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Abstract. Petri nets are one of the most prominent system-level for-
malisms for the specification of causality in concurrent, distributed, or
multi-agent systems. This formalism is abstract enough to be analyzed
using theoretical tools, and at the same time, concrete enough to elim-
inate ambiguities that would arise at implementation level. One inter-
esting feature of Petri nets is that they can be studied from the point
of view of true concurrency, where causal scenarios are specified using
partial orders, instead of approaches based on interleaving.

On the other hand, message sequence chart (MSC) languages, are
a standard formalism for the specification of causality from a purely
behavioral perspective. In other words, this formalism specifies a set
of causal scenarios between actions of a system, without providing any
implementation-level details about the system.

In this work, we establish several new connections between MSC lan-
guages and Petri nets, and show that several computational problems
involving these formalisms are decidable. Our results fill some gaps in
the literature that had been open for several years. To obtain our results
we develop new techniques in the realm of slice automata theory, a frame-
work introduced one decade ago in the study of the partial order behavior
of bounded Petri nets. These techniques can also be applied to establish
connections between Petri nets and other well studied behavioral for-
malisms, such as the notion of Mazurkiewicz trace languages.
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1 Introduction

Petri nets are one of the most prominent system-level formalisms for the speci-
fication of causality in concurrent, distributed or multi-agent systems. This for-
malism is abstract enough to be analyzed using theoretical tools, and at the same
time, concrete enough to eliminate ambiguities that would arise at implementa-
tion level. One interesting feature of Petri nets is that they can be studied from
the point of view of true concurrency, where causal scenarios are specified using
partial orders, instead of approaches based on interleaving [18,36]. On the other
hand, message sequence chart (MSC) languages [16,19], are a standard formal-
ism for the specification of causality from a purely behavioral perspective. In
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other words, this formalism specifies a set of causal scenarios between actions of
a system, without providing any implementation-level details about the system.

In this work, we show that given an MSC automaton M specifying a set
of partial orders Lpo(M), and a b-bounded Petri net N with causal behavior
Pcau(N), it is decidable whether Lpo(M)∩Pcau(N) �= ∅, and whether Lpo(M) ⊆
Pcau(N) (Theorem 8). Additionally, for any given b ∈ N+, one can synthesize a
b-bounded Petri net N that best captures the behavior specified by M (Theorem
9). More specifically, Lpo(M) ⊆ Pcau(N), and there is no other b-bounded Petri
net N ′ such that Lpo(M) ⊆ Pcau(N ′) � Pcau(N). Finally, if the MSC automa-
ton M is locally synchronized, a well studied property in the context of MSC
language theory [1,19,31], then one can also test whether Pcau(N) ⊆ Lpo(M)
(Theorem 8).

The feasibility of all computational problems described above have been open
even for 1-bounded Petri nets, despite the fact that both Petri nets and MSC
languages have been defined several decades ago. The key of our results is a new
connection between MSC automata and slice automata, a formalism introduced
in [33] in the study of the partial order behavior of bounded Petri nets. More
specifically, we show that for each MSC automaton M, one can construct a slice
automaton A such that Lpo(M) = Lpo(A) (Theorem 7). A crucial feature of this
construction is that it preserves good decidability properties. More precisely, if
the input MSC automaton M is locally synchronized, then the obtained slice
automaton A satisfies a property called saturation, which is crucial for the analy-
sis of the causal behavior of Petri nets against safety specifications. To establish
the connection mentioned above, we develop new slice-theoretic machinery of
independent interest. In particular, we introduce the notions of slice-traces, and
the notion of a locally synchronized slice automaton. In Sect. 8, we show that this
new framework can also be used to establish connections between slice automata
(and therefore, Petri nets), and the formalism of Mazurkiewicz trace languages
[8,12,20,24,28,28], which is another well-studied formalism for the specification
of sets of partial orders. In this case, it also holds that our reductions preserve
good decidability properties, in the sense that finite automata accepting trace-
closed languages are mapped to saturated slice automata.

Related Work. During the last four decades many partial order formalisms
have been introduced and several connections have been established between
these formalisms [9,13,17,21,25,29,36]. In particular, the expressiveness of finite
message-passing automata with a priori unbounded FIFO channels was studied
in [5], where it was shown that these automata capture exactly the class of MSC
languages that are definable in existential monadic second-order logic interpreted
over MSCs. Asynchronous cellular automata for traces were originally introduced
by Zielonka [37]. A notion of asynchronous cellular automaton for pomsets with-
out auto-concurrency was devised in [10]. Existentially bounded communicating
automata have been considered in [14] where an equivalence was established
between communication automata, globally cooperative compositional message
sequence graphs and monadic second-order logic. Several connections between
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communicating automata with bounded channels and Mazurkiewicz traces have
been considered in [15]. Generalizations of Mazurkiewicz traces have been con-
sidered in [22], and some extensions of message sequence graphs that are suitable
for model checking under MSO specifications have been considered in [27]. Series
parallel languages have been considered in [26]. It is important to note that the
class of partial orders that can be accepted by slice automata are incomparable
with the class of series parallel partial orders. On the one hand, series paral-
lel partial orders are not necessarily k-bounded in the sense considered in this
work. On the other hand, it is easy to construct k-bounded partial orders that
are not series parallel. In particular, for k ≥ 4, slice automata are able to define
k-bounded partial orders whose underlying undirected graph have the complete
graph K4 as a minor, whereas it is known that no such partial order can be series
parallel. It is also worth noting that none of the formalisms described in this
paragraph are able to represent the causal behavior of arbitrary bounded Petri
nets. Generalizations of finite automata accepting infinite words have been con-
sidered in several contexts. For instance, regular sets of infinite message sequence
charts [23]. Automata over message sequence charts capable of accepting infinite
MSCs were studied in [4]. We note that we do not consider automata capable of
accepting infinite partial orders in this work.

2 The Causal Semantics of Petri Nets

In this section, we briefly define the classic notion of Petri-nets and describe
their partial-order semantics. Within this semantics, partial orders are used to
represent the causality between events in concurrent runs of a Petri net.

A Petri net is a tuple N = (P, T,W,m0) where P is a set of places, T is a set
of transitions such that P ∩ T = ∅, W : (P × T ) ∪ (T × P ) → N is a function
that assigns a weight W (x, y) to each element (x, y) ∈ (P × T ) ∪ (T × P ), and
m0 : P → N is a function that assigns a non-negative integer m0(p) to each place
p ∈ P .

