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NUMERICAL SIMULATION OF THE NONLINEAR COUPLED
JAULENT-MIODEK EQUATION BY ELZAKI TRANSFORM-ADOMIAN

POLYNOMIAL METHOD

OLUFEMI ELIJAH IGE1, RAZAQ ADEKOLA ODERINU, AND TARIG M. ELZAKI

ABSTRACT. The Elzaki transform which is an integral transform used to obtain
solutions of linear differential equations is coupled with Adomian polynomial to
solve nonlinear coupled Jaulent-Miodek (JM) equation. The Adomian polynomial
is used to linearise the nonlinear functions in the partial differential equation
before the scheme of the Elzaki transform was used to iteratively generate each
term of the series solution. The solutions obtained were compared with the exact
solutions and were found to give a very small error, the graphical representation
of the solutions which give the shape of the solitons also agree with that of the
Adomian decomposition method when a comparison is made. The method is
powerful and effective as it does not involve large computer memory and does not
involve discretizing the independent variables to achieve the required solution.

1. INTRODUCTION

In recent years, multi-scale problems, scientific problems as well as engineer-
ing problems occur nonlinearly. Most time these problems are represented by
nonlinear partial differential equations [5], and most of them do not have spe-
cific analytical solutions except for a few number of them. However, various field
of science such as fluid mechanics [37], condensed matter physics [34], plasma
physics [4] and optics [25] have committed to studying them over the years.
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The theory of fractional calculus has been around for a while, it can be traced
back to 1695 [32], and that is why it is regarded as an old mathematical concept.
However, in recent decades, remarkable progress has been made. In the past forty
years, the theory of fractional calculus has procured remarkable concentration
from the researchers owing to its substantial capability to successfully explain var-
ious inconsistent phenomena and complicated operations in natural science and
engineering [26]. Diverse anomalous occurrence in real life situations have been
mathematically modeled by fractional differential or integral equations to verify
the theory of fractional calculus [27,30,35]. Obtaining the analytical solutions of
these type of equations is generally very hard or occasionally impossible. Several
researchers have endeavored to ascertain and develop effective semi-analytical
and numerical procedures to handle fractional models [1,15,24,28,31].

This research work is devoted to exploring the following challenging physical
model, the time-fractional coupled Jaulent-Miodek equation associated with the
energy-dependent Schrodinger potential [13,26,33]
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(·) represents the Riemann-Liouville partial derivative operator of order

α (where, 0 < α ≤ 1) with respect to the variable t, which is given as
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∂
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and Γ(·) is the gamma function. Our attention will be focused on when α = 1. In
this case, the model given in equations (1.1) and (1.2) transforms to the coupled
classical Jaulent-Miodek (JM) given by [11,21]

vt + vxxx +
3

2
wwxxx +

9

2
wxwxx − 6vvx − 6vwwx −

3

2
vxw

2 = 0,(1.3)

wt + wxxx − 6vxw − 6vwx −
15

2
wxw

2 = 0,(1.4)

with the initial conditions v(x, 0) = g1(x) and w(x, 0) = g2(x). Several semi-
analytical and computational methods have been applied to analyze this classical
Jaulent-Miodek system, for instance, the time-stepping scheme coupled with the
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spectral method [29], the Adomian decomposition method [3, 23], the tanh-coth
method [36], the variational iteration method [12], the exp-function technique
[14], the homotopy perturbation method [2], and the sine-cosine method [22].

Recently, the use of the Elzaki transform to solve the nonlinear partial differ-
ential equations has comes to the limelight [6, 8, 9, 38], though this method can-
not handle the nonlinearity, and this lead to using other techniques like Adomian
polynomial, Differential transform, Homotopy perturbation method to decompose
the nonlinear terms. This work is a continuation of our research, where we stud-
ied several nonlinear equations such as third-order KdV equations [17], fifth-order
KdV equations [20], Klein-Gordon equations [18] and Sine-Gordon equations [19]
using aforementioned technique.

The Elzaki transform and Adomian polynomial method is implemented for ob-
taining the traveling wave and approximate analytic solutions of the Jaulet-Miodek
equations. The JM solution is efficiently obtained by executing the aforementioned
method instead of the usual methods of obtaining the exact solutions, without suf-
fering conventional difficulty.

This paper is organized as follows: Section 2 comprises the definitions, prop-
erties, as well as the analysis of the Elzaki transform and Adomian polynomial
method in solving coupled Jaulent-Miodek equation. In Section 3, we consider
the application of this method in solving two problems to show its efficiency. Dis-
cussion of results is presented in Section 4, and Section 5 contains the conclusion.

