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Sample weight calibration, also referred to as calibration estimation, is a widely
applied technique in the analysis of survey data. This method borrows strength from
a set of auxiliary variables and can produce weighted estimates with smaller mean
square errors than those estimators that do not use the calibration adjustments.
Poststratification is a well-known calibration method that forces weighted counts
within cells generated by cross-classifying the categorical (or categorized) auxiliary
variables to equal the corresponding population control totals.

Several assumptions are critical to the theory developed to date for weight
calibration. Two assumptions relevant to this research include: (i) the control totals
calculated from the population of interest and known without (sampling) error;
and (ii) the sample units selected for the survey are taken from a sampling frame
that completely covers the population of interest (e.g., no problems with frame
undercoverage).

With a few exceptions, research to date generally is conducted as if these

assumptions hold, or that any violation does not affect estimation. Our research



directly examines the violation of the two assumptions by evaluating the theoretical
and empirical properties of the mean square error for a set of calibration estimators,
newly labeled as estimated-control (EC) calibration estimators. Specifically, this dis-
sertation addresses the use of control totals estimated from a relatively small survey
to calibrate sample weights for an independent survey suffering from undercoverage
and sampling errors. The EC calibration estimators under review in the current
work include estimated totals and ratios of two totals, both across all and within
certain domains. The ultimate goal of this research is to provide survey statisticians
with a sample variance estimator that accounts for the violated assumptions, and

has good theoretical and empirical properties.
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Chapter 1

Statement of Work

Sample weight calibration, also referred to as calibration estimation, is a tech-
nique widely applied throughout the survey research world. This method borrows
strength from a set of auxiliary variables which in general results in weighted es-
timates with smaller mean square errors (MSE = variance + squared bias) than
those which do not use the calibration adjustments. Reduction in MSE is related
to the association between the auxiliary and analysis variables. Poststratification is
a well-known calibration method that forces weighted counts within cells generated
by cross-classifying the categorical (or categorized) auxiliary variables to equal the
corresponding population counts. These counts are also known as control totals or
benchmark controls. If the population cell counts are unavailable, the estimated
and true marginal counts are equalized through iterative proportional fitting (i.e.,
raking) or other regression techniques.

Several assumptions are critical to the theory developed to date for weight
calibration. Some of these assumptions are explicitly stated in the literature, while
others are more implicit and identified based on the theoretical evaluations pre-
sented. The assumptions include, for example: (i) the control totals are calculated

from the population and known without sampling or other errors (e.g., measure-



ment); (i) the sample units selected for the survey are taken from a sampling frame
that completely covers the population of interest (e.g., no missing population units
resulting in undercoverage problems); and (4i¢) the survey requiring calibration does
not suffer from nonsampling errors such as nonresponse (e.g., 100 percent response
rate) or measurement error (i.e., data values are given and recorded accurately).
With a few exceptions, research to date generally is conducted by assuming
that these theoretical requirements hold or that any violation of these assumptions
is minimal and does not impact estimation. Our research examines the effects of
violating several assumptions on the theoretical properties and empirical MSE es-
timates of calibrated estimators. Specifically, we address the use of control totals
estimated from a potentially small survey to calibrate sample weights for a survey
suffering from undercoverage and sampling errors. We label this weighting method-
ology as estimated-control (EC) calibration. Our methods will be extended at a later
date to address the effects of nonresponse and measurement error. Estimated totals
and ratios of two totals, both across all and within certain domains, are of particu-
lar interest to our research. Ultimately our goal is to develop one or more variance
estimators that account for the violated assumptions, thereby translating our theo-
retical findings into practical applications for survey statisticians. The association
between the analysis variables and auxiliary variables is assumed to be adequately
modeled through a linear regression (i.e., linear calibration). Other estimators such
as regression coefficients and non-linear calibration are reserved for future research.
The results obtained from our current research expand the body of knowledge

on weight calibration and are presented in the subsequent chapters. We provide



a brief overview of the extensive research conducted to date in Chapter 2 as it
relates to our work. Chapter 3 details the scope of our research including notation,
assumptions for the theoretical evaluation, and data used to generate the empirical
results. We begin in Chapter 4 with the development and evaluation of bias and
variance estimators for (overall) estimated population totals. A similar structure is
used in Chapter 5 to present findings for ratios of two estimated totals. Domain
estimation for both totals and ratios is discussed in Chapter 6. Chapter 6, as
do Chapters 4 and 5, begins with theory and then proceeds to a summary of the
empirical results from a simulation study. We conclude the dissertation in Chapter
7 with a overall summary of our findings and a map for our future endeavors on

weight calibration.



Chapter 2

Historical Perspective

The discussion of calibration estimation below begins with an overview of the
extensive literature on traditional weight calibration in which control totals are as-
sumed to be fixed population values. We label this methodology as “traditional”
to distinguish it from the weight calibration discussed later in this chapter. Where
appropriate, we point to issues reserved for future research in comparison to areas
covered by our current work. We focus on a specific set of calibration estimators for
population totals and ratios of two totals (Section 2.1), and discuss the theoretical
properties of these point estimators in Section 2.2. As reiterated throughout the
text, literature related to weight calibration using survey-estimated controls, here-
after referred to as estimated-control (EC) calibration, does exist but is sparse. A
discussion of the current techniques for calibration variance estimation follows in
Section 2.3. We conclude this chapter with issues related to domain-specific cali-

bration estimation (Section 2.4).

2.1 Calibration Estimators

Calibration estimators, a label first used by Deville & Sarndal (1992), identify

a class of estimators that borrow strength from auxiliary information to improve the



efficiency of survey estimates over more traditional weighting methods such as simple
inverse probability weighting. When the G (G > 1) auxiliary variables are strongly
related to a survey outcome (y), the corresponding calibration estimate will be very
efficient. However, we can not expect a high level of association between the auxiliary
variables and every outcome measured in the survey, so that the efficiency will
naturally vary. We briefly compare this efficiency against levels for other estimators
in the next section.

Calibration estimators are used in all types of surveys. These include, for
example, large U.S. government surveys, such as the Consumer Expenditure Survey
(see, e.g., Jayasuriya & Valliant, 1996) and the National Health Interview Survey
(National Center for Health Statistics, 2006); surveys of specialized populations,
such as the U.S. Department of Defense (DoD) Survey of Health Related Behaviors
among Military Personnel (Bray et al., 2003); and a myriad of surveys outside the
U.S. including the Canadian Retail Trade Survey (see, e.g., Hidiroglou & Patak,
2006), the Swedish Labour Force Survey (Sweden, 2005), and the British Household
Panel Survey (Taylor et al., 2007).

Weight calibration is used to correct survey estimates for sampling frame prob-
lems such as undercoverage and to reduce errors associated with sampling and non-
response (see, e.g., Sarndal et al., 1992; Kott, 2006). Undercoverage occurs when the
sampling frame fails to contain all units for the population under study (see, e.g.,
Lessler & Kalsbeek, 1992). For example, estimates from the Behavioral Risk Fac-
tor Surveillance System (BRFSS), a nationwide random-digit-dial (RDD) telephone

survey conducted by the U.S. Centers for Disease Control and Prevention (CDC),



are calibrated (i.e., benchmarked or poststratified) to population counts that include
households with and without landline telephone service (Centers for Disease Control
and Prevention, 2006). Preliminary results from the 2007 National Health Interview
Survey (NHIS) suggest that approximately 15.8 percent of American homes prefer
wireless communications and no longer have a landline service (Blumberg & Luke,
2008). If population values are different for the covered and not-covered groups and
the proportion not covered is sizeable, then estimates obtained from the BRFSS can
have non-trivial levels of error without the use of corrective methods such as calibra-
tion. Groves (1989, Section 3.2) provides the following formula for undercoverage

error associated with a linear estimator:

Nnc

0.~ 0=~

where 0 is the true value for a population of size N; 6. and 60,,. are the popula-
tion values for covered and not-covered subsets of the population, respectively; and
N,/N is the proportion of the population not covered by the sampling frame.
The calibrated weight wy, is composed of the original design weight 7rk_1, the
inverse of the sample inclusion probability for the k' unit of observation, multiplied
by a calibration-adjustment factor a,. Traditional weight calibration assumes that
the analytic survey (i.e., the survey requiring weight calibration) has no nonresponse.
In practice, however, a separate adjustment for nonresponse may also be applied to
the design weights. Calibrated weights are historically calculated by minimizing a

specified function that measures the distance between wy and 7rk_1. The distance



function, F(wy, '), is minimized subject to a set of calibration constraints (or

calibration equations) defined as:

where t, = > ., % = [t1,...,tg)" is the vector of population control (benchmark)
totals corresponding to G chosen (auxiliary) survey variables, and x is a vector of
length G containing either analytic survey (k € s4) or benchmark (k € U) values.
The vector x may include a column of ones (z = 1) for constrained estimation of
the overall population size, ones and zeros to indicate the presence or absence of a
characteristic (e.g., age 18-25 or gender), or larger values (e.g., number of children,
or household income). The calibration system (distance function and calibration

constraints) results in calibration weights of the form

Wy = 7Tk_1 Fﬁl(Xk, )\, Ck) (23)

where F7! is the inverse function of OF/dwy, the first derivative of the distance
function taken with respect to the calibrated weight; A is the G-length vector of
Lagrange multipliers that satisfies the calibration constraints (2.2) given the design
weights ﬂ,;l; and ¢y is a value associated with the estimator of choice.

The distance function, F' (wk,ﬁk_l), can take multiple forms but is generally
chosen from a class of functions that are monotonic and twice-differentiable (Deville

& Sérndal, 1992). Several of these distance functions are discussed in Deville &



Sérndal (1992), Huang & Fuller (1978), and Singh & Mohl (1996). Empirical studies
such as those in Singh & Mohl (1996) and Stukel et al. (1996) show that the specific
choice of the distance function does not greatly affect either the point or variance
estimates, provided that the data are complete (i.e., no missing values). They
suggest that the choice of the particular distance function is often more related to
personal preference for the resulting estimator or to the structure of the control
totals than to an optimality justification.

Deville & Séarndal (1992), by contrast, point to potential problems with five
commonly used distance functions. For example, the generalized least squares (GLS)

distance function

D (wp — )20t (2.4)

kesa
also known as the average or chi-square distance function, generates a closed-form
solution to the minimization problem but can result in one or more negative weights.
Practitioners consider negative weights to be highly undesirable because they do
not have the intuitive interpretation present for inverse-probability weights, i.e., wy,
provides the number of units represented in the population by the results collected
for the k' sample unit.

To remedy the problem of negative weights, Deville & Sarndal (1992) proposed
two additional distance functions (Cases 6 and 7 in their article). These distance
functions are constrained to produce calibration-adjustment factors (ax = wy, X ),
referred to as a g-weight in Section 6.5 of Sérndal et al. (1992), that fall within a

range of values specified by the researcher (e.g., lower bound greater than zero and



upper bound less than some extreme value). Calibration with constrained weight-
adjustment factors is widely applied through existing software such as a quadratic
or optimization programming routine from IMSL used by Isaki et al. (2004); the
generalized exponential modeling (GEM) software developed by Folsom & Singh
(2000) using SAS® IML; and the calibrate function in the R® language survey
library (R Development Core Team, 2005). Even with its popularity, theory to
date has been developed under the assumption that the distance function produces
nicely behaved weights because bounding complicates the theory. We shall follow
this direction with our current research and plan to address constrained a;’s in our
future EC calibration work.

Returning to expression (2.4), the ¢;’s are positive “weights” unrelated to the
design weights that are chosen to generate specific types of estimators (Estevao &
Sarndal, 2000; Lundstrom & Sarndal, 1999; Stukel et al., 1996; Tracy et al., 2003).
This property is related to the popularity of the GLS distance function. For example,
Cp = x,;l for a model that relates the outcome variable y to a single auxiliary variable

z with Var.(yy) = 021, and motivates the ratio estimator of a population total

- -1
A / LT
b =t (12) = T (—Z : yk).

-1
ZkEsA 7Tk Lk

Estimates, as opposed to population values, are identified in formulae in this and
subsequent chapters by the “hat” notation. For example, t, is a population total of
¢ while £ 4, is the corresponding estimated total from the analytic survey data.

Not all distance functions produce a closed-form solution as with the GLS;



some functions require iterative procedures to solve the calibration system. For
example, the raking ratio (or iterative proportional fitting) distance function, defined
as F(wy, ") = ey, [wemk(In(wymy) — 1) + 1], requires iteration techniques to
calculate the estimates. This distance function, however, does guarantee positive
calibrated weights. Iterative methods are easily applied in practice but complicate
the theoretical development of new techniques because a closed-form solution is
not available. Therefore, such distance functions have limited use in our current
research.

The GLS distance function (2.4) is also referred to as a linear distance function
because the resulting inverse function (F~!) is linear only in the auxiliary variables
(x). The benefit of such a property is that the resulting calibrated analysis weights
are functions only of the auxiliary variables and not any of the outcome variables. In
other words, one set of final analysis weights is created instead of requiring weights
specific to each variable within a set of key outcome variables. This feature is of
particular interest to organizations that produce analysis files for use either by the
public or by client agencies. For example, minimizing the GLS distance function
subject to the controls in (2.2) with ¢, = 1 (i.e., Var(yx) = %) generates the well-
known generalized (linear) regression estimator (GREG). The GREG of a population

total is calculated as follows, using the traditional calibration assumptions noted in
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Chapter 1:

lyrrRGR = E WrYk

k€sa
= Z amk’lyk
k€sy
~1
— Z 1+ (tx — f:Ax)l <Z ﬂllxlxg) XJ; ﬂglyk (2.5)
k€sy l€sa

where the vector of Horvitz-Thompson (HT) auxiliary variable estimates, ta =
ZSA W,;lxk = [fAl, e fAG]/, corresponds to the G-length vector of population con-
trols t, (Horvitz & Thompson, 1952). Here we see that the calibration-adjustment
factor a, = 1+ (tm — f:Am)l (ZlGSA ﬂflxlxg)_l X}, is a function of the population con-
trol total vector (t,), the vector of estimated totals (t,), the auxiliary variables
(x), and the design weights (7, '), but not the outcome variable y. Hence, this same
set of calibrated weights can be used with any analysis variable.

Generation of estimators by minimizing a distance function is labeled as the
calibration approach, while another method is referred to as “GREG thinking” or
the regression approach (Sarndal, 2007). With the regression approach, estimators
are calculated by way of an assisting model that closely represents the relationship
between the outcome variable (y) and the auxiliary variables (x). The assisting
model is also referred to as the calibration model or the working prediction model
by Kott (2006) to distinguish it from other models such as those used to address
response propensity. The model is labeled as “assisting” or “working” because we do

not assume equivalence with the true (unknown) underlying population model. The

11



size of the residuals measures the effectiveness of the model; the benefits of small
residuals are highlighted in Section 2.3. Therefore, t,rrqr in (2.5) is equivalently
justified as follows using a linear assisting model such that E.(y;) = x;,B and
Var (yx) = 0%, where E. and Var, represent the expectation and variance evaluated

with respect to the specified working model:

A~

fyTRGR = fAy + (t; — ta)Ba. (2.6)

The HT estimator of y is defined as ¢ Ay = ZkGSA W,?lyk, a function of the outcome

variable and the design weights. The model coefficient vector

-1
B, = Z Wflxlxgl Z X5 Y (2.7)

I€sy k€sp

is calculated based on the specification of a working model, y, = x|.B + Ej, and is
approximately design unbiased for the corresponding population parameters B =
> e nglrl > keu XkYk (see, e.g., Result 5.10.1 in Sérndal et al., 1992), under an
assumption of complete response and no sampling frame error. It is also assumed
that the matrix >, ., m 'x;x) of dimension G is nonsingular so that the inverse
exists. Finally, a = 1+(tx_£Ax)/(ZzEsA T 'xx}) 7%}, is the calibration-adjustment
factor, thus demonstrating the equivalence of (2.5) and (2.6).

Another special case of the traditional GREG estimator, which is well-known

and widely applied, is the poststratified estimator. Using the assisting-model ap-

proach, these estimators are generated under the group-mean (linear) assisting
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model defined by E.(yx) = B, and Var:(yx) = 03 for units within eachof g =1,.... G
poststrata. A single auxiliary variable is used in the model which indicates unit
membership in the mutually exclusive poststrata. Thus, B, = y,, the average of
y in poststratum g. The poststratified estimator of a population total, sometimes
referred to as a ratio estimator, is calculated as follows again using the traditional

calibration assumptions:

~

G t
n Ayg
lyrrPs = E Ny —

g=1 NAQ
&
SN [26]
g=1 k€sa
G A
. [z Ngwg;égk]
kesa Lg=1
G
= ZZakﬁglyk. (2.8)
k€sp g=1

The number of (true) population units in the g'* poststratum is denoted as N,. The
poststratum sizes estimated from the analytic survey N g are calculated by summing
the design weights across primary sampling units (PSUs) and design strata for units
within each poststratum, i.e., ZkGSAg = > kesa Sy . Though a simplified
notation is used, ¢ Ayg Tepresents the HT estimated total of y within poststratum
g calculated under the analytic survey sampling design. The zero/one variable 6
identifies members of poststratum ¢ (ss,) from within the complete sample (s4).
The ratio Ayg/ N 4g 1s widely referred to as a combined ratio estimator when the

components are calculated by summing across the analytic survey design strata,
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i.e., the poststrata cross the design strata. The calibration-adjustment weights for
tyrrps are calculated as aj, = ZQG:1 Sgk(Ny/Nag) = (Ny/Nag).

Other less prominent forms of the GREG are also found in the literature.
The functional form approach discussed in Estevao & Sérndal (2000), referred to
as the instrumental vector method in Sarndal (2007), generalizes the GREG to
include a vector of instrumental variables z; in addition to the set of auxiliary
variables x;, (see also Kott, 2006). This method is strictly applied through the
regression approach by requiring that the calibrated weights have the form wy, =
7. ' F(zy,X3), where F() is any monotonic, twice-differentiable function. Note that
the change from the design to the calibrated weights is not minimized as with
the original approach proposed by Deville & Sérndal (1992). The instrumental
variables are incorporated into fyTRGR, for example, through the assisting-model
coefficients B, = [ZZESA Wflzlxﬂ_l ZkGSA zm;, 'yr. Using this method, Estevao
& Sérndal (2004, Result 8.1) determined the set of optimal instrumental variables
which minimizes the asymptotic variance of the calibration estimator calculated for

a general sampling design:

- —1_—1 -1
Rk(opt) = Tk E (T m " — )X
l€sy

[ units in the analytic

where 7 is the joint inclusion probability for the £ and
survey sample. Though minimal variance is always desirable, we choose to focus on

more traditional calibration weights within our current research.

The association between the outcome variable y and the auxiliary variables z
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may not be best represented through a linear model as with the GREG. Lehtonen &
Veijanen (1998) proposed logistic generalized regression estimators (LGREGs) for
use with binary outcome variables. The LGREG of a population total, as presented

in Duchesne (2003), is calculated as:

tyLoree = Z fie + Z e (Yr — fur) (2.9)

keU kEsa

where i, = exp(x,B4)/(1 + exp(x,B4)), the predicted values from the logistic
model of x on y such that 0 < ji; < 1 by definition. As alluded to in Sarndal
(2007), LGREG weights are outcome variable specific which removes the “GREG
advantage” of a single set of analysis weights. Additionally, the simulation study
results presented by Lehtonen & Veijanen (1998) suggest that the empirical differ-
ences for GREG and LGREG estimators do not differ by appreciable levels. Given
these two points, we will reserve LGREG estimators for future research.

In our discussions so far, we have emphasized the adjective traditional when
discussing weight calibration. This is to distinguish it from calibration to estimated
control totals. In practice, population totals or counts that are unknown are ideally
estimated from independent, high-quality surveys with large sample sizes and neg-
ligible sampling and non-sampling errors. Because the calibration system requires
estimates from more than one survey, we label the benchmark survey as the control
total source, and the analytic survey as the survey requiring calibration. Given the
practical issues with weight calibration, we rephrase the estimated total formulae

presented previously using notation that is relevant to our research. The GREG

15



of a population total, using control totals from one or more benchmark surveys, is

defined as:

LtyGREG = fAy + (tpe — wa)'BA (2.10)

using components defined in (2.6), e.g., By = [ZIESA ﬂflxlx;]_l D kesa X7 Y-
The only difference from expression (2.6) is to replace the population control-total
vector t, with a vector produced from the benchmark survey(s), tz,. We do not use
the hat notation for this vector due to the assumption that the control totals are
estimated with negligible sampling variance. In other words, the population covari-
ance matrix for tp,, Cov (tp,) = Vp, is presumed to contain values close enough
to zero to support the claim Vg = 0, a matrix of zeros. The calibration-adjustment
weights for fyGREG are calculated as a;, = 1 + (th — fo)/ (ZZGSA Wflxlxg)flxk.
These estimators are generated using either the calibration approach by minimizing
the GLS distance function (2.4) subject to the constraints tp, = )., WXy, or
the regression approach through the linear model specified for expression (2.6), i.e.,
E(yx) = x,B and Var.(y;) = o>

The corresponding poststratified estimator of a population total, defined by a

slight relaxation of the population control total assumption, is calculated as:

G ~

) fa

typsar =Y Npg =2 (2.11)
g=1 NAH

where Np, is the benchmark survey count within poststratum g. The remaining

terms are defined in expression (2.8). The poststratified estimator can be expressed
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In matrix notation as:

~

/ NT—1 2
typsar = N N~ ty,

where Ng = [Npy, ..., Npg]', a G-length vector of benchmark survey totals by post-
strata; Nyisa G x G diagonal matrix with elements equal to the estimated an-
alytic survey poststratum counts NAg = ZkGSA 5gk7rk_1 with dgp = 1 if unit £ is a
member of the ¢ poststratum (zero otherwise); and, t Ay = [fAyl, ...,fAyG}/ with
t Ayg = ZkGSA gk, yx. Poststratified estimators are also generated by minimizing
the GLS distance function (2.4) given the calibration constraints Ny = » ;. widgk
for every poststratum g¢. Using a regression approach, the poststratified estima-
tors are again generated through the group-mean model, ie., E.(yx) = B, and
Vard(yr) = 0.

Functions of GREG-estimated totals are also relevant for the analysis of survey
data. The ratio of two GREG totals, of particular interest to our research, is one

that approximates a population mean and takes the form

~

. lyarEG
YGREG = z (2-12)
Ncrec

for fyGREG defined in (2.10). The estimated population size in the denominator of
the ratio is

NGREG = NA + (tp: — EAx),BAN (2.13)

where Ny = ZkESA 7rk_1, the population size estimated from the analytic survey
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data, and

-1
BAN = <Z 7T11X1X2> {-’A:E7 (214)

lE€Esa
the model coefficient vector for the linear assisting model discussed in (2.10) with
yr = 1 for all sample units. Under the group-mean model associated with fypSGR

(2.11), the ratio becomes

~ ~

~ typsar  lyPSGRr
YpsGr = 3 = (2.15)
Npsar Np

because Npsor = Zle NBQN;; ZkESAg 7Tk,_1 = Zle Np, = Np. The estimators
Uorpc and Upgap are also known as Héjek estimators (Hajek, 1971; Smith, 1991).
Given that our current research can not address all aspects of weight calibra-
tion, we have chosen to focus specifically on the GLS distance function (2.4) due to
its ability to generate a closed-form solution for various estimators calculated with
weights that are not a function of the outcome variable. Additionally, GREG esti-
mators provide an explicit form to the calibration weights which allows for a direct
examination of the theoretical properties (bias and variance) for these widely used
estimators. Therefore, the remaining discussion and the research results detailed in
the subsequent chapters will deal with GREG estimators of population totals (2.10)

and (2.11), and the ratio of two GREG totals.

2.2 Bias of Calibration Estimators

Sarndal et al. (1989, 1992) show that the GREG of a population total has many
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desirable properties such as approximate or asymptotic design-unbiasedness (ADU)
and design consistency. The “approximate” label stems from the approximate unbi-
asedness property of the regression coefficients vector, B, in (2.10). They also claim
that the variance estimator of the GREG is approximately model-unbiased under
certain conditions; we save the discussion of variance estimation for Section 2.3. Es-
tevao & Sarndal (2002), as well as others, state that the design-unbiased property
is only attained if the calibration weights are approximately equal to one. Deville
& Sérndal (1992) develop a set of conditions under which calibration estimators are
asymptotically equivalent to the GREG, and therefore share the desirable properties
above. However, Estevao & Sérndal (2000) demonstrate that the GREG and the
family of calibration estimators are always equivalent only if the assisting model is
correctly specified with all relevant auxiliary variable covariates, an unlikely condi-
tion. Those calibration estimators which are not equivalent to the GREG do not
necessarily possess the ADU property (Estevao & Sarndal, 2000). The authors, as
do others, restricted their examination to the portion of the calibration family that
is ADU.

The bias of GREG ratio estimators in comparison are generally assumed to
be small such as bias of order O(n;') for a simple random sampling (SRS) design
of size ny (see, e.g., Section 7.3.1 of Sérndal et al., 1992). The bias in general is
a function of the variation in the denominator term plus the association between
the numerator and denominator. For example, the expectation of §prap With re-

spect to the analytic survey design (F4) begins with a second-order Taylor series
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approximation centered around (t,, N):

~

; _ tyrrGR
TRGR = o
NrRrer
~ = L. Zfy \
= y+ N (tyrrar — ty) — N2 (NTRGR - N)
1 ~ 2 ty N 2
+ 5 0 x (tyTRGR — ty) + Qm <NTRG’R — N) —

1 . .
— Qm (tyrrer — ty) (NTRGR — Nﬂ

with fyTRGR defined in (2.5); Nrrar calculated by substituting t, for tg, in Nerec
(2.13); and y = t,/N, the true population mean. The design-based bias is then

calculated as:

Bias (Jrrar) = Ea (Yrrer) — ¥

1 t t A 1 N .
= N (0) - Fyg (0) + Fy:gva“r <NTRGR> - WC’OU (tyTRGR: NTRGR)
1 - . .
= 2 [@Var <NTRG’R> — Cov (tyTRGR, NTRGR>] (2.16)

where E 4 (fyTRGR) =t, and By (NTRGR> = N as assumed in Sérndal et al. (1992,
Section 6.6). For large finite populations of size N, the terms Var (NTRGR) /N? and
Cov (fyTRGR, NTRGR) /N? are negligible, O (n™1), so that the claim of small bias
for traditional calibration appears reasonable. Unfortunately, the absolute value of
the bias can change dramatically with the introduction of estimated controls in the
numerator and denominator (see Chapter 5).

The theoretical development presented above and in the literature relies on

the assumption of negligible errors in the data used to calculate the estimates (e.g.,
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coverage, nonresponse, and measurement). We extend this research by allowing
for undercoverage bias in our estimates. For example, HT estimators, such as ¢ Ay
in (2.10), are known to be design unbiased under perfect survey conditions (i.e.,
no nonresponse, no frame errors, etc.) and biased otherwise. To account for the
possibility of frame undercoverage, we assume that the presence of each population
unit on the sampling frame can be modeled as a random event. The expectation of
a HT total estimated from an SRS sample of size ny, with 100 percent response but
selected from a frame suffering from undercoverage is evaluated below. Here, E.,
and E4 represent the expectations with respect to the frame coverage propensities
and the sample selection given the set of units, c4, covered by the analytic survey

sampling frame, respectively:

E(EAy) = ECA EA (Z 7Tk_1’yk | CA>]

kEsa
= B, |Ea (Z[AkCAwk_lyk!CA>]
L kel
= Y Ea(Larlca)Ee,(Can)y "y
kel
= Z¢Akyk
kel
= tAy (217)

where Cy, = 1 if the k™ unit is listed on the analytic survey sampling frame (zero
otherwise) so that E.,(Cax) = ¢ak, the population propensity for inclusion on the
sampling frame; and I, = 1 if the same unit is selected into the sample (zero

otherwise), so that E4(Iax | ca) = 7k, the inclusion probability for unit £ Only
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if ¢4 = 1 for all units in the population (i.e., no undercoverage in the sampling
frame) can we claim unbiasedness, E(fa,) = t,. This issue is further developed for
EC calibration with complex analytic survey designs in subsequent chapters.

The first assumption listed previously for traditional calibration estimation is
that the control totals are known without error. Most of the real-world examples
presented in this chapter are actually calibration to estimated control totals gen-
erated from other surveys instead of calibration to population values as assumed.
We coin the term “estimated-control calibration” or “EC calibration” to distinguish
from the traditional or fixed-control calibration. The possible exception is with
person surveys administered in Scandinavian countries (Denmark, Finland, Iceland,
Norway, and Sweden). These countries maintain total population registers including
identifying information such as name, address, and personal identity number (e.g.,
Séarndal & Lundstrom, 2005). Scandinavian surveys calibrating to the population
registers may be classified as traditional calibration if one is willing to assume that
there are no errors in the register.

Some researchers acknowledge that the controls are taken from benchmark
surveys. However, many of these same researchers assume that the mean square er-
ror (MSE) associated with the benchmark controls is negligible without completely
understanding if or when these errors can be ignored. For example, estimates from
the Current Population Survey (CPS) and counts from the Decennial Census (Cen-
sus) are regularly cited as sources for calibration controls due to their size, extent
of the data collected, high levels of accuracy, and perceived low levels of error. The

CPS is a source for U.S. labor-force statistics. Data are gathered for the civilian
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non-institutionalized population, 16 years of age and older, each month through
in-person and telephone interviews. Though the CPS design weights are adjusted
for undercoverage, Nadimpalli et al. (2004) relate the “negative side” of using CPS
estimates for calibration controls to the unknown undercoverage errors between and
within households. Weinberg (2006) discusses the biasing impact of undercoverage
related to CPS income estimates. The explicit purpose of the Post-Enumeration
Survey as summarized in Chao & Tsay (1998) is to estimate the undercount in
the U.S. Census by various demographic groups. Stepping away from the coverage
issue, West et al. (2005) relate the age rounding (response) errors reported in the
Census to data collected from less than knowledgeable proxy respondents. Addi-
tionally, both large-scale surveys suffer from nonresponse. Another example focuses
on adjustments for differential nonresponse. Researchers calculate a “nonresponse
multiplier” (i.e., nonresponse adjustment weight) for non-white respondents to the
British Crime Survey by calibrating the design weights to the ethnic group, age, and
gender distributions estimated from the British Labour Force Survey (Bolling et al.,
2006, Section 7.4). However, the variance estimation discussion seems to indicate
that the benchmark controls are treated as population values.

Our last example, potentially with stronger implications, comes from a Web
survey with sample members identified through a volunteer (non-random) panel.
Terhanian et al. (2000) calibrate the weights for the Web responses to the distribu-
tion of characteristics within an RDD telephone survey by assuming the latter to
be “relatively free of bias.” We can only assume that the benchmark RDD survey

discussed here is typical in that it suffers from low levels of response because such
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information was not provided in the white paper.

On the surface, bias (and variance) implications for calibrating the analytic
survey to either the CPS or Census estimates would seem minor in comparison to
the Web/RDD example. Sérndal et al. (1992) state in Remark 6.4.3, “If erroneous
totals are used, the estimator is biased.” However, the examination stops there
without the much needed information that quantifies the level of bias and impact
on MSE and variance estimates. Our research will provide this extension for weight

calibration.

2.3 Variance of Calibrated Survey Estimates

An extensive list of references details variance estimation for weight calibration
with population control totals. The variance estimation techniques include Taylor
(series) linearization, jackknife replication, balanced repeated replication (BRR),
bootstrap, and jackknife linearization. We focus specifically on Taylor linearization
and jackknife replication in our current research and in the discussion given below
(Section 2.3.1). BRR variance estimation has been shown to be consistent for all
types of estimators, including non-smooth statistics such as quantiles (Rao & Shao,
1999), and is therefore of particular interest of future work. A few references also
exist for the methodology we label as estimated-control (EC) calibration. These

sources are briefly reviewed in Section 2.3.2.
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2.3.1 Traditional Calibration

Taylor linearization, also known as the delta method, is a well known tech-
nique for approximating the mean and variance of linearizable (i.e., differentiable)
complex statistics. These statistics include those with one or more random vari-
ables such as the regression estimator or the ratio of two estimated totals. Binder
(1995) provides a step-by-step description of the linearization approach for several
estimators including the GREG under single- and two-phase designs. For example,
the poststratified estimator of a population total, t,7rps given in expression (2.8),

can be linearly approximated (i.e., linearized) as follows:

G
tyrrPs = Z NNyt ayg
g=1
< ot ot
~ TRPS A TRPS A
= byt Z oty (Fagg — tyg) + —<—1n, (NAg - Ng) (2.18)
g=1 It ayg ON 44

where “|;, 7 refers to the partial derivatives evaluated at the population parameters.
Under some reasonable conditions, the second- and higher-order terms converge in
probability to zero at faster rates than the remaining terms, thereby justifying the
approximation.

Sérndal et al. (1989) developed an approximate linearization population sam-
pling variance (AV) for #,grrc (2.10) as a function of population or “census fit”
residuals determined from an assisting model — see discussion of the model for ex-

pression (2.6). Using notation from Section 6.5 of Sérndal et al. (1992), the general
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form of the approximate linearization variance estimator is calculated as follows:

E E
AVrs(tyarec) ZZ Tt — TkTL) (W—:) (FIZ) (2.19)

keU leU

where Ej, = y, — x;. B, the assisting model population residual for unit k deter-
mined by regressing the outcome y on the auxiliary variables x; B = (ZleU Xlxg) -
X Y wev XkYk, the vector of regression coefficients; m, is the analytic survey sample
inclusion probability for the k* population unit; and m; is the joint inclusion prob-
ability for units £ and /. This approximate variance incorporates only the first-order
linearization terms and is therefore not an exact estimator. Expression (2.19) is
tailored to various types of GREG estimators by choosing an appropriate assisting
model which generates different E}’s. For example, an assisting model defined by
E(yy) = By and Var (yx) = 02 generates residuals associated with the poststrati-
fied estimator t,rrps (2.8).

Sérndal et al. (1992) and Stukel et al. (1996), among others, discuss a design-
consistent sample variance estimator for expression (2.19) under a general sampling

design:

Tl — TR, are ae
varrs(iyanse) = 30 Y T (k) (o) (2.20)

kesalesa
where e = yp — X;B A, the sample estimated residual from the assisting model; B A,
the sample-based vector of regression coefficients defined in (2.10) that is assumed to
be an approximately unbiased estimator of B; and a; is the calibration-adjustment

factor for unit k£ also defined for expression (2.10). Sarndal et al. (1992) also note
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that the confidence interval coverage rates associated with (2.20) are near or exactly
equal to the specified levels (e.g., 95 percent). For the claim of design-consistency of
varrs(tyarea) (2.20) to hold, Sirndal et al. (1992) require (i) the assisting model
to be a reasonable representation of the population in that the residuals are small
and the “residual variance is small compared to the total variance” of the estimate;
(i4) a consistent system of calibration equations, i.e., >, . arm ', is equal to t,
as specified in (2.2); and (1) (ZIGSA W[lxlxg)_l > reu XkX), converges elementwise
in probability to one. The first condition leads to the claim that the general form
of (2.20) is approximately design-unbiased regardless of the difference between the
working and population assisting models because this difference converges to zero in
“model probability” (also see Sdrndal et al., 1989; Deville & Sérndal, 1992). Hedlin
et al. (2001), however, warn that this condition is not always satisfied making the
GREG susceptible to model misspecification and emphasize the importance of model
diagnostics to assess model quality.

The difficulties of applying the sample variance estimator (2.20) increase with
the complexity of the population estimator. For example, the variance of the post-
stratified estimator fypSGR (2.11) uses an approximation similar to fyTRpg in (2.18)
and requires the estimation of several variance and covariance estimates. The linear

substitute method eliminates the need for these higher-order estimates (Woodruff,
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1971) as shown for fyPSGR below:

G r
. N ) tayg /<
typscr —ty = Z (tAyg - tAyg) - N_j; (NAQ - NAg)}
g=1 "
ST /
- A
- Z tAyg Nyg NAQ:|
g=1*+ Ag
ar
_ ta _
SRS
g=1 |kEsa 9 kesy
G
_ 1 5 tAyg
S SR BN
kEsa g=1 Ag

= > w (2.21)
k€Esa

where 0, = 1 if the k™ analytic survey sample unit is a member of the ¢g'" poststra-
tum (zero otherwise); and, E (fayy) = tay, and E (N Ag) = Ny, using the technique
demonstrated in expression (2.17). The linear substitute uy is estimated from the
sample data, and varrg (fyPSGR) is estimated from a design-appropriate variance
estimator of (2.21). A linear-substitute variance estimator of fyGREG described in
Stukel et al. (1996) takes the following form for a stratified, multi-stage analytic

survey sampling design:

" 2
~ map QAer 1 arer
_ - _ - —_ 2.22
varps(tyarec) E o — 1 E (ke - E E - ) ( )
SAhi

m
h=1 1ES AR Ah 1€ES AR KESAR;

where h identifies the sampling strata in the analytic survey design (h =1,..., H); a
set s4p, of ma, PSUs is selected from My, within stratum A; and a random sample
of units, denoted as s 4, is selected within PSU hi. The remaining terms are defined

for expression (2.20). Though not mentioned explicitly in their article, (2.22) is an
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“ultimate cluster” variance formula because the estimate is determined by calcu-
lating the variance of design-unbiased PSU-level estimates under an assumption of
with-replacement PSU sampling (Kalton, 1979). Stukel et al. (1996), Sarndal et al.
(1992), and others note that varps(f,erec) in (2.22) and varrs(t,eree) in (2.20)
are asymptotically equivalent. Linear-substitute variance estimators, however, are
computationally easier to use and are therefore included in many software packages
(see, e.g., SUDAAN® documentation Research Triangle Institute, 2004).

Following the derivation in (2.21), the population linear substitute for the es-
timated mean yppqp is calculated through a first-order Taylor series approximation

as follows:

1
N
1

= ¥ ( yTRGR — yNTRGR)

|
12

Yrrar — U (tyrrer —ty) — % (NTRGR — N)

= yk—ﬂ)

k€sa

kE€sy

for Qg defined in (2 5) yTRGR = ZkESA 7Tk akyk, and NTRGR = ZkesA 7Tk Clk As
discussed in Sérndal et al. (1992, chapter 6), yTRGR and NTRGR may be approxi-

mated as follows using the residuals from the respective assisting models:

tyrrar = Z T (ye — %3 Ba) = Z T Eag

k€sa k€sa
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and

Nrror & Z T (1 —x,Bay) = Z 7 Eane.

kesa kesa
These approximations require (t4, — t;) to be of order (in probability) population
(PSU) size divided by the square root of the sample (PSU) size. Therefore, the

linear substitute of ypgpr May be approximated as

1

uyp = ka_l (Ear — yEank)

where E4, = yp —x,Ba and Eayr = 1 =% Ban. The corresponding g-weighted (ay)
sample estimator is used to generate the approximately unbiased linear-substitute

sample variance estimator, i.e.,

1
-1 ES
Up = = ARy (eAk - yTRGReANk)
Nrrer

for the calibration-adjustment factor ay defined in (2.5); ear = yr — X%B A; and
eane = 1 — X§€BAN-

Linearization variance estimation is an option in several software packages
designed to analyze survey data. Data files need to contain relevant information
such as first-stage strata and PSUs to properly account for the sampling design.
For example, the Division of Health Interview Statistics at the National Center
for Health Statistics (NCHS) released public-use data files (National Center for
Health Statistics, 2006) from the NHIS with such information along with code to

produce linearization variance estimates using SUDAAN® (Research Triangle Insti-
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tute, 2004). However, some organizations choose to withhold the design information
from public-use files (PUFs) as an additional step to mask the identity of survey
participants (i.e., data confidentiality procedures). For example, the UCLA Cen-
ter for Health Policy Research (2006) states the following in their weighting and
variance estimation document for the California Health Interview Survey (CHIS):
“The CHIS PUFs, however, do not include strata information in order to protect
data confidentiality and respondent privacy.” Therefore, linearization variance es-
timation is not possible from the CHIS and many other publicly available survey
data sets. Instead, replication methods such as jackknife variance estimation are
required.

Jackknife variance estimation is a commonly used replication method. Formu-
lae for the jackknife variance are available for single-stage designs, with and without
stratification, as well as for more complex designs through an ultimate cluster for-
mulation. The stratified formula is applicable to survey designs with two or more
PSUs selected per stratum (ma, > 2), and to a wide array of estimates including
means, totals, and more complex statistics.

The standard “delete-one” or “delete-a-PSU” jackknife is calculated through
the variance of the replicate population estimates, also referred to as the pseu-
dovalues (Wolter, 2007, Chapter 4). The m4 replicate estimates are calculated in
the same way as the full sample estimates but require the generation of jackknife
weights. The jackknife weights are created by systematically removing one the m4
PSUs from the sample and inflating the design weights for the remaining PSUs
within the same stratum by map/(man, — 1) to account for the PSU subsampling.
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The complete sets of m 4 jackknife weights are included on the analysis file and used
to generate variance estimates for various types of statistics.

Once the replicate estimates are calculated, statisticians must choose from
among a set of formulae to calculate the jackknife variance estimate. The formulae
vary based on the centering value. For example, the stratified variance estimator
vy shown below is centered on the full-sample estimate (é), and is classified as a

conservative estimator as discussed in Wolter (2007, Section 4.5):

MAh

o A HmAh—l
vy = vari (9) :Z—Z

m
h=1 L —

(9~ é)2 (2.24)

where é(hT) is the replicate estimate calculated after removing the r* PSU from the
h'" stratum and adjusting the remaining PSUs in stratum A for the loss. Krewski &
Rao (1981), in addition to Wolter (2007), discuss other jackknife variance estimators
including the less conservative estimator centered on the average of the replicate es-
timates, i.e., (D, >, é(hr))/ >, Man, referred to as v, in Wolter (2007, Section 4.5).
Rust & Rao (1996) demonstrate the unbiasedness of the v, variance estimator for a
population total and other types of linear estimators. The estimator is also design
consistent for nonlinear estimators such as the ratio estimator. The consistency
property also holds when the design weights are adjusted for nonresponse and for
poststratification but is lost for non-smooth statistics such as quantiles (Yung &
Rao, 1996, 2000). The estimators ve and vy (2.24), however, have been shown to be
asymptotically equivalent so that the choice of estimators is related to the sampling

design or statistical preference (Krewski & Rao, 1981; Wolter, 2007).
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Jackknife variance estimation for single-stage surveys and those with a large
number of PSUs can be problematic in two ways: (i) additional time is required to
produce and check the jackknife weights, and (i7) the analysis file size increases with
the inclusion of a large set of jackknife weights. The “delete-a-group” technique is
the same as described above except for the deletion of a group of PSUs instead of one
PSU for each replicate. Valliant et al. (2008) warn that jackknife variance estimate
for a population total under this method can result in a severely overestimated
variance when the groups do not contain an equal number of PSUs. They suggest,
as does Kott (2001), a revised variance estimator to account for this problem. Due to
the complexity of issue, we postpone for now an examination of the “delete-a-group”
jackknife for EC-calibrated estimators.

Linearization variance estimators involving assisting-model residuals, such as
the estimator in expression (2.22), usually account only for the last (random) ad-
justment applied to the weights, e.g., calibration. This is in contrast to accounting
for all random weight adjustments (e.g., unknown eligibility, nonresponse, etc.).
Replication may remedy this problem by explicitly accounting for all adjustments
applied to the design weights. Valliant (1993), for example, showed that jackknife
variance estimators are consistent for two-stage sampling design only if the post-
stratification adjustments are newly applied for each replicate. However, Rao and
Shao (1992) showed that re-imputing missing data within each replicate does not
give a consistent variance estimate

Variance estimation in the literature also extends to multi-phase sample de-

signs. Techniques used in the development of these variance estimators are useful to
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our research. A multi-phase design is defined as a survey where subsequent-phase
units are subsampled from the same type of units identified in a previous phase.
Hence, the phase-specific samples are not independent. For example, a design that
includes the recontact of a nonrespondent subsample to improve response rates is
known as a “two-phase design with a nonresponse follow-up.” In contrast, a multi-
stage design contains units from differing levels at each stage such as schools within
say the third stage and students within schools at the fourth stage of sampling.
Note that a nonresponse follow-up phase is dependent on the result of the previous
phase(s), which has implications for point and variance estimation. This is not a
problem for EC calibration when the control totals are obtained from an independent
survey.

Fuller (2004) provides a lengthy reference list in the development of variance es-
timation for two-phase designs beginning with Rao (1973). Sérndal et al. (1992, Re-
sult 9.7.1), Binder (1995), Axelson (2000), Fuller (2000), Estevao & Sérndal (2002)
and others specifically address linearization variance. Replication variance estima-
tion is presented in Fuller (1998) and later expanded by Kim & Sitter (2003). Fuller
(2004) extends his own work for regression estimators by developing a two-phase
variance formula and providing the relevant asymptotic theory to demonstrate con-
sistency. The theory requires a relatively large phase-two sample and replicates
created using the phase-one sample. The basis for the two-phase derivations comes

from results for the unconditional expectation and variance of a general estimator
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(see, e.g., Casella & Berger, 2002, Theorems 4.4.3 and 4.4.7):

E(0) = Ey[E.(0]b)]

Var(0) = Ey[Var,(0)b)] + Vary[E,(0]b)]

where, under a two-phase design, subscript @ may denote the second-phase sample
conditioned on the first-phase results (subscript b). A similar procedure is needed
for the development of EC calibration where the benchmark and analytic surveys

are associated with the first- and second-phase notation.

2.3.2 Estimated-Control Calibration

Variance estimation for EC calibration is not a new concept; a few articles
propose methods to account for the estimated controls. For example, Isaki et al.
(2004) applied a delete-one jackknife variance estimator developed by Fuller (1998)
for two-phase designs to account for estimated control totals. An overview of Fuller’s
variance estimator is as follows: take a spectral (eigenvalue) decomposition of the
covariance matrix for the vector of G' benchmark controls, develop benchmark ad-
justments as a function of the resulting eigenvalues and eigenvectors, and add the
adjustments to the benchmark controls to create a set of replicate controls. Thus,
either a benchmark analysis file is needed to calculate the covariance matrix, or
the statistician is forced to use only publicly-available benchmark information. A
randomly chosen subset of the m 4 replicates (m4 > ) is then calibrated to G repli-

cate controls where my = ), may, the total number of PSUs in the sample. The

35



resulting variance estimator is shown to be an approximately unbiased estimator
of the population sampling variance and to contain components for the variation
within the analytic and benchmark surveys, both as desired. A more extensive sim-
ulation study is needed to empirically demonstrate the theoretical findings. Also,
the methodology does not address coverage error in either of the sampling frames.
Nadimpalli et al. (2004) calibrate weights for the 2003 National Survey of
Parents and Youth (NSPY) to the number of U.S. households with children ages 9-18
estimated from the Current Population Survey (CPS) using a ratio-raking replicate
algorithm (www.census.gov/cps). The U.S. Bureau of Labor Statistics conducts the
CPS to obtain labor force characteristics for the population ages 16 years and older.
They note, however, that the calibration controls change depending on the month of
CPS data used in the calculation. The focus of their paper (not of particular interest
here) is to evaluate several models for smoothing the monthly estimates to develop a
single set of stable marginal control totals by domain such as region of the U.S. The
authors were unable to estimate the complete covariance matrix (V p) for t5e from,
for example, a public-use file, and therefore had to assume independent benchmark
estimates. To account for the random nature of the CPS controls in the NSPY
variance estimates, they assume that the marginal control totals are approximately
normally distributed and incorporate a standard normal random variable, N(0, 1),
into the equation for a replicate control total. Griffiths (2007) also applies a method
similar to Nadimpalli et al. (2004) for calibration of Arbitron data to “stochastic
population controls” which again requires the assumption of independent control
totals. Unlike Fuller (1998), which specifically focuses on the development of an EC-
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calibration procedure, the Nadimpalli et al. (2004) paper provides an application of a
proposed method. Their research requires additional theoretical work to understand
the bias associated with their method.

