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The Isfjorden Member forms the upper part of the De Geerdalen Formation in Svalbard and is well exposed 
throughout central and eastern Spitsbergen, including the island of Wilhelmøya. We examine palaeosol 
profiles identified in the Isfjorden Member and compare these to profiles seen in the remainder of the 
De Geerdalen Formation. In addition, we address the nuances of the Isfjorden Member, its practicality 
as a stratigraphic interval and attempt to constrain the unit’s presence, as well as the nature of its lower 
boundary throughout outcrops in Svalbard. The Isfjorden Member is easily recognised by its conspicuous 
beds of alternating red and green coloured palaeosols, occasional caliche profiles and bivalve coquina 
beds. These beds have commonly been used to identify the unit in outcrop and we explore their relevance 
to the formal stratigraphic definition. The lower boundary is typically difficult to identify, especially when 
using the original definition; however, we find that placing it at the top of the last major sandstone in the 
De Geerdalen Formation is a practical solution. The boundary is conformable throughout Spitsbergen with 
no obvious erosion or break in sedimentation observed.

The abundance, thickness and maturity of palaeosols increases upwards through the De Geerdalen  
Formation. Mature palaeosol and occasional caliche horizons are found to dominate within the Isfjorden 
Member. Immature palaeosols are in general constrained to the strata below. The position of palaeosols in 
relation to sedimentary successions is typically restricted to floodplain and interdistributary bay deposits, 
or atop upper shoreface deposits. The transition from immature palaeosols with common histosols to  
mature palaeosols and caliche reflects the development of the delta plain from a dynamic paralic setting 
to a more stable proximal system. 

 E-mail corresponding author (Gareth S. Lord): gareth.s.lord@gmail.com (Atle Mørk): atle.arctic@gmail.com
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Introduction
In geological terms, Retallack (2001) defines soils as, “material forming the surface of a planet or  
similar body and altered in place from its parent material by physical, chemical or biological  
processes.” As water is the vital medium in soil-forming processes (pedogenesis), rainfall, groundwater  
level, soil-drainage, evaporation and climate will all be controlling factors. Additionally, time,  
sedimentation rate and erosion are also important in allowing soils to develop. Detailed studies of ancient 
soils (palaeosols) might therefore improve interpretation of the depositional environment, sequence- 
stratigraphic surfaces, palaeoclimate, palaeogeography, and overall basin development. Furthermore,  
improved understanding of these facets will better refine stratigraphic boundaries and definition.  
The latest Carnian to earliest Norian aged paralic deposits of the Isfjorden Member are assigned 
to the uppermost part of the Upper Triassic De Geerdalen Formation, a unit that is well exposed 
throughout Svalbard (Figure 1, Mørk et al., 1999).  The common presence of palaeosols within the  
De Geerdalen Formation and the Isfjorden Member makes these ideal units to study the development 
of ancient soils, in relation to depositional environment and palaeoclimate. Furthermore, field-based 
studies from Svalbard are applicable to the offshore and near-time equivalent  Snadd Formation in the 
Norwegian Barents Sea.

Figure 1: Map of study area
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Figure 1: Simplified geological map of Svalbard indicating the key ages of strata and localities used in this study.  
The index map shows the high Arctic position of Svalbard in relation to the Norwegian mainland. Maps edited after 
Dallmann (2015).
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As an entirely conformable and uninterrupted succession, the Carnian aged rocks in Svalbard were 
deposited throughout the period in which the Carnian Pluvial Event (CPE) occurred (Simms & Ruffell, 
2018). This major climatic event during the Upper Triassic is largely associated with an unusually humid 
and wetter climate, as opposed to the more arid climatic conditions seen throughout the rest of the  
Triassic period (Mueller et al., 2016 a,b). The CPE is identified as having occurred during the  
middle part of the Carnian, spanning the boundary between the Julian and Tuvalian sub-stages (Simms &  
Ruffel, 1989). From magnetostratigraphic studies, the Tschermakfjellet and De Geerdalen formations 
are assigned a Julian to Tuvalian age (see Mueller et al., 2016b; Hounslow et al., 2022), with the Isfjorden  
Member being entirely Tuvalian in age (Mueller et al., 2016b; Hounslow et al., 2022) thus post-dating 
the CPE.

Based on an extensive field database from localities in Svalbard and cores from boreholes  
(Figure 1), we attempt to characterise and understand the development of palaeosols within the De 
Geerdalen Formation and the Isfjorden Member throughout Svalbard. Data presented here represent a  
compilation of nearly a decade’s worth of field data and geological knowledge collected in Svalbard by 
master thesis and doctoral studies namely, M. Boxaspen, J. Enga, C. Forsberg, T. Haugen, B. Heggem, B. 
Husteli, I. Hynne, S.K. Johansen, C. Mc Cabe, G.S. Lord, R. Rød, H. Stensland and S.J. Støen.

Previously, little specific attention has been given to palaeosols in the De Geerdalen Formation 
and never in respect to their stratigraphical implications and relevance to the Isfjorden Member.  
The objectives of this study are to: (1) Characterise palaeosol profiles within the De Geerdalen  
Formation and Isfjorden Member at locations visited in Svalbard. (2) Compare and contrast palaeosol 
types seen in the Isfjorden Member to those in the remainder of the De Geerdalen Formation and  
discuss implications for depositional style and palaeoclimate during the late Carnian to early Norian.  
(3) Discuss the Isfjorden Member and its nuances as a stratigraphic unit within the De Geerdalen  
Formation, following its original definition by Pčelina (1983) and subsequent revision by Mørk et al. 
(1999).

Geological setting
The exposed Carnian to lower Norian De Geerdalen Formation in Svalbard (Figure 1) represents the 
northernmost exposures of the northwestern prograding Triassic succession in the Greater Barents 
Sea. The formation is also part of the largest known deltaic system that has existed on Earth, covering 
an estimated area of 1,650,000 km2 (Klausen et al., 2019). Sourced from denudation of the Urals and  
Siberia in the east and Fennoscandia in the south, the Triassic units prograded across and above an 
erratic surface of Upper Permian carbonates and spiculites. Consequently, an extensive succession 
of deltaic sediments developed in the Greater Barents Sea from the latest Permian (Changhsingian) 
to the beginning of the Norian (Riis et al., 2008; Glørstad-Clark et al., 2010; Høy & Lundschien 2011;  
Lundschien et al., 2014; Klausen & Mørk 2014; Vigran et al., 2014; Mørk, 2015; Anell et al., 2016;  
Klausen et al., 2016; Eide et al, 2018; Gilmullina et al., 2020; 2021).

Following the Permian-Triassic extinction event, the onset of the Triassic succession in Svalbard 
marks the change from Permian carbonate and silica-rich deposits to a siliciclastic paralic/deltaic  
depositional environment. This transition was accompanied by a change in climate from relative cold 
temperate in the Upper Permian, to warm temperate throughout the Triassic as the Earth recovered 
from the major global extinction event (Steel & Worsley, 1984; Stemmerik & Worsley, 2005). At this time,  
Svalbard was juxtaposed against Greenland (Torsvik & Cocks, 2004; Torsvik et al., 2012) and  
palaeolatitude reconstructions suggest that Svalbard and the Greater Barents Sea lay at approximately 
55-60°N.
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The Upper Triassic basin fill is composed of successive Transgressive-Regressive (T-R) sequences,  
controlled by subsidence accompanied by minor movements of the hinterland, eustatic sea-level and 
climatic changes. The T-R sequences identified in Svalbard are found to be correlative throughout the 
wider Arctic (Mørk et al., 1989; Egorov & Mørk, 2000; Mørk & Smelror, 2001) and some sequence  
boundaries have been correlated worldwide (Embry, 1997). 

At the Triassic-Jurassic boundary, Svalbard and the Barents Sea area experienced a slowing in the rate 
of basin subsidence (Ryseth, 2014) and this process likely started near the Carnian-Norian transition.  
As a result, the basin may have become overfilled with an overspill of sediments to adjacent  
basins farther to the west (Gilmullina et al., 2021, 2022).  The gradual diminishing of accommodation  
space in the latest Carnian changed the delta system from a progradational to a retrogradational system.  
This is seen as a westwards trend in the Isfjorden Member, where condensed facies associations are 
seen in the paralic deposits with common palaeosols, thin coal seams, carbonate beds (e.g., coquinas), 
phosphate nodules and common glauconite (Mørk et al., 1999; Rød et al., 2014; Lord et al., 2017),  
all consistent with a condensed succession.

