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Abstract
A weak notion of solution for systems of conservation laws in one dimension is put forward.
In the framework introduced here, it can be shown that the Cauchy problem for any n × n
system of conservation laws has a solution. The solution concept is an extension of the notion
of singular δ-shocks which have been used to provide solutions for Riemann problems in
various systems, for example in cases where strict hyperbolicity or the genuine-nonlinearity
condition are not satisfied, or in cases where initial conditions have large variation. We also
introduce admissibility conditions which eliminate a wide range of unreasonable solutions.
Finally, we provide an example from the shallow water system which justifies introduction
of δ-distributions as a part of solutions to systems of conservation laws.

Keywords Conservation laws · Cauchy problem · Singular solutions · Uniqueness · Weak
asymptotics
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Introduction

We are interested in the general n × n system of one-dimensional conservation laws

⎧
⎪⎪⎨

⎪⎪⎩

∂t u1 + ∂x f1(u) = 0,
...

∂t ud + ∂x fd(u) = 0,

(1.1)
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where u = (u1, . . . , ud). The system is augmented with the initial data

u|t=0 = (u1, . . . , ud)
∣
∣
∣
t=0

= (u10, . . . , ud0) = u0, (1.2)

for the bounded measurable functions u j0, j = 1, . . . , n.
The standard theory of hyperbolic conservation laws is concernedwith solutionswhich are

at worst locally integrable. More precisely, if the system is strictly hyperbolic and genuinely
nonlinear1, and if the total variation of u0 is small enough, then the Cauchy problem has
a solution [5, 6, 21, 39, 41, 42]. If the initial functions are step functions, then the Cauchy
problem is called the Riemann problem. If the differences in function values at the jumps
are small then the Riemann problem can be solved uniquely using Lax-admissible solutions
consisting of rarefaction waves, compressive shock waves and contact discontinuities.

On the other hand, if the above conditions are not fulfilled, then the Cauchy, or even the
Riemann problem may not admit a Lax admissible weak solution or even any weak solution.
Indeed, the standard theory is far from complete, as even some fairly simple problems cannot
be resolved in a satisfactory manner (see e.g. [13, 16, 35, 37, 45]). Nevertheless, one might
expect that in the case of physically relevant systems (such as e.g. the p-system arising in gas
dynamics and nonlinear elasticity) one should be able to prove existence of weak solutions
of bounded variation (BV) of the corresponding Cauchy problem. On the other hand, in
fairly recent contributions [8, 64] where the p-system was considered, it was shown that the
Glimm scheme and wave front tracking, respectively, for a Cauchy problem with large initial
data blow up (in the sense that uniform BV bounds on the approximate solutions are not
available). However, note that for certain functions p, Cauchy problems for the p system can
be resolved [4].

In order to deal with situations where the standard theory fails, expanding the space of
possible solutions to the space of Radonmeasures has been useful in some cases. In particular,
if solutions are allowed to contain Dirac δ-distributions, some systems to which the standard
theory does not apply can be resolved. The first result in this direction can be found in
[37]. However, the interest in such an approach (as well as its necessity) was particularly
raised after it was shown in [35] that strictly hyperbolic and genuinely nonlinear system of
conservation laws with compact Hugoniot locus feature these non-standard solutions.

The question which naturally appears is how to incorporate the δ-distribution as a part of
solution to (1.1). If we substitute the distribution directly into (1.1), the problem of multipli-
cation of singular distributions arises. It turns out that when one deals with systems which
are linear with respect to one of the unknowns (and since we can approximate any locally
integrable initial data by a step function), it is sufficient to understand the multiplication of
a δ distribution and a Heaviside function (see [61] and references therein).

Let us focus therefore on the issue of defining the multiplication of a δ-distribution and a
Heaviside function. There are several reasonable ways to define such a product, but we shall
mention only two main approaches. The first one is to define

∫
H(x)δ(x) dx = H(0) which

means that one needs to define the value of the Heaviside function at the jump point. Such an
approach has been used in [13, 28] to introduce the notion of measure-type solution for (1.1).
The framework introduced in [28] yields uniqueness of solutions if an additional condition
of Oleinik-type is required. However, that approach can be applied only to equations which
are linear with respect to one of the unknowns, as already alluded to above.

The other main approach to making sense of singular solutions is the weak asymptotic
method which entails defining smooth approximations (δε) and (Hε), and considering the

1 By genuinely nonlinear nonlinear, we mean that each wave family is either genuinely nonlinear or linearly
degenerate.
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product (δεHε). The limit as ε → 0 of the family (δεHε) can then be defined to be the
product of the δ-distribution in the context of the weak asymptotic method, and one obtains
approximate solutions to (1.1) for which one concludes that they converge weakly to a
measure containing a δ-distribution. This approach has been used in [14, 16, 65] among
many others, and is similar to the vanishing viscosity and the vanishing pressure methods
used for example in [29, 35, 45]. One may also note that the family (δεHε) can be considered
as an element of a Colombeau algebra, such as defined in [11]. This approach has proved
fruitful in some cases (see [46] for example). In this direction, we also mention the α-product
by Sarricco (see e.g. [51, 52, 57, 58] and references therein) which is applied in the case of
various systems of conservation laws and similar equations and which works in the case of
fully nonlinear equation (i.e. nonlinear with respect to all unknowns).

Close examination of the weak asymptotic method reveals that is does not give pre-
cise meaning to whether and how the limiting distributions satisfy the original differential
equations. This was first achieved in the work by Danilov and Shelkovich [17] where a varia-
tional formulation for the δ-type framework was proposed for systems which are linear with
respect to one of the unknown functions and for δ-solutions where components containing
the δ-distributions are supported on isolated curves. Indeed, the same idea can be used to
define δ-solutions for general 2× 2 systems of conservation laws, such as explained in [30].
In the present contribution, we extend the variational formulation to the case of n×n systems
such as (1.1) and we prove that the Riemann problem for this system always has a solution in
the framework of the definition given. We then extend the existence theorem to the general
Cauchy problem by using a front-tracking approach. The key step is to estimate the BV norm
of the solution after each interaction, and this is facilitated by introducing the singular parts
of the solution.