The American Time Use Survey (ATUS), conducted jointly by the U.S. Cen-
sus Bureau and the U.S. Bureau of Labor Statistics (www.bls.gov/tus), produces
estimates of how people in the U.S. spend their time by various demographic charac-
teristics. Samples are selected from CPS responding households that have completed
the last in a series of interviews related to unemployment. The ATUS design weights
are equivalent to the 161 CPS BRR final weights after adjusting for ATUS subsam-
pling (Tupek 2004). The CPS BRR weights include components for the inclusion
probabilities, nonresponse, poststratification of household-level weights to Census
counts, raking of person-level weights to Census projections, and seasonal variation
(Current Population Survey 2002). Details are lacking in the documentation on
the methods used to account specifically for the Census projections. Additional
factors are applied to the BRR weights based on the results from the ATUS such
as adjustments for nonresponse, day of the week that the interview was conducted,
and calibration to CPS microdata. A replication variance estimate should therefore
account for the variation from both the analytic survey (ATUS) and the bench-
mark surveys (CPS and Census); however, published theory or analytic results to
support this claim has not been located. Unlike the Fuller (2004) and Nadimpalli
et al. (2004) methods, we reserve the ATUS (two-phase) methodology for future
research because we have chosen to focus on studies with independent analytic and

benchmark surveys.
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Renssen & Nieuwenbroek (1997) develop an adjusted general regression estima-
tor (AGREG) that calibrates weights from two independent surveys to population
controls t, and/or to controls estimated from either one or a combination of the
surveys t,. The estimated controls, using common variables z from both surveys,

may be calculated with a general composite estimator of the form
Ez - Pszl + <1 - Pv) EAZZ

where t.; is a vector of GREG estimates from the first survey sample calibrated
to the population controls t,; t,» is the corresponding vector of GREG estimates
from the second sample; and f’v = var (f:zl) [va'r (f:zl) + var (f:ﬁ)rl, a matrix
containing the proportion of the total variance associated with the first survey for
each common variable. The matrix f’v could also be set to a matrix of zeros or ones if
estimates from one survey in comparison with the other are believed to be unusable.
They suggest that large questionnaires may divided into smaller instruments (see,
e.g., matrix sampling in Gonzalez & Eltinge, 2007) with key common variables,
administered to independent samples to maximize response, and combined through
the use of AGREGs. Their approximate population linearization sampling variance
estimator accounts for the variation in the outcome and auxiliary variable estimates
but not for the estimation of the composite factor B,. They compare the variance
for estimates from a Dutch household survey using various sets of values of P, but

do not provide further empirical evidence through a simulation study. We intend

to expand on our current work in the future to address studies that involve, for
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example, matrix sampling with multiple independent subsamples but reserve our
current work for only a single survey requiring calibration.

Another example of calibration for two-phase studies, of interest but not con-
sidered in our current research, focuses specifically on surveys with less than desired
response rates. All sample cases are released in the first phase of this design, and
a subsample of nonrespondents is recontacted in the second phase with a data col-
lection mode different than the one used in prior contacts (i.e., nonresponse follow-
up). Singh et al. (2003) expand upon the idea of dual-frame calibration developed
by Singh & Wu (1996, 2003) by applying this estimator to two-phase designs with
a nonresponse follow-up. The methodology requires the creation of two analysis
files with nonresponse-adjusted design weights — one file contains only phase-one
respondents, and the second file includes respondents from both phases. Using an
algorithm that simultaneously satisfies the constraints, the estimates for each file
are calibrated to the population control totals, while the difference between a set of
estimates calculated from each file are calibrated to zero. Estimates from the two
files are combined through a composite estimator in such a way that minimizes the
variation in the calibrated weights (i.e., unequal weighting effects). Some theory is
given in their proceedings paper with mixed results from the analysis of one survey
of U.S. military veterans. Thus, additional work is needed to fully develop this
methodology. Singh et al. (2004) implement this methodology to examine a new
response rate calculation for studies with a nonresponse follow-up using the same
example data.

In our final example, we focus on the regression composite estimator developed
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by Singh (1996) for rotating panel surveys. At each time period, the sample contains
new cases (birth panel) and cases with previously collected data (overlap panel). The
regression equations contain two components: (i) current time-point estimates for
the birth and overlap panels are calibrated to the corresponding set of population
controls; and (i7) estimated controls from the overlap sample are calculated from the
previous round and used to calibrate prior-round estimates using the combined birth
and overlap panel data. Fuller & Rao (2001) expand on this work by incorporating
composite estimation to smooth the combined estimates from the birth and overlap
panels for use in the regression. We have chosen to examine a single survey within
our current research, instead of panel surveys, and therefore reserve this work for

future consideration.

2.4 Domain Estimation

Domain or subpopulation estimation is critical to survey research. Surveys
are generally designed to produce estimates within a set of domains with specified
levels of precision. Two such examples, taken from U.S. surveys, are: (i) poverty
rates can be compared across domains such as U.S. region and race/ethnicity by
analyzing current CPS data; and (i7) estimated rates of illicit drug use for young
adults aged 18 to 24 in the U.S. are produced from National Survey on Drug Use
and Health data (SAMHSA, 2007).

Domains can be classified into two categories — design and analytic. Design

domains are included in the sampling design either explicitly as strata or implicitly
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by constraining the expected number or level of precision. Analytic domains are
identified only during the analysis phase of the study and may result in small domain
sample size. Hidiroglou & Patak (2004) call these primary and secondary domains,
respectively. Domain estimation can reduce the degrees of freedom for statistical
tests and confidence intervals below levels defined for the full sample if domain
members are not contained in all design strata and PSUs. The number of degrees of
freedom is (roughly) the maximum of either the number of PSUs minus the number
of strata (m4 — H), or the total number of replicates (my4). Survey inference relies
on large samples (i.e., degrees of freedom) along with the central limit theorem
developed for finite populations (Krewski & Rao, 1981) under which point estimates
will be approximately normally distributed. Korn & Graubard (1999) recommend
reducing the degrees of freedom to the numbers of PSUs and strata which contain
domain members. Therefore, the degrees of freedom can be managed for design
domains but not analytic domains.

Much of the survey theory underlying traditional domain estimation assumes
sufficient sample size regardless of the type of domain (see, e.g., Sdrndal et al.,
1992; Rao, 1997; Théberge, 1999; Lohr, 1999; Korn & Graubard, 1999; Chambers
& Skinner, 2003). This assumption is important to the development of an EC
calibration theory for domains. Small area estimation techniques (e.g., Rao, 2003;
Lohr & Prasad, 2003) are reserved for small domains, and are therefore excluded
from consideration for our current work.

Overall sample estimators, such as the Horvitz-Thompson or Hajek estimators,
are specialized for domain estimation by including a domain indicator variable. An
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estimate of a domain mean for a stratified design has the following form where g4,

is a binary variable to indicate membership in domain d:

A H —
ﬁAd _ tyad _ Zh:l ZZL:AF 5dhk7rhk1yhk (2 25)
Nag S A ST

The form of the GREG estimator for domains is not so straight forward. Re-
searchers may assume that a working model defined for each domain, i.e., E.(yx) =
X Baa, results in more efficient estimators than those generated from an overall
model. This leads to the following GREG estimator of a domain total for a non-

specific sampling design:
. . .
tyaacrEG = tayd + (bpds — tads) Badd (2.26)

where ¢ Ayd = ZkESA 5dk7rk_1yk, the estimated total of y within domain d using the
analytic survey data; tage = > kesa 6dk7rk’1xk, the G-length vector of analytic survey
auxiliary values for domain d; tpgg,, the corresponding vector of domain-specific

benchmark controls; and

1
> -1 ! -1
B4di = [E Oarm, XzXl] E 0akTy XYk,

l€sa k€sy

the model coefficient vector that is a function of the domain indicator in both the

numerator and denominator. By decomposing (2.26), we see that the calibration-
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adjustment factor,

-1
ar =1+ (tpaw — fAda:)/ [Z 5dl7fz_1XlX2] Xk

l€sp

is a function of the domain indicator both in the denominator of B Add, and in the
auxiliary vectors tpg, and taq,. Even though Hidiroglou & Patak (2004) show the
benefits of using domain-specific auxiliary variables (e.g., t Adz), We have chosen to
exclude this estimator from our current research because of our desire to create one
set of analysis weights.

Another GREG estimator of a domain total which does satisfy the “one overall
set of analysis weights” criterion is specified under a domain-specific assisting model
that incorporates information from non-domain units, namely, F.(y;) = x, B4 and

Var(yx) = 0. The resulting estimator is expressed as:
. . A
tyacreG = taga + (s — tas) Bag (2.27)

where ¢ Aya 1s defined following (2.26), and ta, and tg, are the vector of auxiliary
values used in fyGREG (2.10) that are not domain specific. The working model
coefficient vector, B Ad, incorporates the domain indicator only in the numerator

term as seen below:

-1
B = [Z wllxlxél S Gy X (228)

l€sa k€sa

We demonstrate the creation of a single set of generalized analysis weights with the
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following derivation:

~ A~ ~ /]~
tyacreG = taga+ (tps — tas) Buag
-1
~ / _ —
= Z 1+ (th - tAx) (Z Uy 1X1X2> Xk | T 15dk:yk:
k€Esp le€sa
= Z army  Saryi
kE€sa

where a;, equals the calibration-adjustment factor shown for fyG reG (2.10). In addi-
tion to the advantages listed for a single-set of analysis weights, fdeREG (2.27) also
has good theoretical properties. Estevao & Sérndal (2004), for example, demon-
strate the theoretical and empirical advantages of fdeREG over fydchEG (2.26), as
well as a GREG domain estimator that “borrows strength” from non-domain cases
through an overall model coefficient vector By (2.10). This later domain estima-
tor is constructed, unintuitively, as t Ayd + (t e — t Aw)/ B 4. With domains that cut
across the calibration groups, such as strata equivalent to the calibration groups but
not the domains, the estimator is calculated as the sum of within-stratum values.
The GREG ratio estimator of a population mean within domain d is defined

as follows:

~

~ tydGREG
YdGREG = e ) (2-29)
NacrEc

a function of fde rec defined in expression (2.27);

Nacree = Naa+ (tps — EAm)/EANd (2.30)
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defined in the same way as fdeREG but with y, = 1 (i.e., NAyd = ZkESA (5dk7rk_1);

and

-1
BANd = [Z Wl_IXlX;] Z (5dk7rk_1xk. (231)

lesy kesa
The GREG estimator for a domain total (2.27) and a domain mean (2.29)
are specialized for poststratification by expressing the assisting-model coefficient
vector in terms of a domain group-mean model: By = Yy = [Yaars - Yaac]
with ngdg = fAydg/NAg, fAydg = ZkGSA 5gk(5dk7rglyk, and NAg = ZkGSA 69167?,;1; and

Bana = Yana = [NAd1/NA1, o NAdG/NAG} with Nag, = > kesa S0y, . Thus,

G N
- t Aya
tyaPSGR = Z Npg (#)

g=1 Ag

and

~ G " e
A tydPSGR Zgzl NBQ <tAydg/NAg)
YarsGr = N I - - .
dPSGR Zg:l NBg (NAdg/NAg)

Some researchers choose to subset the analysis data to the domain of interest
before calculating the population estimates. This technique works for point esti-
mates such as means and totals. However, removal of units outside the domain
of interest may inappropriately reduce the size of the variance estimate leading to
confidence intervals that cover at less than the nominal rate and hypothesis tests
with erroneously inflated Type I errors. Discussions on this point and other issues
related to domain estimation may be found in sources such as Sérndal et al. (1992),
Lohr (1999), and Research Triangle Institute (see, e.g., SUDAAN® documentation

2004). For example, as shown in Example 10.3.1 of Sarndal et al. (1992), the sample
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variance estimator of # 4,4 given for expression (2.26) is a function of the full sample

size (n) in addition to the domain sample size (ng4) under an SRS design:

var (tAAyd

=) (nd—l)ngrndqdﬁ?z
>_N2 n [ N -1

where g, = ny' Y kesy Oar¥k; pa = na/n; qa = (1 — pa); and Sﬁd = (ng—1)7"
ZkESA Odk (yk — ﬁd)Q. Note that this variance is a function of the variation within
the domain (de), the average value of y within the domain (7,), as well as the size
of the domain (ng).

Following the “domain indicator” approach, we rephrase the linear substitute
sample variance estimator for fyGREG (2.22) for the estimated domain total as fol-

lows:

1 <24 Apik€ 1 & Apik€ ’
- _9 hik€dhik hik€dhik
varys(tyacrec) = E ¢y, E - E E — | (2.32)
map Thik

7'[- .
h—1 i=1 \k€san; Dk i=1 k€sani

where ¢, = (ma, — 1)/map, a function of the total number of analytic survey
PSUs in stratum h (map); apg equals the calibration-adjustment factor ay defined
for fyGREG (2.10); and, egnix = Ognik (yhik — xﬁnkBAd) Note that if all units within
stratum h are excluded from domain d (i.e., dgp;r, = 0 for all i,k € s43), then these
units do not contribute to the overall variance and can be safely removed from the
analysis file, but not otherwise.

The v, jackknife variance estimator for a domain estimator is derived using a

46



similar technique:

H map
N m -1 ~ A\ 2
varyx <9d> = E ;h—A E (‘9(th) - ed) (2.33)
h=1 O —

where é(hdr) is the replicate domain estimate calculated after removing the r** PSU
from the sample and adjusting the remaining PSUs in stratum h for the loss, and
éd is the full-sample domain estimate. Note that even if é(hdr) = 0, the replicate
contributes the value 93 to the overall variance.

The domain-specific variance estimators discussed in this section rely solely
on the traditional calibration assumptions. The limited amount of EC-calibration
research conducted to date (see Section 2.3.2) addresses overall population estimates
and not estimation within a particular domain. The work detailed in Chapter 6 will

combine domain estimation with EC-calibration estimators to fill this research gap.

47



Chapter 3

Scope of the Research

Chapter 1 provides an overview of our research while Chapter 2 contains a
discussion of past and current literature on traditional and estimated-control (EC)
calibration. In this chapter, we detail the scope of our research contained within the
dissertation. Some material provided previously is repeated here for completeness.
The assumptions made for the target population and the analytic survey are pro-
vided in Section 3.1. The conditions associated with the benchmark survey, from
which the control totals are estimated, are highlighted in Section 3.2. We discuss
issues related to the particular calibration technique used in our research (Section
3.3), in addition to factors affecting the quality of the analytic and benchmark survey
sampling frames (Section 3.4). Section 3.5 is reserved for the assumptions related
to domain estimation. Because a large number of survey estimators could be ad-
dressed, we identify the particular point and variance estimators examined in this
body of work within Section 3.6. Additional assumptions required specifically for
the theoretical understanding of EC calibration are identified in Section 3.7. The
remaining section (Section 3.8) contains information associated with data used in

our empirical simulation studies.
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3.1 Analytic Survey Assumptions

Consider a large, finite population U of size N. We assume that this population
can be divided into H (H > 2) mutually exclusive groups indexed by h. Within
the A" stratum, the population may be (conceptually) classified into M}, mutually
exclusive clusters, each indexed by i, for a total of M = Zle M, clusters. The
hit" cluster contains a total of Ny; units, where N = S0 N, = S (Zf\i’i Nhi).
The groups and clusters are classified as strata and primary sampling units (PSUs),
respectively, for the sampling designs developed to estimate the relevant population
parameters from U.

Estimates for the finite population U are calculated from survey data collected
under a multi-stage, stratified sampling design. This survey is labeled as the ana-
lytic survey with random sample s4. For the analytic survey design, ma, (may > 2)
PSUs, each indexed by i, are selected with replacement (WR) from a total of M4y,
PSUs within the A" stratum. Assuming WR sampling of PSUs is a common theo-
retical device to simplify derivations (e.g., see Krewski & Rao, 1981). Although most
samples are selected without replacement, WR results provide a practical guidance
on the performance of different procedures. The analytic survey sampling frame
may have imperfections at each stage of sampling. Sampling frames suffering from
undercoverage, i.e., not all population units are accessible from this source, are of
particular interest to our research. Therefore, we say that My, < M), where the
subscript A denotes the analytic survey and My, is the number of PSUs available

for sampling on the analytic survey frame. The hi'® PSU inclusion probability in
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the WR design is m,; = 1 — (1 — mpi(1)) ™", where 7,1y is the single-draw inclusion
probability. However, we assume that m; can be approximated by manmai1) by
requiring ma; > 2 and 741y to be sufficiently small (see, e.g., Sdrndal et al., 1992,
Section 2.9).

Analytic units, units which provide survey response data, are selected in the
last stage of the analytic survey design. Sarndal et al. (1992, Section 4.1) call these
ultimate sampling units. Once the sample PSUs are identified, the analytic units
may be selected after more than one subsequent stage of sampling. A sample of
Nap; units (nap; > 2) is randomly selected from a total of Nap; (Napi < Np;) units
within PSU hi. The units, indexed by £, are assumed to be selected with a method
that results in unbiased estimates of a PSU total for various analysis variables.
This assumption, in addition to a WR sample of PSUs, allows the use of “ultimate
cluster” variance formulae (Kalton, 1979) in our research. Thus, our notation may
be simplified to a two-stage design without loss of generality to multi-stage designs.

The unit-level design weight is represented as the inverse of the unconditional
inclusion probability W,;}C for unit & within the hi** PSU. Given our assumption
that m;, is sufficiently approximated by mapmpi1), we say that m, is sufficiently
approximated by manpi(1)Tkjni, Where myp; is the k' inclusion probability given
the selection of PSU hi. Note, however, that the point estimators we study will
be formulated as “p-expanded with-replacement” (pwr) estimators (Sarndal et al.,
1992, Section 2.9). The pwr estimators are described in Section 3.6 and do not
require that the PSU selection probabilities be approximated as above.

Data for a total of ny units (ng = Zthl A" napi) is obtained for the anal-
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yses. This implies a 100 percent participation rate for the analytic survey. Even
though unrealistic in practice, this assumption will facilitate development of the
EC calibration theory before inclusion of the nonresponse mechanism in later work.
Thus, prior to calibration, the population estimates are calculated using only the de-
sign weights. We additionally assume that data are collected without non-sampling

errors.

3.2 Benchmark Survey Assumptions

We label the survey requiring calibration as the analytic survey and the source
of the control totals under EC calibration as the benchmark survey. In practice, more
than one benchmark survey may be tapped for control total estimates, though covari-
ances among variables collected from different surveys may be difficult to estimate.
However, we will assume only one benchmark survey to simplify the theoretical de-
velopment and assume that the covariance matrix for the control totals (V) can
be estimated from the benchmark analysis file. We make no explicit specifications
for the benchmark survey design though a stratified, multi-stage design would be a
reasonable assumption. As with the analytic survey, we allow for potential errors
in the benchmark survey sampling frame from which the random sample, sg, of
size np is selected. Hence, the subscript B is used to identify design elements and
estimated values associated with the benchmark survey.

Control totals and the benchmark covariance matrix for the control totals

are estimated from benchmark survey data using analysis weights, {w;};?, and
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formulae that properly account for the sample design. The analysis weights are
functions of the design weights and any additional adjustment factors including
nonresponse and calibration. The precision of the benchmark estimates reflect the
random adjustments in as much as the final analysis weights allow (see the discussion

of replicate weights in Section 2.3.1).

3.3 Calibration Procedure

Using the assisting-model approach of Séarndal (2007), weight calibration can
be classified as linear or nonlinear based on the type of model used to explain the as-
sociation of auxiliary variables (x) with an outcome (y). Weights generated through
nonlinear calibration, such as those required for fy rorec (2.9), are a function of the
outcome variable of interest. In other words, nonlinear calibration results in one set
of analysis weights for each variable within a set of key measures. This trait adds to
the unpopularity of calibration estimators such as the logistic generalized regression
estimator (LGREG) proposed by Duchesne (2003). Linear calibration produces one
set of analysis weights used to generate, for example, generalized regression esti-
mators (GREG) and the specialized GREG known as the poststratified estimator.
Both GREG estimators are widely used throughout survey research. Therefore, in
our current research we choose to address linear calibration to generate parameter
estimates that are functions of GREG estimated totals. Raking ratio (iterated) esti-
mators are also excluded from our research because they do not have a closed-form

solution to the calibration equations.
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We additionally assume that calibration is implemented with estimates ob-
tained in the last stage of the analytic survey sampling design. For example, in
an area household survey, we assume calibration is implemented only for person-
level estimates and not simultaneously for person- and household-level estimates
(see, e.g., Estevao & Sérndal, 2002; Ash, 2003). Additional work remains for EC

calibration administered for multiple stages (and phases) of a design.

3.4 Sampling Frame Coverage Errors

A few additional comments are needed regarding the sampling frames for the
analytic and benchmark surveys. Sampling frames are rarely considered to be perfect
representations of the population. Frames may fail to contain all of the population
units resulting in an undercoverage error. For example, a source for landline tele-
phone numbers will miss cell-phone only households, as well as those without any
telephone service.

Frames may also contain additional units referred to as overcoverage error.
These sources include units that are not members of the target population (i.e., in-
eligibles) and units that are listed more than once (i.e., multiplicities). For example,
samples selected from RDD telephone lists will likely contain inoperative numbers,
in addition to multiple numbers linked to a single household.

Overcoverage error primarily reduces the number of analysis cases given that
the erroneous units can be identified before the weights are finalized. The sample

size, n using our notation, can be inflated for this potential loss of sample cases.
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Undercoverage error, by contrast, can bias the estimated parameters, especially in
population totals — see, for example, the discussion related to expression (2.1).
Without access to a more complete sampling frame, researchers must rely on meth-
ods such as calibration to minimize the bias. Therefore, we choose to focus only on
sampling frames that suffer from undercoverage errors.

With this undercoverage error, we say that the analytic and benchmark surveys
estimate parameters from their “covered” populations — Uy of size Ny and Up
of size Npg, respectively. The population sizes, Ny and Npg, are assumed to be
large which implies that the undercoverage errors are not so severe as to claim, for
example, Ny < N (i.e., Ny is significantly smaller than the complete population
size N).

A coverage indicator is used to identify population units contained in the
sampling frames: Capi = 1 if the k™ population unit in PSU hi is accessible from
the sampling frame used for the analytic survey (zero otherwise). We assume that
the event c4 that determines the inclusion of the unit on the frame (i.e., Capir, = 1)
is random and independent among the population units. This allows the use of
a Bernoulli distribution to say FE.,(Canix) = Ganix and Vare, (Capik) = danix(l —
®anir), where E., and Var,, are the expectation and variance taken with respect to
the coverage mechanism. The benchmark survey coverage indicator, Cp; (I € sp),

and coverage process, cg, are similarly defined.
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3.5 Domain Estimation

Within the large, finite population U discussed in Section 3.1, let Uy represent
the set of population units within domain d of size Ny. The domain members are
identified through a binary variable denoted as d4p;x Where dgpir, = 1 if unit k£ in
PSU ¢ within stratum A is a member of domain d and d4,; = 0 otherwise. We
assume that o4, is a fixed value and therefore, does contribute to the variance of
the point estimator. The population domain size is determined by summing the
domain indicators, i.e., Ny = ZhikeU Ognir- The domains may span the H design
strata and need not be represented within each stratum nor within each PSU in a
particular stratum. Thus, we denote the number of population PSUs containing a
least one domain member as M,.

Because we allow for undercoverage error, analytic survey domain estimates
are associated only with the population parameter for those domain members listed
on the sampling frame, i.e., Uyq of size Nag. We assume that Nag4, as well as
the domain sample size ny g = ZhikeSA Odnik, are sufficiently large so that small
area estimation techniques are not required. We additionally assume that coverage
mechanism (see the discussion of Cypi in Section 3.4) is independent of the (fixed)
domain indicator. The domain sample units are contained within a total of mad
sample PSUs.

Calibration weights for domain estimation can take several forms depending
on the level of information available from the benchmark survey (Estevao & Sérndal,

2004). For example, benchmark control totals may be published for gender by age
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group but not by race/ethnicity, a domain of interest. Given that the relevant
benchmark domain control totals exist, researchers could be faced with creating one
set of weights for each key domain possibly in addition to an “overall estimation”
set of weights. Keeping with our desire for one set of weights and the possibility
that domain control totals are not available, we will use the same set of weights
for both the overall and domain-specific population estimates. In other words, the
calibrated weights for the domain estimates are functions of the overall auxiliary

totals from the analytic and benchmark surveys.

3.6 Study Estimators

Through linear calibration, we will construct GREGs and poststratified (GREG)
estimators to address totals and ratios of two totals for all population units and for
a domain within the population. More complex point estimators, such as regression
coefficients and quantiles, are reserved for future research.

Given the specified analytic survey sampling design (see Section 3.1), the esti-
mator used to calculate the estimated population totals is the so-called “p-expanded
with-replacement” (pwr) estimator discussed in Sérndal et al. (1992, Section 2.9).
This estimator is also known as the Hansen-Hurwitz estimator (Hansen & Hurwitz,
1943). For example, this pwr estimator for the total of y, using the analytic sur-

vey notation and suppressing the “pwr” subscript from the Sédrndal et al. (1992)
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notation, is expressed as

H MAR }
_— 1 Fagni
by = ) — ) =

he—1 Ah i—1 hi(1)

Yhik
Thi(1) Tk|hi

_ Z yhlik (31)

where fAyhi =y A W,;‘}lnyhik. As discussed in Result 2.9.1 of Sarndal et al. (1992),
this pwr estimator is unbiased for the corresponding population total in WR PSU
sampling. Note that we may simplify the complexity of estimator formulae through-
out the remaining chapters when brevity is appropriate. For example, ¢ 4y May also
be expressed as Zhikem W,;}Cyhik.

Taylor linearization and jackknife variance estimation techniques, either newly
developed or extracted from the literature, are included in our development of EC
calibration. Balanced repeated replication (BRR) variance estimation is needed
to address the estimation of population quantiles but will not be covered here.

Additional details related to the chosen variance estimators is provided in Section

2.3.

3.7 Assumptions for Asymptotic Theory

As discussed previously, we focus on stratified, multi-stage analytic survey
sampling designs, where map PSUs (ma, > 2) are selected with replacement from

within H design strata. The inclusion probability for PSU hi is assumed to be
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sufficiently approximated by mapmhi1). Additional assumptions are required to

facilitate the development of asymptotic theory for our research:

e As my = ZhGSA map — o0 and M = ZheU M, — oo, maxy, (%) (%) =
O(1). This assumption addresses two cases: (7) a fixed number of strata each

containing a large number of PSUs, and (4i) a large number of strata each

with a limited number of PSUs.

e The mean per population PSU (£/M) and the mean per population unit (/N)
are bounded in probability, where ¢ is an unspecified sample total calculated
from either the analytic or benchmark survey data. This allows statements
such as 4, (3.1) is Op(M).

e The size of the analytic and benchmark PSU samples (m4 and mpg) are suffi-

ciently large to support the claim that E[f(64,05)] = f[E(04), E(A5)], where

04 and Oy are the population estimators of interest from the analytic and

benchmark surveys, respectively, and f is a differentiable function.

3.8 Data Source

Theory presented without empirical results to support the development is in-
complete. We include the discussion of simulation studies conducted in R® (Lumley,
2005; R Development Core Team, 2005), and the corresponding results in the subse-
quent research chapters. The simulation population used in our research is a random
subset of the 2003 National Health Interview Survey (NHIS) public-use file contain-
ing records for 21,664 U.S. residents. These records are contained within H = 25

o8



design strata; M; = 6 PSUs are associated with each stratum. Units within the
sampling frame, from which the analytic survey samples are selected, are randomly
chosen from the simulation population with varying degrees of undercoverage by age
group and gender. Benchmark control-total covariance matrices are calculated from
the complete NHIS public-use data file (92,148 records). Additional details on the

simulation study are provided beginning in Section 4.5.1.
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Chapter 4

Estimated Population Totals

4.1 Introduction

Sarndal et al. (1992) among others demonstrate the good theoretical properties
of the traditional generalized regression estimator (GREG) including asymptotic un-
biasedness. We add to the literature in this chapter by detailing the theoretical prop-
erties of the GREG of a population total under estimated-control (EC) calibration.
The form of the estimated-control generalized regression estimator (EC-GREG) of
a population total is described in Section 4.2 using notation from Chapters 2 and 3.
The specialized EC-GREG known as the estimated-control poststratified estimator
(EC-PSGR) is also discussed. We examine factors that effect bias of the EC-GREGs
in estimating the population total in Section 4.3. An evaluation of a set of sample
variance estimators is discussed in Section 4.4, thereby allowing a complete picture
of the mean square error properties of these new estimators. Our theoretical findings
are validated with a simulation study in Section 4.5. We conclude the chapter with

a summary of our research findings in Section 4.6.
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4.2 Point Estimators

The EC-GREG of a population total, denoted as fyR in our research, is ob-
tained by replacing the vector of (presumed) population totals in the GREG, tp,
in expression (2.10), with values estimated from a benchmark survey, tp.. Even
though the values within the two vectors are the same, the “hat” notation in the
latter vector identifies the set of control total estimates with a non-zero (sampling)
covariance matrix, i.e., var (me) = Vg versus var (tp:) = 0g, a G-length vector of
zeroes. The use of differing notation becomes apparent in our discussion of variance

estimators in Section 4.4. The formula for fy r is explicitly expressed as:

tyR - fAy + (EB.CE - 1A:A:B)/]?)’A

H mapnani H mapnan; -1
n n / —1 / —1
= E E E 14 (tpy —tas) E E E T it Xhil X Xhik | ThixYnik
h=1 =1 k=1 h=1 =1 [=1
H map nAhi
—1
= E Ahik T i Yhik - (4.1)
h=1 =1 k=1

We repeat the definition of terms in the formula above to facilitate the discussion
in this chapter. The pwr estimator of the outcome variable y is defined as Ay =
th‘kesA W};}Cyhik, a function of the outcome variable values and the design weights,
W,;}ﬁ, from the analytic survey sample s4. We assume that 7, for the k' unit
in PSU ¢ within stratum h is reasonably approximated by manmhi1)mrjni, Where
(1) may out of Ma, PSUs are selected with replacement within stratum h with a
single-draw selection probability 71, and (i) nap; out of Nap; units are selected

with conditional probabilities ;. Additional details on the assumptions of the
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analytic survey design are provided in Section 3.1. The vector of pwr estimators for
the auxiliary (x) variables is similarly calculated as ta, = ZhikesA W};}thik for the
vector Xy, of size G. The corresponding G-length vector of auxiliary variable totals
estimated from the benchmark survey is calculated as tpe = ZlESB w;X;, where w;
denotes the benchmark analysis weight (i.e., design weight adjusted for issues such
as nonresponse) for the /" sample unit in the benchmark survey sample sp. We
make no explicit statement about the estimates in t g, because no assumptions have

been made for the benchmark survey sampling design. The model-coefficient vector

3
3

-1
H mapnahni Ah MAhi

H
> -1 / -1
B, = g E E T XnilX il E ik XhikYhik (4.2)

h=1 =1 [=1 h=1 i=1 k=1

also used in the calculation of fyGREG in (2.10), is calculated based on the spec-
ification of a working population model, ypx = x},;,B + Eni. Finally, apy =
1+ [f:Bm - ’EM}/ (ZMGSA W,;}xhilx’hﬂ) - Xpik 18 the calibration adjustment factor also
referred to as a g-weight by Sarndal et al. (1992) in Section 6.5.

Similarly, the estimated-control poststratified estimator (EC-PSGR) of a pop-
ulation total, fyp, is produced by replacing the population counts within the G

NN
poststrata ({N Bg}le> with estimated benchmark survey counts ({N Bg} ) in
g=1

the formula for ,pscr shown in expression (2.11). The resulting estimator, a special
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case of the estimator in (4.1), has the form

p — NN = NpYa
G A~ A

= ZNBQ N,Zgl LtAyg
g=1
H mapnan [ G A .

= Z Z Z [Z Npy N,Zgl 5ghik] W};}gg/hik

h=1 i=1 k=1 Lg=1

H map nAhi

= DD D T (4.3)

h=1 i=1 k=1

The G-length vector of poststratum counts estimated from the benchmark survey is
denoted by Ngp = [NBl, - Ngg]’ where NBg = ZZESB dgwy, the sum of the bench-
mark analysis weights for the units within poststratum g. The term 6, = 1 if
the I benchmark unit is a member of the ¢g'" poststratum (I € sp,), otherwise
0y = 0. The poststratum sizes estimated from the analytic survey <N ALy ee N AG)
are calculated by summing the design weights 77,;}6 across PSUs and design strata
within each poststratum, i.e., ]\7,49 = ZhikESA 5g;n~k7rgi}€ where dgpi, = 1 if kK € 544
(zero otherwise). The estimated counts N 4g are contained within a G-dimensional
diagonal matrix, NA. The term fAyg = th’kESA 5ghik7r,;}cyh,;k represents the pwr

estimator of the total for y within the ¢'* poststratum and populates the G-

~ ES ~ ~ ~ ~ N ~ !
length vector t4,. The vector Y, = NAfltAy = [(tAyl/Nm) e (tAyG/NAGﬂ
= @Al, e ngG),. The calibration-adjustment factor for the k* value in the fyp

calculation is ap;, = Zle(NBg/NAg)éghik = (NBQ/NAQ) because dgpi, = 1 for only
one (mutually exclusive) poststratum g.

In practice, the sample point estimates calculated under either the traditional
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or the estimated-control assumption will be numerically equal, though conceptually
different. Numerical differences, however, do occur in the components of the mean

square error (MSE) — namely squared bias and variance.

4.3 Bias of Point Estimators

~

The bias of an estimator 0 is evaluated as Bias(d) = E(f) — t, when only
the randomness associated with the survey design is considered. Following terms
discussed in Sérndal et al. (1992), this bias is labeled as the model-assisted random-
ization (or design-based) bias where the “model” is the assisting model chosen to
produce the estimator of interest.

A Taylor linearization is used to approximate the expectation of any nonlinear
estimator, such as the EC-GREG totals studied in this chapter. We assume that
samples in analytic and benchmark surveys are sufficiently large to facilitate the
approximation — see the theoretical assumptions discussed in Section 3.7. In the

case of t,p in (4.1) with a first-order linearization approximation, we have

E(tyr) = E(ta,) + E[(tp; — t4s)Bu]

~

= B(tay) + [B(tp,) — E(tas)] E(Ba)
+ O (max [M//ma, M/+/mp])

~ ~

E(tay) + [E(tg.) — B(ta.)] E(Ba) (4.4)

I

where m 4 is the number of PSUs selected under the analytic survey design and mp is
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the number of PSUs selected under the benchmark survey design. The result above
is obtained by evaluating the expectations with respect to four random mechanisms
using the formula for an unconditional expectation E(f) = Ey[E,(£|b)] (see e.g.,
Casella & Berger, 2002, pp. 164, Theorem 4.4.3). The mechanisms include the
analytic survey sample design (EF,), the benchmark survey sample design (Eg), and

the population coverage propensities for their respective sampling frames (E., and

CA

E.,). The unconditional expectation of the model-coefficient vector B, in (4.2) is

defined as follows using a first-order approximation:

EB,) = E., [EA (BA|CA>}

H mannani -1
Eey (EA (Z > T thxmz) )]

1 =1 I=1

H mapnani
x E., (EA <Z Z Z W}n}gxhikyhik> )

h=1 i=1 k=1

H Mh N}Ll -1
E E E EcA CAhzl Xhszh,l

h=1 i=1 [=1
H My Np;

X Z Z Z E., (Canik) XnikYnik

h=1 =1 k=1

!
= [E O ARl Xhil X

hileU

12

-1

Z G anikXnikYnik = Ba (4.5)
hikeU

where ), .. ., represents the sum over the design strata (h), PSUs (i), and units (k)
within the complete population (U); and Capi, = 1 indicates that the k' population
unit (k € U) is listed on the analytic sampling frame (Capi = 0 otherwise) such that
E., (Capir) = ¢anir. Note that we use the subscript A in E(]gA) = B4 to associate

the population model-coefficient vector with any subset of the population covered
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by the analytic survey sampling frame, i.e., U4 C U. Some researchers implicitly
assume an average coverage rate across the frame (¢apix = ¢a) so that the claim
of unbiasedness holds, i.e., By = B. However, it is more common for the coverage
rates to differ across groups of units (U.S. Census Bureau, 2002). For our research,
we will not make these assumptions and instead will allow for a difference between
B, and B (i.e., coverage errors may exist in the benchmark survey).

Following the technique in (4.5) for the remaining terms in (4.4), we say that
E(tay) = tay = Y piner AnikYnin, and E(ta) & ta, = > hiver QAnikXnik-  The
expectation of the benchmark control total vector is equal to tp, = > hiker PBhikXhik
where Cpgpir = 1 identifies the population units listed on the benchmark survey frame

such that E(Cppir) = ¢Bhik (Cprir = 0 otherwise). Therefore,

~

E(tyr) = tay + (tpr — tas)Ba. (4.6)

The calibration model underlying fyR is Ynix = X B + Ehig, where we assume
the model errors (E) are distributed with mean zero and common variance o?.

Continuing with the calculation of the design-based bias, we obtain the following
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expression:

BZ'CLS(tAyR) = tAy + (th — tAz)/BA — ty
= [tay —t,,B—t, +t,B] — (t; — ta.)B + (tp. — ta.) (B4 — B)
+<tBa: - tAa;)/B

= Z [ anin (Ynir: — X36B) — Wik — X4, B)] — (b2 — ta,)'B
hikeU

+<th — tAx)/(BA — B) + (th — tAm)/B

= Z (Enik — E)(¢panir — da) + (tpe — tas) (Ba — B)
hikel
~NE(1 —¢4) + (tp, —t,)B

= NCags+ (tps —ta:)(Ba—B) — NE(I — &A)

(b — t.)'B (4.7)

where Epir = yni — X},;,B, the population-level assisting model residual; b4 is
the average coverage rate for the analytic survey sampling frame; and Cyg, =
> niver (Bnix — E)(dani — $4)/N, the covariance between the coverage rates and
the assisting model residuals. The four bias components in (4.7) each can be elim-
inated under the following conditions. (i) If the auxiliary variables are correlated
with the outcome variable y and with the coverage mechanism, and the working
model is sufficiently close to the population model, then the random variation left
unexplained by the model (in theory) should be uncorrelated with the coverage
propensities, i.e., Cagy = 0. Under this scenario, the first bias component NCygy is

approximately zero. Note that Cypg can also be written as N [C’ Ayd — C’I’4X¢B] with

67



NCayy = ZhikeU(yhik—?])(chhik—d;A) and NCQqusB = ZhikeU(Xhik—i)(¢Ahik—¢3A)-
As a result, Cypy will also be zero if the coverage probabilities in the analytic sur-
vey are uncorrelated with both the outcome and the auxiliary variables. (ii) If the
coverage for the analytic and benchmark surveys is the same, then tg, = ta, so
that the second bias component (tp, — ta,) (B4 — B) disappears. Likewise, if the
slope B4 from the universe covered by the analytic survey is the same as that of the
full universe, the second term vanishes. (i) If the design matrix contains a column
of ones (intercept) so that the overall estimated population size is included as an
auxiliary variable, then by definition £ = 0 and the third bias component is elimi-
nated. (i) Finally, if tg, = t,, as with traditional calibration, the last component
is zero. Therefore, the estimator fyR will be asymptotically design unbiased only if
all these conditions are satisfied; an unlikely event especially with EC calibration.
Generally, the bias will be order O (max [M/\/m_A, M/\/m_B] )

The last term in (4.7), (t g, —t;), can be further decomposed into NCpyp—(1—
@B)tm, where Cp,, is the vector of covariance terms between the auxiliary variables
and the coverage propensities for the benchmark survey(s), and ¢p is the average
benchmark coverage rate. If tg, # t,, the bias component could be reduced by
choosing auxiliary variables from the benchmark survey with high coverage rates.

The model-assisted randomization bias for fyp, an EC-GREG estimator of a

total under a group-mean assisting model, can be derived from expression (4.7) and
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has the following form:

G G
. e 1 N
BZCLS(typ) = E NBQCAyd)gQET -+ E tyg (% — 1) (48)
g g=1 g

g=1

where N, is the population size within poststratum g; Caygy = N, ! ZkeUg<yhik —
Ug) (P anik — gz_SAg), the population covariance between the outcome variable and the
coverage rates within poststratum g; y, = t,,/N,, the g'" poststratum mean of y;
and ¢ a9 = Nay/N,, the average coverage rate within the poststratum under the
analytic survey design. If the benchmark survey does not cover the target popula-
tion correctly, so that Np, # Ny, then the first bias component, ¢,,(Ng,/N, — 1),
will be either positive (overestimate) or negative (underestimate) depending on the
magnitude of the bias. This component will be strictly negative if the benchmark
survey suffers undercoverage, and can accumulate across the poststrata to a size-
able negative bias depending on the magnitude of the outcome variable. The second
component, which is dependent on the particular outcome variable under examina-
tion, may also be negative if large y values are more likely to be excluded from a
sampling frame.

Components of Bias(t,p) are zero only under certain conditions. (i) If Np, =
N, for all g (i.e., no coverage errors in the benchmark survey), then the bias is
dependent only on the association between the outcome variable and the coverage
probabilities, C'a,s,. The value of Bias(f,p) then reduces to the formula provided in
equation (2) of Kim et al. (2007) for the traditional poststratified estimator, pg. (i)

If the coverage probabilities are constant within each poststratum (i.e., ¢ apnix = @ Ags
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k € U, for all g), then the first bias component is zero. Only if both conditions are
satisfied can we say that the fy p is approximately unbiased. Some might argue that
a “perfect” combination of poststrata could be formed such that the positive and
negative bias components cancel; however, we believe this likelihood to be so rare
as to be virtually impossible.

For some estimators, the contribution of the squared bias to the total MSE is
small relative to the variance. Many researchers will claim (approximate) unbiased-
ness based on weight adjustments that reduce bias to negligible levels because the
“true” levels of bias are generally not available. We next focus on what is for many

the primary component of the MSE, i.e., the variance.

4.4 Variance Estimation

Variance estimators have been developed for traditional weight calibration
and are available in software designed to analyze survey data, e.g., R® (R Develop-
ment Core Team, 2005), SAS® (SAS Institute Inc., 2004), Stata® (StataCorp, 2005),
SUDAAN® (Research Triangle Institute, 2004), and WesVar® (Westat, 2000). How-
ever, limited theoretical work has been completed on variance estimation for EC
calibration, and to our knowledge, the associated software is non-existent.

Five EC variance estimators that account for the variation in the benchmark
control totals are presented in the following sections. They include two linearization
estimators, and three delete-one jackknife variance estimators. With the delete-one

jackknife, replicates are created by sequentially deleting one PSU and adjusting
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the weights for the remaining PSUs within the corresponding design stratum. This
results in a total of my = Zthl myp, replicates calculated by summing the number
of analytic-survey PSUs per stratum (map,) across the design strata (h=1,...,H). We
also compare the theoretical properties of the variance estimators.

An effective variance estimator will reproduce the corresponding population
sampling variance in expectation (i.e., asymptotically unbiased estimator). The
population sampling variance of the EC-GREG total of y, fyR, is classified as an
approximate (or asymptotic) variance because of the approximate form of the re-
gression estimator used in the derivation. The approximation is derived by first

rewriting the estimator in terms of the corresponding GREG estimator (2.10):

A

tyrp = tay+ (EBm - EAZ’)/BA

= |:tAAy + (tBac - 1A:Aac)l BA] + (EBQJ - tB:E)/ BA

~ / A ~
= tyerec + (tpe — ths) (BA - BA) +t5,Ba —th,Ba

= LtyGREG —+ Op (M/\/mB) Op (m;‘l/Z) + f]leBA — tleBA

1%

tyorec + th,Ba — ty,Ba (4.9)

where B, is the (design) expected value of B ., the vector of sample regression co-
efficients defined in (4.1), such that (BA — BA) =Op (mgl/z); t'y,Ba = Op (M),
by the assumptions discussed in Section 3.7, is a function of the vector of estimated
benchmark control totals tgz, with M equal to the total number of PSUs in the

population; and tz, B4 is a constant, i.e., O (M). The estimator t,creg = Op (M)
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can be written as a function of the population assisting-model residuals:

tyoree = tay+ (tpo — fo)/ B,

= iy -t Ba—1t,, (BA —BA> Tt (BA —BA> +t,. B,
MAR MARi

H
= Z Z Z Thik (Unike — XhipBa) — (bas — tAa:)/ (BA - BA)
h=1 =1 k=1
—t;‘x (BA — BA> + t/Bz <BA — BA> + t%xBA
H map nahpi

= Z Z Z W;ZZ-}CEAhik + Op (M/\/my) + t/B:pBA
h=1 i=1 k=1
H man nani

YD Ean + t5,Ba (4.10)

h=1 i=1 k=1

12

where the analytic survey population residuals are calculated as Fapix = Ynix —
X,xBa such that >, T Eanie = Op (M); (‘EAI — tAx) = Op (M/«/mA); and
t’5,Ba = O (M). Combining the two approximations in (4.9) and (4.10) and noting

that the t/;, B terms cancel, we express t,r as

H mapnAhi

h=1 i=1 k=

@F>

The population sampling variance of fyR is generally evaluated with respect to
the analytic (4) and benchmark (B) survey designs as well as the coverage mech-
anisms associated with the respective sampling frames (¢4 and cp). However, for
our purposes we will assume that the benchmark survey has only coverage bias
(i.e., no detectable variation in coverage). The unconditional population sampling

variance is determined by evaluating the following variance components created by
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recursively administering the unconditional variance formula given in, e.g., Casella

& Berger (2002, Theorem 4.4.7):

Var(fyR) = Fp [VarcA,A(fyR | B)] +Varg [ECA,A(tAyR ] B)}
= Ep[E., {Vara(tyr | ca, B) |B}]
+ EB [V&TCA {EA(IgyR ’ CA,B>’ B}]

+ Varg [E,, {Ea(fyn | ca, B)| BY]

Vi+Va+ Vs (4.12)

For the purpose of variance computation, we assume the analytic survey sample is
generated from a complex, multi-stage design with m, (ma, > 2) PSUs selected
with replacement from within each of H design strata, and a without-replacement
sample of n4p; units selected from PSU hi. A complete discussion of analytic survey
sampling design assumptions is provided in Section 3.1. The pwr estimator of the

residual total in stratum A for this design is

S D Bp L
i—1 kel T hik LY.V — 1 Thi(1) Tk|hi

1 FRlaw

Mg =1 Thi(1)

where t ampn; = Yorlh Eapik/Thjni for Eapg defined in (4.10). To evaluate the expec-
tation of fy r With respect to the coverage mechanism and the sampling design associ-

ated with the analytic survey, as well as the benchmark survey design, note that each
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fAEhi/Wmu) is a one-PSU estimate of the stratum total tag, (= Zf‘iﬁ N’” ' Eanik)-

It follows that

E(tyr) = Ep(Ees [Ea(fyr | ca)])

H
Ea (Z tapn | CA)

h=1

12

E. + Ep [EjngA]

A

H Ny My,

Z Z Z Ee, (Canir) Eanix + Ep [t,] Ba

h=1 i=1 k=1
H Np Mpy;

= Z Z Z G anikE anir + t'5,Ba (4.13)

h=1 =1 k=1

I

where Cypir = 1 indicates that the &k unit within PSU A4 is listed on (i.e., covered

by) the analytic survey sampling frame (zero otherwise) with E., (Capir) = G anik-
The term V; = Eg [E,, {Vara(tyr | ca, B) |B}] in expression (4.12) is evalu-

ated using Result 4.5.1 in Sarndal et al. (1992) within each of the H analytic survey

design strata in addition to the work presented in expression (4.13):

Vi = Ep [ECA {VarA(fyR | ca, B) |B}] = E., [VarA(fyR | cA,B)]

tAEhz <N Vani
Z Z Thi(1 —tagn Z Z

map £ map T hi(1)

CA

H

tAEhz 2 1 Ec VAhz’
= Z Z?T}n ( _tAEh> + hz:;mAh lz:; ;hi(l) (414)

where tAEhi = Z]k\[:ml ¢AhikEAhik; tAEh = Zf\ihl tAEhi; and VAhi is the within-PSU
population sampling variance for Fap;,. The within-PSU variance, Vay;, is deter-
mined by the design used to select the second-stage units for the analytic survey.