Upper Triassic Stratigraphy 
The stratigraphy and sedimentology of the Upper Triassic succession in Svalbard can largely be  
considered as well studied. Early works by Buchan et al. (1965), Worsley (1973), Smith (1975),  
Smith et al. (1975), Lock et al. (1978), Pčelina (1980, 1983) and Mørk et al. (1982, 1999, 2013)  
conducted primary mapping studies and identified the first Triassic stratigraphic units, whilst Mørk et 
al. (1982), Anell et al. (2014, 2016, 2020), Klausen & Mørk (2014), Klausen et al. (2015, 2016, 2019), 
Rød et al. (2014), Lord et al. (2014a, b, 2017) focused on the nuances of facies studies and correlation 
of Upper Triassic sequences throughout Svalbard and the Barents Sea. The Longyearbyen CO2 Lab Dh4 
well and the diagenetic properties of a proposed Upper Triassic to Lower Jurassic reservoir interval were  
investigated by Mørk (2013). The present nomenclature of the Mesozoic succession of Svalbard is  
described in the Lithostratigraphic Lexicon of Svalbard (Dallmann, 1999; Mørk, et al. 1999) and this  
scheme is applied herein (Figure 2), with revisions from Krajewski (2008) and Mørk et al. (2013).

The De Geerdalen Formation in Svalbard represents a succession of overall upwards-coarsening  
shallow-marine to delta-plain deposits that lie conformably atop the lower Carnian (~237 - ~227 
Ma) pro-delta shale of the Tschermakfjellet Formation. The well-exposed fluvial channels and  
delta-plain deposits observed on Hopen are the most proximal part of the succession exposed in eastern  
Svalbard, being overlain by the more marine-influenced Hopen Member. A transition to lobate deltaic 
and shallow-shelf deposits is observed as the succession becomes increasingly distal towards the west 
and northwest (Rød et al., 2014; Lord et al., 2017) with thinner and more discrete intervals of fluvial and 
delta-plain deposits.

The Isfjorden Member comprises the upper Carnian to lower Norian (~227 - ~208 Ma) part of  
De Geerdalen Formation in Svalbard (Figure 2). The unit was originally defined by Pčelina (1983) as a 
’suita’ (formation), which included a large portion of the De Geerdalen Formation. Pčelina defined the  
Isfjorden ’suita’ based on the dominating deltaic facies observed and presence of multicoloured  
bedding. During the revision of Svalbard’s stratigraphic nomenclature by Mørk et al. (1999), the Isfjorden 
’suita’ was assigned member status within the upper part of the De Geerdalen Formation.

The member is described by Mørk et al. (1999) as consisting of alternating shales and thin- to thickly 
bedded siltstone and sandstone beds, with a siderite nodule bed occurring above the base. Bivalve  
coquina beds also occur in several sections. Shales are described as multicoloured and featuring  
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reddened mudstones. Carbonate beds, phosphate nodules and gravel or conglomerate lenses were 
also given as being characteristic of the member. In addition, features such as thin carbonate beds with 
cone-in-cone structures and calcareous nodular beds are also present.

The unit was interpreted as having been deposited in a shallow-marine shelf to locally lagoonal  
environment (Mørk et al., 1999). The base of the member in the type-section is defined at a bivalve  
coquina bed which occurs above a thick cross-bedded sandstone in the De Geerdalen Formation.  
Despite the detailed observations of Knarud (1980) and Pčelina (1983), both noting the prominent  
colouration of beds and presence of carbonates (caliche and calcretes) in the upper part of the member, 
a continental origin for the unit was not reported. Thus, the member was largely regarded as having 
been deposited in a lagoonal to shallow-marine environment.

The Hopen Member, defined by Lord et al. (2014a), is not present at any of the localities visited in 
this study – nor are the characteristic facies of the Isfjorden Member present on the island of Hopen.  
The Hopen Member is described as a marine equivalent to the Isfjorden Member, with the lateral  
facies transition between the two being enigmatic due to erosion of the upper part of the De Geerdalen  
Formation throughout eastern areas of Svalbard (Lundschien et al., 2014; Lord et al., 2014a, 2017).

With the advent of new dating by magnetostratigraphy and detrital zircon data (Hounslow et 
al., 2022; Klausen et al., 2022), it is conceivable that the Hopen Member may in fact post-date the  
Isfjorden Member. In this case, the member would be eroded from Spitsbergen and Wilhelmøya  
(See Figure 2), thus indicating a significant hiatus at the boundary to the Wilhelmøya Subgroup.  
The Hopen Member is preserved in the east on the Edgeøya Platform where it is present in cores recovered  
from the region offshore Kong Karls Land (Lundschien et al., 2014) and Kvitøya. The Hopen Member 
has also been interpreted as representing the early-Norian transgression (N1 surface of Klausen et al., 
2015, 2022) that preceded the pronounced mid-Norian flooding recorded in the Wilhelmøya Subgroup. 

Figure 2: Lithostratigraphic chart
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Figure 2: Lithostratigraphic chart of the Middle Triassic to Jurassic succession in the study area. The stratigraphic  
subdivision is amended after Krajewski (2008), Mørk et al. (1999, 2013) and Lord et al. (2014a). Note the significant 
hiatus implied between the Isfjorden Member and the overlying Wilhelmøya Subgroup at the Slottet Bed. This is based 
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Pedogenic features in the De Geerdalen Formation 
and Isfjorden Member
Soil structures

An important observation regarding soil structures is the size and shape of agglomerations. In the  
De Geerdalen Formation these structures can be described as, platy, angular blocky, sub-angular blocky 
and granular. The diameter of agglomerations is typically in the range of 1 mm and up to 1-2 cm.  
Platy structures are typically seen throughout the soil profile as well as in the lower parts of the soil 
horizon. Angular and subangular blocky structures occur frequently both in palaeosols within the  
lower part of the De Geerdalen Formation and in the calcareous and non-calcareous palaeosols of the  
Isfjorden Member. A granular soil structure is found in all palaeosol types within this study, except 
for calcrete and caliche soil profiles. It is also noteworthy that all horizonated soils observed in the  
De Geerdalen Formation appear to feature a granular soil structure in at least one horizon (e.g.,  
Figure 3a, b). 

The size and shape of agglomerations in palaeosols can be linked to the modification of parent material 
in relation to processes and disturbances to the local environment. Bioturbation by plants or animals, 
as well as seasonal or flood-related wetting and drying of the delta-plain, will impact their development 
(Retallack, 2001). Modification by these processes causes many palaeosols to feature a hackly (rough 
and jagged) appearance upon first sight (Retallack, 1988) and this structure originates from the presence 
of open spaces or weaker zones surrounded by more stable aggregates in the original soil. 

Figure 3: Roots photographs
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Figure 3: A) A yellow-beige coloured protosol featuring thin coalified rootlets and capped by an organic-rich coal-shale 
(histosol) observed in the lower part of the De Geerdalen Formation at Blanknuten, Edgeøya. B) A protosol observed in 
the lower part of the De Geerdalen Formation featuring coalified roots indicating rhizoliths that extend into a bleached 
and irregular palaeosol horizon at Teistberget. C) Calcified rhizoliths observed within the upper part of the Isfjorden 
Member at Deltaneset. These root features were observed in a calcareous nodular bed situated immediately below the 
Slottet Bed, at the base of the Wilhelmøya Subgroup. D) Calcareous nodules with downward elongation observed within 
a red bed of the Isfjorden Member on the mountain Šmidtberget in Agardhdalen. These nodular rhizoliths likely formed 
from the uneven distribution of minerals within the soil profile. See map in Figure 1 for field locations.
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A platy structure indicates that relict bedding of the parent material is present (Retallack, 1988).  
Palaeosols observed in the De Geerdalen Formation, with prominent relict bedding, are considered to 
have formed under conditions where the pedogenic modification of the parent material was too weak 
to overprint the original soil structure.

