
Mohammad Nezhadali

Multilevel assimilation of
inverted seismic data

2023

Thesis for the degree of Philosophiae Doctor (PhD)
University of Bergen, Norway



at the University of Bergen

Avhandling for graden philosophiae doctor (ph.d )

ved Universitetet i Bergen

.

2017

Dato for disputas: 1111

Mohammad Nezhadali

Multilevel assimilation of
inverted seismic data

Thesis for the degree of Philosophiae Doctor (PhD)

Date of defense: 14.04.2023



The material in this publication is covered by the provisions of the Copyright Act.

Print:	     Skipnes Kommunikasjon / University of Bergen

© Copyright Mohammad Nezhadali

Name:        Mohammad Nezhadali

Title: Multilevel assimilation of inverted seismic data

Year:          2023



Preface

This thesis is submitted as a partial fulfillment of the requirements for the degree of

Philosophiae Doctor (Ph.D) in applied mathematics at the University of Bergen. The

supervising committee has consisted of Professor Inga Berre (University of Bergen),

Doctor Trond Mannseth (NORCE), Doctor Kristian Fossum (NORCE), and Doctor

Tuhin Bhakta (NORCE).

The PhD project has been supported by NORCE Norwegian Research Centre AS through

the Research Council of Norway (RCN no. 295002) and the industrial partners Aker BP

ASA, Equinor Energy AS, Lundin Energy Norway AS, Repsol Norge AS, Shell Global

Solutions International B.V., Total E&P Norge AS, and Wintershall Dea Norge AS.



ii Preface



Acknowledgements

People say “start projects in which you win even if you lose!”. This PhD project was

definitely one of them right from the beginning. However, I feel no loss. The project

accomplished as much as was planned or even more. I learned a lot, enjoyed a lot, and

am very grateful to all those who were part of this experience.

I wish to thank my supervisors: Trond Mannseth, Kristian Fossum, Tuhin Bhakta, and

Inga Berre, for guiding me all through the way in the past three years. In addition, I

would like to thank Patrick, Andreas, Rolf, Nazanin, and all my colleagues at NORCE

with whom I had fruitful and joyous discussions. NORCE offered me the best academic

milieu I have ever experienced; friendly, educative, and scientific.

I would also like to express my special thanks to my family. I am very grateful to my

parents, without whose support this work would have been impossible. My sister, three

years my junior, has always been a source of inspiration. Her impact has been far beyond

the scope of this PhD; very influential in my personal development. Thanks a lot Shadi!

Lastly, it would be unforgivable to forget about my dearest friends: the people with

whom I celebrated success joyfully and could count on in moments of hardship. Thank

you Mohammadreza and Alireza. I would also like to thank Babak, Diddy, William, and

all my friends in Bergen and around the world who turn life into a better experience.

Thank you very much!

Mohammad Nezhadali

Bergen, December 2022



iv Acknowledgements



English abstract

In ensemble-based data assimilation (DA), the ensemble size is usually limited to around

one hundred. Straightforward application of ensemble-based DA can therefore result in

significant Monte Carlo errors, often manifesting themselves as severe underestimation of

parameter uncertainties. Assimilation of large amounts of simultaneous data enhances

the negative effects of Monte Carlo errors. Distance-based localization is the conven-

tional remedy for this problem. However, it has its own drawbacks, e.g. not allowing

for true long-range correlations and difficulty in assimilation of data which do not have

a specific physical location. Use of lower-fidelity models reduces the computational cost

per ensemble member and therefore renders the possibility to reduce Monte Carlo er-

rors by increasing the ensemble size, but it also adds to the modeling error. Multilevel

data assimilation (MLDA) uses a selection of models forming hierarchies of both compu-

tational cost and computational accuracy, and tries to obtain a better balance between

Monte Carlo errors and modeling errors.

In this PhD project, several MLDA algorithms were developed and their quality for

assimilation of inverted seismic data was assessed in simplistic reservoir problems. Uti-

lization of multilevel models entails introduction of some numerical errors (multilevel

modeling error, MLME) to the problem in addition to the already existing numerical

errors. Several computationally inexpensive methods were devised for partially account-

ing for MLME in the context of multilevel data assimilation. They were also investi-

gated in simplistic reservoir history-matching problems. Finally, one of the novel MLDA

algorithms was chosen and its performance was assessed in a realistic reservoir history-

matching problem.
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Norwegian abstract

I ensemble-basert data-assimilering (DA) er størrelsen p̊a ensemblet vanligvis begrenset

til hundre medlemmer. Rett frem bruk av ensemble-basert DA kan resultere i betydelig

Monte Carlo-feil, som ofte viser seg som alvorlig undervurdering av parameterusikker-

heter. Assimilering av store mengder samtidige data forsterker de negative effektene av

Monte Carlo-feilen. Avstandsbasert lokalisering er det konvensjonelle middelet for å be-

grense dette problemet. Denne metoden har imidlertid sine egne ulemper. Den vil, f.eks.,

fjerne sanne korrelasjoner over lange distanser og det er svært vanskelig å benytte p̊a data

som ikke har en unik fysisk plassering. Bruk av modeller med lavere kvalitet reduserer

beregningskostnadene per ensemble-medlem og gir derfor muligheten til å redusere Monte

Carlo-feilen ved å øke ensemble-størrelsen. Men, modeller med lavere kvalitet øker ogs̊a

modelleringsfeilen. Data-assimilering p̊a flere niv̊aer (MLDA) bruker et utvalg av mod-

eller som danner hierarkier av b̊ade beregningskostnad og beregningsnøyaktighet, og

prøver å oppn̊a en bedre balanse mellom Monte Carlo-feil og modelleringsfeil.

I dette PhD-prosjektet ble flere MLDA-algoritmer utviklet og deres kvalitet for assimi-

lering av inverterte seismiske data ble vurdert p̊a forenklede reservoarproblemer. Bruk

av modeller p̊a flere niv̊a innebærer introduksjon av noen numeriske feil (multilevel

modeling error, MLME), i tillegg til de allerede eksisterende numeriske feilene. Flere

beregningsmessig rimelige metoder ble utviklet for delvis å kompansere for MLME i

gjennomføring av data-assimilering p̊a flere niv̊aer. Metodene ble ogs̊a undersøkt un-

der historie tilpassing p̊a forenklede reservoar problemer. Til slutt ble en av de nye

MLDA-algoritmene valgt og ytelsen ble vurdert p̊a et historie tilpassings problem med

en realistisk reservoar modell.
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Outline

The thesis consists of two parts. Part I is devoted to the scientific background required

for the collection of research articles provided in Part II, and it is structured as follows.

Chapter 1 gives an introduction to the reservoir history-matching problem and motivates

the investigations performed in this work. Chapter 2 defines the inverse problem and

explains different approaches to it. Chapter 3 discusses ensemble-based data assimila-

tion (DA) and presents several state-of-the-art DA algorithms. Chapter 4 is devoted to

regularization techniques. It briefly discusses classical regularization techniques followed

by a more detailed discussion on localization and ensemble-subspace inversion. Chapter

5 describes forward modeling, including reservoir flow modeling, petro-elastic modeling,

and seismic modeling. It is followed by Chapter 6 on surrogate modeling which will cover

both response-surface surrogates and lower-fidelity surrogates. Chapter 7 explains mul-

tilevel data assimilation. Finally in Chapter 8, I present summaries of the publications

associated with this project and discuss the outlook of the work.
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Part I

Scientific background





Chapter 1

Introduction

Reliability is one of the key concerns when it comes to energy supply. This key charac-

teristic of fossil fuels together with their economical advantage over other energy sources

has made them dominate the energy market. This dominance seems to continue in the

foreseeable future. Oil and gas in particular are not only of interest as energy sources

but also of crucial importance in a large array of industries. Many of the goods the

modern human uses are partially made of hydrocarbon products. Hydrocarbons are well

integrated in human’s life.

Hydrocarbons are produced from subsurface reservoirs. In conventional reservoirs, ex-

traction of oil and gas requires drilling several production wells. Drilling each well is,

economically, very costly. Hence, any decision about it entails high risks. As a result,

oil companies should ensure about the quality of their decisions before implementing

reservoir development plans. However, due to involvement of several uncertainties in the

process, the decisions are to be made under uncertainty.

The uncertainty can have political, economic, or physical cause. The political and eco-

nomic sources of uncertainty include wars, taxation, oil and gas prices, limitations on

production, etc. which are extremely difficult to model and quantify. However, modeling

and quantification of physical uncertainties are feasible. Mathematical models are devel-

oped for prediction of hydrocarbon production based on characteristics of the subsurface

reservoirs. These characteristics are unknown and constitute the sources of physical

uncertainty.

Mathematical models parameterize the subsurface flow problem based on the charac-

teristics of the reservoir and yield formulations connecting the parameters and model

forecasts. The mathematical models for reservoir flow normally entail complex math-

ematical equations. Except for basic cases, the model forecasts cannot be obtained
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analytically. Therefore, the mathematical equations are discretized and are solved nu-

merically. A model run consists of giving a set of parameters to the model as input, and

obtaining the model forecasts as output. Each model run has an associated computa-

tional cost. In certain methods, e.g. Monte Carlo (MC) sampling methods, the model is

run many times for different sets of inputs. Therefore, the total computational cost of

the process has a linear correlation with the the number of model runs.

Bayesian approach is a robust method for quantification of uncertainty. It can be thought

of as a learning process. Initially, there exists a very limited knowledge about the hy-

drocarbon reservoir. By the passage of time, some data are acquired, e.g. by drilling

exploration wells or conducting seismic surveys. These data are then assimilated into

the mathematical models which results in better estimation of the unknown parameters

and better quantification of the associated uncertainty. This process is known as data

assimilation (or in the context of hydrocarbon reservoir problems, history-matching).

Ensemble-based data assimilation (DA) algorithms are examples of MC methods which

utilize Bayesian methodology and are widely used for uncertainty quantification in hydro-

carbon reservoir problems. In these methods both the data and the unknown parameters

are treated as random variables. The uncertainty in the parameters is represented using

samples from them. The numerical models are then run on all members of the sample,

and an ensemble of model forecasts is formed which represents the uncertainty in the

model forecasts. Finally by comparing the model forecasts and the observation data, the

ensemble is updated and the posterior uncertainty is obtained.

DA methods have several advantages including computational and storage efficiency,

particularly in the problems where the number of uncertain parameters are large. How-

ever, they have their own limitations. Monte Carlo approximations play a crucial role

in ensemble-based DA. Due to computational-cost limitations, the ensemble size is lim-

ited to roughly one hundred. Using straightforward ensemble-based DA, the degrees of

freedom of the problem would equal the ensemble size, and such an approach would re-

sult in significant Monte Carlo errors. The negative effects of Monte Carlo errors are

enlarged if large amounts of data are assimilated simultaneously, e.g. assimilation of

inverted seismic data. This normally results in underestimation of the variance of the

unknown parameters, and in more severe cases ensemble collapse.

The most widely used treatment for Monte Carlo errors is a regularization technique

called distance-based localization. As the name suggests the underlying assumption of

this method is that the unknown parameters should be updated only based on the data

at their locality. In spite of its being the standard method of regularization, it has

its own drawbacks. It does not allow for the parameters to be updated by the data
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acquired away from their vicinity, although there may exist true correlations between

them. Additionally, this method has difficulty assimilating the data which do not belong

in any specific spatial location.

Simply increasing the ensemble size will of course reduce Monte-Carlo errors, but it

will also increase computational cost. Utilization of surrogate models which have lower

computational cost comparing to fine mathematical models renders the possibility of

increasing the ensemble size without increasing the total computational cost. Use of a

surrogate reservoir model will, however, introduce modeling errors in addition to those

already present in fine simulation results.

Multilevel simulations utilize a selection of surrogate models that constitute hierarchies

in both fidelities and computational costs (multilevel models). The idea is to decrease

Monte Carlo errors without increasing numerical errors too much. Multilevel data as-

similation (MLDA) utilizes multilevel simulations in the forecast step of the DA. In this

PhD work, several MLDA algorithms were developed and investigated for assimilation

of inverted seismic data in simplistic reservoir models (Papers A, C, and D). Multilevel

simulations, similar to lower fidelity simulations, introduce modeling errors to the prob-

lem, in addition to the modeling errors already existing. Calling these secondary errors

multilevel modeling errors (MLME), several computationally inexpensive methods were

devised for partially addressing MLME and their quality was assessed for assimilation

of inverted seismic data in simplistic reservoir models (Paper B). Finally, one of the de-

veloped MLDA algorithms was investigated for assimilation of inverted seismic data in

a realistic reservoir model (Paper E).
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Chapter 2

Inverse problems

In order for us to understand the natural phenomena, we study physical systems. There

are three different steps to study a physical system [Tarantola, 2005]. The first step

is parameterization, in which a minimum number of model quantities are found such

that they completely characterize the system. The second step is forward modeling,

in which we try to discover the physical laws governing the system. In doing so, we

formulate mathematical models using which we can predict some observable phenomena

in the system for any given set of model quantities. Since neither the parameterization

nor the forward modeling are exact, these predictions come with associated errors. The

third step is inverse modeling. In this step the actual values of some measurements of

observable phenomena are used to infer some information about the model quantities.

As opposed to the first two steps which are inductive, inverse modeling is deductive. By

this we mean that unlike the first two steps where the process of thinking and inference

cannot be explicitly explained, in the third step, given a set of assumptions, the inference

is made mostly using the principles of logic and probability theory.

2.1 Inverse problem formulation

Consider the equation relating the observation data, d , and the model quantities, z ,

using the forward modelM,

d =M(z ) . (2.1)

As mentioned parameterization and forward modeling entail errors. Therefore, a correct

formulation of the problem is

d =M(ztrue) + ϵ , (2.2)
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where ztrue represents “true” model quantities obtained with accurate model, and ϵ

represents the unknown error term. Considering ϵ as an unknown variable, without loss

of generality one can assume it has zero mean. This error entails both error in the

measurements and modeling. However, since the error in modeling is hard to quantify,

it is normally neglected.

A mathematical problem is considered well-posed if the following three conditions hold

[Hadamard, 1902].

(i) There must exit a solution.

(ii) The solution must be unique.

(iii) The solution must be stable.

If any of these conditions does not hold, the corresponding problem is called an ill-posed

problem. In the case of inverse problems, due to presence of noise in the observations

and modeling error, the first condition normally does not hold. The second condition

does not hold necessarily, since many sets of model quantities may equally satisfy (2.1).

The last condition may be violated in certain inverse problems, meaning that small

perturbations in the observations result in drastic changes in the solution. Therefore,

solving the inverse problems, normally being ill-posed, is a hard task.

In this work, if z and d are fields, we assume that they are discretized into sets of model

quantities and data. For study of continuous inverse problems, see e.g. [Bagchi and

Borkar, 1984; Bergemann and Reich, 2012; Borkar and Bagchi, 1982]. There are two

approaches to inverse problem: the classical approach and the stochastic approach. I

will discuss these two approaches, respectively.

2.2 Classical approach

Based on the ill-posed nature of the problem, it is assumed that there exists no solution

z such that (2.1) is fully satisfied. Considering (2.2) instead, in the classical approach

no assumptions are made on the nature of the error term, ϵ. A cost function is defined

as the least squares of the error terms given by

J (z ) = ||M(z )− d ||2 , (2.3)

which will be equivalent of the Euclidean norm of the total error; the most commonly

used norm for such problems. The solution of the inverse problem will reduce to solving
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the minimization problem given by,

z ∗ = argmin
z

J (z ) . (2.4)

Assuming continuous functionality for M(z ), a necessary condition for the minima of

the problem, z ∗, (both local and global) is

∇J (z ) = 0 . (2.5)

AsM is normally non-linear, the solution of (2.5) is found using iterative optimization al-

gorithms, including Newton algorithm, Gauss-Newton algorithm, Levenberg-Marquardt

algorithm, or Quasi-Newton methods. For details of these optimization algorithms, see

e.g. [Bonnans et al., 2006].

Some problems that may arise when using classical approach to inverse problem are

presence of multiple local minima, divergence of the minimization sequence of the opti-

mization algorithms, and instability of the solution with respect to data. A technique

that can alleviate these problems is regularization. Tikhonov regularization method

[Tikhonov, 1966] is one of the most popular methods in regularization. It will be dis-

cussed briefly in Section 4.

2.3 Stochastic approach

As opposed to the classical approach in which the nature of error terms does not play

any role in formulation of the problem, in stochastic approach the error terms are con-

sidered as random variables with known statistics. The non-exact forward model is given

by (2.2), similar to the classical approach. However, since the data are considered as

stochastic variables, for each of them there exists a probability distribution function

(PDF). Assuming independence between the data, the conditional probability of the

data given the model quantities can be formulated as

fD |Z (d |z ) = fD1 |Z (d1 |z ) . . . . fDND
|Z (dND

|z ) (2.6)

where ND is the number of data, and fDk |Z denotes the conditional probability of datum

k given the model quantities, 1 ≤ k ≤ ND . Since the data are given and the problem is

about finding models that match the data well, by a change of perspective, we can write

the likelihood function, L(z , d) as

L(z , d) = f (d |z ) = f (d1 |z ) . . . . f (dND
|z ) . (2.7)
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In (2.7) I have used f for all the PDFs in the equation, and assumed it is clear in the

context. This abuse of notation will be used from this point on. Assuming Gaussian

model for error, we will have

L(z , d) ∝
ND∏

k=1

exp

(
−(dk − (M(z ))k)

2

2σk

)
, (2.8)

where σk denotes the standard deviation of the kth error term, and (M(z ))k denotes the

kth element of the model forecast vector. Defining the negative log-likelihood as the cost

function,

J (z ) =

ND∑

k=1

(dk − (M(z ))k)
2

2 σk

, (2.9)

and minimizing it, results in Maximum Likelihood (ML) estimate of the model quantities.

If the error terms are independent and share the same Gaussian distribution, ML estimate

reduces to the classical approach. However, in the more general case, when the errors

are correlated, the minimization can be formulated as,

z ∗ = argmin
z
||M(z )− d ||2C−1

D
, (2.10)

where CD is the data error covariance matrix, and ||.||C−1
D

is the norm induced by this

matrix.

2.3.1 Bayesian formulation

A sub-category of stochastic formulation of the inverse problem is Bayesian approach.

In this approach a prior knowledge about Z is considered, and it is updated using the

data. In some sense, Bayesian formulation of the inverse problem is a learning algorithm.

Considering (2.1), the problem that we try to solve is estimation of Z using observed

measurements of D . We assume Z and D as random vectors, and z and d are realizations

from them. Denoting PDF of Z as f (z ), and the conditional PDF of D given Z as f (d |z ),
using Bayes’ rule we can calculate the conditional PDF Z given D , f (z |d), as

f (z |d) = f (d |z ) f (z )
f (d)

. (2.11)

Using this formulation, the prior distribution of Z is conditioned to D and results in the

posterior distribution of Z . The denominator is the PDF of D which acts as a normalizing

factor. In practice, however, this term is hard to quantify. Hence, the proportionality,

f (z |d) ∝ f (d |z ) f (z ) , (2.12)
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is utilized instead of (2.11).

2.4 Parameter estimation

The model quantities are divided into two categories. The first category consists of the

model quantities which are variant with time. These are called model states. The second

category consists of the coefficients in the mathematical equations of the model which

do not change with time. These are called model parameters. In the context of reservoir

history-matching, most of the time, we want to estimate parameters like permeabilities

and porosities which are considered constant with time. Hence, we formulate a parameter

estimation problem.

The methods developed for parameter estimation are historically based on the state

estimation techniques developed for studying the stochastic processes. Assuming Z is

variant with time. There are two approaches in conditioning the time-variant model

quantities to the data: smoothing and filtering. In smoothing the model quantities at

each time step are conditioned to all the data. On the other hand, in filtering, at each

time step, the model quantities are conditioned to the data in that time step and the

data in the past time steps [Särkkä, 2013]. In other words filtering assumes a causal

relationship between the model quantities and the data, while smoothing does not. Here

we consider smoothing as the approach of data assimilation.

Considering the smoothing formulation, assuming a dynamic model we have,

f (z1 , z2 , ..., zK |d1 , d2 , ..., dK ) ∝ f (d1 , d2 , ..., dK |z1 , z2 , ..., zK ) f (z1 , z2 , ..., zK ) . (2.13)

In (2.13), zk and dk denote the model quantities and the data at time step k, 1 ≤ k ≤ K .

Since we want to formulate the parameter estimation problem, the model quantities are

assumed to be the same in all the time steps. Hence, (2.13) reduces to

f (z |d1 , d2 , ..., dK ) ∝ f (d1 , d2 , ..., dK |z ) f (z ) . (2.14)

If the data at different time steps are independent, the posterior parameters distribution

is given by,

f (z |d1 , d2 , ..., dK ) ∝ f (d1 |z ) f (d2 |z ) ... f (dK |z ) f (z ) . (2.15)
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2.4.1 Sampling the posterior distribution

In spite of straightforward derivation of the parameter update formulae, these equations

normally involve complex multi-dimensional integrals which are difficult to solve analyt-

ically. For realistic inverse problems, due to exponential growth of the computational

cost with increase in dimensionality of the problem, discretizing (2.14) and numerical

integration of it is not feasible either. However, there are algorithms which can sample

from the posterior correctly under certain conditions. The most popular algorithm for

sampling from the posterior is Markov Chain Monte Carlo (MCMC).

The MCMC algorithm relies on the Markov chain property, meaning that starting from

an arbitrary sample from the distribution z , a long chain of realizations are sampled from

the parameter space, such that the probability of sampling each point only depends on

the previous sample point, not the rest of the chain before that point. This chain can

sample a distribution of interest given certain conditions are satisfied.

The well-known Metropolis-Hasting algorithm [Hastings, 1970; Metropolis et al., 1953]

can be summarized as follows. Consider p(z ∗|z×) as the proposal probability of moving

from z× to z ∗ at a certain point in the chain.

1. Generate an initial sample from the parameter distribution z 1 and set k = 1.

2. Generate a sample z ∗ from the distribution p(z ∗|z k)

3. Calculate the acceptance ratio a(z ∗, z k) given by

a(z ∗, z k) = min

(
1 ,

f (z ∗|d) p(z k |z ∗)
f (z k |d) p(z ∗|z k)

)
.

4. Generate a random sample, u, from the uniform distribution U [0, 1]

5. If a(z ∗, z k) > u then z k+1 = z ∗, else z k+1 = z k

6. If a certain chain length is not reached, set k ← k + 1, and go to step 2.

For sufficiently long chain lengths, this algorithm will sample the posterior distribution

correctly if p(z ∗|z×) is designed such that the chain will be aperiodic, meaning that same

pieces of chain will not repeat in fixed intervals, and moving from a point to any other

point is positive recurrent, meaning that the number of steps needed for the move is

finite [Robert and Casella, 1999].
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One of the main issues with MCMC algorithms is that they normally need exceedingly

large chain lengths to obtain a correct sample from a distribution. Due to high com-

putational costs for each of the sample points, e.g. one simulation run in the reservoir

history-matching problem, achieving long chains is not a practical possibility.

2.4.2 Linear-Gaussian problems

Another way of tackling the difficulty of solving (2.14) is imposing certain assumptions

on the distributions and the relation between the model parameters and the data, such

that (2.14) will be simplified. There exists a closed form solution for this equation, if

the following two conditions hold.

(i) Both the error in modeling and measurements, and the uncertainty in the prior

estimates of the models are Gaussian.

(ii) There is a linear relation between the parameters and the data.

This case is presented here. We assume the uncertainty in the prior model estimate is

Gaussian. Hence, we can write,

f (z ) = const. exp

(
−1

2
(z − z pri)TCZ pri

−1 (z − z pri)

)
, (2.16)

where z pri is the mean of the prior parameter estimates, CZpri is the prior parameters

covariance matrix, const is a normalizing constant, and T denotes the transpose operator.

Similarly, we assume that the observation do with observation error covariance matrix

Cd is given, and the modeling error defined as d −M(z ) has a Gaussian error given by

N (0,CM ). Given these assumptions, the likelihood function is given by

f (do|z ) = const. exp

(
−1

2
(do −M(z ))T C−1

D (do −M(z ))

)
, (2.17)

where exp is the exponential function, and CD = Cd+CM . This is derived by convolution

of the two Gaussian distributions associated with Cd and CM [Tarantola, 2005]. Hence,

for a given observation do, the posterior parameters distribution is given by

f (z |do) = const . f (do|z ) f (z )

= const.exp[−1

2
(z − z pri)TCZ pri

−1 (z − z pri)− 1

2
(do −M(z ))T C−1

D (do −M(z ))]

= const . exp(−J (z )) , (2.18)
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where J (z ) is,

J (z ) =
1

2
(z − z pri)TCZ pri

−1 (z − z pri) +
1

2
(do −M(z ))T C−1

D (do −M(z )) (2.19)

AssumingM is linear,

M(z ) = M z , (2.20)

where M maps the parameters space into the data space, we will have,

J (z ) =
1

2
(z − z pri)TCZ pri

−1 (z − z pri) +
1

2
(do −M z )T C−1

D (do −M z ) . (2.21)

Then the posterior distribution of the model parameters will also be Gaussian, and mean

and variance will be given by,

z pos =
(
MTC−1

D M+ CZpri
−1
)−1 (

MTC−1
D do + CZpri

−1 z pri
)

= z pri +
(
MTC−1

D M+ CZpri
−1
)−1

MTC−1
D

(
do −M z pri

)

= z pri + CZpriMT
(
M CZpri MT + CD

)−1 (
do −M z pri

)
,

(2.22)

and

Cpos
Z =

(
MT C−1

D M+ Cpos
Z

−1
)−1

= CZpri − CZpri MT
(
M CZpri Mt + CD

)−1
M CZpri ,

(2.23)

where the second an third equality in (2.22) and the second equality in (2.23) are given

by Woodbury matrix identity [Woodbury, 1950]. For details of derivation see [Taran-

tola, 2005]. The original formulation of the explained method was derived for the state

estimation problem by Kalman [Kalman, 1960]. The represented method for parameter

estimation heavily draws on his work.



Chapter 3

Ensemble-based methods

Sampling the posterior field is a challenging task in high-dimensional problems. It is

proven that MCMC method samples the posterior in (2.14) correctly, given the Markov

chain is long enough. However, due to costly runs of the forward model, attaining suf-

ficiently long Markov chains is not a possibility for the reservoir history-matching prob-

lem. Adding the Linear-Gaussian assumption, Evensen [1994] formulated an alternative

Monte Carlo sampling method for solving (2.14) based on Kalman filter [Kalman, 1960].

This algorithm, known as ensemble Kalman filter (EnKF), is considerably cheaper than

MCMC in terms of the computational cost and gives a good estimation of the posterior

distribution if the problem is not far from the Linear-Gaussian assumptions. In essence,

it can be described as a Monte Carlo approximation of the Kalman filter. The novelty of

this algorithm comes in utilization of an ensemble for computation of the statistics of the

model quantities and the model forecasts. This enables EnKF to obtain the statistics

of the prior model quantities as well as the statistics of the model forecasts by running

the forward model on all the ensemble members. Van Leeuwen and Evensen [1996] for-

mulated Ensemble smoother (ES) using the same idea, and ever since ensemble-based

methods have been widely used in oceanography, atmospheric sciences, and oil reservoir

problem, to name a few, see e.g. [Evensen et al., 2022; Hamill, 2006; Jung et al., 2018;

Oliver and Chen, 2011; Ruiz et al., 2013] .

There have been several improvements to the ensemble-based algorithms discussed above,

and several algorithms have been developed based on them, see e.g. [Burgers et al., 1998;

Chen and Oliver, 2013; Emerick and Reynolds, 2013; Gu and Oliver, 2007; Raanes et al.,

2019; Sakov et al., 2012]. Here I discuss three of these methods, i.e. ES [Van Leeuwen

and Evensen, 1996], ensemble randomized maximum likelihood (EnRML) [Chen and

Oliver, 2012], and a general form of ensemble smoother with multiple data assimilation

(ESMDA) [Emerick and Reynolds, 2013; Mannseth, 2020].



16 Ensemble-based methods

3.1 Definition of general terms

I start with definition of the generic terms for all the ensemble-based methods that are

going to be discussed.

The distribution of the model parameters is assumed to have mean z and covariance

matrix CZ . This distribution is sampled, and its realizations are concatenated into the

ensemble parameters matrix, Z (Roman and boldface, not to be mistaken with the italic

parameters random vector Z ),

Z = (z1 , z2 , ..., zNe ) , (3.1)

where Z is a NZ ×Ne matrix; NZ and Ne being the number of unknown parameters and

the ensemble size, respectively. If the distribution is Gaussian, the ensemble members

can be sampled using,

z = z + L x , (3.2)

where L is any matrix such that L LT = CZ , e.g. Cholesky decomposition, and x is

a vector of the same size as z whose elements are independent samples from standard

normal distribution. We also define the projection matrix Π,

Π =
1√

Ne − 1

(
INe − 1 1T

)
, (3.3)

where INe is the identity matrix of size Ne , and 1 is a vector of ones of the required size.

Multiplying Z from right to Π will make the ensemble centered (zero-mean), and scaled

with a factor of 1/
√
Ne − 1 . Using the projection, we define the scaled perturbation,

BZ , as

BZ = ZΠ (3.4)

such that the ensemble covariance matrix will be given as,

CZ = BZB
T
Z . (3.5)

Similarly, defining the model forecast, y , associated with each ensemble member as

y =M(z ) . (3.6)

The NY ×Ne matrix of model forecasts, NY being the dimension of the model forecasts,

is defined similar to Z based on concatenation of the ensemble of the forecasts as

Y = (y1 , y2 , ..., yNe ) . (3.7)
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Defining BY as

BY = YΠ , (3.8)

the ensemble covariance matrix of the model forecasts, CY , can be formulated as

CY = BYB
T
Y . (3.9)

Similarly, the cross-covariance between the parameters and the model forecasts is given

as

CZ ,Y = BZB
T
Y . (3.10)

3.2 Ensemble-based data assimilation algorithms

3.2.1 Ensemble smoother

Ensemble smoother (ES) [Van Leeuwen and Evensen, 1996] was formulated for problems

which are not too nonlinear, and consists of one DA step, which is described as follows.

Firstly, the matrix of prior parameters ensemble is sampled as,

Z =
(
z pri1 , z pri2 , ..., z priNe

)
. (3.11)

After running the forward model on the prior ensemble, the prior matrix of parameter

forecasts, Y, the perturbation matrices BZ and BY , and the sample covariance matrices

CZ , CY , and CZ ,Y are computed based on the guidelines in Section 3.1.