2. THE ANALYSIS OF THE ELZAKI TRANSFORM AND ADOMIAN POLYNOMIAL METHOD

IN SOLVING COUPLED JAULENT-MIODEK EQUATION

The Elzaki transform [6, 8, 9, 16] is defined for the functions of exponential
order [7] as given below

A =

{
f(t) : ∃M, c1, c2 > 0, |f(t)| < Me

|t|
cj , if t ∈ (−1)j × [0,∞)

}
.

For any given function in the set A defined above, the constant c1, c2 could either
be finite or infinite, while M is always infinite.

Based on the findings of Tarig [7], he defined the Elzaki transform as:

E[f(t)] = u2
∫ ∞
0

f(ut)e−tdt = T (u), t ≥ 0, u ∈ (c1, c2),
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or

E[f(t)] = u

∫ ∞
0

f(t)e−
t
udt = T (u), t ≥ 0, u ∈ (c1, c2).(2.1)

Theorem 2.1. Let the Elzaki transform of the function f(t) be denoted by T (u) in
such a way that E[f(t)] = T (u), then:

(i) E[f ’(t)] = T (u)
u
− uf(0),

(ii) E[f”(t)] = T (u)
u2
− f(0)− uf ′(0),

(iii) E[f (n)(t)] = T (u)
un
−
∑n−1

k=0 u
2−n+kf (k)(0).

Proof. (i) Considering (2.1), E[f ′(t)] is given as

E[f ′(t)] = u

∫ ∞
0

f ′(t)e−
t
udt = T (u).(2.2)

Using the integration by part on the right hand side, we have∫ ∞
0

f ′(t)e−
t
udt = e−

t
uf(t)

∣∣∣∞
0

+
1

u

∫ ∞
0

f(t)e−
t
udt,

= −f(0) +
1

u

∫ ∞
0

f(t)e−
t
udt.

Substituting this result back into (2.2) yields

E[f ′(t)] = u

[
−f(0) +

1

u

∫ ∞
0

f(t)e−
t
udt

]
,

= −uf(0) +

∫ ∞
0

f(t)e−
t
udt.

Using definition (2.2) in this expression yields

E[f ′(t)] =
T (u)

u
− uf(0).

(ii) Again, from (2.1), replacing the function f ′(t) by f ′′(t), we have

E[f ′′(t)] = u

∫ ∞
0

f ′′(t)e−
t
udt.

By integrating by part, this yields

E[f ′′(t)] = u

[
−f ′(0) +

1

u

∫ ∞
0

f ′(t)e−
t
udt

]
.
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Now using definition given in (2.2), we have

E[f ′′(t)] = −uf ′(0) +
E[f ′(t)]

u
,

=
E[f ′(t)]

u
− uf ′(0).

Using the result obtained in (i) here, this relation yield

E[f ′′(t)] =
T (u)

u2
− f(0)− uf ′(0).

(iii) The general form of this theorem is proved by induction. Given that

E[f (n)(t)] =
T (u)

un
−

n−1∑
k=0

u2−n+kf (k)(0), for all n ≥ 1.(2.3)

Step 1: When n = 1 in (2.3), we have

E[f ′(t)] =
T (u)

u
− uf(0).

Here, it is evident that (2.3) holds for n = 1.

Step 2: Assume that equation (2.3) holds for n = N i.e.

E[f (N)(t)] =
T (u)

uN
−

N−1∑
k=0

u2−N+kf (k)(0).(2.4)

This is true for all the values of N .

Step 3: It is proved that it is equally held for N + 1, i.e

E[f (N+1)(t)] =
T (u)

uN+1
−

N∑
k=0

.u2−(N+1)+kf (k)(0).

By making use of STEP 1 above,

E[f (N+1)(t)] = E[(f (N)(t))′],

=
E[f (N)(t)]

u
− uf (k)(0).
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Using equation (2.4), so

E[f (N+1)(t)] =
T (u)

uN+1
−

N−1∑
k=0

u2−N+k−1f (k)(0)− uf (k)(0),

=
T (u)

uN+1
−

N∑
k=0

u2−(N+1)+kf (k)(0).

Therefore, the last expression corresponds to equation (2.3) when n = N + 1. �

E[f(t)] = T (u) implies that T (u) is the Elzaki transform of the function f(t), so,
f(t) will now be the inverse of Elzaki transform T (u) as given below

f(t) = E−1[T (u)].