Both angular and subangular blocky structures are associated with swelling and shrinking of 
the soil profile, with cracking around roots and burrows being common (Retallack, 1988). Such  
angular or subangular blocky structures are rare within palaeosols in the lower part of the De Geerdalen 
Formation but are common to soils observed in the Isfjorden Member. 

Granular palaeosols indicates high biological activity and thus high soil fertility and ultimately soil  
maturity (Retallack, 1988). The granular soil structure seen in all the horizonated soils observed  
throughout the De Geerdalen Formation and Isfjorden Member is interpreted as indicating the maturity 
of this soil type. 

Structures observed in the present high-Arctic area of Svalbard may, however, have been altered by 
Quaternary processes, such as seasonal freezing and thawing in the active layer of the permafrost  
disturbing the primary texture of the sediment. 

Rhizoliths

Rhizoliths, representing ancient root traces and root structures, are observed in palaeosol horizons 
throughout the De Geerdalen Formation. They are seen to fall into three distinct categories:

1) Rhizoliths representing coalified, downward-branching and tapering rootlets, with a length of  
approximately 20 cm. These are typically observed in the lower part of the De Geerdalen Formation 
(Figure 3a).

2) Irregular coloured features with a diffuse pattern in the upper soil horizon, commonly observed in 
palaeosols in the De Geerdalen Formation and are interpreted as rhizoliths. An important observation 
of these features is that they are composed of the same material as the remainder of the palaeosol 
(Figure 3b), and therefore represent the trace of a root. 

3) Vertically elongate and irregularly shaped rhizoliths representing calcareous cemented roots,  
ranging in size from a few cm to tens of cm. These are observed in the Isfjorden Member at Deltaneset,  
Teistberget, Šmidtberget and Friedrichfjellet (Figures 3c, d).

Rhizoliths, indicating the presence of ancient roots, are a reliable diagnostic feature when  
identifying palaeosol profiles, as their presence in continental deposits represents direct evidence of  
subaerial exposure and plant growth, meeting almost all the requirements for soil definition  
(Retallack, 1988, 2001). Calcite-cemented nodules, forming around roots, are commonly found in  
red-bed successions and especially paralic flood-plain deposits. A downward elongation is typical for 
nodules with a rhizogenic origin (Tucker, 2011) and this is observed in calcareous nodules from the  
De Geerdalen Formation, most notably the Isfjorden Member (Figures 3c, d). Thus, any vertically  
elongate calcareous nodules are interpreted as rhizoliths (c.f. Wright, 1992; Retallack, 2001; Kraus & 
Hasiotis, 2006). 

Irregular colouration with a diffuse pattern in palaeosols is referred to as mottles (or mottling) and are 
related to an uneven distribution of minerals in the soil profile. Mottling may originate from chemical 
processes related to the microenvironment surrounding living roots, or the gleying of sediments due 
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to anoxia caused by decay of organic matter soon after burial or poor drainage (Retallack, 1988, 1997). 
Mottling in palaeosols of the De Geerdalen Formation are primarily considered to be rhizogenic in origin 
when other pedogenic features are evident.

Soil Classification

The soil classification system of Mack et al. (1993) is specific to palaeosols, despite being based on 
the understanding of modern soil development. Throughout the De Geerdalen Formation and  
Isfjorden Member several palaeosol types are recognised, primarily; vertisols, argillisols, protosols,  
gleyed non-calcareous, gleyed calcareous mudstones and caliche/ calcrete (including calcareous  
mudstones). In addition, we also identify coal-shale/ coal. A summary of the palaeosol types  
encountered in the De Geerdalen Formation is presented in Table 1. 
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40 -100 cm

Protosol
Yellow, greyish  
or brow

n
M

ott
led

Im
m

ature
Throughout the  
De Geerdalen Form

ation
10 - 70 cm

N
on-calcareous 

m
udstone  

(oxidised / 
reduced)

Grey-green w
eathering 

to bright red or green
Fissile or nodular m

udstone
M

ature
Constrained to the  
Isfjorden M

em
ber

30 - 200 cm
 

(O
ccasionally 

thicker)

Calcareous 
m

udstone /  
Calcrete /  
Caliche

Grey-green w
eathering 

to bright red or green / 
Dark grey 
w

eathered dark red  
to yellow

Fissile or 
nodular m

udstone /  
Hom

ogeneous blcoky 
or nodular 
calcareous beds

M
ature

Constrained to the  
Isfjorden M

em
ber

30 - 200 cm
 

(O
ccasionally 

thicker)

Coal shale
Very dark brow

n to 
black

Fissile shale
M

ature
Low

er De Geerdalen 
Form

ation
5 - 20 cm

Coal (Histosol)
Black

Blocky
M

ature
Low

er De Geerdalen 
Form

ation
5 - 30 cm

Table 1. Table sum
m

arising palaeosol types observed w
ithin the De G

eerdalen Form
ation in this study. A soil classification 

and description of key pedogenic features is also presented.
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Description
Interpretation

Horizonated beds w
ith at >3 soil horizons present. A prom

inent clay rich horizon is  
observed and is seen to be leached. Roots, m

ott
les and w

ood fragm
ents are com

m
on. 

Hom
ogeneous appearance likely results from

 pedoturbation, a key feature of vertisols. 
Suggested to be related to shrinking and sw

elling of clay m
inerals as a reaction to w

ater 
saturation or later diagenesis. Coal/ coal shale indicates preservation of an organic 
horizon.

Horizonated beds w
ith at >3 soil horizons present. A prom

inent clay rich horizon is  
observed and is seen to be leached. Roots, m

ott
les and w

ood fragm
ents are com

m
on. 

W
ell-developed palaeosols that are relatively m

ature due to the presence of roots, 
w

ood fragm
ents and m

ott
les. Horizonation indicates leaching of m

inerals and organic 
m

atter from
 the upper horizons to deeper levels in the soil profile. The m

ost m
ature 

palaeosol type found  in this study.

N
o distinctive pedogenic features are evident in these beds. In outcrop these beds feature 

a tacky texture. M
ott

ling m
ay be present and these palaeosols often occur in association to 

thin organic rich beds of coal shale

These palaeosols are indicative of im
m

ature and poorly developed soils profiles and are 
thus defined as protosols. The coal shale likely occurs as a preserved organic horizon.

Red or green w
eathering beds com

posed of fissile m
udstone w

ith dark grey internal colour. 
O

ften form
 alternating beds. M

ay also appear in association w
ith thin caliche profiles and 

nodular rhizoliths or gleyed calcareous m
udstones. These beds do not react w

ith HCl acid.

These are defined as non-calcareous m
udstones due to the lack of reaction w

ith acid, 
dom

inating kaolinite and goethite com
position. In the classification schem

e of M
ack et 

al. (1993) this type of palaeosols m
ay be defined as a gleyed soil due to charachteristic 

patterning.

Red or green coloured beds of fissile m
udstone. O

ften form
ing as alternating beds and 

com
m

only found in association w
ith thin caliche profiles, rhizoliths and nodules. 

React w
ith HCl acid. Calcretes and caliche are often blocky, dark grey beds or nodular beds 

consisting alm
ost entirely of carbonate. W

eathers dark grey to red in outcrop (som
etim

es 
yellow

) and very resistant to erosion.

Red and green beds are interpreted as representing a gleyed calcareous m
udstone and 

m
ay indicate the presence of an im

m
ature or poorly developed caliche profile due to the 

high content of carbonate. Carbonaceous beds w
ithin delta plain deposits are interpreted 

as representing calcrete / caliche profiles. Calcretes are also found as rhizoliths form
ed 

around root structures.

Fissile organic-rich black shale. N
oticeably darker than surrounding shale or siltstone. 

Com
m

only found as thin beds atop palaeosols but m
ay also be found as isolated beds 

w
ithin heterolithic delta plain facies. Features brow

n streak. 

Interpreted to represent an organic horizon w
hen seen in association w

ith palaeosols. 
Individual coal shale beds not associated w

ith palaeosol horizons m
ay represent organic 

accum
ulations on the delta plain, form

ing a peat or poorly developed coal. 

Blocky, vitrinous coal beds w
ith a vitreous/glassy lustre, often found capping 

parasequences. Pure coal beds are rare but are reported in eastern Svalbard 
and offshore to the N

E. Root traces m
ay also be com

m
on in w

ell exposed sections.