A marking for N is any function of the form m : P → N. Intuitively, a
marking m assigns a number of tokens to each place of N . The marking m0 is
called the initial marking of N . If m is a marking and t is a transition in T , then
we say that t is enabled at m if m(p)−W (p, t) ≥ 0 for every place p ∈ P . If this is
the case, the firing of t yields the marking m′ which is obtained from m by setting
m′(p) = m(p) − W (p, t) + W (t, p) for every place p ∈ P . A firing sequence for N

is a mixed sequence of markings and transitions s ≡ m0
t1−→ m1

t2−→ ...
tn−→ mn

such that for each i ∈ {1, ..., n}, ti is enabled at mi−1, and mi is obtained from
mi−1 by the firing of ti. We say that such a firing sequence is b-bounded if for
each i ∈ {0, ..., n} and each p ∈ P , mi(p) ≤ b. We say that N is b-bounded if
each of its firing sequences is b-bounded.

The partial order semantics of Petri nets is defined using the notion of Petri-
net processes introduced by Goltz and Reisig in [18]. The information about
the causality between events is extracted from objects called Petri net processes,
which encode the production and consumption of tokens along a concurrent run



450 M. de Oliveira Oliveira

of the Petri net in question. The definition of processes, in turn, is based on the
notion of occurrence net.

An occurrence net is a DAG O = (B ∪̇ V, F ) where the vertex set B ∪̇ V is
partitioned into a set B, whose elements are called conditions, and a set V , whose
elements are called events. The edge set F ⊆ (B × V ) ∪ (V × B) is restricted in
such a way that for every condition b ∈ B, |{(b, v) | v ∈ V }| ≤ 1 and |{(v, b) | v ∈
V }| ≤ 1. In other words, conditions in an occurrence net are unbranched. For each
condition b ∈ B, we let InDegree(b) denote the number of edges having b as target.
A process of a Petri net N is an occurrence net whose conditions are labeled with
places of N , and events are labeled with transitions of N . Processes are intuitively
used to describe the token game in a concurrent execution of the net.

Definition 1 (Process [18]). A process of a Petri net N = (P, T,W,m0)
is a labeled DAG π = (B∪̇V, F, ρ) where (B∪̇V, F ) is an occurrence net and
ρ : (B ∪ V ) → (P ∪ T ) is a labeling function satisfying the following properties.

1. Places label conditions and transitions label events: ρ(B) ⊆ P and ρ(V ) ⊆ T .
2. For every p ∈ P , |{b : InDegree(b) = 0, ρ(b) = p}| = m0(p).
3. For every v ∈ V , and every p ∈ P , |{(b, v) ∈ F : ρ(b) = p}| = W (p, ρ(v))

and |{(v, b) ∈ F : ρ(b)=p}| = W (ρ(v), p).

Item 1 says that the conditions of a process are labeled with places, while
the events are labeled with transitions. Item 2 says that the minimal vertices
of the process, are conditions. Intuitively, each of these conditions represent a
token in the initial marking of N . Thus for each place p of N the process has
m0(p) minimal conditions labeled with the place p. Item 3, determines that the
token game of a process corresponds to the token game defined by the firing of
transitions in the Petri net N . Thus if a transition t consumes W (p, t) tokens
from place p and produces W (t, p) tokens at place p, then each event labeled
with t must have W (p, t) in-neighbours that are conditions labeled with p, and
W (t, p) out-neighbours that are conditions labeled with p.

Fig. 1. A 2-bounded Petri net N . A process π of N . The partial order �π derived from
π. The extension �̂π of �π.

Let R ⊆ X × X be a binary relation over a set X. We denote by tc(R) the
transitive closure of R. If π = (B ∪ V, F, ρ) is a process then the causal order of
π is the partial order �π = (V, tc(F )|V ×V , ρ|V ) which is obtained by taking the
transitive closure of F and subsequently by restricting tc(F ) to pairs of events
of V . In other words the causal order of a process π is the partial order induced
by π on its events.
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If � = (V,<, l) is a partial order, then we let �∗ = (V ′, <′, l′) be the extended
version of �, where V ′ = V ∪{vι, vε}, <′=< ∪({vι}×V )∪(V ×{vε})∪{(vι, vε)},
l′|V = l, l′(vι) = ι and l′(vε) = ε. In other words, �′ is obtained from � by the
addition of an element vι that is smaller than all other elements, and an element
vε that is greater than all other elements. The addition of these minimal and
maximal elements to a partial order are made to avoid the consideration of
special cases in some of our future lemmas. All of our results work if ignore this
step, but at the expense of more repetitive proofs that deal with corner cases. We
denote by Pcau(N) the set of all extended versions of partial orders derived from
processes of N : Pcau(N) = {�̂π|π is a process of N}. We say that Pcau(N) is the
causal language of N . We observe that several processes of N may correspond
to the same partial order in Pcau(N).

Recall that the Hasse diagram of a partial order � = (V,<, l) is the DAG
H = (V,E) with the smallest number of edges with the property that <= tc(E).
It is a well known result in partial order theory that this DAG is unique. We say
that � is a k-partial-order, for some k ∈ N, if there exist k paths p1, . . . , pk in H
that cover all vertices and edges of H. In other words, V =

⋃
i Vi and E =

⋃
i Ei

where for each i ∈ {1, . . . , k}, Vi and Ei are the vertex-set and edge-set of the
path pi respectively. We note that the paths in the cover are not necessarily
vertex-disjoint nor edge-disjoint.

For each k ∈ N, let Pcau(N, k) denote the set of k-partial-orders which are
causal-orders of N . It can be shown that if N is b-bounded, then every causal-
order of N = (P, T,W,m0) is a (b·|P |)-partial-order. In other words, each causal-
order of N can be covered by at most b · |P | paths. This implies that Pcau(N) =
Pcau(N, b · |P |).

3 Message Sequence Chart Languages

Message Sequence Charts (MSCs) are a suitable formalism for the representa-
tion of the exchange of messages between processes of a concurrent systems.
In particular, during the last two decades, MSCs have been used to specify
runs of telecommunication protocols. Intuitively, an MSC can be formalized as
a partial-order that represents the causality between messages exchanged in a
given concurrent run. Infinite families of MSCs, and therefore infinite families
of partial-orders, can be specified using equivalent formalisms such as message
sequence graphs, hierarchical (or high-level) message sequence charts (HMSCs)
[2,30,32], or message sequence chart automata which will be defined below.