The algorithm of Elzaki transform, which is directly applicable to JM equation is
described in this section. Application of Elzaki transform into the equations (1.3)
and (1.4) is given in the form

E[vt] = −E
[
vxxx +

3

2
wwxxx +

9

2
wxwxx − 6vvx − 6vwwx −

3

2
vxw

2

]
,(2.5)

E[wt] = −E
[
wxxx − 6vxw − 6vwx −

15

2
wxw

2

]
,(2.6)

since [10]

E[vt] =
V (x, u)

u
− uv(x, 0), E[vxxx] =

d3

dx3
E[v],

E[wt] =
W (x, u)

u
− uw(x, 0), E[wxxx] =

d3

dx3
E[w].

Using these definitions in conjunction with the given initial conditions, equations
(2.5)and (2.6) become

V (x, u) =u2v(x, 0) + E−1
{
−u d

3
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[
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2
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+
9

2
wxwxx − 6vvx − 6vwwx −

3

2
vxw

2

]}
,

(2.7)

W (x, u) =u2w(x, 0) + E−1
{
−u d

3

dx3
E[w]

+wE

[
6vxw + 6vwx +

15

2
wxw

2

]}
.

(2.8)
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Applying the inverse Elzaki transform to both sides of the equations (2.7) and
(2.8) and simplifying yield

v(x, t) =g1(x) + E−1
{
−u d

3

dx3
E[v]− uE

[
3

2
N1(v, w) +

9

2
N2(v, w)

−6N3(v, w)− 6N4(v, w)− 3

2
N5(v, w)

]}
,

(2.9)

w(x, t) =g2(x) + E−1
{
−u d

3

dx3
E[w] + wE [6N6(v, w)

+6N7(v, w) +
15

2
N8(v, w)

]}
.

(2.10)

The linear terms v(x, t) and w(x, t) can be decomposed by an infinite series of
components

v(x, t) =
∞∑
n=0

vn(x, t), w(x, t) =
∞∑
n=0

wn(x, t),

in which the nonlinear operators N1(v, w), N2(v, w), N3(v, w), N4(v, w), N5(v, w),
N6(v, w), N7(v, w), and N8(v, w) can be decomposed by the infinite series:

Ni(v, w) =
∞∑
n=0

Ai,n, i = 1, 2, · · · 8.

This implies that all the nonlinear terms, that is, wwxxx, wxwxx, vvx, vwwx, vxw2,
vxw, vwx, and wxw

2 are denoted by Adomian polynomials which is the series
Ai,n, i = 1, 2, · · · 8.

Next, we want to determined vn(x, t) and wn(x, t), n ≥ 0 which are the com-
ponents of v(x, t) and w(x, t). Therefore, using equations (2.9) and (2.10), the
components series can be determined by the recursive relation

(2.11) v0 = g1(x), w0 = g2(x),

vn+1 =E−1
{
−u d

3

dx3
E[vn]− uE

[
3

2
A1,n +

9

2
A2,n

−6A3,n − 6A4,n −
3

2
A5,n

]}
,

(2.12)

(2.13) wn+1 = E−1
{
−u d

3

dx3
E[wn] + wE

[
6A6,n + 6A7,n +

15

2
A8,n

]}
,



10342 O. E. IGE, R. A. ODERINU, AND T. M. ELZAKI

where n ≥ 0. The Adomian’s polynomials Ai,n needed for nonlinear decomposition
of functions in equations (2.12) and (2.13) is generated by using the formula

(2.14) Ai,n =
1

n!

[
dn

dλn
Ni

[
n∑
j=0

λjvj,

n∑
j=0

λjwj

]]
λ=0

, n ≥ 0.

Using equation (2.14), the first few Adomian polynomials are given as

A1,0 = w0xxxw0,

A1,1 = w0xxxw1 + w1xxxw0,

A1,2 = w0xxxw2 + w1xxxw1 + w2xxxw0,

A1,3 = w0xxxw3 + w1xxxw2 + w2xxxw1 + w3xxxw0,

A1,4 = w0xxxw4 + w1xxxw3 + w2xxxw2 + w3xxxw1 + w4xxxw0,

A2,0 = w0xxw0x,

A2,1 = w0xxw1x + w1xxw0x,

A2,2 = w0xxw2x + w1xxw1x + w2xxw0x,

A2,3 = w0xxw3x + w1xxw2x + w2xxw1x + w3xxw0x,

A2,4 = w0xxw4x + w1xxw3x + w2xxw2x + w3xxw1x + w4xxw0x,

A3,0 = v0xv0,

A3,1 = v0xv1 + v1xv0,

A3,2 = v0xv2 + v1xv1 + v2xv0,

A3,3 = v0xv3 + v1xv2 + v2xv1 + v3xv0,

A3,4 = v0xv4 + v1xv3 + v2xv2 + v3xv1 + v4xv0,

A4,0 = v0w0w0x,

A4,1 = v1w0w0x + v0w1w0x + v0w0w1x,

A4,2 = v2w0w0x + v1w1w0x + v0w2w0x + v1w0w1x + v0w1w1x + v0w0w2x,

A4,3 = v3w0w0x + v2w1w0x + v1w2w0x + v0w3w0x + v2w0w1x + v1w1w1x

+ v0w2w1x + v1w0w2x + v0w1w2x + v0w0w3x,
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A4,4 = v4w0w0x + v3w1w0x + v2w2w0x + v1w3w0x + v0w4w0x + v3w0w1x