Coal is indicative of dense hum
ic build-up in a stable anoxic environm

ent on the delta 
plain.



10 of 35

G. S. Lord et. al                                  Stratigraphy and palaeosol profiles of the Upper Triassic Isfjorden Member, Svalbard 

Vertisols

Vertisols observed in the De Geerdalen Formation are recognised by having a homogenous,  
dark-coloured and commonly organic-rich matrix (Figure 4a, b). These soils lack clear evidence of  
horizons; however, a thin layer of coal shale is often seen in upper parts. These soils are observed at  
Teistberget and Šmidtberget, where they are seen to feature mottles. At other localities in the  
study area, vertisols featuring a blocky soil structure are common. Thickness ranges from 20 to 110 cm.  
This soil type is commonly observed below the Isfjorden Member and is generally associated with  
barrier-bar, distributary channel and flood-plain facies.

A homogenous appearance due to pedoturbation is the main feature of vertisols. This appearance is  
attributed to shrinking and swelling of expandable clay minerals. However, a blocky structure is  
commonly observed in this soil type, a feature which is also associated with soils that have  
undergone shrinking and swelling (Retallack, 1988) (Figure 4b). A signature feature of vertisols is  
slickensides (Mack et al., 1993; Soil Survey Staff, 2014); however, slickensides, at present, have not been 
found in any vertisol profile in the De Geerdalen Formation. This may be due to the destruction of 
these features by recent weathering or permafrost-related processes. Vertisols with slickensides are,  
however, found in correlative beds cored in the Nordkapp Basin, which has not been subjected to such  
weathering processes.

Modern vertisols are commonly found in the tropical and sub-tropical climatic zones but have also 
been recognised and described in temperate regions (Khitrov & Rogovneva, 2014). Their formation has 
been suggested as only requiring some few hundred years (Retallack, 2001) which may explain their  
prevalence in association with paralic interdistributary facies with short-lived periods of subaerial 
exposure.

Argillisols

Argillisol profiles are easily identified in the De Geerdalen Formation due to the presence of  
prominent horizonation. Argillisols feature a minimum of three clear soil horizons, where at least one  
layer is clay-rich and leached (Figure 4c, d). These soil profiles also feature a granular structure in at least 
one horizon. Mottling is common and relict bedding may also be present. Rhizoliths are also common, 
and these are abundant in argillisol profiles observed at Šmidtberget. Wood fragments are also found 
in-situ at some localities, e.g., at Tumlingodden on Wilhelmøya. The thickness of argillisols seen in the 
study area ranges from 40 to 100 cm and they are typically confined to the Isfjorden Member.

The development and complexity of soil horizons increases with time. Leaching of clay minerals down-
wards through the soil profile by the percolation of water is believed to require several thousands of 
years (Harden, 1982). Rhizoliths, mottling and wood fragments also indicate a relative maturity for this 
palaeosol type (Retallack, 1988), whilst the presence of mottling attests to a relatively high water table 
(or soil saturation) and overall poor drainage of the soil. Combined, these facts suggest that argillisols 
observed in the De Geerdalen Formation represent an extensive period of soil development on the  
delta-plain and thus a prolonged period of subaerial exposure.

Protosols

Palaeosols in the De Geerdalen Formation observed as lacking any distinct pedogenic features have 
been defined as protosols. This type is mainly recognised in outcrop as featuring horizons with a  
yellow, grey or brown colouration and contrast with the underlying sedimentary deposits.  
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Figure 4: A) A blocky vertisol observed in the lower part of the De Geerdalen Formation at Blanknuten, Edgeøya. 
Note the dark and relatively homogeneous colouration of the soil and lack of clear horizons, where a sub-angular 
blocky horizon grades gradually into a blocky, mottled upper horizon. Little or no organic material is present here.  
B) A vertisol observed in the De Geerdalen Formation at Tumlingodden on Wilhelmøya, featuring a dark homo- 
geneous matrix with a fine-grained and sub-angular blocky soil structure. This is overlain by an organic-rich horizon.  
C) A horizonated argillisol in the Isfjorden Member at Hellwaldfjellet in eastern Spitsbergen, featuring a dark, organic-rich 
upper horizon overlying a mottled ochre-coloured horizon and a bleached lower horizon with a granular structure.  
D) A well-developed, horizonated argillisol observed in the Isfjorden Member at Šmidtberget in Agardhdalen. Note the  
clear horizonation of the soil profile consisting of a ~5 cm organic rich shale overlying a ~35 cm-thick bleached horizon with 
root traces. There is a coarser grained ochre-coloured horizon underneath with relict bedding/ host rock indicating the  
termination of soil-forming processes seen at the base of this palaeosol. E) An immature protosol observed at Šmidtberget  
in Agardhdalen, featuring horizontal mottles and fine-grained, sticky texture. Relict bedding is present and weakly  
developed soil horizons indicate this palaeosol’s apparent immaturity. F) Organic-rich horizons overlying mottled silty 
clay in a protosol observed in the De Geerdalen Formation in eastern Spitsbergen.

Figure 4: Verti-, Argi-, Protosols photographs
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Mottles and an organic-rich upper soil horizon are common but are not as prominent as in argillisols.  
Relict bedding is also common within protosols seen in the De Geerdalen Formation and these  
palaeosols are common within and below the Isfjorden Member. Their thickness ranges from 10 to 70 
cm. Examples of immature palaeosols are seen in Figures 4e and 4f.

In protosols, up to three different horizons may be found within individual soil profiles. The upper  
horizon is usually notably darker and rich in organic material with a sharp contact (Figure 4f). Lower 
horizons display a greater diversity of colouration with grey, brown or yellow horizons being present, 
and commonly with a gradual transition. Soil horizons in protosols with a grey or yellow colouration 
have a viscous or tacky composition due to a matrix of water-wet clay, which in the field can be likened 
to modelling clay. 

As an immature soil type, protosols typically occur in areas where conditions do not favour soil- 
forming processes. These conditions are typically related to the short time available for their formation 
or rapid burial due to high sedimentation rates (Retallack, 2001). Even though protosols observed in the  
De Geerdalen Formation show poor pedogenic development, they are useful to facies or sequence- 
stratigraphic studies as they serve as evidence of periodic and short-lived subaerial exposure.

Non-calcareous mudstones

Consisting of alternating red and green coloured mudstone horizons, this palaeosol type is restricted 
to the Isfjorden Member. They are extensive and typically form 0.3 – 2 metre-thick successions of  
alternating red and green beds. These beds are interpreted as having a pedogenic origin based on 
the presence of kaolinite, goethite and hematite minerals. The striking colour is derived from the  
oxygenation or reduction of ferric minerals (Figure 5a, b). Thicknesses of up to 5 m are observed in 
some places. Discrete beds containing only red or green mudstones do occur, with thicknesses in the 
range of some few to tens of cm (Figure 5c) and this is sometimes in association with other palaeosol 
horizons. The typical structure of this palaeosol is blocky or fissile, with common mottles. These palaeo- 
sols are interpreted as representing a gleyed soil due to their characteristic alternating colour pattern, 
which is attributed to groundwater saturation and periodic exposure. Examples of non-calcareous red 
and green mudstones are seen in Figures 5a-e and these generally occur in association with calcretes, 
caliches and calcareous gleyed calcareous and non-calcareous mudstones.

The green colour of these palaeosols seen in the Isfjorden Member is attributed to the reduction of  
ferric minerals and elements under anaerobic conditions, due to lack of drainage and a high ground-
water table. The red colouration likely indicates dehydration and recrystallisation of hydroxide minerals 
such as goethite. As goethite converts to the iron oxide mineral hematite, it forms coarse grains when 
weathered (Retallack, 2001). Red colouration is known from well-developed palaeosol profiles formed 
in a dry, tropical climate. An alternative origin for red colouration in palaeosols may be attributed to 
diagenetic processes (Retallack, 2001); however, it is not possible to distinguish diagenetically formed 
hematite from that formed at the surface (Retallack, 2001).