Corresponding to each of the ensemble members, one realization of the perturbed data,

d , is sampled from D ; {dj |1 ≤ j ≤ Ne ,D ∼ N
(
d ,CD

)
}.

The updated ensemble of parameters realizations are given by,

z posj = z prij +K(dj − yj ) , (3.12)

where the Kalman gain matrix, K is given by

K = CZ ,Y (CY + CD)
−1 . (3.13)

The limiting distribution given by the updated realizations of the model parameters, in

the infinite ensemble size, samples the posterior distribution of the model parameters
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correctly, given the problem is Linear-Gaussian.

3.2.2 Ensemble randomized maximum likelihood

Ensemble randomized maximum likelihood (EnRML) was introduced in [Chen and

Oliver, 2012] as an iterative ensemble smoother. This algorithm was developed to handle

more non-linear inverse problems.

Randomizing the objective function in (2.19), the cost function associated with each

ensemble member is given by

Jj (zj ) =
1

2
||zj − z prij ||2CZpri

−1 +
1

2
||M(zj )− dj ||2C−1

D
. (3.14)

In the linear-Gaussian case Jj is minimized by the update in (3.12). However, assuming

non-linearity inM, this will not be the case. Therefore, an iterative scheme should be

used to minimize Jj for all realizations.

At each iteration, i, the forward model is run on the ensemble, the required statistics

and matrices are calculated based on definitions in Section 3.1. (I add superscript i to

the notations so as to discriminate them from the single-iteration ES case. Iteration 0

corresponds to the prior ensemble.)

EnRML uses Gauss-Newton scheme for minimization of the cost function. This scheme

requires the gradient and the Hessian of Jj for each of the ensemble members. In EnRML,

these are computed using approximations based on the ensemble. Hence, the gradient,

∇J i
j , and the Hessian, H i, for the parameter realizations at iteration i, z ij , are given as

∇J i
j ≈ CZ pri

−1
(
z ij − z prij

)
+MiTC−1

D

(
M(z ij )− dj

)
, (3.15)

H i ≈ CZpri
−1 +MiTC−1

D Mi , (3.16)

respectively. In these formulae, Mi denotes the approximation to Jacobian of M(z ) in

the vicinity of the ensemble of parameters in that iteration, and H i is approximated

by neglecting the derivative of Mi. MiT denotes the transpose (or more generally, the

adjoint) of Mi. In IES , the approximation,

Mi ≈ CZ ,Y
iCZ

i+ , (3.17)

is used for calculation of Mi, where superscript + denotes Moore-Penrose pseudo inverse.

A mathematical justification for this can be found in [Raanes et al., 2019]. The realization
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z ij is then updated as

z i+1
j = z ij − β

(
H i−1∇J i

j

)
, (3.18)

where β is the step length which is defined based on “restricted-step algorithm” in [Oliver

et al., 2008]. The update equation can be written as

z i+1
j = z ij + β

(
∆i ,pri

j +∆i ,lik
j

)
, (3.19)

where ∆i,pri
j and ∆i,lik

j are given by

∆i,pri
j = (INZ

−KiMi)[z prij − z ij ] , (3.20)

∆i,lik
j = Ki[dj −M(z ij )] . (3.21)

In these Equations, INZ
is the identity matrix of the parameter vector dimension, and

the Kalman gain Ki is given by

Ki = CZpriMiT
(
MiCZpriMiT + CD

)−1

. (3.22)

The iterations are continued until convergence is obtained.

3.2.3 Assimilation of multiple linearly dependent data

In this section, I present an algorithm for assimilation of a set of linearly dependent data

vectors {D l}Ll=1 where {D l = UlDL}, and Ul is a linear transformation. These types of

data can be found in the context of multilevel data assimilation.

Consider a set of forward models {Ml}Ll=1 corresponding to each of the data vectors. An

ensemble of prior realizations is generated, and at assimilation step l the forward model

is run on all the ensemble members,

y l
j =Ml(z

l
j ) . (3.23)

The required matrices and distributions are generated based on definitions in Section

3.1. Here we add the superscript l to the notations to distinguish between different

assimilation steps.

Assuming the data vector at assimilation step l is distributed as D l ∼ N (d
l
,Cl

D), and

d l
j are realizations of it, each of the ensemble members is updated as

z l+1
j = z lj +Kl(d

l
j − y l

j ) (3.24)
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where the Kalman gain Kl is given by

Kl = CZ ,Y
l
(
CY

l + Cl
D

)−1
. (3.25)

In the asymptotic ensemble-size condition and Gaussian assumption for the distributions,

the described algorithm samples correctly from the posterior parameters distribution

given the following conditions hold,

(i) Ml(z ) = UlML(z ) = Ul M z

(ii) Cl
D = Al Ul CL

D UlT AlT

(iii)
∑L

l=1 U
lTCl

D
−1
Ul = CL

D
−1

The first condition states that {Ml}Ll=1 should all be linear and the same linear transfor-

mation relating different data levels should be relating the model forecasts. The second

condition states that the transformed data error covariance matrix at level l, Ul CL
D UlT,

should be inflated using the arbitrary inflation matrix Al such that the third condition

holds.

These conditions are known as the partially multiple data assimilation (PMDA) condi-

tions. They are introduced in [Mannseth, 2020].

3.2.4 Ensemble smoother with multiple data assimilation

Ensemble smoother with multiple data assimilation (ESMDA) [Emerick and Reynolds,

2013] was another effort to address the problem of assimilation of data with stronger

non-linearity. In this algorithm the data error covariance matrix is inflated, and the

assimilation of data is performed in several steps. Substitution of one large update with

several small updates helps to direct the ensemble towards the solution of the inverse

problem.

Consider the algorithm in Section 3.2.3. If {D l = DL}Ll=1 and {Ml =ML}Ll=1, i.e. the

linear transformations relating the data and forward models at different levels are iden-

tity matrices, the algorithm introduced in Section 3.2.3 will be reduced to the ESMDA

algorithm. Defining Al = αl IL, where αl is a scalar value and IL is the identity matrix

with the size of the data vector, the PMDA condition will also be simplified such that it

can be summarized as
L∑

l=1

1

αl

= 1 . (3.26)
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This condition is known as the multiple data assimilation (MDA) condition. It is proved

that satisfying this condition in the linear-Gaussian case and asymptotically large ensem-

ble sizes, ESMDA samples the posterior correctly. However, it is unclear how important

MDA condtion is in the general non-linear problem.



22 Ensemble-based methods



Chapter 4

Regularization

As mentioned in Section 2 many of the inverse problems are ill-posed, i.e. negating one

or more of the assumptions of a well-posed problem. Since solving an ill-posed problem

is a challenging task, some strategies should be used to reformulate the problem such

that its solution becomes more stable. A broad group of these techniques which stabilize

the solutions of inverse problems are known as regularization techniques. In general

regularization is the process of approximating the solution of an ill-posed problem by a

family of similar well-posed problems.

In the classical approach, Tikhonov regularization [Tikhonov, 1966] is one of the standard

formulations. Considering (2.3), using Tikhonov regularization, this equation can be

reformulated as

J (z ) = ||M(z )− d ||2 + ||Γ (z − z 0)|| . (4.1)

In this formulation by manipulating Γ, and solving the corresponding minimization prob-

lem, one can limit the solutions of the inverse problem to only those solutions which are

inside a multi-dimensional ellipsoid centering around z 0. This will reduce the chance of

obtaining non-physical solutions due to instability of the ill-posed problem. For other

regularization techniques in classical approach, see e.g. [Benning and Burger, 2018; Engl

et al., 1996]

In ensemble-based data assimilation (DA) the ensemble size is limited. In the reservoir

history-matching problem it is normally around one hundred [Emerick and Reynolds,

2011; Yin et al., 2019; Zhang et al., 2021]. Since the number of unknown parameters in

the problem is normally much larger, the degree of freedom of the problem is determined

by the ensemble size. A problem that often arises in the prime form of the DA algorithms

is presence of spurious correlations when computing the covariances. Since computation

of the covariance matrices used in the update step of the DA is a Monte-Carlo process,
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the limited ensemble size can result in spurious correlations both between parameters

themselves, and between model forecasts and the parameters. One of the common con-

sequences of the Monte-Carlo errors associated with the DA process is the ensemble of

parameters realizations to fit for some of the noise, thereby reducing the uncertainty in

the ensemble too much and consequently underestimating it. In case of simultaneous as-

similation of large amounts of data, e.g. inverted seismic data, the problem is even more

aggravated, and sometimes the DA results in ensemble collapse.

Increasing the ensemble size would be the most effective way of resolving this problem,

but due to limited computational resources, this is not a possibility. Several strategies

are devised to address this problem. I cover two of the main general strategies for

regularization of the DA methods, namely localization and ensemble sub-space inversion.

4.1 Localization

The idea behind localization is defining some form of locality for each parameter such

that the update equation will be mostly affected by the data in that locality. Localization

was originally formulated based on the physical location of the data, as the term implies.

Hence, distance-based localization is known to be the standard method for localization

[Agbalaka and Oliver, 2008; Bannister, 2017; Chen and Oliver, 2010; Soares et al., 2018].

However, another method for localization, known as correlation-based localization [Luo

and Bhakta, 2020; Luo et al., 2018], is also gaining interest in recent years. In this section,

I present both of these methods. In addition, I present three of the main techniques by

which the update formulations of the DA algorithms are manipulated, i.e. local analysis,

Kalman gain localization, and covariance localization.

4.1.1 Local analysis

Local analysis, introduced in [Brusdal et al., 2003], is a regularization method which is

very popular in the atmospheric sciences, weather and oceanography community [Oke

et al., 2013; Ott et al., 2004; Sakov and Bertino, 2011]. This technique has also been

used in the reservoir history-matching problem [Chen and Oliver, 2017; Fahimuddin

et al., 2010]. In this method, both the unknown parameters and the data are grouped

into certain groups, normally based on their location, and consequently the update equa-

tion is performed for each group of parameters using their corresponding group of data,

independently of other groups. For example, in the reservoir history-matching problem,

the permeabilities and porosities associated with each column of grid cells can be con-
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sidered as one group. If the DA algorithm chosen is ES, for example, the Kalman gain

will be of the form,

K∗ = CZ ,Y
∗ (CY

∗ + C∗
D)

−1 , (4.2)

where CZ ,Y
∗ has only the rows and columns from CZ ,Y which are pertaining to the

parameters and model forecasts which are being updated or assimilated in that specific

group. Similar rule applies to CY
∗ and C∗

D , and ∗ is a wild-card notation for each of

the groups. By doing so, each group of parameters are conditioned to only a part of the

data, and as a result the issue of balancing the degrees of freedom of the problem and

the information content in the data is alleviated.

One of the issues with local analysis is deciding on the groups. There are no obvious

guidelines for choice of the groups, and it normally needs expert knowledge of the field.

This reduces the robustness of the method. Another problem with local analysis is

that instead of one update equation, the process may need thousands of them. This

can be computationally very demanding. However, since the updates are performed

independently, parallelization is a possibility which can reduce the computation time

drastically.

4.1.2 Kalman gain localization

One of the most straightforward methods of localization is the Kalman-gain localization.

The Kalman gain matrix has the row size equal to the number of unknown parameters,

and the column size equal to the number of data points to be assimilated. Hence, each

of the elements of the Kalman gain matrix represents how much a specific parameter is

affected by a specific datum. The idea in Kalman-gain localization is that each of the

elements of the Kalman gain matrix is tapered, i.e. multiplied by a real number between

0 and 1, such that each parameter is mostly affected by the data at its locality. Hence

the data at the locality of each parameter are tapered close to 1, and the data far from

the locality of that parameter are tapered close to 0. Therefore, the Kalman-gain for

this method can be written as,

K∗ = T ◦K , (4.3)

where K is the Kalman gain from an arbitrary ensemble-based algorithm, T is a tapering

matrix whose elements are between 0 and 1, and ◦ is the element-wise multiplication (or

the Schur product) of the two matrices.

Matrix T is essentially designed to remove the spurious correlations between the parame-

ters and the data. There are several ways to design this matrix both based on the spatial

distance of the parameters and the data, and the correlations between them which will
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be discussed in Sections 4.1.4 and 4.1.5, respectively.

As a direct consequence of its formulation, Kalman-gain localization can only be used

in the DA algorithms for which a Kalman gain update can be formulated, e.g. it cannot

be used coupled with algorithm proposed by [Evensen et al., 2019]. There are some

advantages with using this technique. Implementation-wise it can be simply added to

the final step of many DA algorithms, e.g. ES and ESMDA. In the original formulation

of the Kalman gain the updated ensemble will always be in the sub-space spanned by

the prior ensemble. By use of Kalman gain localization rank of the Kalman-gain matrix

will increase, and the inverse problem is solved in a larger space.

4.1.3 Covariance localization

An alternative to Kalman-gain localization is to localize the covariances in the update

equation [Devegowda et al., 2007; Emerick and Reynolds, 2011; Sakov and Bertino,

2011]. The difference between this method and Kalman-gain localization is tapering the

parameters-forecasts cross-covariance and model-forecast covariance matrices instead of

tapering the entire Kalman gain matrix. Considering the Kalman gain formula for ES,

after implementing the covariance localization, it will transform into

K∗ = (TZ ,Y ◦ CZ ,Y ) (TY ,Y ◦ CY + CD)
−1 , (4.4)

where TZ ,Y is the tapering matrix for the cross-covariance between the parameters and

the model forecasts, TY ,Y is the tapering matrix for the covariance of the model forecasts,

and ◦ denotes Schur product. In this equation, TY ,Y has the following form,

TY ,Y = TYT
t
Y , (4.5)

where superscript t denotes transpose of the matrix. This is done to assure that the

tapering matrix has the correct form of a covariance matrix. Designing the tapering

matrices is similar to their design for Kalman-gain localization and will be discussed in

Sections 4.1.4 and 4.1.5.

A possible limitation of this method is the size of TY ,Y . Since the dimension of the

data can be very large, computation and storage of TY ,Y may not be feasible. However,

comparison of Kalman-gain localization and covariance localization in multi-phase flow

DA shows that covariance localization is more robust and avoids artifacts when the size

of the localization area is small [Chen and Oliver, 2010]. On the other hand, Kalman-

gain localization normally results in higher ensemble variability after the update [Chen
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and Oliver, 2010].

4.1.4 Distance-based tapering

The underlying assumption in distance-based tapering is that there exist spatial corre-

lations between the data and parameters such that they are highest when the distance

between a datum and a parameter is small, and the correlation decreases by increase

in distance. Finally after reaching a critical distance this correlation should be zero.

Based on this underlying assumption, several formulations are suggested for the taper-

ing function calculating these spatial correlations. One of the most popular formulations,

Gaspari-Cohn formulation [Gaspari and Cohn, 1999], for the tapering function, τ(h), is

given as

τ(h) =




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where h is the spatial distance between a datum and an unknown parameter, and Λ is

the Gaspari-Cohn critical distance.

Another well-known formulation for the tapering function, known as Furrer-Bengtsson

formulation [Furrer and Bengtsson, 2007], is given as

τ(ρ) =
1

1 + (1 + c2/ρ2 )/Ne

, (4.7)

where ρ is obtained using a correlation function, e.g. exponential function given as

ρ(h) = c exp(−3h/Λ) , (4.8)

c is the value of the correlation function at h = 0 , Ne is the ensemble size, and Λ is the

critical distance.

The elements of T in Sections 4.1.2 and 4.1.3 are calculated by these formulations or

similar ones, based on the distances of the corresponding data and the unknown pa-

rameters. In the case of local analysis, the parameters and the data can be grouped by

choosing the rows and columns of the covariance matrices in (4.2) such that τ > 0.

Defining critical distances and choice of correlation functions in distance-based localiza-

tion is not a straightforward task and requires domain expertise. In case of assimilation

of well data, these quantities can be defined using the drainage area of each of the wells
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(a) (b)

Figure 4.1: Illustration of ellipse of influence generated based on the drainage region, (a)
drainage region, (b) matched ellipse of influence [Emerick and Reynolds, 2011]

[Emerick and Reynolds, 2011; Soares et al., 2018]. As can be seen in Figure 4.1, first

the drainage area of a well is approximated and then the critical distances for localiza-

tion and anisotropy are chosen such that the ellipse of influence matches the drainage

area well. Similarly, for the inverted seismic data, one can compute empirical correlation

functions between the model forecasts and parameters as a function of their distance

and choose critical distances and anisotropy accordingly.

4.1.5 Correlation-based tapering

There are several issues with distance-based tapering including, difficulty in choice of crit-

ical distances, elimination of true non-local correlations, necessity for data to have physi-

cal locations associated with them, and requirement of expertise and domain knowledge.

Use of correlation-based tapering was suggested in [Evensen et al., 2009]. Afterwards, a

robust method for correlation based tapering was introduced in [Luo and Bhakta, 2018,

2020]. Using this method, it is possible to perform localization on data for which spatial

location cannot be defined, e.g. data represented by wavelet coefficients.

This technique treats the Kalman gain matrix based on the mutual parameter-forecast

correlation, rather than distance. The idea here is that due to statistical errors, the

sample correlations whose absolute values are smaller than a critical threshold are more

influenced by spurious correlations comparing to the sample correlations whose absolute

values are large. There are two approaches to this correlation-based localization tech-

nique: hard-threshold and soft-threshold. In hard-threshold approach, the elements of

the tapering matrix T are defined as tij = I (|ρij | > θij ), where I is the indicator func-

tion whose output is 1 if the condition is satisfied and 0 otherwise, |.| is the absolute

value function, ρij is the correlation coefficient between parameter i and model forecast
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j, and θij is the cutoff threshold.

For any of the model forecasts the threshold values are defined jointly as {θij}NZ
i=1 = θj for

all the model parameters. By assuming that random assignment of each set of the model

forecasts to each realization of the model parameters results in spurious correlations with

Gaussian distribution and zero mean, the threshold for datum j is computed based on

all these spurious correlations, ϵij, obtained by shuffling and random assignment of the

model forecasts as [Luo and Bhakta, 2018]

θj =
median(|ϵij|)

0.6745
. (4.9)

As an alternative, in another procedure called soft thresholding, one can use Gaspari-

Cohn formulation in (4.6) to avoid sharp changes in the tapering matrix. In this formu-

lation, instead of h/Λ, a new variable is defined to act as pseudo-distance,

ζ =
1− |ρij|
1− θj

. (4.10)

Use of hard threshold can result in abrupt changes and sharp updates in certain areas

of the parameter field [Luo and Bhakta, 2020]. Use of soft threshold can alleviate this

problem. However, correlation-based localization has its own limitations, including suf-

fering from Monte-Carlo errors for defining thresholds and not taking into account small

but true correlations.

4.2 Ensemble subspace inversion

Another method that can balance the information content in the data and the degree of

freedom of the problem is ensemble-subspace inversion [Evensen, 2004]. In this method

the data are projected onto the ensemble subspace, and as a result lose some of their

information content. However, this method normally results in more stable updates.

Here, I briefly explain ensemble-subspace inversion.

Consider the total covariance term in (3.13),

CT = CY + CD , (4.11)

where CY is given by

CY = BYB
T
Y , (3.9)

as discussed in 3.1. We consider the singular value decomposition of BY and truncate it
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with its largest r singular values,

BY = UΣVT . (4.12)

This truncation is done to remove the smallest singular values that cause instability in

inversion. Matrix CT can then be approximated as,

CT ≈ U Σ
(
Ir + Σ−1 UT CD U Σ−1

)
Σ UT (4.13)

where Ir is the identity matrix of size r and

U ΣΣ−1 UT CD U Σ−1Σ UT = UUT CD U UT (4.14)

denotes orthogonal projection of CD into the ND × ND space spanned by truncated

singular value decomposition of ensemble perturbations. Defining X as

X = Σ−1 UT CD U Σ−1 , (4.15)

we will have

CT ≈ U Σ (Ir +X)Σ UT . (4.16)

Since X is a symmetric matrix with real elements, its eigenvalue decomposition can be

given as,

X = W ΩWT , (4.17)

where W is the matrix of eigenvectors, and Ω is the matrix of eigenvalues. Using these

notations, CT can be reformulated as

CT ≈ (U ΣW) (Ir + Ω) (U ΣW)T . (4.18)

Finally inversion of CT in (3.13) is substituted with Moore-Penrose pseudo-inverse of the

approximate total error covariance as,

CT
−1 ≈ (U ΣW) (Ir + Ω)−1 (U ΣW)T . (4.19)

In case Ne ≪ ND , in addition to stability, use of ensemble-subspace inversion also has

computational cost advantages, since inversion of a ND ×ND matrix (CT) is substituted

with inversion of an r× r matrix (Ir+Ω) plus some inexpensive matrix multiplications.
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Forward Modeling

Computation of the model forecasts is a crucial part of data assimilation. The process

of computing model forecasts from a complete set of model inputs which describe the

physical system is called forward modeling. This process normally involves four stages,

namely establishing physical models, formulating mathematical models, discretization

of the mathematical models, and development of computer algorithms to compute the

model forecasts based on the discretized models [Chen, 2007]. Even though all of the

steps are crucial and rigorously studied in the research community, the main focus of

this chapter will be on the mathematical modeling step.

Figure 5.1: Levels of integration of seismic data [Oliver et al., 2021]

In the context of assimilation of seismic data in the reservoir history-matching problem,
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the forward modeling output depends on the level of integration of data. As shown in

Figure 5.1, the seismic data are originally given in the seismic level, i.e. amplitude, time-

shifts, time-strains, while the reservoir simulation model outputs are obtained using a

reservoir flow model which provides saturations and pressures. Therefore, if one wants

to compare the observation data and the simulated output, they have to decide on a

proper level of data integration. As can be seen in Figure 5.1, there are three levels for

data integration; i.e. (i) seismic level, in which seismic data are kept in their original

level, and the model forecasts obtained from reservoir simulation go through both petro-

elastic modeling and seismic modeling; (ii) elastic parameters level, in which the seismic

data go through seismic inversion, and the reservoir modeling outputs are converted

to elastic parameters using petro-elastic modeling; and (iii) simulation model level, in

which the model forecasts from flow simulators are kept in their original level, and the

seismic data goes through both seismic inversion and petro-elastic inversion processes.

The most widely used level for assimilation of 4-dimensional seismic data is level (ii)

which avoids limitations such as sensitivity to porosity and pore-pressure changes in the

reservoir (pertaining to level (i)) and complexity of modeling the uncertainty associated

with the pressure and saturation fields (pertaining to level (iii)).

In this section I briefly discuss the different sections of a forward model used in assim-

ilation of seismic data. This forward model can be thought as constituting three serial

sections: (i) reservoir flow model which takes the reservoir rock properties, initial, and

boundary conditions, and outputs pressure and saturation fields, (ii) petro-elastic model

taking the reservoir rock properties and pressure and saturation fields and giving the

elastic parameters as outputs, and (iii) seismic model that takes the elastic parameters

and outputs simulated seismic data.

5.1 Reservoir flow model

Historically, several methods have been used for modeling the behavior of oil reservoirs,

including material balance methods, which consider the entire reservoir as one simulation

grid block and use mass balance on that block to model behavior of the reservoir, sta-

tistical methods, which typically use the data acquired from similar reservoirs to predict

behavior of the reservoir being investigated, and analytical methods which normally use

mass, momentum, and energy-balance equations to come up with analytical formulations

for predicting the behavior of reservoirs in simplistic problems.

The mainstream method for predicting behavior of the reservoir is, however, formulating

systems of partial differential equations (PDEs) coupled with some auxiliary equations
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for the reservoir parameters, and then discretizing these equations in order to be able

to solve them in more general settings. Based on the characterizations of the problem

and the simplifications performed on it, the problem can be understood as single-phase

flow, two-phase flow, the black-oil model, compositional flow, non-isothermal flow, etc.

One of the most widely used models in reservoir simulation is the black-oil model. This

method will be discussed in more details in this section.

5.1.1 The Black-oil model

The black-oil model assumes there exist three phases in the reservoir, i.e. water, oil, and

gas. In addition it assumes gas can be partially soluble in oil; this solubility is assumed

to be a function of pressure and temperature. This assumption obviously disregards

different components of oil and gas, and only considers their collective behavior. How-

ever, this model relaxes the assumption that there is no mass transfer between phases,

as opposed to two-phase flow for example.

Before starting description of the black oil model, it is worth mentioning that since there

exist standard notations for the variables in reservoir modeling, we stick to them. The

result is that many of these notations will be the same as those used in other sections,

but should not be mistaken.

Writing the continuity equation for each of the phases present in the black oil model,

and combining them with the well known Darcy’s law gives [Chen, 2007],

∂

∂t

(
ϕSw

Bw

)
= ∇. (Tw [∇pw − γw∇z ]) +

qw
Bw

, (5.1)

for water,
∂

∂t

(
ϕSo

Bo

)
= ∇. (To [∇po − γo∇z ]) +

qo
Bo

, (5.2)

for oil, and

∂

∂t

[
ϕ

(
Sg

Bg

+
RsoSo

Bo

)]
=

∇. (Tg [∇pg − γg∇z ] + RsoTo [∇po − γo∇z ]) +
qg
Bg

+
Rsoqo
Bo

, (5.3)

for gas. In these equations t denotes time variable, ϕ is the porosity of reservoir rock

indicating the ratio of porous space to the total volume of the rock, S∗ is the saturation

of phase ∗ which is the ratio of the porous space occupied by that phase, B∗ is the

formation volume factor of phase ∗ which is an indicator of how much a unit volume of
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that phase expands when it is brought from reservoir condition to standard atmospheric

conditions, p∗ is the pressure of phase ∗, ∇z is the gradient of the coordinate system

with respect to the direction of gravitational force, and Rso is the amount of dissolved

gas in a unit volume of oil computed in standard atmospheric conditions. In addition γ∗

and T∗ are computed as

γ∗ = ρ∗ G , (5.4)

where ρ∗ is the density of that phase, and G is the gravitational constant, and

T∗ =
K∗
µ∗B∗

K , (5.5)

where K is the absolute permeability of the rock which is a measure of how well fluids

flow in that medium, K∗ is the relative permeability of phase ∗ which is between 0 and

1 for each of the phases, and µ∗ is the viscosity of that phase.

In addition to these PDEs there exist some auxiliary equations,

Sw + So + Sg = 1 , (5.6)

pcow = po − pw , (5.7)

pcgo = pg − po , (5.8)

where the capillary pressures pcow and pcgo are known functions of Sw and So , respectively.

As for the initial conditions, the reservoir is normally considered in equilibrium with its

surrounding environment, e.g. pressure at a certain depth to be equal to the hydro-static

pressure. For the boundary conditions, depending on the geology, one may consider for

example no flow boundary if it is isolated, or constant pressure boundary if there exists a

strong aquifer which supports the pressure. After setting these conditions and knowing

the reservoir parameters, the problem will be determined and can be solved to obtain

pressures and saturations by time.

In the next step, the equations are discretized and solved numerically. If the grid is

Cartesian, the finite difference scheme is normally used for solving the problem, or else

in irregular grids, finite volume method can be used, since it conserves mass which is a

very important constraint in the porous media flow problems.
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5.2 Petro-elastic modeling

In petro-elastic modeling the fluid and rock properties as well as saturations and pressures

are taken as input, and the elastic properties of the medium are computed as output.

One of the standard models in rock physics which is widely used for calculating the effects

of fluid change, e.g. induced by production of petroleum in a reservoir, is Gassmann’s

model for fluid substitution [Gassmann, 1951]. The low-frequency Gassmann’s theory

formulates the effective bulk modulus of the saturated rock, Ks as [Smith et al., 2003]

Ks = Kd +

(
1 − Kd

Km

)2

ϕ
Kf

+ 1−ϕ
Km
− Kd

Km
2

, (5.9)

where ϕ is the rock porosity, and Kd , Km , and Kf are the bulk moduli of the dry rock,

the mineral the rock consists of, and the fluid which saturates the rock, respectively. In

addition, since the fluids do not bear shear stress, the shear modulus of the saturated

rock, Gs , is simply formulated as

Gs = Gd , (5.10)

where Gd is the shear modulus of the dry rock. These equations are particularly valid for

the low frequency waves propagating in the medium. In case the frequencies are high,

there will not be an equilibrium for pore pressures throughout the pore space, which

complicates the problem. In low frequencies the fluid will have enough time to flow in

the pore and there will not be pressure gradients in the pores induced by the seismic

waves.

One of the most well-known models for computation of elastic parameters Kd and Gd

based on the moduli of the mineral, porosity, and effective pressure is Hertz-Mindlin

contact theory [Mindlin and Deresiewicz, 1953]. Based on this theory, for sandstone,

first bulk modulus and shear modulus of the dry well-sorted rock at critical porosity,

KHM and GHM , are calculated by [Fahimuddin, 2010]

KHM =

(
n2 (1 − ϕc)

2Gm
2

18π(1 − νm)2
peff

) 1
3

, (5.11)

GHM =
5 − 4νm
5 (2 − νm)

(
3n2 (1 − ϕc)

2Gm
2

2π2 (1 − νm)2
peff

) 1
3

(5.12)

where ϕc is the critical porosity (which for sandstone is assumed to be 0.4), peff is the

effective pressure (the difference between the overburden pressure and pore pressure), νm

is Poisson’s ratio for the mineral (or if the rock is a mixture of minerals it is considered

as Poisson’s ratio of the solid phase), and n is the average contact points of a grain in
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the rock. The moduli of the dry rock are then computed as

Kd =

(
ϕ
ϕc

KHM + 4
3
GHM

+
1 − ϕ

ϕc

Km + 4
3
GHM

)−1

− 4

3
GHM , (5.13)

Gd =

(
ϕ
ϕc

GHM − a
+

1 − ϕ
ϕc

Gm + a

)−1

− a , (5.14)

where

a =
GHM

6

(
9KHM + 8GHM

KHM + 2GHM

)
. (5.15)

In addition the bulk modulus of mixture of fluids is given by harmonic averaging (Wood’s

equation) as
1

Kf

=
Sw

Kw

+
So

Ko

+
Sg

Kg

. (5.16)

The density of the saturated rock, ρs, can be computed as

ρs = ϕ (Swρw + Soρo + Sgρg) + (1− ϕ)ρm , (5.17)

where ρ∗ and S∗ are the density and saturation of phase ∗ (water, oil, and gas), and ρm is

the density of the mineral constituting the rock. Using the above-mentioned quantities,

the acoustic properties of the medium can be calculated. Hence, isotropic compressional

velocity, VP , shear velocity, VS, acoustic impedance (bulk impedance), IP , and Poisson’s

ratio, νs, can be formulated as

VP =

√
Ks +

4 Gs

3

ρs
, (5.18)

VS =

√
Gs

ρs
, (5.19)

IP = ρsVP , (5.20)

νs =
V2

P − 2V2
S

2V2
P − V2

S

. (5.21)

In 4D inverted seismic data, the quantities of interest are compared to their value in a

baseline in time and their differences are considered.