We formalize MSCs according to the terminology used in [30]. Let J be a
finite set of processes, also called instances. For each instance i ∈ J , we associate
a finite set of actions Σi = Σint

i ∪ Σ!
i ∪ Σ?

i . This set is partitioned into a set Σint
i

of internal actions, a set Σ!
i = {i!j : j ∈ J \{i}} of send actions, and a set

Σ?
i = {i?j : j ∈ J \{i}} of receive actions. We shall assume that for each two

distinct instances i, j ∈ J , Σi ∩ Σj = ∅. The set of actions associated with J is
defined as ΣJ =

⋃
i∈J Σi. Given an action a ∈ ΣJ , Ins(a) denotes the unique

instance i such that a ∈ Σi. For each ΣJ -labeled partial-order � = (V,<, l) and
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each vertex v ∈ V , we let Ins(v) = Ins(l(v)) be the instance of J where the
action l(v) occurs. For each i, j ∈ J with i �= j, and each subset X ⊆ V we
let #i!j(X) = |{v ∈ X | l(v) = i!j}| be the number of messages sent from i to j,
and by #i?j(X) = {v ∈ X | l(v) = i?j} be the number of messages received by i
which were sent by j. We write v ≤ v′ as a shortcut for v < v′ ∨ v = v′. For each
v ∈ V we let ↓ v = {v′ | v′ ≤ v} be the set of all nodes of � which are smaller
or equal to v. We write v ≺ v′ to indicate that v < v′ and for every u ∈ V ,
v < u ≤ v′ ⇒ u = v′. In other words, v ≺ v′ if v′ is an out-neighbour of v in the
Hasse diagram of �.

Definition 2 (Message Sequence Chart (MSC)). Let J be a set of pro-
cesses. A message sequence chart over J is a ΣJ -labeled partial-order M =
(V,<, l) satisfying the following properties.

1. For every pair of actions v, v′ ∈ V if Ins(v) = Ins(v′) then either v < v′,
v′ < v or v = v′.

2. For every i, j ∈ J with i �= j, #i!j(V ) = #j?i(V ).
3. For each v ∈ V and each i, j ∈ J , if l(v) = i!j and l(v′) = j?i and #i!j(↓

v) = #j?i(↓ v′), then v < v′.
4. If v ≺ v′ and Ins(v) �= Ins(v′), then

l(v) = i!j, l(v′) = j?i and #i!j(↓ v) = #j?i(↓ v′).

Intuitively, Condition 1 states that actions occurring on the same process are
linearly ordered. Condition 2 states that for each two distinct processes i, j, the
number of messages send from i to j is equal to the number of messages received
by j coming from i. Condition 3 states that for each n ∈ N, the n-th message sent
from i to j is received when the n-th action j?i occurs, i.e., the channels in which
these messages are transmitted are assumed to be FIFO. Finally, Condition 4
establishes a causal dependence between send and receive actions from distinct
processes.

Let M = (V,<, l) and M ′ = (V ′, <′, l′) be MSCs over J . The composition of
M with M ′ is the MSC M ◦M ′ = (V ′′, <′′, l′′) where V ′′ = V ∪V ′, l′′ = l∪l′, and
<′′ is the transitive closure of the relation < ∪ <′ ∪ {(v, v′) ∈ V ×V ′|Ins(v) =
Ins(v′)}.

To define infinite families of partial-orders, we use the notion of message
sequence chart automata (MSC Automata). Let MJ be the set of all finite MSCs
over J . Here, the set MJ may be regarded as an (infinite) alphabet of MSCs.

Definition 3. Let J be a set of processes. A message sequence chart automaton
(MSC automaton) over J is a finite automaton M = (Q,R, Q0, F ) where Q is
finite a set of states, Q0 ⊆ Q is a set of initial states, F is a set of final states
and R ⊆ Q × MJ × Q.

We say that a sequence M1M2...Mn of MSCs is accepted by M if there is a
sequence q0

M1−−→ q1
M2−−→ ...

Mn−−→ qn where q0 ∈ Q0, qn ∈ F and (qi−1,Mi, qi) ∈ R
for each i ∈ {1, ..., n}. An MSC automaton generates two languages. At the
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syntactic level, L(M) is the set of all sequences M1M2...Mn of MSCs accepted
by M. At the semantic level,

Lpo(M) = {M1 ◦ ... ◦ Mn | n ∈ N,M1...Mn ∈ L(M)}

is the set of all MSCs obtained by composing each sequence of MSCs in L(M).
We note that an MSC language can be represented by an MSC automaton if and
only if it can be represented by the more traditionally used message sequence
graphs [2,30,32]. Nevertheless, we choose to work with MSC automata due to
the fact that the proof of our results will be shorter.

If M is an MSC, then the communication graph of M , denoted by G(M),
has the processes of M as vertices, and has one edge e with source in a process
p and target in a process q if and only if p sends some message to q in M . We
say that M is locally-synchronized if the graph G(M) has a unique non-trivial1

strongly connected component, and every vertex that is not in such component
is isolated. We say that an MSC automaton M is locally-synchronized if for
each loop q1

M1−−→ q2
M2−−→ ...qn

Mn−−→ q1 in M, the MSC M1 ◦ M2 ◦ ... ◦ Mn is
locally-synchronized.

The partial-order language accepted by an MSC automaton is linearization-
regular [19] if the set of linearizations of partial-orders in Lpo(M) can be rec-
ognized by a finite automaton over the alphabet ΣJ . In other words, Lpo(M)
is linearization-regular if the following set of strings over ΣJ is regular in the
usual sense of finite automata theory.

lin(M) =
⋃

�∈Lpo(M)

lin(�). (1)

It can be shown that an MSC language generated by an MSC automaton M
is linearization-regular if and only if M is locally synchronized.

Theorem 1 ([2,31]). Let M be an MSC automaton. Then Lpo(M) is
linearization-regular if and only if M is locally-synchronized.

4 Slice Automata

In this section we define slices and slice automata. Slice automata will be used to
provide a static representation of infinite families of DAGs and infinite families of
partial-orders. We note that slices can be related to several formalisms such as,
multi-pointed graphs, [11], co-span decompositions [7] and graph transformations
[3,6,11,35].

In what follows, T denotes a finite set of labels. A slice S = (V,E, l, s, t,
[I, C,O]) is a (T ∪ N)-labeled DAG where the vertex set V = I ∪̇ C ∪̇ O is
partitioned into an in-frontier I, a center C and an out-frontier O. The function
l : V → T ∪ N labels the center vertices in C with elements of T , and the in- and
out-frontier vertices with positive integers in such a way that l(I) = {1, ..., |I|} and

1 A strongly connected component is trivial if it has a unique vertex.
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l(O) = {1, ..., |O|}. We require that each frontier-vertex v in I ∪ O is the endpoint
of exactly one edge e ∈ E and that the edges are directed from the in-frontier to the
out-frontier. More precisely, for each edge e ∈ E, we assume that s(e) ∈ I ∪C and
that t(e) ∈ C ∪ O. We may also speak of a slice S with frontiers (I,O) to indicate
that the in-frontier of S is I and that the out-frontier of S is O.