The variational formulation of the Cauchy problem is very weak, and uniqueness of
solutions cannot be expected. In fact, it can be shown that even the Riemann problem for
a 2 × 2 system cannot be solved uniquely in the context of the variational formulation of
singular solutions (see [30]). We partially deal with this issue by formulating an admissibility
criterion which while not providing uniqueness at least eliminates a wide range of possible
trivial solutions. The admissibility criterion is physically motivated and requires that at least
one of the equations of the system satisfies the Rankine–Hugoniot condition at every shock.

Finally, it is shown that at least in the special case of theRiemannproblemand a polynomial
flux function, the solution can be obtained from the weak asymptotic method satisfying the
admissibility conditions. This result establishes that the solution stems froman approximation
procedure within the framework of smooth approximate solution converging towards δ-type
solutions which is similarly in nature the above mentioned vanishing viscosity or vanishing
pressure approaches. This tool enables us tomake the connection betweenRankine–Hugoniot
deficits as appearing in the variational formulation, and the δ-type solutions to the original
system.

As the results proved here do not rely on the assumption of hyperbolicity, the impression
may arise that the solution concept provided here is too broad to be useful. We partially agree
with such an assessment, but we also note that so far there are no general results for solvability
of systems of the form (1.1), (1.2) in the literaure (except for some very special situations).
In addition, our contribution is not an attempt to solve the problem in the standard space of
locally integrable functions, but to investigate an alternative approachwhichwould eventually
lead to a satisfactory solution to (1.1), (1.2) from both the physical and themathematical point
of view. Finally, as shown in Sect. 3, we are able to find approximate smooth solutions to
Riemann problems for a wide range of conservation laws which converge towards the δ-type
solutions introduced here.
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The paper is organized as follows. The definition of the variational formulation, admissi-
bility conditions, and the existence theorem are given in Sect. 2. Sect. 3 contains a detailed
account of the application of the weak asymptotic method to the Riemann problem for a
2 × 2 system. Finally, in Sect. 4, we review the physical validity of singular solutions of
conservation laws and show how the present approach arises naturally in the context of the
the shallow-water system.

Variational Formulation of Delta-Shock Solutions

In this section, we shall introduce a solution framework in which any Cauchy problem
corresponding to (1.1) with BV -initial data has a solution. It is based on the variational
formulation of δ-shock solutions introduced in [17] in the case of 2 × 2 systems which are
linear with respect to one of the unknowns. Note that in such systems the δ distribution
arises as a part of the solution defined along characteristics [16] as well as in the limit of the
vanishing viscosity approximations [17, 35]. As shown in [31], the variational formulation
may also be applied to to arbitrary 2×2 systems of conservation laws, and this extensionmay
be justified using the complex weak asymptotic method. However, in general this variational
notion of solution is so weak that uniqueness can only be proved in special cases. In the
following, we will generalize the variational formulation to n × n systems of conservation
laws and Cauchy data, such as given by (1.1), (1.2).

As a first step, we shall define δ-type solutions for Riemann problems corresponding to
systems of conservation laws. Suppose � is a graph in the closed upper half plane containing
a single Lipschitz continuous arc γ . Let �0 = {x0} be the initial point of the arc γ . Let uk ,
k = 1, . . . , n, be distributions of the form

uk(t, x) = Uk(t, x) + αk(t, x)δ(γ ),

where Uk ∈ L∞(R+ × R) and αk(t, x) are real-valued functions. Let ∂ϕ(t,x)
∂l denote the

tangential derivative of a function ϕ on the graph γ , and let
∫

γ
denote the line integral over

the arc γ .

Definition 2.1 A graph � and a sequence of distributions (u1, . . . , ud) of the form

uk(t, x) = Uk(t, x) + αk(t, x)δ(γ ), (2.1)

with Uk ∈ L∞(R+ × R), αk ∈ C1(�), k = 1, . . . , n, is called a generalized δ-shock wave
solution of system (1.1) with initial data u0(x) + αk(0, x0)δ (x − x0), k = 1, . . . , n, if the
integral identities

∫

R+

∫

R

(Uk∂tϕ + fk(U1, . . . ,Ud)∂xϕ) dxdt +
∫

R

U0k(x)ϕ(0, x) dx,

+
∫

γ

αk(t, x)
∂ϕ(t,x)

∂l + αk(0, x
0)ϕ(0, x0) = 0, (2.2)

hold for all test functions ϕ ∈ D(R × R+) and for k = 1, . . . , n.

First note that ifwe assumeγ = {(t, γ (t)) : t ∈ [0, T ]},we can also assume thatϕ(T , x) �= 0
in which case one should add the terms − ∫

γ
αk(T , γ (T ))ϕ(T , γ (T )) on the left-hand sides

of (2.2). Also notice that (2.2) represents a generalization of the classical weak solution
concept for (1.1). Indeed, if we omit the integral over the curve γ , we reach the standard
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variational formulation of (1.1). However, Definition 2.1 is very weak in the sense that a wide
range of distributions satisfy its requirements. This is not surprising since even in the case of
the standard weak solutions for scalar conservation laws, non-uniqueness issues arise [6].

