tot.SE,
ECTSr.tot, ECF2.tot,
ECMV.tot, ECNJC.tot,
ECTSr.totcov, ECF2.totcov,
ECMV.totcov, ECNJC.totcov)

out.mu[i, ] <- c(as.vector(P.pop)[1],
ECPS.mu.est, Hajek.mu[1],
ECPS.mu.SE,
ECTSr.mu, ECF2.mu,
ECMV.mu, ECNJC.mu,
ECTSr.mucov, ECF2.mucov,
ECMV.mucov, ECNJC.mucov)

}

if(!skip.sw) {
keep.sw <- TRUE

}

} # skip.sw
} # keep.sw

} # no.sams

cat("end ", date(), "\n")
c.rate <- apply(cov.mat, 2, mean)
c.rate <- matrix(c.rate, nrow = dim(PS.pop)[1],

ncol = dim(PS.pop)[2], byrow = FALSE)

list(seed = seed,
num.skip.sam = num.skip.sam,
c.rate = round(c.rate,2),
Vhat.B.ECF2 = Vhat.B.ECF2,
Vhat.B.ECNJC = Vhat.B.ECNJC,
Vhat.B.ECMV = Vhat.B.ECMV,
out.tot = out.tot,
out.mu = out.mu)

}
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A.5 Replicate Variance Estimates

Rep.VarEst <- function(PS.chk, N.hats.B, B.hat.Arep, B.hat.ANrep,
PSUs.rep, one.minus.phi.R, tot.resids.gR.num,
tot.resids.gR.den, tot.resids.gR.cov,
tot.resids.gR.g.num, tot.resids.gR.g.den,
tot.resids.gR.g.cov, c.h, R.h, stdnorm.gR,
ECPS.tot, ECPS.mu) {

# General code to calculate replicate variance estimates
#
# PS.chk = T/F if code invoked to check reproduction
# of benchmark covar matrix
# N.hats.B = adjusted benchmark est’s specific to
# EC method
# B.hat.Arep = sample model coefficients (est’d total)
# B.hat.ANrep = sample model coefficients for
# denominator of (ratio) mean
# PSUs.rep = number of replicates per stratum
# one.minus.phi.R = coverage error adjustment
# tot.resids.gR.num = base-wtd sqrd residuals for numerator of
# ratio mean
# tot.resids.gR.den = base-wtd sqrd residuals for denominator of
# ratio mean
# tot.resids.gR.cov = base-wtd sqrd residuals for covariance of
# ratio mean
# tot.resids.gR.g.num = g-wtd sqrd residuals for numerator of
# ratio mean
# tot.resids.gR.g.den = g-wtd sqrd residuals for denominator of
# ratio mean
# tot.resids.gR.g.cov = g-wtd sqrd residuals for covariance of
# ratio mean
# c.h = sqrt(m_Ah / (m_Ah - 1))
# R.h = sqrt(1 / (H * m_Ah))
# stdnorm.gR = standard normal random values
# ECPS.tot = poststratified estimate of total
# (centering value)
# ECPS.mu = poststratified estimate of ration mean
# (centering value)

if(PS.chk == T) {
tot.reps <- N.hats.B * B.hat.Arep

for(k in 1.:R) {
if(k == 1) {
Vhat.B.cmp <- ((PSUs.rep[k] - 1) / PSUs.rep[k]) *

((tot.reps[,k] - ECPS.tot) %*%
t(tot.reps[,k] - ECPS.tot)) }
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else {
Vhat.B.cmp <- Vhat.B.cmp + ((PSUs.rep[k] - 1) / PSUs.rep[k]) *

((tot.reps[,k] - ECPS.tot) %*%
t(tot.reps[,k] - ECPS.tot)) }

}
Rep.VarEst.tot <- 0.
Vhat.B.cmp <- Vhat.B.cmp / no.sams
if(i == 1.) {Vhat.B.est <- Vhat.B.cmp}
else {Vhat.B.est <- Vhat.B.est + Vhat.B.cmp}

}
else {

#_____No coverage error component_____

#Estimated totals
tot.reps <- apply(N.hats.B * B.hat.Arep, 2, sum)

diff.vec <- as.matrix(tot.reps - ECPS.tot)
Rep.VarEst.tot <- sqrt(t(diff.vec) %*%

(diff.vec * as.matrix((PSUs.rep - 1) / PSUs.rep)))
Vhat.B.est <- 0.