Fig. 2. i) A slice and its pictorial representation. ii) Composition of slices.

A slice S1 = (V1, E1, l1, s1, t1) with frontiers (I1, O1) can be glued to a slice
S2 = (V2, E2, l2, s2, t2) with frontiers (I2, O2) provided |O1| = |I2|. In this case
the glueing gives rise to the slice S1◦S2 = (V3, E3, l3, s3, t3) with frontiers (I1, O2)
which is obtained by taking the disjoint union of S1 and S2, and by fusing, for
each i ∈ {1, ..., |O1|}, the unique edge e1 ∈ E1 for which l1(t1(e1)) = i with the
unique edge e2 ∈ E2 for which l2(s2(e2)) = i. Formally, the fusion of e1 with
e2 is performed by creating a new edge e12 with source s3(e12) = s1(e1) and
target t3(e12) = t2(e2), and by deleting e1 and e2. Thus in the glueing process
the vertices in the glued frontiers disappear.

A unit slice is a slice with exactly one vertex in its center. A slice is initial if
it has empty in-frontier and final if it has empty out-frontier. The width of a slice
S with frontiers (I,O) is defined as w(S) = max{|I|, |O|}. A slice alphabet is any
finite set of slices. In particular, for each finite set of symbols T and each k ∈ N

we let
−→
Σ(k, T ) be the set of all unit slices S of width at most k whose center

vertex is labeled with an element from T . Observe that the alphabet
−→
Σ(k, T ) is

finite and has asymptotically |T | · 2O(k log k) slices. A sequence U = S1S2...Sn

of unit slices is called a unit decomposition if Si can be glued to Si+1 for each
i ∈ {1, ..., n− 1}. In this case, we let

◦
U= S1 ◦S2 ◦ ... ◦Sn be the DAG associated

with U, which is obtained by glueing each two consecutive slices in U. The width
of U, denoted by w(U), is defined as the maximum width of a slice occurring
in U. We let

−→
Σ(k, T )∗ be the set of all sequences of slices over

−→
Σ(k, T ), and−→

Σ(k, T )� be the set of all unit decompositions over
−→
Σ(k, T ).

Definition 4 (Slice Automaton). Let T be a finite set of symbols and let
k ∈ N. A slice automaton over

−→
Σ(k, T ) is a finite automaton A = (Q,R, q0, F )

where Q is a set of states, q0 ∈ Q is an initial state, F ⊆ Q is a set of final
states, and R ⊆ Q × −→

Σ(k, T ) × Q is a transition relation such that for every
q, q′, q′′ ∈ Q and every S ∈ −→

Σ(k, T ):

1. if (q0,S, q) ∈ R then S is an initial slice,
2. if (q,S, q′) ∈ R and q′ ∈ F , then S is a final slice,
3. if (q,S, q′) ∈ R and (q′,S′, q′′) ∈ R, then S can be glued to S′.
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Fig. 3. i) A slice automaton A. ii) A unit decomposition U accepted by A. iii) The

DAG
◦
U obtained by glueing each two consecutive slices in U.

Languages of a Slice Automaton. A slice automaton A can be used to
represent three types of languages. At a syntactic level, we have the slice language
L(A) which consists of the set of all unit decompositions accepted by A.

L(A) = {S1S2...Sn | S1S2...Sn is accepted by A} (2)

At a semantic level, we have the graph language LG(A) which consists of all
DAGs represented by unit decompositions in L(A), and the partial-order lan-
guage Lpo(A), which consists of all partial-orders which arise as the transitive
closure (tc) of DAGs in LG(A). Formally, the graph language, and the partial-
order languages accepted by A are defined as follows.

LG(A) = { ◦
U | U ∈ L(A)} Lpo(A) = {tc( ◦

U) | ◦
U ∈ LG(A)}. (3)

Let H be a DAG whose vertices are labeled with elements from a finite set
T . Then we let ud(H,

−→
Σ(k, T )) denote the set of all unit decompositions U in−→

Σ(k, T )� for which
◦
U= H. We say that a slice automaton A over

−→
Σ(k, T ) is

saturated if for every DAG H ∈ LG(A) we have that ud(H,
−→
Σ(k, T )) ⊆ L(A).

The transitive reduction of a DAG H = (V,E, l) is the (unique) mini-
mal subgraph tr(H) of H with the same transitive closure as H. Note that
tc(tr(H)) = tc(H). We say that a DAG H is transitively reduced if H = tr(H).
Alternatively, we call a transitively reduced DAG a Hasse diagram. We say that
a slice automaton A is transitively reduced if every DAG in LG(A) is transitively
reduced. Theorem 2 states that any slice automaton A can be converted into a
transitively reduced slice automaton tr(A) representing the same partial-order
language in such a way that the saturation property is preserved.

Theorem 2 ([34]). Let A be a slice automaton over
−→
Σ(k, T ). Then one can

construct in time 2O(k log k) ·|A| a transitively reduced slice automaton tr(A) such
that Lpo(tr(A)) = Lpo(A). Additionally, if A is saturated, then so is tr(A).

Transitively reduced saturated slice automata are important for our set-
ting because they can be used to canonically represent infinite families of
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partial-orders, and because they enjoy several nice decidability/closure prop-
erties. For instance, inclusion and emptiness of intersection of partial-order lan-
guages represented by such slice automata are decidable.

Lemma 1 (Properties of Saturated Slice Automata). Let A and A′ be
transitively-reduced slice automata over

−→
Σ(k, T ). Assume that A′ is saturated.

1. It is decidable whether Lpo(A) ∩ Lpo(A′) �= ∅.
2. It is decidable whether Lpo(A) ⊆ Lpo(A′).

Additionally, the partial order behavior of bounded Petri nets can be repre-
sented using transitively-reduced, saturated slice automata.

Theorem 3 ([33]). Let N = (P, T,W,m0) be a b-bounded Petri net.
Then for each k ∈ N one can construct in time 2O(|P |·k·log b·k) · |T ||P | a
transitively-reduced, saturated slice automaton A(N, k) over

−→
Σ(k, T ) such that

Lpo(A(N, k)) = Pcau(N, k).

We note that every partial-order in the causal language of a b-bounded Petri
net is a k-partial-order for some k ≤ b · |P |. Therefore, if we set A(N) = A(N, b ·
|P |) then Lpo(A(N)) = Pcau(N). Finally, synthesis of Petri nets from (any) slice
automata is decidable.