The genesis of gleyed soil profiles generally requires an extensive period of soil-forming conditions 
from some hundreds to thousands of years, with even millions of years proposed by Birkeland (1984).  
However, the presence of gleyed palaeosols (both calcareous and non-calcareous) in the  
Isfjoden Member indicates a prolonged wetland environment on the delta plain, with periodic exposure  
allowing for gleying of soil horizons to occur.
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Despite gleyed soil horizons being azonal, the precipitation of both hematite and goethite is common 
in palaeosols formed in a warm climate, in comparison with those interpreted as forming in more  
temperate climate zones. However, goethite is preferably formed in a warm and humid climate,  
whilst hematite typically requires warm and dry conditions (Collinson, 1996).

Figure 5: Non-Calcareous Mudstones
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b c
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Figure 5: A) Several beds of fissile, non-calcareous, red and green (oxidised and reduced) coloured mudstone  
interpreted as gleyed non-calcareous palaeosol beds in the upper part of the Isfjorden Member at Deltaneset in  
central Spitsbergen. B) Alternating beds of fissile, red and green mudstone (oxidised and reduced) with calcareous 
nodules interpreted as rhizoliths, observed in the Isfjorden Member at discrete levels near the summit of Klement’ev-
fjellet in Agardhdalen. C) Fissile non-calcareous mudstone beds with prominent red and green colouration (due to  
oxidation and reduction) lying atop a blocky calcareous palaeosol bed in the Isfjorden Member at Šmidtberget in  
Agardhdalen. The green colouration is attributed to gleying where the soil has remained water saturated for an  
extensive period, whilst the overlying horizon has been exposed to oxic conditions and has weathered to red.  
This indicates a fluctuating redox regime during genesis. D) Non-calcareous mudstone with a blocky structure in the 
Isfjorden Member at Šmidtberget in Agardhdalen. E) A yellow-beige protosol palaeosol overlain by thin, fissile, red 
and green non-calcareous gleyed palaeosols. These are subsequently overlain by an apparent blocky and calcareous 
palaeosol that is also overlain by an immature protosol. This succession of palaeosols was observed in the Isfjorden 
Member at Friedrichfjellet in Agardhdalen.
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Calcareous mudstones, calcrete and caliche

Calcareous horizons typically feature a similar red and green colouration (due to gleying) as non- 
calcareous mudstones based on their mineralogy. However, they are differentiated due to their  
extensive carbonate content (see Figures 6a-d). This results in a strong effervescent reaction with  
hydrochloric acid when tested in the field. Nodules, mottling, and peds are common within these soil 
profiles. Deltaneset is the only locality in this study where carbonate soils are seen to dominate the 
succession (Figure 6a). At Friedrichfjellet, Šmidtberget and Teistberget in eastern Spitsbergen only a few 

Figure 6: Calcrete photographs
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Figure 6: A) A calcareous soil profile overlying a siltstone host-rock observed at Deltaneset. B) Calcareous palaeosol and 
nodular calcrete beds observed in the Isfjorden Member at Deltaneset, note the presence of a red and green (gleyed) 
non-calcareous soil profile underlying the nodular carbonate beds. C) A calcareous mudstone soil profile observed in 
the Isfjorden Member at Friedrichfjellet in Agardhdalen, with red and green colouration featuring a blocky and angular  
structure. The apparent nodules may indicate the presence of roots. D) An irregular and blocky caliche profile overlying 
a siltstone host rock observed in the Isfjorden Member at Deltaneset. A secondary caliche bed is evident underlying  
this bed.
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discrete beds of calcareous mudstone are identified, based on their reaction with hydrochloric acid.  
In this area, non-calcareous mudstones are the dominating soil type in the Isfjorden Member (e.g.,  
Figures 5b-e). Calcretes or caliche are commonly brown, yellow or dark red in colour with an irregular 
bed geometry and a nodular or blocky appearance (Figures 6a-d). In some cases, they may contain 
some coarser clastic material.

Examples of palaeosols interpreted as calcrete or caliche are shown in Figures 6a-d. In thin- 
section (Figures 7a-d) several features consistent with calcrete soil profiles are observed. In the  
De Geerdalen Formation, these features are seen as alveolar structures, carbonate cement and aggregates  
interpreted as cemented root-casts representing rhizoliths (Figure 7b).

Calcrete formation can involve both pedogenic and non-pedogenic processes (Leeder, 1975;  
Carlisle, 1983). Non-pedogenic processes are mainly related to extensive calcium carbonate precipitation  
(early cementation) in the shallow phreatic zone in a semi-arid to arid climate (Wright & Tucker, 1991). 
Pedogenic calcretes form due to the downwards percolation and precipitation of carbonate minerals 
through a soil profile during its genesis (Arakel & McConchie, 1982). 

Figure 7: A) Elongate rootlet featuring a calcite fringe in a sample recovered from a calcrete soil profile at Deltaneset in 
central Spitsbergen. The larger crystals in the sample probably represent pore-filling carbonate precipitated at a later 
stage. The surrounding carbonate matrix is interpreted as an alpha-microfabric formed due to supersaturation of pore 
water. B) Alveolar features, carbonate cement (Ca) and biogenic aggregates observed in a sample recovered from the 
Isfjorden Member at Deltaneset. A carbonate fringe surrounding a root filament is indicated by the R. Plane-polarised 
light. C) Mud aggregates with biogenetic textures surrounded by non-biogenetic calcite micrite, interpreted as being 
reworked. D) Mud aggregates with thin carbonate coated grains with diffuse and gradual contact to the surrounding 
matrix interpreted as being biogenetic in origin.

Figure 7: Thin section photographs
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Thin-sections of carbonate nodules recovered from red and green coloured mudstones within the  
Isfjorden Member at Deltaneset, show features common to fossil and modern calcrete beds  
(Figures 7a-c). Microscopic features present in calcretes can be subdivided into two microfabric types;  
alpha-microfabrics that lack biogenetic features and beta-microfabrics dominated by biogenetic 
processes (Alonso-Zarza & Wright, 2010). All samples recovered from the Isfjorden Member display 
both alpha-microfabrics and beta-microfabrics. A groundmass of crystalline carbonate is the most  
prominent evidence of alpha-microfabrics seen in the thin-sections from carbonate nodules present in 
the Isfjorden Member (Figure 7a).

Beta-microfabrics are seen to include alveolar septal structures, coated grains, calcified filaments,  
calcified roots, spherulites and faecal pellets. Coated grains containing relics of the host-rock, micrite 
or parts of alveolar-septal features are an important component of beta-microfabrics. Alonso-Zarza et 
al. (1998) reported biogenetic grains as thinly coated with carbonate and having a gradual to diffuse  
contact to surrounding matrix. Examples of such coated grains are observed in samples from the  
Isfjorden Member at Deltaneset (see Figures 7c, d). Millimetre-sized calcite filaments, consisting of 
straight or interconnecting sinuous tubes, are also observed (Figure 7b). These are believed to originate 
from fungi within the soil profile, but they may also be attributed to roots or other micro-organisms 
(Verrecchia & Verrecchia, 1994). 

Studies of pedogenic mudstone beds seen in core, interpreted to have been deposited in dryland river 
systems in the North Sea, were conducted by Müller et al. (2004). Here it was shown that it is possible 
to differentiate in-situ mud-aggregates related to pedogenic processes in palaeosols from reworked 
aggregates deposited on the floodplain (Bown & Kraus, 1987; Müller et al., 2004). Similar observations 
of mud-aggregates believed to have been formed in-situ in this study are presented in Figure 7d. Here, 
thin carbonate coated grains with diffuse and gradual contact to the surrounding matrix are interpreted 
as being biogenetic in origin while mud-aggregates interpreted as being potentially reworked are shown 
in Figure 7c. 

Histosols – Coal-shale and coal

Thin fissile beds of organic-rich shale are typically 3-10 cm in thickness and often occur in  
association with vertisols, argillisols and protosols where they cap upward-coarsening mudstone to  
sandstone successions (parasequences). Histosols in the form of coal-shale are also found as isolated beds  
within fine-grained facies. Coal and coal shale histosols typically feature an underlying palaeosol in  
association. It is common for vitreous coal to be seen surrounded by a light-grey clay, whilst coalified  
rootlets indicating rhizoliths also occur. Coals typically indicate preservation of peat, formed during  
humid and wetter climatic periods. Coal and coalified mudstones seen in the Carnian succession of  
Svalbard provide evidence for the revival of peat-forming plants and conditions, following the global 
coal gap that extended from the Permian-Triassic Boundary to the Ladinian (Retallack et al., 1996).