For example, a simple random sample (SRS) of n45; out of Ny4p; second-stage units
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within PSU Az results in the following formula:

Noani Enit — Bans)”
VAhi:NAhi< A —1) Z ( A]@zh'—?h)

1€U AR

where Egp; = NZ,}i ZkeUAhi E snir, the average assisting-model residual in PSU hi
within the analytic frame population Uy,y;. Taking the expectation with respect to

the analytic frame coverage mechanism (c,4), we have

By () ) P (B, (P~ )

B (V) = oy (V) T

N An;

: Npi Np; * :
with E., (Nap;) = E., <Zk:hl CAhik) = > 12 Ganik = Ny, the expected PSU size
covered by all analytic survey sampling frames. The remaining variance component

above evaluates to the following expression:

ECA ( Z (EAhik’ - EAhi)2> = EcA ( Z E124hzk; - NAhiE_Elhi)

k€U apn; k€U an;
N 2
. hi
N (Zk:i ¢AhikEAhik>
o GaniE% . —
= Ahikt Anik Nn:
k=1 k=1 ¢Ahz’k
Npi N 9
= E ¢Ahz’k (EAhik - EAhi)
k=1

for E ap; = <Z,]€V:hl qﬁAhikEAhik) / <Z,]€V:hl qSAhik). Thus, the V; variance component is
associated only with the variance of the analytic survey design, that is, traditional

calibration where the benchmark estimates are assumed to be fixed so that V| =

AV (tyerec).
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Focusing on the coverage errors in the analytic survey, the second variance

component in (4.12) is evaluated as follows:

Vo

Ep [VCLTCA {EA(fyR | ca, B)| BH

= VCLTCA [EA(IgyR ’ CA,B>’ B]

H M, Ny
> Vare, | Y > CanieBanin
h=1 i=1 k=1
H My Np;
= Z Z Gani (1 — Gani) Ednin (4.15)
h=1 i=1 k=1

under the assumption that Cyupir ~ Bernoulli(¢anix) as discussed in Section 3.4.
This component is by definition positive and inflates the variance for the analytic
survey frame undercoverage errors.

The last variance component in (4.12) addresses the variability of the bench-

mark control totals and evaluates to the following expression:

Vs = Varg [E., {Ea(lyr | ca, B)| B}]
= VarB [EIB:CBA}

= B, V3B,

where Vg = Varpg (f Bm) , the population sampling covariance matrix associated with
the vector of estimated control totals. Therefore, after combining the component

approximations, we say that the asymptotic population sampling variance (AV') of
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tyR is:

>

AV (

yR) Vi+Vo+Vs

= AV (t,erec)

H My Np;

+ Z Z Z G anie (1 — danir) Eanin

h=1 i=1 k=1

+ B, V5B, (4.16)

The relative influence of the three components in (4.16) on the overall variance is
best examined through their convergence rates after dividing AV(fyR) by M? to
ensure the quantity is bounded. The first and third terms in (4.16), under standard
conditions (see Rao & Wu, 1985), are O (m;l) and O (m;l), respectively. The
term V5 is of a lower order, O (M~'). Thus, the sizes of the PSU samples in the
analytic and benchmark surveys are the prime determinants for the level of the
asymptotic variance. Note that the notation “AV(f,z) =" in (4.16) is the same
as “Var (fyR) =7 in (4.12) and follows the naming convention adopted by Séarndal
et al. (1992). We use the AV notation in the remainder of the document.

The results for the EC poststratified estimator (EC-PSGR), a special case of

the regression estimator discussed above, are derived by first detailing the first-order
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Taylor approximation of t,p (4.3):

G
typ = typ+ Z {YAg (NBg - NBg) + NBgNZgl (fAyg - tAyg)
g=1
—NBQNXQIYAQ (NAg - NAg)}
G
J— \/ \ —1 ; % Y
- tyP + Z {YAQ <NBg - NBQ) + NBQNAg (tAyQ - YAQNA9>}
g=1

A I _ N N _ !
= typ+ (NB - NB) Y, 4+ (tAy — NAYA> NZINB, (417)

where t,p = 25:1 NBgN;gltAyg; Ng = [NBl, e NBG]’, the vector of G poststratum
counts estimated from the benchmark survey; Npg is the vector of true counts from
the benchmark sampling frame population; ?A = Nglf:Ay = [Ya1, - Yac), the G-
length vector of model coefficients under the group-mean assisting model for the
analytic survey; Ya = [tay1/Nai, -, tAyl/NAg]/, the population equivalent to \?A;
fAy = [tay1, - tayc)’, the vector of total y within each of the G poststrata; and
Ny is a diagonal matrix of dimension G with elements equal to the analytic survey
poststratum estimates, i.e., N Aly -ees N ac. Note that the first-order approximation

to Y 4 is given as:

Y, = YA—f—NZl (EAy _tAy) — <NA —NA> NZIYA

= Y, +N;! (EAy —NAYA) :

Next, note that ‘EAy —NAY. =Ny <§(A — YA> and NAleA =1Ig+ Op (m;/z),
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where I is a G-dimensional identity matrix. Using this and (4.17), we have

AV (i,p) = NE HNZl (EAy - NAYA>] {(EM - NAYA>/N;11H N
#2408 | (No = No) (Ya - Ya) | £ [N NN
+ YLE [(NB - NB> NB - NB ] Y
— N, Var (3? ) Np +2Y",Cov (NB, Y ) Np + Y Var (NB) Y.
)

— N,Var (3? Np + Y, Var (NB) Ya. (4.18)

where the covariance term, Cov (NB,? A), is zero because we assume that the
benchmark and analytic surveys are independent.

The asymptotic population sampling variance for the EC poststratified total
follows the expression (4.16). The V; and V5 variance components are obtained by
evaluating the unconditional variance of NzVar <§( A) Njp by averaging over the
coverage mechanism (c4) and design (A) for the analytic survey. Therefore, V; for
the EC-PSGR estimator is approximately equal to Nz E., (Va4) Ng = AV (¢ ( yPSGR)

where V4 = V(M"A(S?A) = DX,D’ with

99a1  9Yar .. OYai
3ty1 8ty2 ONg
0Yaz  OYaz 0Ya2 1 a _ G
ot Otya ONg . YA
D= v Y = |diag {—} ,diag { g
Ag ) g=1 Nag g=1
0Yac  9Yac 0Yac
dty1 8ty2 ONg
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and

O(fa1,ta1) O(iar,ta2) Y T (ia1,Nac)
T(iaz,iar) T (iaz,iaz) o O (ta2,Nac)
o=
U(NA(G—anl) J(NA(G—anz) Y O-(NA(G—l):NAG)
| T(Nag,ar) O(Nag,taz) o T (Nac.Nac) i

The V5 variance component is defined as in (4.15) with Espix = Ynir — Ya, for unit &
within poststratum ¢ and §a, = tayy/Na, The remaining component is defined as
Vi & Y’AVBY 4 with Vg = Varg (N B), the population sample covariance matrix
specified under the benchmark design, by noting B4 = Y 4 under poststratification.
Therefore, the approximate variance accounting for the estimates from the analytic
and benchmark surveys, as well as the analytic survey coverage mechanism, is equal

to

AV(t,p) = AV (fyPSGR)
G H M, Ny

+ Z Z Z Z Sgnik®anik (1 — G anin) Ednin

g=1 h=1 i=1 k=1

+ Y VY4 (4.19)

with Eanik = Ynik — Yy and g, = t,4/N, discussed for expression (4.8).

Krewski & Rao (1981), Rao & Wu (1985), and others demonstrated the asymp-
totic consistency of the linearization and jackknife variance estimators for nonlinear
functions. However, this examination needs to be extended to the EC calibration —

this very research begins here. We discuss the set of EC sample variance estimators
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for the population sampling variance below identified for our research. The sample
estimators are derived by substituting (approximately) unbiased sample estimates
for the corresponding population parameters. We begin with an evaluation of tradi-
tional calibration variance estimators that do not account for the variability in the

estimated controls.

4.4.1 Linearization Variance Estimation for Traditional Calibration

A variety of variance estimators have been developed for traditional weight
calibration. These include linearization, balanced repeated replication, jackknife
(replication), jackknife linearization, and bootstrap. With all of these methods, the
controls are assumed to be fixed and the coverage error does not exist. Therefore,
the positive variance components in (4.16) associated with the variability in the
benchmark controls and the coverage error are zero because Vg is assumed to be
zero and @ ap; = 1 for every unit in the population.

The linearization variance estimator for the GREG, as shown in Section 2.3,
is a function of the estimated assisting-model residuals (eapi = Ynix — X}uk]:% 4)-
This variance estimator is discussed in standard sampling texts such as Sarndal
et al. (1992) and Lohr (1999). The linearization sample variance estimator (var) for
fyR, under a stratified, multistage analytic survey design with PSUs selected with

replacement and with the naive assumptions that the estimated benchmark control

totals are known without error and the sampling frame covers the population, is
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calculated as:

H MAR
~ ~ ma o v}
UaTNai’ve(tyR) = ’U(I?“(tyGRE(;) = E Thl E (uhi+ — Uh_H_)z (420)
h=1 AR

where iy = D 20 ahikw;j}ge Anik, the sum of (calibration) weighted model residu-
als within PSU hi; tpyy = my; YA gy, the average weighted residual within
stratum h; and ap; is the calibration weight defined in (4.1).

One variance estimator for fy p is obtained by substituting the estimated resid-
uals associated with the group-mean model, eapit = Ynix — ¥ Ag> and the EC-PSGR
calibration weights, an. = N Bg/ N Ag into (4.20). Another asymptotically equivalent
method-of-moments variance estimator for fy p is calculated as follows by substitut-

ing the sample estimators for the population parameters:

~

var aive (typ) = var (typscr) = N, V4N, (4.21)

Any variance formula developed for traditional calibration will underestimate
the population sampling variance because the benchmark component in (4.16) is
not accounted for in the calculation. However, highly precise benchmark estimates
will likely contribute a negligible EC calibration variance component to the variance
estimator. Thus the difference between the estimates for traditional and EC cali-
bration for these situations also will be negligible assuming that the coverage error
component is relatively small. In the next four sections, we present sample variance

estimators that address a non-negligible EC calibration variance component.
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4.4.2 Estimated-Control Taylor Linearization Variance Method

The EC linearization sample variance estimator for AV (£,z) (4.16) is derived
by summing the approximately unbiased estimators for each of the three components
Vi, V3, and V5. The first variance component is equivalent to the naive variance
estimator represented in (4.20), i.e., V} = var(fyGREG) = UGTNai‘ve(fyR)

The second variance component is a function of the unknown unit-specific
coverage propensities, ¢anir. Aggregate coverage estimates may be available from
external sources or estimated using a combination of the analytic and benchmark
survey data. For example, an estimated coverage probability is calculated as the
ratio of the estimated population counts from the analytic and benchmark surveys
either overall, i.e., Na / N, B, or within certain key domains. This estimation technique
relies on the assumption that the benchmark survey frame covers the population of
interest. If coverage is associated with, for example, a demographic characteristic,
then estimated coverage probabilities by those mutually exclusive domain categories
may reduce the bias in the variance component. Using stratum-specific estimated

coverage probabilities, ¢ 4,, we construct the following sample variance estimator

. . A o
with residuals eanit = Ynix — Xp;.Ba:

H . AR NARi 2
- Iy Ahik
=3 (1-0m) 3> S
h=1 i=1 k=1 =Mk

where q@Ah = NAh/NBh with NAh and NBh defined as the estimated size of the
h'" stratum defined by the analytic survey design estimated with the analytic and

benchmark data, respectively. Because we are interested in wundercoverage error
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variance, any ¢,, > 1 is truncated to one so that its contribution to the error
variance is zero. Relying on the assumed sampling design for the analytic survey
and the assumption that £ (QE Ah) = ¢ap, the corresponding population parameter,

the expectation of V, is determined as follows:

E(%) = Ep.,

Ea (Z (h%ﬁ%% Ak |y, )

b1 =1 K1 hik
H - My, Np;
= N (1=¢an) DY Ee, (Canir) B
P i—1 k=1
H - My, Np;
— Z (1—dan) Z Z G anit EAnin-
— i—1 k=1

The design-based bias of this estimator is calculated as

s (1) = () -

th

H M,
ZZ SaniEAnit ¢Ahzk ¢_5Ah). (4.22)

h=1 =1 k=1

I

If the coverage probabilities vary only by stratum, i.e., ¢ ani = @ap, for units within
stratum h, then the bias of Vy is approximately zero. However, the bias is inflated
if, for example, larger residuals are associated with coverage probabilities that differ
from the stratum averages.

Combining an approximate method-of-moments estimator for the third vari-

ance component, Vi = E’AVBE A, with the other sample components, we have the
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following sample variance estimator of AV (f,z) (4.16):

UCL?”ECTs(tAyR) - Vl + ‘72 + ‘A/E%

= Uar(f GREG)

MAw MARi
CAnik
P (1) 33
i=1 k=1 v
+ BAVBBA (4.23)

The linearization sample variance estimator for the EC-PSGR is similarly de-

rived by substituting the approximately unbiased sample estimators into the formula

(4.19):

UarECTS<£yP> = N/BVANB
G R H mapna 6
+ 3 (1 _ ¢Ag> 3 Z OghikCani
g=1 h=1 i=1 k=1  hik
~ A A
+Y,VsY4 (4.24)

where V4 & f)ﬁ)éf)’ , calculated using the analytic survey estimates corresponding
to the terms defined for (4.19); gg 4 18 calculated as N4/ Np, using the components
from fyp (4.3); eanix, = yhik—ngg; and dgpik, as in (4.3), is an indicator of membership

in poststratum g.

4.4.3 Fuller Two-Phase Jackknife Method

Isaki et al. (2004) applied a two-phase delete-one jackknife variance estimator
developed by Fuller (1998) to account for estimated control totals. The premise be-
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hind Fuller’s methodology (ECF2) is to take a spectral (eigenvalue) decomposition
of the benchmark covariance matrix (V ), develop benchmark adjustments that are
a function of the resulting G eigenvalues and eigenvectors and to add the adjust-
ments to the benchmark controls to create a set of replicate controls. A randomly
chosen subset of the m 4 replicates is calibrated to the G constructed replicate con-
trols where the condition my > G is required as shown below. Specifically, the

benchmark control total for the r** replicate of fy r is defined as

tpey = tme+cnZpe

G
= tps+ Ch(S(r) Z 59\(7")239 (4.25)

g=1

where tp, = ZlesB w;x;, the vector of control totals estimated from the bench-

mark survey; ¢, is a constant related to the chosen replication variance method

G
g=1

(cp = \/mAh/(mAh — 1) for the delete-one jackknife); Zp() = 0y D1 dg|(r)ZBg, the
ECF2 replicate control total adjustment; d(y is a zero/one indicator that identi-
fies the G (out of my4) randomly chosen replicates to receive an ECF2 adjustment;
dgiry = 1 if the g"" component of the benchmark covariance decomposition (out of
() is randomly chosen for the assignment given that replicate r is selected for an
adjustment; and zp, = q, \/;\79, a function of an eigenvector q, and the associated
eigenvalue 5\9 such that Vi = Zngl ZpyZp,, by definition. Given that d) =1 for
a particular replicate, a single indicator g,y (1 < g < G) must also equal one;

however, if .y = 0, then all indicators d,),) equal zero.

A delete-one jackknife variance estimator can take multiple forms depending

86



on the centering value. We chose to study the somewhat conservative variance
estimator centered about the full-sample estimate for our research (v4 in Wolter,
2007, Section 4.5). The delete-one ECF2 jackknife variance estimator, vargora(fyr),

is calculated as follows for a stratified, multi-stage analytic survey design:

1 (man — 1) X .. 2
t = - tyr() — T
vargcra(tyr) ; o 2 (tyre) — tyerEc)
H map
(mAh — 1) ~ ~ ~ ! 2 ~ 2
= Z m ( Ay(r) + (th(r) - tAa:(r)) BA(T) - tyGREG)
h=1 Ak
H map
man — 1 ~ R ~ !~ ~ 2
=> man = 1) ( ayr) + ({t5e + en2pey | = tawe) Bag) — tyGREG>
h=1 man r=1
H map
Mmap — 1 ~ ~ R A~ 2
-3 (man — 1) (fymma) — fyanea + enily Bag ) (4.26)
h=1 MAn r=1

Note that the association of the r** replicate to a particular (analytic survey) design
stratum is defined through the stratum membership of the eliminated PSU. The

replicate estimates in (4.26) are defined as:

° fyR(r) = fAy(r) + ({:Bx(r) — fo(r))']gA(r), the EC replicate estimator of the pop-

ulation total using the ECF2 method;

° fyGREg(T) =t Ay(r) + (tz — t Ax(r)) B A(r), the corresponding fixed-control repli-

cate estimator;
o Ay(r) = Zhik@A W,;%T)ﬂ'};-}cyhik, the replicate total of the y variable;
ot Ax(r) = ZhikESA ﬂ};b)ﬂ,;}cxhik, the replicate totals for the auxiliary variables

estimated from the analytic survey; and
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-1
A _ R 11
* Bap = [Zhikes A Whi(r)ﬂ-hikthxhik] D hikesa T hi(r)ThikXhikYhik, the model co-

efficient vector calculated with analytic survey data for each replicate.
The hi'™ PSU-subsampling weight for the 7" replicate, W,;b), is calculated under

the following specification:

0 if PSU r and PSU i are the same (r = i)

Thity = § 1 if h£ I/ for v € sap and i € sap (4.27)

mAh/(mAh — 1) if r 7’é 1 but h = h/.

\

Fuller (1998) approximates the squared term in (4.26) as

tycrece) — tyorpc + s Bag
1/2
= lyerEG() — lyorEG + ChZp () (BA +Op (mA ))
= t,arEG(H) — tyaREG + cnZpBa+ Op (M/\/mamp)

~ fyarece) — tyerEG T ChZp(Ba (4.28)

by assuming fyGREg(r) — fyGREG = Op (M/w/mA), BA(T) = B4+ Op <m21/2> for
the population parameter B4 = O (1) defined in (4.5), and 2, = Op (M/\/mE).

Using (4.28) in varpora(tyr) (4.26) and squaring the terms results in

H map
R Mgy — 1 N N 2
varpera(tyr) = Z (;h—Ah) Z (tyerEG() — tyarEG)
h=1 r=1
(man — 1) &

+ ) Z tyarpae) — tyorea) 2y Ba
h r=1

+ BuVB.. (4.29)
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We apply M2 to the variance above for convenience in comparing the orders of
terms for the bounded quantities. The first component is associated with the
variance of ,r conditioned on the benchmark controls (i.e., a naive variance es-
timator) and is Op (my'). Under standard conditions (see Rao & Wu, 1985),
max {M ( yGREG(r) — fyGREG)} converges in probability to zero and ZB(T)/M =
Op <m§1/ 2) by assumption, so that the second component (divided by M?) is
Op < el 2) The third component is Op (m,}l) and is related only to the variabil-
ity of the benchmark controls because Vg = Zh LA Zpn 2] B(ry> Dy definition.
Fuller (1998) and Isaki et al. (2004) show that the first and third components are
asymptotically equivalent to their respective components in AV (t,z) (4.16). Fol-

lowing the evaluation of the unconditional expectation given in (4.5),

Ey [(fyGREG(r) — fyGREG) Zp(r | B
A1

= [Ba (tyerpce) — tyerea)] Zp(

- O X Z,B('I’) = 07

thus demonstrating that the second term has expectation zero. However, the ECF2
does not incorporate the additional variation due to coverage error.

We propose the following modification to the ECF2 replicate estimators to
account for the coverage error variance component. Let 7., be a value randomly

generated from a standard normal distribution for replicate r, i.e., ) ~ N(0,1).
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For each replicate, we calculate the following values:

CthU(r)\/<1 - QEA(T)) fAez(r) (4.30)
where ¢ = \/man/(man — 1); = /1/Hmap; ¢A is an estimate of the an-

alytic survey coverage rate (error) using a combination of data from the com-
plete benchmark survey and analytic survey replicate subsample (e.g., N Ary/ N B);
tacary) = D hikesa W,:i%r)ﬂ;i}ceihik(r) with B A@r) defined for expression (4.26), thtr)
defined in expression (4.27), and eapirr) = Ynik — x;”k]:% Ar)- This replicate value
is similar to V4 used in vargers(tyr) (4.23) in Section 4.4.2. As discussed in Sec-
tion 4.4.2, if the value for 5 A(r) €xceeds one, then the estimate is truncated to one

to ensure the variance component is non-negative. The modified ECF2 replicate

estimates are then calculated using the following formula:

tyrey = tyre) + CthU(r)\/ (1 - &A(ﬂ) taea(r)

= [tAy + e Runer \/ (1 - €5A(7~)) tae2(r)

+ (EBz(r) — an:(r))/EA(r)

= tyerEct) + nZpeBaw) + anBan r)\/(l - <Z_5A(r)> taea(r) (4.31)

with terms defined in expressions (4.26) and (4.30). The expectation of # gy =

fAy(r) + cthn(r)\/<1 — QQSA(T)> fAeg(r) is the same as tyR in the original ECF2
method. This is shown by noting that the expectation of the coverage error term
(4.30) is zero because of the inclusion of a standard normal random variable, i.e.,

E, (n(T)) = 0 by definition.
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The modified ECF2 estimator, denoted by ECF2m in our research, is con-
structed as in (4.26) with # g substituted for t, R(r)- Using the justification given

for expression (4.28),

i yre) — tygree = tyorEG() — tyaREG T cnZpBa

+ Cthn(r)\/ <1 - QBA(T)> taea(r)

with ( gbA(r ) taea(ry assumed to be Op (M). The expectation of the ECF2m jack-
knife sample variance estimator is evaluated by examining the six resulting variance
components. Note in the expression below that we abbreviate (map — 1)/maj, as

—2
Cp -

H map
A~ _ 2
vargepam(tyr) = Z &2y (tyre) — tyerec)
h=1 r=1
H map
~ 2 A
= Z Cp (tyerEG(H) — tyaREG)

h=1 r=1
MmAp

+ 2 Z o Z (tyerEGH) — tyaRrEG) ZpBa

h r=1

+ B, VB,
mAhn ~

+ 2 Z &' Y (byereaw — tyarea) Rh??(r)\/ (1 - ¢A(r>) taca(r)
r=1

H map R
+ 23 ) 7y, Ba (Rhn(r)\/<1 - <Z5A(r)> tAeZ(r))
h=1 r=1
H map R
+ Ryt (1 - ¢A(r)) taea(r)
h=1 r=1

(4.32)

I
-
<. >
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Dividing both sides of the approximation in (4.32) by M? again facilitates the dis-
cussion of the relative convergence rates. The first three terms are the same as those
discussed for vargopa(tyr) (4.26). The last three terms are specific to the estimated
analytic survey coverage error. The fourth component is Op (M =3/ 2) and converges
in probability to zero under standard conditions (see Rao & Wu, 1985) by assuming
max {M’1 (fyGREg(r) — fyGREg) } The fifth component is Op (1/\/M7m3) and has
expectation zero because of the standard normal random variable 7). The expec-
tation of the sixth and final variance component in vargc Fgm(fy r), divided by M?,

is Op (M~!) and is approximately equal to the following expression:

E

H myp R
> Ry <1 - ¢A(r)) tAe2(r>]

h=1 r=1
1

= i ; — g E, (n?r)) [1 —FEy, ((ZA(T))} Ea (Laca(r))

— Map

with £, <77(2T)) =1, the degrees of freedom for a chi-square random variable. Using
the conditions of Rao & Wu (1985), we claim that the expectations of the repli-
cate estimators are equal to their corresponding complete sample estimator, e.g.,
Eg, ((ZA(T)) =FE;, (gng>. Therefore, Ey, <<;§A(T)) = ¢4 and F, (fAeg(T)) = taen by
assumption, with g0 = ZhikeU G anin B4y and Eapix = Ynik — X5 Ba. In summary,
sample variance components \71, Vg, and Vg in (4.32) address variability in estimates
from the analytic survey, the benchmark survey, and coverage error, respectively,
and the remaining components are asymptotically equivalent to zero.

One additional finding from the ECF2 methodology presented in Fuller (1998)
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is important to our research. The author demonstrates that the jackknife variance
of the replicate controls, vargc F2(f: Bz ), reproduces the estimated benchmark covari-
ance matrix tz, for every sample. This trait lends stability to the variance estimator
as discussed in Section 4.4.4. We provide the derivation below using the notation
adopted for our research. The definitions of the indicator variables 6, and dg(
given for (4.25) are important to the work presented below. In particular, note that
for a replicate r to which a zp, is assigned, Z?Zl 0g\(m2ZBg = Zg(r) Where the Bg(r)

subscript denotes the particular g that is randomly selected.

H mAp
N —1 . N A «
UarECFQ(th> = E % E (th(r) - th)(th(T) - th),
h=1 Ah

MAhR

G G
(man — 1) 2 . -
E— D0 | 2 0Zng | | D dalr) 2
r=1 g=1 g=1

= () ZBg(r) 2 pg(r)
r=1
G

= Y apyip, = Vg (4.33)
g=1

In deriving (4.33), we use the fact that in summing 5(74)239(”2339(74) over the my
replicates only G replicates receive an adjustment of a Zp, vector and each zp, is
assigned to one and only one replicate. Note that if my4 < G, the above evaluation
would not hold because Zf;G Zpy2p, # V5. The coverage adjustment in (4.30)
was not included in the result above because we consider undercoverage only in the
analytic survey sampling frame.

The modified ECF2 variance formula for estimated totals specializes to EC

poststratification with G poststrata by first adapting the coverage error variance

93



component in (4.30):

2 /N
chRW(r)\/<1G - ¢A(r)> tae2(r) (4.34)
A~ / N R
where <1G — d)A(r)) = [(1 — ¢A1(r)> R (1 — ¢AG(T)>:|, a G-length vector of es-
timated coverage rates within poststratum ¢; and t Ae2(r) = [g Ae21(r)r £A62G(r)],

with components t Ae2g(r) = ZhikES \ W,:i%r)ﬂ—}:i}céghikeihik(r) and €Ahik(r) = Yhik — ﬁAg-
The poststratum-specific coverage rates may be estimated as quS Ag(r) = N Ag(r)/ N By
where N Ag(r) = ZhikESA Wi;%r)éghikﬂlzz}w if the benchmark survey frame is believed
to correctly cover the population of interest. The ECF2m replicate estimates are

functions of the coverage error components (4.34) and are calculated as follows:

. A o S N
tyP(r) = N,B(T)N;X%T)tAy(T) + Cthn(r)\/(].G - ¢A(r)) tAe2(r)

A A /N
= [Np+ ChiB(r)]/YA(r) + Cthn(r)\/<]-G — ¢A(r)) tac2(r)

A~

Y A IR
= N%YA(T) + Chijg(r)YA(T) + Cth?](r)\/<1G — ¢A(r)> tae2(r) (4.35)

i N J-1 ¢ RV _ N - _ [ ; !
where f,p() = N Ny taye)s Yar) = Notaye) taye) = [fane)s - tayee)
with elements that are functions of a zero/one indicator 6, that signifies member-
ship in the ¢** poststratum, i.e., tayg(r) = Zhikem W};%T)éghikw,;}gyhik; Ny is a diag-

. . \; % ; —1
onal matrix with elements (NA1(7»)7 s NAg(T)) such that Ny = ZhikESA ﬂhi(r)éghik

X7, and NB(T) = Np + cpZp(r). Substituting (4.34) and (4.35) in the expression
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(4.32), we have

mAahn
A 2
warscrntir) = 323" S5 (o~ s
r=1
H maAp
N 2

Z Z yPSGR(r) — tyPSGR)
h=1 r=1

mAhn B
+ 2 Z ¢, Z (typscrery — typscr) Zp Y A

h —

+ Y’AVBYA

map ~ o
+ 2 Z Ch Z typscr(r) — tyPSGR) Rh”(r)\/<1G - ¢A(r)) tae2(r)

r=1

H mAp B A ; N
+2) ) 2, Ya (Rhmr>\/ (10 — d)A(r)) tAeQ(r))
h=1 r=1
H map N ,
+ Z Z Rin?@ <1G - ¢A(r)> tae2(r) (4.36)
h=1 r=1

with the terms ¢, = \/mAh/(mAh - 1), fyPSGR = NjBNzlszy (2.11), and others
defined previously. The discussion of the asymptotics given for varEcpm(fyR) in
(4.32) also applies to vargorom(typ).

The seven steps needed to calculate vargepam (f yp) (4.36) are provided below
where the total number of replicates (and analytic survey PSUs) is denoted as m 4.

These steps are used in the simulation programs discussed in Section 4.5.

1. Calculate the full-sample estimate f,p (4.3).

2. Determine the G eigenvalues 5\9 and G-length eigenvectors q, from the spectral
decomposition of VB, and calculate the G replicate adjustments of the form
Zpg = Qg \/;\T,. Concatenate the G x G matrix of zg,’s, where Zp, represents
the columns of this matrix, with a G x (m4 — G) matrix of zeroes. Randomly
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sort the columns. Call this new G x my4 matrix Z.

. Create a G X my4 matrix, called C, with column elements all equal to ¢, =

\/ man/(map — 1). The ma-length vector of jackknife stratum weights is cal-

culated as W,,,, = (map — 1)/map.

. Calculate the Hadamard (or element-wise) product of Z and C denoted as
Z o C (Searle, 1982, pp. 49). Replicate the vector of poststratum counts
estimated from the benchmark survey (Np) into the columns of a G X my
matrix and add to Z e C. This new G X m,4 matrix, called Npg,,,, contains
the replicate benchmark controls for all m 4 replicates. See the definition of

NB(T) in expression (4.36).

. Calculate the replicate estimates Y A(r) With elements Y Ag(r) = t Ayg(r)/ N Ag(r)
by removing in-turn one PSU from the analytic survey sample file, applying
the PSU-subsampling weights (4.27), and summing the weighted values for the
numerator and denominator within poststratum g. Call the resulting G x my4

matrix B, ,.

. Create the following G X m 4 matrices for the coverage error variance compo-
nent (4.34): R,,,, with column elements all equal to \/m; My, > With
elements obtained from the standard normal distribution; @,, ,, with column
elements equal to (1 — NAQ(T)/NBQ) for (NAQ(T)/NBQ) < 1 and zero other-
wise; and e, , with column elements described above for t Ae2(r)- Calculate the

Hadamard product of these matrices and call it E.
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7. Calculate the m 4 replicate estimates, t,p(-) in expression (4.35), by first mul-
tiplying the elements Np,,, by B,,,, adding E to the resulting matrix, and
summing down the rows within a column. Next, subtract fy PSGRs fy pin (4.3),
from each of the my4 values and square the terms, multiply by W,, ,, and sum
across the my4 estimates. The resulting value is the estimated variance using

the ECF2 method, varEopgm(fyp) in expression (4.36).

By excluding the sixth step given above, we are also able to calculate the variance
of t,p under the original ECF2 specification which does not inflate for the analytic
survey coverage error. A comparison of the two variance estimators will suggest
the level of underestimation associated with the exclusion of the error variance

component.

4.4.4 Multivariate Normal Jackknife Method

The multivariate normal method (ECMV) involves a random perturbation
of the controls totals for the complete set of replicates instead of adjusting only
a subsample of replicates as with the original ECF2 method (Section 4.4.3). The
ECMYV relies on large sample theory so that the control total adjustments may be
modeled as coming from a multivariate normal (MVN) distribution. The replicate

controls for the ECMYV have the form

1A-'Bz(r) = 1A-'B:z: + CthéB(r) (437)
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where €p() is a G-length vector of random variables from a multivariate normal

distribution such that &g, 1}\51 MVN¢(0g, VB); 0¢ is a G-length vector of zeroes;

Cp = \/mAh/(mAh - 1)7 and Rh = wl/HmAh.

The delete-one jackknife variance estimator for the ECMV is calculated with

replicate estimates t ,g() computed as described for the ECF2m in (4.31) but with
t Ba(r) defined in (4.37). Note that we use the same technique as shown in expres-

sion (4.28) for the approximation below because €p(,, like Zp(,), is assumed to be

Op (M/ii5):

tyerEG() — tyGrEG + CthélB(r)BA(r) + CthU(r)\/ (1 - Q_SA(T)> taea(r)
= tyerEG() — lyGRrEG + CthélB(r)BA +Op (M/ V (mAmB)>

+ Cthn(r)\/<1 - 95,4(?)> £A62(T)

> fyarece) — tyerec + chRrépyBa

- Cthn(r)\/<1 - @A(ﬂ) taca(r) (4.38)
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Using this approximation, the ECMV jackknife variance formula is specified as:

MAhn
vargomv (t Z Ch Z Ry — tyorea)’
r=1
H MAh
N 2
= 33 (s~ )
h=1 =1
H MAR
+ 2 Z cgth Z (tyGREG(r) - tyGREG) égB(T)BA
h=1 r=1
H MAR
+ By D R enméhn
h=1 r=1
H MAR
+ 2 Z c;Ll Z (tyGREG(T') - tyGRE'G) Rh??(?")\/( ¢A(7‘ ) Eaea(r)
h=1 r=1
H mMAh ~
+ 2> REY élp,yBa mr>\/(1 Pa <r>> Eaca)
h=1 r=1
H map
+ 303 Bty (1= ) faca
h=1 r=1

I
()=
<. >

(4.39)

Components V; and Vg are the same as shown for vargepom(fyz) (4.32) and equal
Op (m3") and Op (M) after dividing by M? for convenience. These components
account for the variation associated with the analytic survey estimates and the ana-
lytic survey coverage mechanism, respectively. Note that the expectation and bias of
the sixth component, >, R? > 77(27~) (1 - <ZA(T)> taea(r), is discussed in Section 4.4.3.
The cross-product terms involving ( YGREG(r) — tyG REc;) are asymptotically equal to
zero by assuming max {M ( yGREG(r) — tyG REcr)} converges in probability to zero
under the conditions specified by Rao & Wu (1985). The rates of convergence for

second and fourth variance components are Op (m;/ 2) and Op ( M3/ 2), respec-
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tively. The fifth component is Op (M -1/ 2m§1/ 2) and has unconditional expectation
zero because of the standard normal random variables, e.g., 1). The term Vs ad-
dresses the variation associated with the benchmark control totals and is Op (mgl).
This variance component is shown to be unbiased as long as the estimated bench-
mark covariance matrix is also unbiased. The unconditional expectation is taken

with respect to the MVN distribution (E.) as well as the benchmark (Ep) survey:

- (Hz s <vB>)

— B/, Vi By, (4.40)

if Ep <VB> = V. Therefore, we see that the vaTEon(fyR) is an asymptotically
unbiased estimator of the population sampling variance under the same conditions
as noted for vargcram.

The ECMYV variance estimator under poststratification, varge Mv(fy p), is cal-

culated by substituting N B(r) = Ng +cp,Ryé B(r) into the formula for vargcrom, (fy P)
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given in (4.36):

H mAh

- « 2

vargemv (typ) = E )—tyPSGR)
h=1 r=1
H mAh

. -
= E (typsarey — typscr + chRrépy Y a

h=1 r=1

2
~ /N
+ CthW(r)\/(la - ¢A(7«)> tAe2(r) ) (4.41)

with terms defined in (4.37) and (4.35).

Unlike the Fuller method, however, vargcuy (‘E Bz) 7 V3 as shown below:

H map
vargemv (tp:) = ZC QZ tB2(r) — tpa) (bBa(r) — t5a)’

h=1 r=1
H MAR

= DG D hRienmésn
h=1 r=1
H manp )

= Y R énmépy # Vs (4.42)
h=1 r=1

The ECMV method instead must rely on the design- and model-based properties
of the estimator. The expectation of this estimator is evaluated with respect to
the MVN distribution conditioned on the benchmark estimates (E.), and then with

respect to the benchmark survey design (Ep) as shown in (4.40):

H map
E[UGTECMv(fZBx)] = EB ZRI%ZEE EB(,« €B(r ’B)
=1
1N 1 .
= — Ep( = Eg(Vp). 4.43
B3 e S BV = EulVe). (3



Only if Vi is an unbiased estimator of Vi, can we say that in expectation the
population covariance matrix is reproduced with this method. This result naturally
holds for the EC poststratified estimator where we substitute NB for tg, in the
expression above.

The stability of the variance estimators is directly related the variability of the
sample estimates. The difference in the ECF2 and ECMV variance estimators is as-
sociated with the difference in the benchmark control total adjustments. The impact
of widely varying replicate adjustments will have a direct effect on the stability of

the variance estimates. Under the ECF2 method, Var[varECFg(fo)] = Varg(Vp).

However, with the ECMV method,

V(IT [UCLTECM\/(EBm)}
= VCLT’B [E (UCL’I’ECM\/(fSBz))] + EB [VCLT’E (UCLTECM\/(EB;B))}

~H Z Z Va?“B (B €B(T))) + Ep (Vars(éB(’“)éjg(r)))}

H :j:h 1 H 1 MmAR
= — Z e Z Varg [VB} + T Z — Z Eg [2t7‘(V2 )}
h=1 r=
=Varg (VB) + 2tr [EB(VB)} (4.44)

where E5(V%) = Varp (VB) + [EB(\A/'B)T. The expression above suggests that
vargpcre and vargpenry have similar asymptotic properties, i.e., O (M?/mpg). In
practice, however, the ECMYV is likely to be more variable than the ECF2 because
of the second (positive) term above. We examine the variability in the variance

estimates with our simulation study (Section 4.5).
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4.4.5 Nadimpalli-Judkins-Chu Jackknife Method

Nadimpalli et al. (2004) describe a jackknife variance estimator similar to the
ECMYV in a conference proceedings paper. Though the primary focus of their re-
search was an evaluation of regression models for smoothing monthly estimates from
the Current Population Survey, the article contains a data analysis using their pro-
posed EC calibration method (ECNJC). The article does not contain a theoretical
evaluation of the ECNJC; we provide the theory below.

The ECNJC, like the ECMV, requires a random perturbation of the replicate
control totals to account for the variability in the benchmark estimates. However,
unlike either the ECF2 or the ECMV, this method accounts only for the bench-
mark variances instead of the complete benchmark covariance matrix, i.e., only the

diagonal elements of V. The ECNJC replicate controls for fy r are defined as

EBI(T) =1tp, + CthSBTI(r) (4.45)

where Sj is a diagonal matrix of estimated standard errors for the benchmark con-
trols, i.e., Sp = diag(/ VB); M is a G-length vector of values randomly generated

independently for each replicate from the standard normal distribution, N (0, 1); and,

as with the other replication methods, ¢, = v/man/(ma, — 1) and Ry, = \/m.
The replicate controls (N B(r)) for the fy p are defined by substituting the benchmark
poststratum counts (Np) for the auxiliary variable totals (t5,) in (4.45) as noted
for the other replicate methods.

The development of the formula for the ECNJC delete-one jackknife (sample)
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variance estimator of a population total begins with the definition of a replicate esti-
mated total. Note that we approximate the following expression using B 4 the vector

of assisting-model coefficients specified by the analytic survey frame population:

~ ~

tyrey = taye) + (Epae) — fAz(r)>/ B
= tayr + <{tB$ + CthSB"?(r)} - EAx(r))/ BA(T)
= tyerece) T By SeBag)
= tyorEcc) + cnBam| T)SBSBBA

+ cthn(r SBSBOP (mA1/2>

12

tyarece) + cnRin(,)SsBa (4.46)

RN

where fo (r) is defined in (4.45); ¢ yR(T) = tAy(,n) + (t o(r) — fo(r)) Bag); (fyGREg(r)—
fyGREG) = Op (M) as noted in the approximation for the other jackknife replicate
estimates; and Sp = Op (M / \/m_B), by assumption. Using the replicate estimate
(4.46), the exact and approximate forms of the ECNJC jackknife variance estimator

are:

H MAR
. _ , 2
vargenge(tyr) = Z &’ Y (tyrey) — tyorec)
h=1 r=1
H M AR )
= Z c;? (tyGREG(r) — tyGREG)
h=1 r=1
H MAR R
+ 2 Z Ry, Z tyarec(r) — tyarea) N(ySeBA
h=1 r=1
H mAp R )
+ B, (Z Ry Z SB"?(T)”I/(T)SB> Ba. (4.47)
h=1 r=1
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The first variance component accounts for the variation in the analytic survey and
is Op (mgl) by dividing UarECNJC(fyR) by M?. Note that this term is the same as
shown for the other EC jackknife variance methods studied here. The second com-
ponent is Op (mgl) and has expectation zero, as with the other methods, because
E4 (fyg REG(r) — fyGREG) is assumed to be zero. Upon further examination, the third
variance component is shown to address the variation within the benchmark control
totals with order in probability mgl. The expectation of this term is taken first

with respect to standard normal distribution (£,), and then the benchmark survey

design (Fp):

h=1 r=1
L
-7 (ﬁz—Ah 2 B[S0 B, (mel | 5) SB]) >
1 H 1 MAh PN
- (e 2 o (s) )2
_ BB, (S23> B.. (4.48)

The term n(r)f]'(r) evaluates to a diagonal matrix of dimension G because the com-
ponents of 7,y vector are independent standard normal variables. The expectation
of each diagonal element is that of a chi-squared random variable with one degree of
freedom (x7,)) where E (X%n) = 1. Therefore, E, <"7(7~)77,(7~) | B) in the calculation
above. Note that the matrix SzB is the square of the diagonal matrix Sp (4.45) and
is not necessarily equal to the benchmark covariance matrix V5 used with the other

methods. Therefore, the third variance component given in (4.47) will incorporate
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the variance in the benchmark estimates in expectation only if the population co-
variance terms are zero. However, if Vg is not diagonal, then vargcy o fails this
test.

As with the original ECF2 discussed in Fuller (1998) and Isaki et al. (2004),
we propose to modify the ECNJC replicate estimates to additionally account for the

analytic survey coverage error variance by adding expression first given in (4.30):

.t yR(r) — {yR(r) + Cthn(r)\/<1 - QEA(T)> tAAe2(r)a (449)

with l.{yR(r) specified under the original ECNJC method (4.46). Using the modi-
fied replicate estimators g and the approximation discussed for vargcpam(fyr)

(4.32) and vargenry (tyr) (4.39), the modified ECNJC (ECNJCm) jackknife variance

estimator is specified as:

mMAh

H
. _ N 2
vargenom(tyr) = Z ¢, ( tyR(r) — tyGREG)

2
+ cthW(r)\/ (1 - @A(«,«)> fAez(r)> :
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Continuing,

mAh

2
varpenjom(t Z cy, Z lyGREG(r) — tyGREG)
r=1
mAp R
+ 2 Zcthh Z tyarEGH) — tyarECG) M7 SpBa
h=1 r=1
H man
+ B/ ZR%ZSBT] ’l’](r SB BA
h=1 r=1
mAh ~
+ 2 Z Ch Z yGREG(r) - tyGREG) Rh77 \/(1 - ¢A(r)> tAeZ(r)
h=1 r=1
H map N R
Z Z uIe SBBA 770«)\/(1 - (bA(r)) L Ae2(r)
H map R
+ Z Ryt (1 - ¢A(T)> tae2(r) (4.50)
h=1 r=1

The evaluation of the additional variance components follows the discussion given for
E [UCW’ECFzm( )} (4.32). Even though an additional positive variance component
is added to the original ECNJC variance formulation, this term is of lower order
than required to inflate for underestimation associated with the use of Sp.

The ECNJCm replicate estimator under EC poststratification is derived by

specializing expression (4.49):

~ A g oA S N
tyrey = NN taye + Cthmr)\/ (10 - ¢A(r)> taea(r)

N !~
= [NB + CthSBTI(T)] Y a0 + Cthn(r)\/< ¢A r)) taca(r)

= NﬂgYA(r +CthSB77 )YA + ¢ Rin 7”)\/( ¢A(r> tacor), (4.51)

with terms defined for the ECF2m method in (4.35). The corresponding EC-PSGR
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jackknife variance estimator defined for the ECNJCm method is:

mAh 9
varpen.jom(t E Chn E yP(r) — tyPSGR)
r=1
H map,
9 A - 2
= E <, (typscrey — typscr)
h=1 r=1

MAh

+ 2 ZcthhZ yPSGR(r —tyPSGR) QT)SBBA

H map
+ BY | D_Ri Y SenemiySs| Ba
h=1 r=1
map ) " =
+ 2 Zch > (iypscre) — typsar) Rh??(r)\/(la - ¢A(T)) taca(r)
r=1
map R T
+ 2 Z Rj, Z ) SsBa 1) T)\/(lG - ¢A(r)> tac2(r)
H map N ;-
+ Z Rin?r) <1G - ¢A(7~)> tae2(r) (4.52)
h=1 r=1

Use of the ECNJC would be plausible in two cases: (i) the complete bench-
mark covariance matrix for the controls is unavailable (e.g., estimates taken from a
previous report), or (ii) the covariance terms are negative so that the replicate val-
ues defined in (4.45) would lead to a conservative variance estimate. The diagonal
matrix Sp would be correct if the auxiliary variables (or, in the case of poststratifi-
cation, the estimated poststratum counts) were actually uncorrelated. However, this
is unlikely especially for the EC poststratified estimator because of the multinomial
structure of N. Given the setup for the ECNJC, the expectation of the variance
estimator will not approximate (4.16); the bias is related to the difference between

V5 and the expectation of Sp squared, i.e., E5(S%).

108



4.5 Simulation Study

We complement the theoretical evaluation of the variance estimators presented
in the previous sections with an analysis of simulation results for the EC poststrat-
ified estimator of a total ,p given in expression (4.3). The variance estimators

include:
1. Naive, the traditional calibration estimator defined in expression (4.21);
2. ECTS, the EC linearization estimator defined in (4.24);

3. ECF2m, the modified Fuller two-phase jackknife estimator (4.36) that includes

an adjustment for analytic frame undercoverage (4.30);
4. ECMYV, the Multivariate normal jackknife estimator (4.41); and,

5. ECNJCm, the modified Nadimpalli-Judkins-Chu jackknife estimator defined

in (4.52).

We additionally compare the modified Fuller method (ECF2m) against ECF2, the
original Fuller two-phase jackknife estimator (4.26) defined under EC poststratifi-
cation, as well as the modified Nadimpalli-Judkins-Chu (ECNJCm) method against
ECNJC, the original Nadimpalli-Judkins-Chu jackknife estimator defined in expres-
sion (4.47) for t,p. The former comparisons will suggest the use of one or more
variance estimators for EC calibration, while the latter comparison will suggest the
effectiveness of the undercoverage error variance component in properly inflating the

overall variance estimates.

109



4.5.1 Simulation Parameters

The simulation population is a random subset of the 2003 National Health
Interview Survey (NHIS) public-use file containing records for 21,664 U.S. residents.
These records are categorized within 25 design strata, each containing six PSUs
(M, = 6). Samples for the analytic survey are selected from this “population”
using a two-stage design. Two PSUs (ma, = 2) are selected with replacement using
probabilities proportional to the total number of persons (PPS) within the PSU.
From within each PSU, we selected a simple random sample (n.4p;) of 20 and 40
persons without replacement resulting in a total sample size (ng = Y, > 4" nan;)
of 1,000 and 2,000, respectively. Two within-PSU sample sizes were considered for
this study to evaluate the effects of smaller analytic survey variance components,
calculated by increasing the level of n4, on the variance of fy p. For each combination
of PSU and size of the person-level samples (i.e., 50 PSUs and either 1,000 or
2,000 persons), we selected 4,000 simulation samples. We calculate the estimated
population totals and associated variances for two binary NHIS variables in separate
runs of the simulation program: NOTCOV=1 indicates that an adult did not have
health insurance coverage in the 12 months prior to the NHIS interview (¢, = 3, 653,
approximately 17.1 percent of the population); and PDMED12M=1 indicates that
an adult delayed medical care because of cost in the 12 months prior to the interview
(t, = 1,522, approximately 7.1 percent of the population). We exclude nonresponse

from consideration in our current simulation study to minimize factors that could

cloud our comparisons.
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Table 4.1: Coverage Rates within the 16 Poststratification Cells by Outcome Vari-
able.