#--------------------------------------------------------------------
#Estimated ratio means

Nhat.reps <- apply(N.hats.B * B.hat.ANrep, 2, sum)
mu.reps <- tot.reps / Nhat.reps
diff.vec <- as.matrix(mu.reps - ECPS.mu)
Rep.VarEst.mu <- sqrt(t(diff.vec) %*%

(diff.vec * as.matrix((PSUs.rep - 1) / PSUs.rep)))

#_____Coverage error component_____

#Estimated totals
coverr.adj1.tot <- one.minus.phi.R * tot.resids.gR.num[,-1]
coverr.adj2.tot <- one.minus.phi.R * tot.resids.gR.g.num[,-1]

#Estimated ratio means
coverr.adj1.mu <- one.minus.phi.R *

(tot.resids.gR.num[,-1] + ECPS.mu^2 *
tot.resids.gR.den[,-1] -
2 * ECPS.mu * tot.resids.gR.cov[,-1])

coverr.adj2.mu <- one.minus.phi.R *
(tot.resids.gR.g.num[,-1] + ECPS.mu^2 *
tot.resids.gR.g.den[,-1] - 2 * ECPS.mu *
tot.resids.gR.g.cov[,-1])

#Estimated totals
tot.reps.c1 <- apply(N.hats.B * B.hat.Arep +
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c.h * R.h * stdnorm.gR *
sqrt(coverr.adj1.tot), 2, sum)

diff.vec <- as.matrix(tot.reps.c1 - ECPS.tot)
Rep.VarEst.totcov <- sqrt(t(diff.vec) %*%

(diff.vec * as.matrix((PSUs.rep - 1)
/ PSUs.rep)))

#Estimated ratio means
Nhat.reps.c1 <- apply(N.hats.B * B.hat.ANrep +

c.h * R.h * stdnorm.gR *
sqrt(coverr.adj1.mu), 2, sum)

mu.reps <- tot.reps.c1 / Nhat.reps.c1
diff.vec <- as.matrix(mu.reps - ECPS.mu)
Rep.VarEst.mucov <- sqrt(t(diff.vec) %*%

(diff.vec * as.matrix((PSUs.rep - 1)
/ PSUs.rep)))

}

list(Rep.VarEst.tot = Rep.VarEst.tot,
Rep.VarEst.totcov = Rep.VarEst.totcov,
Rep.VarEst.mu = Rep.VarEst.mu,
Rep.VarEst.mucov = Rep.VarEst.mucov,
Vhat.B.est = Vhat.B.est)

}

A.6 Generate Analytic Survey Sampling Frames

cov.rate <- function(pop, c.prob, cells) {

# Assign coverage indicators at pop level. Written by R.Valliant.
#
# pop = population
# c.prob = vector of coverage probs - must be in the numeric
# order of coverage cells
# cells = name of col in pop that gives coverage cells

N <- nrow(pop)
Nc <- table(pop[, cells])
H <- length(unique(pop[, cells]))
cell.id <- sort(unique(pop[, cells]))
cell.list <- pop[, cells]

p.cov <- rep(0., N)
for(h in cell.id) {
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p.cov[cell.list == h] <- c.prob[(1:length(cell.id))[cell.id==h]]
}
c.sw <- (runif(N) <= p.cov)
c.sw

}

A.7 Select Analytic Survey Samples

clus.sam <- function(pop, clus.id, unit.id, n.cl, sel.meth, substrat,
n.substrat, sub.vals, cert.PSUs) {

# Select a two-stage cluster sample after randomizing order
# of the clusters. Code written by R.Valliant
#
# pop = population matrix
# clus.id = name / number of column for cluster identification
# unit.id = variable to indicate unique units of observation
# n.cl = no. of sample clusters
# sel.meth = "ppswr" for pps cluster sample
# = "srs" for simple random sample of clusters
# substrat = the substratum variable (HISP)
# n.substrat = a vector of sample sizes for substrat
# sub.vals = the values of substrat (for HISP = (0,1))
# cert.PSUs = T/F if size > nh.sub, select all units within PSU