Theorem 4 (Synthesis [33]). Let A be a slice automaton over
−→
Σ(k, T ). For

each b ∈ N one can construct a b-bounded Petri net N satisfying the following
properties.

1. Lpo(A) ⊆ Pcau(N).
2. There is no other b-bounded Petri net N ′ with Lpo(A) ⊆ Pcau(N ′) �

Pcau(N).

5 Weak Saturation

In this section, we introduce the notion of weak-saturation, a relaxation of the
notion of saturation that is more suitable for applications involving other partial
order formalisms. The main result of this section states that weak-saturated slice
automata can be effectively transformed into saturated slice automata.

Let H = (V,E, l, s, t) be a T -labeled DAG and ω = (v1, ..., vn) be a topologi-
cal ordering of the vertices of H. In other words, ω is a sequence of vertices from
H such that for each i, j with i < j, there is no edge e ∈ E with source s(e) = vj

and target t(e) = vi. We say that a unit decomposition U = S1S2...Sn over−→
Σ(k, T ) is compatible with ω if

◦
U = H and for each i, vi is the center vertex of

Si. Note that given a graph H and a topological ordering ω, there may be several
unit decompositions of H compatible with ω. We denote by ud(H,ω,

−→
Σ(k, T ))

the set of all unit decompositions of H over
−→
Σ(k, T ) that are compatible with

ω. Note that for each graph H, we have that
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Fig. 4. A graph H, an ordering ω = (a, b, c, d) of the vertices of H, and all unit
decompositions of H compatible with ω. For each unit decompositions U,U′ in

ud(H, ω,
−→
Σ(k, T )), U is a twisting of U′.

ud(H,
−→
Σ(k, T )) =

⋃

ω

ud(H,ω,
−→
Σ(k, T )) (4)

where ω ranges over all topological orderings of H.

Definition 5 (Weak Saturation). We say that a slice automaton A is weakly
saturated if for each DAG H in LG(A), and each topological ordering ω of H,

L(A) ∩ ud(H,ω,
−→
Σ(k, T )) �= ∅.

In other words, a slice automaton A is weakly saturated if for each graph H
and each topological ordering ω of H there is at least one unit decomposition
of H in L(A) which is compatible with ω. In Sect. 6 we will show that weak
saturation is a decidable property. The following lemma states that each weakly
saturated slice automaton can be transformed into a saturated slice automaton
representing the same set of DAGs, and therefore the same set of partial-orders.

Lemma 2. Let A be a weakly saturated slice automaton over
−→
Σ(k, T ). Then

one can construct in time 2O(k log k) · |A| a saturated slice automaton A′ such
that LG(A) = LG(A′).

Proof. For w ≥ 0, let [w] = {1, ..., w}. We let [0] be the empty set ∅. A per-
mutation of [w] is a bijective mapping π : [w] → [w]. We denote by ∅ the
empty permutation π : [0] → [0]. Let S be a slice with frontiers (I,O) and let
π : [|I|] → [|I|] and π′ : [|O|] → [|O|] be permutations. We denote by (π,S, π′)
the slice that is obtained from S by permuting the labels of the in-frontier nodes
according to π, and by permuting the labels of the out-frontier nodes according
to π′.

Let U = S1S2...Sn be a unit decomposition over
−→
Σ(k, T ), where each

slice Si has frontiers (Ii, Oi). Let π1, ...,πn−1 be a sequence where for each
j ∈ {1, ..., n − 1}, πj : [|Oj |] → [|Oj |] is a permutation. Then we say that the
unit decomposition

U′ = (∅,S1,π1)(π1,S2,π2)...(πn,Sn, ∅)
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is a twisting of U. Note that
◦
U=

◦
U

′
(see Fig. 4). In other words, if U is a twisting

of U′ then both decompositions give rise to the same DAG. Conversely, if U and
U′ are compatible with the same topological ordering of a graph H then U
and U′ are twistings of each other. These remarks are formalized in the next
proposition.

Proposition 1. Let H be a DAG and U and U′ be unit decompositions of H.
Then U is a twisting of U′ if and only if there is a topological ordering ω of H

such that U,U′ ∈ ud(H,ω,
−→
Σ(k, T )).

We say that a slice automaton A over
−→
Σ(k, T ) is twisted if whenever a unit

decomposition U belongs to L(A) then all its twistings also belong to L(A).
Alternatively, in view of Proposition 1, A is twisted if whenever

LG(A) ∩ ud(H,ω,
−→
Σ(k, T )) �= ∅

for a DAG H and a topological ordering ω of H, we have that
ud(H,ω,

−→
Σ(k, T )) ⊆ L(A). Using Eq. 4 the notion of saturation can be rede-

fined in terms of weak saturation and twisting.

Proposition 2. Let A be a slice automaton over
−→
Σ(k, T ). Then A is saturated

if and only if it is both twisted and weakly saturated.

Therefore, to prove Lemma 2 it is enough to devise a procedure that takes
a slice automaton A and returns a slice automaton tw(A) whose slice language
L(tw(A)) consists of all twisted versions of unit decompositions in L(A). If A is
weakly saturated, then tw(A) is (fully) saturated.

Let A = (Q,Δ, q0, F ). We assume that all states of A can be reached from
the initial state q0, and reach some final state in F . Let q be a state in Q. We say
that the width of q is w if either there is a transition (q,S, q′) such that the in-
frontier of S has size w, or there is a transition (q′,S, q) such that the out-frontier
of S has size w. Note that conditions 1–3 of the definition of slice automaton
(Definition 4) ensure that the notion of width of a state is well defined. Now the
automaton tw(A) = (Q′,Δ′, r′

0, F
′) is defined as follows:

r′
0 = q0∅ F ′ = {q∅ | q ∈ F}

Q′ = {qπ | π : [w(q)] → [w(q)] is a permutation.}

Δ′ = {(qπ, (π,S, π′), qπ′) | (q,S, q′) ∈ Δ, qπ, qπ′ ∈ Q′}

(5)

It is immediate to check that a unit decomposition U = S1S2...Sn is accepted
by A if and only each twisting U′ = (∅,S1, π1)(π1,S2, π2)...(πn−1,Sn, ∅) is
accepted by A′. Therefore, the automaton tw(A) is twisted. Additionally, if
A is weakly saturated, then by Eq. 4 we have that tw(A) is saturated. Finally,
we note that the size of A′ is at most 2O(k log k) · |A|, since there can be at most
O(k!) = 2O(k log k) permutations of a set of labels with at most k elements. �
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6 Slice Traces

In this section we introduce the notion of slice traces, and use this notion to show
that the weak-saturation property for slice automata is decidable. This notion
will also be used in Sect. 3 to establish connections between MSC languages and
saturated slice languages.