The discrete form of the formula presented for petro-elastic modeling is straightforward

computation of the formula for each grid cell of the grid. Therefore, the computational

cost is linear with grid size, and it is not an expensive operation comparing to the flow

model.
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5.3 Seismic modeling

In seismic modeling propagation of seismic waves through earth are modeled. In seismic

acquisition process, seismic waves are sent to the earth (e.g. using explosions or air

guns), and after the waves travel through layers of the geological field, their reflections

from different layers are recorded (e.g. using hydrophones or geophones). These are the

actual measurements that we record as seismic data. Knowing the governing physical

laws (wave equations), the layering of the geological field, the petro-elastic parameters

of different layers, and the form of the seismic waves sent, one can model the response

recorded at each receiver by time. It will be the superposition of all the reflection waves

that are detected by the receivers. It can also be considered as a convolution of a source

wave function and a reflectivity function.

Figure 5.2: Representation of seismic waves [Saraiva et al., 2021]

In seismic inverse modeling, the layering of geological field and the elastic properties are

estimated using the seismic data acquired. In the deterministic inversion, the convoluted

signal recorded at the receivers is deconvoluted to obtain elastic properties and layering.
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Chapter 6

Surrogate modeling

Real world systems are governed by physical laws. Systems of interest are parameterized,

and the physical law are discovered and tuned in the process of forward modeling. The

obtained forward models are abstractions of the real physical world. These forward

models, known as high fidelity models are run to to obtain model responses for any given

set of model inputs. In this context, fidelity of a model refers to the degree of realism

of a model. These high fidelity forward models are normally computationally expensive.

Hence, given a fixed amount of computational resources, affordability of such models

is very limited. Surrogate modeling can be assumed as a second level of abstraction

[Razavi et al., 2012]. Surrogate models are used to approximate the model responses of

the high-fidelity model, via use of cheaper-to-run “surrogates”. Hence, the main aim of

surrogate modeling is reduction of the computational cost per run, without too much loss

of accuracy. Surrogate modeling has been used in wide range of applications including

but not limited to sensitivity analysis, prediction, optimization, design space exploration,

and uncertainty quantification.

Assuming the original response of the model is given by (2.1), the response from the

surrogate can be assumed to have the following form,

M̃(z ) ≈M(z ) . (6.1)

Consider the surface of model responses with respect to any set of model inputs. This

surface typically forms a non-linear hyper-plane. Based on the way surrogate models

approximate this response surface, they are divided into two general groups: response

surface surrogates and lower-fidelity physically-based surrogates. Response surface sur-

rogates approximate this non-linear hyper-plane by use of statistical or empirical data-

driven models. Lower-fidelity physically-based model run simplifications of the original
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high-fidelity model to approximate the response surface. Normally each of the elements

of the model response is approximated separately in the case of response surface surro-

gate, while they are obtained jointly when using lower-fidelity physically-based models.

Here, I briefly discuss both of the approaches to surrogate modeling.

6.1 Response surface surrogates

There is no emulation of any internal component of the original high-fidelity model in

response surface surrogates which are also known as “metamodels” in the literature

[Kyprioti and Taflanidis, 2021; Morimoto et al., 2021; Roman et al., 2020]. These sur-

rogates approximate the relationship between the input variables and model responses.

The origins of response surface surrogates date back to the use of classic non-linear op-

timization techniques, e.g. Taylor series expansion. Taylor series expansion and similar

methods are based on approximation of the function and its derivatives in one point,

whereas the state of the art metamodels normally use a collection of points in the model

input space to approximate the response surface. There are several methods for sampling

from the model input space, including full factorial, central composite design, and Latin

hyper-cube sampling [Oehlert, 2010]. There are several function approximation models

in the literature. In the rest of this section I cover some of the state of the art func-

tion approximation models: polynomials, radial basis function, Kriging, support vector

machines, and artificial neural networks.

6.1.1 Polynomials

Polynomial model is one of the simplest function approximation models. The second-

degree polynomials are very popular for response approximation. Assuming the input

model space has dimension, NZ , the total number of coefficients of the polynomial will

be (NZ + 1 )(NZ + 2 )/2 . The formulation of the second-degree polynomial model can be

written as

M̃(z ) =

NZ∑

i=0

NZ∑

j=i

γi ,j zizj , (6.2)

where zi and zj denote the i
th and jth parameters (0th being a constant), and γi,j is their

corresponding coefficient. These coefficients are normally determined using least squares

regression method.

Polynomials are very successful in local approximation of the original response when it

is locally unimodal. However, as it is clear in the functional form of the first and second-
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degree polynomials, they can only be used as global surrogate models when the original

response surface is linear, quadratic, or similar to them. Application of higher order

polynomials is not practical for large NZ . Firstly, specifying the degree of polynomial is

not straightforward, and secondly the number of coefficients to be determined will grow

exponentially with the degree of the polynomial, so that the estimated coefficients will

have very high variances.

Polynomials have been reported to perform poorly as surrogate models compared to

other function approximation models [Hussain et al., 2002; Regis and Shoemaker, 2004].

However, when the form of original response function is known a priori, and it is similar

to a polynomial, this function approximation model has shown successful [Fen et al.,

2009].

6.1.2 Radial basis functions

Radial basis function (RBF) model is formulated based on a weighted summation of

radial basis functions. The name of the model gives a short description of how it works.

It is radial meaning that it obtains its value based on distances from certain points in the

parameter space. It uses basis functions meaning that summation of several functions

define the surrogate model response in the entire domain. Several forms of standard

basis functions can be found in the literature, including Gaussian (which results in “the

smoothest interpolation”), multiquadric, inverse quadratic, and thin plate spline, to

name a few. Some of the the basis functions are parametric meaning that the sensitivity

of the response function on its input domain can be tuned, e.g. Guassian basis funcion,

while some others are not, e.g. thin plate spline. RBF based on Gaussian basis functions

can be formulated as

M̃(z ) =
K∑

k=1

wkexp(−γ||z − µk ||2 ) , (6.3)

where µk is one of the K representative points chosen in the parameter space (they are

normally obtained using K-means algorithm), wk is a weight factor, and γ is a parameter

for tuning the smoothness of the response surrogate.

After choosing the radial basis function, the problem of approximating the model re-

sponse boils down to finding the proper weights for each of the basis functions and

tuning the RBF parameters. In order to find the proper weights, a linear regression

problem is formulated and the weights are determined using least squares regression. As

for the parameters, either they are found using try and error or they are determined

jointly with the weights using Expectation Maximization (EM) algorithm [Moon, 1996].
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One of the problems with RBFs is that the sensitivity of the response to the change in

all the NZ directions is assumed to be the same. This means that changes in all the

parameters are assumed to have similar impact on the response function, which is not

normally true.

6.1.3 Kriging

Kriging is a statistically driven function approximation model. The idea in Kriging is

similar to that of RBF. The unknown value of the response function is approximated

using a weighted sum at each locality. However, in kriging, instead of basis functions,

the actual values of the response function at other points in the parameter space are

utilized. Kriging can be formulated as

M̃(z ) =
Ne∑

i=1

wiM(zi), (6.4)

whereM(zi) is an available response from zi in the parameter space, wi is its weighting

factor, and Ne is the total number of points at which the response function is known.

In Kriging the possibility that the model response is more sensitive to change in certain

directions of the parameter space is taken into account. This is done using variograms

and spatial correlations, adding to model flexibility. In simple Kriging, the weights of

different points for calculation of the unknown response function is computed by formu-

lating a set of linear equations where the coefficients are the covariances between the

known response functions obtained at different points in the parameter space (which

accounts for redundancy of the data) and the covariances between response functions

obtained at known points and the unknown point (which takes into account the close-

ness). The statistical basis of this method helps to formulate an uncertainty level for the

approximated response function at any given point.

6.1.4 Support vector machines

Here I briefly explain support vector machines (SVM) which are widely used for both

regression and classification problems. They are known to be among the best “out of the

box” classifiers [James et al., 2021]. In order for approximation of the model response, as

opposed to polynomial model, RBF, and kriging, SVM uses only a subset of the known

data set. This subset are known as support vectors. SVM is a non-linear extension

of the support vector classifier. As seen in Figure 6.1, in a linearly separable space,
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SVM gives the hyper-plane which maximizes the margin between the support vectors

pertaining to different classes in classification. In the case depicted in Figure 6.1 the two

Figure 6.1: Support vector machine in linearly separable space [Rani et al., 2022]

classes are linearly separable and one can use a hard margin to separate two classes. In

general soft margins are used which do not strictly classify all the points correctly, but

improve the out-of-sample prediction power of the method. In addition the parameter

space is transformed into spaces of higher dimensions using kernels, e.g. Gaussian kernel

explained in Section 6.1.2, so that the model will become more flexible.

6.1.5 Artificial neural networks

Inspired by the neural networks of live organisms, artificial neural networks (ANN) are

designed to approximate model responses for any set of model inputs, and they are as-

sumed to be one of the strongest methods in function approximation. According to the

universal approximation theorem, given enough amount of data, and enough number of

nodes, a feed-forward neural network with only one hidden layer can approximate any

response function that maybe of interest [Hornik et al., 1989]. There are many architec-

tures for ANNs including, single-layer and multi-layer feed-forward networks, single-layer

and multi-layer recurrent networks, and convolutional neural networks. Figure 6.2 repre-

sents a multi-layer feed-forward ANN. In the input layer the values from the parameter

space are inserted into the network. At each node the hidden layers inputs are summed,

a bias is added, and a non-linear function of the total sum is given as output. A formu-

lation of the output of an arbitrary node at a hidden layer, f , can be given as

f = g

(
β0 +

K∑

k=1

βkxk

)
, (6.5)
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Figure 6.2: A multi-layer feed-forward ANN [Vassallo et al., 2020]

where β0 is the bias for that node, {xk}Kk=1 and {βk}Kk=1 are inputs and weights of the

inputs for the particular node, and g is a non-linear activation function. Sigmoid function

is one the most popular activation functions whose formulation is given as

g(x ) =
exp(x )

1 + exp(x )
. (6.6)

However, use of Sigmoid function results in slow convergence rates when the parameters

of the network are optimized. Hence, activation functions like the rectified linear unit

function are used as an alternative. By doing the calculations on the entire network, the

approximation of the response function is obtained in the output layer.

The parameters of the neural network, biases and weights, are normally initialized arbi-

trarily, and then by use of the data they are optimized using back propagation [Rumelhart

et al., 1995] on stochastic gradient decent algorithm [Amari, 1993].

ANNs are extensively used in a wide array of applications, due to their robustness.

Particularly, they have been of interest in reservoir history-matching [Brantson et al.,

2018; Chai et al., 2021; Costa et al., 2014]. However, training neural networks is a

computationally expensive process, and the trained neural networks are normally suitable

for particular cases and cannot be generalized well.

6.2 Lower fidelity physically-based surrogates

Unlike response surface surrogates being data-driven methods for approximating the

high-fidelity simulations based on model responses at a certain number of points in the
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parameter space, lower fidelity physically-based surrogates are computationally less ex-

pensive simulation models which are less faithful to the physical equations governing the

phenomena. In some publications lower-fidelity models are also referred to as “coarse”

models, while high-fidelity models are referred to as “fine” models [Bandler et al., 1994].

Lower fidelity models are assumed to have at least two advantages over response surface

surrogates: (i) they are assumed to give better approximations of the original response

function in the areas of the parameter space which are less explored, (ii) the problem

of flexibility of the surrogate model due to high-dimensionality of the parameter space

is avoided because of use of domain-specific equations for approximating the response

function. The basic assumption in lower-fidelity modeling is that fine models and coarse

models have the basic features of the problem in common and are correlated in a way

[Kennedy and O’Hagan, 2000]. Based on this assumption, the response from the coarse

model is reasonably close to the response from the fine model everywhere in the parameter

space, and as a consequence the model outputs from the coarse model are reliable in the

unexplored areas of the space. If this assumption does not hold, the advantage of using

lower-fidelity models would be minimal.

One of the main applications of the lower-fidelity models is in optimization problems

where using some strategies both fine and coarse models are used adaptively [Dixit and

Elsheikh, 2022; Forrester et al., 2007; Gano et al., 2006]. Another domain in which lower-

fidelity surrogate models are used extensively is uncertainty quantification [Bomers et al.,

2019; Palar and Shimoyama, 2017; Yamazaki and Mavriplis, 2013].

6.2.1 Types of lower fidelity models

Depending on the type of the original high-fidelity model, there are at least three different

categories of low-fidelity models. The first class are essentially the same as the high-

fidelity model, but with higher numerical error. In simulation models based on partial

differential equations, for example, the lower fidelity models can be, for example, the

original model with a coarser spatial or temporal grid [Leary et al., 2003; Thokala and

Martins, 2007; Zhonghua et al., 2020]. Use of simpler basis functions for finite element

methods can also be a lower fidelity model for finite element methods using more complex

basis functions. Utilization of less strict convergence criteria for models based on iterative

solvers can also be a lower fidelity model for the high-fidelity models involving fully

converged iterative solvers [Forrester et al., 2006].

Particularly coarsening the spatial grid in the simulation models based on partial dif-

ferential equations is a very efficient method for reduction of computational cost. The
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dominant cost of the simulations in large problems is known to be pertaining to the

iterative linear solvers. The computational cost associated with one simulation is as-

sumed to be proportional to Gγ, where G is the number of the active grid cells in the

in the simulation grid, with γ ∈ [1.25, 1.5], [Axelsson, 1996]. This proportionality being

greater than linear, can result in drastic reduction in the computational cost with slight

reductions in the number of grid cells via coarsening. This idea has also been used in

petroleum reservoir simulation models [Fossum and Mannseth, 2017].

The second class of lower-fidelity models are based on model order reduction (MOR)

methods. MOR techniques were initially developed in systems and control theory for

studying dynamical systems. The main aim was to reduce the model complexity while

keeping the input-output structure. In MOR, firstly the most crucial characteristics of

the model are captured, and then the model is simplified using rigorous mathematical

techniques, with a minimal use of the knowledge about the underlying system [Schilders

et al., 2008]. Some of the most widely used MOR techniques are truncated balanced re-

alizations method [Moore, 1981], Hankel-norm reduction [Glover, 1984], proper orthogo-

nal decomposition [Sirovich and Kirby, 1987], and Krylov subspace methods [Liesen and

Strakos, 2013].

The third class of lower-fidelity surrogate models are formulated based on a simpler model

of the reality. In these surrogates the physics of the problem is either partially ignored

or approximated. Considering less complex geometry, simpler boundary conditions, or

utilization of two-dimensional models instead of three-dimensional models are examples

of strategies to come up with lower fidelity models of this class. In the domain of

fluid dynamics, Navier-Stokes equations can be assumed of high fidelity, while Euler

equations are of lower fidelity. In the petroleum reservoir flow problem, considering the

compositional model with all the oil and gas components can be assumed the model with

the highest fidelity, while black oil model consisting of only three phases; namely, oil,

gas, and water; can be assumed as the lower fidelity model. In general any world system

can be modeled in a hierarchy of models with different fidelities.

6.2.2 Correction of lower fidelity response

There normally exist a discrepancy between the model response from the lower-fidelity

models and the high-fidelity model. There exists several approaches to address this

discrepancy, two of the most common ways are explained here, i.e. correction functions,

and space-mapping.

The most common method is formulation of correction functions which are applied to
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the lower-fidelity model response and its value is improved to align better with the high-

fidelity model response. Two of the general ways to formulate these methods are the

additive approach, e.g. see [Viana et al., 2009], and the multiplicative approach, e.g. see

[Alexandrov and Lewis, 2001]. The additive and multiplicative correction functions are

given as

fa(z ) =M(z )− M̃(z ) , (6.7)

fm(z ) =M(z )/M̃(z ) , (6.8)

respectively (the formulation of multiplicative correction function here assumes a one-

dimensional model response). After formulating these functions the corrected low fidelity

model response, M̃c is given using the following formulations,

M̃c(z ) = M̃(z ) + fa(z ) , (6.9)

M̃c(z ) = M̃(z )fm(z ) , (6.10)

depending on the approach selected.

The process of formulation of these correction functions is essentially very similar to the

process of approximating a response surface surrogate. However, the models that are

used should be simpler due to the fact that the lower-fidelity model response is already

considerably close to the high-fidelity model response. Linear regression, e.g. see [Vitali

et al., 2002], and quadratic polynomials, e.g. see [Sun et al., 2010] are two of the common

simple models used for the correction functions.

The second approach for addressing the discrepancy between the fine and coarse model

responses is space-mapping [Bakr et al., 2001; Bandler et al., 1994]. In this approach,

the variables of the original parameter space are mapped to the lower-fidelity model

parameter space such that using the mapped parameters as the input to the lower-

fidelity model will yield model responses which are close enough to the original high-

fidelity model responses. In other words, for any z in the original parameter space, ẑ

is found in the lower fidelity model parameter space, such that |M̃(ẑ ) −M(z )| will be
minimized. Using this mapping lower fidelity model responses are assumed to have less

error. However, several complexities may arise in implementation of this technique. Non-

uniqueness of the mapping can result in difficulties in convergence of the optimization

sub-problem that is solved for generating the mapping. Since generating the mapping

entails solving a large number of optimization sub-problems, if the lower-fidelity model

is not considerably cheaper than the original high-fidelity model, implementation of this

method may not be computationally efficient.
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6.3 Surrogate model selection

Selection of the surrogate models is normally done based on the specifications of the

problem, level of familiarity of the scientists with the methods, and availability of the

software. However, some general comments can be made for surrogate model selection.

One of the decisive factors in selection between the response surface surrogates and lower-

fidelity physically-based models is the dimensionality of the parameter space. Response

surface surrogates normally have limitations when the dimension of the parameter space

is large, but lower-fidelity models are normally less affected by this limitation. Another

advantage of lower-fidelity models is in emulating functions with multiple outputs or in

the multi-objective optimization problems, since they inherently (due to physical laws

governing their equations) account for the correlations between different model outputs

or different objectives.

Figure 6.3: Representation of bias-variance trade-off [Neal et al., 2018]

When response surface surrogates are chosen normally the complexity of the original

model should decide the complexity of the surrogate model. In general there exists a

well-known bias-variance trade-off for choosing the optimal response surface surrogate

model. Choice of simpler models has high bias, meaning that the model disregards

many of the features of the original response function, but it has few parameters to be

determined resulting in lower variance. On the other hand, complex models are less

biased, but one has to determine many model parameters, meaning that the model is

too conformable with respect to the available sample of model responses resulting high

variance in estimation of the model parameters. The optimal level of model complexity

normally resides somewhere in between. Figure 6.3 presents this trade-off.
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Multilevel data assimilation

Multilevel data assimilation (MLDA) can refer to several different concepts. Depending

on what we mean by the term multilevel, it can refer to at least three different concepts.

The first concept is utilization of multilevel forward models in the forecast step of the

data assimilation. This is also known as multi-fidelity data assimilation [Peherstorfer

et al., 2018]. The second concept is assimilation of multilevel data, e.g. several levels

of upscaling for spatially distributed data [Mannseth, 2020]. The third concept that

MLDA can refer to is assimilation of data which are not in the same resolution as the

model forecasts. This is also known as multi-scale data assimilation. The focus of this

chapter is on the first two concepts and they will be discussed, respectively. For the third

concept, the reader is referred to, e.g., [de Moraes et al., 2020; Montzka et al., 2012].

7.1 Multi-fidelity data assimilation

Monte Carlo approximations play a crucial role in ensemble-based data assimilation

(DA). Due to computational-cost limitations, the ensemble size is limited to roughly

one hundred. Using straightforward ensemble-based DA, the degrees of freedom of the

problem would equal the ensemble size, and such an approach would result in significant

Monte Carlo errors. The negative effects of Monte Carlo errors are enlarged in the

presence of large amounts of simultaneous data, e.g. inverted seismic data, resulting

in underestimation of variance of the unknown parameters, and in more severe cases

ensemble collapse.

The most widely used treatment for Monte Carlo errors is use of a regularization tech-

nique called localization. This was discussed in Chapter 4. In spite of its advantages,

this technique has limitations including ignoring true long-range correlations in distance-
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based localization or true small correlations in correlation-based localization.

Simply increasing the ensemble size will reduce Monte-Carlo errors, but it will also

increase computational cost. Utilization of a lower-cost and lower-fidelity model renders

the possibility of increasing the ensemble size without increasing the total computational

cost. DA using various types of lower fidelity models has been applied to several inverse

problems, e.g., within petroleum reservoir modeling [Fossum and Mannseth, 2017; He

et al., 2013; Tarrahi et al., 2016] and atmospheric science [Hatfield et al., 2018]. Use of

a lower-fidelity reservoir model will, however, introduce modeling errors in addition to

those already present in conventional-fidelity simulation results.

Multilevel simulations utilize a selection of models for the the forecast step of the DA.

This results in hierarchies in both fidelities and computational costs. The idea is to

decrease Monte Carlo errors without increasing numerical errors too much. There are

various ways to construct multilevel models. One can use several of the lower-fidelity

models explained in Chapter 6 and construct a multilevel model, for a detailed discussion

the reader is referred to e.g. [Peherstorfer et al., 2018]. Several MLDA formulations are

introduced in the literature based on multilevel simulations [Fossum and Mannseth, 2018;

Fossum et al., 2020; Hoel et al., 2016, 2020; Moldovan et al., 2021; Popov et al., 2021; Xu

et al., 2018] . I will explain multilevel ensemble Kalman filter (MLEnKF) and multilevel

hybrid ensemble Kalman filter (MLHEnKF) in this Chapter.

7.2 Multilevel data

In Section 3.2.3 an algorithm for assimilation of linearly dependent data was explained. A

special case of linearly dependent data is multilevel data which is obtained by sequential

coarsening of a set of spatially distributed data. There can be advantages in assimilation

of this kind of multilevel data instead of the original single-level spatially distributed

data.

For a class of problems (including the problem considered here) where the model forecast

can be seen as a spatially integrated response to a spatially varying parameter field, there

exists a correlation between small-scale oscillations in the parameter domain and the

degree of non-linearity of the mapping from parameter field to model forecast, see, e.g.,

[Chavent and Liu, 1989; Grimstad and Mannseth, 2000]. This correlation is such that

coarsening the simulation grid and upscaling the associated parameters will generally

result in weaker nonlinearity in the coarser forward models compared to the finer ones.

Hence, considering several levels of coarseness for the multilevel model corresponding to
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the different levels of data, and assimilating the data sequentially from the coarsest to

the finest is expected to result in a robust DA algorithm [Fossum, 2015]. By utilization

of coarse models in the first steps of the DA followed by more non-linear fine models

in the next steps the algorithm is expected to avoid convergence to local minima and

gradually zoom in on the solution of the inverse problem.

7.3 Multilevel Monte Carlo methods

Consider estimation of E [Y ], where Y is a random variable in its corresponding prob-

ability space, and E denotes expectation operator. Monte Carlo formulation for the

sample estimate of the expectation, E[Y ] , is simply given as

E[Y ] =
1

N

N∑

i=1

Yi , (7.1)

where Yi are independent samples from Y and N is the sample size. The variance of

the estimate will be N−1V[Y ], where V is the population variance of Y . This results in

the root mean square error to be O(N−1/2 ) and reaching an error level of ϵ to require

O(N 2 ) samples. This can be computationally very demanding.

Consider estimation of E[Y 1 ], but it is cheaper to sample Y 0 which approximates Y 1 . In

this case, a two-level Multilevel Monte Carlo (MLMC) formulates an unbiased estimator

for E[Y 1 ] using the identity,

E[Y 1 ] = E[Y 0 ] + E[Y 1 − Y 0 ] . (7.2)

The Monte Carlo formulation of this identity is

E[Y 1 ] =
1

N0

N0∑

i=1

Y 0
i +

1

N1

N1∑

i=1

(
Y 1

i − Y 0
i

)
. (7.3)

Defining C0 and C1 as the computational costs pertaining to one simulation of Y 0 and

Y 1 −Y 0 , the total computational cost will be N0C0 +N1C1 . Additionally, defining V0

and V1 as the variances of Y
0 and Y 1 −Y 0 , and assuming the samples are independent,

the total variance will be N−1
0 V0 + N−1

1 V1. Under fixed computational cost constraint

and treating both N0 and N1 as real variables, the minimum variance will be obtained if

N1

N0

=

√
V1C0

V0C1

. (7.4)
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Generalization of MLMC to more levels is natural. Given Y 0 , ...,Y L−1 approximate Y L

with increasing accuracy and computational cost, the identity,

E[Y L] = E[Y 0 ] +
L∑

l=1

E
[
Y l − Y l−1

]
, (7.5)

is an unbiased estimator for E[Y L]. The Monte Carlo formulation of this identity is

given as

E[Y L] =
1

N0

N0∑

i=1

Y 0
i +

L∑

l=1

(
1

Nl

Nl∑

i=1

(
Y l

i − Y l−1
i

)
)

. (7.6)

Defining Cl and Vl as the computational cost and variance pertaining to Y l − Y l−1

(where Y −1 := 0 ), the minimum variance for the estimator will be obtained by mini-

mizing
∑L

l=0 N
−1
l Vl given the constraint

∑L
l=0 NlCl = Cte.

Assuming geometrical growth in the computational cost and numerical error, there exists

a theorem connecting these entities to each other for the multilevel estimator [Giles,

2015]. Let Y be a random variable and Y l its level l numerical approximation. If there

exist α, β, γ, c1, c2, c3 such that α ≥ min(β, γ) and

(i) |E[Y l − Y ]| ≤ c12
−αl

(ii) Vl ≤ c22
−βl

(iii) Cl ≤ c32
γl

then there exists a positive constant c4 such that for any ϵ there are L values {Nl}Ll=1

for which the multilevel estimator

Ŷ =
1

N0

N0∑

i=1

Y 0
i +

L∑

l=1

(
1

Nl

Nl∑

i=1

(
Y l

i − Y l−1
i

)
)

(7.7)

results in mean squared error (MSE) with a bound

E[
(
Y − Ŷ

)2
] < ϵ2 (7.8)

and the computational cost has a bound

E[C ] ≤





c4ϵ
−2 β > γ ,

c4ϵ
−2 (logϵ)2 β = γ ,

c4ϵ
−2−(γ−β)/α β < γ.

(7.9)
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Other crucial advancements in MLMC domain are works including formulation of ran-

domized MLMC, which uses the multilevel simulators in a probabilistic way [Rhee and

Glynn, 2012], and introduction of multi-dimensional levels instead of a hierarchy of levels

[Haji-Ali et al., 2016].

7.3.1 Multilevel ensemble Kalman filter

Hoel et al. [2016] introduced a formulation for ensemble-based data assimilation based

on MLMC. Multilevel Ensemble Kalman filter (MLEnKF) uses MLMC for computation

of the statistics (mean and covariance) of the model forecasts. As this algorithm was

originally introduced for state estimation problem, I present its original formulation,

rather than parameter estimation formulation.

Consider the evolution of random vector Z with time,

Zt+1 =M(Zt) , (7.10)

and a set of noisy observations

Dt = HZt + ϵ (7.11)

where H is the observation matrix, and ϵ is the observation error assumed to be normally

distributed, i.e. ϵ ∼ N (0,CD).

Assuming {Ml}Ll=0 to be a hierarchy of approximations to M :=M∞ with increasing

accuracy and computational cost, formulation of the multilevel mean and multilevel

covariance can be summarized as,

µML
t =

L∑

l=0

E[Ml(Zt)−Ml−1 (Zt)] , (7.12)

CML
t =

L∑

l=0

C[Ml(Zt)]− C[Ml−1 (Zt)] (7.13)

where E[Ml(Zt)] and C[Ml(Zt)] denote the sample mean and sample covariance com-

puted based on model forecasts at level l, withM−1 := 0. This formulation of covariance

keeps the covariance symmetric, but it will not be necessarily positive-definite. Hence,

an additional treatment, e.g. singular value decomposition of the multilevel covariance

matrix and keeping only the singular vectors associated with positive singular values, is

needed for stability of the algorithm.

For realization j at level l, zj ,l , whose model forecasts are obtained usingMl, the update
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equation will be of the form

z post ,j ,l = z prit ,j ,l +KML (dt ,j ,l − Hzt ,j ,l) , (7.14)

where dt ,j ,l is a perturbed realization from the observation data at time t distributed as

D ∼ N (d t ,CD). The multilevel Kalman gain, KML, is given as

KML = CML
t HT

(
HCML

t HT + CD

)−1
. (7.15)

Based on certain assumptions on the form of {Ml}Ll=0 and characteristics of the multilevel

estimators, similar theorems to the one given in Section 7.3 are formulated, connecting

the computational cost and computational errors, for MLEnKF. For details see [Hoel

et al., 2016]. One of these assumptions is geometric reduction in the variance of difference

between model forecasts obtained at two consecutive levels. This requires small difference

between the levels, thereby requiring large L. As the computational resources are limited,

and the main aim of use of multilevel models is reduction of computational costs, this is

not always a possibility in reservoir history-matching problems.

7.3.2 Multilevel hybrid ensemble Kalman filter

Fossum et al. [2020] introduced another formulation for multilevel statistics and intro-

duced Multilevel hybrid ensemble Kalman filter. Similar to MLEnKF, this algorithm can

be thought of as performing EnKF Evensen [1994] with the covariances in the update

equation being formulated based on a multilevel model.

This algorithm can be briefly summarized as follows. Consider (7.10) and (7.11). Inspired

by Bayesian model averaging, see e.g. [Fragoso et al., 2018], hybrid formulations were

introduced for the statistics of the model forecasts [Fossum et al., 2020]. Specifying

weights for each of the levels, the multilevel hybrid mean is given as

µMH
t =

L∑

l=0

wl {E[Ml(Zt)]} , (7.16)

where wl is the weight specified for level l, with the condition,

L∑

l=1

wl = 1 . (7.17)

The multilevel hybrid covariance of the model forecasts is formulated based on the same
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idea and the law of total covariance as

CMH
t =

L∑

l=0

wl {C[Ml(Zt)] +
(
E[Ml(Zt)]− µMH

t

) (
E[Ml(Zt)]− µMH

t

)T} . (7.18)

This formulation of the multilevel covariance has the advantage that it will always be

positive-definite (sum of several positive-definite matrices is positive-definite). Hence,

unlike the estimator of covariance used in MLEnKF, it does not need any additional

treatment. This formulation is not an unbiased estimator for C[ML(Zt)]. However, it

is a useful technique for solving the problems in which variance error dominates bias,

which is often the case in reservoir history-matching problems [Fossum et al., 2020].