Following the classification of Mack et al. (1993), we define coal and coalified shale observed in 
the study area as histosols. Coal and coal-shale histosols are found throughout the De Geerdalen  
Formation on Svalbard; however, they are constrained to the middle and upper part of the formation 
and are commonly found to overlie palaeosols. 

Regional distribution of the Isfjorden Member 
A correlation panel with localities throughout Spitsbergen and Wilhelmøya with the De Geerdalen  
Formation and Isfjorden Member present is shown in Figure 8.
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The Festningen section, a protected geotope, this locality features vertically tilted beds of the  
De Geerdalen Formation and Isfjorden Member. The Isfjorden Member is considerably thinner in this 
part of Spitsbergen and is considered condensed (Figures 8, 9a). The unit’s base is interpreted below 
gleyed red and green coloured mudstones and calcareous mudstones atop a tidal-channel complex  
containing thin beds of mud-flake conglomerate (Mørk et al., 1999; Mørk & Grundvåg, 2020).  
The overlying Slottet Bed is observed to consist of a 20 cm-thick bed of clast-supported, gravel to pebble 
phosphate conglomerate, overlain by a strongly bioturbated calcareous sandstone (Mørk et al. 1999, 
Mørk & Grundvåg, 2020).

Longyearbyen CO2 Lab Dh4 Well. The Dh4 well, drilled by the Longyearbyen CO2 Lab (Braathen et al., 
2012), cored almost the entire De Geerdalen Formation. Core observations have identified a series of 
multi-coloured mudstone beds that are seen to occur at the top of the formation and are defined to 
be within the Isfjorden Member (Figure 8). The member in this part of Spitsbergen is interpreted to  
represent lagoon and delta-plain deposits (Braathen et al., 2012). Upwards in the core, root horizons, 
minor coal beds (histosols) and the vertical trace fossil Skolithos are also observed in the member.

Central Spitsbergen. Outcrops near the meltwater delta at Deltaneset in Sassenfjorden display 
well-exposed cliff sections of the Isfjorden Member along the coastline and in adjacent valleys.  
This area was the original type locality for the ’Isfjorden Suita’ defined by Pčelina (1983). 

The shoreline section east of Deltaneset (Figures 5a and 8) constitutes the lower part of the  
Isfjorden Member, whilst the upper part is exposed in the valley of Konusdalen. At Deltaneset, good 
examples of calcareous and non-calcareous mudstones can be observed, in addition to well-developed 
caliche profiles and the gravel conglomerate of the overlying Slottet Bed. Throughout Vendomdalen,  
the Isfjorden Member is seen in good quality mountainside exposures (e.g., Dalsnuten; Figure 9b).  
However, the characteristic red and green palaeosol beds are generally found only in scree at the very 
top of the mountain. The unit is found to be at its thickest in this area without the same extent of  
erosion as seen in eastern Spitsbergen.

Mountains surrounding the valley of Fulmardalen feature well-exposed Triassic strata, with most  
mountains in this area being capped by the Isfjorden Member. The original type-section of the  
Isfjorden Member is in this area and was defined at Storfjellet on the northern side of Fulmardalen.  
The section was initially logged and defined by Knarud (1980); the locality has been revisited in this study  
(see Figure 10).

Eastern Spitsbergen. The valley of Agardhdalen in eastern Spitsbergen is surrounded by mountains  
consisting of Triassic to Lower Cretaceous strata. Here, the upper 120 metres of the De Geerdalen 
Formation and the transition to the Wilhelmøya Subgroup was measured at Klement`evfjellet,  
Friedrichfjellet and Šmidtberget (Figure 8). On the easternmost mountains of Spitsbergen, e.g.,  
at Teistberget to the north of Agardhdalen, the Isfjorden ’suita’ was also described by Pčelina (1983). 
This locality has been revisited during this study in 2015 (see also Lord et al., 2017) where the Isfjorden 
Member was found to be present along with the Wilhelmøya Subgroup.

Figure 8: Regional correlation panel of the De Geerdalen Formation and Isfjorden Member throughout Spitsbergen. The location of logs is presented on the index map. 
Stratigraphy has been flattened on the Brentskardhaugen Bed at the top of the Wilhelmøya Subgroup. This is a major regional surface that is easily traced throughout 
Spitsbergen and serves as a practical marker horizon for log correlation (this is due to the base of the De Geerdalen Formation being time transgressive and the under-
lying Tschermakfjellet Formation often being covered throughout at many localities visited in Spitsbergen). A tentative correlation of the base of the Isfjorden Member 
is also given; however, local facies variations and similarities to the Wilhelmøya Subgroup in sections from Agardhdalen complicate the correlation in this area.
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Figure 9: Overview photographs
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Figure 9: A and A’) The Isfjorden Member at the Festningen Geotope with the prominent beds of calcareous and non- 
calcareous mudstones (gleyed palaeosols) that are characteristic of the member being very well exposed. The base of 
the member is now covered due to recent erosion. B) The De Geerdalen Formation and Isfjorden Member at Dalsnuten 
in Vendomdalen. The very summit of the mountain is capped by remains of red and green calcareous beds with nodules 
(likely rhizoliths). Low-angle thrust faults of the Adventdalen Décollement Zone (ADZ) are also indicated. Note, the upper 
cliff forming part of the mountain indicates a sandier development in the Isfjorden Member and may correlate with 
fluvial channels observed in the member at Deltaneset. This indicates a more regional fluvial development in the middle 
of the member. It is recommended that this development be investigated further. C) The De Geerdalen Formation and  
Isfjorden Member at Storfjellet in Fulmardalen. This locality is the type-section for the Isfjorden Member logged  
originally by Knarud (1980) and defined formally by Mørk et al. (1999).
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Wilhelmøya. The island of Wilhelmøya features the northernmost exposures of the Isfjorden Member 
in Svalbard. Several sections have been measured on this island and there is considerable similarity in 
overall lithologies when comparing the member here to outcrops elsewhere (Figure 8). A dolerite sill, of 
the Cretaceous Diabasodden Suite, penetrates the outcrops just below the Isfjorden Member. 

Edgeøya, Barentsøya & Hopen. Svalbard’s eastern islands of Edgeøya, Barentsøya and Hopen  
consist almost entirely of Triassic rocks of the Sassendalen and Kapp Toscana groups, except for a few  
exposures of Permian rocks. Due to erosion, only the lower part of the De Geerdalen Formation is 
believed to remain in this area with a considerable portion of the Upper Triassic considered missing 
(Lundschien et al., 2014; Lord et al., 2017). The Isfjorden Member has not been documented on  
Edgeøya or Barentsøya, nor has any palynological evidence suggesting the units’ presence been found  
(Vigran et al., 2014).

Non-calcareous mudstones in association with a caliche profile, characteristic of the Isfjorden  
Member, have been observed in the De Geerdalen Formation at one locality in southern Edgeøya.  
However, these are thin, sparsely distributed and less readily identified than those present in the  
Isfjorden Member and likely indicate localised development as opposed to the regional extent of those 
 seen in Spitsbergen later in the Triassic. Palaeosol types on Edgeøya are typically found to be vertisols or  
protosols with an associated histosol (e.g., Figure 4a) and these have also been identified by Anell et al. 
(2020). Limited observations of palaeosols have been made from Hopen; however, well-developed  
albeit thin coal seams (as histosols) are observed in association to rootlets on the flanks of fluvial  
channels, indicating a terrestrial setting and subaerial exposure.
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Description of Base and Top
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22 of 35 23 of 35

G. S. Lord et. al                                 Stratigraphy and palaeosol profiles of the Upper Triassic Isfjorden Member, Svalbard 

Discussion
The Isfjorden Member as a stratigraphic interval 

A summary of the Isfjorden Member, its thickness and description of top and base observed in logged 
sections is presented in Table 2. The unit is well-dated as being late Carnian to early Norian in age and 
this is supported by palynology, magnetostratigraphy and detrital zircon dating (Hounslow et al., 2007, 
2022; Vigran et al., 2014; Rismyhr et al., 2018; Klausen et al., 2022). The Isfjorden Member can be  
identified throughout most of central Spitsbergen where the unit is not eroded. Towards the north-
west, it is present in Oscar II Land where it is found along the coastline and on mountains north of the  
Festningen section. On Svalbard’s eastern islands it is largely eroded but is well preserved on  
Wilhelmøya and most mountains along the easternmost part of Spitsbergen. 