We say that two slice strings U,U′ ∈ −→
Σ(k, T )∗ are locally

−→
Σ(k, T )-

equivalent, and denote this fact by U
k� U′, if there exist W,W′ ∈ −→

Σ(k, T )∗

and S1,S′
1,S2,S′

2 ∈ −→
Σ(k, T ) with S1 ◦ S2 = S′

1 ◦ S′
2 such that U = WS1S2W′

and U′ = WS′
1S

′
2W

′ (Fig. 5).

Fig. 5. Local Equivalence. S1S2 is 4-equivalent to S′
1,S

′
2.

We let
k≡ ⊆ −→

Σ(k, T )∗ ×−→
Σ(k, T )∗ be the equivalence relation defined on slice

strings by taking the reflexive, symmetric and transitive closure of
k�. We note

that if U is a unit decomposition in
−→
Σ(k, T )� then any slice string U′ that is−→

Σ(k, T )-equivalent to U is also a unit decomposition in
−→
Σ(k, T )�, and addi-

tionally,
◦
U=

◦
U′. We note that there may exist unit decompositions in

−→
Σ(k, T )�

which are not
−→
Σ(k, T )-equivalent but which are

−→
Σ(k′, T )-equivalent for some

k′ > k. Nevertheless, the following proposition states that for each k-coverable

DAG H,
k≡-equivalence is already enough to relate any two unit decompositions

of H.

Proposition 3. Let U1 and U2 be unit decompositions in
−→
Σ(k, T )� such that

the DAGs
◦
U1 and

◦
U2 are k-coverable. Then

◦
U1=

◦
U2 if and only if U1

k≡ U2.

There is a substantial difference between our notion of independence, defined
on slice alphabets and the notion of independence in Mazurkiewicz trace theory.
While the independence relation on slices is determined solely based on the
structure of the slices (Fig. 5), without taking into consideration the events that
label their center vertices, the Mazurkiewicz independence relation is defined
directly on events. As a consequence, once an independence relation I is fixed,
the nature of the partial-orders that can be represented as traces with respect
to I is restricted. This is valid even for more general notions of traces, such as
Diekert’s semi-traces [8] and the context dependent traces of [20], in which for
instance, partial-orders containing auto-concurrency2 cannot be represented. In
2 Auto-concurrency is the process of firing two transitions with the same label simul-

taneously.
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our setting, any partial order � labeled over a set of events T may be represented
by a slice trace: namely the set of unit decompositions of its Hasse diagram.

Theorem 5. Let A be a slice automaton over a slice alphabet
−→
Σ(k, T ) repre-

senting a set of k-partial-orders. Then we may effectively determine whether the
slice language generated by A is weakly saturated.

Proof. Assume without loss of generality that the slice automaton A is tran-
sitively reduced. Otherwise, just apply the transitive reduction algorithm from
[34]. Since each partial-order � ∈ Lpo(A) is a k-partial-order, the Hasse digram
H of � can be covered by k paths. Therefore, by Proposition 3, any unit decom-
position of H has width at most k. Now let tw(A) be automaton obtained from
A by applying the twisting procedure in the proof of Lemma 2. Then by Propo-
sition 2 the automaton A is weakly saturated if and only if tw(A) is saturated.
Therefore, it is enough to verify whether tw(A) is saturated. With this in mind,
it is enough to test the following condition. If a slice word wS1S2u is generated
by A′ then every word wS′

1S
′
2u satisfying S′

1 ◦ S′
2 = S1 ◦ S2 is generated by

A as well. Let A′ be the minimal deterministic slice automaton generating the
same slice language as tw(A). Then any unit decomposition S1S2 · · ·Sn ∈ L(A′)
corresponds to a unique computational path in A′. Therefore to verify our condi-
tion, we just need to determine whether A′ is “diamond” closed. In other words
we need to test whether for each pair of transition rules qS1r and rS2q

′ of the A′

and each unit decomposition S′
1S

′
2 of S1 ◦ S2, A′ has a state r′ and transitions

qS′
1r

′ and r′S′
2q

′. Clearly this condition can be verified in polynomial time on
the size of A′, since S1 ◦S2 can have at most 2O(k·log k) possible decompositions.

�

7 From MSC Automata to Slice Automata

In this section we define the notion of locally-synchronized slice automata. Let S
be a slice (possibly with several vertices in the center) with k in-frontier vertices
v1, ..., vk and k out-frontier vertices u1, ..., uk. For each i ∈ {1, ..., k}, we say that
a path pi from vi to ui is trivial if vi and ui are the only vertices in pi. Let
p1,...,pk be paths such that for each i, pi is a path from vi to ui. We let the
communication graph comm(S, p1, ..., pk) be the directed graph whose vertices
are paths in {p1, ..., pk}, and such that for each i, j ∈ {1, ..., k}, there is an
edge from pi to pj if either these paths share a vertex or there is an edge with
source in some vertex of pi and target in some vertex of pj . We say that S
is locally-synchronized comm(S, p1, ..., pk) has at most one strongly connected
component with more than one vertex. Note that trivial paths correspond to
isolated vertices. This notion of local synchronization for slices, generalizes the
notion of local synchronization for message sequence charts in the sense that
processes correspond to paths, and isolated vertices in the communication graph
of an MSC correspond to trivial paths.
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Definition 6 (Locally-Synchronized Slice Automaton). A slice automa-

ton A is locally-synchronized if for every loop q1
S1−→ q2

S2−→ ...
Sn−1−−−→ qn

Sn−−→ q1
in A, the slice S1 ◦ S2... ◦ Sn is locally synchronized.

The next theorem states that any locally-synchronized slice automaton can
be transformed further into a saturated slice automaton representing the same
partial order language as the original one.

Theorem 6. Let T be a finite set of symbols, and k ∈ N. Let A be a locally-
synchronized slice automaton over

−→
Σ(k, T ). Then one can construct a saturated

slice automaton A′ such that Lpo(A′) = Lpo(A).

The following theorem is the main result of this section. It states that MSC
automata can be converted into slice automata representing the same partial-
order language. Additionally, this conversion transforms locally-synchronized
MSC automata into saturated slice automata.

Theorem 7 (From MSC Automata to Slice Automata). Let M be an
MSC automaton over J . Then one can construct a transitively-reduced slice
automaton A(M) satisfying Lpo(M) = Lpo(A(M)). Furthermore, if M is
locally-synchronized, then A(M) is saturated.