Not Covered by Health | Delayed Medical Care
Insurance (NOTCOV) (PDMED12M)
Age Male Female Male Female
<b 0.9 0.9 0.9 0.9
5-17 0.8 0.8 0.8 0.8
18-24 0.5 0.5 0.6 0.5
25-44 0.5 0.5 0.6 0.5
45-64 0.8 0.8 0.6 0.5
65-69 0.9 0.9 0.9 0.5
70-74 0.9 0.9 0.9 0.7
75 + 0.9 0.9 0.9 0.8

Poststratification may reduce variances slightly. However, in household sur-
veys, this technique is mainly used to correct for sampling frame undercoverage, as
well as other problems inherent with surveys. Each of the 4,000 simulation samples
is randomly selected from a sampling frame that suffers from differential undercov-
erage, such as those used for many telephone surveys. The 16 poststratification
cells are defined by an eight-level age variable crossed with gender. The coverage
rates for the 16 cells by outcome variable are provided in Table 4.1. These coverage
rates were created based on the population means for each age by gender group. A
coverage rate equal to 1.0 would indicate full coverage. Before each analytic survey
sample is selected, a stratified random subsample is drawn from the full population
using the coverage rates in Table 4.1 to create the analytic survey sampling frame.
For example, 90 percent of the male population less than five years of age (age < 5,

male) is randomly selected to be in the analytic survey sampling frame. This process
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Table 4.2: Benchmark Control Total Correlations for Males by Age Groups Ranging
from 18 to 69.

18-24 25-44 45-64 65-69

18-24 | 1.00 037 0.29 0.01
25-44 | 037 1.00 0.31 0.10
45-64 | 0.29 031 1.00 0.19
65-69 | 0.01 0.10 0.19 1.00

of subsetting the population to the frame was independently implemented for each
sample and for each outcome variable.

We suspect that the decision for researchers to use either a traditional or an
EC calibration variance estimator will depend on the precision of the control totals.
We calculated the population benchmark poststratum counts (Ng) and covariance
matrix (V) from the complete NHIS public-use data file (92,148 records) and
ratio adjusted the values to reflect a sample size comparable with our simulation
population (N=21,664). A few example correlations for the covariance matrix Vg
are provided in Table 4.2; the off-diagonal values range from -0.05 to 0.75 with a
mean value of 0.22. From this matrix Vg we calculated four covariance matrices for
the simulation ({V Bl}?:l) by dividing the original matrix by the adjustment factors
1.0, 3.6, 18, and 72. The adjustments reflect benchmark surveys with approximate
effective sample sizes of 21,700, 6,000 (= 21,700/3.6), 1,200, and less than 500,
respectively. The {V Bl}?zl are used directly in the calculation of the sample variance
estimates in place of V. For example, the Vg;’s were (spectrally) decomposed for
the 4,000 simulation samples to generate the ECF2 replicate control totals. From

each of the four Vg,;’s, we generated 4,000 estimated benchmark control total vectors
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(Np) of length 16 using a multivariate normal (MVN) distribution such that Nz ~
MV N1g (Npg, V). These control total vectors were used to calculate the replicate
controls NB(T) for all the jackknife methods. We chose not to randomly generate a
V3 for each N using, for example, a Wishart distribution in order to simplify the
simulation study. In short, the Np’s varied from one simulated sample to another
but the VB’S did not.

In summary, the sources of variation accounted for in our simulation study
can be classified into two groups — external and internal. External conditions vary
across the set of simulation samples but do not vary within each set of 4,000 sim-
ulation samples. These include variation in the outcome variable (y=NOTCOV or
PDMED12M), the size of the analytic survey sample (n4 = 1,000 or 2,000), and
the benchmark covariance matrix ({VBI}?:l). Internal conditions vary within the
set of simulations samples and include: creation of the analytic survey sampling
frame, selection of the analytic survey sample units, generation of the benchmark
control totals (Np), selection of the G replicates to receive an ECF2 (spectral de-
composition) adjustment factor, and generation of the multivariate and standard
normal random variables for the ECMV and ECNJC methods.

The simulation was conducted in R® (Lumley, 2005; R Development Core
Team, 2005) because of its extensive capabilities for analyzing survey data and
efficiency in conducting simulation studies. We developed program code to calculate
the linearization and replicate variance estimates for fyp because the relevant code
does not currently exist. The programs developed for the simulation studies are

provided in Appendix A.
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4.5.2 FEvaluation Criteria

The empirical results for the variance estimators listed at the beginning of

this section (Section 4.5) are compared using several measures across the j (j =
1,...,4000) simulation samples and two outcome variables (NOTCOV, PDMED12M).

The measures include:

1. 100 x [((1/4000)2 var(typ,) — MSE) /MSE] the estimated percent bias

of the variance estimator relative to the empirical M.SE = (1/4000) >_; (typ, —
ty)%
2. 100 x [((1/4000) > var(typ,) — VAR> /VAR} the estimated percent bias

of the variance estimator relative to the empirical variance where VAR =
(1/4000) 2, (Fyp, — (1/4000) X2, 7,1, )%

3. (1/4000)>_; 1 (12| < z1-a/2), the 95 percent confidence interval coverage rate

where a = 0.05, 2; = (fypj — ty)/se(fypj), and se(fypj) = var(fypj);

R 2
4. \/m > [se(typj) — (1/4000) >, S@(typj)] , the standard deviation of the

estimated standard errors (se); and,

5. 100 x [((1 /4000) 3, se. (iyp,) — (1/4000) ¥, sepors (fypj)> / (1/4000)
Z S€ECTS (t )] the percent increase in the variation of the estimated stan-
dard errors for all studied estimators (se,) relative to the ECTS variance es-

timator (segcrs)-

Prior to comparing the variance estimators, we evaluate the relative bias of the
estimated totals, (1/4000) >_; (typ, —t,) /t, discussed in the next section.

114



4.5.3 Results for Point Estimators

To justify the need for calibration, we initially evaluated the pwr estimated
totals (fAy = ZhikESA W,:i}cyhik) for the two outcome variables. This estimator is
known to be design-unbiased under pristine conditions (see Result 2.91 Sérndal
et al., 1992). The percent relative bias indicates that the point estimator is nega-
tively biased, underestimating the population total by 38 percent for NOTCOV and
41 percent for PDMED12M. Also, the 95 percent confidence intervals for the empir-
ical bias of NOTCOV and PDMED12M are (-1,852.2, -898.8) and (-854.2, -391.1),
respectively, and do not cover a bias of zero. These large negative values show that
some correction is needed to adjust for the non-negligible levels of undercoverage
bias.

The percent relative bias for the poststratified estimator fyp was much lower
— the fyp is positively biased by no more than 2 percent for both outcome variables.
The EC 95 percent confidence intervals for the bias of NOTCOV and PDMED12M
do contain zero as desired and are calculated as (-664.4, 819.2) and (-380.8, 422.3),
respectively. Even though population values were not used for the calibration, the
EC calibration using benchmark survey estimates greatly improved the MSE of our
estimated totals. Estimated poststratum counts from the benchmark survey (NB)
were larger (at most 10 percent) than the corresponding values in the population
(N) for five out of the 16 poststrata. This is likely associated with the small positive

percent relative bias seen for the EC poststratified estimator.
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4.5.4 Comparison of Variance Estimators

Adding to the theoretical evaluation in Section 4.4, the empirical results for
an effective variance estimator should possess a percent bias relative to the empiri-
cal MSE either near zero (unbiased) or somewhat positive (conservative measure).
Figure 4.1 shows the general pattern of our results through the percent relative
bias of five variance estimators (Naive, ECTS, ECF2m, ECMV, and ECNJCm) by
the increasing size (left to right on the z axis) of the benchmark survey relative to
the 1,000 persons selected for the analytic survey (ng/na) for NOTCOV (a) and
PDMEDI12M (b). Note that in our study the increase in the benchmark survey size
is directly related to an increase in the precision of the estimated control totals. The
horizontal line represents zero bias, while the vertical line represents the effect for
equal-sized analytic and benchmark surveys. Estimates for the Naive and ECNJC
estimators are represented by squares and triangles, respectively. The “Other EC”
estimates (ECTS, ECF2m, and ECMV) are similar in value and are shown as circles.

The traditional poststratified estimator (Naive) is most negatively biased among
those compared as expected for both outcome variables. When the benchmark sur-
vey is smaller than the analytic survey (and therefore produces estimates less precise
than the analytic survey), the Naive estimator is negatively biased by as much as 50
percent for NOTCOV and 35 percent for PDMED12M. The level of bias improves
as the relative size of the benchmark survey increases; however, the Naive estimator
still results in, at best, a 4 percent underestimate for the variables considered. The

ECNJCm estimator fares slightly better than the Naive estimator though the bias
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Figure 4.1: Percent Bias Relative to Empirical MSE of Five Variance Estimators by
Relative Size of the Benchmark Survey to the Analytic Survey for 1,000 Analytic
Survey Units.
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is still larger than the other EC variance estimators — biases range from -8 to -37
percent for NOTCOV and from -3 to -25 percent for PDMED12M. The percent
relative biases for the remaining estimators fall between -2 and -8 percent.

For a small benchmark survey relative to the size of the analytic survey (left
of the vertical line), the levels of (absolute) bias dramatically increase for the
Naive and ECNJC estimators. either a negligible effect (NOTCOV) or an oppo-
site (PDMED12M) effect is seen for the other EC variance estimators. The variance
component associated with the benchmark survey, e.g., \?;\733? 4 in (4.24), becomes
the dominate term within the EC variance estimators to the left of the (vertical)
line of equality. Thus the benchmark variance component somewhat corrects for the
negative bias associated with the analytic variance component. Additional research
is needed to determine if a threshold exists for when such a counterbalance of bias
can occur.

The percent biases relative to the empirical MSE generated from our simula-
tion study are provided in Table 4.3. The 20 NOTCOV and PDMED12M estimates
for ny = 1,000 were used to generate Figure 4.1. Bias estimates for the Naive and
ECNJC estimators are larger than the other EC estimates for all our simulations.
Differences are negligible for the remaining variance estimators under all conditions
studied. Note that the relative sizes of 21.7 and 10.8 both imply benchmark survey
sample sizes of about 21,700. Thus the variance components associated with the
benchmark survey estimates are more prominent for the estimates in Table 4.3 based
on ny = 2,000. This leads to larger relative biases in these estimates, relative to

those produced under ny = 1,000, even though the analytic survey sample size is
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Table 4.3: Percent Bias Estimates Relative to Empirical MSE for Five Variance
Estimators by Outcome Variable and Relative Size of the Benchmark Survey to the

Analytic Survey.

Relative Size

Relative Size

Outcome Variance np/(na = 1,000) np/(na = 2,000)
Variable Estimator | 0.3 1.2 6.0 21.7| 0.2 0.6 3.0 10.8
NOTCOV Naive -50.3 -23.0 -10.7 -9.2|-56.0 -31.0 -14.2 -12.2
ECTS -45 -45 -61 -7.7| -02 -84 -82 -10.1
ECF2m 4.7  -46 -5.8 -7.5 0.1 -82 -83 -10.1
ECMV -43 41 -60 -75| -02 -81 -81 -10.0
ECNJCm | -36.7 -17.1 -89 -82]-40.0 -242 -119 -11.1
PDMEDI12M Naive -34.4 -145 5.7 -39|-481 -234 -10.0 -10.1
ECTS -3.3 3.7 27 -26| 47 -64 -51 -78
ECF2m -3.5 35 -24 -23| 46 -68 -52 -78
ECMV -3.0 33 -24 -22| 43 -63 -50 -7.7
ECNJCm | -24.5 -10.5 -40 -2.7|-351 -176 -76 -84

Table 4.4: Percent Bias Estimates Relative to Empirical Variance for Five Variance

Estimators by Outcome Variable and Relative Size of the Benchmark Survey to the

Analytic Survey.

Relative Size Relative Size

Outcome Variance np/(na = 1,000) ng/(na = 2,000)
Variable Estimator 0.3 1.2 6.0 21.7 0.2 0.6 3.0 10.8
NOTCOV Naive -49.5 -206 -69 -55|-549 -284 -88 -58
ECTS 3.1 -1.5 -21 -39 23 -5.0 -24 -36
ECF2m 3.3 -1.7 -1.8 -3.6 26 -48 -25 -35
ECMV -29 -1.1 -20 -36 23 47 -23 -34
ECNJCm | -35.8 -14.6 -5.1 -44]-385 -214 -64 -4.6
PDMEDI12M Naive -33.9 -136 -47 -29|-473 -220 -82 -7.9
ECTS 24 27 -1.7 -16| -32 -46 -3.1 -56
ECF2m 26 -25 -1.3 -13] -31 -50 -32 -55
ECMV 21 23 -14 -12| -28 -46 -3.0 -54
ECNJCm | -239 -96 -3.0 -1.7]-34.1 -16.1 -5.7 -6.1
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larger.

The overall negative bias of our estimates is similar to the bias of linearization
variance estimators shown for the combined ratio estimator (4,,/ N 4g) in Section
4 of Rao & Wu (1985) and in Wu (1985). As noted in Section 4.5.3, the estimated
totals are slightly larger than the corresponding population total. Therefore, we
additionally examine the percent bias relative to the empirical variance to determine
if the empirical bias is affecting our results. Table 4.4 shows a noticeable decrease
in the negative biases in comparison to the values presented in Table 4.3.

The patterns exhibited for the percent relative bias are reflected in the coverage
rates for the 95 percent confidence interval for the estimated totals (Table 4.5). The
Naive and ECNJC estimators are more likely to experience confidence intervals
coverage rates below 95 percent. These rates approach the appropriate level as
the precision of the benchmark survey estimates improves. However, the remaining
EC variance estimators had coverage rates near acceptable levels regardless of the
relative size of the surveys and therefore are more robust.

The discussion so far suggests that there are minimal theoretical, as well as
empirical, differences between the ECTS, ECF2m, and ECMV methods. We look
to the standard deviation of the estimated standard errors (SEs) in an attempt to
distinguish the estimators. An examination of this variability can provide insight
on the (empirical) stability of the variance estimators because an unstable variance
estimator could generate a poor variance estimate based on the nuances of the
particular sample selected. Table 4.6 contains the percent increase in the instability

(i.e., variability) for all variance estimators against the ECTS. Minor differences

120



Table 4.5: Empirical 95 Percent Coverage Rates for Five Variance Estimators by
Outcome Variable and Relative Size of the Benchmark Survey to the Analytic Sur-

vey.

Relative Size Relative Size
Outcome Variance np/(na = 1,000) np/(na = 2,000)
Variable Estimator | 0.3 1.2 6.0 21.7| 0.2 06 3.0 108

NOTCOV Naive 83.5 91.7 93.7 93.6 |81l2 895 928 934
ECTS 95.6 944 942 94.0|95.7 943 93.7 93.7

ECF2m | 951 941 942 939|955 942 935 938

ECMV 951 945 944 94.0]955 94.0 93.6 938

ECNJCm | 88.6 92.7 94.0 939|878 91.0 93.1 93.6

PDMED12M Naive 88.8 93.1 944 944|848 91.8 942 938
ECTS 94.8 94.8 947 9451954 947 948 94.1

ECF2m | 94.8 948 948 945|952 94.7 947 94.1

ECMV ]95.0 94.8 94.7 944|947 948 948 94.0

ECNJCm | 91.1 93.7 945 944 ]89.0 928 944 93.9

in the stability of the estimates are seen for relatively large benchmark surveys.
However, as the benchmark estimates themselves become less stable, the variation
in the estimates also become less stable in comparison to the variation in the ECTS
estimates for all simulation conditions studied. The largest increase is noted for
the multivariate method (ECMV) and is attributed to the use of values from the
multivariate normal distribution with the complete benchmark covariance matrix as
discussed in Section 4.4.4.

We conclude this section with an examination of the effects of the undercov-
erage error variance component introduced into the original formulae for the Fuller
and Nadimpalli-Judkins-Chu jackknife variance estimators. Table 4.7 shows the per-

centage point reduction in the bias of the variance estimates relative to the empirical
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Table 4.6: Percent Increase in Instability of Variance Estimates Relative to EC Lin-
earization Estimator (ECTS) by Outcome Variable and Relative Size of the Bench-

mark Survey.

Relative Size Relative Size
Outcome  Variance ng/(na = 1,000) ng/(na = 2,000)
Variable Estimator | 0.3 1.2 6.0 21.7| 0.2 0.6 3.0 10.8

NOTCOV  Naive 173 75 21 0.7]235 11.2 3.0 1.0
ECF2m 12.0 55 23 02]151 &84 21 06

ECMV 212 74 18 031308 85 24 0.7

ECNJCm | 145 7.0 19 05]192 99 28 1.1

PDMEDI12M Nalve 49 24 07 04123 6.1 19 1.0
ECF2m 77 38 1.1 04]120 63 21 0.7

ECMV 115 40 09 05]226 76 22 1.1

ECNJCm | 53 26 07 03]134 6.2 22 09

Table 4.7: Percentage Point Reduction in Bias Relative to Empirical MSE At-
tributed to Coverage Error Variance by EC Variance Estimator, Outcome, and

Relative Size of Benchmark Survey to the Analytic Survey.

Relative Size Relative Size
Outcome  Variance ng/(na = 1,000) np/(na = 2,000)
Variable Estimator | 0.3 1.2 6.0 21.7| 0.2 0.6 3.0 10.8
NOTCOV  ECF2 -02 -03 -04 -04/|-02 -05 -05 -0.6
ECJNC -02 -03 -04 -04/|-02 -05 -05 -0.6
PDMED12M ECF2 -0.5 -0.7r -0.v -07|-08 -1.0 -1.2 -1.3

ECJNC -0.5 -07 -0.7 -0.7/|-0.7 -1.0 -12 -1.3
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variance in using the modified variance estimators. Overall, the relative bias is re-
duced between 0.2 and 1.3 percentage points, with larger reductions occurring for
the larger benchmark surveys. This is consistent with the coverage error variance
component in (4.16) having order O (M), i.e., not dependent on the sample size
from either the analytic or benchmark surveys. The differences in the 95 percent
coverage rates are not appreciable and are therefore not shown. This suggests that
an undercoverage error adjustment is useful for the variance estimator; however,

further research is needed to produce a more effective adjustment factor.

4.6 Summary of Research Findings

The theoretical and analytical work discussed in this chapter support the need
for a new methodology to address calibration using estimated control totals, i.e.,
estimated-control (EC) calibration. Traditional variance estimators can severely
underestimate the population sampling variance in estimated totals resulting in,
for example, incorrect decisions for hypothesis tests and sub-optimal sample allo-
cations when the design is optimized in the future. This is especially noticeable
with relatively small benchmark surveys and has implications for studies such as
the Web/RDD calibration example discussed at the end of Section 2.2.

The EC linearization variance estimators varECTg(fy r) (4.23) shows the most
promise for EC calibration given the evaluation criteria used for our study. This
estimator is effective at reducing the percent relative bias experienced with the

Naive variance estimator (4.20) when the benchmark survey is small relative to
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the analytic survey. The replication variance estimator vargcpo, (4.32), the Fuller
two-phase jackknife variance estimator augmented with an undercoverage error vari-
ance component, also reduces the relative bias and is recommended specifically for
studies requiring replicate weights. These include, for example, public-use analysis
files that are to be released without sampling design information to further protect
data confidentiality and respondent privacy. The ECMV method is asymptotically
equivalent to the recommended variance estimators; however, the instability of the
estimates may make this variance estimator less attractive.

Implementation of the two recommended variance estimators requires spe-
cialized computer programs because the capabilities are currently not available in
standard software. The linearization estimator may be more approachable because
it involves a modification to available variance estimates (see Section 4.4.2 for fur-
ther discussion). We provide a step-by-step guide to the procedures required for the

vargcram (Section 4.4.3) to facilitate the creation of the replicate weight program.
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Chapter 5

Ratio of Two Estimated Population Totals

5.1 Introduction

The ratio estimator of a population mean, also known as a Hajek estimator
(H4ajek, 1971), is calculated as the estimated total for an outcome variable divided
by the estimated population size (N ). The estimated population size is generally
obtained by summing the final analysis weights for all sample cases. This estimator
has for many sampling designs a smaller variance than the corresponding Horvitz-
Thompson estimator (Horvitz & Thompson, 1952) or the pwr estimator (Sarndal
et al., 1992) divided by the known population size (V). We examine the ratio es-
timator for a population mean under estimated-control calibration (EC ratio-mean
estimator) in the general regression setting, as well as under poststratification. For-
mulae for the EC general-regression (EC-GREG) and poststratified (EC-PSGR)
ratio-mean estimators are provided in Section 5.2. We evaluate the bias in these
estimators in Section 5.3, and compare the levels against those discussed for the
estimator of the population total used in the numerator of the ratio (Section 4.3).
The variance estimators included in the Chapter 4 evaluation are compared for the

ratio-mean estimators in Section 5.4. We confirm our theoretical findings through a
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simulation study (Section 5.5) and summarize our theoretical and empirical results
in the final section of the chapter (Section 5.6). The work in this chapter builds on
the research presented in Chapter 4. Some of the Chapter 4 equations are repeated
in Chapter 5 to complete the discussion, while others are merely referenced for the

sake of brevity.

5.2 Point Estimators

The EC-GREG ratio-mean estimator is defined as

A tyR
= = 5.1
Yr N ( )

where ,z = fa, + (52 — taz)'Ba as shown in expression (4.1). The denominator is

an EC-GREG estimator of the population size and is calculated as

h=1 i=1 k=1
H mapnap; ~ . !
= 333 1+ (g — ) (Z m;-}xm@) Xhik | Tk
h=1 i=1 k=1 sA
= Na+ (tp, — EAx)'BAN (5.2)

where W};}g (= 1/manmhiq)Tri) is the analytic survey design weight for the kth
sample unit in PSU i selected with-replacement within stratum h; ay;, is the EC

calibration adjustment factor for the k" unit; Ny = ZhikESA W};}C, the estimated
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population size using only the analytic survey data (s4); and

-1
BAN = ( Z Wﬁ;iXZikXZil) t Az, (5.3)

hil€s 4

the model coefficient vector used in the numerator with g,z = 1 for all sample units
with t4, = th‘kesA w,;}ﬁxhik. Note that a;, specified for NR is the same as defined
for t,p in (4.1). Sérndal et al. (1992, Section 7.13) refer to 5 in (5.1) as a specific
type of “ratio of population totals” estimator of the form fy r/t-r, where 2, = 1 for
our estimator. Therefore, our discussions of ¥ (and the poststratified ratio-mean
estimator) can be extended to a ratio of any two population totals.

The EC-PSGR ratio-mean estimator is similarly defined as

yp = o (5.4)

where fyp = 25:1 N BgNg;zf Ayg» the EC poststratified estimator of a total defined
in expression (4.3) with estimates summed over the G poststrata. The population

size, estimated through EC poststratification, simplifies to

G H mapnaAni A
\ -1
Np = E E A ghik T ik
h= Ag

g=1 h=1 i=1 k=1
o /o

— Z( Bg) s = Na, (5.5)
g=1

the population size estimated from the benchmark survey where g4, = 1 if the kth

unit is a member of the poststratum g (dgp = 0 otherwise); NAQ = ZhikesA Sohik Tt
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and NBg = ZZGSB dgw; (04 = 1if | € spy, zero otherwise). Note that Ng may be
written in matrix notation as Ng = Njglg, where Njg = |Np1, ..., Npc|, the G-
length vector of estimated benchmark poststratum counts, and 14 is a G-length
vector of ones. Because a poststratified estimator of a total can be expressed as
Ngf@l for the appropriately chosen y, as discussed in (4.3), By = ?AN = 1. for
an EC-PSGR estimator where y,;, = 1 for all analytic sample units.

Note that estimates calculated with the formulae defined for 5 in (5.1) and 4 p
in (5.4) are the same as those calculated for Joppe in (2.12) and §pgqp in (2.15).
We use different notation primarily for variance estimation to identify situations
when the benchmark controls are considered fixed, as with traditional calibration,
in comparison to the EC calibration under study.

Using the formula of the ratio-mean estimators presented in this section, we
evaluate the properties of the mean square error (MSE) by examining the bias
and variance components separately. We begin in the next section by developing
expressions for the bias under EC-GREG calibration and more specifically for the

EC-PSGR ratio-mean estimator.

5.3 Bias of Point Estimators

Ratio estimators are asymptotically (but not exactly) unbiased because of the
estimation required for the random denominator. Sérndal et al. (1992, Section 7.3.1)
and others, however, note that generally the bias of a ratio estimator is small. For

example, the bias is stated as being Op(n}') for a simple random sampling (SRS)
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design of size n4. The bias of an EC ratio estimator differs slightly. The first-order

bias approximation of g (5.1) is

12
|
H§>§>

Bias(yp) -y

= - [Bias(fyR) +t, — 7 Bias(Ng) — gN}

o
"5

= o [Bias(fyg) - BiGS<NR):| (5.6)

&

where § = >, ., yx/N, the population mean of interest. As with the approximation
E(tyr) = tay, + (tpe — ta.)'Ba given in (4.6), technical conditions, e.g., uniform
integrability of certain terms, can be used to formally justify the approximation
above (see Serfling, 1980, Thm. C, pg. 15). The unconditional expectation of Ng

is approximated as

E(Ng) = E [NA + (tpy — fA;c)/BAN}

~ g, [EA (NA | cAﬂ + (Bep [Ep (b5, | c5)]
—E., [Ea (tas | CA)])/ECA [EA (BAN | CA)}

12

NA"‘(th—tAx)/BANENR (57)

where E4 and Ep are the expectations taken with respect to the (independent)
analytic and benchmark surveys, and F., and E., are the expectation under the
coverage mechanisms for the respective sampling frames. As discussed in Section
4.3, E(f:Bm) =Y e PBiX; = tps, and E(f:Am) = hiker PAnikXnik = ta,. Because

N4 in (5.7) is a pwr estimator of a population total given the assumed analytic
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survey design, the expectation takes the following form:

E<NA> = Ec

A

H mapnani
£ (33 S ek )

h=1 i=1 k=1

H My Np;
= E., E E gCAhik
h=1 i=1 k=1
H My Np;

= Z Z Z Ganik = Na (5.8)

h=1 =1 k=1

where Capir is a binary variable to indicate that the k& unit is listed on the analytic
survey frame such that E., (Canik) = @ anik, the mean of a Bernoulli distribution as
detailed in Section 3.4. The expectation of the remaining term, By, is similarly

approximated as

A

EBan) = E, [EA (EAN | cAﬂ

H My Np; 1 g M}, Np;
/
= E E E O ARiIXRilX E E E ® AhikXhik
he1 i=1 I=1 h=1 i=1 k=1
= BAN- (59)

The Bias(ygr) in (5.6) is approximately zero only if the estimators in the numerator
and denominator are approximately unbiased, i.c., E(Ng) = N and E(f,z) = t,.
The conditions under which the Bias(f,z) = 0 are discussed in Section 4.3. These

conditions also hold for Bias(Ng). The bias of the denominator is similarly defined
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as with Bias(t,z) in (4.7) and is specified as:

BiCLS(NR) = NCANE¢+(th—tAx)/(BAN—BN)—NEN(l—QEA)

+(tB:c - tz),BN

where Enpir = 1 — X}, By, the residual calculated for the denominator under the
population assisting model, with Ey = Y niver Ennie/N; Canee = 2 piver (ENnik—
E N) (gb Ahik — @ A) /N, the population covariance between the coverage rates and the
denominator residuals; and By = [ ,.c0 XnaXhi] ..

The bias of the EC ratio-mean estimator under poststratification evaluates to

a form similar to Bias(t,p) given in (4.8):

. E(t,p) t
Bias(yp) = %’ -
g=1 Np L Avg v N NBQ NAQ
¢ [ N, N 1
. . . a9 NB
= Z N—g Z P anikYnik — Ng®agly + No@aglg — tyg Ng Ng, | N
g=1 B | hikeU, Pl
G N [ N,
5 - _
— Z N—g Z (Panir — dag) Whik — Ug) /Ny ‘Ng
g=1 P | hikeU, A

G
Ngg [ - Na, Np] 1
Y N, _ ¢ .
+ [ 99agls — tyg 5y N, | N

G G
Npg Np Nay Np 1
= melle — |N. — byg—"
Z N Aypg = QbAg + Z NB |: AS]N yg N NBg:| NAg
Np

g=1 g=1
G G
Np
- ZNBCAWQ’ Zt {_g__ }]
g=1 g=1
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Therefore,

Bias(yp) = ZWBQCAWQ

g=1

ityg {WBg - 1}] (5.10)

where U, is the complete set of population units in the ¢ poststratum; Cla,g, =
> hikev, (Ynik — Yg) (Ganin — dag) /Ngi dag = Ny '3 iver Oghik@anix, the average an-
alytic survey coverage rate within poststratum g; y, = N, ! > nivev OghikYnik =
tyg/Ng, the mean of y within poststratum g¢ for the complete population; Wp, =
Npy/Np with Np = 3 Npg; and W, = Ny/N with N = > N,. The first bias
component is zero if Cyye,, the covariance of y and the coverage propensities ¢4 in
poststratum g, is (approximately) zero. This can occur, for example, when poststra-
tum variables are chosen so that the coverage probabilities are constant within each
of the G cells (i.e., papir = ¢4 for k € U,). If the benchmark proportions within
the poststratum cells are the same as in the population (i.e., W, = W,), then the
second bias component is zero. Only if both conditions are met will we have an
approximately unbiased estimator.

The zero-bias criteria for the ratio-mean estimators discussed above appear to
be more easily satisfied than those listed for the EC estimators of a total following

expression (4.8). To examine this more fully, we rewrite the relative bias of §p,
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RelBias (), as a function of ,x (4.1):

. Bias(y
RelBias (ij) = %

o 1 E(tAyR)_g
y | E(Ng)

N[ttt
ty Ngr Nr N
N .. Ng

— N_R{RGZBMS(%R>+1_W]’ (5.11)

where E(Ng) = Ny as shown in (5.7). Figure 5.1 displays the level of RelBias(ijp)
for RelBias(t,r) = 0.1, 0.2, and 0.3, and the coverage ratios Ng/N ranging from
0.4 to 1.6. The vertical line represents a coverage ratio of 1.0, i.e., Ng = N,
where RelBias(yr) = RelBias(t,r). Coverage ratios to the left of this line de-
note RelBias(jjy) for a negatively biased Ny. For example, Nz/N = 0.6 indicates
that the EC-GREG estimates undercover the population size by 40 percent, i.e.,
100 x (1 — Ng/N). At this level, RelBias(yp) = 0.83 is more than eight times
larger than the corresponding Rele'as(fyR) = 0.1. By contrast, an Ny that is
too large (Np/N > 1) results in RelBias(t,r) > RelBias(ijz). For example, with
RelBias(t,r) = 0.3, RelBias(jz) = 0 for a 30 percent overestimate (Np/N = 1.3),
and increases to RelBias(yp) = 0.2 for a 60 percent overestimate. By noting the
slope of the line, we see that the difference between RelBias(ijz) and Rel Bias(t,r)
is larger when the population size is underestimated (left of the vertical line) by
the calibration system in comparison with an overestimate. Therefore, the figure

suggests that the zero-bias criterion for ¢ is not necessarily easier to satisfy than
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Figure 5.1: Relative Bias of Mean by Coverage Ratio (Ng/N) of Population Size
for Relative Bias of Total equal to 0.1, 0.2, and 0.3.

fyR because we have conditions where one but not both are unbiased. The major

influence is related to the denominator of the ratio-mean estimator.

5.4  Variance Estimation

Having addressed the bias of ¥ and 7, we move on to an evaluation of the
variance estimators presented in Chapter 4. We begin this section by examining
the approximate population sampling variance — the parameter that the sample
variance estimators should equal in expectation — and then turn our attention to
the sample variance estimators of interest for our research.

The population sampling variance (AV) for the EC-GREG ratio-mean estima-
tor ¥ (5.1) is approximated through a first-order Taylor series expansion about the
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expected values 6 = (t,r, Ng) with yr = t,r/Ng:

. 1)° ) . .

The approximate population sampling variance for the EC-GREG estimated total

of y is defined in expression (4.16) as:

AV (t,r) = AV(t,corec)

H My Np;

+ Z Z Z Ganir (1 — P anir) Exnir

h=1 i=1 k=1
+ B, VB,

The corresponding variance components for the estimated population size, N R, 1S

calculated using the following expansion:

AV(NR) = Eg [AVCA,A(NR | B)} + AV, [ECA,A(NR | B)]
— Ejp [ECA {AVA(NR | ca, B) |BH
+ By [AVCA {EA(NR | ca, B)| B}]

+ AV [ECA {EA(NR | ca, B)| B}]

Vi+Va+ Vs (5.13)

Note that we assume complete coverage for the benchmark survey in determining the
approximate population sampling variance. The asymptotic variance relies on the

: . T~ -1 27 /
approximation Ng = {ZhikESA WhikEANk} +t5, Ban where Eqnnin = 1 —x3,,Ban,
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the assisting model residuals, and By = E(Bay) from (5.9). The population
sampling variance of the estimated population size under traditional calibration,
Vi = AV(Nggreg), is calculated as shown for AV (f,grpa) in expression (4.14) by
substituting Eannix in place of Eapik = Ynix — X3, Ba. Therefore, the first variance

component in (5.13) is

H

v tANEhz B - o Eey (Vanni)
1 Z Zﬂm Lanen Z Z -
h= -1

hi(1

where tangn = Son GanikEannir; tanven = Yot tangns; and Vayp is the within-
PSU population sampling variance associated with the estimated population size.
The second component in (5.13) addresses the variation due to the analytic survey

sampling frame coverage error,

H M,
| = Z Z ¢Ahzk (1 — danix) EAnnir

and, again, is similar to the V5 defined in expression (4.15) for the estimator in the

numerator of jp. The V3 variance component in (5.13) is approximated by
Vs = quNVBBAN

where Vg = Varg (f Bx), the population sampling covariance matrix associated
with the vector of estimated control totals, and Bay (5.9) is the G-length vector
of assisting model coefficients specified for the analytic survey frame population.

By combining the variance component approximations, the asymptotic population
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sampling variance of Np is:

AV (Ng) = AV(Ngreca)

H My Np;

+ Z Z Z Ganie (1 — anie) Ednni

h=1 1=1 k=1
+ B,y VB (5.14)

The relative influences of the variance components for M *QAV(]\Af r) are the same
as specified for M—2AV (t,g): Vi = O (m3'), Va = O(M™), and V3 = O (m3'")
where m 4 and mp are the number of PSUs selected for the analytic and benchmark
surveys, and M is the total number of PSUs in the population.

The covariance term in (5.12), ACov(t,r, Ng), is defined as follows using the

residual approximations to fy r and Np discussed previously:

ACov (fyR, NB)

= ACov < Z Tt Banie + t5,Ba, Z T EaNhic + £,BIBAN>

hik€sa hik€s 4
= ACov < Z T B Anik Z W;;}CEANhik>
hikE€sa hik€sp
+ ACov (E/BacBAa E/BchAN) , (515)

because the analytic and benchmark surveys are assumed to be independent, i.e.,
ACov (ZhikesA W};}CEAhik, ijxBAN) = 0. To evaluate the covariance of the weighted

residuals in (5.15), we use the unconditional variance formula given in, e.g., Casella
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& Berger (2002, Theorem 4.4.7):

ACov < Z T B Anin Z W};}CEANhik>

hik€Esa hik€sa
—1 —1
= ACov., |Ea < E T Eanik | CA) . By ( E TP ANk | CA)]
hik€sa hik€s 4
-1 —1
+ B, ACovy ( E WhikEAhiM E ﬂ-hik:EANhik ’ CA>] . (516)
hik€sa hik€s 4

The first term in (5.16) equals

ACov,,

Ey4 ( Z T Eanik | CA) , By ( Z ToinEannix | CA)]

hik€s 4 hik€sa

>~ ACov,, [Z CanitE anik, Z CanivEannir

hikeU hikeU

= E ACouv., (CanikEanik, CanikEannir)
hikeU

= Z ACov., (CaninEanik, Cagnivy Ean(hiny)
hik£(hik) €U

= Z AC0ove, (CanikEaniks CanikEannir)

hikel

= E AVare, (Canik) EanitE annik
hikel

= E Ganik (1 — danir) Eani Eannik
hikel

because Bernoulli random variables are independent by definition with a convergence
rate of O (M~1). The second term in (5.16) equals ACov (fyGREg, NGRE0> and

converges at a rate of m;*. The remaining term in ACov <fyR, NR) , ACov (’E}BIBA,
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f’BIB A N) given in expression (5.15), evaluates to B, VB 4. Therefore,

ACov <fyR,NR> = ACov (fyGRE@NGREG)
H My Np;

+ Z Z Z G anik (1 = Gani) Eaniw o annin

h=1 =1 k=1
+ B,V5Buy. (5.17)

As shown for AV (t,r) in (4.16), AV () can be expressed as a function of terms
associated with traditional calibration plus terms related to coverage and EC cali-

bration by rearranging the components within (4.16), (5.14), and (5.17):

2
AV () = (N—R) AV (fyr) + 5 AV (Ng) = 25 ACou(iyn, Nr)|

1\?2 A R . R
- (_) [AV (tyerec) + UnAV (Narea) — 25rACov (tyGREG7 NGREG’)]

1\?
=) D banik (1= Ganik) [Ednik + UnEinnix — 20rEanin Eanni]
Ne/) ey

1 2
+ (N—> [B\V5Ba + 7Bl VeBay — 25zB) VsBay]
R

= AV (Jorec)

+ (N ) h;ke <Z5Ah k ( ¢Ah k) ( Ahik — YRLANK k)

1 2
+ (N_R> (Ba — yrBan) Vi (B4 — JrBan) (5.18)

The asymptotic population sampling variance for the EC poststratified ratio-
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mean estimator 4 is defined as follows through a specialization of expression (5.18):

. 1)? . . .
AV (i) = () [AVUr) + AV 250 ACou(Eye, N
1\* .
= (N_B> AV (typscr)

1 2 G H M, Np;

+ (N_) S DD Soninbanin (1= Ganin) Bl
B/ g=1 h=1 i=1 k=1

g

1) .

+ (N_B) (Ya—9rlc) Vi (Ya - grlc) (5.19)

where AV ({,p) is defined in (4.19); AV ({,pscr) = Ny E., (Va) Ng; B4 = Y,
By = 14, and NPSGR = Np under EC poststratification; and ACov (fyPSGm NB)
= 0 because Np is a population parameter. Note also that Eaypix = 1 — x},;,Ban
evaluates to zero under poststratification because x;, is a G-length vector with one
in the ¢ position to indicate poststratum membership and zeros elsewhere, and
B4y is a G-length vector of ones, i.e., 1. Finally, ¢ i is the probability that unit
hik is listed on the analytic survey sampling frame.

The approximate population sampling variance for 75 is a function of the
approximate population sampling variance for its numerator, AV(fy R), as shown in
(5.18). To better understand the relative effects of EC calibration on g and g5, we
examine the difference between EC variance components in AV (t,5) and AV (y5).

We multiply AV (#,z) by N2 to reduce its size to a level comparable with AV (y5)
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in the following expression:

(NLR) 2 [AV (tyr) — AV (tyerec)] — [AV (Ur) — AV (Jarpc)]

1\ (.,
= (N_R> (BAVBBA+ Z G anir (1 — Panik) Eihik)

hikeU

1\? _ _
_ (N_R) (B4, VB4 + 7B,y VEBan — 2JrB) V5Buay

+ Z G anik (1 — danir) (Eanik — ﬂREANhik)2>

hikeU

I

N

1 2
R (N_> 2B, VEBan — 4rBlinVeBan], (5.20)
R

by dropping the lower-order O(M) coverage error terms. We assume y to be
strictly non-negative, as in our simulation study, so that we can claim yz > 0.
If B,VgBn > %QRB;‘NVBBAN, i.e., the covariance between the numerator and
denominator variables in 45 is larger than %ij times the denominator variance,
then the difference is positive. This implies that the variance inflation due to EC
calibration will be less noticeable in the ratio of two estimated totals in comparison
with the estimator of a single total. Conversely, if B,y VBay > 2B, VB an/Ur,
then the difference is negative and the variance inflation in 35 estimates will exceed

levels for tp.

5.4.1 Linearization Variance Estimation for Traditional Calibration

A linearization variance estimator developed for iz (5.1) under traditional
calibration accounts only for the variation within the analytic survey sample. This

variance estimator, which excludes positive variance components for the analytic

141



survey coverage error and benchmark estimates, will underestimate the population
sampling variance, AV (), given in expression (5.18). The formula for this naive
variance estimator given below is derived by substituting the sample estimates for

the appropriate population parameters:

var (?jGREG)

1 2 ~ ~2 <
= ( _ ) [var (tyGREg) + ygrvar (NGREG>
Ngrec

var Nme@ R)

— 2yp cov <fyGREG, NGREG)}

- (o )imm—Zw—u) (5.21)

for i ppe defined in expression (2.12). Sdrndal et al. (1992) refer to var(yYarpe) as a
g-weighted (sample) variance estimator developed for traditional weight calibration.

The values

v 1 A~
Uphit = E QhikT i (eAhik: — yReANhik)
kEs ani

are linear substitutes derived from the first-order linear approximation to ¥ gpq-
The linear substitutes are functions of the GREG model residuals for the numerator,
€ Ahik = Ynik — X;nkB 4 with estimated model coefficient vector B 4 defined in expres-
sion (4.2), as well as the denominator, esnpix = 1 — xﬁu-k,]:’)AN with B4y defined in
(5.3). The sample variance is centered around the stratum-specific means of the

. . . Iv] R | o .
linear substitute estimates, ;44 = my, > icsa, Uni+- We can reduce the underesti-

142



mation in (5.21) by including a sample estimate of the undercoverage error:

Ua?“Nawe,cA(ZjR) = UCM"Nai’ve(ZjGREG)
1 2 H R MAh M Ahi 62
'y Ahik
P ) S (-an) > A
NGREG h=1 i=1 k=1 Thik

Even with this addition, however, (5.22) will still underestimate its population pa-
rameter. The magnitude, as discussed before, is related to the precision of the
benchmark survey estimates, i.e., the size of V.

The corresponding naive sample variance estimator for the EC poststratified
ratio mean, §p given in (5.4), takes a similar form and also underestimates the true

population sampling variance:

VAT Naive @P) var @PSGR)

1\ 2 A R . .
= (N_) [var (typsar) — 2yp cov (tyPSGR7 NB)]
B

1

2
= (N_> var (typscr)

B

1\?. . .
— (-) N,V ,Np (5.23)

. . . . < ~ ~ / . .
where V4 is the sample covariance matrix for Y, = [y Als s Y AG] discussed in

(4.24). Note that cov (tyngR, N ) in (5.23) is zero because we assume indepen-

dence between the analytic and benchmark surveys. The coverage error-adjusted
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sample variance estimator takes the same form as above:

A

Var Naive,cs (Yp) = VAT Naiwe(Yp)

where eanik = Ynik — Yag A0 Jag = D pinca, Thindohik¥nik/ D pikes, ThikOghik, @ func-
tion of the g"" poststratum membership indicator dgnik- This sample variance esti-
mator will also underestimate AV (yp) (5.19) due to the missing benchmark variance
component. The next section contains a discussion of sample variance estimators

that address all three sources of variation in the EC calibration system.

5.4.2 Estimated-Control Taylor Linearization Variance Method

Linearization variance estimators for ratios are widely used in survey research
with traditional weight calibration. However, as discussed throughout Chapter 4, the
application of these variance estimators to data calibrated to survey estimates can
result in non-negligible levels of bias and erroneous conclusions for hypothesis tests.
The same holds for EC ratio-mean estimators discussed in this chapter. Sample
variance formulae for the EC calibrated estimators can take multiple forms; we
present the linearization variance estimators in this section followed by the Jackknife
methods first discussed in Chapter 4.

The EC Taylor series linearization sample variance of an EC-GREG ratio
estimator of a population mean can be decomposed into components associated

with traditional calibration, coverage error in the analytic survey sampling frame,
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and variation in the benchmark controls as shown below:

vargers(Jg) =

1

~ ~2 e ~ ~ T
vargers(tyr) + Yr vargers(Ngr) — 2 yp cov(tyr, NR)}

2 H man man
— Y . p— U 2
) XS i)
1

i=1

MAh VARG

H
) Z (1 B ¢Ah> Z Z %k €ARik — yReAthk)

h=1 i=1 k=1

2 o . R o
) (B~ 5sBax) Vi (Ba - §5Bax) (5.25)

where the first term equals the naive sample variance estimator, var(yoppe) given
in expression (5.21), under the assumed stratified, multistage design for the analytic
survey with PSUs selected with replacement and is Op (m;"). The second term is a
function of the average coverage propensity within stratum h, 5 An, and the assisting
model residuals for the numerator and denominator of 5 and is Op (M~'). The
third set of variance components in (5.25) is Op (m;l) and increases the sample
variance to account for the precision of the estimated control totals. This is captured
in V, the benchmark control total covariance matrix. Therefore, vargers(jp) =
max [Op (m;l) ,Op (mgl)].

The EC linearization sample variance of an EC poststratified ratio estimator
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is similarly defined as follows:

~ 1 2 A ~2 <
vargers(yp) = (N ) [UGTECTs(tyP) + ypvargcers(Np)
P

— 23jp COU(tAyp,NB)}
1 2 o mAaAn
o < 2
= - S Upie — U
(NB) S TS s i)
()
+ ~
Ng
()
+ =
Np

where the first term in the final expression is equal to varygwe(yp) With tp, =

H map nAhz

3 (1-6) 55 s

T
h=1 i=1 hik

[y

G
g:
2 N AN A R
<YA — 'gP]-G> Vg <YA — §p1G> , (5.26)

”Ahl(NBg/NAg)ﬂmk (yh@k ngg) and U, = m;l,ll ZiesAh Upie. Note that Np =
Ng under EC poststratification as shown in (5.5). The sample coverage error es-
timator multiplied by N% is the same as specified for varECTS(fyp) in expression
(4.24) because the residuals under the model specified by the denominator (i.e.,
N p) are zero. The term varECTS(N p) is a scalar variance estimate of the estimated
population size Np calculated from the benchmark survey data.

As discussed in Chapter 4, the sample variance estimators are asymptotically
unbiased only if the components are calculated using consistent estimators of their
corresponding population parameter components. Having addressed linearization

variance estimation for the EC ratio-mean estimator, we next examine the set of

jackknife replication estimators identified for our research.
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5.4.3 Fuller Two-Phase Jackknife Method

Isaki et al. (2004) describe the Fuller (1998) two-phase jackknife method in
general terms for any type of smooth estimator applied to weighted sample data.
This excludes, for example, quantile estimation because jackknife variance estima-
tors are consistent only for smooth functions (Rao & Shao, 1999). In the following
section, we briefly describe the Fuller two-phase jackknife method for EC calibration
(ECF2) as it relates to a ratio estimator of a population mean. A more complete
discussion of the method is left to Section 4.4.3 because much of the mechanics used
to implement the ECF2 is the same for EC estimated totals and ratios of estimated
totals. Some material is repeated here for completeness of the discussion.