Additionally, for the estimator of the mean to be unbiased Fossum et al. [2020] proposed

that the model forecasts be corrected as

M̃l(Zt) =Ml(Zt) + E[ML(Zt)]− E[Ml(Zt)] , (7.19)

and (7.16) and (7.18) be calculated using {M̃l}Ll=0 instead of {Ml}Ll=0. The update

equation for realization zt ,j ,l in MLHEnKF is given as

z post ,j ,l = z prit ,j ,l +KMH (dt ,j ,l − Hzt ,j ,l) , (7.20)

where the multilevel hybrid Kalman gain, KMH, is formulated as

KMH = CMH
t HT

(
HCMH

t HT + CD

)−1
. (7.21)

This algorithm was tested on a selection of reservoir history-matching problems and

consistently performed better than the widely used EnKF. It also performed better than

MLEnKF in the problems where variance error dominated the bias [Fossum et al., 2020].
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Chapter 8

Summaries of Papers and Outlook

A total of five papers are included in this thesis. In this chapter I summarize each of

them separately and conclude the chapter with discussing the outlook of this work.

8.1 Summary of Paper A

Title: A novel approach to multilevel data assimilation

Authors: M. Nezhadali, T. Bhakta, K. Fossum, and T. Mannseth.

In Paper A, a multilevel ensemble-based data assimilation method, named multilevel

hybrid ensemble smoother (MLHES), was introduced and was compared with two stan-

dard data assimilation techniques, i.e. two variants of ensemble smoother (ES) with

localization. As the analysis step of MLHES is similar to that of ES, to compare it with

the asymptotic results of the ES (which is the best vanilla ES can get), the assimilation

outcome was also compared with a reference result which was generated based on ES with

a large ensemble size. The numerical experiment was performed on a two-dimensional

reservoir model. Fixing the computational power between different methods in the ex-

periments, we assimilated the time-lapse bulk impedance data using the three schemes.

The results from MLHES were superior to the two variants of ES with localization and

were also reasonably similar to the results obtained from the reference case. This superi-

ority was consistent across both the mean and the variance of the posterior parameters.

In addition, the cumulative density function of the ensemble of updated model param-

eters was evaluated in three random cells in the field. In all the three cells, MLHES

showed a closer mean, variance, and distribution function to those of the reference case

comparing to the standard DA schemes. Furthermore, MLHES showed consistency in

quality of history-matching by variation in observation data error, in estimation of both
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the mean and the variance of the posterior parameters. This Paper was presented in the

fully online event ECMOR XVII.

8.2 Summary of Paper B

Title: Multilevel assimilation of inverted seismic data with correction for multilevel

modeling error

Authors: M. Nezhadali, T. Bhakta, K. Fossum, and T. Mannseth.

In Paper B, four schemes were presented using which one can partially account for

the modeling error introduced to the system by use of multilevel models. multilevel data

assimilation (MLDA) utilizes multilevel simulations in the forecast step. MLDA there-

fore renders the possibility of decreasing Monte Carlo (MC) errors without increasing

the total computational cost, but MLDA will also introduce multilevel modeling errors

(MLME) that are not present in conventional simulation results. The underlying as-

sumption is therefore that the gain in reducing the MC error is larger than the loss in

introducing the MLME. If the MLME could be approximately accounted for, however,

MLDA performance could be further improved.

Four computationally inexpensive approximate MLME correction schemes were con-

sidered. They were denoted mean bias correction, stochastic correction, deterministic

correction, and telescopic correction. The abilities of the four schemes to correct for the

MLME were assessed in two ways, utilizing numerical experiments with three selected

reservoir models.

Firstly, a measure for success of addressing the MLME was considered, i.e., normalized

correction ratio (NCR). Then the statistics of the NCR for different levels using the four

schemes were compared. The results showed that the correction schemes were capable of

reducing the MLME, but the amount of reduction depended on the case and on the level.

In general, the MLME correction schemes were more successful in correcting the MLME

in the coarser levels compared to the finer ones, with telescopic correction showing the

best performance followed by deterministic correction, stochastic correction, and mean

bias correction.

Secondly, we assessed the performances of the different MLME-corrected model fore-

casts in assimilation of inverted seismic data, using the Multilevel Hybrid Ensemble

Smoother (MLHES). The resulting posterior mean and variance fields with and without

MLME correction were visually compared to results obtained from conventional Ensem-

ble Smoother (ES) with localization, utilizing results obtained with conventional ES with
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an unrealistically large ensemble size as the gold standard. It was found that MLHES

with and without MLME correction outperformed conventional ES with localization.

Use of all four MLME correction schemes, and in fact also MLDA without MLME

correction, mostly resulted in posterior parameter estimates with similar quality. For

each example, we also ran a computationally much more costly MLDA variant where

the MLME had been exactly accounted for in the model forecasts. No differences in

quality between results obtained with this method and results obtained with several

of the computationally inexpensive MLDA variants were found in all three examples.

Altogether, these results indicate that the MLHES is reasonably robust towards MLMEs.

8.3 Summary of Paper C

Title: Iterative multilevel assimilation of inverted seismic data

Authors: M. Nezhadali, T. Bhakta, K. Fossum, and T. Mannseth.

In Paper C, a recently devised MLDA algorithm (MLHES) for assimilation of spatially

distributed data was discussed, and an iterative version of it (IMLHES) was introduced.

In addition, performance of these algorithms were evaluated in comparison with two

standard DA algorithms, i.e. ensemble smoother (ES) with localization and EnRML (it-

erative ensemble smoother, IES) with localization. In doing so, three experiments were

conducted. Each experiment was performed on a reservoir model and consisted of six

algorithm runs: conventional ES with localization (ES-LOC), MLHES, ES with an ex-

ceedingly large ensemble size (ES-REF), conventional IES with localization (IES-LOC),

IMLHES, and IES with an exceedingly large ensemble (IES-REF).

In order to assess the numerical results, firstly, the mean and variance fields of posterior

unknown parameters (log permeability) were generated and assessed visually. The as-

sessments showed that in all experiments the results from MLHES were more similar to

those of ES-REF than the results from ES-LOC were. Except for one experiment, where

both IES-LOC and IES-REF did not converge to the proximity of global optimum, the

same conclusion was true about the iterative algorithms. The exception suggests an ad-

ditional advantage of IMLHES over IES. It was also observed that iterations resulted in

all the mean posterior fields obtained by IMLHES to be closer to the permeability field

from which the observation data were generated than the mean posterior field obtained

by MLHES.

Secondly, fine-scale simulations were conducted for all the posterior ensembles of all

algorithms. Plots of simulated time-lapse bulk impedance means and variances were
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compared to plots of observed time-lapse bulk impedance. Visual analysis of these plots

showed that in all the applicable cases, the multilevel algorithms performed more similar

to the reference cases than the conventional algorithms did. Additionally, the means of

model forecasts obtained from IMLHES were closer to the observation data than the

means of model forecasts obtained from MLHES were.

8.4 Summary of Paper D

Title: Sequential multilevel assimilation of inverted seismic data

Authors: M. Nezhadali, T. Bhakta, K. Fossum, and T. Mannseth.

In Paper D, two variants of a novel sequential multilevel data assimilation (SeMLDA) al-

gorithm, SMLES-S and SMLES-H, were introduced. In addition, performances of these

algorithms were assessed in comparison with two conventional DA algorithms and a si-

multaneous MLDA algorithm. In doing so, three experiments were performed on three

reservoir models. The three experiments were designed such that the performance of the

algorithms were evaluated in different settings for the prior parameter fields (different var-

iogram types; different anisotropies; and various correlation lengths including long-range

correlation, short-range correlation, and mixture of long-range and short-range correla-

tions) and different ranges for the variograms used for the data-error covariance. Each

of the experiments consisted of seven algorithm runs: SMLES-S, SMLES-H, ESMDA

with localization (ESMDA-LOC), vanilla ESMDA with an exceedingly large ensemble

(ESMDA-REF), an iterative simultaneous MLDA algorithm (IMLHES), iterative ensem-

ble smoother with localization (IES-LOC), and vanilla iterative ensemble smoother with

an exceedingly large ensemble (IES-REF). Results of the experiments were assessed both

qualitatively and quantitatively.

In order for qualitative evaluation of the numerical results, firstly, the mean and the

variance of posterior parameter fields were generated and assessed visually. The relative

performances of the different methods were similar for all three experiments. The assess-

ments showed that both SMLES-S and SMLES-H performed more similar to ESMDA-

REF than ESMDA-LOC did in estimation of the posterior parameter mean field. Re-

garding estimation of the variance fields, SMLES-H overestimated the variance while

SMLES-S underestimated it. The superiority of performance of both SeMLDA algo-

rithms over ESMDA-LOC was evident, also for the variance fields. Among the iterative

algorithms, IMLHES performed more similar to IES-REF than IES-LOC did. There

was no indication of superior performance of either SMLES-H or IMLHES over each

other in any of the experiment when their performances were compared to IES-REF re-
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sults. However, IMLHES used more computational resources than either of the SeMLDA

algorithms. Both IMLHES and SMLES-H performed slightly better than SMLES-S.

Additionally, fine-scale simulations were run for all the posterior ensembles obtained

by the different algorithms in all the experiments. Plots of the mean and the variance

of model forecasts from the different algorithms were compared to each other. Visual

analysis of these plots showed that in all the experiments the ML algorithms performed

better than their conventional DA counterparts. Among the ML algorithms, SMLES-S

consistently performed better than both SMLES-H and IMLHES in estimation of the

variance of the posterior model forecasts. Either of the other two MLDA algorithms did

not have a clear advantage over each other.

Two metrics were adopted for quantitative comparison of the DA results obtained by dif-

ferent algorithms for estimation of both mean and variance of the posterior parameters

and model forecasts. The metrics indicated that the ML algorithms generally performed

better than the conventional DA algorithms in estimation of both mean and variance of

the posterior parameters. They also indicated that SMLES-H and IMLHES performed

slightly better than SMLES-S in estimation of the variance of the posterior parame-

ters, and that all the MLDA algorithms performed better than IES-LOC in estimation

of mean and variance of the posterior model forecasts. SMLES-S also performed con-

sistently superior to ESMDA-LOC in estimation of mean and variance of the posterior

model forecasts, while this was not observed for IMLHES and SMLES-H. Among the ML

algorithms, SMLES-S clearly performed best when it came to estimation of the variance

of the model forecasts. The other two algorithms did not consistently perform better

than one another.

8.5 Summary of Paper E

Title: Towards Application of Multilevel Data Assimilation in Realistic Reservoir

History-Matching Problems

Authors: M. Nezhadali, T. Bhakta, K. Fossum, and T. Mannseth.

In Paper E, performance of a novel multilevel ensemble-based data assimilation algo-

rithm (SMLES) was assessed for assimilation of inverted seismic data in realistic oil

reservoir problems. In doing so, Reservoir Model UNISIM-I generated by the state uni-

versity of Campinas (UNICAMP) was chosen. A multilevel model was defined based on

coarsening of the spatial grid of this reservoir. A numerical experiment was designed to

compare this novel algorithm with standard ESMDA with localization (ESMDA-LOC).

The numerical experiment was performed by estimation of logarithmic permeability field,
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by assimilating the bulk impedance as observation data. The history-matching results

were compared against the observation data and the synthetic truth. Qualitative as-

sessments of the mean fields of the posterior parameters and model forecasts showed

that both SMLES and ESMDA-LOC are equally successful in recovering the mean syn-

thetic truth field and mean observation data. Even though there was no criteria for

comparison of the posterior standard deviation fields of parameters and model forecasts,

ESMDA-LOC resulted in ensemble collapse. There was a possibility to improve the re-

sults from ESMDA-LOC with optimizing by tuning the localization scheme; however,

this would have added to the computational cost. SMLES, on the other hand, performed

well without need for such tuning. This work was presented in ECMOR 2022, Hague,

the Netherlands.

8.6 Outlook

In this project, we developed several algorithms for multilevel data assimilation (MLDA)

of spatially distributed data and schemes for partially addressing the multilevel modeling

error (MLME).

The research on this field can be continued on several fronts. The multilevel algorithms

were devised and tested successfully, but not optimized. Several of the internal hyper-

parameters of the multilevel algorithms (number of levels, allocation of resources between

the levels, types of surrogate models used, etc.) can be investigated more rigorously and

optimized.

Most of the reservoir models investigated in this research were two-dimensional simple

models. The performance of MLDA algorithms and MLME correction schemes can also

be assessed in a larger number of realistic reservoir models, and real petroleum reservoir

models. This work focused on estimation of permeability field based on assimilation of

bulk impedance data. Use of other parameters and data types, and combination of them

with the parameters and the data considered in this research can be investigated in the

context of multilevel data assimilation.

Finally, as real reservoir models are more complex than the fields investigated in this

work, extensive coarsening of the grid may result in large numerical errors and model

bias. This limitation may result in decrease in the advantage of use of multilevel mod-

els. However, since multilevel models are utilized in the forecast step of the DA, and

localization techniques are performed in the analysis step, these two techniques can be

simply combined. Investigation of coupling these two techniques is also an intriguing
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possibility for research.
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Multilevel Assimilation of Inverted
Seismic Data With Correction for
Multilevel Modeling Error
Mohammad Nezhadali 1,2*, Tuhin Bhakta1, Kristian Fossum1 and Trond Mannseth1

1NORCE Norwegian Research Center, Bergen, Norway, 2University of Bergen, Bergen, Norway

With large amounts of simultaneous data, like inverted seismic data in reservoir modeling,
negative effects of Monte Carlo errors in straightforward ensemble-based data assimilation
(DA) are enhanced, typically resulting in underestimation of parameter uncertainties.
Utilization of lower fidelity reservoir simulations reduces the computational cost per
ensemble member, thereby rendering the possibility of increasing the ensemble size
without increasing the total computational cost. Increasing the ensemble size will reduce
Monte Carlo errors and therefore benefit DA results. The use of lower fidelity reservoir
models will however introduce modeling errors in addition to those already present in
conventional fidelity simulation results. Multilevel simulations utilize a selection of models for
the same entity that constitute hierarchies both in fidelities and computational costs. In this
work, we estimate and approximately account for the multilevel modeling error (MLME),
that is, the part of the total modeling error that is caused by using a multilevel model
hierarchy, instead of a single conventional model to calculate model forecasts. To this end,
four computationally inexpensive approximate MLME correction schemes are considered,
and their abilities to correct themultilevel model forecasts for reservoir models with different
types of MLME are assessed. The numerical results show a consistent ranking of the
MLME correction schemes. Additionally, we assess the performances of the different
MLME-corrected model forecasts in assimilation of inverted seismic data. The posterior
parameter estimates from multilevel DA with and without MLME correction are compared
to results obtained from conventional single-level DA with localization. It is found that
multilevel DA (MLDA) with and without MLME correction outperforms conventional DA with
localization. The use of all four MLME correction schemes results in posterior parameter
estimates with similar quality. Results obtained with MLDA without any MLME correction
were also of similar quality, indicating some robustness of MLDA toward MLME.

Keywords: data assimilation, multilevel, modeling error, seismic data, reservoir model

1 INTRODUCTION

Sound decision-making in petroleum reservoir management depends on provision of reliable
production forecasts from petroleum reservoir models, including provision of the uncertainty
in the forecasts. The reliability is increased by utilization of available data for calibration
of the models. Ensemble-based data assimilation (DA) methods, using statistically correct
formulations, have accordingly become popular for automated reservoir history
matching [1–4].
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Monte Carlo approximations play crucial roles in ensemble-
based DA. Due to computational cost limitations, the ensemble
size is limited to roughly one hundred. Using straightforward
ensemble-based DA, the degrees of freedom of the problem
would equal the ensemble size, and such an approach would
result in significant Monte Carlo errors. The negative effects of
Monte Carlo errors are enlarged in the presence of large amounts
of data to be assimilated simultaneously, for example, inverted
seismic data, resulting in underestimation of variance of the
unknown parameters and, in more severe cases, even in
ensemble collapse.

The most widely used treatment for Monte Carlo errors is
distance-based localization. The basic assumption underlying this
method is that true correlations between a parameter and a datum
decrease when the distance between their respective locations
increases, and disappear if the distance exceeds a critical distance.
This assumption may not always hold for subsurface problems.
Different correlation functions and their utilization in DA can be
found in References [5–7]. A proper choice of correlation
function, as well as the critical distance in particular, depends
on parameter and data types as well as on other problem settings.
This reduces the robustness of distance-based localization, also
for problems where its basic assumption does hold.

Simply increasing the ensemble size will, of course, reduce
Monte Carlo errors, but it will also increase computational cost.
Utilization of a lower cost and lower fidelity model renders the
possibility of increasing the ensemble size without increasing the
total computational cost. The use of a lower fidelity reservoir
model will however introduce modeling errors in addition to
those already present in conventional fidelity simulation results.
The underlying assumption when applying lower fidelity models
in DA is therefore that the gain in reducing Monte Carlo errors is
larger than the loss in numerical simulation accuracy. If the
abovementioned additional modeling errors could be
approximately accounted for, utilization of lower fidelity
models would be even more attractive. DA using various types
of lower fidelity models has been applied to several inverse
problems, for example, within petroleum reservoir modeling
[8–10] and atmospheric science [11]. Note that since lower
fidelity simulations are applied to the forecast step and
localization is applied to the analysis step, the two techniques
can be combined, if desired.

Multilevel simulations utilize a selection of models for the
same entity that constitute hierarchies in both fidelities and
computational costs (multilevel models). The idea is to
decrease Monte Carlo errors without increasing numerical
errors too much. There are a number of ways to realize
multilevel models. We choose to construct them by spatial
coarsening of the conventional simulation grid to several levels
of coarseness and correspondingly upscale the associated grid-
based parameter functions. Multilevel data assimilation (MLDA)
[12–16] utilizes multilevel simulations in the forecast step. Since
inverted seismic data are given on the conventional grid (denoted
as the fine grid from now on), MLDA with such data must be able
to handle differences in grid levels between data and model
forecasts.

Modeling errors are ubiquitous in all numerical simulations in
the geosciences. In the context of a coarse-grid numerical model,
three types of modeling errors can be envisioned: Type 1: the
discrepancy between the physical reality and the solution
obtained with a mathematical model attempting to model the
physical reality; Type 2: the discrepancy between the solution
obtained with that mathematical model and the model forecast
from a numerical model resulting from discretization of the
mathematical model; and Type 3: the discrepancy between the
model forecast from that numerical model and the model forecast
from a numerical model with a coarser simulation grid.

Assuming a normal distribution for the errors, a Bayesian
framework for jointly accounting for Type 1 and Type 2modeling
errors in DAwas presented in Reference [17]. The effect of Type 2
modeling errors on the solution to linear Gaussian inverse
problems was analyzed in Reference [18]. (Neither Ref. [17]
nor Ref. [18] were concerned with Type 3 modeling errors.)
In this study, we quantify and approximately account for Type 3
modeling errors for each level in multilevel assimilation of
spatially distributed data, such as inverted seismic data. (We
will use the term multilevel modeling error (MLME) to denote
this error from now on.) To this end, three computationally
inexpensive approximate MLME correction schemes are
developed, and their abilities to correct multilevel model
forecasts for reservoir models with different types of MLME
are assessed and compared to a previously proposed (also
computationally inexpensive) MLME correction scheme.
Additionally, we assess the performances of the different
MLME-corrected model forecasts in assimilation of bulk
impedance data. The posterior parameter estimates from
MLDA with and without MLME correction are compared to
results obtained from conventional single-level DA with
localization.

The rest of this article is framed as follows. Section 2 is devoted
to explaining MLDA and introducing a recently devised
algorithm for it. Section 3 introduces MLME and the four
proposed schemes for addressing it. Section 4 explains the
reservoir models used for assessment of the performance of
MLME correction schemes in MLDA. In Section 5, we
describe the numerical investigations, which are followed by
their results in Section 6. Finally, in Section 7, we summarize
and conclude the study.

FIGURE 1 | Representation of MLDA algorithms.
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2 MULTILEVEL DATA ASSIMILATION

The forecast step in ensemble-based DA takes the initial states
and parameters as input and generates the model forecasts. In this
work, the forecast step of MLDA is performed using a hierarchy
of nested forward models, {Ml}Ll�0. After sampling from the prior
distribution, the ensemble of prior state vectors is divided into L
sub-ensembles. Hence, each of the sub-ensembles are modeled
using corresponding forwardmodels, as seen in Figure 1, where Z
is the random vector of parameters and subscripts denote the sub-
ensemble number.

In order to give a description for a full cycle of MLDA of
spatially distributed data, multilevel models should be discussed.
Additionally, since the MLDA uses the ensemble approximations
of the mean and covariance of the model forecasts, which are in
different resolutions for different levels, a robust transformation
scheme should be devised for converting themodel forecasts from
one resolution to another. These two topics will be discussed in
Sections 2.1 and 2.2, respectively. They will be followed by
sections on upscaling of the observation data (Section 2.3)
and formulation of multilevel statistics for mean and
covariance of the model forecasts (Section 2.4). Afterward, a
description of a recently devised method for MLDA of spatially
distributed data, which will be used in our numerical
experiments, is given in Section 2.5.

2.1 Multilevel Models
Let {Ml}Ll�0 be a set of deterministic models, where the accuracy
and computational cost increase with an increase in l.
Accordingly, they will form hierarchies of both accuracy and
cost. One can think of several schemes to devise the hierarchy
including but not limited to coarsening the spatial grid of the
forward model together with upscaling the associated parameters,
coarsening the temporal grid of the forward model, and relaxing
the convergence criteria in the iterative linear solvers. All of these
methods reduce the computational cost of the models and
increase their numerical error. Coarsening the spatial grid and
upscaling the associated parameters are chosen for the current
work. The techniques presented in this work are however robust
enough so that with minor manipulations, they can be used for
other lower fidelity models.

As for coarsening the grid of the forward models, the authors
of Reference [15] proposed a robust technique, which was also
used in Reference [16]. This technique occurs in a sequence of
steps. In each step, neighboring cells of the grid at the previous

step are merged into a coarser cell, unless they are to be kept fine
deliberately. A representation of the grid coarsening process for
an 8 × 8 sample grid can be found in Figure 2. As it can be seen in
the figure, coarsening has occurred in a uniform manner across
both directions, except for the vicinity of two opposite corners,
where the grid cells are kept in fine scale to boost the local
numerical accuracy around the two wells, producer (P) and
injector (I).

The parameters associated with the grid are upscaled in such a
way that the physics of the problem do not change drastically.
Upscaling of the parameters will be further discussed in Section 4.

2.2 Transformation of Model Forecasts
The discrepancy in coarseness of the multilevel grids results in the
spatially distributed model forecasts to be in different resolutions
for different levels. Therefore, in order to be able to compute the
multilevel sample statistics of the model forecast, a robust
transformation scheme should be devised for converting a
model forecast from the resolution at one level to another.

In the problem at hand, transformation of the model forecast
requires either upscaling or downscaling. To this end, a standard
volume-weighted arithmetic averaging technique is used.
Accordingly, we define a set of linear transformations,
{Uq

p : RSp1RSq
∣∣∣∣1≤ p, q≤ L}, where Sp and Sq denote the

dimension of the model forecast vector at arbitrary levels p
and q, respectively, and Uq

p transforms the model forecast
vector from level p to be compatible with level q.

Figure 3 gives two examples of transformation of a spatially
distributed model forecast, one from a coarser grid to a finer grid
and one vice versa. Each model forecast component is
represented in its corresponding spatial grid cell.

As can be seen in Figure 3, in the upscaling procedure, the
arbitrarily named model forecast components {ai}4i�1 in the
northwest zone from the finer grid (p) are averaged to form
their corresponding model forecast component, a, in the
coarsened grid. Similar procedure has been performed for the
rest of model forecast components, shown by *. In the
downscaling procedure, on the other hand, the model forecast
components in the coarse grid are simply copied to their
corresponding components of the finer grid.

2.3 Upscaling of Observation Data
As part of the DA process, the mismatch between the model
forecasts and observation data is to be calculated. Here, it is
assumed that inverted seismic data are given in the resolution of

FIGURE 2 | Grid coarsening proposed by [15] performed on an 8 × 8 grid (A) finest level and (B, C) coarser levels.
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the finest simulation grid. Accordingly, for each of the levels,
either the observation data should be upscaled to the resolution of
model forecast or the model forecast should be downscaled to the
resolution of the observation data. In this study, we take the
former approach. Since the observation data are in the resolution
of the finest model, using the same transformation functions as
those designed for model forecasts on the fine observation data
will result in upscaling of observation data into the preferred
resolution.

2.4 Multilevel Statistics
Assuming we have approximations of the model forecasts, Y,
being a function of the unknown parameter vector Z in several
levels, a statistically correct scheme for approximation of
multilevel statistics for Y is required. As for MLDA, the first
two central moments of the model forecast are of foremost
interest. Accordingly, formulations for these multilevel
statistics are proposed.

Assuming the model with the highest fidelity,ML, to be exact,
the authors of Reference [13] proposed an unbiased formulation
for approximation of multilevel statistics for DA under certain
conditions. Under these sets of conditions, the proposed method
outperformed its alternatives [12]. For reservoir problems,
however these conditions typically do not hold, and another
formulation based on Bayesian model averaging (BMA) was
proposed [12]. In this formulation, the statistics are computed
based on reliability weights wl for each of the levels l. This

formulation is, by definition, a biased scheme for computation
of multilevel moments; however, it will be a useful technique for
problems in which variance error dominates bias, which is often
the case for petroleum reservoir problems [12]. Using this
formulation and transformations of the forecast, the authors of
Reference [16] proposed a formulation of multilevel statistics for
spatially distributed model forecasts, which is used in the current
work. According to this scheme, the multilevel mean of the model
forecast at level l is given as follows:

EML(Yl) � ∑L
k�1

wkU
l
kE(Yk), (1)

where E(Yk) denotes the sample mean of the model forecast at
level k. Using the law of total variance, the multilevel
approximation of covariance of the model forecast at level l is
formulated as follows:

CML(Yl) � ∑L
k�1

wk{C(Ul
kYk) + (E(Ul

kYk)
− EML(Yl))(E(Ul

kYk) − EML(Yl))T}. (2)

In addition, the parameter forecast cross-covariance can be
written as follows:

CML(Z,Yl) � ∑L
k�1

wkC (Zk,U
l
kYk) . (3)

FIGURE 3 | Transformation of model forecast between two levels p (finer) and q (coarser) (A) model forecast in resolution of level p, (B) transformation of model
forecast from resolution of level p to the resolution of level q, (C)model forecast in resolution of level q, and (D) transformation of model forecast from resolution of level q
to the resolution of level p.
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Using these ML moments enables us to utilize the classic DA
formulations for updating the ensemble as will be presented in
Section 2.5.

2.5 Multilevel Hybrid Ensemble Smoother
Utilizing statistics given by Eqs. 1–3, the authors of Reference
[16] formulated anMLDA algorithm that rendered the possibility
of assimilation of spatially distributed data, for example, inverted
seismic data, in a multilevel manner. This DA algorithm was
called multilevel hybrid ensemble smoother (MLHES). In this
work, we briefly explain MLHES and utilize it in our numerical
experiments. An iterative version of MLHES has also been
developed1.

Initially, a total of Nt realizations from the prior random
parameter vector Zpr are generated and divided into L sub-
ensembles, that is, Zpr

l , 1≤ l ≤ L. Note that, regardless of l, all
Zpr
l are on the fine scale and the subscript denotes the model

where they are used. Accordingly, prior realization j in sub-
ensemble l, where 1≤ j≤Nl and 1≤ l ≤ L, is called zprl,j . Hence,
there are Nl ensemble members in sub-ensemble l. Likewise, the
model forecast pertaining to simulation of zprl,j by the forward
model Ml is named ŷl,j and is given by

ŷl,j � Ml (zprl,j ). (4)

The correction for MLME then would be performed as

yl,j � ŷl,j + εl,× (zprl,j ), (5)

where yl,j is the model forecast ŷl,j corrected for its MLME and εl,×
is the generic term for correction of MLME. In Reference [16], the
authors utilized the mean bias correction for addressing the
MLME. This correction scheme is one of the MLME
correction schemes investigated in this work and will be
explained and discussed in more detail in Section 3.

After MLME correction, there will be a separate analysis step
for each of the levels. The updated parameter vector of an
arbitrary ensemble member is given by

zal,j � zprl,j + Kl(dl,j − yl,j), (6)

where the observation data realization, dl,j, is a random pick from
N(Ul

LμD,U
l
LCDUlT

L ), and μD and CD are the original observation
data mean and observation data error covariance in the finest
level, respectively. The level-specific Kalman gain, Kl , is then
given as

Kl � CML(Z,Yl)(CML(Yl) + Ul
LCD(Ul

L)T)− 1

, (7)

where the multilevel statistics CML(Yl) and CML(Z,Yl) are given
by Eqs. 2 and 3, respectively.

After the analysis step, the estimates of mean and covariance of
the posterior parameter field are computed based on a pool
composed of all realizations zal,j at all the levels as follows:

E(Za) � 1
Nt

∑L
l�1

∑Nl

j�1
zal,j (8)

C(Za) � 1
Nt − 1

∑L
l�1

∑Nl

j�1
(zal,j − E(Za))(zal,j − E(Za))T (9)

A pseudo-code of MLHES is presented in Appendix 1.

3 MULTILEVEL MODELING ERROR

Let R denote some spatially varying physical property, and let W
denote the forecast of a mathematical model attempting to model
R. Furthermore, let Wl denote the forecast of that mathematical
model discretized at an arbitrarily selected level, l, and let xl,n
denote the location of an arbitrarily selected point in the
simulation grid at that level. The total modeling error in
Wl(xl,n) when attempting to model R(xl,n) is then

ϕl(xl,n) � R(xl,n) −Wl(xl,n), (10)

which can be rewritten as

ϕl(xl,n) � (R(xl,n) −W(xl,n)) + (W(xl,n) −WL(xl,n))
+ (WL(xl,n) −Wl(xl,n)). (11)

The first term on the right-hand side of Eq. 11 represents the
error in the mathematical model’s forecast of physical reality, and
the second term represents the discretization error when
simulating with a numerical model on the fine grid. We will
consider the last term, which represents the error due to
numerical simulation on the level-l grid, instead of on the fine grid.