Proof. Let J = {1, ..., k} be a set of processes. We let Sι(J ) be the slice with
empty in-frontier I = ∅, k out-frontier vertices O = {v1, ..., vk} where each vi

is labeled with the number i, and with a unique vertex v in the center which is
connected to each vertex in O. We say that Sι(J ) is the initial slice of J .

Analogously, let Sε(J ) be the slice with empty out-frontier O = ∅, k in-
frontier vertices I = {u1, ..., uk} where each ui is labeled with the number i, and
with a unique center vertex v in the center. For each i there is an edge with
source in ui and target in v. We say that Sε(J ) is the final slice of J .

Now let M be an MSC over J . Then we let S(M) be the slice (not necessarily
a unit slice) constructed as follows. S(M) has k in-frontier vertices x1, ..., xk, and
k out-frontier vertices y1, ..., yk. Let H be the Hasse diagram of M . Then for each
i ∈ {1, ..., k} proceed as follows. If H has no vertex labeled with an element of
Σi, then add an edge from the in-frontier vertex xi to the out-frontier vertex
yi. Otherwise, if such a vertex exists, then add an edge from xi to the (unique)
minimal vertex of H labeled with an element of Σi, and an edge from the (unique)
maximal vertex of H labeled with an element of Σi to the out-frontier vertex
yi. Note that the transitive closure of the slice Sι(J ) ◦S(M) ◦Sε(J ) is precisely
the extension of the partial-order M (see Sect. 2). We let W(M) = S1S2...Sn be
an arbitrary sequence of unit slices such that S(M) = S1 ◦ S2 ◦ ... ◦ Sn.

Now let M be an MSC automaton over J . We will show how to construct
a slice automaton A′(M) over

−→
Σ(|J |, ΣJ ) such that Lpo(A′(M)) = Lpo(M).

The conversion is done as follows. Let M be an MSC with m nodes and let
W(M) = S1S2...Sm. We replace each transition (q,M, q′) in M by a sequence
of transitions

(q,S1, q1)(q1,S2, q2)...(qn−1,Sn, q′).
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Now we create an initial state qι and add the transition (qι,Sι(J ), q) for each
initial state q of M. Analogously, we create a final state qε and add the transition
(q,Sε(J ), qε) for each final state of M. Now it is immediate to check that M
accepts a sequence M1M2...Mn of MSCs if and only if A′(M) accepts the unit
decomposition

U = Sι(J )W(M1)W(M2)...W(Mn)Sε(J ).

This implies that tc(
◦
U) = �∗ where � = M1 ◦ M2 ◦ ... ◦ Mn. Therefore,

Lpo(A′(M)) = Lpo(M).
Now assume that Lpo(M) is linearization-regular. Then by Theorem 1, we

may assume that M is locally-synchronized. Let W(M1)W(M2)...W(Mn) label
a loop in A′(M). Then M1M2...Mn labels a loop in M. Since by assumption
M is locally-synchronized, we have that the MSC M1 ◦ M2 ◦ ... ◦ Mn is locally-
synchronized. This implies that the slice S(M1) ◦ S(M2) ◦ ... ◦ S(Mn) is also
locally-synchronized. Since a sequence of MSCs M1M2...Mn labels a loop in M
if and only if the sequence of unit slices W(M1)W(M2)...W(Mn) labels a loop
in A′(M), we have that A′(M) is locally-synchronized. Therefore, as a last step
we apply Theorem 6 to construct a slice automaton A(M) which is saturated
and has the same partial-order language as A′(M), and therefore, the same
partial-order language as M. �

By combining Theorem 7 with Theorem 3 and Lemma 1, we have the follow-
ing theorem.

Theorem 8. Let M be an MSC automaton over J and N be b-bounded Petri
net with transition set T = J .

1. It is decidable whether Lpo(M) ∩ Pcau(N) �= ∅.
2. It is decidable whether Lpo(M) ⊆ Pcau(N).
3. If M is locally synchronized, it is decidable whether Pcau(N) ⊆ Lpo(M).

Proof. Let A be the slice automaton derived from M as in Theorem 7. Then
A is transitively-reduced and Lpo(M) = Lpo(A). Let A′ be the slice automaton
constructed from N as in Theorem 3. Then A′ is transitively-reduced, saturated
and Lpo(A) = Pcau(N). By Lemma 1, we have that it is decidable whether
Lpo(A) ∩ Lpo(A′) �= ∅ and whether Lpo(A) ⊆ Lpo(A′). Finally, if M is locally
synchronized, then A is saturated, and therefore the inclusion Lpo(A′) ⊆ Lpo(A)
is also decidable. �

By combining Theorem 7 with Theorem 9 we have the following theorem.

Theorem 9 (Synthesis From MSC Automata). Let M be an MSC
automaton over J . For each b ∈ N one can construct a b-bounded Petri net
N satisfying the following properties.

1. Lpo(M) ⊆ Pcau(N).
2. There is no other b-bounded Petri net N ′ with Lpo(M) ⊆ Pcau(N ′) �

Pcau(N).
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Additionally, if M is locally synchronized, then one can decide whether
Pcau(N) = Lpo(M).

Proof. Let A be the slice automaton of Theorem 7. Then A is transitively-
reduced and Lpo(M) = Lpo(A). By Theorem 4, one can construct a b-bounded
Petri net N such that Lpo(A) ⊆ Pcau(N), and such that there is no b-bounded
Petri net N ′ with Lpo(A) ⊆ Pcau(N ′) � Pcau(N).

Note that if there is a b-bounded Petri net whose causal behavior is equal
to Lpo(A), then by minimality, we have that Pcau(N) = Lpo(A). Nevertheless,
in general it is not possible to verify whether equality is achieved. On the other
hand, if M is locally synchronized, then by Item 3 of Theorem 8, one can also
test whether the equality Pcau(N) ⊆ Lpo(A) holds. �

8 From Mazurkiewicz Traces to Slice Languages

In Mazurkiewicz trace theory, partial-orders are represented as equivalence
classes of words over an alphabet of events [28]. Given an alphabet T of events
and a symmetric and anti-reflexive independence relation I ⊆ T × T , a string
αabβ is defined to be similar to the string αbaβ (αabβ � αbaβ) provided
(a, b) ∈ I. A trace is then an equivalence class of the transitive reflexive clo-
sure �∗ of the relation �. We denote by [α]I the trace corresponding to a string
α ∈ T ∗.