Mi.vec <- table(pop[, clus.id])
M <- sum(Mi.vec)
N <- length(Mi.vec)#

#_____ Select sample of clusters _____

if(sel.meth == "ppswr") {
cl.sam <- sample(1:N, n.cl, replace = TRUE, prob = Mi.vec/M) }

if(sel.meth == "srs") {
cl.sam <- sort(sample(1:N, n.cl, replace = TRUE, prob = Mi.vec)) }

cl.sam.id <- names(Mi.vec)[cl.sam]
Mi.sam <- Mi.vec[cl.sam]

#_____ Calculate Cluster selection probabilities _____

if (sel.meth == "ppswr"){
phi <- n.cl*Mi.sam/M }
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#_____ Select subsamples from sample clusters _____

cl.sam.data <- matrix(0,nrow=n.cl*sum(n.substrat),ncol=2)
cc <- cumsum(c(0,n.substrat))
n.subtot <- sum(n.substrat)
N.hat <- NULL
drop.sw <- FALSE

for(i in 1:n.cl) {
sam <- match(as.numeric(pop[, clus.id]), cl.sam.id[i],

nomatch = 0)
sam[sam > 0] <- 1
sam.rows <- (1:M)[sam == 1]
phi.c <- rep(phi[i],n.subtot)
Mi.sub <- table(pop[sam.rows,substrat])
sam.id <- vector("numeric", sum(n.substrat))

for(ss in 1:length(n.substrat)) {
S1 <- sam.rows[pop[sam.rows, substrat]==sub.vals[ss]]

# Check that PSU pop count >= subsample size
if (n.substrat[ss] > length(S1)){
if(!cert.PSUs) {

cat("i=", i, "n.substrat[ss]=", n.substrat[ss],
"length(S1)=", length(S1),"\n")

cat("cl.sam", cl.sam, "\n")
drop.sw <- TRUE
phij <- 0.

}
else{

phij <- 1.
subsam.vec <- S1
sam.id[(cc[ss]+1):cc[ss+1]] <- pop[subsam.vec, unit.id]

}
}
else{
phij <- n.substrat/Mi.sub
subsam.vec <- sample(S1, n.substrat[ss])
sam.id[(cc[ss]+1):cc[ss+1]] <- pop[subsam.vec, unit.id]

}
}
phij.vec <- rep(phij,n.substrat)
wij.vec <- 1/(phij.vec*phi.c)
N.hat <- rbind(N.hat,by(wij.vec,names(wij.vec),sum))
cl.sam.data[((i-1)*n.subtot+1):(i*n.subtot),] <-
cbind(sam.id, wij.vec)

}
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list(cl.sam.data=cl.sam.data, N.hat=apply(N.hat,2,sum),
drop.sw=drop.sw)

}

A.8 Check Poststratum Sizes

chk.PS <- function(sdat, cl.all, cl.col, r.sw, min.size = 0) {

# Check to see whether all poststrata are in sample and have
# minimum sample sizes. Code written by R.Valliant.
#
# sdat = matrix of sample data
# cl.all = vector of all PS in pop
# cl.col = column of sdat for PS
# r.sw = vector of coverage indicators for sdat sample units
# min.size = minimum sample size allowed per poststratum

skip.sw <- FALSE

cl.sam <- unique(sdat[, cl.col])
if(!all(is.element(cl.all, cl.sam))) {
skip.sw <- TRUE

}

cnt <- table(sdat[, cl.col], as.numeric(r.sw))
if(any(cnt < min.size)) {
skip.sw <- TRUE

}
skip.sw

}

A.9 Simulation Analysis Program

ECPS.SimStats <- function(adj, pop.val, ds.name, estr="tot") {

# Calculate summary stats for simulation runs
#
# adj = covariance adjustment factor number
# pop.val = population estimate used in comparisons
# ds.name = name of data file containing sim results
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# estr = type of estimator

#_____Program parameters_____

max.col <- ncol(ds.name)

varnm.lst <- c("CovAdj", colnames(ds.name)[-c(1:3)])

#_____Absolute Biases of Point Estimates_____

AbsBias.Pt <- c(adj, apply(abs(ds.name[,c(2,3)] -
ds.name[,pop.val]), 2, mean, na.rm=T))

names(AbsBias.Pt)[1] <- "CovAdj"

#_____RelBiases of Point Estimates_____

RelBias.Pt <- c(adj, apply((ds.name[,c(2,3)] - ds.name[,pop.val]) /
ds.name[,pop.val], 2, mean, na.rm=T))

names(RelBias.Pt)[1] <- "CovAdj"