The delete-one ECF2 jackknife variance estimator for the EC-GREG ratio-

mean estimator is expressed as

Vargcr2 Z/ R

Mm

mAh - 1 < 2~
Z ?/GREG)2 (5.27)
h=1 r=1

where myj, is the number of analytic survey PSUs, and ygppe (2.12) is the EC-
GREG ratio-mean estimator. The r** ECF2 replicate estimator of the population

mean, ij(r), is calculated using the following formula:

. :t.yR(T)
YrR(ry = =5
Nr(r)

_ tay(r) + (th(r) - tAac(T)),BA(T) . (5.28)

Na@y + (tBar) — tazm) Bane)

The EC replicate estimator of the population total using the ECF2 method, i.yph(,,),
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is detailed in expression (4.26). The replicate components within the estimator
for the population size, N R(r), are defined as follows: N Ar) = ZhikGSA W}:ib)ﬂ'l;}ﬁ,
the population size estimated from the replicate-adjusted analytic survey weights;
BAN(T) = ZM%SA W};b)ﬂ',;}cxhikxﬁwk - ZhikESA W};b)ﬂ,;}gxhik, the assisting model
coefficient vector with yp, = 1; and W};b), the PSU-subsampling weight defined in

expression (4.27). The replicate-specific vector of estimated benchmark controls,

tBa(r), is defined in (4.25) as

tpey = tme+cnZpe

G
= EBz + Ch(S(r) Z 59‘(T)239 (5.29)

g=1

for ¢;, = \/mAh/(mAh —1); zpg, a component of the spectral decomposition of Vg

such that Vg = 3¢

g=12BgZpy; and the indicator functions d and dy() to identify

the G replicates chosen from a total of myu (>, may) for an adjustment, and the
Zpy used in the adjustment, respectively. Therefore, the replicate estimates may be

specified as follows by substituting (5.29) into (5.28):

; tyarEGH) + ChilB(T)BA(r) (5.30)
Rr) = = — : .
Nerea@r) + ChZ,B(T)BAN(T)

The ECF2 variance estimator for the EC poststratified ratio-mean estimator

is defined by specializing the EC-GREG terms in (5.27) to the EC-PSGR setting:

m A

(man = 1) Z (5.31)

h=1 r=1

Mm

VATECF2 ?J P
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for §p expressed in (5.4). The ECF2 poststratified replicate estimator is defined as
(5.32)

The numerator term is defined in matrix form as:

§ o
type) = NpeyNoapytaye
s e
= NN tayo) + nZpe Ny baye

- fyPSGR(r) + ChilB(r)YA(r) (5.33)

where N Br) = Np + chilB(r); N A(r) 1s a diagonal matrix of dimension G with com-
. A . . ;o
ponents Nagr) = Y pines SohikTri(r Thiks Sayr) = [Eayier)s s Tayor] with compo-
1

nents fAyg(T) = ZhikESA 5ghikﬂl;%r)77}:i}cyhik§ and YA(,,) = NZ(T)EAy(T)‘ The denomina-

tor is similarly expressed as

A

Npg) = Npple
= N;;]_G—f-chilB(r)]_G

= NB + Chi,B(T)lG‘ (534)

where B AN(r) s specified for ij(T) (5.30), the general form under the EC-GREG, is
equivalent to 1¢ with EC-PSGR as discussed for Np (5.5).
The components in the ECF2 variance estimator (5.27) reproduces in expecta-

tion the corresponding population sampling variance components listed in AV (y5)
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(5.18) using the rationale discussed for ¢,z in Section 4.4.3. The sample variance
estimator in its current form fails to capture the undercoverage error variance. The
amount of negative bias is related to the residuals from the assisting model and the
coverage rates are close to one. As in Section 4.4.3, we suggest the following modifi-
cation to the original ECF2 method to account for this missing variance component.

Define the modified ECF2 (ECF2m) replicate estimates as follows:

tyr@)
NP(?")

typ(r) + Cthﬂ(r)\/ (1= dae))tacam)

Np(y + cnRut \/ (1 — Gapm)anearr)

‘g‘R(r) -

N(E}%EGW <tyGREG(r) + ChZp, )BA + cn By \/(1 - QBA(T))tAAeQ(r))
_ (5.35)

1+ Nggpew (ChZ/B(T)BAN(T) + cn Runr) \/ (1- ¢A(r))£ANe2(r)>

where ¢}, = \/mAh/(mAh —1); Ry =+/1/Hmap; ¢2A(r) is an estimate of the analytic

survey coverage rate (error) using a combination of data from the complete bench-

mark survey and analytic survey replicate subsample; ¢ Ae2(r kaeSA 7Thl ") th}c

X eAmk( ) with BA defined in expression (4.26) and eapik(r) = Ynik — X;w‘kBA(r);
tanea(r) = D hikesa th () ﬂ—hi}ce?élNhik(r) with eanniney = 1 — X;u'kBAN(T); and BAN(T)
defined for ij(T) (5.28). Note that 'if'yp(r) is also used in the ECF2 modification for

tyr (4.31). The modified delete-one ECF2 jackknife sample variance estimator is

then specified as

ma

H
mAh - 1 N
vargcrom(Yr) Z Z —Yorpa)- (5.36)
h=1 r=1
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The expectation of (5.36) is evaluated by first approximating the denominator of

Y @y (5.35) with a geometric series:

—1
{1 + NCE}{E(;(T)C}L (Z/B(T)BAN(r) + Riuny \/(1 — ¢A(r))£ANe2(r)):|

=1- NélleG(r)ch (ilB(r)BAN('r) =+ Rhn('r’) \/(1 - ¢A(T))£AN€2(T))

2
+ {N GREG(HCH (i%mBAN(r) + Rhn(r)\/(l - QSA(T))tANe?(T))} + ..

= 1 - NC;II{EG(r)Ch (ZE(T)BAN(r) + RhT](r) \/(1 — ¢A(r))£AN@2(r)) (5.37)

where the term NgéEG(T)ch (ZE(T)BAN(@ + Rpney \/(1 — éA(T))fANeg(T)) has order

in probability m]gl/ . The approximation is justified by Lehmann (1999, Thm
2.1.3) for convergence of a function of two random variables; Na}IEEG(r) is small

given our assumption that the estimated population size is large so that the claim

N rpc(nCh (%(T)BAN(H + Rh”(r)\/ (1 - éA(r))fANez(r)) — 0as M — oo is reason-
able; and by using the conditions of Rao & Wu (1985) for convergence of replicate

estimates to the population parameter. Therefore, we approximate the modified

ECF2 replicate estimates minus the full-sample estimate as follows:

':.g'R(r) — UGREG

~ 1 R - - R
= (yGREG(r) + N—()Ch {ZIB(T)BA(T) + Rpnr) \/ (1 = da))tacaim })

X (1 - {ilB(r)BAN(r) + Rhn(r)\/(l — QASA(T))EANeZ(r)}> :
(r)
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Continuing, we have

YRy — ZjGREG

~ 2 2
= YGREG(r) — YGREG

1 . N 1 - -
+ —————cnZpBaw) + ————cnRun) \/(1 — dar))taeamr)

Nereac(r) GREG(r)
Yarea(r 5 3

_ — () Cp, |:ZB( )BAN + RhT/(r \/(1 - ¢A(T))tAN62(T):|
Nerea)

= Yarear) — YaRrEG

1

+ N ~—CnZp(y (Ba — YrBan)
R

1 " N [z
+ N—RCthn(r) |:\/(1 - QbA(r)) <\/tAe2(r) —Yr tANeQ(T)>:| (538>

where (5.37) is used in the first approximation; by assuming Jorec() — Yorre =

Op <m;;1/2>, Nereawy — Nerpe = Op (M//ma), (taca)s tanery) = Op (M),

and zp() = Op (M //m B) for the second approximation; and finally, by assuming

<?jGREG(r)7BA(r)7BAN(r)> = (yr,Ba,Ban) + Op (m21/2> and NG’REG’(T) = Ng +
Op (M /\/m A) to allow the substitution of the population parameters in the third

approximation as shown for the estimated total in expression (4.28). Using the
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approximation (5.38), the ECF2m jackknife variance estimator is calculated as

H MAR
varpcrom(Yr) ZC;_LZ Z (ZUR( ) yGREG)2
h=1 r=1

1 2 H map
+ <_) Z R2 (1 - ¢A ) (\/ tAeQ(r) —Ur \/ lANe2 7”))
R h=1 r=1
1\? .
+ <_) (Ba — 4rBan)' Vi (Ba — 4rBan)
R
H mAh e
+ 2 Z cf (QGREGM — gGREG) (other components in ij(T))
h=1 r=1
1 H mgyyp
t 23 Z Z RineZp BA\/l — baw) (\/tAeQ(r Jr\/ tanear ))
R h=1 r=1
H map

— 25 20 > Bl Bawy/ 1 = by
R p=1 r=1
(\/ taea(r) — Yr\/ fANEZ(r)> : (5.39)

The first term is the traditional calibration variance components with order in prob-
ability m 7', while the second term addresses the variation associated with the cov-
erage error in the analytic survey sampling frame and is Op (M~'). The third
component, a function of \Y% B, accounts for the variation in the benchmark controls
totals and is Op (mgl). The fourth set of terms has expectation zero under the
conditions of Rao & Wu (1985) to say that max (Jorpa() — Yorme) converges in
probability to zero. The remaining components are Op (M -V Zm;/ 2) under the
assumption that M‘liB( = Op (mB /2> and M~! times the residuals sums (e.g.,

t Aeg(r)) is Op (M -1/ 2). The terms all have expectation zero because of the inclusion
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of the standard normal random variables 7). The first three terms approximate
their associated population sampling variance components only if the sample esti-
mates are at least approximately unbiased — see, for example, the discussion of the
coverage error bias for expression (4.22).

By substituting the EC poststratified terms into the expression (5.39), we have

mMAhR
2 — e N 2
vargeram(Yp) = Z e’ Z (yP(r) - ?JPSGR) (5.40)
h=1 r=1
where ¢,% = (map — 1)/man, and §pgor = typsor/Np defined in (2.15) with

~

typscr = Zle Np, (f Ayg /N Ag>. The modified ECF2 poststratified replicate es-

timates are defined as follows:

e _ type

N . 2 2 [N
tyPsGR(r) T Chipy Y aer) + CthU(r)\/ <1G - ¢A(r)) tAe2(r)

= = 5.41
NB + CthB(r)lG ( )

A~

where ?A(T) = Ng(lr)fAy(,.); f,Ay(r) = [fAyl(,.), ...,fAyg(T)]/ with elements that are a
function of a zero/one indicator g, that signifies membership in the ¢ post-
stratum, i.e., fAyg(r) = ZhikGSA W};%T)(Sghikﬂ,;}gyhik; NA(T) is a diagonal matrix with
elements (Nm(r), - NAg(T)> such that NAg(T) = ZhikGSA ﬂ};b)éghikw,;}g; 1 is a G-
length vector of ones and is equivalent to the assisting model coefficient vector
for ypx = 1 in the denominator; EAeQ(T-) = [fAleg(r), ...,i\AGeQ(T)]/ where ngeQ(r) =

D hikesa Tl ohik ik € anin(r) WIEH €anik(r) = Ynik = Fag(r), and Jager) = tayg(r)/Nagr;
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and (1(; — &A(r)>/ = [(1 — qul(T)> ) e <1 — QZQ)AG(T)H, a G-length vector of esti-
mated coverage rate by poststratum for replicate r also shown in expression (4.34).
Note that under EC poststratification, the assisting model residual defined by the
denominator variable enpik(r) = Ynix — X/ka an = 0 because yp;, = 1 for all units
in the sample, Byy = 1¢ as shown in (5.5), and X}, 18 a G-length vector of ones
and zeroes to indicate membership in a particular poststratum. This is an intuitive
finding given that we have shown N pscr reduces to Np (2.15), a value independent
of the analytic survey. The asymptotic property of vargcrom(yp) is the same as
discussed for varpcrom(iz) (5.39) and is not repeated.

The eight steps used to calculate UarECFQm(g? p) in our simulation study de-
tailed in Section 5.5 are provided below. The total number of replicates generated

for a simulation sample is equal to the number of sample PSUs, i.e., ma =), map.
1. Calculate the full-sample estimate i, using expression (5.4).

2. Determine the G eigenvalues 5\9 and G-length eigenvectors q, from the spectral
decomposition of \73, and calculate the G replicate adjustments of the form
Zpg = élg\/;\»g. Concatenate the G x G matrix of zg,’s, where zp, represents
the columns of this matrix, with a G x (m4 — G) matrix of zeros. Randomly

sort the columns. Call this new G X my4 matrix Z.

3. Create a G X m4 matrix, called C, with column elements all equal to ¢, =

Vman/(man — 1). The m4-length vector of jackknife stratum weights is cal-

culated as W,,,, = (map — 1)/map.
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4. Calculate the Hadamard (or element-wise) product of Z and C denoted as ZeC
(Searle, 1982, pp. 49). Replicate the vector of poststratum counts estimated
from the benchmark survey (N p) into the columns of a G x m4 matrix and
add to Z e C. This new G x m4 matrix, called Np,,,, contains the replicate
benchmark controls for all m 4 replicates — see the definition of N B(r) defined

for expression (5.33).

5. Calculate the replicate estimates ? A(r) With elements y Ag(r) = t Ayg(r) /N Ag(r)
by removing in-turn one PSU from the analytic survey sample file, applying
the PSU-subsampling weights (4.27), and summing the weighted values for the
numerator and denominator within poststratum g. Call the resulting G x m 4

matrix B,, ,.

6. Create the following G X m 4 matrices for the coverage error variance compo-
nent: R,,,, with column elements all equal to \/m ; My, » With elements
obtained from the standard normal distribution; ¢,, , with column elements
equal to (1 — NAQ(T)/NBQ) for (NAg(T)/NBg) < 1 and zero otherwise; and e, ,

with column elements described above for t Ae2(r)- Calculate the Hadamard

product of these matrices and call it E.

7. Calculate the m, replicate estimates, ¢ ,p¢y (5.41), by first multiplying the
elements Np,, , by B, ,, adding E to the resulting matrix, and summing within
the columns of the resulting matrix. Calculate the corresponding denominator
estimates, N p(r) (5.41), by summing within the columns of the G' x m 4 matrix
Npp,. Divide the m 4 numerator estimates by the m4 denominator estimates
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to create the replicate estimates ¥ p(,) (5.41).

8. Finally, subtract i, from % p(r) and square the my4 terms, multiply by Wy, ,,
and sum across the m 4 estimates. The resulting value is the estimated variance

using the ECF2 method, vargcram(ip) given in expression (5.40).

By excluding the sixth step given above, we are also able to calculate the variance
under the original ECF2 specification which does not inflate for the analytic survey
coverage error. A comparison of the two variance estimators will suggest the level

of underestimation associated with the exclusion of the error variance component.

5.4.4 Multivariate Normal Jackknife Method

The multivariate normal approach (ECMV) to EC calibration perturbs all of
the ma (= ), man) replicate estimates using an adjustment to the benchmark

controls detailed initially in expression (4.37):

1AJng(r) =tp, + chRh€pr) (5.42)

where €p() is a G-length vector of random variables from a multivariate normal

distribution such that &p( 151 MVNG(O(;,VB); cn = \/man/(man — 1), as with

the ECF2; and Rj, = \/1/Hmp, a function of the number of analytic survey strata
(H) and the number of samples PSUs within stratum h (ma,). We additionally
incorporate an adjustment to the replicate estimates to account for the analytic

survey frame coverage error. This adjustment is the same as specified for the EC-
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GREG of a population total in expression (4.30). Following the convention used
for the modified ECF2 method (Section 5.4.3), the adjustments are applied to the

numerator and denominator of the ratio-mean replicate estimator:

. tyarece) + Cthé‘ﬂg(r)BA(r) + Cthn(r)\/ (1 = Gae))tacatr
YR(r) = - - - : (5.43)
Nerec@r) + cnRn€pyBan) + caRpney \/ (1 = da))tanearr)

The ECMV replicate estimates (5.43) are used in the jackknife sample variance
estimator given in expression (5.27). To evaluate the expectation of this variance
estimator, we first approximate the replicate ratio-mean estimator using a geometric

series as shown in detail for the modified ECF2 (5.38):

YR(r) — ngREG

g 1 - ~ A
= (yGREG(T) + mCth {elB(r)BA(T) + Rhn(r) \/(1 - ¢A(r))tA62(T)}>
EG(r
1 . . ~ -
X (1 - N—Cth {slB(r)BAN(r) + Rpnen \/(1 - ¢A(r))tANez(r)}>
GREG(r)

— YarEG

~ 2 2
= YGREG(r) — YGREG

1 1 N N
—cp Ry B —c, Ry, \/ 1— M) Aea(r
+ € Ba + Sanfinmy (1= 0am)tacr)
— ]%]_RcthélB(r)BAN — ]3<[_RChRi77(r) \/(1 — Pag))tanear)- (5.44)
R R

Note that the rate of convergence is the same as with the ECF2 method because
the zp(,) and €p(,) adjustments have the same orders in probability by construction.

The lower-order terms involving N 15(27" ) are again eliminated from the approximation.
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The approximation for the EC poststratified ratio-mean estimator again follows the

pattern established in Section 5.4.3:

typscr(r) + cnRinép YA(r + e Rpn r)\/( ¢A(r> taea(r)
NB + Cthé‘B(r) 1G

cthéjB(T)SQ{'A(T) Cth”(T)\/( ¢A(r> taca(r)

= YPSGR(r) T+ Ns + Ng

Cthé./B(T)]‘G
l———F7—. 5.45
(oo oo

As discussed in Section 4.4.4, the ECMV jackknife variance estimator has the

same asymptotic properties as the ECF2 for estimated totals. This asymptotic
equivalence holds for the ratio of two calibrated totals discussed in this chapter.
The expectation of vargeav @R) is evaluated with respect to the analytic and

benchmark survey sample designs, the sampling frame coverage mechanisms, and
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the multivariate normal random variable resulting in

H map
~ _ 2
vargemv(Yr) = Zchz (ZUR( ) yGREG)
h=1 r=1
H map
~ —2 2~ 2
= Z Ch (yGREG( ) yGREG)

h=1 r=1
1 H map

+ (N_) Z R?ﬂ? (r) ( ¢A 7")) (\/ tAe2 (") —Yr \/ tANe2(r )
R h=1 r=1
1 2 map

+ (N_R) (B4 — grBan)’ Z R Z €B(rEp(y | (Ba — rBan)
H mAh

+ 2 Z c, Z (yGREG(T) — yGREG) (other components in yR(T))
h=1 r=1
1 H map -

+ QW Z Z Rynn€pBa \/1 — @A) (\/tAez(r) — Ur\/ tANeQ(r))

R p=1 r=1

— mMmAp

H
Z Rinm&EprBany/1 — G a(r)
R
<\/ Z?AEQ(T) — YR \/ t?ANEQ(T)> . (546)

The first and second terms address the variation within the analytic survey sam-
ple and coverage error for the associated sampling frame, and are Op (m;l) and
Op (M™1), respectively. As shown in expression (4.40), the expectation of the third
component is taken with respect to the specified MVN distribution, MVN4(O, \Y% B),
and evaluates to (NLR>2 (B4 — yrBan) Vi (B4 — 7zBay) with Op (m;) provided
that F (\73) = Vp. The fourth term has expectation zero under the conditions
of Rao & Wu (1985) to say that max (ngREG(T) — Yareq) converges in probability

/2

to zero with order (Mm)g The last two components are Op <m;/ 2) under the

assumption that M‘léB(T) = 0Op (m;ﬂ) and M~ times the residuals sums (e.g.,
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t Ae2(r)) 18 Op (1). The terms all have expectation zero because of the inclusion of the
standard normal random variables 7). Therefore, the ECMV variance estimator
is asymptotically equivalent to the modified ECF2 variance estimator for a ratio-
mean estimator, as well as with the estimated totals as discussed in Section 4.4.4.
However, the use of the MVN distribution should again produce variance estimates
with more variability than those calculated for the ECF2m. This is examined in the

simulation study (Section 5.5).

5.4.5 Nadimpalli-Judkins-Chu Jackknife Method

The approach discussed in Nadimpalli et al. (2004) assumes that only the
diagonal of the complete benchmark covariance matrix is available (or necessary)
for EC calibration unlike the other jackknife methods discussed previously. As with
the other jackknife methods, the ECNJC method also adjusts the replicate ratio
estimates for variation in the benchmark estimates. The following is the ECNJC
adjustment repeated from Section 4.4.5 and is used for all smooth point estimators

examined in our research:

tBa(r) = tae + CthSBTI(T)

where Sp = diag(V/ A\ B), the diagonal matrix of estimated benchmark control stan-
dard errors; and n,y ~ N(0,1), a G-length vector of values generated from the

standard normal distribution. The remaining terms are the same as defined for t 5o

under the ECMV method in expression (5.42). The original ECNJC method does
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not account for the coverage error variance in the analytic sampling frame. We
augment their formulation with a term that accounts for the additional variance
component and include a modified ECNJC (ECNJCm) replicate ratio-mean estima-
tor in the jackknife variance formula — see (4.30) for an EC-GREG estimator and
(4.34) for an EC-PSGR estimator. The following are the EC-GREG and EC-PSGR

replicate estimators, respectively, for the modified ECNJC jackknife:

~

tycrEG(r) + Cthn/(r)SBBA(r) + cnRpnr) \/ (1= Gap))tacr)
U iy = — - Shilsh (5.47)
Nerear) + enBinni, SeBan) + cu R \/ (1 = da))tanearr)

and

A

~

NS [N
typscr(r) + ch B,y SpY a@) + CthU(r)\/ <1G - ¢A(r)> tae2(r)

Ypr) = ~ . (548)
) Np + o Rim(,ySple

The expectation of the jackknife variance estimator for the ECNJCm ratio-
mean estimator is evaluated as with the other methods after making a geometric
(series) approximation to the denominator of ¥ .. The approximation is calculated

by substituting n’(T)S g for éjg(r) in expression (5.45) and is used in the following
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expansion of the sample variance estimator:

H mAp
R . 2
vargensom(Yr) = Ch2 Z (ZJR( ) yGREG)
h=1 r=1
H map
~ —2 2~ 2
= Z Ch, (yGREG( ) yGREG)
h=1 r=1
1 H man
+ <N_) Z R?ﬂ? (1 - ¢A 7“)) (\/ tAeQ (r) — Yr \/ tANe2(r )
R h=1 r=1
1 2 H mMAh . A
+ (N_) (Ba—rBan) |>_ B2 SsnpymySs| (Ba— JrBan)
R h=1 r=1
H mA}L e
+ 2 Z 0,22 Z (gGREG(r) — QGREG) (other components in QR(T))
h=1 r=1
1 H map
+ QW Z Z Ry SBBA\/l — baw) <\/tAe2 — Jr\/ tane(r ))
R p=1 r=1
_ H map

- 2_ Z Rineymy SpBany/1— DA
Ng h=1 r=1
(\/ -EAGQ(T) — YR \/ ZfAANe2(7")) . (549)

All of the variance components in (5.49), except for the third term, follow the same
arguments given for varpcrem(Yg) in (5.39) and vargeay (y5) in (5.46). Using the
work shown in expression (4.48), the expectation of the third variance component
equals (NLR>2 (B4 — yrBan) EB (S2B> (Ba — yrBuan). If the true population co-
variance matrix for the benchmark control totals, V g, is not diagonal, then this com-
ponent is not asymptotically equivalent to <NLR> ’ (Bs — JrBan)' Vi (Ba — 7rBan).
The magnitude of the under or overestimation is related to the sign of the off-

diagonal values in V.
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5.5 Simulation Study

We use the simulation study described in detail in Section 4.5 to compare the
empirical properties of the variance estimators for the ratio of two EC-PSGR totals
yp given in expression (5.4). The following abbreviations are used as labels for the

variance estimators:

Naive, the traditional calibration estimator defined in (5.23);
o ECTS, the EC linearization estimator defined in (5.26);
e [ECF2, the traditional Fuller two-phase jackknife estimator defined in (5.31);

e ECF2m, the modified Fuller two-phase jackknife estimator (5.40) that includes

an adjustment for analytic frame undercoverage;

e FCMYV, the Multivariate normal jackknife estimator defined in by substituting

Y p(ry defined in expression (5.45) in the jackknife variance formula (5.40);

e KCNJC, the traditional Nadimpalli-Judkins-Chu jackknife estimator which

uses the replicate estimator 4 p(,) (5.48) without a coverage error term; and,

e ECNJCm, the modified Nadimpalli-Judkins-Chu jackknife estimator defined

in (5.48).

We additionally compare these results with those presented for the estimated total

in the previous chapter.
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5.5.1 Simulation Parameters

We summarize the necessary aspects of the simulation study here for clarity
and leave the details to Section 4.5. Samples are selected from the 2003 National
Health Interview Survey (NHIS), the analytic survey sampling frame, in two stages:
(i) map = 2 PSUs are selected with replacement from each of 25 design strata with
probabilities proportional to the number of U.S. residents within each PSU; and (i4)
either 20 or 40 residents are randomly selected without replacement (SRS) from each
sampled PSU resulting in a total analytic survey sample size (n4) of 1,000 and 2,000,
respectively. We again select 4,000 simulation samples from a randomly generated
frame after introducing the undercoverage rates shown in Table 4.1. We calculate
the estimated population means and associated variances for two binary NHIS vari-
ables in separate runs of the simulation program: NOTCOV=1 indicates that an
adult did not have health insurance coverage in the 12 months prior to the NHIS
interview (y = 0.17); and PDMED12M=1 indicates that an adult delayed medical
care because of cost in the 12 months prior to the interview (g = 0.07). Inclusion
of nonresponse in the simulation study is reserved for future work. Four bench-
mark covariance matrices are used to produce separate EC calibration estimates
to reflect varying levels of precision in the control totals. The estimated matrices
reflect benchmark surveys with approximate effective sample sizes of 21,700, 6,000,
1,200, and less than 500, respectively. Key R® (Lumley, 2005; R Development Core
Team, 2005) programs developed specifically for this simulation study are provided

in Appendix A.
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5.5.2  FEvaluation Criteria

The empirical results for the variance estimators listed at the beginning of this
section (Section 5.5) are compared using five measures across the j (7 = 1, ...,4000)
simulation samples and two outcome variables (NOTCOV and PDMED12M). The

measures include:

1. 100 x [(ﬁ > var(yp,) — MSE) /MSE} , the estimated percent bias of the

variance estimator relative to the empirical MSE = 505 > (W P =)

2. 100 x [(ﬁ > var(gjpj) — VAR> /VAR}, the estimated percent bias of the

. . . . . . . 1 fay
variance estimator relative to the empirical variance where VAR = 555 Ej <y P,
1 - )2
— 3000 2 ypj> ;
3. ﬁ > il (|73]| < Zi_a /2), the 95 percent confidence interval coverage rate where

a=0.05,z; = (?jpj - ?)/se(ﬁpj)v and Se@Pj) = \/UW(?ij);

~ A 2 . . .
4. \/m > [se(gpj) — o > se(ypj)] , the standard deviation of the esti-

mated standard errors (se); and,

5. 100 x | (505 325 5e. (i) = s 2 serers (7, ) ) /s 55 sewers (ir,) |
the percent increase in the variation of the estimated standard errors for all

studied estimators (se,) relative to the ECTS variance estimator (segors).

These criteria are also used to compare the results for estimated totals and ratio
means. Prior to comparing the variance estimators, we evaluate the relative bias of

the estimated totals, 55 >_; <§ P gj) /i discussed in the next section.
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Table 5.1: Percent Relative Bias Averaged Across Samples and Benchmark Covari-
ance Matrices for Percents and Totals of Outcome Variables by Point Estimator

Not Covered by Health Delayed Medical Care
Insurance (NOTCOV) (PDMED12M)
Estimator Napi = 20 napn; = 40 Napi = 20 nap; = 40
U 11,7 11.6 9.2 9.1
Up 0.7 0.8 0.9 1.1
typwr -37.7 -37.6 -40.8 -40.7
typ 2.0 2.2 1.5 1.6

HJ = Hajek estimator; PWR = p-expanded with-replacement estimator.

5.5.3 Results for Point Estimators

Calibration inflates the variance of point estimates when the variability in the
analysis weights is increased. Without a greater decrease in the squared bias, the
MSE of the estimates increases — an undesirable occurrence. We begin in Table 5.1
with an examination of the MSE by comparing the relative bias (RelBias) of the
mean estimates using only the design weights, i.e., Hajek estimators, against those
estimators that incorporate an EC-PSGR adjustment. Negative values in Table 5.1
indicate underestimation, while positive values suggest estimates in excess of the
true values. Relative biases of zero are ideal; however, values near zero are also
acceptable and more realistic with simulation studies. The relative bias for the
Hajek estimator of the population mean () calculated from the 4,000 simulation
samples identifies underestimates in excess of nine percent. The outcome variable

NOTCOV has higher levels of underestimation in comparison with PDMED12M

even though the latter condition is rarer in the population (17 versus 7 percent). EC
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poststratification corrects for undercoverage resulting in a slight overestimate of the
population mean by approximately one percent, thereby providing a justification for
the weight adjustment procedure. The same conclusion is obtained for the estimated
totals originally discussed in Chapter 4 and reproduced in the last two rows of Table
5.1.

Comparing the relative biases for the two EC poststratified estimators, we see
that RelBias(yp) < RelBias(t,p) for both within-PSU samples sizes and outcome
variables. The difference is less pronounced for PDMED12M in comparison with
NOTCOV. The benchmark controls for the simulation N B(r) are generated under a
multivariate normal distribution such that N By ~ MVN (N B, VB) as detailed in
Section 4.5.1. The average of the poststratum benchmark totals was verified to be
very close (though not exact) to the values in N . However, the average of 3 g N By(r)
exceeded N for our study. Therefore, by our discussion of Figure 5.1, we expect and
see in Table 5.1 that RelBias(jp) < RelBias(t,p) due to the overestimation of N

by NB-

5.5.4 Comparison of Variance Estimators

Having addressed the relative bias of the point estimators, we next compare
the relative biases for our variance estimators. The percent biases relative to the em-
pirical MSE for the variance of the estimated means range between -8 percent and
just over 3 percent across the simulation parameters with most values falling below

the desired zero percent level. This range is much smaller than the range calculated
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for the estimated totals, i.e., -56 percent to roughly zero percent, and is associated
with the contribution of the benchmark controls to the estimated variances. As
discussed for expression (5.20), a large, positive covariance between the numerator
and denominator of the estimated mean (i.e., Y, Vplg) relative to a function of
the numerator variance (i.e., ypl,;Vplg/2) will reduce the influence of the bench-
mark covariance matrix on the overall variance. In our simulation population, the
covariance is 1.10 and 1.00 times as large as the variance term for NOTCOV and
PDMEDI12M, respectively. Averaged across the simulation samples, the relative
increase in size of the covariance is 1.08 for NOTCOV and 0.98 for PDMED12M.

The pattern of bias across the sizes of the benchmark and analytic surveys
for the estimated means also differs from the total estimates shown in, for example,
Figure 4.1. Figure 5.2 displays the estimated percent relative bias of the five variance
estimators (y axis) in estimating the MSE of our two outcome variables (NOTCOV
and PDMED12M) by the relative size (np/n4) of the benchmark survey to the
analytic survey of size ny = 1,000 (z axis). The horizontal line represents zero
bias. The vertical line represents studies for which the analytic and benchmark
surveys are equal in size as well as a relatively equal-sized contribution to the overall
variance. The relative biases for the ECTS, ECF2m, and ECMV variance estimators
for estimated totals were similar — see Figure (4.1). In this chapter, however, there
is a slight visual distinction between their values due to the smaller scale of the y
axis.

For both outcome variables, the traditional poststratified variance estimator

(Naive) is most negatively biased as noted in our theoretical examination. This
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Figure 5.2: Percent Bias Relative to Empirical MSE of Five Variance Estimators by
Relative Size of the Benchmark Survey to the Analytic Survey for 1,000 Analytic
Survey Units
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holds for the four relative survey sizes included in our study. The relative bias
for NOTCOV shown in Figure 5.2(a) is smallest when the benchmark survey is
approximately six times larger than the analytic survey. As the relative benchmark
size decreases, the negative bias falls below 6 percent. This is a stark contrast
to the EC variance estimators presented here, as well as, the relative bias of -50
percent calculated for the estimated total. A similar interpretation can be used for
PDMEDI12M in Figure 5.2(b).

A comparison of the biases for the EC variance estimators shows similar pat-
terns within the relative sizes of the surveys for both outcome variables. When the
relative size of the benchmark survey is greater than the analytic survey (right of
the vertical line), the empirical EC variance estimates are all too small but only by
levels as much as 5 percent for NOTCOV and 3 percent for PDMED12M. Once the
benchmark size drops below 1,000, the EC variance estimators become conserva-
tive and overestimate the NOTCOV population parameter by less than 2.5 percent.
Underestimation by as much as 2 percent is seen with the PDMED12M variance
estimates (Figure 5.2(b)). We believe that these levels of negative bias would likely
disappear with a larger analytic survey sample size. The dramatic change in the bi-
ases from np/ns = 1.2 to ng/na = 0.3 suggests that additional research is needed
to determine a threshold for when a benchmark adjustment will result in overly
conservative variance estimates. We also note that the relative biases for the ECTS
are slightly lower than the other EC variance estimators. This is attributed to
linearization variance estimators producing, in general, more stable estimates than

replication variance estimators (Krewski & Rao, 1981).
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Table 5.2: Percent Bias Estimates Relative to Empirical MSE for Five Variance
Estimators by Mean Outcome Variable and Relative Size of the Benchmark Survey
to the Analytic Survey

Relative Size Relative Size
Outcome Variance np/(na = 1,000) np/(na = 2,000)
Variable Estimator | 0.3 1.2 6.0 21.7] 02 0.6 3.0 10.8

NOTCOV Nailve -6.1 -44 -39 -53|-79 -51 -45 -56
ECTS 1.8 -21 -31 48| 23 -21 -34 -49

ECF2m 24 -18 -28 45| 31 -19 -33 -47

ECMV 22 -17 -29 -45| 25 -20 -34 -47

ECNJCm | 1.0 -22 -29 -45| 03 -24 -35 -48

PDMEDI12M Naive -5.0 -3.8 -32 -28|-76 -71 -6.0 -7.8
ECTS -19 -25 -23 -20|-34 -51 -45 -6.5

ECF2m |-14 -21 -20 -16|-3.0 -5.0 -44 -6.3

ECMV |-1.7 -21 -20 -1.7|-31 -51 -44 -6.3

ECNJCm |-05 -1.8 -19 -1.7|-19 -46 -44 -6.3

The summary measures used to produce Figure 5.2 are contained in the first
set of four columns of Table 5.2, i.e., columns associated with ny = 1,000. The
second set of columns within this table contains the percent relative biases of the
outcome variables for an analytic survey of size ny = 2,000. Many of the same
conclusions derived for the ny = 1,000 estimates can be repeated for the estimates
derived under n, = 2, 000.

Overall we can see that there are no striking differences in the EC relative
biases for all conditions unlike the comparisons made for the estimated totals in
Chapter 4. The contrast between the percent relative bias for estimated totals and
means within each method is most noticeable with the ECNJCm. The ECNJCm

values follow closely with the Naive estimator in Figure 4.1, though levels of bias
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are much less. The ECNJCm values in Figure 5.2 and Table 5.2, however, are closer
in value to the other EC variance estimators. This suggests that when a complete
benchmark covariance matrix is not available, estimated (ratio) means may be less
biased than the corresponding totals used in the numerator of the ratio. Additional
theory is needed, however, to generalize this finding.

We additionally examine the percent bias relative to the empirical variance to
determine if the empirical bias is affecting our results. Overall, the percent relative
biases were improved by no more than 1.4 percentage points. We have chosen to
suppress this tabular information because of the similarities with estimates provided
in Table 5.2.

The next criterion used to compare the variance estimators is the empirical
coverage rates for the 95 percent confidence interval (CI) associated with the two
outcome variables. Coverage rates for the estimated means under all simulation
conditions were fairly stable and near the desired level of 95 percent. We additionally
do not detect a linear trend with the increasing size of the benchmark survey. Hence,
we show only the minimum, maximum, and range of the coverage rates in Table 5.3
by outcome variable, variance estimator, and relative size of the benchmark and
analytic surveys. The minimum coverage rate across the values in the table rests
with the Naive variance estimator though the differences are not excessive.

Because of the visual uniformity of the results in Table 5.3, we ran a linear
regression to determine the correlates of CI coverage rates. The covariates included

simulation results
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Table 5.3: Minimum, Maximum, and Range of Empirical 95 Percent Coverage Rates
for Five Variance Estimators Across Relative Size of the Benchmark Survey to the
Analytic Survey by Mean Outcome Variable

na = 1,000 na = 2,000
Outcome Variance 95 Pct Coverage 95 Pct Coverage

Variable Estimator | Min  Max Range | Min Max Range

NOTCOV Naive 93.6 94.2 0.6 92.8  94.0 1.2
ECTS 93.8  95.0 1.2 93.8 943 0.6

ECF2m 93.8 949 1.1 93.7  94.2 0.5

ECMV 93.8 948 0.9 93.7  94.2 0.5

ECNJCm | 939 949 1.0 93.5 94.0 0.5

PDMEDI12M Naive 94.0 94.3 0.3 93.8 948 1.1
ECTS 94.3  94.6 0.2 942  95.0 0.8

ECF2m 944 949 0.5 942  95.0 0.7

ECMV 943  94.7 0.3 943 948 0.5

ECNJCm | 94.3 948 0.5 94.2 948 0.6

e the relative bias of the point estimates (Table 5.1),
e the relative bias of the variance estimators (Table 5.2), and
e the calculated bias ratio,
and simulation conditions
e outcome variable (NOTCOV and PDMED12M),
e size of the analytic survey (1,000 and 2,000),
e the relative size of the benchmark survey (four sizes), and

e variance estimator (Naive, ECTS, ECF2m, ECMV, and ECNJCm).

Sirndal et al. (1992, Section 5.2) define the bias ratio of an estimator 0, BR(0), as
the bias, E(é) — 0), divided by the root population sampling variance, \/Var(é).
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Table 5.4: Minimum, Maximum, and Range of Empirical 95 Percent Coverage Rates
for Five Variance Estimators Across Relative Size of the Benchmark Survey to the
Analytic Survey by Total of Outcome Variable

na = 1,000 na = 2,000
Outcome Variance 95 Pct Coverage 95 Pct Coverage

Variable Estimator | Min  Max Range | Min Max Range

NOTCOV Naive 83.5  93.7 10.1 81.2 934 12.2
ECTS 94.0  95.6 1.6 93.7  95.7 2.0

ECF2m 939 951 1.2 93.5 955 2.0

ECMV 94.0 95.1 1.1 93.6 955 2.0

ECNJCm | 88.6  94.0 5.4 87.8  93.6 2.8

PDMEDI12M Naive 88.8 944 5.5 84.8  94.2 9.4
ECTS 94.5 948 0.3 94.1 954 1.2

ECF2m 94.5 948 0.4 94.1  95.2 1.2

ECMV 944  95.0 0.6 94.0 948 0.9

ECNJCm | 91.1  94.5 3.5 89.0 944 5.4

This bias ratio affects the desired CI coverage rates through the formula P(|Z +
BR(A)| < Z1—aj2) for Z = [0 — E(A)]/\/Var(d). Bias ratios larger than one can
either reduce or increase the coverage rates, depending on the positive or negative
bias term, while small bias ratios have minimal effects on the rates. Among the
model covariates included in the linear model (R? = 0.78), only the relative size of
the benchmark survey and the variance estimator were not significantly associated
with the confidence interval coverage rates. The remaining covariates were highly
significant at levels less than 0.001.

In comparison to these fairly stable rates, the range of the 95 percent confidence
coverage rates is wider in general for the estimated totals (Table 5.4). The increased

range in the coverage rates is especially noticeable for the Naive and ECNJCm
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Table 5.5: Percent Increase in Instability of Variance Estimates Relative to EC Lin-
earization Estimator (ECTS) by Outcome Variable and Relative Size of the Bench-
mark Survey

Relative Size Relative Size
Outcome  Variance np/(na = 1,000) ng/(na = 2,000)
Variable Estimator | 0.3 1.2 6.0 21.7]0.2 06 3.0 10.8

NOTCOV  Naive 39 1.0 04 03(46 15 05 04
ECF2m 29 09 05 00|38 13 02 0.2

ECMV 35 12 06 0036 09 03 04

ECNJCm |32 0.7 04 0132 1.1 03 03

PDMEDI12M Naive 08 05 03 03|16 09 07 06
ECF2m 1.5 07 03 02|17 06 06 0.5

ECMV 14 05 02 0217 06 06 0.5

ECNJCm | 1.3 05 04 02|19 07 06 05

variance estimators. We ran the same linear regression specified above to determine
the correlates of the coverage rates for estimated total. For this linear model (R? =
0.96), size of the analytic survey, outcome variable, and type of variance estimator
was not significantly associated with the coverage rates. It is interesting to note
that unlike the regression model for the estimated ratio-means, the relative size of
the benchmark survey was highly significant.

The discussion so far suggests that there are minimal theoretical, as well as
empirical, differences between the ECTS, ECF2m, and ECMV methods. A com-
parison of the variation in the variance estimates suggests that the ECTS variance
estimator is most stable among those examined though the relative increase for the
other estimators was less than five percent (Table 5.5). This corresponds with the
theoretical discussion given in Krewski & Rao (1981). The difference in the stability

of the ECF2 and ECMV methods is less noticeable with estimated means than with
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Table 5.6: Percentage Point Reduction in Bias Relative to Empirical MSE At-
tributed to Coverage Error Variance Averaged over ECF2 and ECNJC Variance
Estimators and Size of Benchmark Survey, by Type of Point Estimator and Size of
the Analytic Survey

Point Outcome Analytic Survey Size
Estimator Variable na = 1,000 ny = 2,000
Up NOTCOV -0.41 -0.55

PDMEDI12M -0.73 -1.28
typ NOTCOV -0.34 -0.45
PDMED12M -0.64 -1.08

the estimated totals displayed in Table 4.6.

Our final analysis involves an examination of the undercoverage error variance
component introduced into the original formulae for the Fuller and Nadimpalli-
Judkins-Chu jackknife variance estimators. Table 5.6 shows the percentage point
reduction in the bias of the variance estimates relative to the empirical variance by
including an undercoverage error component. The values are averaged across bench-
mark survey size and EC variance estimator due to the similarities in the results. On
average, the relative percent bias is reduced between 0.4 and 1.3 percentage points
with the larger reductions occurring as the analytic survey sample size increases.
This pattern is also seen for the estimated totals (f,p) shown in the second half of
Table 5.6; however, the percentage point decrease in bias is slightly higher for the
ratio mean (ip). Additionally, the increase in the 95 percent coverage rates associ-
ated with the coverage error component is less then 0.4 percentage points for both

methods. This suggests that an undercoverage error adjustment is useful for the
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variance estimator. However, as discussed in Chapter 4, further research is needed

in an attempt to develop a more effective coverage error variance component.

5.6 Summary of Research Findings

Many of the same conclusions noted for EC-calibrated totals in Section 4.6 are
echoed for the ratio of two EC-calibrated totals. The traditional GREG variance
estimators can underestimate the population sampling variance though our empirical
results suggest that the severity is less with ratio-mean estimators. The level of
underestimation is related to the precision of the benchmark control totals. The
original and modified ECNJC methods can also produce estimates that are too
small if the missing population covariance values are negative. Our simulation study
suggests that the bias in the ECNJCm variance estimates is less pronounced with
the ratio means than with totals though additional theory is needed to support this
claim.

Our recommendation therefore points to the remaining EC calibration variance
estimators; a specific recommendation is less clear cut in this chapter in contrast
with Chapter 4. Theoretically, the newly developed linearization variance estimator
(ECTS), the modified Fuller two-phase jackknife estimator (ECF2m), and the mul-
tivariate normal jackknife estimator (ECMV) are asymptotically equivalent. The
empirical results suggest that the differences among the three methods in prac-
tice are negligible. Choosing between the ECTS and one of the jackknife replication

methods must be based on the type of analysis or public-use file desired for the study.
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Relevant steps and computer code are provided for the ECF2m and ECMV meth-
ods to facilitate their implementation. As mentioned previously, additional work
is required to improve the variance component associated with any (non-random)

undercoverage in the analytic survey sampling frame.
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Chapter 6

Domain Estimation

6.1 Introduction

Domain (or subpopulation) estimation is an integral part of the design and
analysis phases of the survey. As discussed in Chapter 2, calibration domain point
and variance estimators have been studied but the literature currently does not ex-
tend to estimated-control (EC) calibration. Research on EC calibration for domain
totals and ratio-means begins with our work presented in this chapter. Here we
assume that the domain of interest is large enough to allow direct estimation in-
stead of additionally addressing situations when small area estimation techniques
are required.

The research presented in the next sections relies heavily on the theoretical
work presented in Chapters 4 and 5. We reference certain formulae from these
chapters and discuss the modifications required for domain estimation, instead of
presenting similar results. When appropriate, we detail issues with EC calibration
that are specific to domain estimation. However, explicit formulae for domain point
estimators are described to maximize clarity.

Our research on EC calibration for totals and ratio-means within sizeable do-
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mains is presented in the next sections. We detail the formulae and design bias for
the new generalized regression (EC-GREG) and poststratified (EC-PSGR) estima-
tors of totals within a domain in Section 6.2. The ratio of two EC-GREG totals and
of two EC-PSGR totals within a domain (domain ratio-mean estimators) is similarly
defined and evaluated in Section 6.3. This section additionally contains a compar-
ison of bias levels for overall and domain-specific total and ratio-mean estimators.
As in Chapter 5, the mean of an outcome within a domain is the ratio of partic-
ular interest. Our findings, however, generalize to the ratio of any two calibrated
domain-specific totals. We evaluate the set of variance estimators identified for our
research in two sections — variance estimation for domain totals in Section 6.4, and
for ratio-means in Section 6.5. Comparisons are made between the variance estima-
tors for domain and overall units to suggest under what conditions EC calibration
may have a stronger influence. We present empirical domain-estimator results from
a simulation study in Section 6.6. The findings, both theoretical and empirical, are

summarized in the final section (Section 6.7).

6.2 Estimation of Domain Totals

The general label estimators for domain totals includes the population do-
main size, as well as the total number of population units within a domain with
a characteristic (outcome) of interest. The formulae for the EC-GREG and EC-
PSGR estimators are expressed in terms of an outcome variable in Section 6.2.1.

The design-based bias of these estimators follows in Section 6.2.2.
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6.2.1 Calibration Estimators

The EC-GREG estimated population total for domain d is calculated as fol-

lows:

tyar = taya + (’EBx - EA:E),BAd

H mapnani H manpnani -1

_ 1 f: ‘E / -1 / -1

= +( Bz — Ax) T il Xhil X p4t Xnik | ThipYdhik
h=1 i=1 k=1 h=1 i=1 [=1

H mapnahni

Z Z ik T i Ocdhik Ynik (6.1)

h=1 i=1 k=1

where £ Ayd = ZhikESA ﬂ,;}gydhik, the pwr total estimator of y for domain d using the
analytic survey design with yaniz = OanitYnik; arir = 1+ (‘EBI — ’EAI)/ (Zhile“ 7@} X
xhux;wl)_l Xpik, the calibration adjustment factor also used in the overall estimated
total fyR (4.1); and, dgpix = 1 if unit £ in PSU 4 within stratum h is a member of do-
main d (dgnix = 0 otherwise). Under the regression model approach, this calibration
estimator is generated through an assisting model specified by E.(yani) = x},Bq and
Var(yy) = 0%, where E, and Var, represent the expectation and variance evaluated

with respect to the model; and

B, =

—1
Z Xhuxﬁn-l] Z XnikOdhikYhik- (6.2)

hileU hikeU

Sarndal et al. (1992, Section 10.6) refer to this assisting model as a separate ratio
model because the slope coefficients are defined within and not across the domains.

The vector of sample coefficients for the working domain-specific model in (6.1) is
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defined as:

H mapnani L H mannan
—1 / —1
B = E E E T i1 XhilXpil E g Whikxhik(sdhikyhik- (63)
h=1 =1 [=1 h=1 =1 k=1

The G-length vectors tg, = ZZGSB wix; and ta, = ZhikGSA T Xna, in (6.1) contain
estimates of the auxiliary variable totals from the complete benchmark and analytic
samples, respectively. These estimators are also used in the EC-GREG estimator of
the overall population total of y, fy r defined in expression (4.1). We could have used
tBed = ZIESB widgx; and tay = Zhike” T OdnikXnar to form a domain-specific
calibration adjustment factor. However, this would violate our requirement of one
set of analysis weights because such an adjustment would need to be produced for
each analysis domain — see Section 2.4 for a more detailed discussion. Note that
the only difference between fy r (4.1) and fydR (6.1) is that dgnixynix is used in place
of ypi for domain estimation. This modification to previously presented formulae
is seen throughout this chapter.