Let us first look at the system (1.1) with singular Riemann data

uk(0, x) = αk
0δ(x) +

{
ukL , x < 0,

ukR, x > 0.
(2.3)

Using Definition 2.1, it is not difficult to see that for any c ∈ R, and any given initial states
uL = (u1L , . . . , udL) and uR = (u1R, . . . , udR), a solution of the form

u(t, x) = U(t, x) + α(t)δ(x − ct),

exists, where U(t, x) = (U1(t, x), . . . ,Ud(t, x)) is given by

U(t, x) =
{
uL , x < ct,

uR, x > ct,
(2.4)

and the amplitude α(t) = (α1(t), . . . , αd(t)) of the singular part of the shock is given by

α(t) = (c[U] − [f]) t + α(0) := (c[uR − uL ] − [f(uR) − f(uL)]) t + α(0), (2.5)

where f = ( f1, . . . , fd). In other words, the following theorem holds.

Theorem 2.1 Given any constant vectors uL ,uR ∈ R
d , and given any c ∈ R, define the

distributions u(t, x) = U(t, x) + α(t)δ(x − ct) where U(t, x) is given by (2.4), and α(t) is
given by (2.5). Then u(t, x) is a solution of the Riemann problem (1.1), (2.3) in the sense of
Definition 2.1.

Proof The proof of the theorem follows by substituting u into (2.2) (for simplicity, we shall
assume here and in the sequel T = ∞ unless stated otherwise). After standard transforma-
tions, we reach the identities

∫

R+
(c[U] − [f(U)]) ϕ(t, ct) dt −

∫

R+
α′(t)ϕ(t, ct) dt = 0. (2.6)

From here, the statement of the theorem follows immediately. ��
Before introducing admissibility conditions which will eliminate trivial situations given

by the previous theorem, we will define a solution framework which can be applied to
any Cauchy problem associated to (1.1). Notice that if we assume that the curves from the
Definition 2.1 are straight lines of the form γi = {x = ci (t − ti )+ xi }, then the relation (2.2)
simplifies in the sense that instead of the tangential derivative appearing there, we simply
have the expression (assume that supp’ ⊂ (0,∞))

∫

γi

∂ϕ

∂l
α(t) =

∫ ∞

ti
α(t)

∂ϕ(t, xi + ci (t − ti ))

∂t
= −

∫ ∞

ti
α′(t)ϕ(t, xi + c(t − ti ))dt .

(2.7)

Moreover, if we assume that we are solving the Riemann problem, then we can also assume
that α′ are constants (at least in the intervals between possible waves interactions). With this
example inmind, we introduce a subspace of the dual to the Bochner space L1([0, T ];C0(R))

for a given T > 0 as follows.
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Definition 2.2 Let T > 0 be given, and let C0(R) be the space of continuous functions on
R which decay to 0 at infinity. We denote by Ge(T ) the subspace of the dual of the Bochner
space L1([0, T ];C0(R)) given by

Ge(T ) =
{

N∑

k=1

αk(t)δ(x − xk) for αk ∈ Cc([0, T )), xk ∈ R

}

.

It can be proved that the closure ofGe(T )with respect to theweak	 topology actually coincides
with the entire dual space L1([0, T ];C0(R))	 = L∞

w∗([0, T ];M(R)), where M(R) is the
space of real-valued finite Radon measures. Indeed, we have the following proposition.

Proposition 2.1 We have Cl (Ge(T )) = L1([0, T ];C0(R))	, where the closure Cl is under-
stood with respect to the weak	 topology.

Proof Let μ ∈ L1([0, T ];C0(R))	 be arbitrary. We construct an approximation as follows.
For a given nN, we introduce a uniform partition of the interval [−n, n] by setting xnk = k

n ,
k = −n2, · · · , n2. We then define

μn(t, x) =
n2∑

k=−n2

μ(t, [xnk , xnk+1))δ(x − xnk ).

Since μ(t, ·) has finite variation, and indeed, supt≥0 |μ(t, ·)| < ∞, the sequence μn(t, x) is
bounded in L∞

w∗([0, T ];M(R)). Thus, to prove weak convergence, it is sufficient to consider
test functions from a dense subspace. In particular, we can show that

L∞([0,T ];M(R))〈(μ − μn), ϕ〉L1([0,T ];C0(R)) → 0 as n → ∞ (2.8)

for any ϕ ∈ L1([0, T ];Cc(R)), i.e. ϕ with compact support in x . In fact we have

L∞([0,T ];M(R))〈(μ − μn), ϕ〉L1([0,T ];C0(R))

=
∫ T

0

n2∑

k=−n2

∫ xnk+1

xnk

ϕ(t, x)dμ(t, x)dt

−
∫ T

0

n2∑

k=−n2

ϕ(t, xnk )μ
(
t, [xnk , xnk+1)

)
dt +

∫

R+×[−n,n]C
ϕ(t, x)dμ(t, x),

and since ϕ has compact support, the last term in the expression above is zero for large
enough n. Moreover, such ϕ(t, x) is uniformly continuous in (t, x), and can be approxi-
mated by a function taking a finite number of values (a simple function). Given a challenge
number ε, we can take n large enough such that |ϕ(t, x) − ϕ(t, xnk )| < ε so long as
x ∈ [xnk , xnk+1). Since the termϕ(t, xnk )μ

(
t, [xnk , xnk+1)

)
is simply the definition of the integral

∫ xnj+1

xnj
ϕ(t, xnj )χ[xnj ,xnj+1)

(x)dμ(t, x) of the function ϕ(t, xnj )χ[xnj ,xnj+1)
(·), we then have

∣
∣
∣

n2∑

j=−n2

∫ xnj+1

xnj

ϕ(t, x)dμ(t, x) −
n2∑

j=−n2

ϕ(t, xnj )μ
(
t, [xnj , xnj+1)

) ∣
∣
∣

≤
n2∑

j=−n2

∫ xnj+1

xnj

∣
∣ϕ(t, x) − ϕ(t, xnj )|dμ(t, x)

123



Int. J. Appl. Comput. Math (2022) 8 :175 Page 7 of 20 175

≤
n2∑

j=−n2

∫ xnj+1

xnj

ε dμ(t, x)

= ε

n2∑

j=−n2

μ
(
t, [xnj , xnj+1)

)
.