In western Spitsbergen (e.g., Festningen and Dh4, Figure 8), the Isfjorden Member is considered  
condensed, whilst in central parts of Spitsbergen the unit is considerably thicker, e.g., at Dalsnuten and 
Storfjellet (Figures 8 and 10). At these locations the overlying Wilhelmøya Subgroup is not encountered 
in outcrop and the summits of mountains are typically capped by characteristic nodular red and green 
mudstones (both calcareous and non-calcareous palaeosols).

Throughout Spitsbergen many localities feature the upper boundary (Slottet Bed) to the Wilhelmøya 
Subgroup (Figures 8 and 9a). This surface is interpreted as being erosive with significant erosion into 
the Isfjorden Member in eastern Spitsbergen and Wilhelmøya being identified by Rismyhr et al. (2018), 
Hounslow et al. (2022) and Klausen et al. (2022).

The definition for the base of the Isfjorden Member in the unit’s stratotype at Storfjellet is at a siltstone 
coquina bed overlying a thick, cross-bedded, sandstone unit (see log Storfjellet I, Figure 10). During 
fieldwork, we attempted to adhere to this definition when identifying the base of the Isfjorden Member 
throughout the study area. However, it was found that when addressing the stratigraphic subdivision 
in the field, the present boundary definition is impractical as the siderite or coquina beds used in the 
type-section are not laterally extensive and are therefore not present in nearby sections. In Figures 8 
and 10, the base of the unit has been correlated and here it is found to conform somewhat closely to 
the original definition.

At all locations where the boundary to the member has been identified, it is regarded as conformable 
and largely represents a transition from sand-dominated deltaic deposits to a predominantly thinner 
bedded and heterolithic succession. Figure 10 shows the transition to the Isfjorden Member and high-
lights the lateral changes in facies seen at the boundary in mountains local to the type-section, which in 
many cases complicates its identification. 

The paralic nature of the De Geerdalen Formation is largely regarded as the main cause for significant 
lateral variations in facies development and architecture as seen throughout the succession (Knarud, 
1980; Mørk et al., 1982; Rød et al., 2014; Lord et al., 2017). At localities throughout Spitsbergen, where 
the boundary to the Isfjorden Member is present, local depositional environments such as distributary 
channel, delta-plain and delta-front deposits interdigitate and, therefore, there is no clear transition or 
boundary surface to the Isfjorden Member visible in the field (Figure 10).

In addition, many locations lack the siltstone coquina bed overlying the cross-bedded sandstone  
described in the original boundary definition at the type-section, despite some sections being local 
to this (e.g., Ryssen, Figure 10). It may therefore be relevant for practical purposes to consider the  
boundary at, or slightly above, the last major sandstone interval in the De Geerdalen Formation; or,  
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Figure 10: Logged sections of the Isfjorden Member at the mountains of Storfjellet and Ryssen in Fulmardalen. The original type-section (Storfjellet I) presented in 
Mørk et al. (1999) is compared with a recent profile from the mountain (Storfjellet II) and a log from the neighbouring mountain Ryssen. The base of the Isfjorden 
Member (inset photograph) has been correlated at the two localities using the formal definition at the top of a major cross-bedded sandstone. Note the lateral 
change in facies above and below the boundary (tentatively correlated) highlighting the conformable nature of the lower boundary to the Isfjorden Member; the 
unit, however, lies conformably above the De Geerdalen Formation. The siderite bed above the boundary in the type section log noted by Mørk et al. (1999) is missing 
at Ryssen and not observed in the Storfjellet II log, further highlighting the changes that occur over a short distance along the presently defined boundary surface.

Figure 10: Stratotype Comparison
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at the siltstone coquina bed as defined in Mørk et al. (1999) if it is seen to be present. The boundary  
throughout Spitsbergen can be considered conformable with no hiatus or obvious break in sedi- 
mentation evident (that cannot be attributed to short-term processes related to deposition in a paralic 
deltaic setting).

The De Geerdalen Formation in Spitsbergen is primarily composed of upward-coarsening intervals of 
mudstone to medium-grained sandstone deposited in a paralic deltaic environment (Mørk et al., 1999; 
Rød et al., 2014; Lord et al., 2017; Anell et al., 2020). In this study, these upward-coarsening successions 
are usually found to be capped by a palaeosol and in some instances thin coal beds representing an  
associated histosol. This indicates that, during deposition, these regressive successions evolved to a 
stable subaerial exposure in a delta-plain environment, for a period significant enough to allow for 
pedogenic processes and soil genesis to occur.

The Isfjorden Member, in contrast to the underlying succession, is typically composed of finer- 
grained siliciclastic material and its base marks an apparent change in dominant lithology in the upper 
part of the De Geerdalen Formation. In the Isfjorden Member, mudstone beds, interspersed with thin  
upward-coarsening successions of silt to fine-grained sandstone become the dominant lithologies and 
represent shallow-marine, lagoonal and delta-plain depositional environments (Rød et al., 2014; Lord 
et al., 2017).

Within these upward-coarsening successions are intermittent mudstone beds, commonly red and  
green in colour, and these are interpreted to represent the abundant palaeosol profiles discussed  
herein (e.g., calcareous and non-calcareous mudstones; Figures 5 and 6). Calcretes, nodule clusters, 
nodular beds, thin coal laminae and minor coal beds (histosols) are also observed throughout the  
member; as are several beds composed of bivalve coquina. The upper boundary to the Isfjorden  
Member is marked by the Slottet Bed (Figure 9a), a transgressive lag, deposited during the early Norian 
and is the basal bed to the Wilhelmøya Subgroup (Mørk et al., 1999). Regionally, the Slottet Bed is seen 
to feature local erosional contacts with the Isfjorden Member (Hounslow et al., 2022; Klausen et al., 
2022; Rismyhr et al., 2018).

Vertisol, protosol and argillisol profiles are found throughout the De Geerdalen Formation and  
Isfjorden Member. The number of palaeosols increases upwards through the De Geerdalen Formation, 
as does their apparent maturity and thickness which should be expected, given the increasingly proximal  
depositional environment of the upper part of the formation (Rød et al., 2014; Lord et al., 2017). 
Within the Isfjorden Member, however, vertisol, protosol and argillisol soils are seen to be most  
abundant in the lower part, whilst gleyed calcareous and non-calcareous palaeosols as well as caliche,  
dominate in the upper part of the member. Immature protosols are distributed relatively evenly  
throughout the Upper Triassic succession, whilst argillisols are more frequently observed within the 
Isfjorden Member. In general, palaeosols in the De Geerdalen Formation occur in association with a  
broad range of delta-plain depositional facies where they are typically found overlying distributary channel,  
barrier-bar and interdistributary deposits (see Rød et al., 2014; Klausen et al., 2015; Lord et al., 2017 
and Anell et al., 2020 for detailed sedimentology of the De Geerdalen Formation). 

To the northeast, the Upper Triassic succession on Wilhelmøya features the most proximal deposits 
observed throughout the study area (Lord et al., 2017) and these deposits also contain the most mature 
palaeosols identified by this study. Mature palaeosols in Spitsbergen occur contemporaneously with 
floodplain deposits and in many cases feature an associated histosol. Combined, these features imply 
mature floral growth on the floodplain and prolonged periods where sedimentation and drainage rates 
have allowed for peat development and soil genesis. Farther east, well-preserved in-situ tree remains 
are observed in the De Geerdalen Formation on the mountain Blanknuten, Edgeøya (Rød et al., 2014) 
and this supports the hypothesis of mature floral development on the Upper Triassic delta-plain during 
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the Carnian. It is uncertain if their occurrence is associated with any palaeosol horizon as these remains 
are observed to protrude from an exposed ridge in three-dimensions, with surrounding beds being scree 
covered. Large tree remains have also been reported in fluvial facies from Hopen (Lord et al., 2014b); 
however, these were not in-situ. A first-look study of Carnian flora from Hopen indicates that a well- 
developed ’North Atlantic floristic sub-province’ believed to have been well-established by the Rhaetian, 
was already developing during the Carnian (Launis et al., 2014; Launis & Pott, 2014).