The expression WL(xl,n) is precise only if xl,n coincides with a
point in the simulation grid at level L, which will not be the case for
the grid-coarsening procedure applied in the current work. Tomake
this expression precise, we utilize the linear transformations defined
in Section 2.2, and let WL(xl,n) �def (Ul

LWL(xL))n. We then define
component n of the multilevel modeling error (MLME) as

ζ l,n � (Ul
LWL(xL))n −Wl(xl,n), (12)

and develop techniques for estimating ζ l � (ζ l,1 . . . ζ l,Gl
)T in

model forecasts and approximately correcting for the MLME
before assimilating data.

3.1 Multilevel Modeling Error Correction
Assuming fine model forecasts to be sufficiently accurate, ideally,
the model forecasts at each level should be upscaled fine model
forecasts to the resolution of that level, that is, the correction in
Eq. 5 should be εl,× � ζ l , but due to computational limits, this is
not a possibility. Accordingly, we try to approximate ζ l using the
discrepancies between the model forecasts at level l and the finest
level, L. This will be done using the ensemble itself without any
additional simulations.

The techniques developed here are therefore computationally
cheap adjunctions which can be added to many MLDA
algorithms with minor modifications. The four schemes
formulated and investigated in this work are named as mean

1Nezhadali, M., Bhakta, T., Fossum, K., and Mannseth, T. Iterative multilevel
assimilation of inverted seismic data. Submitted
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bias correction (MB), stochastic correction (ST), deterministic
correction (DE), and telescopic correction (TE).

Figure 4A depicts general formation of the sub-ensembles
from the prior ensemble for Z. The realizations in each sub-
ensemble are put in the same line as the forward model that is
used for their simulation; consider each of the unit cells in the
rows as a realization of the prior and each row as a sub-ensemble.
Figures 4B–D describe the requirements on prior realizations for
different MLME correction schemes; if parts of two sub-
ensembles are of the same color, those realizations are shared
between those sub-ensembles and are to be simulated using both
corresponding forward models.

3.1.1 Mean Bias Correction
This technique was used in Reference [12] for correction of the
production data for their mean bias. There, the correction was
formulated as

εl,MB,P � E(YL) − E(Yl), (13)

where εl,MB,P is the mean bias correction term for production data.
Here, we generalize this correction to be used also for spatially
distributed data. Accordingly, εl,MB is defined as

εl,MB � Ul
LE(YL) − E(Yl), (14)

where E(YL) and E(Yl) are sample means of the model forecasts at
levels L and l, respectively. Using this correction, the mean of the
corrected forecast at every level would be equal to the upscaled
mean of the forecast given by the most accurate (finest) model.

As can be seen in Figure 4B, in mean bias correction, as
opposed to the rest of MLME correction schemes, the prior
realizations are run on each of the forward models without
any requirement to be run by other forward models.

3.1.2 Stochastic Correction
Simulating the sub-ensemble {zprl,j }NL

j�1 using all the forward
models, we can calculate ζ l for those realizations as follows:

ζ l(zprl,j ) � Ul
LML(zprl,j ) −Ml(zprl,j ). (15)

In the stochastic formulation, assuming a normal distribution
for ζ l , the realization of correction term is formulated as

εl,ST ∼ N (E(ζ l),C(ζ l)) , (16)

where E(ζ l) and C(ζ l) are the sample mean and covariance of
realizations of ζ l , respectively. As the ensemble size is often
relatively small in comparison to the parameter vector size, the
distribution defined in Eq. 16 would not cover the full span of the
probability space for ζ l . The realizations of εl,ST , accordingly,

would be in the sub-space spanned by the ensemble {ζ l(zprl,j )}NL

j�1
As seen in Figure 4C and Eq. 15, this correction scheme

requires the realizations at sub-ensemble L to be simulated using
all the forward models.

3.1.3 Deterministic Correction
Assume that ζ l is a continuous function of Z. Furthermore, we
assume local linearity for ζ l and write the first two terms of its
Taylor expansion around the population expectation of the
parameter vector, E(Z) as

ζ l(Z) ≈ ζ l(E(Z)) + zζ l
zZ E(Z)(Z − E(Z)) .∣∣∣∣ (17)

Under linearity assumption, we would have

ζ l(E(Z)) ≈ E(ζ l(Z)) . (18)

To calculate the Jacobian of ζ l , we use another approximation.
Writing Stein’s lemma gives,

C(ζ l,Z) � E(zζ l
zZ

)C(Z) , (19)

where C(Z) and C(ζ l,Z) are covariance of Z and cross-
covariance between ζ l and Z, respectively. Rearranging gives

FIGURE 4 | (A) Division of the prior ensemble for Z into L sub-ensembles, (B)mean bias Correction prior setting, (C) stochastic and deterministic corrections prior
settings, and (D) telescopic correction prior setting.
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E(zζ l
zZ

) � C(ζ l,Z)C(Z)− 1 , (20)

and the local linearity assumption gives the approximation

zζ l
zZ E(Z) ≈ E(zζ l

zZ
) .

∣∣∣∣∣∣∣∣ (21)

We would then use the ensemble for approximation of both
mean and Jacobian of ζ l and use them for formulating the
deterministic correction as follows:

εl,DE(E(Z)) ≈ E(ζ l) , (22)

zεl,DE
zZ E(Z) ≈ C(ζ l,Z)C(Z)+,

∣∣∣∣ (23)

εl,DE(Z) � εl,DE(E(Z)) + zεl ,DE
zZ E(Z)(Z − E(Z)),∣∣∣∣ (24)

where the superscript + in Eq. 23 denotes the Moore–Penrose
pseudo-inverse. As shown in Figure 4C, in deterministic
correction, as in stochastic correction, the realizations in the
sub-ensemble L are to be simulated using all the forward models.

3.1.4 Telescopic Correction
This scheme utilizes the idea in deterministic correction in a
telescopic manner so that it can benefit from the multilevel
structure of the problem. The MLME can be written as

ζ l(Z) � Ul
LML(Z) −Ml(Z) � ∑L−1

k�l
Ul

k(Uk
k+1Mk+1(Z) −Mk(Z)),

(25)

and Eq. 25 holds because all the transformations are linear and
from a finer level to a coarser level. Accordingly, we can write

ζ l(Z) � ∑L−1
k�l

U l
kek, (26)

where

ek(Z) � Uk
k+1Mk+1(Z) −Mk(Z). (27)

This reformulation of the error term renders the possibility to
approximate ζ l via a summation of smaller error terms, which are
approximated based on bigger ensembles. Hence, using the idea
in deterministic correction for level-wise errors, ek, one can write

ek(Z) ≈ E(ek) + C(ek,Zk)C(Zk)+(Z − E(Zk)), (28)

where E(ek) is the sample mean of the partial error, C(ek,Zk) is
the sample cross-covariance of ζ l and Z, C(Zk) is the sample
covariance of the parameter vector, and E(Zk) is the sample mean
of the parameter vector, all based on the realizations in sub-
ensemble k. The telescopic correction term then is

εl,TE(Z) � ∑L−1
k�l

Ul
k(E(ek) + C(ek,Zk)C(Zk)+(Z − E(Zk))). (29)

The idea here is that even though the errors in approximation
aggregate in the summation in Eq. 26, the increase in the
ensemble size would reduce Monte Carlo errors and the

approximation of ζ l would be more accurate, and overall, it
would help to account better for the MLME.

In order to be able to perform this correction, a nested
structure in the prior realizations is necessary. In other words,
as seen in Figure 4D, all the realizations simulated by a forward
model should also be computed using all the less accurate forward
models than that model.

4 TEST MODELS

We are interested in assessing the quality of MLME correction
schemes in reservoir history matching of inverted seismic data
using MLHES. In accordance with it, three different reservoir
models are considered. These reservoir models have some shared
properties. They are two-dimensional, with 64 × 64 Cartesian
grids, two wells in the opposite corners, an injector in the
northeast corner, and a producer in the southwest corner.
Compressible two-phase flow (oil and water), no-flow
boundary conditions, and standard equations for capillary
pressure and relative permeability are considered. A
description of the other shared general properties of the
reservoir models is given in Table 1. As the seismic vintages
are different in each experiment, they are discussed separately in
Sections 5.1–5.3.

In each of the reservoir models used in this work, the general
structure is modified with the aim of increasing theMLME. These
reservoir models are explained separately in Sections 4.1–4.3,
and samples from the prior distribution of Z for each of the
reservoir models can be found in Figure 5.

The forward models used for forecast {M}Ll�1 each consists of
two segments. A reservoir flow model is used to predict the state
variables in time, and a petro-elastic model is utilized for
computing the elastic rock properties from parameters and
predicted state variables.

The flow segment of the forward models is performed using
Eclipse 100 [19]. Coarsening the grid is done by using the Eclipse
keyword COARSEN, which merges groups of predefined
neighboring cells to form a coarser grid. The upscaling of
permeabilities is performed using pore-volume–weighted
arithmetic averaging, and transmissibilities between two
neighboring coarse cells in each direction are calculated based
on harmonic averaging in that direction and summing it in other
directions [19]. As for the petro-elastic segment of the forward
model, an in-house model based on standard rock physics [20],
[21, Report 1] was used.

4.1 Reservoir Model I
A nonpermeable fault has been added to the field with its normal
vector pointing north, its eastern most point 4 grid cells away

TABLE 1 | Shared properties of the reservoir models.

Fine cell dimension 30 × 30 × 30 (m3) Porosity 0.2
Initial oil saturation 0.85 Injector (I) P.C. (275 bar)
Initial pressure 200 bar Producer (P) P.C. (100 bar)

P.C., pressure-controlled.
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FIGURE 5 | Samples from the prior distributions for log permeability for the three experiments, (A)–(C) Experiment I, (D)–(F) Experiment II, and (G)–(I)
Experiment III.

FIGURE 6 | Approximation of the fault for simulations, (A) original fault and (B–D) approximations at coarser levels.
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from the east side of the field, and its western most point 4 grid
cells away from the west side of the field. From Figures 5A–C, it is
clear that flow from the injector to the producer has to pass
through one of the narrow openings at the ends of the fault.
Hence, there will be strong variations in the solution variables in
these regions. Grid coarsening is therefore expected to produce
stronger MLME for this example than for a similar example, but
where no fault was present.

4.2 Reservoir Model II
An oblique fault stretching from 8 grid cells away from the
northwest corner to 8 grid cells away from the southeast
corner is added to the general reservoir model structure. In
addition to the complexities similar to those associated with
Reservoir Model I, as can be seen in Figure 6, the coarsening
scheme in the presence of such a fault, which will be discussed in
Section 5.2, results in some permeability values that are located
on one side of the fault in the fine grid to contribute to an
upscaled permeability value located on the other side of the fault
in the coarsened grid. This introduces another type of MLME to
the model.

4.3 Reservoir Model III
This reservoir model uses the general structure of the models
without addition of faults and is used for investigation of a

different type of MLME, which is formed by simplifying the
grid coarsening scheme.

5 NUMERICAL INVESTIGATION

In order to assess the quality of the MLME correction schemes
presented in this work, three experiments are conducted. The
experiments are performed on the reservoir models discussed in
Section 4.

The observation data are two sets of time-lapse bulk
impedance data taken based on a baseline (day zero of
production) and two vintages, which are different for each
experiment and will be mentioned separately. These
observation data are generated using the results of simulation
from a random draw of the prior distribution. As the inverted
seismic data are spatially correlated, we use a correlated
covariance matrix for the data error. In doing so, a variogram
with the specifications given in Table 2 is considered. The
marginal standard deviation of each observation value is given as

σ � rmax {|D|,T}, (30)

where r � 0.1, D is the value of observation data at a certain
location, and T is a threshold put to avoid too much certainty in
the observation data whose absolute value is very small. This
threshold is defined as the 1st smallest percentile of the absolute
value of the observation data.

TABLE 2 | Variogram used for observation data error; the unit for range is
grid cells.

Variogram type Range Mean Anisotropy ratio

Spherical 5 0 1

TABLE 3 | Specific characterizations of variograms of the prior distribution, the
unit for range is grid cells.

Range Anisotropy ratio Anisotropy angle

Experiment I 20 0.7 −30
Experiment II 30 0.5 −20
Experiment III 25 0.7 −30

TABLE 4 | Summary of resource allocation for the algorithms in Experiment I.

Level 1 Level 2 Level 3 Level 4 Level 5

G1 = 82 G2 = 124 G3 = 310 G4 = 1060 G5 = 4096

N1 N2 N3 N4 N5

MLHES-NO 1,510 864 501 143 46
MLHES-MB 1,510 864 501 143 46
MLHES-ST 1,510 864 501 143 46
MLHES-DE 1,510 864 501 143 46
MLHES-TE 1,510 864 501 143 46
MLHES-EX 1,510 864 501 143 46
ES-LOC – – – – 100
ES-REF – – – – 10,000

TABLE 5 | Summary of resource allocation for the algorithms in Experiment II.

Level 1 Level 2 Level 3 Level 4

G1 = 124 G2 = 310 G3 = 1060 G4 = 4096

N1 N2 N3 N4

MLHES-NO 1,404 652 170 40
MLHES-MB 1,404 652 170 40
MLHES-ST 1,404 652 170 40
MLHES-DE 1,404 652 170 40
MLHES-TE 1,404 652 170 40
MLHES-EX 1,404 652 170 40
ES-LOC – – – 100
ES-REF – – – 10,000

TABLE 6 | Summary of resource allocation for the algorithms in Experiment III.

Level 1 Level 2 Level 3 Level 4

G1 = 64 G2 = 256 G3 = 1024 G4 = 4096

N1 N2 N3 N4

MLHES-NO 1,524 703 252 38
MLHES-MB 1,524 703 252 38
MLHES-ST 1,524 703 252 38
MLHES-DE 1,524 703 252 38
MLHES-TE 1,524 703 252 38
MLHES-EX 1,524 703 252 38
ES-LOC – – – 100
ES-REF – – – 10,000
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For each numerical experiment, we will compare plots of
results (mean and variance fields) obtained with five versions
of the MLHES to those obtained with ES with distance-based
localization (ES-LOC). The five versions are MLHES with mean
bias correction (MLHES-MB), MLHES with stochastic correction
(MLHES-ST), MLHES with deterministic correction (MLHES-
DE), MLHES with telescopic correction (MLHES-TE), and
MLHES with no correction (MLHES-NO).

The gold standard (reference solution) for the comparison will
be results obtained using ES with 10,000 ensemble members (ES-
REF). By utilizing such an unrealistically large ensemble, we

obtain results that are visually indistinguishable from the best
results that can be achieved using ES.

Furthermore, we will show plots of results obtained with a
scheme with exact correction for the MLME (MLHES-EX). These
results are obtained by running fine-scale simulations with the
same total ensemble size as for the multilevel simulations and
thereafter upscaling model forecasts (with the appropriate sub-
ensemble sizes) to the respective levels. Obviously, MLHES-EX is
computationally much costlier than the rest of the MLHES
variants, and it is included only to assess the effect of
completely removing the MLME on posterior results. Finally,
we will show plots of the log permeability realization used when
generating the synthetic data (“truth”).

A fixed computational power is considered for all runs (except
for ES-REF and MLHES-EX). As the dominant cost of the DA
process is pertaining to simulations of forward models, where
iterative linear solvers dominate the computational costs for large
problems, the computational cost pertaining to each ensemble
member to be simulated using the forward modelMl is assumed
to be proportional toGc

l , whereGl is the number of the active grid
cells in the forward model at level l and c ∈ [1.25, 1.5] [22]. Here,
we take c � 1.35. Additionally, as usual for large-scale cases, the

TABLE 7 | Experiment I: Mean of the elements of the median vector of NCRl for
different correction schemes.

Level 1 Level 2 Level 3 Level 4

G1 = 82 G2 = 124 G3 = 310 G4 = 1060

Mean bias 0.4256 0.9151 1.2069 2.5229
Stochastic 0.3503 0.4406 0.5384 0.4320
Deterministic 0.3395 0.4451 0.5473 0.4124
Telescopic 0.1240 0.2405 0.4097 0.4124

FIGURE 7 | Experiment I: Mean of posterior logarithmic permeability field.
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ensemble size for standard single-level DA algorithms is set to be
100. Using this basis for calculations, the computational power
allocated for all the runs would be equal if the following equation
holds for all of them,

100G1.35
L � ∑L

l�1
NlG

1.35
l . (31)

Considering this equation, we set Nl for different levels of the
MLHES. There exist L − 1 degrees of freedom for specification of
the {Nl}Ll�1. No optimization was performed for this specification;
the only aim pursued was to keep the size of sub-ensembles
ascending with a decrease in model fidelity. Several other similar
settings that were tried resulted in similar DA outcomes.

For ES with distance-based localization, the tapering function
for localization is based on Reference [23]. As for the MLHES,
regarding weights of the hybrid mean and covariance matrices,
{wl}Ll�1 in Eqs. 1–3, there is a possibility to improve the results by
tuning the weights for specific cases, but here, we use the simplest
choice—weights being all equal.

The unknown parameter vector in all the experiments is the
logarithmic permeability field. The prior fields are based on three
spherical variograms, all having mean 5 and variance 1, and
specific characterizations given in Table 3. Samples from the
prior distributions are given in Figure 5.

5.1 Experiment I
This experiment is conducted on Reservoir Model I with five
levels corresponding to 82, 124, 310, 1,060, and 4,096 grid cells,
respectively. A summary of the resource allocation for the
different runs carried out in this experiment can be found in
Table 4. The observation data for this experiment are generated
based on seismic vintages at 4,000 and 8,000 days after
production starts.

5.2 Experiment II
This experiment is conducted on Reservoir Model II. In this
experiment, the presence of the oblique fault in the field interferes
with coarsening the model. One way to handle this issue would be
to avoid coarsening the grid around the fault area; however, this

FIGURE 8 | Experiment I: Variance of posterior logarithmic permeability field.

TABLE 8 | Experiment II: Mean of the elements of the median vector of NCRl for
different correction schemes.

Level 1 Level 2 Level 3

G1 = 124 G2 = 310 G3 = 1060

Mean bias 0.4097 0.7580 0.8284
Stochastic 0.3980 0.4622 0.4769
Deterministic 0.3716 0.4750 0.4381
Telescopic 0.1952 0.3461 0.4381
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would reduce the computational advantage of the multilevel
scheme. In order to keep the grid coarsening as it is, the fault
is approximated with bigger “zigzags,” as depicted in Figure 6, for
one realization of the logarithmic permeability field at different
levels of coarseness. This makes the experiment to be more
challenging than Experiment I, since in addition to coarsening
the grid and upscaling the parameters, a structural
characterization of the field (the fault) is also approximated.

MLHES is run with four levels corresponding to 124, 310,
1,060 and 4,096 grid cells, respectively. A summary of the
resource allocation for the different algorithms carried out in
this experiment can be found in Table 5. The observation data are
generated based on seismic vintages at 5,000 and 10,000 days after
beginning of production.

5.3 Experiment III
This experiment is conducted on Reservoir Model III. The
coarsening of the grid is performed uniformly, so that also the
regions near the wells are coarsened. Hence, a different type of
MLME is generated. The number of grid cells is now complete
powers of 2. Forming four levels of coarseness, the number of grid
cells are 64, 256, 1,024, and 4,096. A summary of the resource
allocation for the different algorithms carried out in this
experiment can be found in Table 6. The observation data are

generated based on seismic vintages at 4,000 and 8,000 days after
production starts.

6 NUMERICAL RESULTS

The numerical results are assessed in two ways. First, we perform
a quantitative analysis of the MLME-corrected model forecasts.
Second, we perform a qualitative analysis of the results obtained
when using the MLME-corrected forecasts in MLDA.

As for a quantitative analysis of success of MLME correction
schemes, the normalized correction ratio for model forecasts at
level l, NCRl , defined as

NCRl(Z) �
∣∣∣∣∣(Yl − Ul

LYL)/ (Ŷ l − Ul
LYL)∣∣∣∣∣ � ∣∣∣∣(εl,× − ζ l)/ ζ l

∣∣∣∣, (32)
is considered. Here, / is the Hadamard division and |*| is the
element-wise absolute value operator. If the correction
scheme does not do any correction on a single element of
NCRl, it would result in that element to be equal to unity.
Reduction in the error would result in the element moving
toward zero, and an increase in the error would move that
element toward infinity; hence, NCRl is an indicator of the
success of MLME correction schemes.

FIGURE 9 | Experiment II: Mean of posterior logarithmic permeability field.
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NCRl is different for different realizations. In order to assess
the success of each of the correction schemes jointly for all
realizations, the sample median of each of the elements of
NCRl is computed. The median is chosen since the mean of
NCRl is not a good indicator of success (NCRl has a lower bound
at zero but has no upper bound, and outliers would affect it
disproportionately). Then, the mean of the elements of the
sample median of NCRl are reported for different levels in all
MLME correction schemes for the three experiments.

As for the qualitative assessment of the DA results, the mean and
the variance of the posterior unknown parameters are compared
between different algorithms. We have not considered any specific
formulation for computation of the final multilevel statistics.
Accordingly, the simplest formulation is chosen, that is, reuniting
all the sub-ensembles and treating them as one ensemble for
computation of a posteriori mean and variance fields. ES-LOC
was tested with several ranges for localization (critical distances),
and the best results are presented for each of the experiments.

6.1 Results of Experiment I
As can be seen in Table 7, NCRl is smaller in coarser models for all
correction schemes. For a class of problems (including the problem
considered here) where the model forecast can be seen as a spatially
integrated response to a spatially varying parameter field, there exists a
correlation between small-scale oscillations in the parameter domain

and the nonlinearity strength of the mapping from parameter field to
model forecast (see, e.g., [24, 25]). This correlation is such that
coarsening the simulation grid and upscaling the associated
parameters will generally result in weaker nonlinearity in the
coarser forward models than the finer ones. The comparatively
lower NCRl in coarser levels than finer ones can be due to this
decrease in nonlinearity by a decrease in l and also due to omission of
localfluctuations in coarsermodel forecasts. In the case of the telescopic
scheme, this can also be attributed to an increase in the ensemble size,
which reduces theMonte Carlo errors associatedwith estimation of the
MLME errors. All the schemes, except formean bias correction, are, on
average, successful in reduction of MLME. Telescopic correction for
level 4 (level L − 1 in general) reduces to deterministic correction, but
in coarser levels, it has performed better than deterministic correction,
which, in turn, performs slightly better than stochastic correction.

FIGURE 10 | Experiment II: Variance of posterior logarithmic permeability field.

TABLE 9 | Experiment III: Mean of the elements of the median vector of NCRl for
different correction schemes.

Level 1 Level 2 Level 3

G1 = 124 G2 = 310 G3 = 1060

Mean bias 0.6973 1.2892 2.7182
Stochastic 0.6112 0.6968 0.7517
Deterministic 0.7178 0.8782 0.8651
Telescopic 0.4268 0.6190 0.8651
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Visual analysis of the mean permeability fields, given in Figure 7,
shows that all MLHES variants are reasonably similar and more
similar to ES-REF than ES-LOC is. This can be further confirmed by
comparison of the variance fields given in Figure 8. The ES-LOC
results presented here are based on the localization range of 40 grid
cells. Additionally, no superiority of someMLME correction schemes
over others is evident in visual assessment of the posterior mean and
variance fields. The results from all MLHES variants are reasonably
similar to the MLHES-EX results.

6.2 Results of Experiment II
Based on the trends in NCRl , as can be seen in Table 8, the
performance of the correction schemes has the same rank order as
those of Experiment I, with telescopic correction showing the best
performance, followed by deterministic, stochastic, and mean bias
corrections. Visual analysis of the mean permeability fields, given in
Figure 9, shows that all MLHES variants are reasonably similar and
more similar to ES-REF than ES-LOC is. This can be further
confirmed by comparison of the variance fields given in Figure 10.
The ES-LOC results presented here are based on the localization range
of 50 grid cells. Additionally, no superiority of someMLME correction
schemes over others is evident in visual assessment of the posterior
mean and variance fields. The results from all MLHES variants are
reasonably similar to the MLHES-EX results.

6.3 Results of Experiment III
From Table 9, it is seen that NCRl is comparatively higher in this
experiment than the previous two experiments. The rank order of
the performances stays the same, but the quality of correction has
deteriorated for all the MLME correction schemes, except for the
mean bias correction which has slightly improved.

Visual analysis of the mean permeability fields, given in Figure 11,
shows that allMLHES variants are reasonably similar andmore similar to
ES-REF than ES-LOC. This can be further confirmed by comparison of
the variance fields given in Figure 12. The ES-LOC results presented here
are based on the localization range of 40 grid cells. Additionally, no
superiority of some MLME correction schemes over others is evident in
visual assessment of the posterior mean and variance fields. The results
fromallMLHESvariants are reasonably similar to theMLHES-EX results.

7 SUMMARY AND CONCLUSION

With large amounts of simultaneous data, like inverted seismic data in
reservoir modeling, negative effects of Monte Carlo errors in
straightforward ensemble-based data assimilation (DA) are
enhanced, typically resulting in underestimation of parameter
uncertainties. Multilevel simulations utilize a selection of models for
the same entity that constitute hierarchies both in fidelities and

FIGURE 11 | Experiment III: Mean of posterior logarithmic permeability field.
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computational costs. Multilevel data assimilation (MLDA) utilizes
multilevel simulations in the forecast step. MLDA therefore renders
the possibility of decreasing Monte Carlo errors without increasing the
total computational cost, but MLDA will also introduce multilevel
modeling errors (MLME) that are not present in conventional
simulation results. The underlying assumption is therefore that the
gain in reducing the Monte Carlo error is larger than the loss in
introducing the MLME. If the MLME could be approximately
accounted for, however MLDA performance could be further
improved.

We have estimated and approximately accounted for the MLME.
Four computationally inexpensive approximate MLME correction
schemes have been considered. We have denoted these schemes
mean bias correction, stochastic correction, deterministic correction,
and telescopic correction. The three latter schemes have been
developed in this work. The abilities of the four schemes to correct
for the MLME have been assessed in two ways, utilizing numerical
experiments with three selected reservoir models.

First, statistics for the normalized correction ratios for model
forecasts at each level were compared. The results showed that the
correction schemes were capable of reducing the MLME, but the
amount of reduction depended on the case and on the level. In general,
the MLME correction schemes were more successful in correcting the
MLME in the coarser levels than the finer ones, with telescopic

correction showing the best performance followed by deterministic
correction, stochastic correction, and mean bias correction.

Second, we assessed the performances of the different MLME-
corrected model forecasts in assimilation of inverted seismic data,
using the multilevel hybrid ensemble smoother (MLHES). The
resulting posterior mean and variance fields with and without
MLME correction were visually compared to results obtained
from conventional ensemble smoother (ES) with localization,
utilizing results obtained with conventional ES with an
unrealistically large ensemble size as the gold standard. It was
found that MLHES with and without MLME correction
outperformed conventional ES with localization.

The use of all four MLME correction schemes, and in fact also
MLDA without MLME correction, mostly resulted in posterior
parameter estimates with similar quality. For each example, we also
ran a computationally much more costly MLDA variant where the
MLME had been exactly accounted for in the model forecasts (termed
MLHES-EX in Sections 5–6). No differences in quality between results
obtained with MLHES-EX and results obtained with several of the
computationally inexpensive MLDA variants were found in all three
examples.We have run several examples in addition to those presented
in the article. In none of these examples did the computationally
inexpensive MLDA variants produce poor results, and straightforward
MLHES (i.e., without any MLME correction) produced results of

FIGURE 12 | Experiment III: Variance of posterior logarithmic permeability field.
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similar quality. Altogether, these results indicate that the MLHES is
reasonably robust toward MLMEs.

Further investigation concerning the robustness of MLHES
with and without MLME correction can be conducted for
additional reservoir models with different types of MLMEs
than those considered here. On the other hand, the MLME
correction techniques can be further developed. Their current
versions address the MLME of spatially distributed data on their
associated grid cells independently, that is, spatial correlations of
the MLME are not considered. It would be interesting to consider
spatial correlation of the MLME in future work.
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Abstract
In ensemble-based data assimilation (DA), the ensemble size is usually limited to around one hundred. Straightforward
application of ensemble-based DA can therefore result in significant Monte Carlo errors, often manifesting themselves as
severe underestimation of parameter uncertainties. Localization is the conventional remedy for this problem. Assimilation
of large amounts of simultaneous data enhances the negative effects of Monte Carlo errors. Use of lower-fidelity models
reduces the computational cost per ensemble member and therefore renders the possibility to reduce Monte Carlo errors by
increasing the ensemble size, but it also adds to the modeling error. Multilevel data assimilation (MLDA) uses a selection
of models forming hierarchies of both computational cost and computational accuracy, and tries to balance between Monte
Carlo errors and modeling errors. In this work, we assess a recently developed MLDA algorithm, the Multilevel Hybrid
Ensemble Smoother (MLHES), and introduce and assess an iterative version of this algorithm, the Iterative Multilevel
Hybrid Ensemble Smoother (IMLHES). In our assessments, we compare these algorithms with conventional single-level DA
algorithms with localization. To this end, a typical example of large amount of spatially distributed data, i.e. inverted seismic
data, is considered and three data sets of this kind are assimilated in three different petroleum reservoir models. Qualitatively
evaluating the DA outcomes, it is found that multilevel algorithms outperform their conventional single-level counterparts in
obtaining the posterior statistics of both uncertain parameters and model forecasts. Additionally, it is observed that IMLHES
performs better than MLHES in the same regard, and also successfully converges to the proximity of solution in a case
where the considered iterative single-level algorithm did not converge to the global optimum.

Keywords Data assimilation · Multilevel methods · Iterative smoother · Ensemble-based history-matching

1 Introduction

Sound decision making in petroleum reservoir management
depends on reliable production forecasts from reservoir
models, including accurate estimates of uncertainty in the
forecasts. The reliability is increased by utilization of
available data for calibration of the models.

Ensemble-based Data Assimilation (DA) methods, using
statistically correct formulations, have accordingly become
popular for automated reservoir history-matching [7, 11, 25,
27, 30, 36, 37].

Monte Carlo approximations play a crucial role in
ensemble-based DA. Due to computational-cost limitations,
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the ensemble size is limited to roughly one hundred. Using
straightforward ensemble-based DA, the degrees of freedom
of the problem would equal the ensemble size, and such an
approach would result in significant Monte Carlo errors.

The negative effects of Monte Carlo errors are enlarged
in the presence of large amounts of simultaneous data,
e.g. inverted seismic data, resulting in underestimation of
variance of the unknown parameters, and in more severe
cases ensemble collapse. There have been several efforts on
balancing the degrees of freedom of the problem and the
amount of data [29, 31].