+ v2w1w1x + v1w2w1x + v0w3w1x + v2w0w2x + v1w1w2x + v0w2w2x

+ v1w0w3x + v0w1w3x + v0w0w4x,

A5,0 = v0xw
2
0,

A5,1 = v1xw
2
0 + 2v1xw0w1,

A5,2 = v2xw
2
0 + 2v1xw0w1 + 2v0xw0w2 + v0xw

2
1,

A5,3 = v3xw
2
0 + 2v2xw0w1 + 2v1xw0w2 + 2v0xw1w2 + 2v0xw0w3 + v1xw

2
1,

A5,4 = v4xw
2
0 + 2v3xw0w1 + v2xw

2
1 + 2v2xw0w2 + 2v1xw1w2 + 2v1xw0w3

+ 2v0xw1w3 + 2v0xw0w4 + v0xw
2
2,

A6,0 = v0xw0,

A6,1 = v0xw1 + v1xw0,

A6,2 = v0xw2 + v1xw1 + v2xw0,

A6,3 = v0xw3 + v1xw2 + v2xw1 + v3xw0,

A6,4 = v0xw4 + v1xw3 + v2xw2 + v3xw1 + v4xw0,

A7,0 = w0xv0,

A7,1 = w0xv1 + w1xv0,

A7,2 = w0xv2 + w1xv1 + w2xv0,

A7,3 = w0xv3 + w1xv2 + w2xv1 + w3xv0,

A7,4 = w0xv4 + w1xv3 + w2xv2 + w3xv1 + w4xv0,

A8,0 = w0xw
2
0,

A8,1 = w1xw
2
0 + 2w1xw0w1,

A8,2 = w2xw
2
0 + 2w1xw0w1 + 2w0xw0w2 + w0xw

2
1,

A8,3 = w3xw
2
0 + 2w2xw0w1 + 2w1xw0w2 + 2w0xw1w2 + 2w0xw0w3 + w1xw

2
1,

A8,4 = w4xw
2
0 + 2w3xw0w1 + w2xw

2
1 + 2w2xw0w2 + 2w1xw1w2 + 2w1xw0w3

+ 2w0xw1w3 + 2w0xw0w4 + w0xw
2
2.

These polynomials is enough for the purpose of this work, they can be constructed
further using the same approach.
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3. APPLICATIONS

3.1. Illustration 1: Here, the Elzaki transform and Adomian polynomial explained
above is applied to obtain the approximate analytical solution of coupled JM equa-
tion given in equations (1.3) and (1.4) with the initial conditions [23]

v(x, 0) =
c

2
+ 2c sech2(kx), w(x, 0) = 2k sech(kx).(3.1)

Incorporating equation (2.14) into equations (2.11), (2.12) and (2.13) for the
coupled JM equations (1.3) and (1.4) with the given initial conditions (3.1) yield

v0 =
c

2
+ 2c sech2(kx), w0 = 2k sech(kx).(3.2)

Considering when n = 0, then the recursive relations (2.12) and (2.13) become

v1 = E−1
{
−u d

3

dx3
E[v0]− uE

[
3

2
A1,0 +

9

2
A2,0 − 6A3,0 − 6A4,0 −

3

2
A5,0

]}
,

w1 = E−1
{
−u d

3

dx3
E[w0] + wE

[
6A6,0 + 6A7,0 +

15

2
A8,0

]}
,

and these yield

v1 =
1

cosh5(kx)

(
4tk sinh(kx)

(
− 6k4 cosh2(kx)− ck2 cosh2(kx)

+ 3c2 cosh2(kx) + 18k4 + 30ck2 + 12c2
))

,(3.3)

w1 =
2tk2 sinh(kx)

cosh4(kx)

(
−k2 cosh2(kx) + 3c cosh2(kx) + 36k2 + 36c

)
.(3.4)