Since μ has bounded variation, we have

L∞([0,T ];M(R))〈(μ − μn), ϕ〉L1([0,T ];C0(R)) ≤ T ε sup
0≤t≤T

|μ(t, ·)|

for large enough n, and this concludes the proof. ��
Wenextwant to define an operation similar to (2.7) for elements of L∞

w∗([0, T ];M(R)). To
this end, we assume that μ ∈ L∞

w∗([0, T ];M(R)) is weakly differentiable, i.e. that μ(·,A)

is differentiable for a given measurable set A. We use a partition {xnk } as in the previous
proposition. We then take the following approximation of the measure μ by elements of Ge:

μn(t, x) =
n2∑

k=−n2

μ(t, [xnk , xnk+1))δ(x − knk ) =
n2∑

k=−n2

αn
k (t)δ(x − xnk ). (2.9)

We can now introduce the following definition.

Definition 2.3 We say that the functional μl = ∂lμ is a generalized tangential derivative of
μ ∈ L∞

w∗([0, T ];M(R)) if along some subsequence for every ϕ ∈ C1
c ([0, T ] × R):

lim
n→∞

∫

R+

n2∑

k=−n2

∂tα
n
k (t)ϕ(t, xnk )dt =

∫

R+
〈μl , ϕ(t, ·)〉dt (2.10)

where αn
k are given by (2.9).

Remark 1 We note that in the case when the measure has the form

μ(t, x) =
∑

j∈Z
α j (t)δ(x − x j − β j (t))

then the corresponding tangential derivative has the form

μl(t, x) =
∑

j∈Z
α′
j (t)δ(x − x j − β j (t))

i.e. for every ϕ ∈ C1
c ([0, T ] × R)

∫

R+
〈μl , ϕ(t, ·)〉dt =

∫

R+

∑

j∈Z
α′
j (t)ϕ(t, x j + β j (t))dt . (2.11)

Indeed, by the definition of the generalized tangential derivative, we need to approximate the

measure μ by the atomic measures of the form μn(t, x) = ∑n2

k=−n2 αn
k (t)δ(x − xnk ) where

αn
k (t) = μ(t, [xnk , xnk+1)). Clearly, we have

αn
k = α j , if x j + β j (t) ∈ [xnk , xnk+1)
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from where we see that

lim
n→∞

∫

R+

n2∑

k=−n2

∂tα
n
k (t)ϕ(t, xnk )dt =

∫

R+

∑

j∈Z
α′
j (t)ϕ(t, x j + β j (t))dt,

and (2.11) follows directly.

Clearly, ml will always exist since a bounded sequence in L∞
w∗([0, T ];M(R)) is weakly

precompact. On the other hand, such ml might not be unique since different subsequences
could converge to different limits. So while the tangential derivative in general is not well
defined, fixing the approximation in the from (2.9) reduces the number of possible generalized
tangential derivatives significantly.

A simple example is the δ-distribution of the form α(t)δ(x−ct). In this case, it is straight-
forward to see that the generalized tangential derivative should be α′(t)δ(x − ct) and that
it is the unique tangential derivative of α(t)δ(x − ct). As a more interesting example, let
us compute the tangential derivative for a measure defined by a regular function. Since the
δ-distribution is the distributional derivative of a shock wave, an interesting case will be the
measure defined by the derivative of a rarefaction wave. We stress that we are not solving the
conservation law given in the example below, but merely compute the tangential derivative of
a measure. A solution to the scalar conservation law does not contain any special structures
as part of the solution (see Definition 2.4 below), they are, as well known, ordinary locally
integrable functions.

Example 1 Rarefaction waves are given by the functions of the form u( xt )which, in the scalar
case, solve the equation

∂t u + ∂x f (u) = 0.

Denote by m the measure defined by the function ∂xu( xt ) = 1
t u

′( xt ):

m(t, x) = u
( x
t

)
.

Let us compute ∂lm. According to the definition of the generalized tangential derivative, we
consider the approximation

mn(t, x) =
n2∑

k=−n2

m(t, [xnk , xnk+1))δ(x − xnk ).

The tangential derivative is a weak limit (along a subsequence) of ∂tmn(t, x). We have

∂tmn(t, x) =
n2∑

k=−n2

∂tm(t, [xnk , xnk+1))δ(x − xnk ) =
n2∑

k=−n2

∫ xnk+1

xnk

∂t u
( x
t

)
dx δ(x − xnk )

= −
n2∑

k=−n2

∫ xnk+1

xnk

∂x f (u( xt ))dx δ(x − xnk )

which convergesweakly toward ∂x f (u( xt )). From the above,we conclude that the generalized
tangential derivative of m is

∂lm = −∂x f
(
u

( x
t

))
.
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With these preliminaries in place, we can introduce L∞
w∗([0, T ];M(R))-solutions to an

arbitrary Cauchy problem corresponding to (1.1).

Definition 2.4 We say that the pair of distributions

u(t, x) = (U(t, x),m(t, x)) := U(t, x) + m(t, x), (2.12)

whereU(t, x) = (U1(t, x), . . . ,Ud(t, x))withUi ∈ L∞(R) andm = (m1, . . . ,md)weakly
differentiable in L∞

w∗([0, T ];M(R))d , is a measure-type solution to (1.1) with the initial data
u|t=0 = u0 if the following relations hold for any ϕ ∈ C1

c (R+ × R)

∫

R+

∫

R

(U∂tϕ + f(U)∂xϕ) dxdt +
∫

R

u0(x)ϕ(x, 0) dx

−
∫

R+
〈∂lm, ϕ(·, t)〉dt = 0 (2.13)

for some generalized tangential derivatives ∂lm = (∂lm1, . . . , ∂lmd) of the measure m.