RelBias2.Pt <- c(adj, (apply(ds.name[,c(2,3)], 2, mean, na.rm=T) -
ds.name[1,pop.val]) / ds.name[1,pop.val])

names(RelBias2.Pt)[1] <- "CovAdj"

#_____Estimated Bias Ratios_____

biasratio.R <- (ds.name[, 2] - ds.name[, pop.val]) /
ds.name[, 4:max.col]

BiasRatio <- c(adj, apply(biasratio.R, 2, mean, na.rm=T))
names(BiasRatio) <- varnm.lst

biasratio.R <- abs(ds.name[1:10, 2] - ds.name[1:10, pop.val]) /
ds.name[1:10, 4:max.col]

absBiasRatio <- c(adj, apply(biasratio.R, 2, mean, na.rm=T))
names(absBiasRatio) <- varnm.lst

#_____Square Root of MSE_____

RtMSE <- c(adj, sqrt(apply((ds.name[,c(2,3)] - ds.name[,pop.val])^2,
2, mean, na.rm=T)))

names(RtMSE)[1] <- "CovAdj"

#_____Average Estimated SE_____

AvgSE <- c(adj, apply(ds.name[,4:max.col], 2, mean, na.rm=T))
names(AvgSE)[1] <- "CovAdj"
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#_____Stability of Estimated SE_____

StdErr.SE <- c(adj, sqrt(apply(ds.name[,4:max.col], 2,
var, na.rm=T)))

names(StdErr.SE)[1] <- "CovAdj"

#_____RelBias of Avg Estimated Variances to MSE_____

RelBias.Var.mse <- c(adj, (apply(ds.name[,4:max.col]^2, 2,
mean, na.rm=T) /
apply((ds.name[,rep(2, (max.col - 3))] -
ds.name[,pop.val])^2, 2, mean, na.rm=T) - 1))

names(RelBias.Var.mse)[1] <- "CovAdj"

#_____RelBias of Avg Estimated Variances to Var(t.hat)_____

var.t.hat <- var(ds.name[,2])
RelBias.Var.vrt <- c(adj, ((apply(ds.name[,4:max.col]^2, 2,

mean, na.rm=T) - rep(var.t.hat, (max.col - 3))) /
rep(var.t.hat, (max.col - 3))))

names(RelBias.Var.vrt)[1] <- "CovAdj"

#_____Estimated MSE_____

mse.R <- ds.name[,4:max.col]^2 + (ds.name[,rep(2, (max.col - 3))]
- ds.name[,pop.val])^2

RelBias.mse <- c(adj, (apply(mse.R, 2, mean, na.rm=T) /
apply((ds.name[,rep(2, (max.col - 3))] -
ds.name[,pop.val])^2, 2, mean, na.rm=T) - 1))

names(RelBias.mse)[1] <- "CovAdj"

#_____Simulation SE of Point Estimates_____

EmpSE <- c(adj, sqrt(apply(ds.name[,c(2,3)], 2, var, na.rm=T)))
names(EmpSE)[1] <- "CovAdj"

#_____Empirical 95% CI Coverage_____

t.stat <- (ds.name[,rep(2, (max.col - 3))] - ds.name[,pop.val])
/ ds.name[,4:max.col]

CI.Cov <- c(adj, apply(abs(t.stat) <= qt(0.975, df = 25), 2,
mean, na.rm=T))

names(CI.Cov) <- varnm.lst

#_____Coefficient of Variation_____
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CV.var <- c(adj, sqrt(apply(ds.name[,4:max.col], 2, var, na.rm=T))
/ apply(ds.name[,4:max.col], 2, mean, na.rm=T))

names(CV.var) <- varnm.lst

list(AbsBias.Pt = AbsBias.Pt,
RelBias.Pt = RelBias.Pt,
RelBias2.Pt = RelBias2.Pt,
BiasRatio = BiasRatio,
absBiasRatio = absBiasRatio,
RtMSE = RtMSE,
AvgSE = AvgSE,
StdErr.SE = StdErr.SE,
RelBias.Var.mse = RelBias.Var.mse,
RelBias.Var.vrt = RelBias.Var.vrt,
RelBias.mse = RelBias.mse,
EmpSE = EmpSE,
CI.Cov = CI.Cov,
CV.var = CV.var)

}
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