Similarly, when n = 1, the recursive relations (2.12) and (2.13) become

v2 = E−1
{
−u d

3

dx3
E[v1]− uE

[
3

2
A1,1 +

9

2
A2,1 − 6A3,1 − 6A4,1 −

3

2
A5,1

]}
,

w2 = E−1
{
−u d

3

dx3
E[w1] + wE

[
6A6,1 + 6A7,1 +

15

2
A8,1

]}
,

which yield
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v2 =
576t3k3 sinh(kx)c4

cosh5(kx)
+

6048t3k3 sinh(kx)c4

cosh7(kx)
+

9216t3k3 sinh(kx)c4

cosh9(kx)

− 23040t3k3 sinh(kx)c4

cosh11(kx)
− 72t3k7 sinh(kx)c2

cosh3(kx)
− 8976t3k9 sinh(kx)c

cosh5(kx)

− 15272t3k7 sinh(kx)c2

cosh5(kx)
− 384t3k5 sinh(kx)c3

cosh5(kx)
− 549936t3k9 sinh(kx)c

cosh7(kx)

− 214296t3k7 sinh(kx)c2

cosh7(kx)
+

15552t3k5 sinh(kx)c3

cosh7(kx)
+

2338560t3k9 sinh(kx)c

cosh9(kx)

+
1209216t3k7 sinh(kx)c2

cosh9(kx)
+

72192t3k5 sinh(kx)c3

cosh9(kx)
− 2039040t3k9 sinh(kx)c

cosh11(kx)

− 1146240t3k7 sinh(kx)c2

cosh11(kx)
− 115200t3k5 sinh(kx)c3

cosh11(kx)
+

48t3k9 sinh(kx)c

cosh3(kx)

+
16t2k6c

cosh2(kx)
− 48t2k4c2

cosh2(kx)
− 3960t2k6c

cosh4(kx)
− 1176t2k4c2

cosh4(kx)
+

15720t2k6c

cosh6(kx)

+
5880t2k4c2

cosh6(kx)
− 12600t2k6c

cosh8(kx)
− 5040t2k4c2

cosh8(kx)
− 8t3k11 sinh(kx)

cosh3(kx)
+

7000t3k11 sinh(kx)

cosh5(kx)

− 328440t3k11 sinh(kx)

cosh7(kx)
+

1192320t3k11 sinh(kx)

cosh9(kx)
− 984960t3k11 sinh(kx)

cosh11(kx)

(3.5)

+
1959552t4k6c4

cosh14(kx)
+

1260t4k12c

cosh4(kx)
− 1620t4k10c2

cosh4(kx)
− 972t4k8c3

cosh4(kx)
− 54834t4k12c

cosh6(kx)

+
972t4k6c4

cosh4(kx)
− 95058t4k10c2

cosh6(kx)
+

25218t4k8c3

cosh6(kx)
− 1253190t4k12c

cosh8(kx)
+

41310t4k6c4

cosh6(kx)

+
230634t4k10c2

cosh8(kx)
+

1076166t4k8c3

cosh8(kx)
+

11394828t4k12c

cosh10(kx)
+

404190t4k6c4

cosh8(kx)

+
11053116t4k10c2

cosh10(kx)
+

4042116t4k8c3

cosh10(kx)
− 20865600t4k12c

cosh12(kx)
+

338904t4k6c4

cosh10(kx)

− 25883712t4k10c2

cosh12(kx)
− 13960512t4k8c3

cosh12(kx)
− 2744928t4k6c4

cosh12(kx)
+

10777536t4k12c

cosh14(kx)

+
8817984t4k8c3

cosh14(kx)
+

14696640t4k10c2

cosh14(kx)
+

4044924t4k14

cosh10(kx)
+

96t2k8

cosh2(kx)
− 7560t2k8

cosh8(kx)

− 813960t4k14

cosh8(kx)
− 6197472t4k14

cosh12(kx)
+

27396t4k14

cosh6(kx)
+

10080t2k8

cosh6(kx)

+
2939328t4k14

cosh14(kx)
− 216t4k14

cosh4(kx)
− 3024t2k8

cosh4(kx)
,
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w2 =
8100t4k11 sinh2(kx)c

cosh9(kx)
− 58320t4k11 sinh2(kx)c

cosh9(kx)
− 4860t4k9 sinh2(kx)c2

cosh7(kx)

− 291600t4k9 sinh2(kx)c2

cosh9(kx)
− 14580t4k7 sinh2(kx)c3

cosh7(kx)
− 174960t4k7 sinh2(kx)c3

cosh9(kx)

− 2099520t4k11 sinh2(kx)c

cosh11(kx)
− 2099520t4k9 sinh2(kx)c2

cosh11(kx)
− 699840t4k7 sinh2(kx)c3

cosh11(kx)

− 135t4k11 sinh2(kx)c

cosh5(kx)
+

405t4k9 sinh2(kx)c2

cosh5(kx)
− 405t4k7 sinh2(kx)c3

cosh5(kx)