The estimated domain total under EC poststratification, a specialized EC-
GREG estimator, is a function of two indicator variables: g4, = 1 if the (hik)t

unit is in poststratum ¢ (zero otherwise), and dgp;, described for fydR (6.1). The
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estimated total is calculated as follows:

~ ~

tyap = NENi'tae=NpYay

G

_ Z V. N-1F

- NBgNAgtAydg
g=1
H mannani [ G

. ~ .

= D> > > NuNy, %h”“] Tk anik Ui
h=1 i=1 k=1 Lg=1
H mapnan G

= Z Z Z Z ik T 31, OdhikYhik (6.4)

h=1 i=1 k=1 g=1

where N/, = [N Bly +ees N BG], the vector of EC-PSGR benchmark controls with
N By = ZZESB wydy and g4, the poststratum-indicator variable for the benchmark
survey; N,isa diagonal matrix of GG poststratum counts estimated from the analytic
survey data with elements NAQ = Ehikem W,;}géghik; fAyd = [fAydl, - fAde}l, the
vector of analytic survey estimated population totals for variable y within domain
d and poststratum ¢ such that fAydg = Zhike“ W,;}C(Sghikédhikyhik; \?Ad = N;lfAyd =
[gj Adls - ¥ AdG} /, the vector of estimated coefficients under the group-mean assisting
model specified by E(yanir) = Yadgg and Var(yx) = o with ngdg = fAydg/NAg;
Uadg = taydg/Nag With tayag = D piccr OghikOdnikynic and Nag = >, 1 Ognix; and
ik = 25:1 NBQN;; Sghik = NBgNg;, the calibration adjustment factor. Note that
api specified in (6.4) is the same as defined for the overall EC-PSGR estimator of a
total, t,p given in expression (4.3), and is neither a function of the outcome variable

y nor the domain indicator dgpk.
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6.2.2 Bias of the Estimators

The design-based bias is a function of the expected value of an estimator and
the population parameter being estimated. The population domain total is denoted

as

tyq = Z Ok Y-

keU
Because t,qr (6.1) is a nonlinear function of sample estimators, we evaluate the
expectation of the linearized expression through a first-order Taylor series approxi-

mation:

~

tyar = taga+ (tpe — tar)Baa

1%

tyar + (Faya — taga) + Blay (bpe — tpy)
- By (EAm — taz) + (bps — tas) (EAd - BAd)

= tyar + max{Op (M/\/maa), Op (M//mp)}. (6.5)

where m 4 denotes the number of analytic survey PSUs containing at least one
element of the domain from a total of M4, domain PSUs on the analytic survey
sampling frame. The complete population contains M; domain PSUs where M 44 <
M, by definition. For this first-order approximation, we assume the population
parameters tyqr = taya + (tpr — tas)'Baa, tps, and ta, are all O (M) where M is
the total number of PSUs in the complete population; B g = O (1); (fAyd — tAyd) =
Op (My/\/maq); (EBZ‘ —tps) = Op (M//mp); (EA;B —tas) = Op (M/\/mz); and

<BAd — BAd> = Op <m2/2>. Note that the Op (M/, /mAd) term dominates both
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the Op (M/,/mA) and Op (Md/,/mAd) terms in (6.5) because we assume that the
domain is a subset of the analytic survey sample and complete population, i.e.,

ma > myq and M > M,. Therefore,

E (fyar) = tyar +max{O (M/\/mag), O (M/\/mz)}

>~ tan. (6.6)

Following the approach used for E (]:3» A) in (4.5), the expectation of the model

coefficient vector evaluates to

E(BAd) = E, [EA (BAd‘CA>]

H My Np; -1
= E E g E., (Canit) XniXp;
he1 i=1 I=1
My Np;
X E E E E., (Canir) XnikOdnikYnik
=1 k=1
~1
! —_
= [E O AhilXhil X E & AikXnikOdnikYnit = B aa (6.7)
hileU hikelU

where Caps = 1 indicates that the k™ population unit (k € U) is listed on the
analytic sampling frame (zero otherwise) with E.,(Capnix) = ¢anik. Note that the
subscript Ad above identifies the population model-coefficient vector associated with
the domain-specific subset of the population covered by the analytic survey sampling
frame, i.e., Uyq. As discussed in Section 3.5, Uyg and m 44 are assumed to be of suffi-
cient size for direct estimation. This implies that the coverage mechanism is not sys-

tematic and therefore, does not exclude all units within the domain of interest. Using
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the method shown in (6.7), £ (fAyd) =FE., [EA (fAyd\cA)] = hiver PanikYnik = tayd
and E(f:Ax) =E., [EA (f:Ax|cA)] = hiker PanikXnik = taz. The expectation of the
benchmark control total vector equates to tg, = ZleU ¢pix; where C'g; = 1 identifies
the population units listed on the benchmark survey frame such that E(Cp) = ¢p
(zero otherwise).

Using E (yqr) in expression (6.6) and following the steps shown for Bias({yr)

in (4.7), the design-based bias for #,qr is defined as follows:

Bias (tyar) = NCapgs— N(1 — ¢a)Ea+ (tpe — ta,) (Baa — Ba)

+ (tpe —t2) By (6.8)

where Egpik = OanikYnik — Xp;,Bd, the population-level assisting model residual for
domain d; ¢4 is the coverage rate for the analytic survey sampling frame; and
Cagga = ZhikeU (Edhik — Ed) (qﬁAhik — QBA) /N, the covariance between the coverage
rates and the domain assisting-model residuals.

The four bias components in (6.8) each can be eliminated under the following
conditions. (i) If the auxiliary variables (xp;;) are correlated with y in domain
d and with the coverage mechanism, and the working model is sufficiently close
to the domain-specific population assisting model, then the random variation left
unexplained by the model (in theory) should be uncorrelated with the coverage
propensities, i.e., Caggq = 0. Under this scenario, the first bias component NCsgeq
is approximately zero. (i7) If the design matrix contains a column of ones (intercept)

so that the overall estimated population size is included as an auxiliary variable,
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then by definition F; = 0 and the second bias component is eliminated. (iii) If
the coverage mechanism is such that it does not negatively affect the population
model-coefficient vector within the domain, then B4, = B, and the third term is at
least approximately zero. (iv) Finally, if tp, = t,, as with traditional calibration,
the last component is zero. Therefore, the estimator fydR will be asymptotically
design unbiased only if all these conditions are satisfied. This occurrence is unlikely
especially when examining multiple domains.

The bias for the corresponding EC-PSGR estimator of a domain total, fydp
defined in (6.4), follows the development of Bias (t,p) discussed in (4.8) and is

specified as follows:

G
N, 1
BZCLS ydp g E { ydg < ] - 1) +NBgCAy¢dg(Z_5_} (69)
Ag

9=1

where N, is the complete population size within poststratum g; N4, and N, are
the poststratum sizes for the populations defined by the analytic and benchmark
sampling frames; Cuygag = N;' > nikev, (OdnikYnik — Yag) (anik — dag), the popu-
lation covariance between the outcome variable within domain d and the coverage
rates within poststratum g; g4, = t,a,/Ny, the g poststratum mean of y in domain
d; and ¢ g = Nag/N,, the average coverage rate within the poststratum under the
analytic survey design. If the benchmark survey does not cover the target popula-
tion correctly, so that N, # N, then the first bias component, t,q4,(Npy/Ny — 1),
will be either positive (overestimate) or negative (underestimate) depending on the

magnitude of the bias. This component will be strictly negative if the benchmark
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survey suffers undercoverage, and can accumulate across the poststrata to a sizeable
negative bias depending on the magnitude of the outcome variable. Otherwise, this
component is zero because the benchmark survey covers the population of interest.
The second component may be negative if large y values within the domain are more
likely to be excluded from a sampling frame. If, however, the coverage rates are the
same within poststratum (i.e., ¢aps, = @4, for all units in poststratum g), then the
second bias component is zero. As discussed for Bias (fyp) in (4.8), the conditions

under which both components are zero are unlikely to occur.

6.3 Estimation of Domain Means

Functions of domain totals are also important to survey data analysis. In this
section, we provide an equation to estimate the ratio of two EC-GREG domain
totals, focusing specifically on the mean of an outcome variable within a domain of
interest (Section 6.3.1). This general formula is also expressed in terms of EC post-
stratification. The design-based bias, as with the formulae for the point estimators,

is a function of the domain total biases and is shown in Section 6.3.2.

6.3.1 Calibration Estimators

The estimated totals presented earlier in the chapter are used in this section
to generate estimates for the population mean of y within domain d. We again
focus on the Hajek estimator of the population mean within the domain instead of

assuming that the population domain size, needed for the denominator, is known.
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The Héjek EC-GREG ratio-mean of y in domain d is calculated as follows:

2~ tydR
Yar = = (6.10)
Nar

R H manpnani
Nar = Z Zahikﬁﬁi}ﬁdhik
h=1 i=1 k=1
A ~ ~ ] A~
= Nag+ (tps — taz) Bang (6.11)

with N Ad = ZhikESA ﬂ};}ﬁdhik, the pwr domain population size estimated from the
analytic survey; and ay; is defined for fydR. The vector of model coefficients, defined

for the denominator estimator of the population domain size, is specified as

-1
H mapnahni

Baya = Z Z Z Tt XnitXnit | taza (6.12)

h=1 i=1 [=1

with t4,q = zhikesA W;:i}thz‘kfsdhm Note that the formula associated with NdR is
based on the expression specified for fydR with ypie = 1.

The Héjek EC-PSGR estimated population mean is expressed as

t
Jap = 228 (6.13)

where the formula for 'Eydp = NBNXISI Ayd = NB? aq derived in (6.4). We note
in expression (5.5) that the estimated population count used in the denominator

of §p reduces to the sum of the estimated benchmark control totals, i.e., Np =
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Ng. However, the simplification does not occur with domain estimation. The

denominator in (6.13) is defined as

G H mapnan; N
\ 2 : 2 : Bg -1
Nap = ]\7_ 5ghz'k7Th,~k5dhik

Ag

g=1 Ag
= NBNZ NAd
= NBYANd (6.14)

where Ny = [N Adiy o N AdG]/, a G-length vector of domain population totals by
poststratum estimated from the analytic survey such that N Adg = D pik s 5ghik7r,;}€ X
Oanik: and 32(' ANd = N;llN Ad, the estimated proportion of domain units within each
of the poststrata. The remaining terms are defined following the expression for fydp

(6.4).

6.3.2 Bias of the Estimators

Ratio estimators are approximately unbiased only if all components are ap-
proximately unbiased. We note in Section 5.3 that the bias of the overall ratio
estimator is small in general. The same holds true for a domain ratio estimator
with a sufficient number of domain PSUs (i.e., the PSU contains at least one mem-
ber of the domain). However, convergence to the population domain parameter is
slower because the number of degrees of freedom is reduced. The domain population

ratio-mean, the parameter of interest for the Hajek estimators given in the previous
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section, is defined as:

o tya zkeU Oar Yk
Yd = 7 = ~— -

No Y per Oar

The bias of the non-linear EC-GREG domain ratio-mean ¢, (6.10) is approximated

using a first-order Taylor linearization:

Bias (Yar) = FE (Yar) — Ua
1, Ta (<
~ B — (fap—tg) — 24 (N _N, )
{ N, (tydR tyd) N, dR d ]

1 ) .
=~ | Bias (fyan) — GuBias (Nar)] (6.15)
d

The estimator yyr is approximately unbiased only if both bias components are ap-
proximately zero. The numerator bias, Bias (fydR), is specified in expression (6.8)
followed by the conditions under which this bias is negligible. The denominator

bias, Bias (NdR>, is expressed in the same form as

Bias <NdR> > NCanpsa— N(1 = ¢a)Enag+ (te — tas) (Bana — Bya)

+ (th - tx), BNd (616)

where Enanit = Oanit — Xj,;.Bna, the population residual for domain d under the as-
sisting model specified for the domain estimator with By, = [th’leU XhilX;nJ ! x
Y hiker XhikOdhik; $4 is the coverage rate for the analytic survey sampling frame;
CAENGd = ZhikeU (ENdhl-k — ENd) (¢Ahik — gEA) /N, the covariance between the cov-

erage rates and the assisting model residuals for the domain estimator in the denom-
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inator of ¥4r; Band = [Zhiley ¢Ahz’lxhz’lx;”'l] - Y niver ParikXnikOdnik = E (BANd);
and B (Nar) = Nan + max {Op (M//itaq) , Op (M//iip) } with Nap = Naa +
(f By — b Ax)/B ANg- Similar conditions noted for Bias (fyd}z) will result in low lev-
els of Bias (NdR>, such as no association between the auxiliary variables and the
coverage probabilities within domain d.

The bias for the EC poststratified domain ratio-mean, y,p (6.13), follows this

same pattern:

>~

Bias (Yap) [Bias (fydp) — yqBias (Ndp>] (6.17)

Na
where Bias ('Eydp) is given in expression (6.9). This formula is also used for Nyp
with yp;x = 1 resulting in

G
. - N 1
Bias (NdP> -t E {ng (—]\f‘q — ) =+ NBgCAqﬁdg_& } (618)
g

Ag

where Capay = ZhikeUg ((5dhik — Jg) (gbAhik — (EAQ) /N, the covariance between the
domain indicators and the coverage propensities in poststratum g, and Jg = Nay/N,,
the proportion of population domain members in poststratum ¢g. The remaining
terms are the same as specified for Bias (fydp). Substituting the formulae for

Bias (fydp) and Bias (Ndp) into (6.17) gives the complete expression for the bias
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of Jap:

1 & N
Bias (§ap) = —Z {ng Ydg — Ya) (% - )]
=1

g

G
1 - 1 B
TN, >N kZ Sanir: (Ynik — Ya) — A > Sanik (Ynik — Ta)

9 hikeU,

X (Ganik — dag) /Ng—L:| (6.19)
(bAg

where Jag = tyag/Nag With tyag = >, i OgnikOdnikYnik and Nag = > 17 OgnikOdnik-
The first bias component is zero if the benchmark survey sampling frame covers
the population within poststratum g and the poststratum total is calculated using
an unbiased estimator, i.e., Ng, = N,. If the benchmark frame does not cover the
poststratum population, then the bias component is positive or negative depending
on the deviation between the poststratum and overall domain means. The second
bias component is zero if the poststrata are formed so that the coverage propensities
are the same for the domain members, i.e., ¢anikOdnix = <;3Ag. This is a stronger

condition than specified for the bias of the overall ratio-mean in (5.10).

6.4 Variance Estimation for Domain Totals

Having addressed bias in the EC-GREG estimators of a population domain
total in Section 6.2, we next examine the properties of the associated variance esti-
mators. We begin by specifying the approximate population sampling variance and
compare this expression against the expectation of the sample variance estimators

identified for our research.
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6.4.1 Population Sampling Variance

The unconditional population sampling variance for the EC-GREG estimator
of a population total within domain d is evaluated with respect to the analytic
and benchmark survey designs (A and B subscripts) and the analytic survey frame

coverage mechanism (subscript c4) through the following derivation:

AV (tyar) = Ep|E., {AVa (tyarlca, B) |B}]
+ Ep [AV., {Ea (tyar|ca, B) |B}]

+ AVp [Eey {Ea (tyarlca, B) |B}]

AV (tyacrec)

H My Np;

+ Z Z Z ¢Ahik (1 - ¢Ahik> Ezldhik

h=1 i=1 k=1
+ B, Vi B (6.20)

This expression is obtained by applying the methods used for AV (fyR) in Section
4.4 and substituting yp;x with dgnixynix, Ba with B4y specified in (6.7), and Eap
with Fagnit = OdnikYnik — Xp;xB.aa- The first component in (6.20) is the approximate
population sampling variance for the domain total under the traditional calibration
assumptions with order O(M?/m q); the explicit formula is derived by substituting
E panir for Eapi in (4.14). The second component addresses the coverage error in
the analytic survey specific to the set of domain population units and is O(M). The
final component inflates AV (f,4z) for the estimated benchmark control totals and

is O(M?/mp). The orders of magnitude differ from those presented in Chapter 4 in
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that the analytic survey variance component is now associated with the number of
sample domain PSUs (m4) instead of the total number of sample PSUs (m4). Note
that all of the variance components in (6.20) are by definition positive contributors
to the overall variance.

By expressing the model-coefficient vector and residuals from (6.20) in terms
of the group-mean model for domain d, the population sampling variance for the

EC-PSGR domain estimator is specified as

~

AV (tydp) = AV (tAydPSGR)

G H My Np;

+ Z Z Z Z §ghik¢Aghik (1 - (bAghik) E124dhik
=1

g h=1 i=1 k=1
Y Ve Y (6.21)

where Y 44 = N;llt Ayd = [JAd1s - ngd(;]/, the vector of population assisting-model
coeflicients with Yadg = tAydg/NAg; and Fagnit = OanitYnir — YAdg- Following the

development of AV ('EyPSG R) given below (4.18),
AV (tyapscr) = NE., (Vaa) Np (6.22)

where N = [Npy, ..., NB(;]/, the vector of totals for the G poststrata within the
population associated with the benchmark sampling frame; and V44 = Vary (32{' Ad)

~ D,%,4,D) with

o s ({5} ) o ({25}



and

Oliagariayar) ~ PEayar,Nac)

| O-(NAGyfAydl) T O(NagNag)

6.4.2 Traditional Calibration Variance

Variance estimation for traditional calibration only recognizes the variation
within the analytic survey. As discussed in, for example, Sérndal et al. (1992,
Section 10.6), the traditional linearization sample variance estimator for a GREG
domain total is a function of the estimated residuals for the chosen assisting model.
In the case of a stratified, multistage analytic survey design with PSUs selected
with replacement and the separate ratio model, the linearization sample variance

estimator for fydR is calculated as:

H m MAR
~ Ah o v}
var Naive(tyar) = var( deREG’ Z 1 Z(udhi—i— - udh++)2 (6.23)
et TvAR T LT

where Ugpiy = Y 20 ahikwgi}fe Adhik, the sum of (calibration) weighted model residu-
als for units within domain d within PSU hi; eagnir = danikYnix — x;m.kBAd; anqk 18 the
calibration weight defined for fydR in (6.1); and g, = my; YA Ugnit, the aver-
age weighted residual within stratum h. Note that this sample variance estimator is

a function of residuals calculated from all sample PSUs (m ;) and does not exclude
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PSUs without at least one domain member. Because domain membership within
a PSU is a random event (by assumption), the non-domain PSUs could contain
domain members given a different sample. Therefore, the zero estimate is included
as a contribution to the overall variance estimate.

The Naive sample variance estimator for the EC-PSGR domain total generated

through poststratification is defined either as a method-of-moments estimator,

Var Naive (l?ydp) = var (fydPSGR) = N/BVAdNB (6-24)

where Vi, & f)dﬁlédf)él, calculated using the analytic survey estimates corre-
sponding to the terms defined for (6.22), and Np defined for f,4p in (6.4); or
by substituting eagnix = OanikYni — Yady in the formula for UarNai've(i:ydR) (6.23)
where Jaay = tayas/Nag = Ypines, TrikOshikOanikynin/ Spines, Tnidghar- The term
fydngR => Y (fAydg /N. Ag) is the traditional poststratified domain total dis-
cussed in Section 2.4.

As discussed in Section 6.4.1, the population sampling variance is the sum of
three positive variance components. Consequently, a variance estimate for an EC-
calibrated total calculated with a traditional variance estimator will be too small.
Hence, the use of the Naive variance estimator label. The magnitude of the under-

estimation is suggested in the next section where we discuss linearization variance

estimators that account for the three components.
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6.4.3 Estimated-Control Linearization Variance

The formula for the EC linearization sample variance estimator of ,qz (6.1),
denoted as ECTS, is obtained by substituting sample estimators for the components
in AV ({yqr) (6.20), thereby accounting for all sources of variation. The ECTS

sample variance estimator is expressed as:

VargcTs (fydR) = var (AdeREG)
H MAh NAR4
<1 - ¢Ah> Adhzk
hz zzl ; Thik
+ B, V5B (6.25)

The first sample variance component, var (fdeREG), is the traditional calibration
variance estimator given in expression (6.23) and accounts for the variation within
the analytic survey. The second component estimates the coverage error variance in
the analytic survey sampling frame with esgnix = danirYnix — X;ukB A4 and gziﬁ Ap 1S an
estimate of the sampling frame coverage rate in stratum h. The estimates may be
calculated as N an/ N Bn, the ratio of the stratum sizes estimated from the analytic
and benchmark survey data, if the benchmark survey is believed to adequately
cover the complete population of interest. Using the formula for the bias shown in

expression (4.22),

£ mi) 3R e

v
h=1 i=1 k=1  hik

H )
= Z G anik B anin (Danix — Pan) - (6.26)



If the coverage probabilities vary only by stratum, i.e., @ anix = @ap for units within
stratum h, then the associated bias is approximately zero. However, the bias is
inflated if larger residuals are associated with coverage probabilities that differ from
the stratum averages. The third component in (6.25) estimates the variation in the
benchmark control totals where B 4, is the estimated coefficient vector specified for
fydR (6.1), and Vg = var (f: Bx), the estimated covariance matrix for the benchmark
controls.

The order of convergence for the first domain variance component in (6.25) is
Op(M?/m 4q) and is of lower order than the corresponding component for an overall
total, Op(M?/m,). The coverage error and benchmark variance components for
tyar and t,z are the same and equal Op(M) and Op(M?/mp), respectively. This
suggests that the benchmark controls will have less influence on the variance of the
domain estimators than with the overall estimators if m4 = mp.

An expression for the ECTS sample variance estimator of an EC-PSGR domain

total is defined as:

vargers(typ) = wvar (tyapscr)
G . H mannani S o2
y ghtk® Adhik
3 (1-0m) 2 e
g=1 h=1 i=1 k=1 hik
~ ~ A
+ Y 44VBYad (6.27)

A

where var (fydPSGR) is defined in expression (6.24); ¢ g = N Ag/ N By, for example;
and eqgnik = OanikYnic — ﬁAdg with ﬁAdg = fAydg /N 4g- The remaining terms are
defined for #,4p in expression (6.4).
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6.4.4 Fuller Two-Phase Jackknife Method

Isaki et al. (2004) apply the Fuller jackknife variance estimator (Fuller, 1998),
labeled here as the ECF2 method, to account for variations in the benchmark con-
trols. We demonstrate that the modified ECF2 (ECF2m) in Chapter 4, augmented
to additionally account for the coverage error variance in the analytic survey sam-
pling frame, has a lower relative bias than the original ECF2. In this section,
we translate the ECF2m formulae for estimation of domain totals. As discussed
previously, our domain estimators are functions of overall and not domain-specific
analytic survey auxiliary variables and benchmark controls. Because the change to
the ECF2m and the other jackknife methods only affects the analytic survey com-
ponents, references to Chapter 4 text allow us to abbreviate this discussion without
loss of clarity.

The delete-one ECF2m jackknife variance estimator for the EC-GREG domain
total ,qr defined in (6.1) requires the calculation of replicate estimates using the

following formula:

e ~

tyarey = tyacreGE) + chZp(ry B ad(r)

+ cthﬂ(r)\/(l - Q_ﬁA(T)) t Aeda(r) (6.28)

where ¢, = \/mAh/(mAh —1); Ry, = \/1/Hmap;
o tyacrECH) = Ladyr) + (t82 — tas) Badw);
° fAdy(T) = Zhikem W&%T)ﬂ';i}cédhikyhik, the replicate total of the y in domain d;
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ot Ax(r) = EhikESA W,;}r)w,:i}gxhik, the replicate totals for the auxiliary variables

estimated from the analytic survey;

® Zp() = () Zle dg|(r)ZBg, the ECF2 replicate control-total adjustment such
that Vg = 30 | 2p2},;

~ -1
_ S R -1 -1 o
® Buaw) = | Xnies A Thi(r) Thit XhilX pil > hikes A Thi(r) Thik XnikOdnikYnik, the model

coefficient vector for domain d calculated for each analytic survey replicate;

® 7)) is the randomly generated value from a standard normal distribution for

replicate 7;
o Laci2(r) = D pikesn Thitr) ik adnik(ry I €Aanik(r) = Saniktnin — X Bader); and,
. Wi:i%r) is the PSU-subsampling weight for the r** replicate defined in (4.27).

As shown in (4.28) for the ECF2, the second term in (6.28) can be approximated as
Chigg(r)BAd (629)

by assuming tp, = O(M) resulting in fyGREg(r) = Op (M), BAd(T) = Bag +
Op <m£2/ 2) for the population domain parameter B4y = O (1) defined in (6.7),
and zp,, = Op (M//mg). Using the replicate estimator defined in (6.28) and

the approximation in (6.29), the delete-one ECF2m jackknife variance estimator is
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expressed as:

2

H map
= Z c? Y (tyagrec() — tyacrrc)
h=1 r=1
mAhn
+ 2 Z Cp, Z lydGREG(r) — tdeREG) ZB(T)BAd
r=1
+ B, V5B
H map,
+ 2 Z o' Z (tdeREG(T) - tdeREG) Rh”(r)\/ ( ¢A(r > tAed2(r)
h=1 r=1
H myp
+ QZZQ/B(T)BAd (Rhn 7")\/(1 - ¢A ) tAed2(r))
h=1 r=1
H map
+ Z Z Ryt <1 - ¢5A ) tAed2(r)- (6.30)
h=1 r=1

To facilitate the evaluation of E [vaTECFQm(fydR)], we divide (6.30) by M? and dis-
cuss each component in turn. The first variance component estimates the variation
associated only with the analytic survey design and is Op(m Ad) The second com-
ponent is Op(mBl/ ) under the assumption that max {M ( YGREG(r) — fdeREg)}
converges in probability to zero (Rao & Wu, 1985, see standard conditions in).
The third component estimates the variation within the benchmark control totals
and is Op(mgl) by assumption. The fourth component divided by M?2, as with
the second component, converges in probability to zero and is Op(1/v/Mm,) with
<1 — (ZA(T)> fAedg(T) = Op(M). The fifth component is Op(1/v/Mmg) and has ex-
pectation zero by the inclusion of the standard normal random variable, 7). The

sixth and final term is Op(M ') and estimates the coverage error variance compo-
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nent associated with the analytic survey sampling frame by noting F (U(%g) = 1.
Thus, vargcrom (fydR) is an approximately unbiased estimator of AV (fydR) pro-
vided that the sample estimators used in the replicate estimates are unbiased and
the data are without (non-random) error. Note that by removing the coverage error
term from 'i'ydR(T) (6.28) that we are able to produce a sample variance estimator
for domain totals under the original specification for the Fuller method denoted as
ECF2 in our research.

The delete-one ECF2m jackknife variance estimate for EC-PSGR domain to-

tals, a specific type of EC-GREG estimate, is calculated as

mAh

H

2

varperam (tyap) Z ¢’ T yar(r) — tyarscr) (6.31)
h=1 =1

where

~ 2 [N
tydP(r) = tydPSGR( ) + ChZB( )YAd + CthT} T’)\/<1G — ¢A(T‘)> tAedQ(r)

~ R _ 2 [N
= tyapsarr) T CchZpe Y ad + cnlnn ) \/ <1G - ¢A(r)> tacd2ry.-  (6.32)

The approximation is justified by using the same assumptions as given for (6.29) with

tydpSGR Zg 1NBgN 1(T)5Aydg(r); N5 defined for expression (6.22); NAQ(T) =
ZhikesA W;:itr)(sghzkﬂmkv and tAydg thkésA th(r)(;ghzkﬂmkfsdhzkyhzk The last com-

ponent in (6.32),

ES IR
Cth'fl(r)\/(la — ¢A(r)) t Acd2(r)s (6.33)

produces replicate estimates of the analytic survey frame coverage error by poststra-
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tum where (1G — &A(T))/ = [(1 — Q§A1(r)> S <1 — QEAG(T)>:| , a G-length vector of
estimated coverage rates within poststratum g; and t Aed2(r) = [f Aed21(r)s -+ t Aedgg(r)],
with components tAAed2g(r) = ZhikESA Wl;tr)ﬁi:i}céghikeidhik(r) and eaanik(r) = (OanikYnik
_ZjAdg(r)> with ngdg =1 Aydg(r) / N Ag(ry- Provided that the benchmark survey cov-
ers the population under study, the coverage rates QBAQ(T) can be estimated as
ggAg(,n) =N Ag(r)/ N Bg- The remaining terms are defined for 'i'ydR(T) below expres-
sion (6.28). The evaluation of the variance components follows the discussion given
for UarECFQm(fydR) in (6.30).

The seven-step process used to calculate varEcpgm(fyp) given in expression
(4.36) is given at the end of Section 4.4.3. By replacing the outcome variable yp

with a domain-specific outcome variable ygnix = Oqnirynik, We are able to use these

same steps to create estimates for varEcpgm(fydp) in (6.31).

6.4.5 Multivariate Normal Jackknife Method

The ECMV method (ECMV) incorporates the random value from a multi-
variate normal distribution with mean equal to a G-length vector of zeroes (0¢)
and covariance equal to the estimated covariance matrix for the benchmark control

totals (VB). The ECMYV jackknife sample variance estimator for domain totals is
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derived in a similar manner as shown for the ECF2m in (6.30):

mAh

varpemy ( ydR E y, E t yar(r) —nydGREG)

r=1
H
h=1

mAh

2
E deREG(r) — tdeREG)
r=1

mAhp
+ 2 Z Cthh Z lydGREG(r) — tdeREG) € B(,«)BAd
h=1 r=1
H map
> B D nwEhu| Baa
h=1 r=1
H mMmAR R )
+ 2> 6" Y (byaorece) — tycrea) Rh??(r)\/ ( ¢A(T ) tAcd2(r)
h=1 r=1
mAhp N A
+ 2 Z R2 Z EB r)BAd N \/(1 — ¢A(r)) tAedQ(r)
H map N
+ Z Ryt <1 - ¢A(7~)> t Acd2(r) (6.34)
h=1 r=1

where €p(;) is a G-length vector of random variables from the specified multivariate

normal distribution, i.e., &p( 1}51 MVNg(Og,VB) and

'i'ydR(r) = fdeREG(r)+Cthéjg(r)BAd(r)

- ’
+ Cthn(r)\/(lG — ¢A(r)> tAed2(r)7 (635)

the ECMV replicate estimator. The approximations to the replicate estimator used
n (6.34) are obtained as with the ECF2m in (6.29), by assuming ]:%Ad(r) = Bys +
Op <m261/ 2) and eliminating the lower-order term. The expectation of vargcyv (fyd R)
mirrors the discussion given for varECFgm(fydR) following expression (6.30). Note

that the third variance component has expectation B'y,VpBas using the work
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demonstrated in expression (4.40). Thus, in expectation, vargcary (fydR) ~ AV (fydR)
given that the component estimators are approximately unbiased. Additionally, as
with the overall estimated total, the ECF2m and ECMV methods are asymptotically
equivalent.

The replicate estimator in (6.35) is specialized for EC poststratification to pro-
vide details for our simulation study presented in Section 6.6. The ECMV replicates

estimates for an EC-PSGR domain total are calculated with the following formula:

e ~

tyip(r) = UlydPSGR(r) T+ CthélB(r)YAd(r)

~ IR
+ Cthﬁ(r)\/(lc - ¢A(r)) tacaz(r) (6.36)

with €p() defined for varECMV(fydR) in expression (6.34) and the remaining terms
are the same as defined for the ECF2m replicate estimates in (6.33). The # yqp() es-

timates are substituted in the jackknife variance formula given in (6.31) to calculate

var ECMV(fydP)~

6.4.6 Nadimpalli-Judkins-Chu Jackknife Method

The jackknife variance estimator developed by Nadimpalli et al. (2004) is sim-
ilar to the ECMV method developed for our research. However, their method as-
sumes that only the variance estimates for the benchmark controls are available,
i.e., diag <\7 B) . As discussed in Section 4.5.4, the lack of information on the bench-
mark controls can result in variance estimates that are too small. The same holds

for domain estimation as well.
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The replicate estimates for the modified ECNJC (ECNJCm) method account

for the undercoverage error in the analytic survey and are defined as

ces ~

tydr(r) = UtydorREG(r) T+ Cthn/(r)SBBAd(r)

+ cthTl(r)\/ (1 - <5A(r)> tAAed2(r) (6.37)

for an EC-GREG estimator of a domain total, and as

e A~

tyir(r) = UlydPSGR(r) T+ Cthn/(r)SBYAd(r)

~ IR
+ Cthﬁ(r)\/<1c - ¢’A(r)) tacaz(r) (6.38)

for the corresponding EC-PSGR estimator. The term Sp = diag (\/V_B), and 7,
is a G-length vector of standard normal random values independently generated for
each replicate.

The expression for vargon Jcm<£ydR) is obtained by substituting the replicate
estimates (6.37) into the EC-GREG jackknife variance formula shown for the ECMV
in expression (6.34). The expectation of the components of the ECNJCm variance
estimator follow the discussion given for the overall total subsequent to expression
(4.48). Namely, the component associated with the variability only in the bench-
mark estimates, B, (Zle Ry A E SB”I(T)TI,(,«)SBD B 44, is not in general an
unbiased estimator of By, VB 4. This estimator is either negatively or positively
biased depending on the sign of the covariance terms within Vg, the population

sampling covariance matrix for the benchmark estimates.
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6.5 Variance Estimation for Domain Means

The bias of the EC-GREG ratio-mean within a domain is a function of the
bias in both the numerator and denominator. The same holds true for the other
component within the MSE, i.e., the variance. We begin this section by defining the
approximate population sampling variance for the domain ratio-mean. A theoretical
evaluation of the five sample variance estimator under study is provided in the

subsequent sections.

6.5.1 Population Sampling Variance

We approximate the population sampling variance of ¥, = fydR / Nur (6.10),
the ratio-mean estimator within domain d, through a first-order Taylor linearization
about the components of §4r = tyar/Nar. The population parameter t,45 is defined
for f,qr in (6.5), and Nyg is defined for Bias (NdR) in (6.16). The approximate

population sampling variance is expressed as

2
AV(@}dR):( ) [AV(fydR)+gj§RAV(NdR)—ngdRACov(fydR,NdR) (6.39)

NdR
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with AV (t,q4r) specified in expression (6.20). The approximate population sampling

variance for the denominator of 4, is similarly defined as:

AV(Nyr) = AV(Nigrse)

H M, Np;

+ Z Z Z Ganik (1 — danie) EAnanin

h=1 i=1 k=1
+ BynaVEBang (6.40)

where B 4ng is given for (6.16) and Esnanik = Oanit — X} Bana. The first variance
component AV(NdGREG), a traditional calibration variance estimator, is calculated
as shown for AV(fyGREG) in expression (4.14) by substituting Eap; with FEananik-
The remaining term in (6.39) follows the development of ACov(t,r, Ng) given in

expression (5.17) and equals

ACov (fydR,NdR> = ACov (fdeRE&NdGREG)
H My Np;

+ Z Z Panik (1 — @ anir) EaaninEananir

h=1 =1 k=1
+ B,,V5Bunu. (6.41)
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Substituting the expressions into (6.39), we have

. 1\ . .
AV (Yar) = (N_dR) (Av(tdeREG)+Q§RAV(NdGREG)

— 25arACov(tyacrEc N, dG’REG’))

1 2
+ (—> Z Ganik (1 = Ganik) (Eadnir — YanEananir)’

N,
AR/ pikeu

1 2
+ (_N > (Bad — YarBand) Vb (Bag — JarBana)  (6.42)
iR

where the first term is equivalent to AV (gjdG REG).
The approximate population sampling variance of ij,p is defined as follows by

substituting the appropriate values within expression (6.42):

. 1\? R R
AV (Yap) = (N_dp) (AV (tyapsar) + UapAV (Napsar)

—  2§apACov(t,apsar, N dPSGR))

1 \2
- ( N ) Z S anin (1 — Sanin) (Eaanir — Yap Eananic)’
AP/ hikeu

1\, ) ) )
+ (N—> (YAd - gdPYANd)/VB (YAd — ZdeYANd) (643)

where Eagnix = Sanir — X Bana and Eananix = Oanir — dag With dag = Naag/Nag,
the proportion of domain members in poststratum g within the population defined
by the analytic survey sampling frame. The first term in (6.43) equals AV (gdeSG R)

with the following components: (i) AV (f,4pscr) given in expression (6.22); (ii)

AV (NdPSGR) = N/BECA (VANd> NB (644)
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where V g4ng = VCLTA(?ANd) = DgX¥ 44D} with

1¢ Nagy |
D, = |diag <{H} > ,diag { N;ldg}
9 ) g=1 Ag _

and

O(Nagt:Naa) " I(Naa,Nag)

O(Nag:Naa) " P(Nag.Nag)

~ A

and, (ZZZ) ACov <tydPSGR7 NdPSGR) = N/BAOOU (YAda YANd) N/B = N/BDdEédDiiNB

where

1\¢ t ¢
D, = |diag {—} , diag —Audg ,
< NAg g=1 Nig
a
diag {L}G diag —Nadg
NAQ g=1 7 Nx%g g= 7

1

a G'x 4G matrix of first-order derivatives, and 3, is a 4G x 4G matrix of population
sampling covariances for each pair of matrices within (Y Ads YANd), ie., t Ayd, N Ad

and NA.

6.5.2 Traditional Calibration Variance

The linearization sample variance estimator for ¢, (6.10) is developed under
the assumption that the benchmark controls are fixed population values. This naive

variance estimator is also assumed in expectation to be a reasonable approximation
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to AV (y4z) and is calculated as:

Ua?“zvai‘ue@dz«z) = Ua?“(?jdGREG)
1 2 H man M AR
v V] 2
= — E—— Udhi+ — Udh 6.45
(NdR) D ot D i (649

A . . v o —1 S
for Y arpe defined in expression (2.29); Ugpi+ = ZkESAM Ahik T g (eAdhik — ydReANdhik)
: R I T . - —
with egnik = OanikYnik — XhikBAd and eananik = Odnik — X;u-kBANm and Ugpyy =
Ugniv- The EC-PSGR version of (6.45) is defined as

—1
Map 2 sicsyy,

var Nai'ue(?jdp) = Um’@dPSGR)
1 2 H mAh MAR
v} o) 2
(Ndp) > o~ (646

where tanis = Dopey . Wik, (€Adnik — Yap€ananic) With eadnic = danikYnie — Jadg
and eandnit = Odnik — jAg with jAg =N Adg/ N 4g- The discussion given in previ-
ous sections about the traditional variance estimator also applies here. Namely,
this estimator is negatively biased for AV (ﬁdR) due to the missing benchmark and

analytic survey frame coverage error components.

6.5.3 Estimated-Control Linearization Variance

The EC sample linearization variance estimator is developed by adding com-
ponents to the naive estimator, var(y,crpe), given in expression (6.45). The sample

variance estimator for the EC-GREG estimator of a ratio mean within domain d is
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expressed as:

vargers(Yar) = var(Yagrea)
1 2 H N M AR M AR A )
+ ( S ) Z (1 - qbAh) Z Z W};i}g (eAdhz‘k - ngeANdhik)
Nar/ 15 i=1 k=1

1\ /z N .

+ ( ~ ) (BAd - QdRBANd> Vg (BAd - ﬂdRBANd> (6.47)
Nar

where the terms are defined for 4,5 (6.10) and following (6.45). The corresponding

EC-PSGR sample variance estimator, used in the simulation study (Section 6.6), is

defined as:

UCLTECTs(ﬁdp) - Uar(?deSG’R)

1 2 H R MAL NAhRG . 9
+ (N > Z (1 - ¢Ah> Z Z T (€Adnik — Uap€ananik)
P

h=1 i=1 k=1

]. 2 = ~ - [N 2 “ A
+ (N ) (YAd - Z?deANd) Vg <YAd - gdPYANd) (6.48)
P

with residuals defined for expression (6.46).

6.5.4 Fuller Two-Phase Jackknife Method

The modified delete-one Fuller (ECF2m) jackknife variance estimator, as well
as the other jackknife methods discussed in the subsequent sections, use the following

general formula to calculate the sample estimates for an EC-GREG domain ratio-
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mean estimator:

(mAh - 1) = e ~ 2
> (fane) — Yacrec)’ (6.49)
r=1

M=

var(gde) = o

>
Il

1
The EC-PSGR version is similarly defined as

m A

mAh - 1 S
Z ydP - ydPSGR)z' (6-50)

Mm

Uar(?jdp) =
h=1

Each method requires the calculation of replicate estimates using a different ap-
proach. The ECF2m replicate estimates for the EC-GREG domain ratio-mean are

calculated as

) _ t ydR(r)
YdRr(r) = m
tydGREG() + Chi%(r)BAd(r) + Cthﬁ(r)\/ (1 — Gapr)E acaar (6.51)
Nucrea@) + (ChZB( )BANd + cnBinr \/(1 - éA(fr))tAANecﬂ(r))
N -1
where BANd(T) = |:ZhilESA ﬂ-f:ib‘)ﬂ-;i} Xhilx/hil] ZhikesA W]:i%r)ﬂ-}:i}f Xhik 5dhik’ and
EANed2r) = Ynikear Thitr) ThikC€ananintr) With €aNdnik(ry = Sanik — XpyBanag)- The

remaining terms are defined for expression (6.28). By substituting (6.51) into (6.49),
we obtain an explicit expression for vargcpam(y4z). The approximation techniques
shown for vargcpem(ijr), beginning with a geometric approximation of the ratio-
mean in expression (5.37), and is used here to demonstrate that vargcrom(Y,z) is
asymptotically equivalent to AV (ﬁd R) given in (6.42) provided that the sample esti-
mates used in (6.51) are (approximately) unbiased. The rates of convergence for the
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variance components in var gopam (4,5) mirror the discussion given for vargcrom (Jz)
following (4.32) after replacing the number of sample PSUs (my4) with the number
of domain sample PSUs (maq).

By substituting the following ECF2m replicate estimates into the EC-PSGR

jackknife sample variance estimator in (6.50), we are able to calculate var gcrom (Ygp):

- 1 yap(r)
Yarry = Nyd—P() (6.52)

R ~ ~ 2 [N
tyarsGr(r) + a2y Y aaw) + CthTI(r)\/ (16‘ - ¢A(7~)> tAea2(r)

A S ~ /N
Napsare) + | g Y anaer) + cnlRnneyr [ (1 — Pagy ) tanedrr)
(r) (r)

6.5.5 Multivariate Normal Jackknife Method

The multivariate normal method (ECMYV) introduces a multivariate normal
random variable into the numerator and denominator of 3, generated for each jack-
knife replicate. The ECMV replicate estimates for an EC-GREG and EC-PSGR do-
main ratio-mean estimator are calculated using the following formulae, respectively:

B . ‘i‘ydR(r)

Ydr(r) — (6.53)

NdR(r)

tyacrece) + chRhé s Badw) + cnRumw \/ (1- ngA(r))fAedQ(r)

9

Nucrea@) + (CthéB(r)BANd(r) + cn Bpnr \/ (1- QBA(T))fANedQ(r)>
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and

i = SuPO) (6.54)
Nap(r)

~

A A R
tyapsar(r) + chBh€p Y ad@) + CthU(r)\/ <1G’ — ¢A(7~)> t Acd2(r)

~ ~ 2 [N
Napsar(r) + <CthsB(fr)YANd(r) + Cthﬁ(r)\/ (10 - ¢A(T)) tANedQ(r))

The replicate estimates are substituted into (6.49) and (6.50), respectively, to derive
vargenmy (Yug) and varpoary (§4p). The asymptotic evaluation of vargeay (Yaz)
provided in Section 5.4.4 also holds for domain estimation after substituting maq
with m 4 and is not repeated here. Therefore, the ECF2m and ECMV jackknife
variance estimators for the ratio-mean estimators are asymptotically equivalent and

both are approximately unbiased for AV (y,5).

6.5.6 Nadimpalli-Judkins-Chu Jackknife Method

Based on the results from Section 5.4.5, we know that the ECNJCm method, a
simplification of the ECMV, can underestimate the variance of estimated totals and,
to a lesser degree, the variance of estimated ratio-means. A theoretical evaluation
for the domain ratio-mean also suggest a biased variance estimator. The ECNJCm

replicate estimates for an EC-GREG and EC-PSGR domain ratio-mean estimator
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are calculated using the following formulae, respectively:

o tyar(r)
Yarry = #R() (6.55)

tyacrece) + chRhé s Badw + cnRumw \/ (1- éA(r))fAedz(r)

9

NdGREG(r) + (Cthn/(r)SBBANd(r) + CthU(r)\/ (1— CgA(r))fANedQ(r)>

and

. 1t yap(r
Yarr) — #P(()) (6.56)

~

~ ~ I
tyarsar@r) + cn €Y ad@r) + Cthn(r)\/ <1G - ¢)A(r)> tAcd2(r)

~ S a [N
Napsar(r) + <Cth77/(T)SBYANd(r) + CthTI(r)\/ <1G - ¢A(7~)> tANed?(r))

The replicate estimates are substituted into (6.49) and (6.50), respectively, to derive
vargensom(Yar) and vargon som(Yap). The asymptotic evaluation provided in Sec-
tion 5.4.5 also holds for domain estimation indicating that this variance estimator
will have higher levels of relative bias than the other jackknife methods studied in
our research. Whether the ECNJCm variance estimator over- or underestimates the
true population sampling variance depends on the sign of the off-diagonal terms in

V.

6.6 Simulation Study

The simulation study described in detail in Section 4.5 is used to confirm the

theoretical evaluation presented in the previous sections. We compare the empirical
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properties of five variance estimators for (i) an EC-PSGR estimator of a total within
a domain, t,4p (6.4), and (ii) the ratio of two EC-PSGR totals within a domain ¢,p

(6.13). The following abbreviations are used as labels for the variance estimators:

Naive, the traditional calibration estimator defined in (6.24) for totals, and in

(6.46) for ratio-means;

e FCTS, the EC linearization estimator defined in (6.27) for totals, and in (6.48)

for ratio-means;

e [CEF2m, the modified Fuller two-phase jackknife estimator defined in (6.31)

for totals, and in (6.50) with replicate estimates (6.52) for ratio-means;

e FCMYV, the Multivariate normal jackknife estimator defined for totals with
replicate estimates (6.36) substituted in the variance formula (6.31), and for

ratio-means with the replicate estimates (6.54) substituted in (6.50);

e ECNJCm, the modified Nadimpalli-Judkins-Chu jackknife estimator defined
in (6.31) with replicate estimates (6.38) for totals, and for ECF2m in (6.50)

with replicate estimates (6.56) for ratio-means.

We additionally compare these results with those presented in Sections 4.5 and 5.5.
Based on the positive results for the modified ECF2 and ECNJC methods from
the previous chapters, we forgo a discussion of the original methods for domain

estimation.
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6.6.1 Simulation Parameters

Results from a simulation study are used to examine the empirical properties
for the domain estimators discussed in this chapter. We select 4,000 (analytic survey)
simulation samples using a stratified, multi-stage design from an incomplete frame
generated from the 2003 NHIS. The analytic survey sample size and the effective size
of the benchmark survey are varied to examine the affects of differential influences
on the overall variance. Additional details on the basic set-up of the simulation
study are provided in Section 4.5.1 and are not repeated here.

We calculate the estimated population totals and means within a domain, as
well as the variance estimates, for two NHIS binary variables: NOTCOV=1 indicates
that an adult did not have health insurance coverage in the 12 months prior to the
NHIS interview (y = 0.17); and PDMED12M=1 indicates that an adult delayed
medical care because of cost in the 12 prior to the interview (y = 0.07). Total
and mean estimates are calculated for records with NHIS variable HISCODI2=1
to create a Hispanic ethnicity domain for this study. Approximately 23 percent
of the U.S. residents in our target population (records on the NHIS data file) are
self-classified as Hispanic. Within this domain, 35.4 percent did not have health
insurance (NOTCOV=1) and 7.0 percent delayed medical care (PDMED12M=1) in
the 12 months prior to the interview. Simulation programs were developed and run
in R® (Lumley, 2005; R Development Core Team, 2005) for this empirical study.