As is obvious from the formulation of the functionalsm and ∂m
∂l , this definition is a generalized

version ofDefinition 2.1. Indeed, Definition 2.4 reduces toDefinition 2.1 if the δ-distributions
involved in the solution to (1.1) are supported on isolated smooth curves (see (2.7)).

However, Definition 2.4 is quite general as for any initial data u0 ∈ BV (R) and any fixed
speed vector c, the distribution

U(t, x) + m(t, x) = u0(x − ct) + t(cu′
0 − f (u0)

′)δ(x − ct) (2.14)

represents a measure-type solution to (1.1). To reduce the number of possibilities, we intro-
duce basic admissibility conditionswhichwill not provide uniqueness of this type of solution,
but which eliminates pathological solutions such as (2.14).

Definition 2.5 We say that the measure-type solution to (1.1) satisfies basic admissibility
conditions if it represents a weak limit to the following sequence of measures

un(t, x) = Un(t, x) +
∑

j∈Z
αn
j (t)δ(x − xnj − cnj (t − tnj ))χ[tnj ,T n

j ](t), (2.15)

where 0 ≤ tnj ≤ T n
j for every n, j ∈ N, αn

j (t) = (αn
1 j , . . . , α

n
d j )(t) are affine functions, and

Un(t, x) = (Un
1 (t, x), . . . ,Un

d (t, x)) are step functions such that at each step at least one
of the equations in system (1.1) is satisfied by Un(t, x) in the standard weak sense (i.e. the
corresponding Rankine–Hugoniot conditions are satisfied).

The latter definition is motivated by the wave front tracking procedure. Actually, using
such an approach, we are able to prove that there exists the measure-type solution to any
Cauchy problem corresponding to (1.1) with BV-initial data satisfying the basic admissibility
conditions 2. For simplicity, we shall provide the proof in the case of 2×2 system. The proof
is analogous in the case of an n × n system, and it is based on BV-estimates which do not
increase during the interactions. Instead, we have to increment the strength of δ-functions
appearing during the interaction, but the increment is also finite. We note also that we use
Remark 1 in the course of the proof of the next theorem.

2 The space BV (I ) is defined as the set of functions u(x) for which sup
∑

i |u(xi )−u(xi−1)| is finite, where
the sum is taken over all finite partitions {xi } of the interval I with xi−1 < xi
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Theorem 2.2 Let n = 2, and assume that f1, f2 ∈ C1(R2) and u10, u20 ∈ L∞(R)∩BV (R).
Then, the system (1.1) with the initial data u1|t=0 = U10, u2|t=0 = U20 admits a solution in
the sense of Definition 2.4 satisfying the basic admissibility conditions.

Proof We shall apply the method of wave front tracking [6, 27]. In the framework of that
method, one approximates the initial data by piecewise constant functions and then solves
Riemann problems at each step. We thus obtain new waves which mutually interact. In the
case of the standard wave front tracking approach which implies solving a Riemann problem
using Lax admissible shock waves, the BV-character of the solution can be lost as the result
of the interactions of different waves (the solution can blow up [7, 64]).

Using our definition, it is not difficult to construct approximate solution for an arbitrary
Cauchy problem using the wave front tracking algorithm. Instead of a possible increase of
the local BV-bounds, we will obtain δ-type solutions, and the coefficient accompanying the
δ-function will fix the Rankine–Hugoniot deficit.

As we have seen in the proof of Theorem 2.1, when solving a Riemann problem, we can
choose practically any speed of the shock which solves the problem. We correct the mistake
originating from the Rankine–Hugoniot conditions using the δ-shocks. What is reasonable to
do is to minimize the strength of the δ-shocks (since in this way we get a smaller error with
respect to the standard situation when we use the weak solution concept). The correction will
be smaller if the speed of the shock is smaller. In other words, we shall use the following
procedure:

(A) We approximate the functions U01 and U02 by the piecewise constant functions

UN
01(x) =

∑

j∈Z
u j
1χ{(x j ,x j+1)}(x),

UN
02(x) =

∑

j∈Z
u j
2χ{(x j ,x j+1)}(x),

where χ{(x j ,x j+1)} is the characteristic function on the interval (x j , x j+1) defined in the
proof of Proposition 2.1, and we require ‖U01 − UN

01‖L1(K ) = o(1), K ⊂⊂ R, for
i = 1, 2. For j ∈ Z, denote by

C j
i = fi (u

j+1
1 , u j+1

2 ) − fi (u
j
1, u

j
2)

u j+1
i − u j

i

, i = 1, 2

the speeds given by the Rankine–Hugoniot conditions of the first and second equations
(i = 1, 2).

(B) We thus obtain a series of Riemann problems; one for the boundary of each interval
from (A) which we solve using Definition 2.1 as follows.
Denote by α

j
i , i = 1, 2, j = 1 . . . N , the corresponding Rankine–Hugoniot deficits

(see (2.5)) given as follows:

(α
j
1 )

′ := ∂tα
j
1 = c j (u

j+1
1 − u j

1) −
[
f1(u

j+1
1 , u j+1

2 ) − f1(u
j
1, u

j
2)

]
,

(α
j
2 )

′ := ∂tα
j
2 = c j (u

j+1
2 − u j

2) −
[
f2(u

j+1
1 , u j+1

2 ) − f2(u
j
1, u

j
2)

]
.

The corresponding speed c j , appearing in the place of c from (2.6), satisfies

c j =
{
C j
1 , |(α j

1 )
′| ≤ |(α j

2 )
′|

C j
2 , else
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........... ...............

........... .............