The most widely used treatment for Monte Carlo
errors is distance-based localization [24]. The basic
assumption underlying distance-based localization is that
true correlations between a parameter and a datum decrease
when the distance between their respective locations
increase, and disappears if the distance exceeds a critical
distance. This assumption may not always hold for
subsurface problems. Different correlation functions and
their utilization in DA can be found in [6, 9, 17]. A proper
choice of correlation function, and the critical distance in
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particular, depends on parameter and data types as well
as on other problem settings. This reduces the robustness
of distance-based localization, also for problems where
its basic assumption does hold. Papers using ensemble-
based methods for assimilation of seismic data [1, 10,
26], typically use localization methodologies developed
originally for production data.

Simply increasing the ensemble size will of course
reduce Monte-Carlo errors, but it will also increase compu-
tational cost. Utilization of a lower-cost and lower-fidelity
model renders the possibility of increasing the ensemble
size without increasing the total computational cost. Use
of a lower-fidelity reservoir model will, however, intro-
duce modeling errors in addition to those already present
in conventional-fidelity simulation results. The underly-
ing assumption when applying lower-fidelity models in
DA is therefore that the gain in reducing Monte Carlo
errors is larger than the loss in numerical simulation accu-
racy. DA using various types of lower fidelity models
has been applied to several inverse problems, e.g., within
petroleum reservoir modeling [13, 21, 40] and atmospheric
science [20]. Note that since lower-fidelity simulations are
applied to the forecast step and localization is applied to the
analysis step, the two techniques can be combined, if
desired.

Multilevel simulations utilize a selection of models
for the same entity that constitute hierarchies in both
fidelities and computational costs (multilevel models). The
idea is to decrease Monte Carlo errors without increasing
numerical errors too much. There are a number of ways
to realize multilevel models. We choose to construct them
by spatial coarsening of the conventional simulation grid to
several levels of coarseness, and correspondingly upscale
the associated grid-based parameter functions. Multilevel
Data Assimilation (MLDA) [8, 14, 15, 22, 23, 32, 35]
utilizes multilevel models in the forecast step. Since inverted
seismic data are given on the conventional grid (denoted the
fine grid from now on), MLDA with such data must be able
to handle differences in grid levels between data and model
forecasts.

As utilization of iterative methods helps to improve
the quality of history matching in standard Ensemble
Smoothers (ES) [7], a similar advancement in the domain of
MLDA is possible. An MLDA smoother for assimilation of
spatially distributed data, the Multilevel Hybrid Ensemble
Smoother (MLHES), was developed in [32] and was
assessed for assimilation of inverted seismic data. In this
work we further investigate this algorithm and introduce
an iterative version of MLHES, the Iterative Multilevel
Hybrid Ensemble Smoother (IMLHES). We will also
evaluate the performance of these algorithms in comparison
with conventional DA algorithms, i.e. fine-level DA with

localization, for assimilation of inverted seismic data in
petroleum reservoir problems.

The rest of this paper is organized as follows. Section 2
is devoted to introducing some standard DA algorithms
to establish a base for comparison. Section 3 introduces
the MLDA algorithms. Section 4 explains the test models
used for comparison of the performance of DA schemes.
In Section 5 we describe the numerical investigations,
which are followed by their results in Section 6. Finally, in
Section 7 we summarize and conclude the paper.

2 Standard data assimilation schemes

Ensemble-based DA is a robust method for solving the
parameter and state estimation problems using Bayesian
methodology. We explain two widely used DA algorithms;
Ensemble Smoother (ES), introduced in [41], and Iterative
Ensemble Smoother (IES), introduced in [7]; both with
localization [16], as conventional methods for DA.

2.1 Ensemble Smoother

Consider the prior ensemble {zpri
j }Ne

j=1, containing Ne

realizations from the prior parameters random vector Zpri .
Their corresponding forecasts, {yj }Ne

j=1 (realizations from
the random vector Y ) are then obtained by running the
forward model, M, on each of the ensemble members as

yj = M(z
pri
j ) . (1)

Consequently, the empirical estimation of the mean and
the covariance of the forecast random vector, E(Y ) and
C(Y ), respectively, can be calculated as

E(Y ) = 1

Ne

Ne∑

i=1

yj , (2)

C(Y ) = 1

Ne − 1

Ne∑

i=1

(
yj − E(Y )

) (
yj − E(Y )

)T (3)

Let dj denote a realization of data to be assimilated, drawn
from D ∼ N (μD,C(D)), where μD is the mean and
C(D) is the data-error covariance. The linear-Gaussian
assumption enables the possibility of formulating a closed
form for the analysis step in the ES. Accordingly the analysis
step for an arbitrary ensemble member zj can be written as

za
j = z

pri
j + K(dj − yj ) , (4)

where K is the Kalman gain defined by

K = C(Z, Y ) (C(Y ) + C(D))−1 , (5)

and C(Z, Y ) is the empirical estimate of cross-covariance
between parameters and model forecasts.
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2.2 Iterative ensemble smoother

Iterative versions of ES are developed for improved
performance of DA in nonlinear problems. Here we present
the algorithm introduced in [7] with confined step length
[34], and denote it Iterative Ensemble Smoother (IES) in the
rest of this paper.

Writing the posterior logarithm of likelihood using
Bayesian update equation and ignoring the constant terms,
the objective function is given as [39]

J(Z) = 1

2
||Z−E(Zpri)||2C(Zpri )−1+1

2
||M(Z)−μD||2C(D)−1 .

(6)

The corresponding objective function for zj is [7]

Jj (zj ) = 1

2
||zj − z

pri
j ||2C(Zpri )−1 + 1

2
||M(zj ) − dj ||2C(D)−1 .

(7)

In the linear-Gaussian case Jj is minimized by the update
in Eq. 4. However, assuming nonlinearity in M, this will
not be the case. Accordingly, the Gauss-Newton scheme
with confined step length is employed to minimize Jj for all
realizations.

The Gauss-Newton scheme requires the gradient and the
Hessian of Jj for each of the ensemble members. In this
approach, these are computed using approximations based
on the ensemble. Accordingly, the gradient, ∇Jij , and the

Hessian, Hi , for the parameter vector realizations at iteration
i, zi

j , are given as

∇Jij ≈ C(Zpri )−1
(
zi
j − z

pri
j

)
+Mi T C(D)−1

(
M(zi

j ) − dl,j

)
, (8)

Hi ≈ C(Zpri)−1 + MiT C(D)−1 Mi , (9)

respectively. In these formulae, Mi denotes the approxi-
mation to Jacobian of M(Z), and Hi is approximated by

neglecting the derivative of Mi . MiT denotes the transpose
(or more generally, the adjoint) of Mi . In IES [7, 19], the

approximation,

Mi ≈ C
(
Y i, Zi

)
C

(
Zi

)+
, (10)

is used for calculation of Mi , where superscript +
denotes Moore-Penrose pseudo inverse. A mathematical
justification for this can be found in [36, Theorem 1].

The realization zi
j is then updated as

zi+1
j = zi

j − β
(
Hi−1∇Jij

)
, (11)

where β is the step length which is defined based on
“restricted-step algorithm” in [34]. The update equation can
be written as

zi+1
j = zi

j + β
(
�

i,pri
j + �

i,lik
j

)
, (12)

where �
i,pri
j and �

i,lik
j are given by

�
i,pri
j = (IZ − Ki Mi )[zpri

j − zi
j ] , (13)

�
i,lik
j = Ki[dj − M(zi

j )] . (14)

In these Equations, IZ is the identity matrix of the parameter
vector dimension, and the Kalman gain Ki is given by

Ki = C(Zpri)MiT
(
Mi C(Zpri)MiT + C(D)

)−1
. (15)

The iterations are continued until convergence is obtained.

3Multilevel data assimilation

In MLDA the forecast step is performed using a set of
models which have different costs and fidelities. Here, we
define ML := M, and {Ml}L−1

l=1 are approximations to
ML with increasing accuracy and computational cost as
l increases. We will denote {Ml}Ll=1 a multilevel model.
After sampling from the prior distribution, the ensemble of
prior state vectors is divided into L sub-ensembles. Each
of the sub-ensembles are modeled using its corresponding
forward model, as seen in Fig. 1, where subscript l denotes
the sub-ensemble index.

Fig. 1 Representation of a
single forecast step of MLDA
algorithms
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3.1 Multilevel models

Multilevel models will form hierarchies of both accuracy
and computational cost.

One can think of several schemes to devise the hierarchy,
including but not limited to coarsening the spatial grid of
the forward model, coarsening the temporal grid of the
forward model, and relaxing the convergence criteria in
the iterative linear solvers. All of these methods reduce
the computational cost of the models and increase their
numerical error. Coarsening the spatial grid and performing
simulations on such grids is chosen for the current work
(Note, however, that the parameters that we invert for are
kept in the fine grid, meaning that upscaling the parameters
is considered as part of the multilevel forward models).
The techniques presented in this work are, however, robust
enough so that with minor manipulations, they can be used
for other lower fidelity models.

As for coarsening the grid of the forward models, [14]
proposed a robust technique, which was also used in [32].
This technique occurs in a sequence of steps. In each step,
neighboring cells of the grid at the previous step are merged
into a coarser cell unless they are to be kept fine deliberately.
A representation of the grid coarsening process for an 8× 8
sample grid can be found in Fig. 2. As it can be seen in the
figure, coarsening has occurred in a uniform manner across
both directions, except for the vicinity of two opposite
corners, where the grid cells are kept in fine scale to boost
the local numerical accuracy around the two wells, producer
(P) and injector (I). The aim is that the grid coarsening does
not change the physics of the problem too much.

3.2 Transformation of model forecasts

The discrepancy in coarseness of the multilevel grids results
in the spatially distributed model forecasts to be in different
resolutions for different levels. Therefore, in order to be
able to compute the multilevel sample statistics of model
forecast, a robust transformation scheme should be devised

for converting a model forecast from the resolution at one
level to another.

In the problem at hand, transformation of the model
forecast requires either upscaling or downscaling. Standard
volume-weighted arithmetic averaging technique is used for
upscaling.

Downscaled model forecasts are simply put equal to
the corresponding coarse grid values. Accordingly, both
upscaling and downscaling are linear transformations
of model forecasts. Hence, we define a set of linear
transformations, {Uc

f : Rζf �→ Rζc |1 ≤ c, f ≤ L} , where
ζf and ζc denote the dimension of model forecast vector at
arbitrary levels f and c, respectively, and Uc

f transforms the
model forecast vector from level f to be compatible with
level c.

Figure 3 gives two examples of transformation of
spatially distributed model forecast, one from a coarser grid
to a finer grid, and one vice versa. Each model forecast
component is represented in its corresponding spatial grid
cell. As can be seen in Fig. 3, in the upscaling procedure, the
arbitrarily named model forecast components {ai}4i=1 in the
northwest zone from the finer grid (level f ), are averaged to
form their corresponding model forecast component, ā, in
the coarsened grid. Similar procedure has been performed
for the rest of model forecast components, shown by *. In
the downscaling procedure, on the other hand, the model
forecast components in the coarse grid are simply copied to
their corresponding components of the finer grid.

3.3 Upscaling of observation data

As part of the DA process, the mismatch between the model
forecasts and observation data needs to be calculated. Here,
it is assumed that inverted seismic data is given in the
resolution of the finest simulation grid. Accordingly, for
each of the levels, either the observation data should be
upscaled to the resolution of model forecast or the model
forecast should be downscaled to the resolution of the
observation data. In this paper, we take the former approach.

Fig. 2 Grid coarsening proposed by [14] performed on an 8 × 8 grid (a) Finest level (b, c) Coarser levels
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Fig. 3 Transformation of model
forecast between two levels f

(finer) and c (coarser) (a) model
forecast in resolution of level f
(b) transformation of model
forecast from resolution of level
f to the resolution of level c (c)
model forecast in resolution of
level c (d) transformation of
model forecast from resolution
of level c to the resolution of
level f

Since the observation data is in the resolution of the finest
model, using the same transformation functions as those
designed for model forecasts on the fine observation data
will result in upscaling of observation data into the preferred
resolution. Accordingly, the transformed random vector of
observation data at level l is given as

Dl = Ul
LD . (16)

3.4 Multilevel statistics

Assuming we have approximations of the model forecasts,
Y , being a function of the unknown parameter vector,
Z, on several levels, a statistically correct scheme for
approximation of multilevel statistics for Y is required. As
for MLDA, the mean and the covariance of model forecast
are of foremost interest. Accordingly, formulations for these
multilevel statistics are proposed.

Assuming the model with the highest fidelity, ML,
to be exact, [22] proposed an unbiased formulation for
approximation of multilevel statistics for DA under certain
conditions. Under these set of conditions, the proposed
method outperformed its alternatives [15]. For reservoir
problems, however, these conditions typically do not hold,
and another formulation inspired by Bayesian Model
Averaging (BMA) was proposed [15]. In this formulation
the statistics are computed based on reliability weights wl

for each of the levels l. This formulation is, by definition,
a biased scheme for computation of multilevel moments;
however, it will be a useful technique for problems in which
variance error dominates bias, which is often the case for
petroleum reservoir problems [15]. Using this formulation
and transformations of the forecast, [32] proposed a
formulation of multilevel statistics for spatially distributed
model forecasts which will be used in the current work.
According to this scheme, the multilevel mean of the model
forecast at level l is given as

EML,l(Y ) =
L∑

k=1

wkU
l
k E(Yk) , (17)

L∑

k=1

wk = 1 , (18)

where E(Yk) denotes sample mean of the model forecast
at level k. Using the law of total variance, the multilevel
approximation of covariance of the model forecast at level l
is formulated as

CML,l(Y ) =
L∑

k=1

wk{C(Ul
kYk) +

(
E(Ul

kYk) − EML,l(Y )
)

(
E(Ul

kYk) − EML,l(Y )
)T } . (19)
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In addition, the parameter-forecast cross-covariance can
be written as

CML,l(Z, Y ) =
L∑

k=1

wk{C(Zk, U
l
kYk) + (E(Zk) − EML(Z))

(
E(Ul

kYk) − EML,l(Y )
)T }, (20)

where EML(Z) is the multilevel formulation of the
parameter-vector mean. This statistic is formulated using
the same weights as in forecasts multilevel statistics, but
since the parameters are in the same resolution for all levels,
no transformation is needed for formulating it,

EML(Z) =
L∑

k=1

wk E(Zk) . (21)

Similarly, the multilevel covariance of the parameter vector
is defined as

CML(Z) =
L∑

k=1

wk{C(Zk)+(E(Zk) − EML(Z)) (E(Zk) − EML(Z))T }.

(22)

If all the Zk , 1 ≤ k ≤ L, share the same probability
distribution function, which is the case in the first
iteration of DA algorithms to be discussed in Section 3.5,
Equations 21 and 22 will reduce to E(Z) and C(Z),
respectively.

3.5 Multilevel data assimilation algorithms

Multilevel Hybrid Ensemble Smoother (MLHES) was
proposed in [32] and tested on a petroleum reservoir model.
Here, we firstly explain MLHES algorithm. Following that,
we develop an iterative MLDA algorithm based onMLHES;
i.e. IMLHES. The coarse model forecasts in both of
these algorithms entail Multilevel Modeling Error (MLME),
defined as the discrepancy between the upscaled fine model
forecasts of a certain realization and the coarse model
forecast of that realization. Several methods for correction
of this error were assessed in [33]. Here, we utilize mean
bias correction for addressing the MLME, which was also
used in [32].

3.5.1 Multilevel hybrid ensemble smoother

Based on the decision on resource allocation, Nl ensemble
members are simulated using Ml . Running the forward
simulator for every prior realization z

pri
l,j , where 1 ≤ l ≤ L

and 1 ≤ j ≤ Nl , we have

ŷl,j = Ml (z
pri
l,j ) , (23)

where ŷl,j is the model forecast pertaining to realization

z
pri
l,j . It should be mentioned that zpri

l,j vectors are essentially
i.i.d samples from the prior distribution regardless of l

and have the same dimension. The subscript l is used to
denote that the forecasts pertaining to this realization are
modeled usingMl . The models forecasts, ŷl,j , however, are
in different resolutions for different l, and accordingly have
different dimensions.

Next, the multilevel simulations are corrected for their
mean bias by

yl,j = ŷl,j +
(
Ul

L E(ŶL) − E(Ŷl)
)
. (24)

This correction will help to account for part of the modeling
error associated with coarser models, and results in the
forecast mean to be unbiased.

In MLHES, multilevel approximation of the mean
and covariance of the model forecasts are utilized for
computation of the Kalman gain, and since the model
forecasts are in different resolutions for different levels, this
is done separately for each level. Accordingly, the updated
parameters vector of an arbitrary ensemble member at level
l is given by

za
l,j = z

pri
l,j + Kl(dl,j − yl,j ) , (25)

where the observation data sample, dl,j , is a random

pick from N (Ul
LμD, Ul

LC(D)Ul
L

T
), and the level-specific

Kalman gain, Kl , is given as

Kl = CML,l(Z
pri, Y )

(
CML,l(Y ) + Ul

LC(D)(Ul
L)T

)−1
.

(26)

Here, the multilevel forecast covariance and the parameter-
forecast cross-covariance are calculated by Eqs. 19 and 20,
respectively.

A pseudo-code of MLHES is presented in Appendix A.

3.5.2 Iterative multilevel hybrid ensemble smoother

In order to be able to handle more nonlinear cases, an
iterative version of MLHES is developed. In this algorithm,
like with the MLHES, after the forecast step, we correct
for the multilevel mean bias. To ease the notations, we
consider the bias-correction as part of the new-defined
forward models {M̃l}Ll=1 given as

M̃l(Z) = Ml(Z) +
(
Ul

L E(ŶL) − E(Ŷl)
)
. (27)
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Similarly to how (6) was obtained in Section 2.2, we can
write the objective function for level l as

Jl (Z) = 1

2
||Z−E(Zpri )||2C(Zpri )−1 + 1

2
||M̃l (Z)−Ul

LμD ||
(Ul

LC(D)Ul
L

T
)−1 .

(28)

Randomizing this objective function using the ensemble of
realizations pertaining to level l, the objective function for
realization j in sub-ensemble l can be written as

Jl,j (zl,j ) = 1

2
||zl,j −z

pri
l,j ||2C(Zpri )−1 + 1

2
||M̃l (zl,j )−dl,j ||

(Ul
LC(D)Ul

L

T
)−1 .

(29)

In order for minimization of Jl,j for all the realizations,
the Gauss-Newton scheme with confined step length
is employed. Accordingly, the gradient, ∇ Jil,j , and the

Hessian, Hi
l , for the parameter vector realizations at iteration

i, zi
l,j , are defined by

∇ Jil,j = C(Zpri )−1
(
zi
l,j −z

pri
l,j

)
+Mi

l

T
(
Ul

LC(D)Ul
L

T
)−1 (

M̃l (z
i
l,j )−dl,j

)
,

(30)

Hi
l ≈ C(Zpri)−1 + Mi

l

T
(
Ul

LC(D)Ul
L

T
)−1

Mi
l , (31)

respectively. Here, Mi
l denotes the ensemble approximation

to Jacobian of M̃l at iteration i, and Hi
l is approximated by

neglecting the derivative of Mi
l .

If the same procedure that was used in Section 2.2 to
obtain (10) was followed for Ml , the approximation,

Mi
l ≈ C

(
Y i

l , Z
i
l

)
C

(
Zi

l

)+
, (32)

would be obtained. However, in order to be able to use the
information also from other levels for approximation of Mi

l ,
the multilevel formulation of the parameter-forecast cross-
covariance is utilized instead of its single-level formulation,

Mi
l ≈ CML,l

(
Y i, Zi

)
CML(Zi)

+
. (33)

The update formula for an arbitrary realization j of
sub-ensemble l at iteration i, zi

l,j , can be written as

zi+1
l,j = zi

l,j − βl

(
Hi

l

−1∇ Jil,j

)
, (34)

where βl is the step length at level l which is updated as
in the restricted step algorithm, [34], at every iteration. The
update equation can be written as

zi+1
l,j = zi

l,j + βl

(
�

i,pri
l,j + �

i,lik
l,j

)
, (35)

where by using Woodbury matrix lemma, �i,pri
l,j and �

i,lik
l,j

are given by

�
i,pri
l,j = (IZ − Ki

l M
i
l )[zpri

l,j − zi
l,j ] , (36)

�
i,lik
l,j = Ki

l [dl,j − M̃(zi
l,j )] , (37)

and the level-specific Kalman gain, Ki
l , is obtained by

Ki
l = C

(
Zpri

)
Mi

l

T
(
Mi

l C(Zpri )Mi
l

T + Ul
LC(D)(Ul

L)T
)−1

. (38)

The iterations are then separately performed for each of the
levels until convergence is obtained for all of them.

A pseudo-code of the IMLHES algorithm is presented in
Appendix B.

4 Test models

Three different reservoir models are set up to assess
the algorithms performances. These reservoir models have
some shared properties. They are two-dimensional with
Cartesian grids. For all of them, compressible two-phase
flow (oil and water), no-flow boundary conditions, and
standard equations for capillary pressure and relative
permeability are considered. A description of the other
shared general properties of the reservoir models is given
in Table 1. Unique features of the reservoir models are
explained separately in Sections 4.1–4.3.

The forward models used for forecasting each consist of
two segments. A reservoir flow model is used to predict the
state variables in time, and a petro-elastic model is utilized
for computing the elastic rock properties from parameters
and predicted state variables.

The flow segment of the forward model is derived by
substitution of the Darcy’s law into the mass conservation
equation for each of the phases, resulting in [3]

∇.

[
kro

νoBo

k(∇po − ρog∇z)

]
= ∂

∂t

(
φSo

Bo

)
+ qo , (39)

∇.

[
krw

νwBw

k(∇pw − ρwg∇z)

]
= ∂

∂t

(
φSw

Bw

)
+ qw , (40)

where

So + Sw = 1 , (41)

pcow = po − pw . (42)

Table 1 Shared properties of the reservoir models

Fine cell dimensions: 30 × 30 × 30 (m3) Porosity: 0.2

Initial Oil saturation: 0.85 Initial Pressure: 200 bar

247Computational Geosciences (2022) 26:241–262



In these Equation, k denotes absolute permeability, and
kr∗ denotes the relative permeability of the corresponding
phase. kr∗ is a function of saturation of that phase, S∗. The
pressure of a phase is denoted by p∗, and the capillary pres-
sure, pcow, is a function of Sw. Furthermore, g denotes the
gravitational constant; ν∗, B∗, and ρ∗ are the viscosity, the
formation volume factor, and density of their correspond-
ing phases; and q∗ denotes the sink or source term of its
corresponding continuity equation.

The flow segment of the forward models is performed
using Eclipse-100 [38]. Coarsening the grid is done by using
the Eclipse keyword COARSEN, which merges groups
of pre-defined neighboring cells to form a coarser grid.
The upscaling of permeabilities is performed using pore-
volume weighted arithmetic averaging, and transmissibili-
ties between two neighboring coarse cells in each direction
are calculated based on harmonic averaging in that direction
and summing it in other directions [38].

As for the petro-elastic segment of the forward model,
an in-house model based on standard rock-physics [4],
[12, Report 1] was used.

4.1 Reservoir model I

This model has a 40 × 40 grid, and two wells, one
producer (P) at southwest corner and one injector (I) at
northeast corner. Both of the wells are pressure-controlled,
the injector at 275 bar and the producer at 100 bar.

4.2 Reservoir model II

This model has a 64× 64 grid, and two wells, one producer
(P) at southwest corner, and one injector at northeast corner
(I). Additionally, an oblique fault stretching from 8 grid cells
distant from the northwest corner to 8 grid cells distant from
southeast corner is added to the general reservoir model
structure. As can be seen in Fig. 5, the coarsening scheme
in the presence of such a fault, which will be discussed
in Section 5.2, results in some permeability values that are
located on one side of the fault in the fine grid to contribute
to an upscaled permeability value located on the other side
of the fault in the coarsened grid.

4.3 Reservoir model III

This model has a 70× 70 grid and three wells, one injection
well (I) in southeast corner and two producers (P1 and P2) in
southwest and northwest corners. All the wells are pressure-
controlled, I at 300 bar and P1 and P2 at 110 bar. This model
has three zones, each of which contains one of the wells and
has its own variogram for the permeability field, and there
exist a smooth transition from one zone to another.

5 Numerical investigation

In order to compare the quality of the multilevel algorithms
presented in this work with the standard DA methods, three
experiments are conducted. Each experiment is performed
on one of the three reservoir models discussed in Section 4.

The unknown parameter fields in all the experiments
are logarithmic permeability fields, which have different
distributions in each of the experiments.

The observation data are two sets of time-lapse bulk-
impedance data taken based on a baseline (day zero
of production) and two vintages, which are different
for each experiment and will be described separately.
These observation data are generated using the results of
simulation of a random draw from the prior parameter
distribution. As inverted seismic data typically are spatially
correlated, we use a correlated covariance matrix for the
data error. In doing so, a variogram with the specifications
given in Table 2 is considered. The marginal standard
deviation of each observation value is given as

σ = r max{|δ|, η} , (43)

where r = 0.1, δ is the value of observation data at a
certain location, and η is a threshold put to avoid too much
certainty in the observation data whose absolute values are
very small. This threshold is defined as the 1st smallest
percentile of the absolute value of the observation data.

For each numerical experiment we will compare plots
of results obtained with multilevel algorithms, MLHES and
IMLHES, with the results obtained from their standard
DA counterparts, ES with localization (ES-LOC) and IES
with localization (IES-LOC). The localization scheme used
in ES-LOC and IES-LOC, is a distance-based localization
based on the covariance structure given in [16] and spherical
model for variogram.

The gold standards (reference solutions) for the com-
parison will be results obtained using ES with an exceed-
ingly large ensemble (ES-REF) for smoothers, and results
obtained using IES with an exceedingly large ensemble
(IES-REF) for iterative algorithms. By utilizing such unre-
alistically large ensembles we obtain results that are visually
indistinguishable from the best results that can be achieved
using ES and IES. This was assured by running these
algorithms with perturbations in their ensemble sizes.

Table 2 Variogram used for observation data error, the unit for range
is grid cells

variogram type range mean anisotropy ratio

spherical 5 0 1
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Furthermore, we will show plots of the log permeability
realizations used when generating the synthetic data
(“Truth”).

In each experiment, a fixed computational power is
considered for each iteration of all algorithm runs (except
for reference solutions). As the dominant cost of the DA
process is pertaining to simulations of forward models,
where iterative linear solvers dominate the computational
costs for large problems, the computational cost pertaining
to each ensemble member to be simulated using forward
model, Ml , is assumed to be proportional to G

γ

l , where Gl

is the number of the active grid cells in the forward model
at level l, and γ ∈ [1.25, 1.5], [2]. Here, we take γ = 1.35.
Additionally, as usual for large-scale cases, the ensemble
size for standard single-level DA algorithms is set to be
100. Using this basis for calculations, the computational
power allocated for all the runs will be equal if the following
equation holds for all of them,

100G1.35
L =

L∑

l=1

NlG
1.35
l . (44)

Considering this equation, we set Nl for different levels of
the MLHES. There exists L − 1 degrees of freedom for
specification of the {Nl}Ll=1. No optimization was performed
for this specification, the only aim pursued was to keep the
size of sub-ensembles ascending with decrease in model
cost. Several other similar settings that were tried resulted
in similar DA outcomes.

For all experiments, the convergence criterion for the
iterative algorithms was that improvements in the relative
data mismatch should be smaller than 0.0001. The number
of iterations required for convergence was approximately
the same for IES-LOC and IMLHES. Accordingly, no
adjustments were performed for equalizing the total
computational cost used by these two algorithms.

For the MLHES and IMLHES, there is a possibility to
improve the results by tuning the weights in Eqs. 17–22 for
specific cases, but here we use the simplest choice–weights
being all equal to 1/L.

5.1 Experiment I

This experiment is conducted on Reservoir Model I. The
multilevel algorithms have four levels, corresponding to 85,
154, 436, and 1600 grid cells, respectively. A summary of
the resource allocation for the different runs carried out in
this experiment can be found in Table 3. The observation
data for this experiment are generated based on seismic
vintages at 2000 and 4000 days after production starts.

The unknown logarithmic permeability field is based on
a spherical variogram with mean and variance constant at
5 and 1, respectively, anisotropy angle and anisotropy ratio

Table 3 A summary of resource allocation for different runs in
experiment I

level 1 level 2 level 3 level 4

G1 = 85 G2 = 154 G3 = 436 G4 = 1600

N1 N2 N3 N4

ES-LOC - - - 100

MLHES 525 471 231 30

ES-REF - - - 8000

IES-LOC - - - 100

IMLHES 525 471 231 30

IES-REF - - - 8000

of -20 degrees and 0.33, and range 20 grid cells. Randomly
selected realizations from this logarithmic permeability
field can be found in Fig. 4.

5.2 Experiment II

This experiment is conducted on Reservoir Model II. In this
experiment, the presence of the oblique fault in the field
interferes with coarsening the model. One way to handle
this issue would be to avoid coarsening the grid around the
fault area; however, this would reduce the computational
efficiency of the multilevel scheme. In order to keep the
grid coarsening as it is, the fault is approximated with
bigger “zigzags” as depicted in Fig. 5 for one realization
of the logarithmic permeability field at different levels of
coarseness.

The multilevel algorithms have four levels, correspond-
ing to 124, 310, 1060, and 4096 grid cells, respectively. A
summary of the resource allocation for the different runs
carried out in this experiment can be found in Table 4. The
observation data for this experiment are generated based on
seismic vintages at 5000 and 10000 days after production
starts.

The unknown logarithmic permeability field is based on
a spherical variogram with mean and variance constant at
5 and 1, respectively, anisotropy angle and anisotropy ratio
of -30 degrees and 0.7, and range 25 grid cells. Randomly
selected realizations from this logarithmic permeability
field can be found in Fig. 6.

5.3 Experiment III

This experiment is conducted on Reservoir Model III.
The multilevel algorithms have four levels, correspond-

ing to 163, 412, 1279, and 4900 grid cells, respectively. The
observation data for this experiment are generated based on
seismic vintages at 3000 and 6000 days after production
starts.
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Fig. 4 Randomly selected realizations from prior distribution of the logarithmic permeability field of Reservoir model I

Fig. 5 Approximation of the
fault for simulations, a: original
fault, b-d: approximations at
coarser levels

Table 4 A summary of
resource allocation for different
runs in experiment II

level 1 level 2 level 3 level 4

G1 = 124 G2 = 310 G3 = 1060 G4 = 4096

N1 N2 N3 N4

ES-LOC - - - 100

MLHES 1404 652 170 40

ES-REF - - - 10000

IES-LOC - - - 100

IMLHES 1404 652 170 40

IES-REF - - - 10000
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Fig. 6 Randomly selected realizations from prior distribution of the logarithmic permeability field of Reservoir model II

Table 5 A summary of
resource allocation for different
runs in Experiment III

level 1 level 2 level 3 level 4

G1 = 163 G2 = 412 G3 = 1279 G4 = 4900

N1 N2 N3 N4

ES-LOC - - - 100

MLHES 791 707 226 30

ES-REF - - - 10000

IES-LOC - - - 100

IMLHES 791 707 226 30

IES-REF - - - 10000

Fig. 7 Reservoir Model III, (a)
three zones of the model (b-d)
randomly selected realization
from prior logarithmic
permeability field
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Table 6 The three variograms
of Reservoir Model III Zone variance mean range ratio angle type

1 1 5 20 0.4 -70 cubic

2 1 5 40 0.7 -30 cubic

3 1 5 30 0.6 -60 cubic

A summary of the resource allocation for different tests
carried out in this experiment can be found in Table 5.