+
270t4k11 sinh4(kx)c

cosh7(kx)
− 810t4k9 sinh4(kx)c2

cosh7(kx)

+
810t4k7 sinh4(kx)c3

cosh7(kx)
− 21600t4k11 sinh4(kx)c

cosh9(kx)

+
194400t4k11 sinh4(kx)c

cosh11(kx)
+

12960t4k9 sinh4(kx)c2

cosh9(kx)
+

972000t4k9 sinh4(kx)c2

cosh11(kx)

+
38880t4k7 sinh4(kx)c3

cosh9(kx)
+

583200t4k7 sinh4(kx)c3

cosh11(kx)
+

8398080t4k11 sinh4(kx)c

cosh13(kx)

+
8398080t4k9 sinh4(kx)c2

cosh13(kx)
+

2799360t4k7 sinh4(kx)c3

cosh13(kx)
− 288t3k4 sinh(kx)c3

cosh4(kx)
(3.6)

− 4608t3k4 sinh(kx)c3

cosh6(kx)
− 13824t3k4 sinh(kx)c3

cosh8(kx)
+

7296t3k8 sinh(kx)c

cosh6(kx)

− 4800t3k6 sinh(kx)c2

cosh6(kx)
− 55296t3k8 sinh(kx)c

cosh8(kx)
− 48384t3k6 sinh(kx)c2

cosh8(kx)

− 1360t3k8 sinh3(kx)c

cosh6(kx)
− 25536t3k8 sinh3(kx)c

cosh8(kx)
− 480t3k6 sinh3(kx)c2

cosh6(kx)

+
16800t3k6 sinh3(kx)c2

cosh8(kx)
+

720t3k4 sinh3(kx)c3

cosh6(kx)

16128t3k4 sinh3(kx)c3

cosh8(kx)
+

+
248832t3k8 sinh3(kx)c

cosh10(kx)
+

217728t3k6 sinh3(kx)c2

cosh10(kx)
+

62208t3k4 sinh3(kx)c3

cosh10(kx)

+
544t3k8 sinh(kx)c

cosh4(kx)
+

192t3k6 sinh(kx)c2

cosh4(kx)
+

t2k7

cosh(kx)
+

480t3k10 sinh3(kx)

cosh6(kx)

− 26208t3k10 sinh3(kx)

cosh8(kx)
+

93312t3k10 sinh3(kx)

cosh10(kx)
+

7488t3k10 sinh(kx)

cosh6(kx)

− 20736t3k10 sinh(kx)

cosh8(kx)
− 192t3k10 sinh(kx)

cosh4(kx)
+

4320t4k13 sinh4(kx)

cosh9(kx)
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− 194400t4k13 sinh4(kx)

cosh11(kx)
+

2799360t4k13 sinh4(kx)

cosh13(kx)
− 30t4k13 sinh4(kx)

cosh7(kx)

− 1620t4k13 sinh2(kx)

cosh7(kx)
− 699840t4k13 sinh2(kx)

cosh11(kx)
+

58320t4k13 sinh2(kx)

cosh9(kx)

+
15t4k13 sinh2(kx)

cosh5(kx)
− 3

2

t2k5c

cosh(kx)
− 456t2k5c

cosh3(kx)
+

2412t2k5c

cosh5(kx)
− 2160t2k5c

cosh7(kx)

+
4920t2k7

cosh5(kx)
− 4320t2k7

cosh7(kx)
− 992t2k7

cosh3(kx)
.

Therefore, the series solution is given as

v(x, t) = v0 + v1 + v2 + v3 + · · ·(3.7)

w(x, t) = w0 + w1 + w2 + w3 + · · · .(3.8)

Substituting equations (3.2), (3.3), (3.4), (3.5) and (3.6) into equations (3.7) and
(3.8) give the required approximate solutions associated with the initial conditions
of the given nonlinear coupled Jaulent-Miodek equation.

The closed form solutions to equations (1.3) and (1.4) in connection to initial
conditions (3.1) are obtained by [11] as

v(x, t) =
c

2
+ 2c sech2 (k(Rt+ x)) , w(x, t) = 2k sech (k(Rt+ x)) ,(3.9)

where R = 1
2
(b2 + c) and b, c, k are taken as the arbitrary constants.
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FIGURE 1. The upper and lower left panel show the solitary wave
solutions v(x, t) and w(x, t) of coupled nonlinear Jaulent-Miodek
equation (1.3) and (1.4) with the given initial conditions (3.1) using
Elzaki transform and Adomian polynomial as seen in equations (3.7)
and (3.8), while the solitary wave solutions v(x, t) and w(x, t) of cou-
pled nonlinear Jaulent-Miodek equation (1.3) and (1.4) with the
given initial conditions (3.1) using Adomian decomposition method
[12] is shown in the upper and lower right panel when b = c = 0.01

and k =
√
c.