.......................

t = 0

t = tm

t = tI

α

β

α + β

Fig. 1 Evolution of two shock waves. At tm we have two δ-distributions with the strengths α and β. They all
merge at the moment tI

and the correction (δ-distribution) will be adjoined to the function U0i for which
|(α j

i )
′| = min{|(α j

1 )
′|, |(α j

2 )
′|}. In this way, we ensure that the strength of the δ-

distribution appearing as a part of the approximate solution will be as small as possible
and we still have the Rankine–Hugoniot conditions satisfied for at least one of the
equations of the system.

(C) We obtain a family (uN
1 , uN

2 ) of elements from Lip([0, T ];M(R))e given by (2.16)
whose weak limit is in Lip([0, T ];Mloc(R)), and which represents the solution to the
considered Cauchy problem in the sense of Definition 2.4.

ItemsA) andB) are standard inwave front tracking.As for the itemC),weuseTheorem2.1.
More precisely, we solve each of the Riemann problems so that we adjoin a δ-distribution
either to u1 or to u2 (or to both u1 and u2) so that the speed of the corresponding δ-shock is
minimal and that, at the same time, it is given by the Rankine–Hugoniot conditions of one
of the equations.

We thus obtain the solution (uN
1 , uN

2 ) of the approximate problem until the set of first
interactions. The interaction means that the shock waves (together with the accompanying δ-
distributions) are at the same point inR+ ×R. At that moment, the shocks and δ-distributions
will merge (the state between two shocks will disappear and δ will have the strength equal
to the strength of the interacting δ-s at the moment of interaction; see Fig. 1).

At that moment, we stop the time and solve a new set of Riemann problems as done in
Theorem 2.1 (this time involving the δ-distributions as part of initial data). Thus, for any
t ∈ [0, T ], we conclude that the distributions uε

1 and u
ε
2 have the form

uN
1 (t, x) = UN

1 (t, x) +
∑

j

α
j
1 (t)δ(x − x j − c j (t − t j ))χ(t j ,Tj )(t)

uN
2 (t, x) = UN

2 (t, x) +
∑

j

α
j
2 (t)δ(x − x j − c j (t − t j ))χ(t j ,Tj )(t),

(2.16)

for some piecewise constant functionsUN
1 andUN

2 , and where t j denotes the time of creation
of the singularity, and Tj denotes the time of the next interaction. The solution satisfies the
relations
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∫

R+

∫

R

(
UN
1 ∂tϕ + f1(UN )∂xϕ

)
dxdt +

∫

R

UN
01(x)ϕ(x, 0) dx,

−
∑

j

∫

R+
∂tα

j
1 (t)ϕ

(
x j + c j (t − t j ), t

)
dt = 0, (2.17)

and
∫

R+

∫

R

(
UN
2 ∂tϕ + f2(UN )∂xϕ

)
dxdt +

∫

R

UN
02(x)ϕ(x, 0) dx

−
∑

j

∫

R+
∂tα

j
2 (t)ϕ

(
x j + c j (t − t j ), t

)
dt = 0, (2.18)

where UN = (UN
1 ,UN

2 ). Notice that, according to the construction (see Fig. 1), the interac-
tions do not raise the BV-bound of the regular part of the solution, while the total sum of the
strength-increment of the δ-distributions can be bounded by the following expression (see
(2.5)):

max
−M≤X ,Y ,X̃ ,Ỹ≤M

{[
BV (U01) |∇f(X , Y )| + | f1(X , Y ) − f1(X̃ , Ỹ )|

]
T

+
[
BV (U02) |∇f(X , Y )| + | f2(X , Y ) − f2(X̃ , Ỹ )|

]
T

}
,

where BV (w) = sup
∑

i |w(xi ) − w(xi−1)| and M is the L∞ norm of the initial data.
From here, we also conclude that ∂tUN is bounded in L1([0, T ];W−1,1

loc (R)) since for any
compactly supported ϕ ∈ C1

c ([0, T ] × R)

∣
∣
∣

∫

R+

∫

R

UN
1 ∂tϕ dxdt

∣
∣
∣ ≤ C‖ϕ‖L∞([0,T ]×R).

From here and since the BV-bound of the L∞-parts UN
1 and UN

2 of the families uN
1 and

uN
2 , respectively, are finite, according to the Aubin-Lions lemma, we conclude that UN

1 and
UN
2 are strongly L1

loc-precompact. Thus, they admit an L1
loc limit along a subsequence as

N → ∞, and we denote the limit by U1 and U2.
Moreover, since the sum of the strength of all δ-functions from (2.16) remains uniformly

bounded with respect to ε, for every T > 0 there exists the weak limit to the functions from
(2.16) in Lip([0, T ] ×Mloc(R)). In view of the previous paragraph, we denote these limits
by

u1(t, x) = U1(t, x) + m1(t, x)

u2(t, x) = U2(t, x) + m2(t, x).

We can assume that the limit exists along the same subsequences of (UN
1 ) and (UN

2 ) as
well as for the terms of the form (2.9).

Passing to the limit in (2.17) and (2.18) along the subsequence defining simultaneously
the generalized tangential derivative ofm1 andm2, and the converging subsequences of (uN

1 )

and (uN
2 ), we conclude that they satisfy (2.13). ��
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Weak Asymptotics

Close examination of the variational formulation (2.2) of weak singular solutions reveals
that it is given in terms of the Rankine–Hugoniot deficit, and it is not entirely clear how this
deficit is connected to a singular solution. Therefore, it is important to be able to construct the
singular solutions as limits of approximate solutions of a regularized form of the equation.
Following the method laid out in [17] and [30], we use the complex-valued weak asymptotic
method in order to make the connection between the Rankine–Hugoniot deficit and the
singular solutions containing δ-distributions.

In order to outline the weak asymptotic method, let us first define a vanishing family of
distributions.