The primary programs are included as Appendix A.
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6.6.2 FEvaluation Criteria

The empirical results for the variance estimators listed in Section 6.6 are com-
pared using four measures across the 4,000 simulation samples and two outcome
variables (NOTCOV and PDMED12M) within the Hispanic (d) domain. In the
following list of empirical measures, Oup = (fdp, gjdp) generate expressions for the
estimated totals and ratio-means, respectively. The corresponding population pa-
rameters are denoted as 0; = (t4,74) and are calculated from the 2003 NHIS popu-

lation of size N = 21,664. The measures include:

1. 100 x [(L > Ua?"(édpj) — MSEd> /MSEd], the estimated percent bias of

4000

the variance estimator relative to the empirical MSE; = m > j(édpj —04)%;

2. Floo >l (\2]\ < Zi-q /2), the 95 percent confidence interval coverage rate where

a=0.05 2 = (édpj — Gd)/se(édpj), and 8€<édpj) = U(l?”(édpj>;

N 12
3. \/m >, [se(edpj) — 06 O se(edpj)} , the standard deviation of the es-

timated standard errors (se); and,

4. 100x [(ﬁ PRFELH (9dpj> — o >_; S€ECTs <9dpj>> / 7055 >_jsercts <9dpj>},
the percent increase in the variation of the estimated standard errors for all

studied estimators (se,) relative to the ECTS variance estimator (segcrs).

We initially evaluate the relative bias of the point estimators, m > i <9d P, — Qd) /04,
to justify the use of estimated-control weight calibration. These criteria are also used
to compare the results for the overall estimates given in Sections 4.5.4, 5.5.3, and

5.5.4.
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Table 6.1: Percent Relative Bias Averaged Across Samples and Benchmark Covari-
ance Matrices for Totals and Percents of Total Outcome within the Hispanic Domain

by Point Estimator

Not Covered by Health Delayed Medical Care
Insurance (NOTCOV) (PDMED12M)
Estimator Nani = 20 nap; = 40 Nani = 20 nap; = 40
tyapwr 375 -37.5 -38.7 -38.4
tyap 1.1 1.2 -0.2 0.3
Yars 9.1 -9.2 7.7 7.3
Yap 1.3 1.3 1.1 1.6

PWR = p-expanded with-replacement estimator, HJ = Hajek estimator.

Note that the estimated percent bias of the variance estimators relative to
the empirical variance (see measure 2 in Section 4.5.2) were also examined. How-
ever, these results are not presented in this chapter due to the similarities with the

discussions given previously.

6.6.3 Results for Point Estimators

Data from a particular sample survey may have errors that negatively af-
fect the estimates using an otherwise unbiased estimator. The estimators included
in Table 6.1 are all (approximately) unbiased and should produce percent rela-
tive biases for the domain estimates near zero. Because we introduce undercover-
age error in the analytic survey sampling frame, the uncalibrated point estimators

~

—1 2 A -1
lyaPwR = ZhikESA Whik5dhikyhik and Yy = tydPWR/ th‘kESA Whik5dhik are all neg-

atively biased. The NOTCOV and PDMEDI12M estimates within the Hispanic
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domain show negative biases in excess of 37 percent. The corresponding biases
for the domain ratio-means are much lower but still underestimate the population
means by as much as 7 percent. Calibrating the design weights to the set of es-
timated benchmark control totals improves the negative biases dramatically. The
percent relative biases for the estimated totals within our domain, 'Eydp, are either
close to zero or no more than a 1.2 percent overestimate. The levels for the domain
ratio-mean, yyp, are comparable and exceed the population means by less than 2
percent. Therefore, with the levels of undercoverage introduced in our simulation
study, the EC calibration procedure was a benefit. Note that the percent relative

biases presented here correspond with the overall estimates given in Table 5.1.

6.6.4 Comparison of Variance Estimators for Estimated Totals

Empirical analyses of values from unbiased variance estimators should result
in percent biases relative to the empirical MSE at or near zero. However, as seen
in the previous chapters with overall point estimators, the levels of bias can vary
with the relative size of the benchmark survey as well as the choice of variance es-
timator. Figure 6.1 contains the pattern of bias for the five variance estimators by
the increasing size (left to right on the z axis) of the benchmark survey relative to
the 1,000 persons selected for the analytic survey (ng/na) for NOTCOV (a) and
PDMED12M (b). The horizontal line represents zero bias, while the vertical line
represents the effect for equal-sized analytic and benchmark surveys. Estimates for

the Naive and ECNJC estimators are represented by squares and triangles, respec-
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tively. The “Other EC” estimates (ECTS, ECF2m, and ECMV) are close in value
and are shown as circles. This pattern is similar for analytic survey samples of size
2,000.

Simulation study results for the relative biases are least favorable for the tra-
ditional poststratified (Naive) variance estimator as expected from our theoretical
evaluation. The Nailve variance estimator underestimates the empirical MSE by as
much as 22 percent for NOTCOV and 14 percent for PDMED12M. This naturally
occurs when the benchmark variance component is the largest and not accounted
for with this estimator. The slight improvement in the bias noted for ng/n,=6.0
is related only to a decrease in the empirical MSE. We suspect that additional sim-
ulation results will remove this anomaly by producing a more stable set of MSE
values.

The EC jackknife variance estimators all contain a component associated with
traditional poststratification. Therefore, the relative biases should mimic the bias
levels exhibited for the Naive variance estimator until the relative influence of the
benchmark variance component becomes sizeable, i.e., the relative size of the bench-
mark is small. This pattern is seen in Figure 6.1 with a benchmark survey at least
six times larger than the analytic survey. The bias is improved for the EC variance
estimators because of the variance increase due to the coverage error and benchmark
components. However, when the size of the benchmark survey is equal to or smaller
than the analytic survey, changes occur in the picture. The biases in the figure
for the ECNJCm variance estimator are smaller than the Naive variance estimator
but still fall below levels for the other estimators especially for small benchmark
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Relative Size of the Benchmark Survey to the Analytic Survey for 1,000 Analytic
Survey Units
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Table 6.2: Percent Bias Estimates Relative to Empirical MSE for Five Variance
Estimators by Total Outcome within the Hispanic Domain and Relative Size of the

Benchmark Survey to the Analytic Survey

Relative Size Relative Size
Outcome Variance np/(na =1,000) np/(na = 2,000)
Variable Estimator 0.3 1.2 6.0 21.7| 0.2 06 3.0 108

NOTCOV Naive -22.1 -10.1 -1.7 -3.51(-26.2 -13.5 -0.1 -3.3
ECTS 23 -28 0.1 -28 1.5 -5.0 21 -24

ECF2m 23 -28 03 -26 1.6 -5.0 21 -24

ECMV 27 -25 04 -26 1.6 -51 22 -23

ECNJCm | -14.2 -75 -0.7 -29|-180 -10.8 0.9 -2.7

PDMED12M Naive -13.6  -5.6 -45 -2.7-201 -6.7 -54 24
ECTS -28 -23 -33 -19| -39 -11 -34 338

ECF2m -26 -22 -30 -15| 40 -13 -33 3.7

ECMV -26 -19 -29 -15| -3.8 -10 -34 38

ECNJCm | -88 -3.6 -33 -16]|-141 -39 -39 3.6

surveys. The negative bias of the ECNJCm variance estimator decreases to levels
of 14 percent for NOTCOV and 9 percent for PDMED12M because of the missing
off-diagonal terms in the benchmark covariance matrix. By contrast, the benchmark
components in the “other” EC jackknife variance estimators (ECTS, ECF2m, and
ECMV) assist in reducing the negative bias associated with the Naive variance es-
timator. A positive relative bias of no more than 3 percent for NOTCOV suggests
that this set of EC variance estimators can be slightly conservative when benchmark
control totals are taken from relatively small benchmark surveys (ng/ns=0.3). In-
stability in the empirical MSEs, as discussed for the Naive variance estimator above,
also explains the slight increase in the negative bias for PDMED12M.

The relative biases used to produce Figure 6.1 are displayed in the ng/(na =
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Table 6.3: Empirical 95 Percent Coverage Rates for Five Variance Estimators by
Total Outcome within the Hispanic Domain and Relative Size of the Benchmark

Survey to the Analytic Survey

Relative Size Relative Size

Outcome Variance np/(na = 1,000) np/(na = 2,000)
Variable Estimator | 0.3 1.2 6.0 21.7| 0.2 06 3.0 108
NOTCOV Naive 89.5 91.8 92.6 92.8 |88.5 91.1 924 92.1
ECTS 193.8 93.0 929 928 |94.0 92.7 928 923
ECF2m | 93.8 93.0 929 928 |93.7 925 928 923
ECMV | 93.7 927 929 929 ]94.0 92,5 928 922
ECNJCm | 90.9 92.2 928 92.8|90.3 91.5 925 92.2
PDMEDI12M  Naive |88.9 90.2 90.8 90.7 | 885 91.4 91.6 92.1
ECTS 91.0 90.6 90.9 90.9]92.0 92,5 919 923
ECF2m | 91.0 90.6 90.8 91.0 |92.0 925 92.0 92.2
ECMV [90.8 90.7 909 91.0|91.6 924 91.8 922
ECNJCm | 90.0 90.5 90.9 91.0{90.1 91.9 91.8 92.3

1,000) column of Table 6.2. The second column contains results for larger analytic
survey sample sizes (n4 = 2,000). An interpretation similar to the one given for the
figure also holds for this set of results.

The second comparative measure is the empirical coverage rates for the 95
percent confidence intervals. The values from our simulation study are provided in
Table 6.3. Overall, we see a general pattern of stability in the coverage rates for the
ECTS, ECF2m, and ECMV variance estimators across the eight relative sizes within
each outcome variable. Differences in the rates across this set of variance estimators
are minimal, and all have higher rates than either the Naive or the ECNJCm variance
estimators. Coverage rates for the Naive estimator are largest when the benchmark

variance components are inconsequential and fall well below 95 percent as the size
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Table 6.4: Percent Increase in Instability of Variance Estimates Relative to EC
Linearization Estimator (ECTS) by Total Outcome within the Hispanic Domain

and Relative Size of the Benchmark Survey

Relative Size Relative Size
Outcome  Variance np/(na = 1,000) np/(na = 2,000)
Variable Estimator| 0.3 1.2 6.0 21.7]0.2 0.6 3.0 10.8

NOTCOV  Naive 52 20 05 02(85 29 08 04
ECF2m 32 13 05 03]37 14 07 02

ECMV 51 20 04 02]67 13 05 0.2

ECNJCm | 43 19 06 03|71 26 07 0.3

PDMEDI12M Naive -0.1 0.1 01 01]22 11 05 04
ECF2m 1.5 06 03 04]17 05 05 0.1

ECMV 1.1 07 04 03]31 1.1 05 0.1

ECNJCm | 05 04 03 03]21 12 05 0.2

of this variance component increases — the same pattern as shown for the relative
biases. A similar interpretation is given for the ECNJCm coverage rates with rates
slightly higher than those for the Naive estimator. Coverage rates for the estimated
total number of Hispanics who delayed medical care (PDMED12M) are lower than
those rates exhibited for NOTCOV. This also holds for the overall estimates given
in Table 4.5 and is associated with the prevalence of the outcome variables in the
population.

As with estimated totals examined in Chapter 4, our research suggests that
there are minimal theoretical and empirical differences between the ECTS, ECF2m,
and ECMV methods for domain estimation. The variation in the estimated standard
errors for the methods, an indication of stability of the estimator, is presented in

Table 6.4. We primarily see that the stability of the ECF2m and ECMV estimates
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are similar; however, the ECF2m is slightly more stable than the ECMV when the
relative size of the benchmark survey is small. Both methods are more variable than

the ECTS as expected (Krewski & Rao, 1981).

6.6.5 Comparison of Variance Estimators for Estimated Means

Differences in the set of EC variance estimators were less noticeable for ratio-
means than totals as noted in Chapter 5. The same statement applies to estimation
for domain ratio-means discussed in this section.

The percent biases relative to the empirical MSE for the variance of the es-
timated domain means range between -9 and 1 percent across the simulation pa-
rameters with almost all values falling below the desired zero percent level. Note
that a slight positive bias suggests a conservative estimator; this trait is desired
over negative biases. This range of values is comparable with the range for overall
ratio-means (-8 to 3 percent shown in Table 5.2) and less than the range for the
domain totals (-27 to 3 percent shown in Table 6.2).

Figure 6.2 contains a visual display of the estimated percent relative biases
(y axis) in estimating the MSE of our two outcome variables within the Hispanic
population, by the relative size (np/n4) of the benchmark survey to the analytic
survey of size ny = 1,000 (z axis). The horizontal line represents zero bias. The
vertical line effectively represents equal-sized analytic and benchmark surveys.

As with Figure 6.1, we note the similarities in the patterns for the relative

biases for the variance estimators until the line of equality. The Naive variance esti-
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mator, as with the other analyses presented in this body of work, is most negatively
biased among those estimators examined for all simulation conditions included in
our study. As expected, the least amount of bias can be seen when the benchmark
survey is more than 21 times as large as the analytic survey. The ECTS variance esti-
mator improves upon the bias of the Naive, and actually produces comparable levels
between -1 and -2 percent at the two ends of the relative size scale (ng/na = 0.3
and ng/na = 21.7). Hence, it appears that the reduction in the analytic survey
variance component is counterbalanced by the increase in the benchmark variance
components. The point at which the counterbalance occurs is a potential research
topic. The biases for the remaining EC jackknife variance estimators are numerically
close to the linearization estimators; however, the ECNJCm is positively biased for
np/na = 0.3.

Values used to generate Figure 6.2 are provided in Table 6.5 for analytic survey
sample sizes of ny = 1,000. The pattern in the relative biases for the domain ratio-
mean with ny, = 1,000 is closer to the pattern given for the domain totals shown
in Figure 6.1. This suggests that domain ratio-means may be more sensitive to
the variability in the EC benchmark controls in comparison with the other point
estimators studied here, and also sensitive to the number of simulation samples.

The empirical coverage rates for the 95 percent confidence intervals shown
in Table 6.6 range from 90.6 to 94.0 percent with many values (especially for
PDMED12M) falling below 93 percent. Minor fluctuations occur across the rel-
ative sizes of the benchmark survey for the domain ratio-means, the same trait

noted for the overall ratio-means. However, the coverage rates presented here, and
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Table 6.5: Percent Bias Estimates Relative to Empirical MSE for Five Variance
Estimators by Mean Outcome within the Hispanic Domain and Relative Size of the

Benchmark Survey to the Analytic Survey

Relative Size Relative Size
Outcome Variance ng/(na = 1,000) np/(na = 2,000)
Variable Estimator | 0.3 1.2 6.0 21.7| 0.2 06 3.0 108

NOTCOV Naive -5.1 -47 -68 -18|-84 -90 -38 -81
ECTS -06 -26 -53 -03|-26 -6.1 -1.5 -6.1

ECF2m |-06 -26 -54 -04|-36 -7.1 -26 -7.1

ECMV |-06 -27 -54 -05|-35 -71 -26 -7.1

ECNJCm | 0.1 -25 -54 -05(-29 -70 -26 -7.1

PDMEDI12M Nalve -29 -68 -46 -1.7|-72 -43 -64 -24
ECTS -04 -56 -3.7 -09|-41 -24 -48 -0.9

ECF2m 05 -49 -29 00|-37 -21 -46 -0.7

ECMV 03 -49 -28 00|-40 -22 -47 -0.7

ECNJCm | 1.1 47 -28 00(|-32 -20 -46 -0.7

Table 6.6: Empirical 95 Percent Coverage Rates for Five Variance Estimators by
Mean Outcome within the Hispanic Domain and Relative Size of the Benchmark

Survey to the Analytic Survey

Relative Size Relative Size
Outcome Variance np/(na = 1,000) ng/(na = 2,000)
Variable Estimator | 0.3 1.2 6.0 21.7] 0.2 0.6 3.0 10.8

NOTCOV Naive 93.2 929 925 93.0]92.6 91.8 93.2 92.7
ECTS 94.0 93.2 927 934|938 925 93.6 93.0

ECF2m | 94.0 93.0 926 93.2|93.2 923 935 928

ECMV | 93.7 93.0 926 933|935 922 934 92.7

ECNJCm | 94.0 93.1 92.6 93.3|93.6 924 934 928

PDMED12M Naive 91.6 906 914 91.1]90.9 923 92.0 91.7
ECTS 92.1 90.8 91.6 91.2 |91.7 92.7 92.1 921

ECF2m |92.1 90.8 91.7 91.2 | 91.7 925 921 92.0

ECMV ]921 90.8 91.7 912|915 925 92.1 91.9

ECNJCm | 923 90.8 91.6 91.1]91.9 925 92.1 92.0
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Table 6.7: Percent Increase in Instability of Variance Estimates Relative to EC
Linearization Estimator (ECTS) by Mean Outcome within the Hispanic Domain

and Relative Size of the Benchmark Survey

Relative Size Relative Size
Outcome  Variance np/(na = 1,000) np/(na = 2,000)
Variable Estimator | 0.3 1.2 6.0 21.7 /0.2 0.6 3.0 108

NOTCOV  Naive 21 09 06 05({28 1.3 09 08
ECF2m 1.7 1.8 15 15]22 15 15 14

ECMV 1.8 1.7 15 15]22 16 14 14

ECNJCm |22 15 16 1524 15 14 14

PDMEDI12M Naive 03 02 01 01{09 05 04 04
ECF2m 1.3 09 08 08]10 1.0 07 0.7

ECMV 1.0 08 09 0708 1.0 07 0.7

ECNJCm | 1.1 08 08 0706 1.0 0.6 0.7

also in Table 6.3, are lower than the desired level of 95 percent. Further research is
needed in an attempt to improve the coverage rates for the EC domain estimators.

A comparison of the stability in the estimates (Table 6.7) again shows that the
ECTS variance estimator produces more stable estimates than any of the variance
estimators studied. Note that the decrease in stability for the EC variance estimators
is more consistent across the relative survey sizes in comparison with our other

analyses — see, for example, Table 5.5.

6.7 Summary of Research Findings

To summarize, the empirical results for estimated domain totals and ratio-
means mirror comments given for the corresponding overall estimates. The empirical

results for the EC calibration estimators are not as strong as in Chapters 4 and 5 but
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the comparative differences still exist. We recommend against the use of traditional
calibration variance estimators for domain estimation. A theoretical and empirical
evaluation suggests that the underestimation can be sizeable. Use of the ECNJCm
method, when a complete benchmark covariance matrix is not accessible, is more
applicable to ratio-means than with estimated domain totals. The choice between
the EC linearization method (ECTS) and one of the EC jackknife methods (ECF2m
and ECMV) may be more related to preference of the analysis file structure. If design
variables are to be suppressed for disclosure avoidance, then either the ECF2m or

the ECMV will suffice.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Traditional methods are generally applied to calibration estimators even when
the assumptions, such as population benchmark totals and perfect sampling frames,
are violated. Our research presented in this dissertation examines the use of calibra-
tion control totals estimated from an independent (benchmark) survey on a different
(analytic) survey with units selected from an incomplete sampling frame. We label
this methodology as estimated-control (EC) calibration. As shown in the three re-
search chapters (Chapters 4, 5, and 6), traditional calibration variance estimators
under certain conditions fail to capture all of the variation associated with the sur-
vey estimates. Underestimation is most dramatic when the benchmark survey is
smaller than the analytic survey as demonstrated for estimated totals within and
across domains. Underestimation is also present for controls estimated from rela-
tively large benchmark surveys, though the level of bias is less pronounced than with
small benchmark surveys. Ratios of two estimated totals by domain and overall are
less affected by the size of the benchmark survey than population total estimators,

but some negative bias is still present. In addition to variance estimation, we define

235



a formula for the bias of the point estimators as a function of the benchmark con-
trol bias and the element-wise probabilities of being included on the analytic survey
sampling frame.

Taylor linearization and jackknife variance estimators are developed to address
the benchmark-control estimation and the sampling frame undercoverage error, as
well as the variation within the analytic survey data. The analytic sample is ob-
tained from a general design with primary sampling units selected with replacement
from within first-stage strata. Both types of EC calibration variance estimators are
adapted from prior research and are shown, both theoretically and empirically, to
be superior to formulae developed under the traditional weight calibration assump-
tions discussed in Chapter 2. Based on a comparison of the EC calibration variance
estimators, we recommend either the EC Taylor linearization variance estimator
(ECTS) or the modified Fuller jackknife variance estimator (ECF2m) for use with
EC calibration total and ratio-of-totals estimators when the complete control total
covariance matrix is available. The choice between the linearization and the repli-
cation variance estimators is related to the type of analysis data file to be produced.
When only the diagonal elements of the covariance matrix are available, the modi-
fied Nadimpalli-Judkins-Chu variance estimator (ECNJCm), a simplification of the
multivariate normal variance estimator (ECMV), may be used. However, unlike
levels seen for the ratio of two totals in our simulation studies, negative biases can
be substantial with the ECNJCm for the variance of estimated totals. The accom-
panying computer code written in R® translates our research into practical tools for

the survey statistician.
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Weight calibration continues to be an important instrument for survey re-
searchers, especially given the increased use of data collection modes not accessible
by all members of a population (e.g., Web surveys). EC calibration is a mecha-
nism that allows benchmarking to specialized control totals that are not available
in the large-scale surveys. The attempt to reduce bias through weight calibration
must be counterbalanced with the increase in variance properly captured with our

methodology.

7.2 Future Work

A basic framework for EC calibration is presented in the pages of this disser-
tation. However, EC calibration remains a rich source of research. The following is

a list of important questions generated by our current work:

1. What modification to the current coverage error component will make this

adjustment more robust?

2. Is there a threshold that exists to suggest when traditional variance estimators

are acceptable with EC calibrated estimators?

3. Is there a measure that will determine when a benchmark estimate is too

imprecise for use in EC calibration?

Extensions to our current work may address the following questions:

1. What are the degrees of freedom associated with statistical tests that use the

EC calibrated estimates?

237



. What are the effects of nonresponse in one or both surveys on EC calibration?

. How might non-sampling errors in both surveys change the properties of EC

calibrated estimators?

. How might EC calibration for cross-sectional surveys and independent bench-
mark surveys be adapted for two-phase designs which may include dependent

benchmark controls and panel surveys?

. Are the properties of balanced repeated replication (BRR) variance estimators

more favorable than the jackknife for EC calibration estimators?

. What are the effects of EC calibration on point estimators other than totals

and ratios of two totals?

. What are the theoretical and empirical properties of non-linear EC calibration

such as the logistic GREG (LGREG) estimators discussed in Duchesne (2003)?

. What are the theoretical and empirical properties of constrained EC calibra-

tion?
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Chapter A

Simulation Programs

The simulation study programs are provided in the following sections. With
the exception of the SAS-callable SUDAAN® program (Research Triangle Institute,

2004) included in the first section, the programs were written in R®.

A.1 Calculate Benchmark Estimates

/********************************************************************/

/* Program: NHIS Covar.sas */
/* Name: J.Dever */
/* Date: 06/07/07 */
/* Purpose: Produce covariance matrix from NHIS data. */

/********************************************************************/

options nocenter pageno=1 errors=1 orientation=portrait nofmterr;

LIBNAME in "...\NHIS\Data2003\";
LIBNAME out "...\Dissertation\Programs\Data\";
LIBNAME outxp xport "...\Dissertation\Programs\Data\COVMATRX.xpt";

TITLE1 "Dissertation/JSMO7 - NHIS Covariance Matrix";

sk sk o o o ok sk sk ok ok o ok ok sk sk sk sk o sk sk sk sk s ke sk sk sk sk sk o sk sk sk sk sk s ke sk sk sk sk sk e ke sk sk sk sk sk sksksk sk ke sk sksk sk sk ok ok sk okok
** Process NHIS Data Using SUDAAN. *%
sk sk ok o e ok sk sk ok ok s ok ok sk sk sk o sk sk sk s ke sk sk sk sk sk e ke sk sksk sk s ke sk sk sk sk sk e ke sk sksk ok sk ke sk sksksk sk ke sksksk sk sk ok ok sk skok
PROC CONTENTS DATA=in.PERSONSX; RUN cancel;

PROC SORT DATA=in.PERSONSX OUT=PERSONSX; BY STRATUM PSU; RUN;

PROC CROSSTAB DATA=PERSONSX DESIGN=WR DEFT2;
SETENV COLWIDTH=30 DECWIDTH=10;

WEIGHT WTFA;

NEST STRATUM PSU;

SUBGROUP R_AGE1 SEX;
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LEVELS 8 2;

TABLES SEX * R_AGE1;

PRINT /*NSUM WSUM COVWGT*/ / STYLE=NCHS;

OUTPUT / WGTCOV=ALL FILENAME=out.COVMATRX REPLACE;
RUN;

PROC PRINT DATA=out.COVMATO1l; RUN;

sk sk sk sk sk 3K 3K oK ok oK oK oK oK oK ok ok ok ok ok ok ok o o o o o o o sk sk sk sk sk sk sk sk ok ok ok ok oK ok oK ok ok ok ok ok ok ok ok o o o ok ko sk sk sk sk sk sk ok ok kKoK oK
** Process Covariance Matrix. *k ;
sk sk sk sk sk 3K ok oK oK ok ok ok oK oK ok ok ok ok ok ok o o o o o o o ok sk sk sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok o o o o ks sk sk sk sk ok ok ok kKoK
PROC CONTENTS DATA=out.COVMATO1; RUN cancel;

PROC PRINT DATA=out.COVMATO1 UNIFORM NOOBS;
VAR B011-B018 B020-B027 EST_ID IDNUM NCELL PROCNUM ROWNUM TABLENO;
RUN cancel;

DATA outxp.COVMATRX(KEEP=B011-B018 B020-B027) ;
SET out.COVMATO1;
** Subset to covar matrix, exclude "total" rows *x*;
IF IDNUM=2 &
ROWNUM in (11, 12, 13, 14, 15, 16, 17, 18,
20, 21, 22, 23, 24, 25, 26, 27);
RUN;

A.2 Generate Benchmark Covariance Matrices

# ____________________________________________________________________
# Program: Estimated Controls.R

# Name: J.Dever

# Date: 09/26/07

# Project: Dissertation / JSMO7

# Purpose: Create object containing estimated controls from full
# 2003 NHIS public-use file randomly generated based on
specified (adjusted) covariance matrix under a
multivariate normal assumption. Original program
entitled Random Controls2.R from NCHS project with
R.Valliant, J.Kim updated for SURV699G - Weighting
and Imputation final. Additionally revised to add
variance of estimated overall total.

H OH H H H H

#Set working directory
rm(1list=1s(all=TRUE))
setwd(".../Dissertation/Programs/Data/")
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#l.oad R libraries
require (MASS)
require(foreign)
#Random seed for MVnormal function
set.seed(82841)
#Maximum number of simulations
n.sims <- 5000

NHISO03.cov <- read.xport(".../Programs/Data/COVMATRX.xpt")
dim(NHISO03.cov)
NHISO03.cov

names (NHISO3.cov) <- c("R_AGE11.SEX1","R_AGE12.SEX1","R_AGE13.SEX1",
"R_AGE14.SEX1","R_AGE15.SEX1","R_AGE16.SEX1",
"R_AGE17.SEX1","R_AGE18.SEX1","R_AGE11.SEX2",
"R_AGE12.SEX2","R_AGE13.SEX2","R_AGE14.SEX2",
"R_AGE15.8EX2","R_AGE16.SEX2" ,"R_AGE17.SEX2",
"R_AGE18.SEX2")

rownames (NHIS03.cov) <- c("R_AGE11.SEX1","R_AGE12.SEX1",
"R_AGE13.SEX1","R_AGE14.SEX1","R_AGE15.SEX1",
"R_AGE16.SEX1","R_AGE17.SEX1","R_AGE18.SEX1",
"R_AGE11.SEX2","R_AGE12.SEX2" ,"R_AGE13.SEX2",
"R_AGE14.SEX2","R_AGE15.SEX2" ,"R_AGE16.SEX2",
"R_AGE17.SEX2","R_AGE18.SEX2")

control.vars <- as.data.frame(cbind(R_AGE1l = sort(rep(1:8,2)),

SEX = rep(1:2,8)))
control.vars <- control.vars[order(control.vars$SEX),]
control.vars

rownames (control.vars) <- c("R_AGE11.SEX1","R_AGE12.SEX1",
"R_AGE13.SEX1","R_AGE14.SEX1","R_AGE15.SEX1",
"R_AGE16.SEX1","R_AGE17.SEX1","R_AGE18.SEX1",
"R_AGE11.SEX2","R_AGE12.SEX2","R_AGE13.SEX2",
"R_AGE14.SEX2","R_AGE15.SEX2" ,"R_AGE16.SEX2",
"R_AGE17.SEX2","R_AGE18.SEX2")

control.vars
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NHISO03.popcts <- c¢(10148500, 27153554, 13901790, 40810498, 33082381,
4575653, 3714185, 6211982,
9707257, 25961781, 13867450, 41956867, 35164332,
5184382, 4701061, 9868567)

names (NHISO3.popcts) <- c("R_AGE11.SEX1","R_AGE12.SEX1",
"R_AGE13.SEX1","R_AGE14.SEX1","R_AGE15.SEX1",
"R_AGE16.SEX1","R_AGE17.SEX1","R_AGE18.SEX1",
"R_AGE11.SEX2","R_AGE12.SEX2","R_AGE13.SEX2",
"R_AGE14 .SEX2","R_AGE15.SEX2" ,"R_AGE16.SEX2",
"R_AGE17.SEX2","R_AGE18.SEX2")

NHISO3.popcts

NHISO03.pop <- sum(NHISO3.popcts)
NHISO3.pop

NHISO03.popVar <- (2919389.5935) **2
NHISO03.popVar

rc.adj <- (21664 / sum(NHISO3.popcts))

NHIS03.adj.popcts <- round(NHISO3.popcts * rc.adj)
NHIS03.adj.cov <- as.matrix(NHIS03.cov) * (rc.adj**2)
NHIS03.adj.popVar <- NHISO3.popVar * (rc.adj**2)

NHISO03.pop.adjO <- as.data.frame(rbind(NHISO03.adj.popcts,
t(control.vars)))

NHISO3.pop.adjo

sum (NHIS03.pop.adjo[1,])

cbind (NHIS03.adj.popcts, sqrt(diag(NHIS03.adj.cov)),
sqrt (NHIS03.adj.popVar))
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cm.adjl <- 92000 / 92000
cm.adjl

NHIS03.cov.adjl <- as.matrix(NHIS03.adj.cov) * cm.adjl
NHISO3.cov.adjl

MV.Norm <- round(mvrnorm(n=n.sims, mu=NHIS03.adj.popcts,
Sigma=NHIS03.cov.adj1))

NHIS03.pop.adjl <- as.data.frame(rbind(as.data.frame(MV.Norm),
t(control.vars)))
NHISO03.pop.adjllc(1:5, n.sims:nrow(NHIS03.pop.adjl)),]
rbind (NHIS03.adj.popcts, mean=apply(NHIS03.pop.adjl,2,mean),
min=apply (NHIS03.pop.adjl,2,min),
max=apply (NHIS03.pop.adjl,2,max),
se =sqrt(apply(NHISO3.pop.adjl,2,var)))

NHISO3.popVar.adjl <- NHISO3.adj.popVar * cm.adjl
NHISO3.popVar.adjl

cm.adj2 <- 92000 / 25000
cm.adj2

NHIS03.cov.adj2 <- as.matrix(NHISO3.adj.cov) * cm.adj2
NHISO03.cov.adj2

MV.Norm <- round(mvrnorm(n=n.sims, mu=NHIS03.adj.popcts,
Sigma=NHIS03.cov.adj2))

NHISO03.pop.adj2 <- as.data.frame(rbind(as.data.frame(MV.Norm),
t(control.vars)))
NHISO03.pop.adj2[c(1:5,n.sims :nrow(NHIS03.pop.adj2)),]
rbind (NHIS03.adj.popcts, mean=apply(NHIS03.pop.adj2,2,mean),
min=apply (NHISO3.pop.adj2,2,min),
max=apply (NHIS03.pop.adj2,2,max),
se =sqrt (apply(NHISO3.pop.adj2,2,var)))

NHISO3.popVar.adj2 <- NHISO3.adj.popVar * cm.adj2
NHISO3.popVar.adj2
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# Generate
cm.adj3 <-
cm.adj3

NHISO03.cov
NHISO03.cov.

MV.Norm <-

NHISO3.pop.

NHISO3.pop.

Random Control Totals (Covariance Adjustment = 18)

92000 / 5000

.adj3 <- as.matrix(NHIS03.adj.cov) * cm.adj3

adj3

round (mvrnorm(n=n.sims, mu=NHIS03.adj.popcts,
Sigma=NHIS03.cov.adj3))

adj3 <- as.data.frame(rbind(as.data.frame(MV.Norm),
t(control.vars)))
adj3[c(1:5,n.sims:nrow(NHIS03.pop.adj3)),]

rbind (NHISO03.adj.popcts, mean=apply(NHISO3.pop.adj3,2,mean),
min=apply (NHIS03.pop.adj3,2,min),
max=apply (NHISO03.pop.adj3,2,max),
se =sqrt(apply(NHISO03.pop.adj3,2,var)))

NHISO3.popVar.adj3 <- NHISO3.adj.popVar * cm.adj3
NHISO3.popVar.adj3

cm.adjé4 <-
cm.adj4

NHISO03.cov.
NHISO03.cov.

MV.Norm <-

NHISO3.pop.

NHISO3.pop.

92000 / 1250

adj4 <- as.matrix(NHISO03.adj.cov) * cm.adj4
adj4

round (mvrnorm(n=n.sims, mu=NHIS03.adj.popcts,
Sigma=NHIS03.cov.adj4))

adj4 <- as.data.frame(rbind(as.data.frame(MV.Norm),
t(control.vars)))
adj4[c(1:5,n.sims:nrow(NHIS03.pop.adj4)),]

rbind (NHISO03.adj.popcts, mean=apply (NHISO3.pop.adj4,2,mean),
min=apply (NHIS03.pop.adj4,2,min),
max=apply (NHISO3.pop.adj4,2,max),
se =sqrt(apply(NHISO3.pop.adj4,2,var)))

NHISO3.popVar.adj4 <- NHISO3.adj.popVar * cm.adj4
NHISO3.popVar.adj4
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save.image(".../Programs/Data/Estimated Controls.RData")

A.3 Simulation Call Program

# Program: NOTCOV Hsp cadjl n20.R

# Name: J.Dever

# Project: Dissertation / Sim Domains / Appendix Code

# Date: 11/03/08

# Purpose: Reduce code for dissertation appendix and text.

# Use random controls with variable=NOTCOV, covariance
# adjustment=1.0, and n_hi=20 for 2,000 simulation runs.
# Domain = Hispanic Race (HISCODI2=1)

#Set working directory
rm(1ist=1s(all=TRUE))
setwd(".../Dissertation/Programs/")

require (MASS) #Load R libraries
require (survey)
require(nlme)
memory.size() #Increase memory size
round (memory.limit()/1048576.0, 2)
memory.limit (size=2000)

#Sampling Frame, External Controls
source("nhis25.new.dmp")
attach("Estimated Controls.RData")

#Sim functions

source("Sim.ECPS.fcn")
source ("Rep.VarEst.fcn")
source("chk.PS.fcn")
source("clus.sam.fcn")
source("cov.rate.fcn")

# ____________________________________________________________________
# Simulation program
# ____________________________________________________________________
NOTCOV.hsp.cadjl.n20 <- Sim.ECPS(pop =nhis25.new,

y.col ="NOTCOV",

y.val =1,

d.col ="HISCODI2",

d.val =1,

unit.id ="ID",
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str.col ="new.str",

clus.id ="new.psu",

PS.col =c("R_AGE1", "SEX"),

nh =rep(2,25),

nh.sub =20,

substrat ="substrat",

sub.vals =1,

sel.meth ="ppswr",

no.sams =2000,

cov.prob =c(0.9,0.8,0.5,0.5,
0.8,0.9,0.9,0.9,
0.9,0.8,0.5,0.5,
0.8,0.9,0.9,0.9),

seed =81311,

m.cell =2,

ex.cntrls =T,

ex.cntrls.pop =NHISO3.pop.adji,
ex.cntrls.cov =NHISO3.cov.adjl,
ex.cntrls.var =NHISO03.popVar.adji,

cert.PSUs =T,
sam.prt =100)
rm("nhis25.new") #Eliminate pop file to save space

save.image ("NOTCOV Hsp cadjl n20.RData")

A.4 Primary Simulation Program

Sim.ECPS <- function(pop, y.col, y.val=1l., d.col="ones", d.val=1.,
str.col, PS.col, clus.id, unit.id, nh, nh.sub,
substrat, sub.vals, sel.meth, no.sams, cov.prob,
seed, m.cell, ex.cntrls, ex.cntrls.pop,
ex.cntrls.start=0., ex.cntrls.cov, ex.cntrls.var,
PS.chk=F, cert.PSUs, sam.prt) {

# Simulation for poststratified estimates using estimated

# controls (ECPS). Original code taken from NCHS PS-cell collapse
# project with R.Valliant.

#

# pop = population

# y.col = variable for estimating total

# y.val = variable value for estimating total (convert
# to 0/1 variable)

# d.col = variable for conducting domain analysis

# d.val = variable value used in domain analyses
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str.col = stratum column name or no.

PS.col = poststratification column names or nos. PS
can be defined as cross of several variables

clus.id = cluster ID column name or no.

unit.id = unique ID for unit of observation (person)

nh = num of clusters sampled within each stratum

(vector) If no substrata are used for
sampling within clusters, nh.sub is single
value, substrata var (sub.vals) should
have same value for every unit

nh.sub = sample size for each substratum (vector)
substrat = substrata, column name or no.

sub.vals = values taken by substrat variable

sel.meth = method fo selecting clusters (ppswr or srs)
no.sams = no. of samples

cov.prob = response probability vector

seed = seed for random no. generator

m.cell = minimum cell size for no. of covered units
ex.cntrls = T/F external controls used for wt adju
ex.cntrls.pop = data file name with external control counts

ex.cntrls.start = (start + sim no) = line in ex.cntrls.pop list
used as controls,allows diff controls per prg

ex.cntrls.cov = name of data file containing external control
var-covar matrix

ex.cntrls.var = var(Nhat.B) from benchmark survey

PS.chk = T/F to run check on replicate algorithsm

cert.PSUs = T/F if size>nh.sub, select all units w/in PSU

sam.prt = how often to print current sample no,

e.g., every 10, 25, 100, etc.

H OH OH H H K H HHHHEHHEHEHHEHHHEHEHHEHEHEHHEHEH TR H

Last Update: 11/03/2008 01d code removed from prog for appendix

set.seed(seed)
cat("begin ", date(), "\n")

#___ Initialization section____________________________________
# Variable containing all ones (default domain)
pop$ones <- rep(1l, nrow(pop))
# Domain indicator
pop$delta.d <- as.numeric(popl,d.col] == d.val)
# Analysis variable by domain indicator
pop$yd.col <- popl[,y.col]l * pop$delta.d

# select units with nonmissing y

# Note: this will result in ID’s being nonconsecutive
# in the reduced pop after missing y’s eliminated
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pop <- popl!is.na(popl[, "yd.col"]), 1]

pop <- popl, -1] # Put the ID’s back in order
ID <- 1:nrow(pop)

pop <- cbind(ID, pop)

N.PS <- prod(dim(table(pop[, PS.col]l))) # No. poststrata
str.id <- unique(pop[, str.coll) # Stratum IDs
H <- length(str.id) # No. of design strata

# Error check on input specs
if (length(cov.prob) != N.PS) {
stop("length(cov.prob) != no. of PS\n")}
if (length(nh) '= H) stop("length(nh) !'= H\n")
if (any(nh !'= 2)) stop("nh not 2 for all strata {
(chk.psu.dups only works for nh = 2)\n")}
if (any( table(popl[, str.col]l, popl[, clus.id]) < min(nh.sub)))
cat("At least one psu has fewer than nh.sub units\n")

G <- nrow(ex.cntrls.cov)

R <- sum(nh)

if(R < G) stop("Insufficient number of replicates\n")

if (N.PS != G) stop("Poststrata in survey and external controls are
not compatible\n")

# Analyses objects (totals)
out.tot <- matrix(0., nrow = no.sams, ncol = 12)
dimnames (out.tot) <- list(NULL, c(

"T.pop", #(Pseudo-)Pop total
"ECPS.tot", #PS estimated total
"PWR.tot", #Unadjusted estimated total
"Naive.tot", #SE - Traditional PS
"ECTSr.tot", #SE - Linear w/o trace
"ECF2.tot", #SE - Fuller method
"ECMV.tot", #SE - MV method
"ECNJC.tot", #SE - NJC method
"ECTSr.totcov", #SE (cov adj) - Linear
"ECF2.totcov", #SE (cov adj) - Fuller method
"ECMV.totcov", #SE (cov adj) - MV method

"ECNJC.totcov"  #SE (cov adj) - NJC method
))
# Analyses objects (ratio means)
out.mu <- matrix(0., nrow = no.sams, ncol = 12)
dimnames (out.mu) <- 1list(NULL, c(
"P.pop", #(Pseudo-)Pop mual
"ECPS.mu", #PS estimated mual

248



"Hajek.mu", #Unadjusted estimated mual

"Naive.mu", #SE - Traditional PS
"ECTSr.mu", #SE - Linear w/o trace
"ECF2.mu", #SE - Fuller method
"ECMV.mu", #SE - MV method

"ECNJC.mu", #SE - NJC method
"ECTSr.mucov", #SE (cov adj) - Linear
"ECF2.mucov", #SE (cov adj) - Fuller method
"ECMV.mucov", #SE (cov adj) - MV method
"ECNJC.mucov" #SE (cov adj) - NJC method

)

num.skip.sam <- 0.

n.clus <- sum(nh.sub) # units sampled w/ cluster
nh.cl = rep(n.clus, sum(nh)) # vector of units
n.tot <- sum(nh * nh.sub) # total sample size
sam.id <- vector("numeric", length = n.tot)

base.wts <- vector("numeric", length = n.tot)

y <- vector("numeric", length = n.tot)

no.PS <- vector("numeric", length = no.sams)

A <- c(0,cumsum(nh*sum(n.clus)))

# Total y (level) by domain (level)
T.pop <- sum(pop[(pop[, y.col]l == y.val) & (pop[, d.col]l == d.val),
“ones"] )

# Prop of Total y (level) within domain (level)
P.pop <- T.pop / sum(pop[(popl, d.col]l == d.val),"ones"])
# String of poststratum variable names
ps.for <- NULL
for (i in 1:length(PS.col)){
ps.for <- paste(ps.for, "+", PS.col[i])
}
# Code for ECF2 test
if (lex.cntrls) {
PS.pop <- xtabs(as.formula(paste("™", ps.for)), data = pop)
PS.index <- array(l:length(PS.pop), dim = dim(PS.pop),
dimnames = dimnames(PS.pop) )

# Frame needed to feed into postStratify function
# 1st column is PS index, 2nd is pop counts in each PS
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if (tex.cntrls) {
PS.pop.frm <- data.frame(PS.newl = as.vector(PS.index),
Tot = as.vector(PS.pop) )

# PS.newl calc only works for 2-dimensional poststrata

# Max level for 1st of 2 poststratum vars
maxI <- max(unique(pop[, PS.col[1] 1))

# Calculate poststratum IDs for pop file
PS.newl <- maxI * (pop[, PS.col[2]]-1) + popl, PS.col[1]]
pop <- cbind(pop, PS.newl)

# Sorted list of poststratum IDs

PS.all <- sort(unique(pop[, "PS.newl"]))
cov.mat <- matrix(0., nrow = no.sams, ncol = length(PS.all) )

for(i in 1.:no.sams) {

if ((i %% sam.prt) == 0.) {
cat("i =", i, date(), "\n")
b
# Set switches for whether units are covered by frame
c.sw <- cov.rate(pop=pop, c.prob=cov.prob, cells="PS.newl")
keep.sw <- skip.sw <- empty.PS.sw <- FALSE

if(ex.cntrls) {
# Identify external controls from generated list

pop.ext <- as.data.frame(t(ex.cntrls.poplc((i + ex.cntrls.start),
(nrow(ex.cntrls.pop) - 1), nrow(ex.cntrls.pop)),]))
names (pop.ext) [1] <- "Tot"

PS.pop <- xtabs(as.formula(paste("™", ps.for)), data = pop.ext)

PS.pop <- PS.pop *
matrix(pop.ext [order (pop.ext[,PS.col[2]]),"Tot"],
nrow=nrow (PS.pop), ncol=ncol(PS.pop))

PS.index <- array(l:length(PS.pop), dim = dim(PS.pop),

dimnames = dimnames(PS.pop) )

# Process external controls

PS.pop.mrg <- as.data.frame(PS.pop) [,-3]
PS.pop.mrg$PS.newl <- as.vector(PS.index)
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external.CTot <- pop.ext
external.CTot <- merge(PS.pop.mrg, external.CTot,
by.x=c(PS.col), by.y=c(PS.col))
if (nrow(external.CTot) == 0) {
stop("Frame / External Controls are not compatible.\n")}

# File of ext controls and associated poststratum IDs
PS.pop.frm <- external.CTot[order(external.CTot$PS.newl),]
PS.pop.frm <- PS.pop.frm[, c(3,4)]

while(!keep.sw) {
drop.sw <- NULL
for (h in str.id){
# Select sample from "covered" units only
poph <- poplpopl,str.coll==h & c.sw,]
h.id<-(1:length(str.id)) [str.id==h]

clus.dat.h <- clus.sam(pop =poph, clus.id =clus.id,
unit.id ="ID", n.cl =nh[h.id],
sel.meth =sel.meth, substrat=substrat,
n.substrat=nh.sub, sub.vals=sub.vals,

cert.PSUs =cert.PSUs)

sam.id[(A[h.id]+1) :A[h.id+1]] <- clus.dat.h[[1]][,1]
base.wts[(A[h.id]+1):A[h.id+1]] <- clus.dat.h[[1]][,2]
drop.sw <- c(drop.sw, clus.dat.h[[3]])

drop.sw <- any(drop.sw)

if (any(drop.sw == TRUE)) {
cat("bad sample", "h=",h, "\n")
}
} #for h loop

#___Check for missing poststrata, cells with all missing
# units, or cells where nonmissing count is < nh.sub___
tl <- poplsam.id, ]
skip.sw <- chk.PS(sdat=t1, cl.all=PS.all, cl.col="PS.newl",
r.sw=c.sw[sam.id], min.size = m.cell)

if (skip.sw | drop.sw){

num.skip.sam <- num.skip.sam + 1

3

if (! (skip.sw | drop.sw)) {
# Create sample file
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H####

sam.dat <- cbind(pop[sam.id, c(unit.id, str.col, PS.col,
"PS.newl", clus.id, y.col, "ones", "delta.d")])

# Binary version of categorical y with domain
sam.dat$bin.yvar <- as.numeric((sam.dat[,y.col] == y.val) *
sam.dat$delta.d)

# Assign cluster ID for 2 PSUs per stratum design
sam.dat[, clus.id] <- rep(c(rep(l,nh.sub), rep(2,nh.sub)), H)

# Max categories for analysis variable
y.level <- max(unique(sam.dat[,y.coll))

_____ Point estimates__________ __ __ __ __ __ _ _ _ _ _ o ____

PWR/Hajek estimates ###i##

# NOTE: Will get warning message if zero occurrences of
# characteristic of interest with poststratum

sam.dsgn <- svydesign(id = as.formula(paste("™", clus.id)),

strata = as.formula(paste("™", str.col)),
weights = base.wts,
data = sam.dat, nest = TRUE)

PWR.tot <- svyby(as.formula(paste("~interaction(",y.col,")")),
as.formula(paste("“interaction(","delta.d",")")),
sam.dsgn, svytotal)

PWR.tot <- as.numeric(PWR.tot[PWR.tot[, 1] == 1, -1][y.vall)

Hajek.mu <- svyby(as.formula(paste(" interaction(",y.col,")")),
as.formula(paste("~interaction(","delta.d",")")),
sam.dsgn, svymean)

Hajek.mu <- as.numeric(Hajek.mu[Hajek.mu[,1] == 1, -1][y.vall)