TABLE 1. Error obtained when the approximate analytical solution
to the illustration 1 is compared to the exact solution for v(x, t),
taken b = c = 0.01 and k =

√
c.

x t=0.2 t=0.4 t = 0.6 t = 0.8

0.2 8.38× 10−6 1.55× 10−5 2.13× 10−5 2.57× 10−5

0.4 1.74× 10−5 3.34× 10−5 4.83× 10−5 6.18× 10−5

0.6 2.63× 10−5 5.13× 10−5 7.51× 10−5 9.75× 10−5

0.8 3.50× 10−5 6.88× 10−5 1.01× 10−4 1.33× 10−4

1.0 4.35× 10−5 8.59× 10−5 1.27× 10−4 1.67× 10−4

3.2. Illustration 2: As in illustration 1, we applied the same method in obtaining
the solution of the coupled JM equation given in equations (1.3) and (1.4) with
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TABLE 2. Error obtained when the approximate analytical solution
to the illustration 1 is compared to the exact solution for v(x, t),
taken b = c = 0.01 and k =

√
c.

x t=0.2 t=0.4 t = 0.6 t = 0.8

0.2 6.11× 10−5 1.27× 10−4 1.97× 10−4 2.73× 10−4

0.4 1.19× 10−4 2.44× 10−4 3.73× 10−4 5.07× 10−4

0.6 1.77× 10−4 2.59× 10−4 5.46× 10−4 7.38× 10−4

0.8 2.34× 10−4 4.74× 10−4 7.17× 10−4 9.66× 10−4

1.0 2.91× 10−4 5.86× 10−4 8.86× 10−4 1.11× 10−4

the initial conditions [23]

v(x, 0) = −1

4
b20 +

1

4
c− 1

2
b0ksech(kx)− 3

4
csech2(kx), w(x, 0) = b0 + ksech(kx).

(3.10)

Incorporating equation (2.14) into equations (2.11), (2.12) and (2.13) for the
coupled JM equations (1.3) and (1.4) with the given initial conditions (3.10) yield

v0 = −1

4
b20 +

1

4
c− 1

2
b0ksech(kx)− 3

4
csech2(kx),(3.11)

w0 = b0 + ksech(kx).(3.12)

When n = 0, then the recursive relations (2.12) and (2.13) become

v1 = E−1
{
−u d

3

dx3
E[v0]− uE

[
3

2
A1,0 +

9

2
A2,0 − 6A3,0 − 6A4,0 −

3

2
A5,0

]}
,

w1 = E−1
{
−u d

3

dx3
E[w0] + wE

[
6A6,0 + 6A7,0 +

15

2
A8,0

]}
,

and these give

v1 =− sinh(kx)k4b0t

cosh2(kx)
+

15

2

sinh(kx)k3ct

cosh3(kx)
+

9

4

sinh(kx)k4b0t

cosh4(kx)

− 99

4

sinh(kx)k3ct

cosh5(kx)
− 3

2

sinh(kx)k2b30t

cosh2(kx)
+

3

4

sinh(kx)k2b0ct

cosh2(kx)

− 6 sinh(kx)k5t

cosh3(kx)
− 9

2

sinh(kx)k3b20t

cosh3(kx)
− 9

4

sinh(kx)kc2t

cosh3(kx)
− 9

4

sinh(kx)k2b0ct

cosh4(kx)

+
18 sinh(kx)k5t

cosh5(kx)
+

27

4

sinh(kx)kc2t

cosh5(kx)
,(3.13)
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w1 = 6sech(kx) tanh3(kx)k4t− 5sech(kx) tanh(kx)k4t

− 3sech(kx) tanh(kx)k2b20t− 9sech2(kx) tanh(kx)k3b0t

+ 9sech2(kx) tanh(kx)kb0ct+
27

2
sech3(kx) tanh(kx)k2ct

− 3

2
sech(kx) tanh(kx)k2ct− 15

2
sech3(kx) tanh(kx)k4t.(3.14)

Therefore, the series solution is given as

v(x, t) = v0 + v1 + v2 + v3 + · · ·(3.15)

w(x, t) = w0 + w1 + w2 + w3 + · · ·(3.16)

Upon substitution of equations (3.11), (3.12), (3.13), and (3.14) into equations
(3.15) and (3.16), the approximate solutions of the given nonlinear coupled Jaulent-
Miodek equation is obtained.