Definition 3.1 Let fε(x) ∈ D′(R) be a family of distributions depending on ε ∈ (0, 1). We
say that fε = oD′(1) if for any test function φ(x) ∈ D(R), the estimate

〈 fε, φ〉 = o(1), as ε → 0

holds.

The estimate on the right-hand side is understood in the usual Landau sense. Thus, we may
say that a family of distributions approach zero in the sense defined above if for a given test
function φ, the pairing 〈 fε, φ〉 converges to zero as ε approaches zero.

Definition 3.2 We say that the family of complex-valued distributions (uε) = (u1ε, . . . , udε)

represents a weak asymptotic solution to (1.1) if there exist real-valued distributions u =
(u1, . . . , ud) ∈ C(R+;D′(R)), such that for every fixed t ∈ R+ = (0,∞)

uε⇀u as ε → 0,

in D′(R), and

∂t u1ε + ∂x f1(uε) = oD′(1),

. . .

∂t unε + ∂x fd(uε) = oD′(1).

In the following, we will show that any 2×2 system of conservation laws with polynomial
flux function admits a sequenceof approximate solutions converging towards a δ-type solution
of the Riemann problem. To this end, let us consider the system

∂t u + ∂x

⎛

⎝
m∑

j=1

a ju
p j vq j

⎞

⎠ = 0 (3.1)

∂tv + ∂x

⎛

⎝
n∑

j=1

b ju
r j vs j

⎞

⎠ = 0 (3.2)

where a1, . . . , am and b1, . . . , bn are constants while p j , q j , j = 1, . . . ,m, and r j , s j ,
j = 1, . . . , n, are non-negative integers. First, we shall formally extend the system by an
equation which is trivially satisfied so that we can control our approximations. Without loss
of generality, we assume that sn = max{s1, . . . , sn} > 0 and bn = 1, and we write

∂tw = 0 (3.3)
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∂t u + ∂x

⎛

⎝
m∑

j=1

a jwu p j vq j

⎞

⎠ = 0 (3.4)

∂tv + ∂x

⎛

⎝urnvsn +
n−1∑

j=1

b jwur j vs j

⎞

⎠ = 0 (3.5)

with the condition w(0, x) = 1 and, for simplicity, rn �= 0. The case rn = 0 can be handled
similarly. Clearly, w ≡ 1 and the systems (3.1), (3.2), and (3.3), (3.4), (3.5) are equivalent.
But since we need to control approximations on infinitesimal intervals, the function w (or
more precisely its approximation)will play a substantial role.We have the following theorem:

Theorem 3.1 Assume that w|t=0(x) = 1 and

u|t=0(x) =
{
uL , x < 0

uR, x ≥ 0
, v|t=0(x) =

{
vL , x < 0

vR, x ≥ 0
.

Then, there exist (complex valued) families (uε), (vε) and (wε) such that

∂twε = oD′(1), (3.6)

∂t uε + ∂x

⎛

⎝
m∑

j=1

a jwεu
p j
ε v

q j
ε

⎞

⎠ = oD′(1), (3.7)

∂tvε + ∂x

⎛

⎝urnε vsnε +
n−1∑

j=1

b jwεu
r j
ε v

s j
ε

⎞

⎠ = oD′(1), (3.8)

such that

wε

∣
∣
t=0⇀1 in D′(R), and wε⇀1 in D′(R+ × R),

uε

∣
∣
t=0⇀

{
uL , x < 0

uR, x ≥ 0
in D′(R),

vε

∣
∣
t=0⇀

{
vL , x < 0

vR, x ≥ 0
in D′(R).

Moreover,

uε⇀

{
uL , x < ct

uR, x ≥ ct
in D′(R+ × R)

vε⇀

{
vL , x < ct

vR, x ≥ ct
+ α(t)δ(x − ct) in D′(R+ × R)

where c is given by the Rankine–Hugoniot conditions from Eq. (3.1)

c =
∑m

j=1 a ju
p j
R v

q j
R − ∑m

j=1 a ju
p j
L v

q j
L

uR − uL
,

while α is the Rankine–Hugoniot deficit.
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Proof Fix large M > 0 (say M > 100) and consider the following approximation wε:

wε(t, x) =
{
1, x /∈ (ct − Mε, ct + Mε)

0, x ∈ [ct − Mε, ct + Mε] .

Then, let

uε(t, x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

uL , x < ct − Mε

1, x ∈ [ct − Mε, ct)

0, x ∈ [ct, ct + Mε]
uR, x > ct + Mε

.

From the above assumptions, we see that (3.7) reduces to

∂t uε + ∂x

⎛

⎝
m∑

j=1

a ju
p j
L v

q j
L χ{−∞,−Mε}(x − ct)

+
m∑

j=1

a ju
p j
R v

q j
R χ{Mε,∞}(x − ct)

⎞

⎠ = oD′(1), (3.9)

and this is clearly satisfied according to the choice of the speed c.
As for the family (vε), we take a standard approximation of the Dirac distribution: (δε) is

non-negative family of functions compactly supported at (−Mε, 0)

δε(x)⇀δ(x), suppδε ⊂ (−Mε, 0).

Then we take

vε(t, x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vL , x < ct − Mε,
sn
√
cα(t)δε(x − ct), x ∈ [ct − Mε, ct),

δε(x − ct − Mε), x ∈ (ct, ct + Mε],
uR, x > ct + Mε.

(3.10)

Observe that the functions (vε) may not be real-valued. If we notice that

sn
√
cα(t)δε(x − ct) → 0 in D′(R+ × R),

Eq. (3.5) becomes in the limit

(−c(vR − vL) + α′(t)
)
δ(x − ct) +

⎛

⎝
n∑

j=1

a ju
s j
R v

r j
R −

n∑

j=1

a ju
s j
L v

r j
L

⎞

⎠ δ(x − ct) = 0.