There is a shift from the development of immature palaeosols (vertisols and protosols) below the  
Isfjorden Member to the development of mature palaeosols (argillisols, gleyed mudstones and  
caliche) within the member. Only one argillisol has been observed in the lower part of the De Geerdalen  
Formation on Wilhelmøya, likely due to the overall proximal nature of facies seen throughout succession 
here. Argillisols in the Isfjorden member are seen to be relatively homogeneous in appearance and this 
can likely be attributed to an alternating moisture regime in the soil. Seasonal rainfall, or a fluctuating 
water table occurring due to the paralic nature of the De Geerdalen Formation, may be the cause for this 
variable moisture regime within these soil profiles.

Vertisols in the De Geerdalen Formation are often found overlying sandstone beds that feature  
distinctive fluvial characteristics. According to studies by Kraus & Aslan (1999), soils formed on top of 
fluvial channels are likely to be poorly developed, when compared with soils located elsewhere on a 
floodplain. This may explain the presence of poorly developed soil horizons within vertisols identified in 
the study area. However, the high organic content and root structures found in many of these vertisols 
indicate floral development and verifies that pedogenic processes have occurred to some extent. 

Protosols are found throughout the De Geerdalen Formation and at all localities except for Deltaneset. 
This is considered to reflect the wide range of environments in which protosols can form. Protosols are 
also the most common soil type with their frequent occurrence interpreted as reflecting the dynamic 
nature of the delta, as soil formation is not favourable if the sedimentation rate is too high (Kraus, 1999). 
Throughout the study area, alternating beds of red and green coloured mudstones (and calcretes) are 
found to be restricted exclusively to the Isfjorden Member. The colour of these palaeosols was described 
by Pčelina (1983) as striking and easily recognised. These palaeosols are generally thicker than protosols, 
vertisols and argillisols and this may be due to reduced sediment input at this higher stratigraphic level 
(in comparison to the underlying succession), creating longer lasting soil-forming conditions.

The genesis of colouration in calcareous and non-calcareous palaeosols in the Isfjorden Member (one of 
its defining characteristics) is related to the process of gleying due to anoxic conditions and dehydration 
and recrystallisation of the mineral goethite to hematite under aerobic conditions. The non-calcareous 
palaeosols are proposed to have gained their strong colouration (e.g., Figure 9a) due to the dehydration 
and transformation of the mineral goethite to hematite. This process requires a humid environment 
and long periods of steady soil-forming conditions, which suggests an overall stable depositional and  
climatic setting. As a result, these soil types have been defined separately, due to their differing  
carbonate contents.

The presence of goethite and kaolinite in calcareous and non-calcareous mudstone palaeosols can be 
considered surprising and somewhat confuses subsequent interpretations. These palaeosols generally 
occur in association with calcrete and caliche which are typically associated with drier and more arid 
climates with a mean annual rainfall of 100 to 500 mm (Goudie, 1983; Alonso-Zarza & Wright, 2010).  
The formation of pedogenic kaolinite is typically ascribed to a warm and humid climate (Sheldon &  
Tabor, 2009) and kaolinite is also a dominating clay mineral in areas with seasonal precipitation between 
1000 and 2000 mm (Retallack, 2001).

Calcrete is observed primarily at Deltaneset in central Spitsbergen whilst occurrences are seen at Šmidt-
berget, Friedrichfjellet and Teistberget in eastern Spitsbergen. The calcrete bed observed at Deltaneset 
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is relatively thick in profile (Figure 6d) and appears to have a more mature development than those  
observed elsewhere. Since, however, the formation of calcrete is dependent on relatively dry  
conditions, its presence indicates a climate that allowed for prolonged dry periods.

The development of immature palaeosols and histosols, to mature carbonaceous palaeosols and  
caliche profiles, may indicate a subtle variation in climate at the Carnian to Norian transition in  
Svalbard. This may reflect a change from a poorly drained delta plain, with peat bogs and dense  
vegetation in a humid environment as seen in the underlying part of the De Geerdalen Formation, to a  
semi-arid climate, with better drainage and prolonged periods of subaerial exposure, during the  
deposition of the Isfjorden Member. In addition, the presence of immature palaeosols and coal in the 
lower to middle parts of the De Geerdalen Formation that span the time-period associated with the 
CPE (Mueller et al., 2016b; Hounslow et al., 2022), may be evidence for the impact of this event on the 
middle Carnian part of the succession in Svalbard. The transition to mature palaeosol types and caliche 
that are observed in the Isfjorden Member may speculatively be attributed to a waning of this event 
and the subsequent return to more contemporary arid climatic conditions associated with the Triassic 
period (Mueller et al., 2016b).

An alternative hypothesis is that the change in palaeosol types into the Isfjorden Member  
reflects the genetic development of the widespread Triassic paralic deltaic system, with an increasingly  
proximal depositional environment being present in Spitsbergen by the early part of the Norian.  
This would constitute a setting where better drainage, slower sedimentation rates and longer periods of  
subaerial exposure existed on the delta top. This would need to be in tandem with the presence of 
stagnant water bodies and fluctuations in water level that could be expected in a paralic setting. Such an  
environment also satisfies the complex relationship between the presence of caliche and gleyed 
mudstone palaeosols, without speculating on a climatic driver. Due to the limited climate-related data 
available, it is this hypothesis that is most favoured at present. 

Conclusions
Palaeosols are found to be prevalent throughout the De Geerdalen Formation and are typically  
found overlying upward-coarsening successions. This suggests that stacked successions of deltaic facies 
which make up the formation often developed to a prolonged subaerial unconformity, allowing for  
pedogenesis to occur. The concentration, thickness and maturity of palaeosols increases in the Isfjorden 
Member. The unique colour of palaeosols make the unit easy to recognise in outcrop and represent a 
distinctive change in overall lithologies. 

There is a change in the dominant palaeosol type, from vertisols and protosols seen in the lower 
part of the De Geerdalen Formation, to argillisols, gleyed calcareous or non-calcareous palaeosols,  
and calcrete within the Isfjorden Member. Calcrete horizons are somewhat unevenly distributed  
throughout the stratigraphy, though thick and mature calcretes are seen in central Spitsbergen.  
In outcrops farther east, calcretes are rare. 

The transition from immature, organic-rich palaeosols present in the lower part of the  
De Geerdalen Formation to more mature carbonate soils and caliche profiles may hint at a subtle  
transition in climate at the time of deposition. This may suggest a change from well-vegetated soils  
developed in a water-logged warm-humid environment, to soils that have endured periods with a  
prolonged subaerial exposure in a more arid climate. However, we presently favour the genetic  
development of the deltaic succession as driving the differences in palaeosol types, as opposed to  
changes forced by climate (e.g., the CPE).
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There is a notable thinning of the Isfjorden Member towards the west from 135 m to 55 m in thickness, 
attributed to condensation. Significant erosion of the member in eastern Spitsbergen and Wilhelmøya is 
also identified. Thus, its true stratigraphic thickness is presently unknown in eastern areas.

The upper part of the De Geerdalen Formation is dominated by interdistributary facies, particularly 
within the Isfjorden Member. This may imply lower sedimentation rates and a prevailing delta-plain 
environment interspersed with lagoonal and marginal marine deposits during the latest Carnian to  
earliest Norian. The lateral facies variations at the boundary to the Isfjorden Member mean this  
cannot be defined at one independent and laterally consistent bed or surface. We define the base of 
the Isfjorden Member at the top of the last major sandstone interval in the De Geerdalen Formation,  
where a clear trend to finer-grained lithologies can be seen above. This can be regarded as the 
most practical solution for stratigraphic orientation in the field. The base of the unit is regarded as  
conformable throughout Spitsbergen.

It is unclear if the Isfjorden Member correlates with the Hopen Member as previously interpreted. 
New dating implies significant erosion towards the east and may indicate that the Isfjorden Member  
correlates instead with the uppermost fluvial part of the De Geerdalen Formation on Hopen. 
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