Poststratified estimates - mean and total #####

PS.dsgn <- postStratify(sam.dsgn, strata = "PS.newl,
population = PS.pop.frm, partial = T)

if(PS.chk == T) {
ECPS.tot.est <- as.matrix(PS.pop.frm$Tot)
ECPS.tot.SE <- 0.
ECPS.mu.est <- 0.
ECPS.mu.SE <- 0.
}
else {
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ECPS.tot <- svyby(as.formula(paste("~“interaction(",y.col,")")),
as.formula(paste("~interaction(","delta.d",")")),
PS.dsgn, svytotal)
ECPS.tot.est <- as.numeric(ECPS.tot[ECPS.tot[,1]==1,
-1] [y.vall)
ECPS.tot.SE <- as.numeric(ECPS.tot[ECPS.tot[,1]==1,
-1] [(y.val + y.level)])

ECPS.mu <- svyby(as.formula(paste("~interaction(",y.col,")")),
as.formula(paste("“interaction(","delta.d",")")),
PS.dsgn, svymean)
ECPS.mu.est <- as.numeric(ECPS.mu[ECPS.mul,1] == 1,-1][y.vall)
ECPS.mu.SE  <- as.numeric(ECPS.mul[ECPS.mu[,1] == 1,-1][(y.val
+ y.level)])

PS.That <- svytable(as.formula(paste("~",PS.col[1],"+",
PS.col[2])), design = sam.dsgn)
PS.cnt <- xtabs(as.formula(paste("~",PS.col[1],"+",PS.col[2])),
data = sam.dat)

cov.mat[i, ] <- as.vector(PS.That/PS.pop)

# Extract g-weights
g.wts <- (1/PS.dsgn$prob) / base.wts

# Estimated Variance

#i#### Estimated-control Taylor Series variance #####

if(ex.cntrls) {
if (PS.chk == F) {
# Total est’d y within domain by poststratum

t.Aydg <- as.data.frame(svytable(as.formula(paste("™",
y.col, "+", "PS.newl", "+", "delta.d")),
sam.dsgn))

t.Aydg <- as.matrix(t.Aydg[(t.Aydg[,y.col] == y.val &
t.Aydg$delta.d == 1),"Freq"])

# Total est’d domain total by poststratum
t.ANdg <- as.data.frame(svytable(as.formula(paste("™",
"ones", "+", "PS.newl", "+", "delta.d")),
sam.dsgn))
t.ANdg <- as.matrix(t.ANdg[(t.ANdg$delta.d == 1),"Freq"])

# Est’d number in pop by poststratum
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N.Ag <- as.matrix(svyby(~“ones, “PS.newl, sam.dsgn,
svytotal) [,2])

# Control totals by poststratum
N.Bg <- as.matrix(pop.ext[,1])

# Est.s under traditional calibration
N.dgPSGR <- N.Bg * (1/N.Ag) * t.ANdg
# PS model coefficients
B.hat.A <- t.Aydg / N.Ag
B.hat.AN <- t.ANdg / N.Ag

##### Estimated-control TS variance w/coverage error ###i#t#

# Merge model coeff vectors onto sample file
betas <- as.data.frame(cbind(1:16, B.hat.A, B.hat.AN))
names (betas) <- c("PS.newl","B.hat.A","B.hat.AN")

resids <- merge(sam.dat[,c("PS.newl","bin.yvar",
"delta.d","ones")],
betas, by.x="PS.newl", by.y="PS.newl")

# Sum squared residuals by poststratum (wt=base.wt)

# Numerator component
resids$sqrd.resid.num <- base.wts * (resids$bin.yvar -
resids$B.hat.A) "2
tot.resids.g.num <- as.matrix(by(resids$sqrd.resid.num,
resids$PS.newl, sum))

# Denominator component
resids$sqrd.resid.den <- base.wts * (resids$ones -
resids$B.hat.AN) "2
tot.resids.g.den <- as.matrix(by(resids$sqrd.resid.den,
resids$PS.newl, sum))

# Covariance component
resids$sqrd.resid.cov <- base.wts * (resids$bin.yvar -
resids$B.hat.A) *
(resids$ones - resids$B.hat.AN)
tot.resids.g.cov <- as.matrix(by(resids$sqrd.resid.cov,
resids$PS.newl, sum))

# Var component for coverage error

one.minus.phi <- (1 - N.Ag/N.Bg)
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one.minus.phi[one.minus.phi < 0] <- 0.

coverr.adjl.tot <- t(one.minus.phi) %*} tot.resids.g.num
coverr.adjl.mu <- t(one.minus.phi) Y%x*%
(tot.resids.g.num + ECPS.mu.est™2 *
tot.resids.g.den - 2 * ECPS.mu.est *
tot.resids.g.cov)

##### Residualized ECTS variance #####

ECTSr.tot <- sqrt(ECPS.tot.SEx*2 +
(t(B.hat.A) %x% ex.cntrls.cov %*J% B.hat.A))

ECTSr.mu <- sqrt(ECPS.mu.SE**2 + (1/sum(N.dgPSGR))**2 x
((t(B.hat.A - ECPS.mu.est * B.hat.AN) %x%
ex.cntrls.cov %*J (B.hat.A - ECPS.mu.est *
B.hat.AN))))

#_____ Linear SEs for EC estimates with coverage component _____

ECTSr.totcov <- sqrt(ECTSr.tot**2 + coverr.adjl.tot)

ECTSr.mucov <- sqrt(ECTSr.mux*2 + (1/sum(N.dgPSGR))**2 x
coverr.adjl.mu)

##### Fuller (1998) Jackknife Method (Not Balanced) #####

spec.decmp <- eigen(ex.cntrls.cov, symmetric=T)

#Calculate random components for calibration
#(columns of the z.matrix corresponds to z(r) in notes)
lambda <- matrix(spec.decmp$values, byrow=T,
nrow=nrow (spec.decmp$vectors),
ncol=ncol (spec.decmp$vectors))

z.matrix <- sqrt(lambda) * spec.decmp$vectors

# JK Adjustments

for(k in 1.:length(nh)) {

if(k == 1) { PSUs.rep <- c(rep(nh[k],nh[k])) }

else { PSUs.rep <- c(PSUs.rep, rep(nh[k],nh[k])) }
}
c.h <- sqrt(PSUs.rep / (PSUs.rep - 1))
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c.h <- matrix(rep(c.h, G), nrow=G, byrow=T)

R.h <- 1 / sqrt(H * PSUs.rep)
R.h <- matrix(rep(R.h, G), nrow=G, byrow=T)

Replicate PS controls

col.order <- sample(1:R, R)

zero.matrix <- matrix(rep(as.matrix(rep(0,G)), R - G),
nrow=G)

z.adj <- cbind(zero.matrix, z.matrix)
z.adj <- z.adj[, col.order]

N.hats.B.FUL <- matrix(rep(PS.pop.frm$Tot, R), nrow=G) +
(z.adj * c.h)

Matrix of PS group indicators

PS.matrix <- PSd.matrix <-
matrix(0., nrow=nrow(sam.dat), ncol=G)

for(k in 1.:G) {
PS.matrix[,k] <- as.numeric(sam.dat$PS.newl == k)
PSd.matrix[, k] <- as.numeric((sam.dat$PS.newl == k) &
(sam.dat$delta.d == 1))

Matrix of PS group indicators x analysis var

if (PS.chk == T) { PS.yvar.mat <- PS.matrix }
else { PS.yvar.mat <- matrix(rep(sam.dat$bin.yvar, G), ncol=G)
* PS.matrix }

Replicate weight adjustments

rep.dsgn <- as.svrepdesign(sam.dsgn, type="JKn")
JKn.adj.wts <- weights(rep.dsgn)

base.wts.R <- matrix(rep(base.wts, R), byrow=F, ncol=R)
g.wts.R <- matrix(rep(g.wts, R), byrow=F, ncol=R)

# Design wt * PSU subsmp wt
rep.wts <- base.wts.R * JKn.adj.wts

# (Design wt * g wt) * PSU subsmp wt
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rep.calib.wts <- (base.wts.R * g.wts.R) * JKn.adj.wts

PS Slope estimates_____
for(k in 1.:R) {
# Numerator of beta.hat, per PS group
t.Aydg.rep <- t(PS.yvar.mat) %*Y, as.matrix(rep.wts[,k])

# Denominator of beta.hat, per PS group
N.Ag.rep <- t(PS.matrix) Y%x*% as.matrix(rep.wts[,k])

# Denominator beta for ratio mean, per PS group
t.ANdg.rep <- t(PSd.matrix) %*% as.matrix(rep.wts[,k])

# Estimated domain totals per PS group
N.hat_Adg <- t(PSd.matrix) %*% as.matrix(rep.wts[,k])

if(k == 1) {
B.hat.Arep <- as.matrix(t.Aydg.rep / N.Ag.rep)
B.hat.ANrep <- as.matrix(t.ANdg.rep / N.Ag.rep)
N.hats.A <- as.matrix(N.Ag.rep)
}
else {
B.hat.Arep <- cbind(B.hat.Arep,
as.matrix(t.Aydg.rep / N.Ag.rep))
B.hat.ANrep <- cbind(B.hat.ANrep,
as.matrix(t.ANdg.rep / N.Ag.rep))
N.hats.A <- cbind(N.hats.A, as.matrix(N.Ag.rep))
}
}
Coverage error variance component_____
#merge Hajek avg.s per poststratum onto sample file
betas <- as.data.frame(cbind(B.hat.Arep, B.hat.ANrep,
PS.newl = 1:G))
resids <- merge(sam.dat[,c("PS.newl","bin.yvar","ones",
"delta.d")], betas, by.x="PS.newl",
by.y="PS.newl")

#sum of squared base-wtd residuals by PS (num, den, cov)
wtd.resids.R.num <- as.data.frame(cbind(PS.newl =
resids$PS.newl, rep.wts * (resids$bin.yvar -
resids[,c(5:(4 + R))]1)"2))
tot.resids.gR.num <- gsummary(wtd.resids.R.num, sum,
groups=wtd.resids.R.num$PS.newl)

wtd.resids.R.den <- as.data.frame(cbind(PS.newl =
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resids$PS.newl, rep.wts * (resids$ones -

resids[,c((5 + R):ncol(resids))])"2))
tot.resids.gR.den <- gsummary(wtd.resids.R.den, sum,

groups=wtd.resids.R.den$PS.newl)

wtd.resids.R.cov <- as.data.frame(cbind(PS.newl =
resids$PS.newl, rep.wts * (resids$bin.yvar -
resids[,c(5:(4 + R))]) * (resids$ones -
resids[,c((5 + R):ncol(resids))])))

tot.resids.gR.cov <- gsummary(wtd.resids.R.cov, sum,
groups=wtd.resids.R.cov$PS.newl)

#sum of squared g-wtd residuals by PS (num, den, cov)
g.wtd.resids.R.num <- as.data.frame(cbind(PS.newl =
resids$PS.newl, rep.calib.wts *
(resids$bin.yvar - resids[,c(5:(4 + R))1)"2))
tot.resids.gR.g.num <- gsummary(g.wtd.resids.R.num, sum,
groups=g.wtd.resids.R.num$PS.newl)

g.wtd.resids.R.den <- as.data.frame(cbind(PS.newl =
resids$PS.newl, rep.calib.wts * (resids$ones -
resids[,c((5 + R):ncol(resids))])"2))

tot.resids.gR.g.den <- gsummary(g.wtd.resids.R.den, sum,
groups=g.wtd.resids.R.den$PS.newl)

g.wtd.resids.R.cov <- as.data.frame(cbind(PS.newl =
resids$PS.newl, rep.calib.wts *
(resids$bin.yvar - resids[,c(5:(4 + R))]) *
(resids$ones - resids[,c((5 + R):ncol(resids))])))
tot.resids.gR.g.cov <- gsummary(g.wtd.resids.R.cov, sum,
groups=g.wtd.resids.R.cov$PS.newl)

#varcomp for coverage error - fixed (per sample) N.hats.B
one.minus.phi.R <- (1 - N.hats.A /

matrix(rep(PS.pop.frm$Tot, R), nrow=G))
one.minus.phi.R[one.minus.phi.R < 0] <- 0.

stdnorm.gR <- matrix(rnorm(G * R), nrow=G)

ECF2.method <- Rep.VarEst(

PS.chk = PS.chk,
N.hats.B = N.hats.B.FUL,
B.hat.Arep = B.hat.Arep,
B.hat.ANrep = B.hat.ANrep,
PSUs.rep = PSUs.rep,
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one.minus.phi.R = one.minus.phi.R,

tot.resids.gR.num = tot.resids.gR.num,
tot.resids.gR.den = tot.resids.gR.den,
tot.resids.gR.cov = tot.resids.gR.cov,

tot.resids.gR.g.num = tot.resids.gR.g.num,
tot.resids.gR.g.den = tot.resids.gR.g.den,
tot.resids.gR.g.cov = tot.resids.gR.g.cov,

c.h = c.h,

R.h = R.h,
stdnorm.gR = stdnorm.gR,
ECPS.tot = ECPS.tot.est,
ECPS.mu = ECPS.mu.est)

ECF2.tot <- ECF2.method$Rep.VarEst.tot
ECF2.totcov <- ECF2.method$Rep.VarEst.totcov
ECF2.mu <- ECF2.method$Rep.VarEst.mu
ECF2.mucov <- ECF2.method$Rep.VarEst.mucov
Vhat .B.ECF2 <- ECF2.method$Vhat.B.est

##### MV Normal Jackknife Method #####

MV.Norm <- t(mvrnorm(n=R, mu=rep(0, nrow(ex.cntrls.cov)),
Sigma=ex.cntrls.cov))

N.hats.B.MVN <- matrix(rep(PS.pop.frm$Tot, R), nrow=G, byrow=F)
+ c.h * R.h * MV.Norm

ECMV.method <- Rep.VarEst(

PS.chk = PS.chk,

N.hats.B = N.hats.B.MVN,
B.hat.Arep = B.hat.Arep,
B.hat.ANrep = B.hat.ANrep,
PSUs.rep = PSUs.rep,
one.minus.phi.R = one.minus.phi.R,
tot.resids.gR.num = tot.resids.gR.num,
tot.resids.gR.den = tot.resids.gR.den,
tot.resids.gR.cov = tot.resids.gR.cov,

tot.resids.gR.g.num = tot.resids.gR.g.num,
tot.resids.gR.g.den = tot.resids.gR.g.den,
tot.resids.gR.g.cov = tot.resids.gR.g.cov,

c.h = c.h,

R.h = R.h,
stdnorm.gR = stdnorm.gR,
ECPS.tot = ECPS.tot.est,
ECPS.mu = ECPS.mu.est)

259



ECMV.tot
ECMV.totcov
ECMV.mu
ECMV.mucov
Vhat .B.ECMV

<- ECMV.
<- ECMV.
<- ECMV.
<- ECMV.
<- ECMV.

tot
totcov

method$Rep.VarEst.
method$Rep.VarEst.
method$Rep.VarEst.mu
method$Rep.VarEst
method$Vhat.B.est

.mucov

##### Nadimpalli-Judkins-Chu (2004) Jackknife Method ####i#

SN <- matrix(rnorm(G * R), nrow=G)

N.hats.B.NJC <- matrix(rep(PS.pop.frm$Tot, R), nrow=G,
byrow=F) + c.h * R.h * SN *
matrix(rep(sqrt(diag(ex.cntrls.cov)), R),

nrow=G, byrow=F)

ECNJC.method <- Rep.VarEst(

PS.chk = PS.chk,
N.hats.B = N.hats.B.NJC,
B.hat.Arep = B.hat.Arep,
B.hat.ANrep = B.hat.ANrep,
PSUs.rep = PSUs.rep,
one.minus.phi.R = one.minus.phi.R,
tot.resids.gR.num = tot.resids.gR.num,
tot.resids.gR.den = tot.resids.gR.den,
tot.resids.gR.cov = tot.resids.gR.cov,
tot.resids.gR.g.num = tot.resids.gR.g.num,
tot.resids.gR.g.den = tot.resids.gR.g.den,
tot.resids.gR.g.cov = tot.resids.gR.g.cov,
c.h = c.h,
R.h = R.h,
stdnorm.gR = stdnorm.gR,
ECPS.tot = ECPS.tot.est,
ECPS.mu = ECPS.mu.est)

ECNJC.tot <- ECNJC.method$Rep.VarEst.tot

ECNJC.totcov <- ECNJC.method$Rep.VarEst.totcov

ECNJC.mu <- ECNJC.method$Rep.VarEst.mu

ECNJC.mucov <- ECNJC.method$Rep.VarEst.mucov

Vhat .B.ECNJC <- ECNJC.method$Vhat.B.est

if(PS.chk == T) {
out.tot[i, ] <-

c(as.vector(T.pop) [1], sum(ECPS.tot),

PWR.tot[1],
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out.muli, ] <- c(as.vector(P.pop)[1], sum(ECPS.mu),
Hajek.mu[1], rep(0,15))
}
else {
out.tot[i, ] <- c(as.vector(T.pop) [1],
ECPS.tot.est, PWR.tot[1],

ECPS.tot.SE,
ECTSr.tot, ECF2.tot,
ECMV.tot, ECNJC.tot,

ECTSr.totcov, ECF2.totcov,

ECMV.totcov, ECNJC.totcov)
out.muf[i, ] <- c(as.vector(P.pop)[1],

ECPS.mu.est, Hajek.mu[1],

ECPS.mu.SE,

ECTSr .mu, ECF2.mu,
ECMV.mu, ECNJC.mu,
ECTSr.mucov, ECF2.mucov,
ECMV.mucov, ECNJC.mucov)

if (Iskip.sw) {
keep.sw <- TRUE
b

} # skip.sw
} # keep.sw
}  # no.sams

cat("end ", date(), "\n")
c.rate <- apply(cov.mat, 2, mean)
c.rate <- matrix(c.rate, nrow = dim(PS.pop) [1],
ncol = dim(PS.pop) [2], byrow = FALSE)

list(seed = seed,
num.skip.sam = num.skip.sam,
c.rate = round(c.rate,2),

Vhat.B.ECF2 = Vhat.B.ECF2,
Vhat.B.ECNJC = Vhat.B.ECNJC,
Vhat.B.ECMV = Vhat.B.ECMV,
out.tot = out.tot,
out.mu = out.mu)
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A.5 Replicate Variance Estimates

Rep.VarEst <- function(PS.chk, N.hats.B, B.hat.Arep, B.hat.ANrep,
PSUs.rep, one.minus.phi.R, tot.resids.gR.num,
tot.resids.gR.den, tot.resids.gR.cov,
tot.resids.gR.g.num, tot.resids.gR.g.den,
tot.resids.gR.g.cov, c.h, R.h, stdnorm.gR,
ECPS.tot, ECPS.mu) {

PS.chk
N.hats.B

B.hat.Arep
B.hat.ANrep

PSUs.rep
one.minus.phi.R
tot.resids.gR.num
tot.resids.gR.den
tot.resids.gR.cov
tot.resids.gR.g.num
tot.resids.gR.g.den
tot.resids.gR.g.cov
c.h

R.h

stdnorm.gR

ECPS.tot

ECPS.mu

H H OH HH HHHHHEHHHHEH TR HHHEHFHHEHEH T HH KR

if(PS.chk == T) {

General code to calculate replicate variance estimates

T/F if code invoked to check reproduction
of benchmark covar matrix

adjusted benchmark est’s specific to

EC method

sample model coefficients (est’d total)
sample model coefficients for

denominator of (ratio) mean

number of replicates per stratum

coverage error adjustment

base-wtd sqrd residuals for numerator of
ratio mean

base-wtd sqrd residuals for denominator of
ratio mean

base-wtd sqrd residuals for covariance of
ratio mean

g-wtd sqrd residuals for numerator of
ratio mean

g-wtd sqrd residuals for denominator of
ratio mean

g-wtd sqrd residuals for covariance of
ratio mean

sqrt(m_Ah / (m_Ah - 1))

sqrt(1 / (H * m_Ah))

standard normal random values
poststratified estimate of total
(centering value)

poststratified estimate of ration mean
(centering value)

tot.reps <- N.hats.B * B.hat.Arep

for(k in 1.:R) {
if(k == 1) {

Vhat.B.cmp <- ((PSUs.repl[k] - 1) / PSUs.replk]) *
((tot.reps[,k] - ECPS.tot) %*%
t(tot.reps[,k] - ECPS.tot)) }
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else {
Vhat.B.cmp <- Vhat.B.cmp + ((PSUs.rep[k] - 1) / PSUs.replk]) *
((tot.reps[,k] - ECPS.tot) %x%
t(tot.reps[,k] - ECPS.tot)) }
}
Rep.VarEst.tot <- O.
Vhat.B.cmp <- Vhat.B.cmp / no.sams
if(i == 1.) {Vhat.B.est <- Vhat.B.cmp}
else {Vhat.B.est <- Vhat.B.est + Vhat.B.cmp}
}
else {
# No coverage error component

#Estimated totals
tot.reps <- apply(N.hats.B * B.hat.Arep, 2, sum)

diff.vec <- as.matrix(tot.reps - ECPS.tot)
Rep.VarEst.tot <- sqrt(t(diff.vec) %x*%

(diff.vec * as.matrix((PSUs.rep - 1) / PSUs.rep)))
Vhat.B.est <- 0.

#Estimated ratio means
Nhat.reps <- apply(N.hats.B * B.hat.ANrep, 2, sum)
mu.reps <- tot.reps / Nhat.reps
diff.vec <- as.matrix(mu.reps - ECPS.mu)
Rep.VarEst.mu <- sqrt(t(diff.vec) %x*%
(diff.vec * as.matrix((PSUs.rep - 1) / PSUs.rep)))

#Estimated totals
coverr.adjl.tot <- one.minus.phi.R * tot.resids.gR.num[,-1]
coverr.adj2.tot <- one.minus.phi.R * tot.resids.gR.g.num[,-1]

#Estimated ratio means

coverr.adjl.mu <- one.minus.phi.R *

(tot.resids.gR.num[,-1] + ECPS.mu"2 *

tot.resids.gR.den[,-1] -

2 * ECPS.mu * tot.resids.gR.cov[,-1])
coverr.adj2.mu <- one.minus.phi.R =*

(tot.resids.gR.g.num[,-1] + ECPS.mu"2 *

tot.resids.gR.g.den[,-1] - 2 * ECPS.mu *

tot.resids.gR.g.cov[,-1])

#Estimated totals
tot.reps.cl <- apply(N.hats.B * B.hat.Arep +
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c.h * R.h * stdnorm.gR *

sqrt(coverr.adjl.tot), 2, sum)
diff.vec <- as.matrix(tot.reps.cl - ECPS.tot)
Rep.VarEst.totcov <- sqrt(t(diff.vec) %*%

(diff.vec * as.matrix((PSUs.rep - 1)

/ PSUs.rep)))

#Estimated ratio means
Nhat.reps.cl <- apply(N.hats.B * B.hat.ANrep +
c.h * R.h * stdnorm.gR *
sqrt(coverr.adjl.mu), 2, sum)
mu.reps <- tot.reps.cl / Nhat.reps.cl
diff.vec <- as.matrix(mu.reps - ECPS.mu)
Rep.VarEst.mucov <- sqrt(t(diff.vec) %x%
(diff.vec * as.matrix((PSUs.rep - 1)
/ PSUs.rep)))

list(Rep.VarEst.tot Rep.VarEst.tot,
Rep.VarEst.totcov = Rep.VarEst.totcov,
Rep.VarEst.mu Rep.VarEst.mu,
Rep.VarEst.mucov = Rep.VarEst.mucov,

Vhat.B.est Vhat.B.est)

A.6  Generate Analytic Survey Sampling Frames

cov.rate <- function(pop, c.prob, cells) {

# Assign coverage indicators at pop level. Written by R.Valliant.
#

# pop = population

# c.prob = vector of coverage probs - must be in the numeric

# order of coverage cells

# cells = name of col in pop that gives coverage cells

N <- nrow(pop)

Nc <- table(popl, cells])

H <- length(unique(pop[, cells]))
cell.id <- sort(unique(pop[, cells]))
cell.list <- popl[, cells]

p.cov <- rep(0., N)
for(h in cell.id) {
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p.covlcell.list == h] <- c.prob[(1:length(cell.id)) [cell.id==h]]
}
c.sw <= (runif(N) <= p.cov)
c.sw

A.7 Select Analytic Survey Samples

clus.sam <- function(pop, clus.id, unit.id, n.cl, sel.meth, substrat,
n.substrat, sub.vals, cert.PSUs) {

= "srs" for simple random sample of clusters

the substratum variable (HISP)

a vector of sample sizes for substrat

the values of substrat (for HISP = (0,1))

T/F if size > nh.sub, select all units within PSU

substrat

n.substrat

sub.vals
cert.PSUs

# Select a two-stage cluster sample after randomizing order

# of the clusters. Code written by R.Valliant

#

# pop = population matrix

# clus.id = name / number of column for cluster identification
# unit.id = variable to indicate unique units of observation
# n.cl = no. of sample clusters

# sel.meth = "ppswr" for pps cluster sample

#

#

#

#

#

Mi.vec <- table(popl, clus.id])
M <- sum(Mi.vec)
N <- length(Mi.vec)#

if(sel.meth == "ppswr") {
cl.sam <- sample(1:N, n.cl, replace = TRUE, prob = Mi.vec/M) }
if (sel.meth == "srs") {
cl.sam <- sort(sample(1:N, n.cl, replace = TRUE, prob = Mi.vec)) }

cl.sam.id <- names(Mi.vec) [cl.sam]
Mi.sam <- Mi.vec[cl.sam]

# Calculate Cluster selection probabilities

if (sel.meth == "ppswr"){
phi <- n.cl*Mi.sam/M }
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cl.sam.data <- matrix(0,nrow=n.cl*sum(n.substrat) ,ncol=2)
cc <- cumsum(c(O,n.substrat))

n.subtot <- sum(n.substrat)

N.hat <- NULL

drop.sw <- FALSE

for(i in 1:n.cl) {
sam <- match(as.numeric(pop[, clus.id]), cl.sam.id[i],
nomatch = 0)
sam[sam > 0] <- 1
sam.rows <- (1:M) [sam == 1]
phi.c <- rep(phi[i],n.subtot)
Mi.sub <- table(pop[sam.rows,substrat])
sam.id <- vector("numeric", sum(n.substrat))

for(ss in 1:length(n.substrat)) {
S1 <- sam.rows[popl[sam.rows, substrat]==sub.vals[ss]]

# Check that PSU pop count >= subsample size
if (n.substrat[ss] > length(S1)){
if('cert.PSUs) {
cat("i=", i, "n.substrat[ss]=", n.substrat[ss],
"length(S1)=", length(S1),"\n")
cat("cl.sam", cl.sam, "\n")
drop.sw <- TRUE

phij <- 0.
}
else{

phij <- 1.

subsam.vec <- 81
sam.id[(cc[ss]+1):cc[ss+1]] <- popl[subsam.vec, unit.id]
}
}
else{
phij <- n.substrat/Mi.sub
subsam.vec <- sample(S1, n.substrat[ss])
sam.id[(cc[ss]+1):cc[ss+1]] <- popl[subsam.vec, unit.id]
}
}
phij.vec <- rep(phij,n.substrat)
wij.vec <- 1/(phij.vec*phi.c)
N.hat <- rbind(N.hat,by(wij.vec,names(wij.vec),sum))
cl.sam.datal[((i-1)*n.subtot+1): (i*n.subtot),] <-
cbind(sam.id, wij.vec)
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list(cl.sam.data=cl.sam.data, N.hat=apply(N.hat,2,sum),
drop.sw=drop.sw)

A.8 Check Poststratum Sizes

chk.PS <- function(sdat, cl.all, cl.col, r.sw, min.size = 0) {

skip.sw <- FALSE

# Check to see whether
# minimum sample sizes.
#

# sdat = matrix of
# cl.all = vector of
# cl.col = column of
# r.sw = vector of
# min.size =

all poststrata are in sample and have
Code written by R.Valliant.

sample data

all PS in pop

sdat for PS

coverage indicators for sdat sample units

minimum sample size allowed per poststratum

cl.sam <- unique(sdat[, cl.coll)
if(lall(is.element(cl.all, cl.sam))) {

skip.sw <- TRUE
b

cnt <- table(sdat[, cl.col], as.numeric(r.sw))
if (any(cnt < min.size)) {

skip.sw <- TRUE
b

skip.sw

A.9 Simulation Analysis Program

ECPS.SimStats <- function(adj, pop.val, ds.name, estr="tot") {

# Calculate summary stats for simulation runs

#
# adj = covariance adjustment factor number
# pop.val = population estimate used in comparisons

# ds.name

name of data file containing sim results
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estr = type of estimator

max.col <- ncol(ds.name)
varnm.lst <- c("CovAdj", colnames(ds.name) [-c(1:3)])

_____ Absolute Biases of Point Estimates_____
AbsBias.Pt <- c(adj, apply(abs(ds.namel[,c(2,3)] -

ds.name[,pop.vall), 2, mean, na.rm=T))
names (AbsBias.Pt) [1] <- "CovAdj"

_____ RelBiases of Point Estimates_____

RelBias.Pt <- c(adj, apply((ds.name[,c(2,3)] - ds.namel[,pop.vall) /
ds.name[,pop.vall, 2, mean, na.rm=T))

names (RelBias.Pt) [1] <- "CovAdj"

RelBias2.Pt <- c(adj, (apply(ds.namel,c(2,3)], 2, mean, na.rm=T) -
ds.name[1,pop.vall) / ds.name[1,pop.vall)
names (RelBias2.Pt) [1] <- "CovAdj"

biasratio.R <- (ds.name[, 2] - ds.name[, pop.val]) /
ds.name[, 4:max.col]

BiasRatio <- c(adj, apply(biasratio.R, 2, mean, na.rm=T))

names (BiasRatio) <- varnm.lst

biasratio.R <- abs(ds.name[1:10, 2] - ds.name[1:10, pop.vall) /
ds.name[1:10, 4:max.col]

absBiasRatio <- c(adj, apply(biasratio.R, 2, mean, na.rm=T))

names (absBiasRatio) <- varnm.lst

RtMSE <- c(adj, sqrt(apply((ds.name[,c(2,3)] - ds.namel[,pop.vall)"2,
2, mean, na.rm=T)))
names (RtMSE) [1] <- "CovAdj"

AvgSE <- c(adj, apply(ds.name[,4:max.col], 2, mean, na.rm=T))
names (AvgSE) [1] <- "CovAdj"
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StdErr.SE  <- c(adj, sqrt(apply(ds.name[,4:max.col], 2,
var, na.rm=T)))
names (StdErr.SE) [1] <- "CovAdj"

RelBias.Var.mse <- c(adj, (apply(ds.namel[,4:max.col]"2, 2,
mean, na.rm=T) /
apply((ds.name[,rep(2, (max.col - 3))] -
ds.name[,pop.vall)~2, 2, mean, na.rm=T) - 1))
names (RelBias.Var.mse) [1] <- "CovAdj"

var.t.hat <- var(ds.namel[,2])

RelBias.Var.vrt <- c(adj, ((apply(ds.name[,4:max.col]"2, 2,
mean, na.rm=T) - rep(var.t.hat, (max.col - 3))) /
rep(var.t.hat, (max.col - 3))))

names (RelBias.Var.vrt) [1] <- "CovAdj"

mse.R <- ds.name[,4:max.col]"2 + (ds.name[,rep(2, (max.col - 3))]
- ds.name[,pop.val]) "2
RelBias.mse <- c(adj, (apply(mse.R, 2, mean, na.rm=T) /
apply((ds.name[,rep(2, (max.col - 3))] -
ds.name[,pop.vall)~2, 2, mean, na.rm=T) - 1))
names (RelBias.mse) [1] <- "CovAdj"

EmpSE <- c(adj, sqrt(apply(ds.name[,c(2,3)], 2, var, na.rm=T)))
names (EmpSE) [1] <- "CovAdj"

t.stat <- (ds.name[,rep(2, (max.col - 3))] - ds.namel[,pop.vall)
/ ds.name[,4:max.col]

CI.Cov <- c(adj, apply(abs(t.stat) <= qt(0.975, df = 25), 2,
mean, na.rm=T))

names (CI.Cov) <- varnm.lst

Coefficient of Variation
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CV.var <- c(adj, sqrt(apply(ds.namel[,4:max.col], 2, var, na.rm=T))

/ apply(ds.name[,4:max.col], 2, mean, na.rm=T))

names (CV.var)

list (AbsBias.Pt
RelBias.Pt
RelBias2.Pt
BiasRatio
absBiasRatio
RtMSE
AvgSE
StdErr.SE
RelBias.Var.mse
RelBias.Var.vrt
RelBias.mse
EmpSE
CI.Cov
CV.var

<- varnm.lst

AbsBias.Pt,

= RelBias.Pt,
= RelBias2.Pt,

BiasRatio,
absBiasRatio,
RtMSE,

= AvgSE,
= StdErr.SE,

RelBias.Var.mse,
RelBias.Var.vrt,
RelBias.mse,

= EmpSE,
= CI.Cov,

CV.var)

270



Bibliography

Ash, S. (2003). Simultaneous calibration estimators for two-phase samples. Proceed-
ings of the Section on Survey Research Methods, American Statistical Association,
(pp-. 395-400).

Axelson, M. (2000). Variance estimation for the two-phase regression estimator -
a calibration approach. Proceedings of the Section on Survey Research Methods,
American Statistical Association, (pp. 799-804).

Binder, D. A. (1995). Linearization methods for single phase and two-phase samples:
A cookbook approach. Survey Methodology, 22(1), 17-22.

Blumberg, S. J., & Luke, J. V. (2008). Wireless substitution: Early release of
estimates from the National Health Interview Survey, July-December 2007. White
paper published by the Division of Health Interview Statistics, National Center
for Health Statistics.

URL www.cdc.gov/nchs/data/nhis/earlyrelease/wireless200805. pdf

Bolling, K., Grant, C., & Sinclair, P. (2006). 2006-07 British Cime Survey (England
and Wales), Technical Report Volume I. Tech. rep., Home Office, UK - Research,
Development and Statistics area of the Crime Reduction and Community Safety
Group.

URL http://rds.homeoffice.gov.uk/rds/pdfs07/bcs0607techl.pdf

Bray, R., Hourani, L., Rae, K., Dever, J., Brown, J., Vincus, A., Pemberton, M.,
Marsden, M., Faulkner, D., & Vandermaas-Peeler, R. (2003). 2002 Department
of Defense Survey of Health Related Behaviors Among Military Personnel. Tech.
Rep. RT1/7841/006-FR, U.S. Department of Defense prepared by RTI Interna-
tional.

URL http://dodwws.rti.org/2002WWFinalReportComplete05-04.pdf.

Casella, G., & Berger, R. L. (2002). Statistical Inference. California: Duxbury
Press, 2nd ed.

Centers for Disease Control and Prevention (2006). Technical Information and Data

for the Behavioral Risk Factor Surveillance System (BRFSS) - BRFSS Weighting
Formula. U.S. Department of Health and Human Services, Atlanta, GA.

Chambers, R. L., & Skinner, C. J. (2003). Analysis of Survey Data. England: John
Wiley and Sons, Inc.

Chao, A., & Tsay, P. (1998). A sample coverage approach to multiple-system esti-
mation with application to census undercount. Journal of the American Statistical
Association, 93(441), 283-293.

Deville, J.-C., & Sarndal, C.-E. (1992). Calibration estimators in survey sampling.
Journal of the American Statistical Association, 87(418), 376-382.

271



Duchesne, P. (2003). Estimation of a proportion with survey data. Journal of
Statistics Education, 11(3), 1-24.
URL http://www.amstat.org/publications/jse/v11n3/duchesne.pdf

Estevao, V. M., & Sérndal, C.-E. (2000). A functional form approach to calibration.
Journal of Official Statistics, 16(4), 379-399.

Estevao, V. M., & Sérndal, C.-E. (2002). The ten cases of auxiliary information for
calibration in two-phase sampling. Journal of Official Statistics, 18(2), 233-255.

Estevao, V. M., & Sarndal, C.-E. (2004). Borrowing strength is not the best tech-
nique within a wide class of design-consistent domain estimators. Journal of
Official Statistics, 20(4), 645-669.

Folsom, R. E., & Singh, A. C. (2000). The generalized exponential model for sakm-
pling weight calibration for extreme values, nonresponse, and poststratification.
Proceedings of the Section on Survey Research Methods, American Statistical As-
sociation, (pp. 598-603).

Fuller, W. A. (1998). Replication variance estimation for two-phase samples. Sta-
tistica Sinica, 8, 1153-1164.

Fuller, W. A. (2000). Two-phase sampling. Proceedings of the Section on Survey
Research Methods, American Statistical Association, (pp. 23-30).

Fuller, W. A. (2004). Replication variance estimation for the two-phase regression
estimator. Proceedings of the Section on Survey Research Methods, American
Statistical Association, (pp. 3525-3531).

Fuller, W. A., & Rao, J. (2001). A regression composite estimator with application
to the canadian labour force survey. Survey Methodology, 27(1), 45-51.

Gonzalez, J. M., & Eltinge, J. L. (2007). Multiple matrix sampling: A review.
Proceedings of the Section on Survey Research Methods, American Statistical As-
sociation, (pp. 3069-3075).

Griffiths, R. (2007). Stratification for radio listening estimation. Proceedings of the
Section on Survey Research Methods, American Statistical Association, (pp. 1-8).

Groves, R. M. (1989). Survey Errors and Survey Costs. New York: John Wiley and
Sons, Inc.

Héjek, J. (1971). Discussion of “An essay on the logical foundations of survey
sampling, Part 1”7 by D. Basu in Foundations of Statistical Inference. Toronto:
Holt, Rinehart, and Winston.

Hansen, M. H., & Hurwitz, W. N. (1943). On the theory of sampling from finite
populations. Annals of Mathematical Statistics, 14, 333-362.

272



Hedlin, D., Dalvey, H., Chambers, R., & Kokic, P. (2001). Does the model matter
for greg estimation? a business survey example. Journal of Official Statistics,
17(4), 527-544.

Hidiroglou, M. A., & Patak, Z. (2004). Domain estimation using linear regression.
Survey Methodology, 30(1), 67-78.

Hidiroglou, M. A., & Patak, Z. (2006). Raking ratio estimation: An application to
the canadian retail trade survey. Journal of Official Statistics, 22(1), 71-80.

Horvitz, D., & Thompson, D. (1952). A generalization of sampling without re-
placement from a finite universe. Journal of the American Statistical Association,
47(260), 663-685.

Huang, E., & Fuller, W. (1978). Nonnegative regression estimation for sample
survey data. Proceedings of the Social Statistics Section, American Statistical
Association, (pp. 300-305).

Isaki, C. T., Tsay, J. H., & Fuller, W. A. (2004). Weighting sample data subject to
independent controls. Survey Methodology, 30(1), 35-44.

Jayasuriya, B. R., & Valliant, R. (1996). An application of regression and calibra-
tion estimation to post-stratification in a household survey. Survey Methodology,
22(2), 127-137.

Kalton, G. (1979). Ultimate cluster sampling. Journal of the Royal Statistical
Society, Series A (General), 142(2), 210-222.

Kim, J. J., Li, J., & Valliant, R. (2007). Cell collapsing in poststratification. Survey
Methodology, 33(2), 139-150.

Kim, J. K., & Sitter, R. R. (2003). Efficient replication variance estimation for
two-phase sampling. Statistica Sinica, 13, 641-653.

Korn, E. L., & Graubard, B. 1. (1999). Analysis of Health Surveys. John Wiley and
Sons, Inc.

Kott, P. S. (2001). The delete-a-group jackknife. Journal of Official Statistics, 17,
521-52617.

Kott, P. S. (2006). Using calibration weighting to adjust for nonresponse and cov-
erage errors. Survey Methodology, 32(2), 133-142.

Krewski, D., & Rao, J. (1981). Inference from stratified samples: Properties of the
linearization, jackknife and balanced repeated replication methods. The Annals
of Statistics, 9(5), 1010-1019.

Lehmann, E. L. (1999). Elements of Large-Sample Theory. New York: Springer-
Verlag, Inc.

273



Lehtonen, R., & Veijanen, A. (1998). Logistic generalized regression estimators.
Survey Methodology, 24 (1), 51-56.

Lessler, J. T., & Kalsbeek, W. D. (1992). Nonsampling Error in Surveys. John
Wiley and Sons, Inc.

Lohr, S. L. (1999). Sampling: Design and Analysis. New York: Duxbury Press.

Lohr, S. L., & Prasad, N. (2003). Small area estimation with auxiliary survey data.
The Canadian Journal of Statistics, 31(4), 383-396.

Lumley, T. (2005). Survey: analysis of complex survey samples. R package version
3.0-1, Unwversity of Washington: Seattle.

Lundstrom, S., & Sarndal, C.-E. (1999). Calibration as a standard method for
treatment of nonresponse. Journal of Official Statistics, 15(2), 305-327.

Nadimpalli, V., Judkins, D., & Chu, A. (2004). Survey calibration to cps house-
hold statistics. Proceedings of the Survey Research Methods Section, American
Statistical Association, (pp. 4090-4094).

National Center for Health Statistics (2006). 2005 National Health Interview Survey
(NHIS) Public Use Data Release NHIS Survey Description. Tech. rep., Depart-
ment of Health and Human Services, Centers for Disease Control and Prevention,
Hyattsville, Maryland: U.S.

URL http://www.cdc.gov/nchs/nhis.htm

R Development Core Team (2005). R: A Language and Environment for Statistical
Computing. R Development Core Team, Vienna, Austria.
URL http://wuw.R-project.org

Rao, J. (1973). On double sampling for stratification and analytical surveys.
Biometrika, 60, 125-133.

Rao, J. (1997). Developments in sample survey theory: An appraisal. The Canadian
Journal of Statistics, 25(1), 1-21.

Rao, J. (2003). Small Area Estimation. Hoboken, NJ: John Wiley and Sons, Inc.

Rao, J., & Shao, J. (1999). Modified balanced repeated replication for complex
survey data. Biometrika, 86(2), 403-415.

Rao, J., & Wu, C. (1985). Inference from stratified samples: Second-order analysis
of three methods for nonlinear statistics. Journal of the American Statistical
Association, 80(391), 620—-630.

Renssen, R. H., & Nieuwenbroek, N. J. (1997). Aligning estimates for common
variables in two or more sample surveys. Journal of the American Statistical
Association, 92(437), 368-374.

274



Research Triangle Institute (2004). SUDAAN Language Manual, Release 9.0. Re-
search Triangle Institute, Research Triangle Park, NC.
URL http://www.rti.org/sudaan/index.cfm

Rust, K. F., & Rao, J. (1996). Variance estimation for complex surveys using
replication techniques. Statistical Methods in Medical Research, 5, 283-310.

SAMHSA (2007). Results from the 2006 National Survey on Drug Use and
Health: National Findings (NSDUH Series H-32, DHHS Publication No. SMA
07-4293). Tech. rep., Substance Abuse and Mental Health Services Administra-
tion (SAMHSA), Office of Applied Studies, Department of Health and Human
Services (DHHS), Rockville, MD.

URL uh/2k6Results.pdf

Sarndal, C.-E. (2007). The calibration approach in survey theory and practice.
Survey Methodology, 33(2), 99-119.

Sérndal, C.-E., & Lundstrom, S. (2005). Estimation in Surveys with Nonresponse.
England: John Wiley and Sons, Inc.

Sarndal, C.-E., Swensson, B., & Wretman, J. (1992). Model Assisted Survey Sam-
pling. New York: Springer-Verlag, Inc.

Sarndal, C.-E., Swensson, B., & Wretman, J. H. (1989). The weighted residual
technique for estimating the variance of the general regression estimator of the
finite population total. Biometrika, 76, 527-537.

SAS Institute Inc. (2004). SAS/STAT 9.1 User’s Guide, Volumes 1-7. SAS Institute
Inc, Cary, NC.
URL http://www.sas.com/

Searle, S. R. (1982). Matriz Algebra Useful for Statistics. New York: John Wiley
and Sons, Inc.

Serfling, R. J. (1980). Approzimation Theorems of Mathematical Statistics. John
Wiley and Sons, Inc.

Singh, A. C. (1996). Combining information in survey sampling by modified regres-
sion. Proceedings of the Section on Survey Research Methods, American Statistical
Association, (pp. 120-129).

Singh, A. C., Dever, J. A.; & Tannacchione, V. G. (2004). Composite response rates
for surveys with nonresponse follow-up. Proceedings of the Section on Survey
Research Methods, American Statistical Association, (pp. 4343-4350).

Singh, A. C., lannacchione, V. G., & Dever, J. A. (2003). Efficient estimation for
surveys with nonresponse follow-up using dual-frame calibration. Proceedings of

the Section on Survey Research Methods, American Statistical Association, (pp.
3919-3930).

275



Singh, A. C., & Mohl, C. A. (1996). Understanding calibration estimators in survey
sampling. Survey Methodology, 22, 107-115.

Singh, A. C.; & Wu, S. (1996). Estimation for multiframe complex surveys by
modified regression. Proceedings of the Statistical Society of Cananda, Survey
Methods Section, (pp. 69-77).

Singh, A. C., & Wu, S. (2003). An extension of generalized regression estimator
for dual-frame surveys. Proceedings of the Section on Survey Research Methods,
American Statistical Association, (pp. 3911-3918).

Smith, T. M. (1991). Post-stratification. The Statistician, Special Issue: Survey
Design, Methodology and Analysis (2), 40(3), 315-323.

StataCorp (2005). Stata Statistical Software: Release 9. StataCorp, College Station,
TX.
URL http://www.stata.com/capabilities/svy.html

Stukel, D. M., Hidiroglou, M. A.; & Sarndal, C.-E. (1996). Variance estimation for
calibration estimators: A comparison of jackknifing versus taylor linearization.
Survey Methodology, 22(2), 117-125.

Sweden, S. (2005). Flow statistics from the swedish labour force survey. Tech. rep.,
Statistics Sweden, Stockholm: Sweden.

Taylor, M. F., Brice, J., Buck, N., & Prentice-Lane, E. (2007). British House-
hold Panel Survey User Manual Volume A: Introduction, Technical Report and
Appendices. University of Essex., Colchester.

Terhanian, G., Bremer, J., Smith, R., & Thomas, R. (2000). Correcting data from
online survey for the effects of nonrandom selection and nonrandom assignment.
Research Paper: Harris Interactive.

Théberge, A. (1999). Extensions of calibration estimators in survey sampling. Jour-
nal of the American Statistical Association, 94 (446), 635-644.

Tracy, D., Singh, S., & R., A. (2003). Note on calibration in stratified and double
sampling. Survey Methodology, 29(1), 99-104.

UCLA Center for Health Policy Research (2006). California Health Interview Survey
(CHIS) - weighting and estimation of variance in the CHIS public use files. Tech.
rep., Los Angeles, California: University of California (UCLA).

U.S. Census Bureau (2002). Sources and accuracy of estimates for poverty in the
United States: Washington, DC.

Valliant, R. (1993). Poststratification and conditional variance estimation. Journal
of the American Statistical Association, 88, 89-96.

276



Valliant, R., Brick, J. M., & Dever, J. A. (2008). Weight adjustments for the grouped
jackknife variance estimator. Journal of Official Statistics, (p. in print).

Weinberg, D. (2006). Income data quality issues in the cps. Monthly Labor Review
Online, 129(6), 38-45.

West, K., Robinson, G., & Bentley, M. (2005). Did proxy respondents cause age
heaping in the census 20007  Proceedings of the Section on Survey Research
Methods, American Statistical Association, (pp. 3658-3665).

Westat (2000). WesVar 4.0 Users Guide. Rockville, MD.

Wolter, K. M. (2007). Introduction to Variance Estimation. New York: Springer
Science+Business Media, LLC.

Woodruff, R. S. (1971). A simple method for approximating the variance of a
complicated estimate. Journal of the American Statistical Association, 66(334),
411-414.

Wu, C. (1985). Variance estimation for the combined ratio and combined regression
estimators. Journal of the Royal Statistical Society, Series B, 47(1), 147-154.

Yung, W., & Rao, J. (1996). Jackknife linearization variance estimators under
stratified multi-stage sampling. Survey Methodology, 22(1), 23-31.

Yung, W., & Rao, J. (2000). Jackknife variance estimation under imputation for es-
timators using poststratification information. Journal of the American Statistical
Association, 95(451), 903-915.

277