A partial-order �I(α) is associated with a string α ∈ T ∗ of events in the
following way: First we consider a dependence DAG depI(α) = (V,E, l) that
has one vertex vi ∈ V labeled by the event αi for each i ∈ {1, ..., |α|}. An edge
connects vi to vj in E if and only if i < j and (αi, αj) /∈ I. Then �I(α) is the
transitive closure of depI(α). One may verify that two strings induce the same
partial-order if and only if they belong to the same trace. The trace language
induced by a string language L ⊆ T ∗ with respect to an independence relation
I is the set [L]I = {[α]I |α ∈ L} and the trace closure of L is the language
LI = ∪α∈L[α].

Given a finite automaton F over an alphabet T and an independence relation
I ⊂ T × T , we denote by L(F) the regular language defined by F and by
Lpo(F , I) = {�I(α)|α ∈ L(F)} the partial-order language induced by (F , I).
We call the pair (F , I) a Mazurkiewicz pair. We say that L(F) is trace-closed
if [α]I ⊆ L(F) for each α ∈ L(F). As an abuse of terminology, we may say that
the Mazurkiewicz pair (F , I) is trace-closed.

We let L̂po(F , I) = {�̂ | � ∈ Lpo(F , I)} be the set of extensions of partial-
orders in Lpo(F , I). We note that extensions are only considered to make the con-
struction of the automaton A(F , I) slightly cleaner. With some easy case anal-
ysis one can construct slice automata whose partial-order language is Lpo(F , I)
instead of L̂po(F , I). The next theorem (Theorem 10) states that for any finite
automaton F and independence relation I, one can construct a slice automaton
A(F , I) whose partial-order language is equal to L̂po(F , I).
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Theorem 10 (From Traces to Slices). Let F be a finite automaton over an
alphabet T , and I ⊂ T ×T an independence relation. Then for some k ≤ |T |2 one
can construct a transitively-reduced slice automaton A(F , I) over

−→
Σ(k, T ∪{ι, ε})

such that Lpo(A(F , I)) = L̂po(F , I). Additionally, if (F , I) is trace-closed, then
A(F , I) is saturated.

Fig. 6. Mapping an independence alphabet (T, I) to a slice alphabet
−→
Σ(T, I) ⊆−→

Σ(k, T ) where k ≤ |T |2.

In the remainder of this section we prove Theorem 10. We note that the
difficulty in the construction of the automaton A(F , I) lies in showing that
A(F , I) is saturated whenever L(F) is trace-closed. As a first step in the
proof, we will use the independence alphabet (T, I) to construct a slice alpha-
bet

−→
Σ(T, I) = {Sa|a ∈ T} ∪ {Sι,Sε} with the following property: For each

string α = α1α2...αn ∈ T ∗ the partial-order defined by the unit decomposition
Uα = SιSα1Sα2 · · ·Sαn

Sε is precisely the extension of the partial-order �I(α)
induced by α (Fig. 6).

Let ρ : T → {1, ..., |T |} be an arbitrary ordering of the elements of T . Let
D = {ab | a, b∈T, ρ(a) ≤ ρ(b), (a, b) /∈ I} be the set of pairs of non-independent
elements of T . Let ρ : D → {1, ..., |D|} be the natural lexicographic ordering
induced on D by the ordering ρ. For each symbol a ∈ T we define the slice Sa

as follows: Both the in-fronter I and the out-frontier O of Sa have |D| vertices,
and the center of Sa has a unique vertex va which is labeled by a. In symbols
I = {Iab|ab ∈ D} and O = {Oab|ab ∈ D}. For each ab ∈ D, both the in-frontier
vertex Iab and the out-frontier vertex Oab are labeled with the number ρ(ab).
For each pair bc ∈ D with a �= b and a �= c we add an edge to Sa with source in
Ibc and target in Obc, and for each pair ax ∈ D (xa ∈ D) we add an edge with
source in Iax (Ixa) and target in va, and an edge with source in va and target
in Oax (Oxa) (Fig. 6). We associate with the symbol ι an initial slice Sι, with
center vertex vι labeled by ι, and out-frontier O. Analogously, with the symbol
ε, we associate a final slice Sε with center vertex vε labeled by ε, and in-frontier
I. We note that the slice alphabet

−→
Σ(T, I) is a subset of

−→
Σ(k, T ∪ {ι, ε}) where

k = |D| ≤ |T |2.
Now let α = α1α2...αn be a string in T , depI(α) be the dependence graph

of α and Uα = SιSα1 ...Sαn
Sε. Let vi be the i-th vertex of depI(α), and ui be

the center vertex of the slice Sαi
. Then it is straightforward to check that for

each i, j ∈ {1, ..., n} with i < j, there is a path from ui to uj in the graph
◦
Uα

if and only if there is a path from vi to vj in depI(α). This implies that the
partial-order tc(

◦
Uα) is the extension of the partial-order �I(α) induced by α. In

other words, tc(
◦
Uα) = �̂I(α).
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Now, from the pair (F , I) = (Q,R, Q0, F ) we construct an auxiliary slice
automaton A′(F , I) = (Q′,R′, Q′

0, F
′) as follows. We let Q′ = Q ∪ {qι, qε},

Q′
0 = {qι}, F ′ = {qε}, and R′ = {(qι,Sι, q) | q ∈ Q0} ∪ {(q,Sε, qε) | q ∈

F} ∪ {(q,Sa, q′) | (q, a, q′) ∈ R}. Then we have that F accepts a string α
if and only if A′(F , I) accepts the unit decomposition Uα. This implies that
Lpo(A′(F , I)) = L̂po(F , I).

Now assume that L(F) is trace closed. Then for each string γ ∈ [α]I , we
have that γ ∈ L(F) and therefore Uγ ∈ L(A(F , I)). Since for each topological
ordering ω of the graph

◦
Uα, there is a γ ∈ [α]I such that Uγ is compatible

with ω, we have that A′(F , I) is weakly saturated. Therefore, by Lemma 2
we can construct a saturated slice automaton A(F , I) with Lpo(A(F , I)) =
Lpo(A′(F , I)). �

9 Conclusion

In this work, we have established connections between the causal semantics of
Petri nets and message sequence chart languages. In particular, we showed that
message sequence chart automata can be used as a tool for the study of the
causal behavior of Petri nets. Despite the fact that each of these formalisms have
been defined several decades ago, the connections established in our work were
unknown. In order to prove our results we have introduced new slice theoretic
machinery of independent interest. In particular, our techniques pave the way for
the use of slice automata as a bridge between bounded Petri nets and behavioral
formalisms. Further evidence for this assessment is given in Sect. 8, where we
show how to map Mazurkiewicz Trace languages to trace languages in such a way
that trace closure implies saturation. This means that the results in Theorems
8 and 9 also hold if instead of MSC automata we use Mazurkiewicz pairs.
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