The unknown logarithmic permeability field is based on
three different variograms in three zones of the field. The
Zones, i.e. Zone 1, Zone 2, and Zone 3 can be seen in
Fig. 7. The area without any assigned zone is a continuous
transition from one zone to others. The details about the
variograms based on which the distribution of the unknown
parameters are defined can be found in Table 6. Randomly
selected realizations from this logarithmic permeability
field can be found in Fig. 7.

6 Numerical results

The results from the numerical experiments are assessed
qualitatively, using the posterior parameters and forecasts.

Firstly, mean and variance of the posterior parameter
fields obtained by different algorithms and reference cases
are compared with each other. Additionally, since both
the model forecasts and observation data are in different
resolutions for different levels of multilevel algorithms,
comparison of posterior forecasts as such is not a possibility.
Instead, we run fine-scale simulations of the posterior

Fig. 8 Experiment I–Mean posterior logarithmic permeability field
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Fig. 9 Experiment I–Variance of posterior logarithmic permeability field

Fig. 10 Experiment I–Posterior time-lapse bulk impedance field (m
s

kg

m3 ) in comparison with observation data in the second vintage
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Fig. 11 Experiment I–Variance of posterior time-lapse bulk impedance field ((m
s

kg

m3 )2), in the second vintage

ensemble for all algorithms and then plot the mean and
variance of the model forecasts for all the algorithms and
compare them together. The model forecasts of the second
vintage are presented for all the experiments.

The simplest formulation is chosen for computation of
posterior statistics of MLHES and IMLHES, i.e. re-uniting
all the sub-ensembles in these algorithms and treating them
as one ensemble for computation of posterior mean and
variance fields.

ES-LOC was tested with several ranges for localization
(critical distances), and the best results are presented for
each of the experiments.

6.1 Results of Experiment I

Visual analysis of the mean permeability fields in Fig. 8
shows that MLHES and IMLHES results are more similar
to ES-REF and IES-REF results, respectively, than ES-LOC
and IES-LOC results are. This is confirmed by comparison
of the variance fields in Fig. 9. In Fig. 8, improvements
are seen in approximation of the “Truth” by utilization of
IMLHES compared with MLHES.

From Figs. 10 and 11, it is seen that the statistics of
posterior forecasts obtained by use of multilevel algorithms
are more similar to those of reference cases than the results
obtained by use of conventional algorithms. In Fig. 10, the

mean of model forecasts obtained from IMLHES is more
similar to the observation data than that of MLHES.

The ES-LOC and IES-LOC results presented here are
based on the localization range of 30 grid cells.

6.2 Results of Experiment II

Visual analysis of the mean permeability fields in Fig. 12
shows that MLHES results are more similar to ES-REF
results than ES-LOC results are. This can be further
confirmed by comparison of the variance fields given in
Fig. 13 and the statistics of model forecasts in Figs. 14 and
15.

In this experiment, IES-LOC does not converge to the
proximity of global optimum. Since the same holds for
IES-REF, there exists no reference for comparison of the
iterative algorithms. Nonetheless, as can be seen in Fig. 12,
IMLHES results are more similar to “True” permeability
field than those of MLHES. Also, in Fig. 14, slight
improvements in approximation of the observation data is
seen in IMLHES results compared with MLHES results.

For a class of problems (including the problem consid-
ered here) where the model forecast can be seen as a spa-
tially integrated response to a spatially varying parameter
field, there exists a correlation between small-scale oscilla-
tions in the parameter domain and the nonlinearity strength
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Fig. 12 Experiment II–Mean posterior logarithmic permeability field

Fig. 13 Experiment II–Variance of posterior logarithmic permeability field
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Fig. 14 Experiment II–Posterior time-lapse bulk impedance field (m
s

kg

m3 ) in comparison with observation data in the second vintage

Fig. 15 Experiment II–Variance of posterior time-lapse bulk impedance field ((m
s

kg

m3 )2), in the second vintage
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Fig. 16 Experiment III–Mean posterior logarithmic permeability field

of the mapping from parameter field to model forecast, see,
e.g., [5, 18]. This correlation is such that coarsening the sim-
ulation grid and upscaling the associated parameters will
generally result in weaker nonlinearity in the coarser for-
ward models compared to the finer ones. Accordingly, use
of IMLHES instead of IES could improve convergence, as
was the case in experiment II.

The ES-LOC and IES-LOC results presented here are
based on the localization range of 50 grid cells.

6.3 Results of Experiment III

Visual analysis of the mean permeability fields in Fig. 16
shows that MLHES and IMLHES results are more similar
to ES-REF and IES-REF results, respectively, than ES-LOC
and IES-LOC results are. This is confirmed by comparison
of the variance fields in Fig. 17. In Fig. 16, improvements
are seen in approximation of the “Truth” by utilization of
IMLHES compared with MLHES.

From Figs. 18 and 19, it is seen that the statistics of
posterior forecasts obtained by use of multilevel algorithms
are more similar to those of reference cases than the results
obtained by use of conventional algorithms. In Fig. 18, the
mean of model forecasts obtained from IMLHES is more
similar to the observation data than that of MLHES.

The ES-LOC and IES-LOC results presented here are
based on the localization range of 60 grid cells.

7 Summary and Conclusions

In this work, a recently devised MLDA algorithm (MLHES)
for assimilation of spatially distributed data was discussed,
and an iterative version of it (IMLHES) was introduced.
Both of these methods utilize generalizations of multilevel
statistics introduced in [15] for Monte Carlo approximations
of mean and covariance of model forecasts. In addition, per-
formance of these algorithms were evaluated in comparison
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Fig. 17 Experiment III–Variance of posterior logarithmic permeability field

Fig. 18 Experiment III–Posterior time-lapse bulk impedance field (m
s

kg

m3 ) in comparison with observation data in the second vintage
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Fig. 19 Experiment III–Variance of posterior time-lapse bulk impedance field ((m
s

kg

m3 )2), in the second vintage

with standard DA techniques. In doing so, three experiments
were conducted. Each experiment was performed on a reser-
voir model and consisted of six algorithm runs: conventional
Ensemble Smoother with localization (ES-LOC), MLHES,
ES with an exceedingly large ensemble size (ES-REF),
conventional Iterative Ensemble Smoother with localization
(IES-LOC), IMLHES, and IES with an exceedingly large
ensemble (IES-REF).

In order to assess the numerical results, firstly, the mean
and variance fields of posterior unknown parameters (log
permeability) were generated and assessed visually. The
assessments suggest that in all experiments the results from
MLHES were more similar to those of ES-REF than the
results from ES-LOC were. Except for one experiment
where both IES-LOC and IES-REF did not converge to
the proximity of global optimum, the same conclusion was
true about the iterative algorithms. The exception suggests
an additional advantage of IMLHES over IES. It was also
observed that iterations resulted in all the mean posterior
fields obtained by IMLHES to be closer to the permeability
field from which the observation data were generated than
the mean posterior field obtained by MLHES.

Secondly, fine-scale simulations were conducted for
all the posterior ensembles of all algorithms. Plots of
simulated time-lapse bulk impedance means and variances

were compared to plots of observed time-lapse bulk
impedance. Visual analysis of these plots showed that in all
the applicable cases, the multilevel algorithms performed
more similar to the reference cases than the conventional
algorithms did. Additionally, the means of model forecasts
obtained from IMLHES were closer to the observation data
than the means of model forecasts obtained from MLHES
were.

In addition to the presented conventional DA algorithms,
which utilize distance-based localization, ES and IES were
used in conjunction with correlation-based localization [28]
for assimilation of the same data, but this did not improve
the conventional DA results. Furthermore, results from
investigations that were not presented here suggest that
MLDA algorithms show consistency in quality of history
matching with respect to variation in observation data error.

There are several issues about the presented MLDA
algorithms that can be investigated further. Firstly, the
optimal extent of coarsening the grid was not discussed.
The rule of thumb was to coarsen the grid until further
coarsening results in marginal reduction in grid size, due to
restrictions with coarsening around the wells. Additionally,
the number of levels and allocation of resources between
them to obtain the optimal result can also be further
investigated. In this research, the weights for different
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levels in the multilevel statistics was set to be all equal;
however, there is no such constraint. Accordingly, tuning
these weights can be a matter of investigation. Furthermore,
the posterior statistics that was presented in this paper was
based on a pool comprised of all the updated realizations
of different levels put together. Since the accuracy and the
computational power allocated per realization differs from
level to level, the optimal choice of weights for presenting
the posterior statistics needs further research. Moreover, the
multilevel modeling error, which was partially accounted
for by mean bias correction, can be studied in more detail.
For this we refer to [33]. Finally, as realistic reservoir cases
are more complex than the fields tested in this paper, the
increase in the dimensionality of the parameters may call
for a combination of localization and the proposed MLDA
algorithms.

Appendix

AMultilevel hybrid ensemble smoother
algorithm

B Iterative Multilevel Hybrid Ensemble
Smoother Algorithm
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Abstract

We consider estimation of absolute permeability from inverted seismic data. Large amounts
of simultaneous data, such as inverted seismic data, enhance the negative effects of Monte
Carlo errors in ensemble-based Data Assimilation (DA). Multilevel (ML) models consist of a
selection of models with different fidelities. Multilevel Data Assimilation (MLDA) attempts to
obtain a better statistical accuracy with a small sacrifice of the numerical accuracy. Spatial
grid coarsening is one way of generating an ML model. It has been shown that coarsening
the spatial grid results in a problem with weaker nonlinearity, and hence, in a less challenging
problem than the problem on the original fine grid. Accordingly, formulating a sequential
MLDA algorithm which uses the coarser models in the first steps of the DA, followed by the
finer models, helps to find an approximation to the solution of the inverse problem at the
first steps and gradually converge to the solution. We present two variants of a sequential
MLDA algorithm and compare their performance with both conventional DA algorithms and a
simultaneous (i.e., using all the models on the different grids simultaneously) MLDA algorithm
using numerical experiments. Both posterior parameters and posterior model forecasts are
compared qualitatively and quantitatively. The results from numerical experiments suggest
that all MLDA algorithms generally perform better than the conventional DA algorithms. In
estimation of the posterior parameter fields, the simultaneous MLDA algorithm and one of the
variants of sequential MLDA (SMLES-H) perform similarly and slightly better than the other
variant (SMLES-S). While in estimation of the posterior model forecasts, SMLES-S clearly
performs better than both the simultaneous MLDA algorithm and SMLES-H.

1 Introduction

Sound decision making in petroleum reservoir management depends on reliable production
forecasts from reservoir models, including accurate estimates of uncertainty in the forecasts.
The reliability is increased by utilization of available data for calibration of the models–through
the process known as history-matching. Ensemble-based Data Assimilation (DA) methods,
using statistically correct formulations, have become popular for automated reservoir history-
matching [1, 2, 3, 4, 5, 6, 7]. We consider estimation of absolute permeability from inverted
seismic data.
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Ensemble-based methods have limited degree of freedom, which in conjunction with massive
amounts of data, e.g. time-lapse seismic data, can result in over-fitting. There have been several
efforts to balance the degrees of freedom of the problem and the information content in the
data, including use of localization [8], reduction of data using machine learning techniques
[9, 10], reduction in data size using the correlation between the data and wells’ cumulative
production [11], sparse representation of data using a wavelet transform [12], assimilation of
only the saturation front or transformation of the data into position of fluid fronts [13, 14, 15],
combination of coarsening the data and coarse model simulations [16], and projection of data
into ensemble subspace in combination with local analysis [17].

Monte Carlo approximations play a crucial role in ensemble-based DA. Due to computational-
cost limitations, the ensemble size is limited to roughly one hundred. Using straightforward
ensemble-based DA, the degrees of freedom of the problem would equal the ensemble size, and
such an approach would result in significant Monte Carlo errors. The negative effects of Monte
Carlo errors are enlarged in the presence of large amounts of simultaneous data, such as in-
verted seismic data, resulting in underestimation of variance, and in more severe cases ensemble
collapse.

The most widely used treatment for Monte Carlo errors is distance-based localization [18].
The basic assumption underlying distance-based localization is that true correlations between a
parameter and a datum decrease when the distance between their respective locations increases,
and disappears if the distance exceeds a critical distance. This assumption may not always
hold for subsurface problems. Different localization functions and their utilization in DA can
be found in [19, 20, 21]. A proper choice of localization function, and the critical distance
in particular, depends on parameter and data types as well as on other problem settings.
This reduces the robustness of distance-based localization, also for problems where its basic
assumption does hold. Papers using ensemble-based methods for assimilation of seismic data
[22, 23, 24], typically use localization methodologies developed originally for meteorological
science which were later adapted to petroleum problems with production data.

Simply increasing the ensemble size will reduce Monte-Carlo errors, but it will also increase
the computational cost. Utilization of a lower-cost and lower-fidelity model renders the possi-
bility of increasing the ensemble size without increasing the total computational cost. Use of
a lower-fidelity reservoir model will, however, introduce modeling errors in addition to those
already present in conventional-fidelity simulation results. The underlying assumption when
applying lower-fidelity models in DA is therefore that the gain in reducing Monte Carlo errors is
larger than the loss in numerical simulation accuracy. DA using various types of lower-fidelity
models has been applied to several inverse problems, e.g., within petroleum reservoir model-
ing [25, 26, 27] and atmospheric science [28]. Note that since lower-fidelity simulations are
applied to the forecast step and localization is applied to the analysis step, the two techniques
can be combined, if desired.

Lower-fidelity models can have high numerical errors. Additionally, choosing an optimal
level of fidelity for these models is not straightforward. Multilevel (ML) simulations utilize a
selection of models, which form hierarchies of both computational accuracy and computational
costs (ML model). Multilevel Data Assimilation (MLDA) [29, 30, 31, 32, 33, 34, 35, 36, 37]
utilizes an ML model in the forecast step of the DA. The levels of the multilevel model have
different numerical accuracies. The MLDA, allocating some of the computational power to the
models with lower fidelity, tries to achieve a low total error by keeping a balance between the
numerical errors and statistical errors.

Some conventional DA methods (i.e., single-level ensemble-based DA methods) , like the
ensemble smoother (ES) [38] , the ES with multiple DA (ESMDA) [2], and the iterative ES
(IES) [1], assimilate data simultaneously, i.e. assimilate all data over a certain period at once,
while other conventional methods, like the ensemble Kalman filter (EnKF) [39] and the EnKF
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with multiple DA (EnKFMDA) [40], assimilate data sequentially. In the MLDA domain, a
Simultaneous MLDA (SiMLDA) algorithm was developed for assimilation of inverted seismic
data [33]. Numerical experiments show that this algorithm, the Multilevel Hybrid Ensemble
Smoother (MLHES) whose formulation uses a hybrid Kalman gain based on several levels,
outperforms its conventional DA counterparts with which it was compared [33, 41, 37]. However,
strong nonlinearity can affect its performance negatively. Hence, another SiMLDA algorithm,
the iterative version of MLHES (IMLHES) [37], was designed to handle this problem. Numerical
experiments show that use of iterations improves performance of MLHES [37], but IMLHES is
not without limitations. It is not obvious how to optimally formulate convergence criteria for
the different levels of IMLHES. This could cause failed iterations and additional computational
cost.

There are indications that utilization of sequential MLDA (SeMLDA) algorithms can benefit
from certain properties of the problem of estimation of permeability from inverted seismic
data. Firstly, analytical [42] and numerical [43] results show that sequential DA is expected to
outperform simultaneous DA for weakly nonlinear problems. Secondly, for a class of problems
(including the problem considered here) where the model forecast can be seen as a spatially
integrated response to a spatially varying parameter field, there exists a correlation between
small-scale oscillations in the parameter domain and the degree of nonlinearity of the mapping
from parameter field to model forecast, see, e.g., [44, 45]. This correlation is such that coarsening
the simulation grid and upscaling the associated parameters will generally result in weaker
nonlinearity in the coarser forward models compared to the finer ones. Taking advantage of
this, we consider several resolutions of inverted seismic data, and develop a SeMLDA scheme
which first assimilates the coarsest resolution of the data corresponding to the coarsest forward
model, followed by the data in higher resolution corresponding to more non-linear models. This
construction corresponds to the optimal ordering of data as suggested by [42, 43]. Note that,
here, the term ‘sequential’ pertains to a sequence of data with different resolutions, not data
at different times.

In this work, we will introduce two variants of a SeMLDA algorithm and assess their perfor-
mance in comparison with a conventional sequential DA algorithm, a conventional simultaneous
DA algorithm, and a SiMLDA algorithm. This will be done with the help of numerical experi-
ments.

The rest of this paper is organized as follows. Since the SeMLDA methods developed in this
paper are partially inspired by the ESMDA, the ESMDA will be briefly presented in Section
2. Section 3 describes MLDA in general, and introduces two variants of a novel SeMLDA
algorithm. Section 4 explains the test models used for numerical investigation. In Section 5 we
describe the numerical investigations, which are followed by their results in Section 6. Finally,
in Section 7 we summarize and conclude the paper.

2 Ensemble smoother with multiple data assimilation

The forward models used in the parameter estimation process are often nonlinear. In the case
of assimilation of inverted seismic data, the nonlinearity comes from both fluid flow equations
and rock physics modeling. This nonlinearity has motivated the development of several DA
algorithms, including ESMDA [2]. This algorithm assimilates the same data Na times while
inflating the data-error covariance matrix. By doing so, several small assimilation steps are
taken instead of one big assimilation step. This helps to better account for the nonlinearity of
the problem.

At step i of ESMDA, an ensemble of Ne realizations {zprii,j }Ne
j=1 from the prior parameter

vector Zpri
i is considered. The ESMDA update consists of three steps.
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Firstly, running the forward simulator for every realization, zprii,j , 1 ≤ j ≤ Ne, we have

yi,j =M(zprii,j ) , (1)

where yi,j is a realization from the model forecasts random vector at assimilation step i, Yi.
Secondly, the original observation data-error model, D ∼ N (E(D),C(D)), is slightly manip-

ulated such that the random observation data vector at step i is given as D̂i ∼ N (E(D), αiC(D)).
The data-error covariance matrix is inflated using the scalar value αi so that multiple assimi-
lations of the same data does not violate Bayes’ rule. Hence, the updated parameter vector of
an arbitrary ensemble member is given by

zposi,j = zprii,j +Ki(d̂i,j − yi,j) , (2)

where d̂i,j is a realization of D̂i, and the Kalman gain, Ki, is given as

Ki = C(Zpri
i , Yi) (C(Yi) + αiC(D))−1 . (3)

The terms C(Yi) and C(Zpri
i , Yi) denote the the covariance of Yi and cross-covariance between

Zpri
i and Yi, respectively.

Finally, while i < Na, the prior ensemble at step i+ 1 is set equal to the posterior ensemble
at step i;

zprii+1,j := zposi,j , (4)

for 1 ≤ j ≤ Ne.
In general, the likelihood can be written as a product of inflated likelihoods. This process,

known as tempering, fulfills Bayes theorem exactly. ESMDA is a special case of tempering. If
the forward model, M, is a linear model and the distributions of the prior parameters and the
data errors are Gaussian, there exists a condition (denoted the MDA condition) for αi which
ensures that the ESMDA samples correctly from the posterior distribution. This condition is
given as

Na∑

i=1

1

αi
= 1 . (5)

It is, however, unclear how important (5) is for problems where normality or linearity does not
hold.

3 Multilevel Data Assimilation

In MLDA the forecast step is performed using a set of models which have different costs and
fidelities. Here, we define ML := M, and {Ml}L−1l=1 where Ml is an approximation to ML

with increasing accuracy and computational cost as l increases. We will denote {Ml}Ll=1 an
ML model.

3.1 Multilevel Model

Members of an ML model form hierarchies of both accuracy and computational cost. One can
think of several schemes to devise the hierarchy including, but not limited to, coarsening the
spatial grid of the forward model, increasing the length of the forward model time steps, and
relaxing the convergence criteria in the iterative linear solvers. All of these methods reduce the
computational cost of the models and increase their numerical error. Coarsening the spatial
grid and performing simulations on such grids is chosen for the current work (Note, however,
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that the parameters that we estimate are kept in the fine grid, meaning that upscaling the
parameters is considered as part of the ML forward models).

Fossum and Mannseth [32] proposed a robust technique for grid coarsening, which was also
used in [33, 41, 37]. In each coarsening step, neighboring cells of the grid at the previous step
are merged into a coarser cell unless they are to be kept fine deliberately. A representation of
the grid coarsening process for an 8 × 8 example grid can be found in Figure 1. The figure
illustrates that coarsening has occurred in a uniform manner across both directions, except for
the vicinity of two opposite corners, where the grid cells are kept in fine scale to boost the local
numerical accuracy around the two wells, producer (P) and injector (I). The aim is that the
grid coarsening should not change the physics of the problem too much.

(a) (b) (c)

Figure 1: Grid coarsening proposed by [32] performed on an 8× 8 grid (a) Finest level (b,c) Coarser
levels

3.2 Transformation of Model Forecasts

The discrepancy in coarseness of the ML grids results in the spatially distributed model forecasts
to be in different resolutions for different levels. Therefore, in order to be able to compute the
ML sample statistics of model forecasts, a robust transformation scheme should be devised for
converting a model forecast from the resolution at one level to another.

In the problem at hand, transformation of the model forecast requires either upscaling or
downscaling. A standard volume-weighted arithmetic averaging technique is used for upscaling.
Since the grids of the ML model used here have a nested structure, downscaled model forecasts
are simply put equal to the corresponding coarse grid values. Accordingly, both upscaling and
downscaling are linear transformations of model forecasts. Hence, we define a set of linear
transformations, {U c

f : Rζf 7→ Rζc |1 ≤ c, f ≤ L} , where ζf and ζc denote the dimension of
model forecast vector at arbitrary levels f and c, respectively, and U c

f transforms the model
forecast vector from level f to level c.

3.3 Upscaling of Observation Data

As part of the DA process, the mismatch between the model forecasts and observation data
needs to be calculated. Here, it is assumed that inverted seismic data is given in the resolution
of the finest simulation grid, level L. Therefore, for each of the levels, either the observation
data should be upscaled to the resolution of the model forecasts or the model forecasts should
be downscaled to the resolution of the observation data. We take the former approach. Since
the observation data is in the resolution of the finest model, using the same transformation
functions as those designed for the model forecasts on the fine observation data will result in
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upscaling of observation data into the required resolution. Hence, the transformed random
vector of observation data at level l is given as

Dl = U l
LD . (6)

3.4 Sequential Multilevel Data Assimilation

The idea of sequential assimilation of spatially distributed data resonates well with the nature
of the ML model used. Since coarsening the model is expected to result in weaker nonlinearity
[44, 45], utilization of coarse models in the first steps of the DA followed by more non-linear fine
models in the next steps can help to gradually zoom in on the solution of the inverse problem.
Therefore, in SeMLDA the observation data are upscaled into several levels corresponding to
the levels of the ML model. Afterwards, the data are assimilated sequentially starting from the
coarsest resolution followed by the finer ones.

3.4.1 Sequential Multilevel Ensemble Smoother

In this section we discuss two versions of the Sequential Multilevel Ensemble Smoother (SM-
LES). This algorithm draws on the ESMDA algorithm [2], MLHES algorithm [33], and con-
straints associated with assimilation of linearly dependent data [46].

Initially, based on the available computational resources, the number of simulations per-
formed on each level should be decided. Since the simulations are cheaper on the coarser levels,
a higher number of simulations will be performed on those levels. Considering this, a decision
is made on the resource allocation. Based on the resource allocation, a sample of N1 ensemble
members is generated based on the prior information. Afterwards, at step l the model pertain-
ing to level l is used to assimilate the data transformed to match the resolution of the model
forecasts at that level. Running the forward simulator for every realization, zpril,j , 1 ≤ j ≤ Nl,

from the prior parameters random vector at level l, Zpri
l , we have

yl,j =Ml(z
pri
l,j ) , (7)

where yl,j is a realization from the model forecasts random vector at step l, Yl.

In the analysis step, realizations from the random observation data vector at level l, D̃l ∼
N (U l

LE(D),C(D̃l)) are generated as {d̃l,j}Nl
j=1. The form of C(D̃l) will be discussed in Section

3.4.2. The updated parameter vector of an arbitrary ensemble member is, then, given by

zposl,j = zpril,j +K∗l (d̃l,j − yl,j) . (8)

Here, K∗l is defined generically with * being a wildcard notation, and we introduce two flavors
of the algorithm.

The straightforward flavor (SMLES-S) utilizes the data error and model at level l for for-
mulation of the Kalman gain at step l. Accordingly, the Kalman gain is given as

KS
l = C(Zpri

l , Yl)
(

C(Yl) + C(D̃l)
)−1

, (9)

where C(Yl) and C(Zpri
l , Yl) denote the covariance of Yl and cross-covariance between Zpri

l and
Yl, respectively.

Finally, while l < L, the prior for step l + 1 is obtained from the posterior at level l as

zpril+1,j := zposl,j , (10)

for 1 ≤ j ≤ Nl+1.
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In SMLES-S only the realizations which have been simulated by all the models are considered
for the final statistics. With a subtle manipulation of the data-error covariance in (9) for the
realizations at level l which are not simulated by Ml+1, the resulting posterior realizations in
the linear-Gaussian case would sample correctly from the posterior distribution up to the data
at level l. The condition that should hold at any level l is explained in Section 3.4.2.

(a) SMLES-S (b) ESMDA (c) MLHES

Figure 2: The schematic of two MLDA algorithms compared with ESMDA

Figure 2 represents the schematic of SMLES-S in comparison with ESMDA and MLHES
algorithms. As can be seen from the figure, the ensemble size of SMLES-S shrinks as the
level increases due to limited computational resources. Accordingly, at level L the ensemble
size becomes small and it may end up in the situation that MLDA wants to avoid at the first
place. A possible treatment would be utilization of localization in the finer levels, but that
would reduce the robustness of the algorithm. Another alternative is to allow for transfer
of information between different levels by utilization of ML statistics. By doing so, a hybrid
version of the SMLES algorithm is formulated similar to MLHES and IMLHES. The hybrid
Kalman gain can be formulated as

KH
l = CH

l (Z, Y )
(

CH
l (Yl) + C(D̃l)

)−1
, (11)

where CH
l (Yl) and CH

l (Z, Y ) denote the ML covariance of Yl and the ML covariance between Z
and Y , respectively. The ML statistics will be discussed in Section 3.4.3.

The SMLES-H algorithm takes advantage of both conditioning all the realizations to the
data up to the last level on which they are simulated and the ML statistics. A depiction of the
difference between SMLES-S and SMLES-H is presented in Figure 3. Pseudo-codes of SMLES-S
and SMLES-H are presented in Appendix A and Appendix B, respectively.

3.4.2 Partially Multiple Data Assimilation Condition

For the convenience of the reader, we present the main result from [46] (omitting the derivation).
Similar to formulating a condition for assimilating a set of data multiple times such that the
updated ensemble will sample correctly from the posterior in the linear-Gaussian case, there
exists a condition which should hold if the data are linearly dependent, known as the Partially
Multiple Data Assimilation (PMDA) condition [46].
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(a) SMLES-S (b) SMLES-H

Figure 3: Step l of SMLES-S and SMLES-H

In the problem at hand, the data at any coarser level, Dc, is a linear transformation of the
data at any finer level, Df , such that for any {c, l, f}, 1 ≤ c < l < f ≤ L, we have

U c
f = U c

l U
l
f . (12)

Hence, we can define the PMDA condition for the data up to any arbitrary level L, 1 ≤ L ≤ L.
Consider the data-error covariance matrix at level l < L to be given as

C(D̃l) = AlU
l
LC(D)U l

L

T
Al

T , (13)

where Al is an inflation matrix. Assuming the prior distribution is Gaussian, the forward model
ML is linear, and for any coarser level c we have

Mc = U c
LML , (14)

the straightforward formulation of the SMLES algorithm, given in Section 3.4.1, samples cor-
rectly from the posterior distribution of the parameter random vector up to the data at level
L if the following condition holds,

L∑

l=1

U l
L
T

C(D̃l)
−1U l

L =
(
ULLC(D)ULL

T
)−1

. (15)

3.4.3 Multilevel statistics

Assuming we have approximations of the model forecasts, Y , being a function of the unknown
parameter vector, Z, on several levels, a scheme for approximation of ML statistics for Y is
required. As for MLDA, the mean and the covariance of model forecast are of foremost interest.