The closed form solutions to equations (1.3) and (1.4) in connection to initial
conditions (3.10) are obtained by [11] as

v(x, t) = s− bk sech (k(Rt+ x))

2
− 3c sech2 (k(Rt+ x))

4
,

w(x, t) = b+ k sech (k(Rt+ x)) ,(3.17)

where R = 1
2
(b2 + c), s = 1

4
(c− b2) and b, c, k are taken as the arbitrary constants.
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FIGURE 2. The upper and lower left panel show the solitary wave
solutions v(x, t) and w(x, t) of coupled nonlinear Jaulent-Miodek
equation (1.3) and (1.4) with the given initial conditions (3.10)
using Elzaki transform and Adomian polynomial as seen in equa-
tions (3.15) and (3.16), while the solitary wave solutions v(x, t)

and w(x, t) of coupled nonlinear Jaulent-Miodek equation (1.3) and
(1.4) with the given initial conditions (3.10) using Adomian decom-
position method [12] is shown in the upper and lower right panel
when b = c = 0.01 and k =

√
c.

TABLE 3. Error obtained when the approximate analytical solution
to the illustration 2 is compared to the exact solution for v(x, t),
taken b = c = 0.01 and k =

√
c.

x t=0.2 t=0.4 t = 0.6 t = 0.8

0.2 6.2922× 10−8 1.2341× 10−7 1.8147× 10−7 2.3710× 10−7

0.4 1.2687× 10−7 2.5133× 10−7 3.7339× 10−7 4.9304× 10−7

0.6 1.9042× 10−7 3.7847× 10−7 5.6417× 10−7 7.4750× 10−7

0.8 2.5337× 10−7 5.0444× 10−7 7.5321× 10−7 9.9960× 10−7

1.0 3.1554× 10−7 6.2886× 10−7 9.3994× 10−7 1.2480× 10−6
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TABLE 4. Error obtained when the approximate analytical solution
to the illustration 2 is compared to the exact solution for w(x, t),
taken b = c = 0.01 and k =

√
c.

x t=0.2 t=0.4 t = 0.6 t = 0.8

0.2 3.590× 10−8 7.080× 10−8 1.048× 10−7 1.375× 10−7

0.4 4.570× 10−8 9.040× 10−8 1.340× 10−7 1.767× 10−7

0.6 5.530× 10−8 1.096× 10−7 1.629× 10−7 2.153× 10−7

0.8 6.470× 10−8 1.285× 10−7 1.913× 10−7 2.531× 10−7

1.0 7.400× 10−8 1.470× 10−7 2.190× 10−7 2.900× 10−7

4. DISCUSSION OF RESULTS

In this paper, the coupling of both Adomian polynomial and Elzaki transform is
used to solve the nonlinear coupled Jaulet-Miodek equations (1.3) and (1.4). In
this study, two examples were demonstrated and the solutions were presented in
series form as seen in equations (3.7), (3.8), (3.15) and (3.16). The solutions to
the two examples considered show the accuracy of this method when compared
with the results obtained when the Adomian decomposition method is used [12].
This is shown graphically in Figures 1 and 2, the two solutions appear to agree.
In both cases, the upper and lower left panel show the solitary wave solutions
v(x, t) and w(x, t) of coupled nonlinear Jaulent-Miodek equation with the given
initial conditions using Elzaki transform and Adomian polynomial, while the up-
per and lower right panel show the solitary wave solutions v(x, t) and w(x, t) of
coupled nonlinear Jaulent-Miodek equation with the same initial conditions using
Adomian decomposition method when b = c = 0.01 and k =

√
c.

Moreover, to affirm the accuracy of Elzaki transform method, we considered the
exact solutions to the aforementioned problem as established by [11] in equations
(3.9) and (3.17), and the absolute errors is computed, these errors turn out to be
very small with the values of x and t chosen as shown in Tables 1, 2, 3 and 4.

5. CONCLUSION

The Adomian polynomial is incorporated into the Elzaki transform to obtained
the approximate traveling wave solutions of the coupled nonlinear Jaulet-Miodek



NUMERICAL SIMULATION OF THE NONLINEAR COUPLED . . . 10353

equation. Coupling of aforementioned methods has been successfully applied to
two examples in which different initial conditions were applied to the coupled
nonlinear Jaulet-Miodek, it is noted that this method is an effective method for
solving these problems because this is demonstrated by the agreement of the re-
sults obtained using the Elzaki transform and Adomian decomposition method.
Furthermore, the smaller errors obtained when the difference between the exact
solutions and approximate analytic solutions of this problem were computed is
another evidence that shows how powerful this method is.
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