Thus, choosing α′(t) to be the Rankine–Hugoniot deficit, we conclude the theorem. ��

We note that by introducing more auxiliary equations of the type ∂tw = 0, w(0, x) = 1
and positioning them in appropriate places in the original equation, we can get a large number
of different approximate solutions consistent with the conclusions of Theorem 2.1.
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Energy loss Momentum loss

Fig. 2 Left panel: schematic picture of a hydraulic jump. Momentum is conserved, but energy is lost due to
surface undulations and turbulence. Right panel: flow and under a sluice gate. Momentum loss occurs, but
energy is conserved

Discussion

One natural question to ask is whether the appearance of δ-type solutions is physically
reasonable. Many of the systems which were shown to have these singular solutions were
found usingmathematical rather than physical considerations. Nevertheless, it may be argued
that δ-type solutions appear rather naturally especially from a modeling point of view.

First of all, δ-distributions are experimentally confirmed as solutions of systems of conser-
vation laws. This has recently been observed in [44] in nonlinear chromatography. Namely,
during an experiment involving chemical interactions of different substances, the authors
of [44] noticed abrupt increment of concentrations on specific isolated sets. The results are
confirmed mathematically in several papers where the system of chromatography equations
is considered (cf. [36, 62, 65]). Similar concentration effects were also observed in a system
modeling the polymer flooding of a porous medium [26], in pressureles gas dynamics [67]
and in thin-film equations [40, 59].

The necessity to consider Rankine–Hugoniot deficits and corresponding singular solutions
can also be understood in terms of conservation of mass, momentum and energy. Consider
the the shallow-water system

∂t h + ∂x (uh) = 0, (4.1)

∂t u + ∂x

(
h + u2

2

)
= 0. (4.2)

If the solutions of the system are smooth, they also satisfy a corresponding conservation
equation for horizontal momentum given by

∂t (uh) + ∂x
(
hu2 + 1

2h
2
)
0, (4.3)

and an energy equation which takes the form

∂t
( 1
2hu

2 + 1
2h

2
) + ∂x

( 1
2hu

3 + uh2
)
0. (4.4)

Let us consider the situations sketched in Fig. 2. In both cases given there, the solutions
develop discontinuities. Since mass should always be conserved, we need to decide whether
to pair mass conservation with momentum or energy conservation in order to find appropriate
solutions.

The phenomenon occurring in the case shown in the left panel is called a hydraulic jump
which is frequently observed in open channel flow such as rivers and spillways. In this case, it
is well known that the conservation of mass and momentum is required [25]. If the hydraulic
jump is traveling at a speed c, the corresponding Rankine–Hugoniot conditions take the form

c[h] =[hu],
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c[hu] = [
hu2 + 1

2h
2] .

It is also well known that there is a loss of energy across the transition region [2, 66], even
if the flow is not turbulent.

On the other hand, in the flow under a sluice gate such as shown in the right panel of Fig. 2,
mass and energy are conserved. Momentum is lost because the sluice gate exerts a force F
on the fluid. However energy is conserved since when the fluid touches the gate, its velocity
is zero. Therefore, no work is done (dW/dt = Fu where W is the energy, and u = 0). Thus
the Rankine–Hugoniot conditions take the form

c[h] =[hu],
c
[ 1
2hu

2 + 1
2h

2] = [ 1
2hu

3 + uh2
]
,

where most appropriately, c = 0.
Let us now assume that we have both situations simultaneously, i.e. a flow containing both

a traveling hydraulic jump and a passage under a sluice gate in an adjacent section of the
channel. If both phenomena are to be described by a single system of two equations (since
they happen simultaneously), a natural choice is the system (4.1) and (4.2). Locally, proper
discontinuous solutions are obtained using the Rankine–Hugoniot conditions corresponding
to either equations (4.1) and (4.3) for the hydraulic jump, or to (4.1) and (4.4) for the flow
under the sluice gate. These local solutions will not in general satisfy the Rankine–Hugoniot
conditions corresponding to (4.1) and (4.2), and it can be shown in particular in the case
of a traveling hydraulic jump that a nonzero Rankine–Hugoniot deficit must occur in (4.2).
However, this deficit can be handled by incorporating a δ-distribution into the solution u.

The necessity to go beyond the standard BV-solutions can also be ascribed to the use
of mathematically ineligible operations during the model derivation; for instance the tacit
assumption on smoothness of solutions. Indeed, it is well understood that the introduction
of the notion of weak solution causes non-uniqueness. In the case of scalar conservation
laws, this imperfection is recovered using the Kruzhkov entropy concept [38] but only if the
flux is Lipschitz continuous. Clearly, the number of possibly ineligible operations is greater
in the case of systems of conservation laws, and may cause a variety of problems such as
non-existence and non-uniqueness.

Indeed, uniqueness is an issue which is quite rarely considered in the framework of δ-
shock solutions. Uniqueness was obtained in [28] using entropy inequalities of Oleinik-type
[49], and in [47] with the help of entropy inequalities of Kruzhkov-type [38]. These methods
may yield results in special cases, but they do not offer a clear reason why the uniqueness is
gained, and what the entropy inequality means physically or even mathematically.

The weak asymptotic method appears to lead to the correct choice of the shock speed
for singular solutions. In fact, in cases where the equations have singular solutions given in
exact form, the weak asymptotic method can be shown to give the right solution (cf. [34, 56]
for example). However, there is not a firm proof that the weak asymptotic method works in
every case.

It is our belief that one of the reasons for the lack of a rigorous uniqueness concept, beside
obvious mathematical difficulties, essentially lies in the oversimplification of the physical
system, leading to ambiguities in the mathematical treatment. One possible remedy would
be to consider the shock structure as part of the system, such as for example explained in
[66]. However, then the relative simplicity of the conservation laws would also be lost.
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