Assuming the model with the highest fidelity,ML, to be exact, and {Ml}L−1l=1 to be approxi-
mations toML with a decreasing numerical error, [29] proposed a formulation for ML statistics.
In this formulation, inspired by Bayesian Model Averaging, the statistics are computed based
on reliability weights wl for each of the levels l. This formulation is, by definition, a biased
scheme for computation of ML moments; however, it will be a useful technique for problems in
which variance error dominates bias, which is often the case for petroleum reservoir problems
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[29]. Using this formulation and transformations of the forecast, [33] proposed a formulation
of ML statistics for spatially distributed model forecasts. According to this scheme, the ML
mean of the model forecast at level l is given as

EH
l (Y ) =

L∑

k=1

wkU
l
k E(Yk) , (16)

L∑

k=1

wk = 1 , (17)

where E(Yk) denotes sample mean of the model forecast at level k. At step l the model forecasts
pertaining to levels finer than l are not available, since the proposed algorithm is sequential.
Hence, with a small change in the above-mentioned formulation, the formulation used in this
work will be based on levels 1 ≤ k ≤ l,

EH
l (Y ) =

l∑

k=1

wkU
l
k E(Yk) , (18)

l∑

k=1

wk = 1 . (19)

Using the law of total variance, the ML approximation of covariance of the model forecast at
level l is formulated as

CH
l (Y ) =

l∑

k=1

wk{C(U l
kYk) +

(
E(U l

kYk)− EH
l (Y )

) (
E(U l

kYk)− EH
l (Y )

)T} . (20)

In addition, the parameter-forecast cross-covariance can be written as

CH
l (Z, Y ) =

l∑

k=1

wk{C(Zk, U
l
kYk) +

(
E(Zk)− EH(Z)

) (
E(U l

kYk)− EH
l (Y )

)T} , (21)

where EH(Z) is the ML formulation of the parameter-vector mean. This statistic is formulated
using the same weights as in forecasts ML statistics, but since the parameters are in the same
resolution for all levels, no transformation is needed for formulating it,

EH(Z) =
l∑

k=1

wk E(Zk) . (22)

4 Test Models

Three different reservoir models are set up for numerical investigations. These reservoir mod-
els have some shared properties. They are two-dimensional with Cartesian grids. For all of
them, compressible two-phase flow (oil and water), no-flow boundary conditions, and standard
equations for capillary pressure and relative permeability, are considered. All the wells in these
reservoir models are controlled by their bottom-hole pressure; the injectors at 300 bar, and
the producers at 110 bar. A description of the other shared general properties of the reservoir
models is given in Table 1. Unique features of the reservoir models are explained separately in
Sections 4.1 - 4.3.
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Table 1: Shared properties of the reservoir models

Fine cell dimensions: 30× 30× 30 (m3) Porosity: 0.2
Initial Oil saturation: 0.85 Initial Pressure: 200 bar

The forward models consist of two segments. A reservoir flow model is used to predict the
state variables, i.e. the pressure and saturation of the reservoir fluids, in time, and a petro-
elastic model is utilized for computing the elastic rock properties from parameters and predicted
state variables.

The flow segment of the forward model is derived by substitution of Darcy’s law into the
mass conservation equation for each of the fluid phases, resulting in [47]

∇.
[
kro
νoBo

k(∇po − ρog∇z)

]
=

∂

∂t

(
φSo
Bo

)
+ qo , (23)

∇.
[
krw
νwBw

k(∇pw − ρwg∇z)

]
=

∂

∂t

(
φSw
Bw

)
+ qw , (24)

where
So + Sw = 1 , (25)

pcow = po − pw . (26)

In these equations, k denotes absolute permeability, and kr∗ denotes the relative permeability
of the corresponding phase, while ∗ is a wildcard notation. kr∗ is a function of saturation of
that phase, S∗. The pressure of a phase is denoted by p∗, and the capillary pressure, pcow,
is a function of Sw. Furthermore, g denotes the gravitational constant; ν∗, B∗, and ρ∗ are
the viscosity, the formation volume factor, and density of their corresponding phases; and q∗
denotes the sink or source term of its corresponding continuity equation.

The flow segment of the forward models is performed using Eclipse-100 [48]. Coarsening
the grid is done by using the Eclipse keyword COARSEN, which merges groups of pre-defined
neighboring cells to form a coarser grid. The upscaling of permeabilities is performed using
pore-volume weighted arithmetic averaging, and transmissibilities between two neighboring
coarse cells in each direction are calculated based on harmonic averaging in that direction and
summing it in other directions [48].

As for the petro-elastic segment of the forward model, an in-house model based on standard
rock-physics equations [49], [50, Report 1] was used.

4.1 Reservoir Model I

This model has a 50×50 grid, and two wells, one producer (P) at center east and one injector (I)
at center west. This model is designed to evaluate the performances of the different algorithms
in parameter estimation of an oil reservoir with relatively long-range correlation in permeability
field.

4.2 Reservoir Model II

This model has a 64 × 64 grid and five-spot well pattern, four injectors at the corners and a
producer at the center of the field. This model is designed to assess the performances of the
different algorithms in history-matching of a field with relatively short-range correlation length.
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4.3 Reservoir Model III

This model has a 70 × 70 grid and two wells, an injection well in southwest corner and a
production well in the northeast corner. This model has two permeability zones, one with a
long-range correlation length and one with a short-range correlation length, and there exist a
smooth transition from one zone to another.

5 Numerical Investigation

Three numerical experiments are conducted, one for each of the three reservoir models discussed
in Section 4.

The unknown parameter field in all the experiments is the logarithmic permeability field,
which has a different distribution in each of the experiments.

The observation data are two sets of time-lapse bulk-impedance data based on a baseline
(day zero of production) and two vintages, which are different for each experiment and will
be described separately. These observation data are generated using the results of simulation
of a random draw from the prior parameter distribution. As inverted seismic data typically
are spatially correlated, we use a non-diagonal covariance matrix for the data error, based
on isotropic spherical variograms with mean 0. The ranges of the variograms are different
for different experiments so that the robustness of the algorithms towards variogram range is
assessed. The marginal standard deviation of each observation value is given as

σ = r max{|δ|, η} , (27)

where r = 0.1, δ is the value of observation data at a certain location, and η is a threshold
introduced to avoid too much certainty in observation data whose absolute values are very small.
This threshold is defined as the 1st smallest percentile of the absolute value of the observation
data.

In order for comparison of SMLES with standard ESMDA, three algorithms are run; SMLES-
S, SMLES-H, and ESMDA with localization (ESMDA-LOC). The gold standard for this com-
parison is the DA results obtained from vanilla ESMDA with an exceedingly large ensemble
(ESMDA-REF). (Obviously, such an ensemble size would be computationally infeasible for a
real application.)

In addition, in order for comparison of performance of SMLES with the iterative DA al-
gorithms, the following algorithms are run: Iterative Ensemble Smoother (IES) [1] with lo-
calization (IES-LOC) and IMLHES. The gold standard for this comparison is the DA results
obtained from vanilla IES with an exceedingly large ensemble (IES-REF).

What we want to estimate is the posterior distribution of the parameters and the model fore-
casts. The correct estimates would be given by Markov Chain Monte Carlo with an exceedingly
large chain length. However, the focus of this work is comparing the novel MLDA algorithms
with algorithms of the same class which are widely used in reservoir history matching, i.e.
ensemble-based DA algorithms. Hence, ESMDA and IES with exceedingly large ensemble sizes
are selected to remove the Monte Carlo errors and serve as the gold standards for comparison.

In order for these comparisons to be fair, there exists the “equal computational power”
constraint. As the dominant cost of the DA process is pertaining to simulations of forward
models, where iterative linear solvers dominate the computational costs for large problems, the
computational cost relating to simulation of each ensemble member, using forward model Ml,
is assumed to be proportional to Gγ

l , where Gl is the number of the active grid cells in the
forward model at level l, with γ ∈ [1.25, 1.5], [51]. Here, we take γ = 1.35. Accordingly, the

11



computational power associated with each algorithm run can be written as

Ω =
L∑

l=1

nlG
1.35
l . (28)

where nl is the total number of simulations using Ml. Using (28), the computational cost of
the algorithm runs are set to be equal.

The iterative algorithms do not always have a fixed computational cost and many iterations
are performed to satisfy the convergence criteria without considerable improvements in the ob-
jective function. Therefore more computational power (approximately twice the computational
power of the other algorithms) was observed for these algorithms (IMLHES and IES-LOC).

Setting a fixed computational cost, there exists L − 1 degrees of freedom for specification
of the {Nl}Ll=1 in the ML algorithms. No optimization was performed for this specification, the
only aim pursued was to keep the size of sub-ensembles ascending with decreasing model cost.
Several other similar settings that were tried resulted in similar DA outcomes.

The convergence criterion for the iterative algorithms was that improvements in the relative
data mismatch should be smaller than 0.0001.

The localization scheme in ESMDA-LOC was based on covariance structure given in [52],
spherical variogram, and the DA was performed using subspace inversion method proposed by
[53]. As for IES-LOC, the localization scheme was based on covariance structure given in [52]
and spherical variogram.

For the SMLES-H and IMLHES, there is a possibility to improve the results by tuning
the weights in calculation of ML statistics for specific cases, but here we use the simplest
choice–{wl = 1

L | 1 ≤ l ≤ L}.
Both ESMDA-LOC and ESMDA-REF are run with 6 steps, with αi = 6, 1 ≤ i ≤ 6, in all

the steps. Runs with higher number of steps were conducted but no major improvement in the
DA results was observed.

As for SMLES-S, the inflation matrices are set as Al = L∗ Iζl for 1 ≤ l < L, where Iζl is the
identity matrix of size ζl. For L = L, (15) is solved to calculate AL. Unlike satisfying the MDA
condition, which is computationally trivial, satisfying the PMDA condition is computationally
very expensive for real field problems and becomes practically unfeasible. This is due to the
presence of the costly inversions in (15). However, since the PMDA condition only secures
correct sampling for linear-Gaussian problems, approximately satisfying this condition may
suffice for the real field cases.

Regarding SMLES-H, the ensemble at level l is divided into two sub-ensembles; (I) the
realizations which are simulated using Ml+1 after the analysis step, {zpril,j | 1 ≤ j ≤ Nl+1}, and

(II) those that are not, {zpril,j |Nl+1 < j ≤ Nl}. For Sub-ensemble (I) the inflation matrix is set
as Al = L ∗ Iζl . For Sub-ensemble (II), (15) is solved for L = l, so that AL is calculated. This
is done to assure that the PMDA condition is satisfied up the last level that each realization is
simulated. In order to avoid additional computations, the ML statistics are calculated based
on the posterior parameters and their corresponding linear update for the model forecasts.

5.1 Experiment I

This experiment is conducted on Reservoir Model I. The ML algorithms have four levels, cor-
responding to 157, 259, 685, and 2500 grid cells, respectively. A summary of the resource
allocation for the different runs carried out in this experiment can be found in Table 2. All the
numbers in the table are per assimilation step or iteration, except for SMLES-S and SMLES-H.
For these two algorithms the total number of simulations performed at each of the levels are
reported. This also holds for Tables 3 and 4 pertaining to Experiment II and Experiment III,
respectively.
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Table 2: A summary of resource allocation for different runs in experiment I

level 1 level 2 level 3 level 4
G1 = 157 G2 = 259 G3 = 685 G4 = 2500

N1 N2 N3 N4

ESMDA-REF - - - 10000
SMLES-S 951 880 710 412
SMLES-H 1512 1134 756 378
ESMDA-LOC - - - 100
IES-REF - - - 10000
IMLHES 459 438 216 30
IES-LOC - - - 100

The observation data for this experiment are generated based on seismic vintages at 2500
and 5000 days after production starts. The range of the variogram used for data-error covariance
in this experiment is 15 grid cells.

The prior unknown logarithmic permeability field is based on an exponential variogram with
mean and variance constant at 5 and 1, anisotropy angle and anisotropy ratio of 80 degrees and
0.7, and range 20 grid cells. Randomly selected realizations from this logarithmic permeability
field can be found in Figure 4.

(a) (b) (c)

Figure 4: Randomly selected realizations from prior distribution of the logarithmic permeability field
of Reservoir model I

5.2 Experiment II

This experiment is conducted on Reservoir Model II. The ML algorithms have four levels,
corresponding to 265, 433, 1147, and 4096 grid cells, respectively. A summary of the resource
allocation for the different runs carried out in this experiment can be found in Table 3.

The observation data for this experiment are generated based on seismic vintages at 4000
and 8000 days after production starts. The range of the variogram used for data-error covariance
in this experiment is 10 grid cells.

The prior unknown logarithmic permeability field is based on a spherical variogram with
mean and variance constant at 5 and 1, the anisotropy angle and anisotropy ratio of −30
degrees and 0.7, and range 10 grid cells. Randomly selected realizations from this logarithmic
permeability field can be found in Figure 5.

13



Table 3: A summary of resource allocation for different runs in experiment II

level 1 level 2 level 3 level 4
G1 = 265 G2 = 433 G3 = 1147 G4 = 4096

N1 N2 N3 N4

ESMDA-REF - - - 10000
SMLES-S 1673 1380 1343 415
SMLES-H 1496 1122 748 374
ESMDA-LOC - - - 100
IES-REF - - - 10000
IMLHES 644 498 111 40
IES-LOC - - - 100

(a) (b) (c)

Figure 5: Randomly selected realizations from prior distribution of the logarithmic permeability field
of Reservoir model II

5.3 Experiment III

This experiment is conducted on Reservoir Model III. The ML algorithms have three levels,
corresponding to 390, 1261, and 4900 grid cells, respectively. A summary of the resource
allocation for the different runs carried out in this experiment can be found in Table 4.

Table 4: A summary of resource allocation for different runs in experiment III

level 1 level 2 level 3
G1 = 390 G2 = 1261 G3 = 4900

N1 N2 N3

ESMDA-REF - - 10000
SMLES-S 949 925 420
SMLES-H 1266 844 422
ESMDA-LOC - - 100
IES-REF - - 10000
IMLHES 768 246 32
IES-LOC - - 100

The observation data for this experiment are generated based on seismic vintages at 4000
and 8000 days after production starts. The range of the variogram used for data-error covariance
in this experiment is 5 grid cells.

The unknown logarithmic permeability field is based on two different variograms in two
zones of the field, one encompassing the northeastern part of the field and one encompassing
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the southwestern part of the field with a smooth transition between them. The details about
the variograms based on which the distribution of the unknown parameters are defined can be
found in table 5. Randomly selected realizations from this logarithmic permeability field can
be found in Figure 6.

Table 5: The two variograms of Reservoir Model III

variance mean range ratio angle type
Variogram 1 1 5 30 0.7 -30 cubic
Variogram 2 1 5 10 0.4 -70 cubic

(a) (b) (c)

Figure 6: Randomly selected realizations from prior distribution of the logarithmic permeability field
of Reservoir model III

6 Numerical Results

The results from the numerical experiments are assessed both qualitatively and quantitatively,
using the posterior parameters and forecasts.

As for qualitative analysis, firstly, mean and variance of the posterior parameter fields
obtained by different algorithms are compared to the reference cases. Additionally, since the
model forecasts are in different resolutions for different levels of the ML algorithms, comparison
of the posterior model forecasts as such is not a possibility. Instead, we run fine-scale simulations
of the posterior ensemble for all algorithms and then plot the mean and variance of the model
forecasts for all the algorithms and compare them. The model forecasts of the second vintage
are presented for all the experiments.

As for SMLES-H and IMLHES, the simplest formulation is chosen for computation of poste-
rior statistics (E(Z pos), Var(Z pos), E(Y pos), and Var(Y pos)). All posterior ensemble members at
different levels are united into one ensemble and the empirical mean and variance are calculated.

The conventional DA algorithms (ESMDA-LOC and IES-LOC) were tested with several
ranges for localization (critical distances), and the best results are presented for each of the
experiments.

The quantitative analysis is performed using a measure suggested by [54] for comparison of
DA results obtained by different schemes with a reference case. Consider ν to be a vector of
interest for quantitative analysis, e.g. parameter estimate vector or model forecast vector. The
following two metrics are computed for each of the algorithm runs [54],

εMean =
||
(
Mean(ν∗)−Mean(νpri)

)
−
(
Mean(νpos)−Mean(νpri)

)
||2

|| (Mean(νpos)−Mean(νpri)) ||2
, (29)
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εVar =
||Var(ν∗)− Var(νpos)||2

||Var(νpos)||2
, (30)

where Mean and Var represent the empirical mean and variance for different cases; superscripts
pri and pos denote the prior and the reference posterior, respectively; the subscript ∗ is a
wildcard notation for the algorithm of interest; and the distance is measured in 2-norm. Here,
the reference posterior is calculated based on the results obtained by ESMDA-REF for all the
experiments.

When estimation of ν is concerned, the εMean metric has the property that it will be close to 0
for the algorithms that perform similar to the reference and will be close to 1 for the algorithms
whose estimate of ν are similar to the prior estimate. Similarly, the εVar metric calculates the
difference between the variance obtained by the algorithm of interest and the reference variance
normalized by the norm of the reference variance, meaning that smaller values are preferred.

We will compute these two metrics for both posterior parameter estimates and the second
vintage of the posterior model forecasts.

Table 6: Summary of quantitative analysis of the experiments for posterior parameter estimates

Experiment I Experiment II Experiment III
εMean εVar εMean εVar εMean εVar

ESMDA-REF 0.00 0.00 0.00 0.00 0.00 0.00
SMLES-S 0.76 0.79 0.76 0.70 0.55 0.51
SMLES-H 0.51 0.67 0.87 0.39 0.54 0.21
ESMDA-LOC 1.34 9.09 1.21 0.65 1.07 0.95
IES-REF 0.26 0.09 0.34 0.11 0.22 0.08
IMLHES 0.60 0.58 0.80 0.36 0.61 0.20
IES-LOC 1.05 2.00 0.97 0.63 1.08 0.64

Table 7: Summary of quantitative analysis of the experiments for posterior model forecasts

Experiment I Experiment II Experiment III
εMean εVar εMean εVar εMean εVar

ESMDA-REF 0.00 0.00 0.00 0.00 0.00 0.00
SMLES-S 0.16 0.58 0.076 0.46 0.037 0.30
SMLES-H 0.12 8.23 0.13 4.28 0.07 14.23
ESMDA-LOC 1.26 84.48 0.16 4.11 0.075 4.73
IES-REF 0.09 0.21 0.029 0.47 0.011 0.39
IMLHES 0.16 11.28 0.12 5.80 0.19 19.88
IES-LOC 1.27 316.33 0.21 13.12 0.31 97.79

6.1 Results of Experiment I

Visual analysis of the mean permeability fields in Figure 7 shows that the SMLES-S and SMLES-
H results are more similar to the ESMDA-REF result than the ESMDA-LOC result is. It also
shows that IMLHES performs more similar to IES-REF than IES-LOC does. There does
not seem to be any considerable advantage in performance of a specific ML algorithm when
the mean permeability fields obtained by the ML algorithms are compared with the IES-REF
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result. However, due to convergence issues mentioned above, the SiMLDA algorithm used more
computational resources than SeMLDA algorithms. This holds for all the experiments.

Checking the variance fields in Figure 8 confirms that both SMLES-S and SMLES-H perform
better than ESMDA-LOC. It further confirms that IMLHES performs more similar to IES-
REF than IES-LOC does. However, in this figure it is evident that SMLES-S underestimates
the uncertainty in the posterior parameters while SMLES-H and IMLHES overestimate it.
No indication of superiority of either SMLES-H or IMLHES over each other is noticeable in
the variance fields, and both perform slightly better than SMLES-S. It is worth noting that,
changing the color scale of the plot of the variance field for SMLES-S (denoted by SMLES-S∗

in the figure), shows that, in spite of underestimation of uncertainty, the structure of variance
field is predicted accurately by this algorithm.

Superiority of performance of ML algorithms over the performance of the conventional DA
algorithms is further confirmed by checking the statistics of the model forecasts in Figures 9
and 10. There is no clear indication of advantage of either SMLES-H or IMLHES over each
other. However, SMLES-S performs better than both of them particularly in estimating the
variance field of the model forecasts.

Quantitative measures given in Tables 6 and 7 also confirm that the ML algorithms generally
perform more similar to ESMDA-REF than the conventional DA algorithms. Among the ML
algorithms, SMLES-H performs slightly better in estimation of both the posterior parameters
and model forecasts, while IMLHES performs slightly better in estimation of the variance of
the posterior parameter field, and SMLES-S performs significantly better in estimation of the
variance of the posterior model forecasts.

The ESMDA-LOC and IES-LOC results presented here are based on the localization range
of 40 grid cells (1200 meters).

6.2 Results of Experiment II

Visual analysis of the mean permeability fields in Figure 11 shows that the SMLES-S and
SMLES-H results are more similar to the ESMDA-REF result than the ESMDA-LOC result is.
It also shows that IMLHES performs more similar to IES-REF than IES-LOC does. There does
not seem to be any considerable advantage in performance of a specific ML algorithm when the
mean permeability fields obtained by ML algorithms are compared with the IES-REF result.

Checking the variance fields in Figure 12 confirms that both SMLES-S and SMLES-H per-
form better than ESMDA-LOC. It further confirms that IMLHES performs more similar to
IES-REF than IES-LOC does. However, in this figure it is evident that SMLES-S underesti-
mates the uncertainty in the posterior parameters while SMLES-H and IMLHES overestimate
it. No indication of superiority of either SMLES-H or IMLHES over each other is noticeable
in the variance fields, and both perform slightly better than SMLES-S. As for Experiment I,
changing the color scale of the plot of the variance field for SMLES-S (denoted by SMLES-S∗

in the figure), shows that, in spite of underestimation of uncertainty, the structure of variance
field is predicted accurately by this algorithm.

Superiority of performance of the ML algorithms over the performance of the conventional
DA algorithms is further confirmed by checking the statistics of the model forecasts in Figures
13 and 14. There is no clear indication of advantage of either SMLES-H or IMLHES over each
other. However, SMLES-S performs better than both of them particularly in estimating the
variance field of the model forecasts.

Quantitative measures given in Tables 6 and 7 also confirm that the ML algorithms generally
perform more similar to ESMDA-REF than the conventional DA algorithms. All the MLDA
algorithms perform reasonably similar in estimation of the mean of posterior parameters, while
IMLHES and SMLES-H perform slightly better in estimation of the variance of the posterior
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(a) ESMDA-REF

(b) SMLES-S (c) SMLES-H (d) ESMDA-LOC

(e) IES-REF (f) IMLHES (g) IES-LOC

Figure 7: Experiment I–Mean posterior logarithmic permeability field

parameter field. As for estimation of the statistics of the posterior model forecasts, SMLES-S
performs best, and its superiority is most evident in estimation of the variance of the posterior
model forecasts.

The ESMDA-LOC and IES-LOC results presented here are based on the localization range
of 60 grid cells (1800 meters).

6.3 Results of Experiment III

Visual analysis of the mean permeability fields in Figure 15 shows that the SMLES-S and
SMLES-H results are more similar to the ESMDA-REF result than the ESMDA-LOC result is.
It also shows that IMLHES performs more similar to IES-REF than IES-LOC does. There does
not seem to be any considerable advantage in performance of a specific ML algorithm when the
mean permeability fields obtained by ML algorithms are compared with the IES-REF result.

Checking the variance fields in Figure 16 confirms that both SMLES-S and SMLES-H per-
form better than ESMDA-LOC. It further confirms that IMLHES performs more similar to
IES-REF than IES-LOC does. However, in this figure it is evident that SMLES-S underesti-
mates the uncertainty in the posterior parameters while SMLES-H and IMLHES overestimate
it. No indication of superiority of either SMLES-H or IMLHES over each other is noticeable in
the variance fields, and both perform slightly better than SMLES-S. As for Experiments I and
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(a) ESMDA-REF (b) SMLES-S∗

(c) SMLES-S (d) SMLES-H (e) ESMDA-LOC

(f) IES-REF (g) IMLHES (h) IES-LOC

Figure 8: Experiment I–Variance of posterior logarithmic permeability field. The only difference
between SMLES-S and SMLES-S∗ is in their scales.

II, changing the color scale of the plot of the variance field for SMLES-S (denoted by SMLES-S∗

in the figure), shows that, in spite of underestimation of uncertainty, the structure of variance
field is predicted accurately by this algorithm.

Superiority of performance of the ML algorithms over the performance of the conventional
DA algorithms is further confirmed by checking the statistics of the model forecasts in Figures
17 and 18. There is no clear indication of advantage of either SMLES-H or IMLHES over each
other. However, SMLES-S performs better than both of them particularly in estimating the
variance field of the model forecasts.

Quantitative measures given in Tables 6 and 7 also confirm that the ML algorithms generally
perform more similar to ESMDA-REF than the conventional DA algorithms. All the MLDA
algorithms perform reasonably similar in estimation of the mean of posterior parameters, while
IMLHES and SMLES-H perform slightly better in estimation of the variance of the posterior
parameter field. As for estimation of the statistics of the posterior model forecasts, SMLES-S
performs best, and its superiority is most evident in estimation of the variance of the posterior
model forecasts. SMLES-H performs slightly better than IMLHES in this regard.

The ESMDA-LOC and IES-LOC results presented here are based on the localization range
of 60 grid cells (1800 meters).
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(a) “Obs. Data” (b) ESMDA-REF

(c) SMLES-S (d) SMLES-H (e) ESMDA-LOC

(f) IES-REF (g) IMLHES (h) IES-LOC

Figure 9: Experiment I–Mean of posterior time-lapse bulk impedance field (ms
kg
m3 ) in comparison

with observation data in the second vintage

7 Summary and Conclusions

In this work, two variants of a novel sequential MLDA algorithm, SMLES-S and SMLES-H, were
introduced. In addition, performances of these algorithms were assessed in comparison with two
conventional DA algorithms and a simultaneous MLDA algorithm. In doing so, three experi-
ments were performed on three reservoir models. The three experiments were designed such that
the performance of the algorithms were evaluated in different settings for the prior parameter
fields (different variogram types; different anisotropies; and various correlation lengths includ-
ing long-range correlation, short-range correlation, and mixture of long-range and short-range
correlations) and different ranges for the variograms used for the data-error covariance. Each of
the experiments consisted of seven algorithm runs: SMLES-S, SMLES-H, ESMDA with local-
ization (ESMDA-LOC), vanilla ESMDA with an exceedingly large ensemble (ESMDA-REF),
an iterative MLDA algorithm (IMLHES), iterative ensemble smoother with localization (IES-
LOC), and vanilla iterative ensemble smoother with an exceedingly large ensemble (IES-REF).
Results of the experiments were assessed both qualitatively and quantitatively.

In order for qualitative evaluation of the numerical results, firstly, the mean and the variance
of posterior parameter fields were generated and assessed visually. The relative performances of
the different methods were similar for all three experiments. The assessments showed that both
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(a) ESMDA-REF

(b) SMLES-S (c) SMLES-H (d) ESMDA-LOC

(e) IES-REF (f) IMLHES (g) IES-LOC

Figure 10: Experiment I–Variance of posterior time-lapse bulk impedance field ((ms
kg
m3 )2), in the

second vintage. Note that the color bars have very different scales.

SMLES-S and SMLES-H performed more similar to ESMDA-REF than ESMDA-LOC did in
estimation of the posterior parameter mean field. Regarding estimation of the variance fields,
SMLES-H overestimated the variance while SMLES-S underestimated it. The superiority of
performance of both SeMLDA algorithms over ESMDA-LOC was evident, also for the variance
fields. Among the iterative algorithms, IMLHES performed more similar to IES-REF than IES-
LOC did. There was no indication of superior performance of either SMLES-H or IMLHES
over each other in any of the experiment when their performances were compared to IES-REF
results. However, IMLHES used more computational resources than either of the SeMLDA
algorithms. Both IMLHES and SMLES-H performed slightly better than SMLES-S.

Additionally, fine-scale simulations were run for all the posterior ensembles obtained by the
different algorithms in all the experiments. Plots of the mean and the variance of model forecasts
from the different algorithms were compared to each other. Visual analysis of these plots showed
that in all the experiments the ML algorithms performed better than their conventional DA
counterparts. Among the ML algorithms, SMLES-S consistently performed better than both
SMLES-H and IMLHES in estimation of the variance of the posterior model forecasts. Either
of the other two MLDA algorithms did not have a clear advantage over each other.

Two metrics were adopted for quantitative comparison of the DA results obtained by dif-
ferent algorithms for estimation of both mean and variance of the posterior parameters and
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(a) ESMDA-REF

(b) SMLES-S (c) SMLES-H (d) ESMDA-LOC

(e) IES-REF (f) IMLHES (g) IES-LOC

Figure 11: Experiment II–Mean posterior logarithmic permeability field

model forecasts. The metrics indicated that the ML algorithms generally performed better
than the conventional DA algorithms in estimation of both mean and variance of the posterior
parameters. They also indicated that SMLES-H and IMLHES performed slightly better than
SMLES-S in estimation of the variance of the posterior parameters, and that all the MLDA
algorithms performed better than IES-LOC in estimation of mean and variance of the posterior
model forecasts. SMLES-S also performed consistently superior to ESMDA-LOC in estimation
of mean and variance of the posterior model forecasts, while this was not observed for IMLHES
and SMLES-H. Among the ML algorithms, SMLES-S clearly performed best when it came to
estimation of the variance of the model forecasts. The other two algorithms did not consistently
perform better than one another.

There were significant differences between the results from the MLDA algorithms and the
results from the conventional DA algorithms in all the experiments. Simultaneous assimilation
of large amounts of data into ensembles of small size partly explains the under-performance
of the conventional algorithms. In the case of inverted seismic data we noticed true long-
range correlations between the data and parameters. Regularization of the Kalman gain using
distance-based localization, which disregards these true correlations and distorts the update
formula, is another cause for the significant difference between the results.

Even though the results obtained from the experiments did not show any clear indication of
superiority of SeMLDA over SiMLDA, they suggest that similar quality of DA results can be
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(a) ESMDA-REF (b) SMLES-S∗

(c) SMLES-S (d) SMLES-H (e) ESMDA-LOC

(f) IES-REF (g) IMLHES (h) IES-LOC

Figure 12: Experiment II–Variance of posterior logarithmic permeability field. The only difference
between SMLES-S and SMLES-S∗ is in their scales.

obtained by SeMLDA using a fixed and smaller computational power compared to SiMLDA.
There were several issues in this work that can be further investigated. As satisfying the

PMDA condition is not a possibility in real field cases, devising robust techniques for approx-
imately satisfying this condition can be studied. In order for optimization of both SeMLDA
algorithms several of their characteristics can be further researched, e.g. the optimal extent of
coarsening the grid, the number of levels and allocation of resources between them, the weights
for different levels in the ML statistics, and the formulation of posterior statistics, to name a
few. Additionally, generalizations of SMLES algorithms can also be studied, e.g. by assimi-
lating the data more than once in some of the levels using more inflated data-error covariance
matrices. Finally, as realistic reservoir cases are more complex than the fields investigated in
this work, extensive coarsening of the grid may result in large numerical error and model bias.
This limitation, and increase in the dimensionality of the parameters, may call for combination
of localization and the proposed MLDA algorithms.
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(a) “Obs. Data” (b) ESMDA-REF

(c) SMLES-S (d) SMLES-H (e) ESMDA-LOC

(f) IES-REF (g) IMLHES (h) IES-LOC

Figure 13: Experiment II–Mean of posterior time-lapse bulk impedance field (ms
kg
m3 ) in comparison

with observation data in the second vintage
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Figure 14: Experiment II–Variance of posterior time-lapse bulk impedance field ((ms
kg
m3 )2), in the

second vintage. Note that the color bars have very different scales.
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forecast skill through reduced-precision data assimilation. Monthly Weather Review, 146
(1):49–62, 2018.

[29] Kristian Fossum, Trond Mannseth, and Andreas S Stordal. Assessment of multilevel
ensemble-based data assimilation for reservoir history matching. Computational Geo-
sciences, 24(1):217–239, 2020.
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